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Abstract: High-contrast slab waveguide Bragg gratings with 1-D periodicity are investigated. For

specific oblique excitation by semi-guided waves at sufficiently high angles of incidence, the ide-

alized structures do not exhibit any radiative losses, such that reflectance and transmittance for the

single port mode add strictly up to one. We consider a series of symmetric, fully and partly etched

finite gratings, for parameters found in integrated silicon photonics. These can act as spectral filters

with reasonably flat-top response. Apodization can lead to more box shaped reflectance and transmit-

tance spectra. Together with a narrow-band Fabry-Perot filter, these configurations are characterized

by reflection bands, or transmittance peaks, with widths that span three orders of magnitude.

Keywords: photonics, integrated optics, waveguide Bragg gratings, 1-D photonic crystals, wave-

length filters, bandpass filter, narrow-pass filters, oblique propagation of semi-guided waves.

1 Introduction

Periodically corrugated dielectric optical waveguides, or waveguide Bragg gratings [1–5], are employed, with

various purposes and in manifold variants, as fundamental building blocks of current integrated photonic cir-

cuits. Wave propagation along finite gratings, if operated in conventional configurations, appears to be always

accompanied by more or less pronounced radiative losses [6–8], originating either from the excitation of leaky

eigenmodes of the periodic grating, or from the mismatch between the modes supported by the corrugated and

non-corrugated waveguide segments. This concerns especially structures with high refractive index contrast

and/or large corrugation depths. For certain applications, the out of plane radiation can be seen as a desired

and thus specifically tailored feature. Examples are grating couplers for connecting an integrated circuit to

optical fibers [9–12], or gratings applied for light extraction from light-emitting sources [13,14]. In many other

circumstances, however, these out-of-plane losses are highly unwanted. Here the list of applications includes

various kinds of filters for optical signal processing [4, 15], (refractometric) optical sensors [16–18], or lasers

based on waveguide Bragg reflectors [19–21].

Without focusing on any particular application, with this paper we address these latter scenarios. We restrict

the discussion to high-contrast gratings with simple rectangular corrugations and 1-D periodicity. Contrary to

conventional settings, these are excited by optical waves (semi-guided waves [22,23]) that are strictly confined

in the direction perpendicular to the guiding slab, that have the functional shape of a plane wave with respect

to the two in-plane coordinate axes, and that come in to the grating at an oblique angle of incidence. Fig. 1

illustrates this geometry. As we shall argue in Section 2, the oblique excitation makes all the difference: For a

sufficiently high angle of incidence, radiation losses, originating either from the corrugated region or from the

interfaces between the grating and the original slab, are (mathematically) fully suppressed.
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Figure 1: A high-contrast grating in a slab waveguide, schemati-

cally. Cartesian coordinates x, y, z are oriented such that x is per-

pendicular to the slab plane, with the y-axis parallel to the grooves

of the grating. Incoming semi-guided waves propagate in the y-z-

plane at an angle θ with respect to the grating normal z. Outgoing

waves with reflectance R and transmittance T are observed under

oblique angles.
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Optics of semi-guided waves can be counted among the earliest concepts of integrated photonics [24–26], at

that time with a focus on low refractive index contrast. A series of more recent studies covers 90◦-folds in

optical slab waveguides [27–29], waveguide facets with a coating segment [30, 31], mirrors [32], the oblique

wave propagation across channel waveguides with rectangular [33–42] and circular cross sections [43–45],

with direct and evanescent interaction, for the realization of a variety of filtering functions, and for the selective

excitation of fiber modes with high-order orbital angular momentum, further the equivalents of diffraction

gratings [46, 47], resonant absorbers [48], lenses [49], or composite systems like entire spectrometers [50].

While in all cases the wave propagation in slab waveguides is considered, also components of various types for

semi-guided Bloch surface waves have been proposed [51–54].

The present paper picks up a recent discussion of optical beam splitters [55] operating on semi-guided waves

in high-contrast dielectric slabs. In the next section 2 we review some more general properties of the systems

with oblique excitation [23, 28], specializing things to the present gratings. Sections 2.1–2.3 add brief remarks

on the simulation technique, on band structure analysis, and on the oblique excitation by semi-guided beams of

limited lateral width. In Sections 3–5 we then discuss a series of computational results for simple fully-etched

high contrast gratings without and with apodization, for symmetric partly etched gratings, and finally for a

narrow-band filter of Fabry-Perot type.

2 Oblique excitation by the semi-guided fundamental TE-wave

As a starting point for the analysis, we observe that the gratings of Fig. 1 are constant along the y-coordinate

parallel to the grooves. This includes the half-infinite access waveguides that extend in ±z-direction. We

consider incident waves with the profiles, along the vertical x-axis, of guided modes supported by these slabs.

Concerning the propagation in the y-z-plane, these have the functional form of a plane wave coming in at angle

θ with respect to the normal to the grooves.

One thus looks for solutions of the full Maxwell equations in the frequency domain with a harmonic y-

dependence ∼ exp(−ikyy) of all optical electromagnetic fields. The formal equations for this “2.5-D” set-

ting [22, 23, 28, 56] are identical to the equations that govern the modes of dielectric channel waveguides with

2-D cross sections. Here, however, these establish a scattering problem with a common wavenumber

ky = kNin sin θ, (1)

determined by the angle of incidence θ, for vacuum wavenumber k and effective index Nin of the incoming

slab mode. In the first place, the resulting vectorial equations need to be solved on the 2-D cross-sectional

x-z-plane, with transparent boundary conditions that accommodate the incoming semi-guided wave.

In the homogeneous regions outside the guiding cores, all electromagnetic field components satisfy a standard

2-D Helmholtz equation [22, 23, 28], but with an effective permittivity

ǫeff = n2

b −N2

in sin
2 θ (2)

in place of the actual permittivity n2

b of the background medium. In case of excitation by a mode with suf-

ficiently large effective index, and at sufficiently large angle of incidence θ > θb with sin θb = nb/Nin, this

effective permittivity can become negative. Then these regions do not longer permit any propagating fields: All

outgoing optical waves are of evanescent type, and, as such, they do not transport any optical power. Radiative

losses are thus fully suppressed.

Alternatively, this can be understood in terms of fairly general results from the more detailed analysis in Refs.

[23, 28, 56]. Given the excitation by an incoming wave with effective index Nin, a propagating semi-guided

outgoing wave with effective index Nout is observed at an angle θout that is related to the angle of incidence θ
by an equation in the form of Snell’s law:

Nout sin θout = Nin sin θ. (3)

Hence, for the gratings with single-mode slabs of identical thickness next to the corrugated regions, reflected

or transmitted waves of the same polarization propagate at the same angle θout = θ as the incident wave.
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In cases where Eq. (3) does not yield a real angle θout, the outgoing wave becomes evanescent. This happens,

if the structure is excited at angles θ > θcr, for a critical angle θcr with

sin θcr = Nout/Nin. (4)

Non-guided, radiative outgoing waves (“cladding modes”) are characterized by effective indices below the level

nb, i.e. all these waves become evanescent for excitation at angles θ > θb. We are thus led to the same limiting

angle for the suppression of radiative losses as before.

Next we specialize things to the examples in Sections 3–5. Refractive indices of nb = 1.45 for the substrate

(or buffer layer) and cover medium and ng = 3.45 for the slab core, a standard film thickness of d = 220 nm,

and interest in a spectral region around the target vacuum wavelength λ = 1.55µm are typical values for

Si/SiO2 slab waveguides in the field of silicon photonics [57–59]. For reasons of simplicity, we neglect material

dispersion. Note, however, that all theoretical arguments and numerical simulations are strictly based on a

frequency domain description. Hence, once a particular material model [60, 61] has been agreed upon for a

specific realization task, including the effects of material dispersion [7] should be straightforward. Further, for

reasons as given in the next paragraphs, we also restrict the discussion to excitation by the fundamental TE

mode at a convenient angle of θ = 45◦, and to covered structures, i.e. structures that are mirror symmetric with

repect to the y-z-plane at x = 0 (cf. Figs. 3, 9, 12).
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b Figure 2: Bottom: Effective indices Neff of the guided

modes of a symmetric slab waveguide of thickness d =
0.22µm, with refractive index contrast nb : ng = 1.45 :
3.45, as a function of the vacuum wavelength λ. TE- (solid)

and TM-polarized (dashed) modes of fundamental (TE0,

TM0) and first order (TE1, TM1) are supported. Top: Criti-

cal angles θcr (Eq. (4)) associated with the TM0-, TE1-, and

TM1-modes, and the critical angle θb for propagating waves

supported by the background medium, for excitation by the

TE0-mode. A horizontal line marks the angle of incidence

of θ = 45◦ used for all configurations in this paper.

Along with the modal effective indices [62], the former critical angles change with the vacuum wavelength of

the incident light. Fig. 2 summarizes these values, for the parameters considered in the later examples. Besides

the fundamental TE0-mode, the slabs support further guided fields. In principle, the grooves of the gratings

must be expected to scatter into these modes, such that mode and/or polarization conversion [28] could occur.

There are two mechanisms that prevent these effects.

On the one hand, according to Fig. 2, for TE0-excitation at θ = 45◦ the critical angles (4) for the TM1, TE1

(largely), and TM0 modes (partly) are below the angle of incidence. In the respective spectral regions, the

modes become evanescent. On the other hand, referring to the coordinates of Fig. 3, the incident TE0 wave has

a specific mirror symmetry with respect to the plane at x = 0. Its vectorial electric and magnetic profile (E,H)
comprises a vanishing component Ex = 0, even components Ey, Ez , and Hx, and odd components Hy and

Hz [56]. The TE0-mode satisfies what is called perfect magnetic conductor (PMC)-boundary conditions [63]

at x = 0. Since the full structure is also mirror symmetric, this symmetry can be extended to the entire optical

electromagnetic field. Contrarily, the TM0 and TE1 modes have profiles with even (zero) Ex, odd Ey and Ez ,

odd (zero) Hx, and even Hy and Hz components; they comply with perfect-electric-conductor (PEC) conditions

at x = 0. The incoming TE0 wave can thus not excite these two modes. While this does not hold for the TM1

mode which is of the same symmetry class as TE0, its critical angle is below the angle of incidence, and the

mode is evanescent, for the full wavelength interval. Note, however, that the former symmetry arguments

require strictly vertical sidewalls of the grooves.

In total, just as are the radiative losses, power transfer to any outgoing waves based on the TM0, TE1, and TM1

modes is prohibited for the entire spectral range of interest. For TE0 excitation, outgoing power is carried by
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the reflected and transmitted TE0-waves only; our model predicts reflectances and transmittances that strictly

add up to one.

The symmetry arguments work both ways. For oblique excitation by an incoming TM0 mode, power transfer to

potentially outgoing TE0-waves with much higher effective index is forbidden [55]. It should thus be possible

to adapt the structures of Sections 3–5 for TM polarization, with full suppression of radiative losses and sup-

pression of mode / polarization conversion. This would require a re-dimensioning of the structures, and, with

larger critical angles, operation at a higher angle of incidence, in general (not followed up in this paper).

2.1 Simulations by bidirectional eigenmode propagation

The numerical computations in Sections 3–5 can rely on an outwards exponential decay of all electromagnetic

fields in the direction x perpendicular to the slab plane. Hence, simulations with “hard”, non-transparent bound-

ary conditions, imposed at a sufficient distance from the guiding core, can be used in this case. Our numerical

simulations are based on a simulation technique as described in [8, 56, 64, 65]. The semianalytical frequency-

domain solver addresses the 2.5-D scattering problem on a 2-D computational domain with transparent-influx

boundary conditions (or externally unbounded homogeneous regions) at the left and right edges of a horizontal

(z-) interval, and with boundary conditions of Dirichlet type at the lower and upper edges of a vertical (x-)

computational interval. The scheme relies on bidirectional expansions into polarized local vectorial slab eigen-

modes propagating along the horizontal z-coordinate (vectorial bidirectional eigenmode propagation, BEP).

These are fully vectorial simulations of high-contrast dielectric structures with discontinuous permittivity. Ap-

proximations of narrow, peaked (divergent) features in the fields at the edges and corners of the grooves are

required, just as in standard calculations of modes of rectangular dielectric waveguides. Besides the TE terms,

also the TM-polarized elements of the set of basis slab-modes are necessary for convergence of the simulations.

Note that, even if the TM and higher order TE fields do not transport any optical power, these slab modes can

well play a role in the local representations of the optical electromagnetic fields in the corrugated grating region.

The domain size along x and the number of expansion terms enter as computational parameters, where the

values required for convergence may depend on the particular configurations encountered in a (wavelength)

sweep. The previous theory predicts strictly power conservative gratings, with unit sum of reflectance R and

transmittance T , where the actual power balance realized by the numerical approximations can serve as an

indicator for convergence. With x-intervals with margins of [0.6, 0.8]µm or [0.6, 0.8]λ above and below the

upper and lower core interface, and typically about 120 expansion terms per polarization (numbers ranging from

30 (band structure) to 250 (long finite gratings, spectral regions at the band edges)), we observed deviations

|R+ T − 1| of less than 0.01 for all simulations that led to the data as displayed.

2.1.1 Numerical finite element simulations

The rigorous finite-element (FE) solvers in the COMSOL multiphysics suite [66] also cover the present param-

eterized 2-D problems. We applied these tools for a corroboration of the BEP results; respective data has been

included in Figs. 5(b) and 11(b). Excellent agreement is observed.

2.2 Band structure calculations

As a means of characterizing the interior part of the gratings, one analyses the respective infinite periodic

structure, here for the propagation of waves that are generated by the oblique excitation process. To that end, we

look for solutions of Maxwell equations in the form of (Floquet-) Bloch modes [1,2,67]. Assuming a frequency

domain representation with time dependence ∼ exp(iωt) of all fields for frequency ω = kc = 2πc/λ and

vacuum speed of light c, in our case these are vectorial fields with electric part E and magnetic part H , which

can be written as (E,H)(x, y, z) = Ψ(x, z) exp(−iβz) exp(−ikyy). Here, ky is the common wavenumber,

as introduced before in Eq. (1), and β = kNB and NB are the propagation constant and effective index of the

Bloch mode. Its profile function Ψ needs to be periodic in z with the period Λ of the grating.

The modes are governed by the frequency-domain Maxwell equations with the ky-substitute, restricted to a

unit cell interval z ∈ [0,Λ], preferably chosen such that its boundary positions do not coincide with any di-

electric interfaces (cf. Fig. 3). These vectorial equations are then solved for homogeneous, phase-adjusted

periodic boundary conditions (E,H)(x, y,Λ) = (E,H)(x, y, 0) exp(−iβΛ) and ∂z(E,H)(x, y,Λ) =
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∂z(E,H)(x, y, 0) exp(−iβΛ), with the range of wavenumbers restricted to the first Brillouin zone, such that

β ∈ [−π/Λ, π/Λ] or NB ∈ [−λ/(2Λ), λ/(2Λ)].

Our technical procedure can be outlined as follows. We invoke the BEP solver on the unit cell domain. For

given wavelength, the solver establishes a relation in the form Av = Bv
′ where matrices A, B connect vectors

of amplitudes v, v′ that represent the electromagnetic field at the beginning and the end of the unit cell. The

former boundary conditions then require that v′ = exp(−iβΛ)v holds. Valid modes can thus be calculated as

pairs of solutions (v, b) of the generalized eigenvalue problem Av = bBv. Among the set of results, complex

eigenvalues b with |b| = 1 lead to the propagation constants β = ±(arg b)/Λ and effective indices NB = β/k
of guided Bloch modes; the related eigenvectors represent the (fully vectorial, hybrid) mode profiles. The

modes come in pairs of forward- and backward traveling fields.

Note that, due to the negative effective permittivity associated with the background medium, the concept of a

light line [67] does not apply in the present case. Lossless guided Bloch modes with small effective indices

exist even in the short-wavelenth regime.

2.3 Excitation by semi-guided beams of limited width

Obviously, in a practically relevant setting of integrated optics, all propagating waves need to be of limited

lateral extension. Following the recipes of Refs. [28, 29, 35, 44, 49], this can be modeled by superimposing

the former semi-guided plane waves with suitable weights over some range of wavenumbers ky , or range of

propagation angles, respectively. One forms bundles of semi-guided waves, or semi-guided “beams”. Besides

Gaussian superpositions [28,35,44,49], also bundles generated from rib waveguides with shallow etching [29]

have been studied.

For our gratings we consider TE-polarized bundles with Gaussian weight distribution, such that the resulting

fields are vertically (x-) guided and in-plane (y, z) of Gaussian shape. The beams are focused at the origin

(y, z) = (0, 0) and are characterized by a principal angle of incidence θ and a beam width Wb (full width

of the field at focus, in the direction perpendicular to the principal direction of propagation, 1/ e-level). Our

simulations rely on numerical integration of the BEP solutions of Section 2.1, according to explicit expressions

from Refs. [28, 44].

3 A symmetric high contrast grating

Fig. 3 introduces our first example. Parameters as given for Fig. 2 apply: A series of N rectangular parallel

grooves of width g with period Λ are etched into a slab waveguide of thickness d = 220 nm. The core with

refractive index ng = 3.45 is embedded in a background medium with index nb = 1.45. Oblique incidence,

according to Fig. 1, of TE-polarized semi-guided waves at an angle θ = 45◦ is considered, for some spectral

range around the target vacuum wavelength λ = 1.55µm.

x

R d g T

nb

z
Λ

1 2 N. . .

ng

Figure 3: A finite fully-etched high-contrast grating in a slab wave-

guide, cross-sectional view. The interior grating region consists of

N periods of length Λ, with central grooves of width g. The grat-

ing connects to exterior half-infinite slab waveguides of thickness

d, made of media with refractive indices ng (guiding regions) and

nb (background).

We first look at the strictly periodic interior segment of the grating, in terms of band structure calculations

as outlined in Section 2.2. Fig. 4 compares band diagrams for gratings with different periods and gap widths.

Effective indices for hybrid guided Bloch modes of dominant TE and TM polarization are shown. No limitation

by any “light-line” applies (or the light-line is reduced to the NB = 0 -axis); lossless guided Bloch modes with

down to zero effective indices are supported also at the short wavelength, or high frequency, end of the spectral

region shown in the figure.

Two TE bandgap intervals appear, where no guided TE polarized Bloch modes are supported. For these wave-

lengths a segment of grating, with the respective periodicity and gap width, will act as a reflector, with a

reflectance that grows with the number of periods. In some instances, guided TM Bloch modes are supported
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Figure 4: Band diagrams for infinite periodic gratings as in Fig. 3, for TE excitation at angle θ = 45◦, effective indices

NB of TE- (thick lines, blue) and TM-polarized Bloch modes (thinner curves, black), as a function of the excitation

wavelength λ, and for values of period Λ and gap width g as given in the panels. Thin dash-dotted lines mark the borders

of the first Brillouin zone at ±λ/(2Λ). Gray patches indicate the bandgaps for TE polarized Bloch modes.

at frequencies inside the TE band gaps. These, however are of a different symmetry class as any TE wave

incident on a finite grating, and thus do not contribute to any transmission across the grating; the TE bandgap

is symmetry protected.

What concerns the position and the widths of the bandgaps, one observes the following trends. A change in the

period Λ of the grating, for constant gap g, mainly leads to a change in the position of the bandgaps (compare

parts (a), (b), and (c) of Fig. 4). Contrary, an increase in the width g of the gaps causes an increase in the

reflector strength associated with individual grooves, and thus mainly an increase in the width of the bandgaps

(compare insets (d), (b), and (e)), with some minor change in the bandgap positions.

Next, we specialize to a grating with the parameters Λ = 420 nm, g = 10 nm. Fig. 4(b) predicts a major

TE-bandgap (wider gray patch) of width 136 nm, extending from 1.483µm to 1.619µm, roughly centered at

our target wavelength 1.55µm. Fig. 5 shows respective transmittance and reflectance spectra, for a series of

finite gratings.
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Figure 5: Reflectance R and transmittance T versus vacuum wavelength λ, for finite gratings as in Fig. 3 with N =
5, 10, 20, 40 periods (a–d), period length Λ = 420 nm, and gap width g = 10 nm, for TE excitation at angle θ = 45◦.

Gray patches show the bandgap regions as identified in Fig. 4(b). Panel (b), markers: FE simulations, cf. Section 2.1.1.

As expected, the bandgaps appear as wavelength regions with high reflectance R and accordingly low transmit-

tance T . In line with Section 2, R+ T = 1 holds strictly for the present configurations. For increasing number

of inner periods, the reflectance maxima attain a shape with more and more flattened top. A pronounced slope

in the reflectance curves in the bandgap regions, as associated with radiation losses in other settings [7], is

entirely absent in the present configurations.

The spectral regions between the bandgaps are filled with a series of resonance peaks, with extremal states of

full transmittance and zero reflectance. These can be understood as transmission resonances of guided Bloch

modes between the two interfaces that separate corrugated and non-corrugated slab regions. With more inner

periods, the then longer interior grating supports more and more of these resonances. Also here one obtains

clear spectral features that are not obscured by any radiation losses.

Fig. 6 collects a few field impressions, for configurations with maximum reflectance at the target wavelength,
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Figure 6: Excitation of gratings with parameters as in Fig. 5, Λ = 420 nm, g = 10 nm, with numbers of periods N = 5
(a, b), N = 10 (c, d), N = 20 (e, f), by semi-guided TE polarized plane waves at angle θ = 45◦, at wavelengths

λ = 1.55µm, (a, c, d) and λ = 1.178µm (b, d, f); optical electromagnetic energy density u on the x-z-cross section

plane; contour lines at 5%, 1%, and 0.5% of the maximum level, with a uniform color scale for all panels.

and for configurations with full transmittance at the central maximum between the two bandgap regions. These

are vectorial fields where various components play a role. We thus plot the time-averaged energy density

u = Re (ǫ0n
2|E|2 + µ0|H |2)/4 of the frequency domain optical field with electric part E, magnetic part H ,

and vacuum permittivity ǫ0 and permeability µ0. At the wavelength inside the bandgap (parts (a), (c), (e)), one

observes gradually decaying field levels in the corrugated regions. Longer gratings thus effect an increasing

reflectance. At the particular wavelength outside the bandgap (panels (b), (d), (f)), the interference of forward-

and backward traveling Bloch modes leads to an irregular field pattern in the corrugated region that repeats

itself for a growing number of periods, establishing the (weak) transmission resonance. All fields are clearly

vertically confined around the slab core.
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Figure 7: Excitation of gratings as in Fig. 3 by bundles of semi-guided waves; energy density u on the y-z-plane at the

core center x = 0; contour lines at 5%, 1%, and 0.5% of the maximum level, with a uniform color scale for all panels.

Parameters are as for Fig. 5, Λ = 420 nm, g = 10 nm, a grating with N = 20 periods; oblique incidence of beams of

cross-sectional widths Wb = 7µm (a, b) and Wb = 35µm (c, d) at wavelengths λ = 1.55µm, (a, c) and λ = 1.178µm

(b, d). Values of reflectance R and transmittance T are shown. White lines indicate only the outermost interfaces of the

corrugated region.
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As a further illustration, we consider a “top view” of the propagation across the gratings, now for wave bundles

of limited width, as discussed in Section 2.3. Fig. 7 collects respective plots, for incidence of narrower and

wider beams at the two wavelengths of Fig. 6. By construction, the bundles cover plane waves for a range of

wave vectors, or range of angles of incidence, respectively, centered around a principal angle θ. As the plane

wave transmission properties vary with incidence angle, the transmittance and reflectance observed for bundled

incidence differs from the values as predicted for plane wave incidence at the principal angle. Accordingly,

for the narrower beams in Fig. 7(a, b) one observes some residual transmission, or reflection, respectively. For

the spatially wider beams in panels (c, d) with their narrower range of relevant wavenumbers, we find again

transmittance and reflectance values close to the levels for plane wave excitation.

3.1 Apodized grating

The pronounced ripples in the spectra of the former gratings in the wavelength regions outside the bandgaps

can be understood as resonances of the Bloch modes between the two interfaces of the periodically corrugated

inner grating region and the external non-corrugated slabs. Tapering these transitions can be expected to lower

the reflectance associated with the interfaces, and thus to reduce the transmittance ripples. Various types of

apodization have been applied widely [5, 68, 69] as a means to shift the spectrum with a more box-like, flatter

shape closer to full transmittance and zero reflectance outside the bandgap regions.
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Figure 8: Reflectance R and transmittance T versus wavelength λ, for apodized gratings with parameters Λ = 420 nm,

g = 10 nm, and a number of inner periods 5, 10, 20, 40 (a–d), continued on both sides by 10 periods with gap widths that

decrease linearly outwards down to a minimum width of 2 nm. Gray patches: bandgap regions as identified in Fig. 4(b)

for the original, strictly periodic structures with 10 nm gap width.

For the spectra in Fig. 8 we tried a very simple type of linear apodization. The former gratings are surrounded

by additional periods on both sides, where, starting with the first period outside the original range, the gap

width g is reduced linearly outwards from the original values of 10 nm down to a minimum width of 2 nm

for the outermost periods, for constant period length Λ. Comparison with the spectra in Fig. 5 clearly shows

the expected effects, where there is certainly room for further optimization of the shape and length of the

apodization.

4 Grating with reduced reflector strength

A more narrowband reflection spectrum could be seen as potential aim for our gratings. According to the

discussion of the band diagrams around Fig. 4, that should be attainable by reducing the gap width of the

former fully-etched devices. Unfortunately, this would quickly lead to rather unrealistic trenches of few- or

sub-nanometer width. As an alternative, one can reduce the reflector strength of the individual grooves, by only

partly removing the waveguide core in the groove regions. The structure of Fig. 9 maintains the ±x-symmetry,

such that polarization conversion is still prohibited.

We focus on only one groove first. Fig. 10 shows the reflectance associated with a single grating period, for

varying residual core thickness in the gaps of the grating. For the fully etched grating with r = 0, with growing
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ng Figure 9: Cross-section of a finite partly-etched symmetric high-

contrast grating. Parameters are as introduced in Fig. 3, with a

residual film thickness r in the groove regions.

groove width g the reflectance rises steeply towards total reflectance. This can be understood as an effect of

frustrated total internal reflection [70], here for the purely evanescent fields that “reach out” from the input slab

across the gap to the output slab segment [55]. The same mechanism can apply in a structure with a residual

core that supports guided modes: At small r, these modes have sufficiently low effective indices, such that the

critical angle (4) of these modes, for TE-excitation by the fundamental mode of the original slab, is below the

45◦ angle of incidence as assumed for these calculations. Hence, even if guided modes are supported by the

thin slab profile associated with the groove regions, these modes become evanescent for the present oblique

excitation. For larger r > 79.5 nm, however, the critical angle is above the 45◦-level, such that the modes can

propagate within the gap region. Then the two groove interfaces act as two identical (weak) reflectors of a

resonant system. In that case of large r, wide transmission resonances can be observed, periodic in g.
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Figure 10: Reflectance R of single grooves of width g (see Fig. 9, N = 1) in

a slab of thickness d = 220 nm for a residual core thickness r. Semi-guided

TE excitation at wavelength λ = 1.55µm, at an angle θ = 45◦.

According to Fig. 10, the fully-etched grating (r = 0) of Fig. 5 with a gap width of 10 nm corresponds to a

single-groove reflectance of about 0.03. Hence, spectra as in Fig. 5, with a similar magnitude of the bandgap,

should be realizable alternatively with partly etched grooves for e.g. r = 110 nm and a larger gap g = 170 nm

(and modified period length).
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Figure 11: Reflectance R and transmittance T as a function of wavelength λ, for finite gratings as in Fig. 9 with N =
20, 40, 80, 160 periods (a–d) and period length Λ = 411 nm, gap width g = 110 nm, and remaining film thickness

r = 160 nm in the groove regions. Gray patches mark the bandgap regions for the respective infinite periodic gratings, for

oblique TE polarized excitation at 45◦. Note the wavelength range of only 200 nm. Markers in part (b) show the results

of FE simulations (see Section 2.1.1).

Aiming at a grating with narrower-band reflectance, one needs to further reduce the reflector strength of the in-

dividual grooves. A band structure analysis procedure as before (not shown) predicts, for residual film thickness

r = 160 nm, and gap with of g = 110 nm, a bandgap of roughly 20 nm (compare to the 136 nm of Fig. 5), as

before centered close to our target wavelength of λ = 1.55µm. The respective spectra in Fig. 11 are of similar

form as those for the fully etched gratings, but concern a much shorter wavelength interval. The gratings realize
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the narrower bandgap with a similar period length and with perhaps a little more convenient groove width. This,

however, comes at a prize of substantially more periods, i.e. of longer gratings, that are required for a spectral

response with a flat-top reflection band. Apodization should be possible just as described in Section 3.1.

5 Narrow-band Fabry-Perot filter

A standard technique for creating narrow-band transmission filters is to introduce a suitable defect into an

otherwise periodic grating [67,71,72]. If operated at wavelengths inside its bandgap region, the grating without

the defect, or the two halves enclosing the defect region, would act as a good reflectors. That procedure could

certainly also be pursued with the present grating configurations (not followed up here).

Alternatively, according to Fig. 10, lossless reflectors of quite arbitrary (large) strength for semi-guided waves

can be created by just using a single wide trench [55]. These rely on frustrated total internal reflection only, not

on any resonant effect. Therefore, while moderately wavelength dependent, the reflectance of these trenches is

reasonably broadband [55]. We are thus led to the structure shown in Fig. 12.

R

x

nbd

w w

T

z
S

ng

Figure 12: Filter of Fabry-Perot type, to be excited by semi-guided

waves at oblique angles. A slab waveguide of thickness d, with re-

fractive indices ng (core) and nb (background) includes two identi-

cal trenches of width w that are separated by a distance S.

The device constitutes an instance of what has been proposed as a two-groove planar filter (TGPF) in Ref. [34],

there discussed in terms of the leaky modes supported by the narrow central slab region, for non-symmetric

structures with wider, only partly-etched trenches. As an alternative, the filters can also be understood by

common arguments for Fabry-Perot resonators [55]. We shall see that widened (highly “multimode”) central

regions can lead to sharpened resonances, and we shall look at the bundled excitation of these devices.

Apart from the properties of the slab waveguide (values as before), the filter geometry and thus its transmission

characteristics are determined by the width w of and the distance S between the two trenches. Of these, the

gap w controls the reflectance associated with each individual trench. Rather arbitrarily, we look at widths of

w ∈ [100, 200, 300] nm, leading to single trench reflectances of R = 0.74, 0.94, and 0.98, according to Fig. 10.

Aiming at full transmission at our target wavelength of λ = 1.55µm, we then vary S to identify values where

the double-trench resonator supports a transmission resonance at this wavelength (curves not shown).
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Figure 13: Transmittance T versus vacuum wavelength λ, for double-trench resonators as in Fig. 12, for trench widths

w = 100 nm (dash-dotted), w = 200 nm (dashed), w = 300 nm (solid curve), and reflector separations S close to 0.3µm

(a), 3µm (b), and 30µm (c), respectively.

Standard Fabry-Perot theory [73] can be applied. For fixed reflector strength, and at given wavelength, the trans-

mission resonances appear periodically in the reflector distance S, in our case spaced by ∆S = λ/(2NTE cos θ),
where NTE cos θ is the effective index relevant for the the propagation of the fundamental TE wave along

z, for excitation at angle θ. One obtains a distance ∆S = 0.388µm for our present parameters. Having

selected, for each w, a suitable value S0 close to 0.3µm, we are led to configurations with w = 100 nm,

S ∈ [0.314, 3.418, 30.210]µm, alternatively w = 200 nm, S ∈ [0.335, 3.439, 30.231]µm, and w = 300 nm,
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S ∈ [0.340, 3.444, 30.236]µm that show transmittance maxima at λ = 1.55µm. Each set of values for the

trench distance constitutes a triple [S0, S0 + 8∆S, S0 + 77∆S]. Fig. 13 compares the corresponding spectra.

For separations S of similar magnitude, the spectral width of the transmission resonances decreases with

growing reflector strength, i.e. with growing width w. Likewise, the transmission peaks become sharper

for increasing resonator length S. This can again be understood by standard expressions from Fabry-Perot

theory. These predict a free spectral range, a wavelength distance between neighboring transmission reso-

nances, of ∆λ = λ2/(2Sng) and a spectral width (full width at half maximum) of the transmittance peaks

of 2δλ = (λ2φ1/2)/(2πSng). Here φ1/2 is some phase factor (w-dependent), and ng is the group index

ng = (NTE − λ∂λNTE) cos θ relevant for the propagation of the oblique TE-wave along z at angle θ. Both the

free spectral range as well as the peak width scale inversely with the reflector separation S.

The larger resonators in Fig. 13(b, c) are characterized by spectral widths of about 2δλ = 13.6 nm, 2.7 nm,

0.7 nm for w = 100, 200, 300 nm, and S ≈ 3µm (b), and of 2δλ = 1.51 nm, 0.3 nm, 0.08 nm for w = 100,

200, 300 nm, and S ≈ 30µm (c). This confirms the 1/S-dependence of the spectral peak width, which in

part (c) of Fig. 13 is roughly 1/10 of the width seen in the configuration with the same trench width w in (b).

What concerns the free spectral range, for the configurations of Fig. 13(c) one finds a value ∆λ = 15.7 nm

(neighboring peaks not shown). This agrees well with a predicted value of ∆λ = 15.9 nm, for a group index

ng = 2.51 estimated with the data in Fig. 2. One can associate Q-factors Q = λ/(2δλ) of 1.1 · 102, 5.7 · 102,

2.2 · 103 (b) and of 1.0 · 103, 5.2 · 103, 1.9 · 104 (c) with these resonators.

We wrap up this discussion with impressions of the associated optical fields, for the intermediate configuration

of Fig. 13(b) for w = 200 nm. Fig. 14 shows field profiles on the cross-sectional x-z plane, for oblique

incidence of lateral plane waves, for excitation at the transmission resonance, and off-resonance. The fields

differ in particular with respect to the field levels seen in the region between the reflectors. At resonance (b),

the maximum value of the energy density is by a factor 16 larger than at the off-resonance wavelength (a).

(b)
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T < 0.01
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Figure 14: Oblique excitation of the double-trench resonator with w = 200 nm, S = 3.439µm by semi-guided plane

waves at vacuum wavelength λ = 1.53µm (a), and λ = 1.55µm (b). Values of transmittance T and reflectance R are

shown. Color levels in (a) and (b) are not comparable; contour lines are shown for 5%, 1%, and 0.5% of the maximum

levels, separately for both panels.

Just as for the excitation wavelength, these resonators must be suspected to be extremely sensitive to all other

model parameters, including the angle of incidence. Fig. 15 compares results if the former structure is excited

by semi-guided wave bundles of varying width Wb, where a range of angles of incidence around the principal

angle θ = 45◦ contribute. Note the axis units of millimeters; on this scale, the tiny ripples of the field, caused

by the presence of partly counterpropagating waves, are not fully resolved; also the interfaces associated with

the resonator cannot be distinguished.

In case of the off-resonance excitation in panels (a), (b), and (c), with full reflection for all beam widths that

were considered, the structure works as predicted for plane wave excitation. This is different at the resonant

wavelength, where the transmission properties for bundled excitation come close to the values for plane wave

input, if the beam width is sufficiently large. Apparently, for narrower beams with a correspondingly wider

range of wavenumbers ky that contribute with relevant amplitudes, only part of that distribution is “caught”

by the narrow resonance peak. Still, even for the smallest beams considered here, with Wb = 100µm, the

resonator singles out about 39% of the power at the resonance wavelength. That transmittance raises to a level

of 0.999, if the bundle width W is increased to 5mm (field not shown, we tried only a few larger beam widths).

On the scale of the figures and for the present wide wave bundles, hardly any noticeable shift upon reflection

along y can be observed for the beams off-resonance (Goos-Hänchen-shift [22,56,74]). For resonant excitation,

panels (d), (e), and (f) show a substantial shift of the center of the transmitted beams along y. This points at

a mechanism where a field confined to the central part of the resonator is excited, that, after propagating a

distance along y, gradually leaks away [44].
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Figure 15: Excitation of the resonators of Fig. 12, with w = 200 nm, S = 3.439µm, by TE polarized semi-guided beams

of width Wb, at a principal angle of 45◦, at wavelengths of λ = 1.530µm (a, b, c) and λ = 1.550µm; energy density u in

the y-z-plane at the core center x = 0. Color scales of plots for the same Wb (e.g. (a) and (d)) are comparable; contour

lines indicate 5%, 1%, and 0.5% of the maximum levels. Values for transmittance T and reflectance R are given.

6 Concluding remarks

Symmetric, fully- and partly etched finite high-contrast waveguide Bragg gratings with 1-D periodicity have

been investigated, as well as a narrow-band Fabry-Perot filter, for oblique excitation by semi-guided waves at

45◦ angle of incidence, with typical parameters from silicon photonics. Assuming, for the present theoretical

models, lossless media and perfect interfaces, the gratings do not show any radiative losses. Also, polarization

and mode conversion are prohibited. We have discussed configurations with reflection bands or transmittance

peaks of widths 136 nm (Sections 3, 3.1), 20 nm (Section 4) down to [13.6, 0.08] nm (Section 5). The grating-

based devices can act as wavelength filters with reasonably flat-top response; apodization can lead to even more

box-shaped spectra.

Clearly, just as the other proposals mentioned in the introduction, the present gratings are not directly com-

patible with the “photonic wires” of silicon photonics. Rather, one envisions photonic circuits that are based

entirely on semi-guided waves, then combining our gratings with any of the former components. Connections

to the standard single mode channel waveguides, where necessary, could be realized by suitable tapers [32], or

specific grating couplers (“Bragg deflectors”) [75]. Direct end-facet coupling with suitable (cylindrical) lenses,

or gratings for fiber-to-chip coupling [9–12], adapted to the wide semi-guided field, could serve for out-of-chip

connections.

Due to the absence of radiative losses, and the restriction to single mode operation (externally, but partly also

internally, for spatial intervals beyond the range of the “other” evanescent waves), the devices are akin to

conventional dielectric multilayer structures with 1-D periodicity [67]. Consequently, all sophisticated opti-

mization and design techniques established in that field could be applied, in principle (see e.g. [76]), for further

tailoring the spectral properties of the present gratings.
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[59] X. Chen, M. M. Milosevic, S. Stanković, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed. The

emergence of silicon photonics as a flexible technology platform. Proceedings of the IEEE, 106(12):2101–2116, 2018.

[60] A. R. Forouhi and I. Bloomer. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Physical

Review B, 34:7018–7026, 1986.

[61] G. E. Jellison and F. A. Modine. Parameterization of the optical functions of amorphous materials in the interband region. Applied

Physics Letters, 69(3):371–373, 1996.

[62] M. Hammer. OMS — 1-D mode solver for dielectric multilayer slab waveguides.

https://www.computational-photonics.eu/oms.html.

[63] I. V. Lindell and A. H. Sihvola. Electromagnetic boundary conditions defined in terms of normal field components. IEEE

Transactions on Antennas and Propagation, 58(4):1128–1135, 2010.

[64] M. Lohmeyer. Mode expansion modeling of rectangular integrated optical microresonators. Optical and Quantum Electronics,

34(5):541–557, 2002.

[65] M. Hammer. METRIC — Mode expansion tools for 2D rectangular integrated optical circuits.

https://metric.computational-photonics.eu/.

[66] Comsol Multiphysics GmbH, Göttingen, Germany; http://www.comsol.com.

[67] J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic Crystals: Molding the Flow of Light. Princeton, 1995.

[68] A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle. Apodized silicon-on-insulator Bragg gratings. IEEE Photonics

Technology Letters, 24(12):1033–1035, 2012.

[69] M. Ma, Z. Chen, H. Yun, Y. Wang, X. Wang, N. A. F. Jaeger, and L. Chrostowski. Apodized spiral Bragg grating waveguides in

silicon-on-insulator. IEEE Photonics Technology Letters, 30(1):111–114, 2018.

[70] E. Hecht. Optics. Pearson Education, 2017.

[71] M. Maksimovic, M. Hammer, and E. van Groesen. Field representation for optical defect microcavities in multilayer structures

using quasi-normal modes. Optics Communications, 281(6):1401–1411, 2008.

[72] R. Ghosh, K. K. Ghosh, and R. Chakraborty. Narrow band filter using 1D periodic structure with defects for DWDM systems.

Optics Communications, 289:75–80, 2013.

[73] M. Born and E. Wolf. Principles of Optics, 7th. ed. Cambridge University Press, Cambridge, UK, 1999.

[74] A. W. Snyder and J. D. Love. Optical Waveguide Theory. Chapman and Hall, London, New York, 1983.
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