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1 Introduction

Digital signatures are one of the most important primitives in modern cryptography,
since they provide integrity and authenticity of data. Thus, they complement encryption
which ensures confidentiality. In basic digital signature schemes, a signer can produce
a signature σ on a message m using a secret signing key sk only known to herself.
This signature can then be publicly validated using a public key pk that belongs to sk.
Thus, a secure signature scheme protects the authenticity and integrity of m since it
is computationally infeasible to come up with a valid signature for m without knowing
sk. One can imagine an abundance of use cases for these signatures, for example e-mail
content authentication, ensuring integrity and authenticity of files downloaded from the
web and authorizing transactions in cryptocurrency systems.

On the other hand, there are scenarios where we want to achieve a certain level of
anonymity for the signer. In basic digital signature schemes, only the signer knows the
secret key sk belonging to the public key pk. A person publicly verifying a signature σ
under pk thus knows exactly who created that signature. For example, in the scenario of
leaking confidential documents to arise public awareness of a crime committed by some
company, this might put the signer in danger. Still, we want a mechanism to ensure the
integrity of these documents as well as a possibility to check that they originate from
some authorized person, but we do not need to know who that person is exactly.

To accomodate these needs, a lot of advanced digital signature primitives have been
introduced in the last decades of cryptographic research, four of which we will analyze
and compare in this thesis. These primitives provide more flexible ways of signing,
revolving around the possibility to (publicly) randomize key-message-signature-triples
(pk,m, σ) in various ways.

In this thesis, we will formally compare signatures with flexible public key (SFPK)
[BHKS18], structure-preserving signatures on equivalence classes (SPS-EQ) [HS14, FHS14],
key-homomorphic signatures (introduced in [DS19], full version of this paper is [DS16])
and mercurial signatures [CL19]. We will compare their formal syntax and security
definitions and also look at advanced primitives that can be constructed from them.
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2 State of research

In this section, we will explain the general ideas behind the advanced signature primitives
covered in this thesis, which are SFPK [BHKS18], SPS-EQ [HS14, FHS14], mercurial
signatures [CL19] and key-homomorphic signatures [DS16]. We list the state of the art
about assumptions under which the signature types can be instantiated as well as their
applications to further advanced cryptographic primitives.

SFPK and SPS-EQ One example of an advanced digital signature primitive are signa-
tures with flexible public key (alternatively called flexible public key signatures or SFPK
as a shorthand). These signatures were introduced and securely instantiated from stan-
dard assumptions by Backes et al. in [BHKS18]. The public key space of such a signature
scheme is partitioned into equivalence classes of some public key equivalence relation Rpk.
A user of an SFPK key pair (pk, sk) can efficiently randomize it to obtain a new key
pair (pk′, sk′) where the two public keys pk and pk′ are related via Rpk but unlinkable.
Unlinkable hereby means that (pk, pk′) is indistinguishable from a tuple of two inde-
pently generated keys. Because of this, however, messages signed with the randomized
secret key sk′ cannot be distinguished from messages signed with an independently gen-
erated fresh secret key. This means that without an additional proof of the legitimacy of
the signer, authenticity cannot be achieved in applications like group signatures. Such a
proof of legitimacy can be achieved by signing the original public key pk with a structure-
preserving signature scheme on equivalence classes (SPS-EQ). This signature type was
first introduced by Hanser et al. in [HS14], but however, their first instantiation was
proven insecure soon after [Fuc14]. The message space of an SPS-EQ is partitioned into
the equivalence classes of a message equivalence relation Rm. SPS-EQ allow to ran-
domize a valid message-signature pair (m,σ) to a new valid pair (m′, σ′) where m′ is a
different representative of the equivalence class of m. The randomization is done in a
way that σ′ looks like a fresh signature on m′ and, additionally, m and m′ cannot be
linked together, i.e. there is no efficient way to decide whether m and m′ are related via
Rm or not. To tie this back to the authenticity issue above, the original SFPK public key
pk can be signed with an SPS-EQ to obtain a certificate σcert for pk which then can be
randomized together with pk to obtain a randomized certificate σ′

cert for the randomized
public key pk′. This means that pk′ is authenticated as a legitimate signer’s public key
by σ′

cert while being unlinkable to the public key tied to the signer’s identity. The above
combination of SFPK and SPS-EQ is the basic idea behind the generic group signature
scheme from [BHKS18] which gives a signer anonymity among the other group members
where each group member is equipped with a key-pair-certificate triple (pki, ski, σ

i
cert) as

above.
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2 State of research

As applications for standalone SFPK, Backes et al. [BHKS18] discussed how to use
standalone SFPK to construct stealth address protocols [Tod] which allow to hide the re-
ceiver of transferred funds in a cryptocurrency transaction. In the same paper [BHKS18],
the authors constructed ring signatures [RST06] from SFPK. Ring signatures allow a
member of an ad-hoc set R of possible signers (called a ring, not to be confused with
mathematical rings) to sign a message on behalf of R. Ad-hoc hereby means that, in
contrast to group signatures, no dedicated prior setup of R is required for signing. When
in possession of the public keys of all ring members, one can publicly verify a ring sig-
nature by ring R. However, it is not possible to efficiently determine the actual signer
from R who created that very signature. This means that the signer stays anonymous
among the ring members which gives ring signatures several interesting applications, for
example concerning the privacy of transactions in cryptocurrency systems.

From SPS-EQ, anonymous crendential systems (ACS) can be constructed, as seen in
[HS14, FHS19]. These can be used to restrict the access to web resources and services
to authorized users only, while letting users authenticate in a way that only information
that is required to check the authorization is revealed to the web service. Note that the
ACS construction from [HS14] was based on their SPS-EQ construction from the same
paper, which was later proven insecure in [Fuc14]. Fuchsbauer et al. [FHS19] give an
ACS construction from a secure SPS-EQ. A different example for constructing ACS from
SPS-EQ can be found in [CLPK22] where the authors elaborate on the ACS definition
from [FHS19] by allowing users to prove that a given set of attributes is explicitly not
present in their credential.

Furthermore, Bobolz et al. [BEK+20] constructed privacy-preserving incentive sys-
tems using SPS-EQ amongst other cryptographic building blocks. These are customer
loyalty systems that allow a store customer to collect points in an anonymous way, i.e.
without the store learning the point count or being able to link purchases to particular
customers.

As mentioned above, the first instantiation of SPS-EQ [HS14] was proven insecure by
Fuchsbauer [Fuc14]. The first secure instantiation of EUF-CMA SPS-EQ (in the generic
group model for type-3 bilinear groups) was given in [FHS14] by Fuchsbauer et al. Khalili
et al. subsequently constructed the first EUF-CMA SPS-EQ from standard assumptions
in [KSD19]. As an extension to the SPS-EQ primitive, Mir et al. [MSBM22] introduce
structure-preserving signatures on equivalence classes on updatable commitments (SPS-
EQ-UC). These signatures do not only allow randomizing message-signature pairs as
basic SPS-EQ but also allow to extend the message vector by adding further elements
while updating the original signature in a way that it stays valid.

As another extension for SPS-EQ, Hanzlik and Slamanig [HS21] introduced aggregat-
able attribute-based equivalence class signatures (AAEQ). These signatures distinguish
between two types of key pairs: the main key pair (pk, sk) and attribute signing key pairs
(pkattr, skattr). An attribute signing key pair (pkattr, skattr) can be used to sign a message
m w.r.t a certain attribute attr with a value vattr (as an example, think of attr as the
age of a user). The main key pair (pk, sk) is used to issue and authenticate these at-
tribute signing key pair. Furthermore, multiple signatures σ(1)

attr, . . . , σ
(n)
attr w.r.t. attributes
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attr1, . . . , attrn can be aggregated into a compact signature σ̂ for the set {attr1, . . . , attrn}
of the attributes. Compact hereby means that the size of σ̂ is significantly smaller than
the size of the σ(i)

attr combined. Hanzlik and Slamanig [HS21] combine AAEQ with SFPK
to construct an extended type of ACS which they call core/helper anonymous creden-
tials (CHAC). In CHAC, there are two parties involved in the showing of a credential: a
core device with very constrained computational power (e.g. consider the SIM card of a
phone) and a helper device (e.g. consider the phone that the SIM card is inserted into).
The computations at the core device should have constant complexity in the size of the
credential in order to accomodate its constraints in computational power. On the other
hand, the helper device should not be able to show a credential without the help of the
core device. In their CHAC construction, they use signatures w.r.t. attributes (created
using the AAEQ signature scheme) to encode attribute values into a credential.

Mercurial signatures Mercurial signatures, which were first introduced by Crites and
Lysyanskaya [CL19], are another example of an advanced signature scheme. Analogously
to SFPK and SPS-EQ, the key and message spaces of a mercurial signature scheme
are partitioned into equivalence classes of individual equivalence relations. One can
transform a triple (pk,m, σ) such that signature σ is valid for message m under public
key pk, to a new triple (pk′,m′, σ′) such that σ′ is a valid signature for m′ under pk′

where pk′ and m′ are equivalent but unlinkable to pk and m, respectively. More precisely,
a mercurial signature needs to fulfill class-hiding for both the message and the public
key space. This means that for any two messages m and m′ (analogously public keys
pk and pk′) it is hard to decide whether they belong to the same class of the respective
equivalence relation or not. So mercurial signatures allow to jointly randomize both
messages and signatures together with the corresponding public key, which gives rise to
the question whether mercurial signatures are equivalent to a combination of SFPK and
SPS-EQ.

In [CL19], Crites and Lysyanskaya proposed a mercurial signature that is secure in
the generic group model for type-3 bilinear groups. This mercurial signature had keys
of the same length as the messages that were signed with them. In [CL20], Crites and
Lysyanskaya overcame this shortcoming by presenting a mercurial signature where the
keys consist of a constant number of group/ring elements while the messages are still
group element vectors of arbitrary length.

Mercurial signatures can be used to construct advanced anonymous credential systems,
namely delegatable anonymous credentials (DACs) [BCC+09] as shown in [CL19]. As
regular (i.e. not necessarily delegatable) ACS, they allow users to anonymously present
credentials for a web resource i.e. to access the resource without revealing information
about themselves beyond that they are authorized to access the resource. However, in
addition, a user can also delegate her credentials in an anonymous way to other users
of the system. This results in certification chains, which are used as credentials. A user
with a certification chain of length l can issue level-(l + 1) credentials (i.e. certification
chains of length l + 1) to other users. As an example application scenario for delegat-
able anonymous credentials, consider the following scientific publication access system
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2 State of research

(analogously to [CL19]). Imagine some publishing house official Adelle as a root au-
thority (holding a level-1 credential) who issues a level-2 credential to university official
Bernard. Bernard can then issue a level-3 credential to a student Castor from his univer-
sity, allowing Castor to access the publications from Adelle’s publishing house without
having to receive the respective credential from Adelle herself. When Adelle issues the
credential to Bernard, it is neither revealed who she is nor to whom else she has issued
credentials so far. Furthermore, when Castor receives his credential from Bernard, it
is neither revealed who Bernard is, who issued him his credential nor who else received
credentials from him. When Castor uses his credential, neither the identity of Adelle,
Bernard nor Castor himself is revealed. This means that Castor can remain anonymous
upon authenticating with his credential, even in the case that Bernard will never issue a
credential to anyone else. If, for example, a verifier could see that Castor has received his
credential from Bernard, she could infer that Castor is a student at Bernard’s university.
If she furthermore somehow knew that Castor is the only student with a credential from
Bernard, she could perfectly identify Castor.

The first construction of DACs from mercurial signatures was given by Crites and
Lysyanskaya in [CL19]. In their construction, credentials are chains (pk′

1, σ
′
1), . . . , (pk′

l, σ
′
l)

of certified public keys, ending with a randomized version pk′
l of the owners public key

pkl. To delegate a credential to another user Bernard, a user Adelle randomizes all pub-
lic keys pk′

i in her chain (including their certificates σ′
i) and then extends the chain by

signing Bernards public key pkB = pkl+1 with the secret key sk′′
l belonging to the new

randomized version pk′′
l of her public key that currently is at the end of the chain. Cre-

dential verification is done by verifying all signatures σ′
i in the chain under the previous

public key pki−1. Furthermore, the owner of a credential needs to prove that she knows
the corresponding secret key sk′

l for the public key pk′
l at the end of the certification

chain. Anonymity is achieved by the class-hiding of the underlying mercurial signa-
ture, i.e. the public keys pk′

1, . . . , pk′
l that are exposed when showing a credential chain

(pk′
1, σ

′
1), . . . , (pk′

l, σ
′
l) cannot be linked to the original public keys pk1, . . . , pkl of the l

users involved in the creation of this credential chain. This DAC construction by Crites
and Lysyanskaya obviously requires the ability to sign the public keys of the underlying
mercurial signature scheme in a randomizable way. As sketched in [CL19], the easiest
way to achieve this would be to construct a mercurial signature scheme whose message
space contains the public key space as a subset. Crites and Lysyanskaya [CL19] are
not aware of a mercurial signature construction fulfilling this property. However, their
mercurial signature construction from [CL19] stays correct and secure if the message
and public key spaces (which are the groups G1 and G2 of a bilinear group without their
respective neutral elements) are swapped throughout. The black-box DAC construction
from [CL19] uses two mercurial signature schemes Σ(1)

Merc,Σ
(2)
Merc with message spacesMi,

public key spaces Ei and secret key spaces Hi which fulfill E1 = M2, E2 = M1 and
H1 = H2. Every user holds a key pair for each of the two mercurials and uses the Σ1
key pair for credentials she receives on an even level of the credential chain and the Σ2
key pair for credentials she receives on odd levels. This behaviour can be achieved with
the mercurial signature from [CL19] as Σ1 and the variant with switched message and
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public key spaces as Σ2.
Conolly et al. [CLPK22] constructed an SPS-EQ and extended it to a mercurial

signature scheme. The authors claim in [CLPK22] that, with minor changes in the del-
egation process, their mercurial signature can be used to implement DACs from [CL19].
They argue that these changes are necessary since the Connolly SPS-EQ uses tags to
distinguish fresh from randomized signatures.

In [MSBM22], Mir et al. mention the following drawbacks of the DACs constructions
from [CL19] and [CL20]:

• The constructions do not support attribute-based credentials in a practical way.
Attribute-based credentials means that credentials come with additional attributes
(such as the age of the owner or the expiration date of the credential) that the
owner of the credential can reveal at will during a showing of the credential. The
construction from [CL19] does not support attributes at all while the construction
from [CL20] does support attributes, but does not allow the user to selectively
disclose them. This means that upon showing a credential, the owner cannot
decide to reveal only some attributes of the credential while the others remain
hidden.

• As pointed out in [BF20] by Bauer and Fuchsbauer, users in the DACs construction
from [CL19] are not anonymous to the users involved in the creation of their
credential chain. More precisely, if a user Adelle delegates a credential to another
user Bernard, she will be able to identify Bernard whenever he uses this credential.

• The size of the credentials is linear in the number of delegation processes. More
precisely, if a credential is delegated l times, it consists of a chain of l public keys
and l signatures.

In [MSBM22], Mir et al. present a SPS-EQ-UC-based DACs construction that mitigates
the above problems.

Key-homomorphic signatures In [DS16], Derler and Slamanig formally introduced the
idea of key-homomorphic signatures. Key-homomorphic signatures allow to adapt an ex-
isting signature σ for a message m under a public key pk to a new signature σ′ for the
same message m under an adapted public key pk′. In the same paper, the authors
prove the practical relevance of their new definition by analyzing several existing signa-
ture schemes [Sch91, GQ88, BLS04, KW03, BFG13, PS16, AGOT14, Gha16] and prove
that they are key-homomorphic. Derler and Slamanig [DS16] show how to use key-
homomorphic signatures to construct ring signature schemes (introduced in [RST06])
and universal designated-verifier signatures (introduced in [SBWP03]). As already ex-
plained when discussing applications of SFPK, ring signatures allow a member of an
ad-hoc set R of possible signers to sign a message on behalf of R. Universal designated-
verifier signatures (UDVS) [SBWP03] are signature schemes that allow for the creation
of a signature σ that cannot be verified by any arbitrary party but only by a designated
verifier. The designation process (i.e. the process of turning a regular signature into one
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that can only be verified by a specific party) is capsulated from the signature creation
procedure, allowing a different party than the original signer to designate a signature to
a specific verifier.

A third application for key-homomorphic signatures that Derler and Slamanig explore
in [DS16] are simulation-sound extractable non-interactive zero-knowledge proof systems
(SSE-NIZK proof systems). Such proof systems extend the notion of a proof of knowledge
to the scenario where both the setup and the proofs observed by the adversary are done
by a simulator instead of a party using the proof system algorithms. An SSE-NIZK
proof system basically fulfills an analogous proof-of-knowledge notion in this simulated
setting, i.e. it is hard for the adversary to efficiently craft an accepted proof that no
witness can be extracted from.

Publicly key-homomorphic signatures On the other hand, publicly key-homomorphic
signatures (introduced by Derler and Slamanig in [DS16]) allow to combine multiple
signatures σi for the same message m under public keys pki into one signature σ̂ for m
under p̂k := Πn

i=1pki. In the same paper, the authors furthermore prove the practical
relevance of their new definition by examining several existing signature schemes [BLS04,
BFG13, PS16, AGOT14, Gha16] and proving that they are publicly key-homomorphic
signatures.

In [DS16], Derler and Slamanig furthermore show how publicly key-homomorphic
signatures can be used to construct so-called multisignature schemes (first introduced
by Itakura and Nakamura in [IN83]). In a multisignature, a group of independent
signers executes an interactive protocol to jointly sign a message m. The multisignature
construction by Derler and Slamanig [DS16] is straightforward since every party signs
m individually and transmits the resulting signature σi. Once all individual signatures
σi have been transmitted, every party (deterministically) combines the σi to retrieve the
jointly computed signature σ̂.

Multikey-homomorphic signatures [DS16] are another example for a signature primi-
tive that allows to combine multiple signatures σi into one. In contrast to the above-
mentioned publicly key homomorphic signatures, the σi do not need to be signatures on
the same message m. Instead, given signatures σi for messages mi that are valid under
public keys pki, one can combine them to a signature σ̂ on a message m̂ = f(m1, . . . ,mn)
valid under a public key p̂k that contains all input public keys pki. Hereby, f ∈ F is
a function from a class F of admissible functions defined by the scheme, furthermore
every multikey-homomorphic signature needs to define individually what key contain-
ment means. Note that in contrast to publicly key-homomorphic signatures, multikey-
homomorphic are less restrictive in terms of public key combination. Every multikey-
homomorphic signature scheme can define an individual way to combine the public keys
pki into p̂k while for publicly key-homomorphic signatures we always have p̂k := Πn

i=1pki.
Derler and Slamanig require practical multikey-homomorphic signature schemes to have
succinct combined public keys p̂k and succinct combined signatures σ̂, where succinct-
ness means that p̂k and σ̂ have polynomial length in the security parameter used to
generate the original public keys pki and signatures σi. In [DS16], the key succinctness
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problem was solved by presenting a generic construction for a key-succinct multikey-
homomorphic signature from key-homomorphic signatures. However, in [DS16], Derler
and Slamanig remark that the construction of signature-succinct multikey-homomorphic
signatures under mild assumptions seems to be a non-trivial task.

In [DS16], Derler and Slamanig prove that perfectly adaptable and perfectly publicly
adaptable key-homomorphic signatures can be instantiated under standard assumptions.
As an example, consider the shared hashing parameters variant of Waters signatures
[BFG13] which fulfills both perfect adaptability and perfect public adaptability, as proven
in [DS16].

2.1 Our contribution
In this thesis, we first define the four advanced signature primitives (which are key-
homomorphic signatures [DS16] (Sect. 4.1), SPS-EQ [HS14, FHS14] (Sect. 4.2), SFPK
[BHKS18] (Sect. 4.3) and mercurial signatures [CL19] (Sect. 4.4)) in a unified notation
in Chapter 4. On the way, we make remarks about their basic properties. For example,
we prove a necessary condition for unforgeability for SFPKs in Lem. 4.32.

After that, we analyze the connections between the four signature types from Chap-
ter 4. We start with the connection between mercurial signatures, SFPK and SPS-EQ
(Sect. 5.1). Next, we elaborate the fundamental differences between key-homomorphic
signatures [DS16] and SFPK [BHKS18] in Sect. 5.2. Lastly, as an example, we exam-
ine the warm-up SFPK construction by Backes et al. [BHKS18] for key-homomorphic
properties from [DS16] as we defined them in Sect. 4.1 (see Sect. 5.3).

In Chapter 6, we then briefly cover applications of the advanced signature types from
Chapter 4. As an extended example, we examine whether group signatures can be
constructed from mercurial signatures (instead of a combination of SFPK and SPS-EQ
as done by Backes et al. in [BHKS18]). We furthermore highlight the differences between
SFPK and key-homomorphic signatures by examining the key-homomorphic-signature-
based SSE-NIZK proof system construction from [DS16] and discussing the difficulties
when attempting to rebuild it based on SFPK instead of key-homomorphic signatures.
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3 Preliminaries

In this chapter, we are going to recap the basics of group theory and digital signatures.
Before we do so, we first coin the notation used in this work.

• If the execution of a probablistic algorithm A on input x yields result y, we denote
this by y ←$ A(x).

• The support of a probablistic algorithm A on input x is the set of all results that
have positive probability of being output by A on input x. It is denoted by [A(x)].

• If we do not explicitly state that an algorithm in this work is probablistic then it
is deterministic.

• If an algorithm A has access to to oracle O, we denote this by a superscript, like
AO.

• If we say that algorithm A is probablistic polynomial-time (ppt), this means that
for any input x ∈ {0, 1}∗, the call A(x) uses internal randomness and terminates
in polynomial time in the bitlength of x.

• poly denotes some arbitrary polynomial function.

• r ←$ S means that element r is chosen uniformly at random from set S.

• [n] denotes the set {1, . . . , n}.

• The tuple v that contains all random variables that an adversary A is input during
a security experiment Exp (in order of appearance) is called the view of A in Exp.

We continue by defining the important concept of negligible functions which will be
used to define computational security for cryptographic primitives. Intuitively, a negli-
gible function is a function that vanishes faster than any inverse polynomial.
Definition 3.1 (negligible function) A function f : N→ R is called negligible if

∀c > 0 : ∃n0 ∈ N : ∀n ≥ n0 : |f(n)| < 1
nc

Next, we define one-way functions which are the most basic cryptographic primitive
that almost all others are built upon. Basically a one-way function is a function f that
can be evaluated efficiently but given a random element y from its image, it is hard to
find a preimage x that maps to y under f .

11
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Definition 3.2 (one-way function) Let f : {0, 1}∗ → {0, 1}∗ be a function. We define
the following security experiment for f between an adversary A and a challenger C:

ExpOWF
A,f (λ)

1 : x←$ {0, 1}poly(λ)

2 : y := f(x)
3 : x∗ ←$A(λ, y)
4 : return 1 if f(x) = f(x∗)

We define the advantage of A in the above security experiment as

AdvOWF
A,f (λ) := Pr[ExpOWF

A,f (λ) = 1]

We say that f is a one-way function (OWF) if the following two conditions are met:
(i) ∃ deterministic ppt algorithm F : ∀x ∈ {0, 1}∗ : F(x) = f(x)

(ii) ∀ ppt adversaries A: Advowf
A,f (λ) is negligible in λ

While we usually assume that the security parameter λ of a cryptosystem is publicly
known, we explicitly pass it to A here to stress that A knows the length of the original
preimage x in bits.

Many of the signature schemes that we look at in this work have a key or a message
space that is partitioned into equivalence classes of a certain equivalence relation. We
recall the formal definition of equivalence relations in the following.
Definition 3.3 (equivalence relation) Let M be a set, R ⊆M ×M a relation on M .

(i) R is reflexive if for all x ∈M , we have (x, x) ∈ R.

(ii) R is symmetrical if for all (x, y) ∈ R, we have (y, x) ∈ R.

(iii) R is transitive if it holds that

(x, y), (y, z) ∈ R⇒ (x, z) ∈ R

R is an equivalence relation if R is reflexive, symmetrical and transitive.
For (x, y) ∈ R, we say that x and y are related via R and sometimes denote this by

x ∼R y. If the relation is clear from the context, we sometimes just write x ∼ y.
If R is an equivalence relation, any x, y ∈M that are related via R are called equiva-

lent.
The set

[x]R := {y ∈M | x ∼R y}

of all elements equivalent to x is called the (equivalence) class of x.
The set

M/R := {[x]R | x ∈M}

of all equivalence classes of R on M is called the quotient set of R on M .

12



3.1 Groups, homomorphisms and pairings

For an equivalence relation R over set M , it follows by definition that

[x]R = [y]R ⇔ x ∼R y

i.e. the classes of two elements are equal if and only if the elements are equivalent. This
comes from the fact that any element z ∈ M must either be contained in both classes
or in none of them. This also concludes

¬(x ∼R y)⇒ [x]R ∩ [y]R = ∅

i.e. the classes of unrelated elements are always disjoint.

3.1 Groups, homomorphisms and pairings

Most digital signature scheme types covered in this thesis require a group structure
on their key and/or message space, key-homomorphic signatures [DS19] even require a
group homomorphism from their secret to their public key space. We thus quickly recap
some basics about groups, homomorphisms and pairings in this subsection, starting with
the most basic definition of a mathematical group.
Definition 3.4 (group) Let G be a set. We call a mapping · : G×G→ G an operation
on G.

(i) The operation · is called associative if for all a, b, c ∈ G, we have a·(b·c) = (a·b)·c.

(ii) e ∈ G is called a neutral element in G (w.r.t. operation ·) if ∀g ∈ G : e·g = g = g·e.

(iii) Let g ∈ G. h ∈ G is called the inverse of g (w.r.t. ·) if h · g = e = g ·h. We denote
the inverse of element g with g−1.

(iv) The operation · is commutative if ∀g, h ∈ G : g · h = h · g.

(G, ·) is a group if · is associative and there exist a neutral element 1G ∈ G (w.r.t. ·)
and an inverse g−1 for every element g ∈ G (w.r.t. ·). A group with a commutative
operation on it is called an abelian group.

For brevity, we sometimes omit the group operation if it is clear from the context and
simply write gh := g · h. As shown in the next lemma, an operation always has at most
one neutral element, so the neutral element of a group is always unique.
Lemma 3.5 Let G be a set with operation ·. Let e, ẽ be neutral elements w.r.t. ·. Then
we have e = ẽ.

Proof. e = e · ẽ = ẽ

Next we define an important class of groups that will play a great role when it comes
to constructing concrete digital signatures.

13
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Definition 3.6 (cyclic group) A group (G, ·) is called cyclic if

∃g ∈ G : ⟨g⟩ := {gx | x ∈ N} = G

Such a g is called a generator for G.
So a cyclic group has a very simple structure since every element in it can be obtained

by rising a generator of G to a certain power. It follows from inspection that every cyclic
group is abelian. Note that generators do not have to be unique. One can prove that
every group with a prime number of elements is a cyclic group, for this we need the
concepts of element and group orders which we recall in the next definition.
Definition 3.7 (element order, group order) Let G be a group.

(i) For an element g ∈ G, the (element) order of g is defined as

ord(g) := min{n ∈ N | gn = 1G}

(ii) The (group) order of G is its cardinality |G|.

It follows from ⟨g⟩ ⊆ G that ord(g) ≤ |G| for any g ∈ G and g is a generator for a
finite group G if and only if ord(g) = |G|. With this, we can now prove that every prime
order group is cyclic, i.e. possesses a generator.
Lemma 3.8 Let G be a group with |G| = p ∈ P. Then G is cyclic.

Proof. Let g ∈ G. Lagrange’s theorem yields that ord(g) divides |G|. Since p is a prime,
this means ord(g) ∈ {1, p}. By definition of the element order (Def. 3.7), we see that
every element with order 1 is a neutral element for the operation on G.

Since the neutral element of G is unique according to Lem. 3.5 and G contains |G| =
p > 1 elements, we get that there exists an element h ∈ G with ord(h) = p = |G| which
thus is a generator for G. So G is cyclic, as claimed.

We directly get that every prime order group is abelian as well.
When it comes to mappings between groups, it is a natural question whether there

are mappings that respect the operations on the groups. Such mappings, called homo-
morphisms, are formalized in the next definition.
Definition 3.9 (group homomorphism) Let (G, ·G), (H, ·H) be groups. A map µ :
G→ H is called a (group) homomorphism if

∀g1, g2 ∈ G : µ(g1 ·G g2) = µ(g1) ·H µ(g2)

A bijective group homomorphism is called a group isomorphism.
Group homomorphisms play a role in the context of key-homomorphic signatures

[DS19] where the secret and public key spaces are groups (additive and multiplicative,
respectively). The public key pk corresponding to a secret key sk is computed as the
image µ(sk) under the group homomorphism µ associated to the key-homomorphic sig-
nature scheme. The group homomorphism property of µ basically says that one can
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compute the public key corresponding to a sum of two secret keys as the product of the
respective corresponding public keys.

We recap some further useful properties of group homomorphisms in the following
lemma.
Lemma 3.10 Let (G, ·G), (H, ·H) be groups, µ : G→ H a group homomorphism. Then
it holds that

(i) µ(1G) = 1H

(ii) µ(g−1) = µ(g)−1

Proof. Using the homomorphic property of µ, we get

1H ·H µ(1G) = µ(1G) = µ(1G ·G 1G) = µ(1G) ·H µ(1G)

Multiplying both sides of the equation with µ(1G)−1 from the right yields (i). Again
using the homomorphic property of µ and (i), we see

1H = µ(1G) = µ(g ·G g−1) = µ(g) ·H µ(g−1)

Multiplying with µ(g)−1 from the left yields statement (ii) and finishes the proof.

In some contexts, the set of group elements that a homomorphism µ maps to the
neutral element of its codomain play a special role. This is why we give this set a special
name in the following definition.
Definition 3.11 (kernel) Let G,H be groups, µ : G → H be a group homomorphism.
We call

ker(µ) := {g ∈ G | µ(g) = 1H}

the kernel of µ.
To conclude this section, we recap the important idea of a bilinear group which basi-

cally is a triple of prime order groups equipped with a pairing. We start with defining
pairings.
Definition 3.12 (pairing) Let (A,+A), (B,+B), (C,+C) be groups. A map e : A×B →
C is called a bilinear map or a pairing if it holds that

∀a, a′ ∈ A, b ∈ B : e(a+A a
′, b) = e(a, b) +C e(a′, b)

and
∀a ∈ A, b, b′ ∈ B : e(a, b+B b′) = e(a, b) +C e(a, b′)

So a pairing basically is a map defined on the cartesian product of two groups which
provides the homomorphism property w.r.t. each of the two components of its domain’s
elements.
Definition 3.13 (bilinear group) A bilinear group is a tuple (G1, G2, GT , p, e, g1, g2)
fulfilling the following requirements:
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(i) G1, G2, GT are groups of prime order p

(ii) G1 = ⟨g1⟩, G2 = ⟨g2⟩

(iii) e : G1 ×G2 → GT is an efficiently computable pairing with GT = ⟨e(g1, g2)⟩

The last requirement for the pairing e is called non-degeneracy and, in the setting
of prime order groups, basically translates to the statement that some tuple (g1, g2)
of generators is not mapped to the neutral element of the codomain group GT . We
conclude this section by defining the syntax of a bilinear group generator, which is
an efficient algorithm that generates bilinear groups of specified types. The following
definition (with explicit passing of the bilinear group type as a parameter) is based on
[DS16].
Definition 3.14 (bilinear group generator) A bilinear group generator BGGen is
a ppt algorithm that takes as input the security parameter λ ∈ N and a type parameter
t ∈ {1, 2, 3} and outputs a (type-t) bilinear group BG = (G1, G2, GT , p, e, g1, g2).

• if t = 1, it holds that G1 = G2

• if t = 2, BGGen additional outputs an efficiently computable isomorphism ψ : G2 →
G1

• if t = 3, it holds that no efficiently computable isomorphism ψ : G2 → G1 exists

It is plain to see that every type-1 bilinear group is type-2 since we can always choose
ψ := idG1 in this case.

3.2 Digital signatures

In this section, we will formally define syntax and security for digital signature schemes
and use this definition as a basis for our definitions of the advanced signatures in Chap-
ter 4. We start with the syntax of a digital signature scheme.
Definition 3.15 (digital signature scheme) A digital signature scheme with public
key space E, secret key space H, message spaceM and signature space S is a quadruple
Σ of ppt algorithms defined as follows:

PGen(1λ) probablistic parameter generation algorithm; takes as input the security pa-
rameter λ ∈ N and outputs public parameters pp

KGen(pp) probablistic key generation algorithm; takes as input public parameters pp and
outputs a key pair (pk, sk), consisting of a public key pk ∈ E and a secret key
sk ∈ H

Sig(sk,m) probablistic signing algorithm; takes as input a secret key sk ∈ H and a
message m ∈M and outputs a signature σ ∈ S
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Vfy(pk,m, σ) deterministic verification algorithm; takes as input a public key pk, a mes-
sage m ∈M and a signature σ ∈ S and outputs a bit b ∈ {0, 1}

Remark 3.16 (i) If not explicitly stated otherwise, we always assume the algorithms
of a digital signature scheme to be named as in Def. 3.15.

(ii) Note that we omit the key, message and signature spaces if they are clear from the
context.

(iii) Furthermore, these spaces can depend on the public parameters pp ←$ PGen(λ)
which (implicitly) contain the security parameter λ ∈ N. This means that e.g.
instead of a fixed public key space E for a scheme we have a function E(pp) in the
public parameters that returns the respective public key space. If this does not play
a role in our current considerations, we also omit this for simplicity and just say
that a signature scheme has some public key space E. This allows us to restrict
e.g. the public key space of a signature scheme to the support of KGen(pp), i.e.
a set only consisting public keys that actually can be output by the key generation
algorithm with the respective setup and thus definitely have a corresponding secret
key.

The idea behind the parameter generation algorithm is that one often wants to sample
multiple independent key pairs using the same parameters pp (for example, some prime
order group G = ⟨g⟩ together with a generator g). Thus we introduce the parameter
generation algorithm PGen to sample these parameters once and subsequently input
them to the key generation algorithm KGen. Note that key pairs depend on the security
parameter λ since the public parameters pp do. Furthermore, the public parameters are
implicitly input to all algorithms of the scheme.

Above definition only lists the algorithms that a basic signature scheme consists of
and gives names to important in- and outputs of them. Next, we define the correctness
constraint that digital signature schemes must fulfill in order to ensure integrity and
authenticity of messages.
Definition 3.17 (digital signature correctness) Let Σ be a digital signature scheme
with message space M, public key space E, secret key space H and signature space S.
Σ is correct if for all λ ∈ N, pp←$ PGen(1λ), (pk, sk)←$ KGen(pp), m ∈M we have

Pr[Vfy(pk,m,Sig(sk,m)) = 1] = 1

Having defined syntax and correctness, we now turn towards security definitions for
digital signatures. They all ensure that it is not possible to efficiently forge signatures
that are valid under a given public key if one does not know the corresponding secret
key. However, the level of security guaranteed depends on the capabilities of the forging
party that we assume. We start with the weakest security definition for digital signatures
which is universal unforgeability under no-message attacks (UUF-NMA).
Definition 3.18 (UUF-NMA) Let λ ∈ N be the security parameter, Σ a digital signa-
ture scheme. We define the following security experiment between an adversary A and
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a challenger C:

Expuuf-nma
A,Σ (λ)

1 : pp←$ PGen(1λ)
2 : (pk, sk)←$ KGen(pp)
3 : m∗ ←$M
4 : σ∗ ←$A(pp, pk,m∗)
5 : return Vfy(pk,m∗, σ∗)

The advantage of A in the above security experiment is defined as

Advuuf-nma
A,Σ (λ) := Pr[Expuuf-nma

A,Σ (λ) = 1]

Σ is universally unforgeable under no-message attacks, or in short UUF-NMA secure,
if for all ppt adversaries A Advuuf-nma

A,Σ (λ) is negligible.

The idea behind UUF-NMA security is that is should be computationally hard to
efficiently forge a signature for a random message if one gets no further information
about a system that issues signatures apart from the users public keys and the public
parameters of the signature scheme instance.

However, UUF-NMA makes strong assumptions about the capabilities of the adversary
since it assumes that she is not able to observe any signatures issued by the system she
tries to attack. In reality, the adversary could be able to intercept signatures on messages
and might even influence the messages that are signed. Furthermore, UUF-NMA security
assumes that the adversary intends to forge a signature for a random message m and
does not let the adversary choose the message according to the environment it attacks
(i.e., the public parameters and the public key). This motivates defining a stronger
adversary model, resulting in the following stronger security definition, which is called
existential unforgeability under chosen-message attacks:

Definition 3.19 (EUF-CMA) Let λ ∈ N be the security parameter, Σ a digital signa-
ture scheme. We define the following security experiment between an adversary A and
a challenger C:

Expeuf-cma
A,Σ (λ)

1 : pp←$ PGen(1λ)
2 : (pk, sk)←$ KGen(pp)
3 : QSig := ∅
4 : (m∗, σ∗)←$AO(sk,·)(pp, pk)
5 : return Vfy(pk,m∗, σ∗) = 1 ∧m /∈ QSig

where O is a signing oracle as follows:
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O(sk,m)
1 : σ ←$ Sig(sk,m)
2 : QSig ← QSig ∪ {m}
3 : return σ

The advantage of A in the above security experiment is defined as

Adveuf-cma
A,Σ (λ) := Pr[Expeuf-cma

A,Σ (λ) = 1]

Σ is existentially unforgeable under chosen-message attacks, or in short EUF-CMA
secure, if for all ppt adversaries A Adveuf-cma

A,Σ (λ) is negligible.
So EUF-CMA means that it is infeasible to forge a signature on a self-chosen message

m when one can observe signatures on arbitrary other messages m′ ̸= m. We can define
a stronger security notion for digital signature schemes which is called strong existential
unforgeability. It basically weakens the winning condition of the above existential un-
forgeability game by also allowing the adversary to submit a distinct signature for an
already-signed message as a forgery.
Definition 3.20 (sEUF-CMA) Let λ ∈ N be the security parameter, Σ be a digital
signature scheme. We define the security experiment Expseuf-cma

A,Σ (λ) for an adversary A
and a challenger C by replacing line 5 from Expeuf-cma

A,Σ (λ) from Def. 3.19 with

return Vfy(pk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ QSign

and line 2 in the oracle O from Def. 3.19 with

QSign ← QSign ∪ {(m,σ)}

The advantage of A in the above security experiment is defined as

Advseuf-cma
A,Σ (λ) := Pr[Expseuf-cma

A,Σ (λ) = 1]

Σ is strongly existentially unforgeable under chosen-message attacks, or in short sEUF-
CMA secure, if for all ppt adversaries A Advseuf-cma

A,Σ (λ) is negligible.
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In this section, we will formally define the syntax and security of each of the four
different advanced signature primitives we will look at in this thesis, which are key-
homomorphic signatures [DS19] (Sect. 4.1), SPS-EQ [HS14, FHS14] (Sect. 4.2), SFPK
[BHKS18] (Sect. 4.3) and mercurial signatures [CL19] (Sect. 4.4).

4.1 Key-homomorphic signatures
We begin with key-homomorphic signatures. This type of signatures was introduced by
Derler and Slamanig in [DS19] but we will base our work about them on the full version
of the above paper [DS16]. Roughly speaking, these signatures provide a secret-to-public
key homomorphism µ from the secret key space to the public key space that maps
any secret key to its corresponding public key. Furthermore, they provide an adaption
algorithm for signatures. This adaption algorithm allows to turn a valid key-message-
signature triple (pk,m, σ) into a distinct valid triple (pk′,m, σ′) where the public key pk′

is the image of sk + ∆ under µ where ∆ is some secret key that can be seen as a shift
amount for the original secret key sk.

A related primitive also introduced by Derler et al. [DS16] are publicly-key-homomorphic
signatures which provide the same type of secret-to-public-key homomorphism but, in-
stead of the above adaption algorithm, allow to publicly (i.e. without knowledge of any
secret key) combine multiple signatures on the same message m into one.

4.1.1 Key-homomorphic signatures

After having given a rough intuition for the different types of key-homomorphic signa-
tures now, we will introduce them formally. We will start by formally defining secret-
to-public key homomorphisms as in [DS16].
Definition 4.1 (secret-to-public key homomorphism) Let Σ be a digital signature
scheme with two groups (H,+), (E, ·) as secret- and public key spaces, respectively. A
group homomorphism (Def. 3.9) µ : H → E is called a secret-to-public-key homomor-
phism if for all security parameters λ ∈ N, pp ←$ PGen(λ), (pk, sk) ←$ KGen(pp), we
have pk = µ(sk).

So a secret-to-public key homomorphism is a group homomorphism that maps a secret
key to its corresponding public key. As an example for a signature scheme with such
a homomorphism, consider Schnorr signatures [Sch91]. Here, the secret key space is
H = Zp and the public key space is E = G for a group G of prime order p ∈ P,
the public key corresponding to a secret key sk = x is pk = gx. Thus, the mapping
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µ : Zp → G, x 7→ gx obviously is a secret-to-public key homomorphism for Schnorr
signatures.

With secret-to-public-key homomorphisms defined, we can now continue to define key-
homomorphic signature schemes which are digital signatures with a secret-to-public-key
homomorphism µ and an additional ppt adaptation algorithm KH.Adapt. KH.Adapt
allows to randomize a given valid key-message-signature triple (pk,m, σ) to a new triple
(pk′,m, σ′) such that pk′ is the image of sk + ∆ under µ for some secret key ∆ that
serves as a shift amount for the original corresponding secret key sk. The following
formal definition of the syntax and correctness of a key-homomorphic signature scheme
is based on [DS16]:
Definition 4.2 (Key-homomorphic signature scheme) Let (H,+), (E, ·) be groups.
A key-homomorphic signature scheme is a tuple of ppt algorithms
ΣKH = (KH.PGen,KH.KGen,KH.Sign,KH.Vfy,KH.Adapt) fulfilling the following require-
ments:

(i) Σ := (KH.PGen,KH.KGen,KH.Sign,KH.Vfy) is a correct digital signature scheme
according to Def. 3.17 with public key space E, secret key space H, some message
space M and some signature space S.

(ii) Σ provides a secret-to-public-key homomorphism µ

(iii) KH.Adapt is a ppt adaption algorithm, i.e. takes as input a public key pk ∈ E,
a message m ∈ M, a signature σ ∈ S and a shift amount ∆ ∈ H and outputs
an adapted public key pk′ ∈ E and an adapted signature σ′ ∈ S which satisfy
the following requirement: For all ∆ ∈ H, λ ∈ N, pp ←$ PGen(λ), (pk, sk) ←$

KGen(pp), m ∈M, σ ∈ S, we have

KH.Vfy(pk,m, σ) = 1 ∧ (pk′, σ′)←$ KH.Adapt(pk,m, σ,∆)
⇒Pr[KH.Vfy(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk

We say that such a ΣKH is key-homomorphic with respect to µ.
If not explicitly stated otherwise, we always assume that the algorithms of a key-

homomorphic signature scheme are named as in Def. 4.2. Note that the order of µ(∆)
and pk in the equation pk′ = µ(∆) · pk in Def. 4.2 does not actually matter since the
public key spaces of all key-homomorphic signature instantiations listed in [DS16] (and
Rem. 4.7) are abelian groups. Recall that the Schnorr signature scheme [Sch91] (with
secret key space H = Zp and public key space E = G for a prime order group G)
provides the secret-to-public-key homomorphism µ : Zp → G, x 7→ gx. In groups where
the discrete logarithm problem is hard, this is a one-way function (Def. 3.2). In general,
we can prove that for a signature scheme with a secret-to-public-key homomorphism µ
and canonical key generation (i.e. a secret key is drawn uniformly at random and the
corresponding public key is computed using µ), it holds that unforgeability can only
be achieved if µ is a one-way function. This observation is not explicitly mentioned in
[DS16]. We first formally define what canonical key generation is (in order to be able to
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reference it later on), before continuing to prove the above claim about the one-wayness
of µ.
Definition 4.3 (canonical key generation) Let Σ be a signature scheme that pro-
vides a secret-to-public-key homomorphism µ, let the groups (H,+), (E, ·) be the secret-
and public key spaces of Σ, respectively. We say that Σ has canonical key generation if
the algorithm KGen looks as follows:

KGen(pp)
1 : sk←$ H

2 : pk := µ(sk)
3 : return (pk, sk)

Remark 4.4 For a signature scheme Σ with a secret-to-public-key homomorphism µ that
uses canonical key generation as in Def. 4.3, we can assume without loss of generality
that µ is injective. To see this, consider the case that µ is not injective, i.e. there exist
a public key pk and two different secret keys sk ̸= sk′ with

µ(sk) = pk = µ(sk′)

In this case, both (pk, sk) and (pk, sk′) are valid key pairs of users u1 and u2, respectively
(since they have positive probability to be output by KGen). However, signatures under
sk (and thus verifying under pk) cannot be linked to user u1 since u2 has the same public
key pk as u1. So Σ does not guarantee authenticity of the messages signed with it if µ is
not injective.

With canonical key generation being formally defined, we continue to prove that un-
forgeable signature schemes with a canonical key generation procedure must have a
one-way secret-to-public-key homomorphism µ.
Lemma 4.5 Let Σ be a digital signature scheme with two groups (H,+), (E, ·) as secret-
and public key spaces, respectively, let µ : H → E be a secret-to-public key homomor-
phism for Σ. Furthermore, assume that Σ has canonical key generation (Def. 4.3). Then
it holds that

Σ unforgeable (Def. 3.19)⇒ µ OWF (Def. 3.2)

Proof. We prove the claim by contraposition, using a reduction, i.e. we assume the exis-
tence of a ppt adversary A with AdvOWF

A,µ (λ) not negligible and construct a ppt adversary
B with Adveuf-cma

B,Σ (λ) not negligible.
Let λ be the security parameter, M be the message space of Σ. When input a public

key pk ∈ E, B behaves as follows:

1. B executes A(λ, pk), eventually obtaining a secret key sk′.

2. B draws m←$M uniformly at random.

3. B computes σ ←$ Sign(sk′,m).
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4. B outputs (m,σ).

B obviously is a ppt, since A and Sign are ppts. We see that by definition of the
canonical key generation algorithm KGen from Def. 4.3, adversary A is given an image
pk of a uniformly random sk under µ as required in the one-way function security game
from Def. 3.2.

Note that if sk′ = sk, where sk is the secret key corresponding to the challenge public
key pk from the EUF-CMA game, we have that (m,σ) is a valid message-signature pair
under pk because of the correctness of Σ. If and only if A outputs sk when given input
pk, A has won the one-way function game from Def. 3.2. This is because µ is a secret-
to-public-key homomorphism according to Def. 4.1 (so pk = µ(sk)) and we can assume
w.l.o.g. that µ is injective (see Rem. 4.4). Thus we get

Adveuf-cma
B,Σ (λ) = Pr[Expeuf-cma

B,Σ (λ) = 1]
= Pr[Vfy(pk,m, σ) = 1]
≥Pr[pk = µ(sk′)]
=AdvOWF

A,f (λ)

which proves the lemma.

As a second observation, we prove that all signature schemes with canonical key
generation have surjective secret-to-public-key homomorphisms.
Lemma 4.6 Let Σ be a key-homomorphic signature w.r.t. secret-to-public-key homo-
morphism µ, let the groups (H,+), (E, ·) be the secret- and public key spaces of Σ, respec-
tively. Assume that Σ has canonical key generation (Def. 4.3). Then µ is a surjective
function.

Proof. It is clear by definition of canonical key generation (Def. 4.3) that KGen defines

E = µ(H) := {µ(sk) | sk ∈ H}

So obviously, for all pk ∈ E, there is an sk ∈ H s.t. µ(sk) = pk. Thus, µ is surjective by
definition.

Many examples of key-homomorphic signature schemes with canonical key generation
as defined in Def. 4.3 exist. The following remark lists the ones that were named by
Derler and Slamanig in [DS16].
Remark 4.7 The following signature schemes are key-homomorphic signatures with
canonical key generation Def. 4.3:

• Schnorr signatures [Sch91]

• Guillou-Quisqater signatures [GQ88]

• BLS signatures [BLS04]
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• Katz-Wang signatures [KW03]

• Waters’ signatures [Wat05], more precisely the variant with shared hash parameters
described in [BFG13]

• Pointcheval-Sanders signatures [PS16]

• Abe’s structure-preserving signature (SPS) [AGOT14]

• Ghadafi’s SPS [Gha16]

By Lem. 4.5 and Lem. 4.6, these schemes all have surjective one-way secret-to-public-key
homomorphisms.

So Rem. 4.7 proves that Lem. 4.5 and Lem. 4.6 have practical relevance despite severely
restricting the key generation algorithm.

In [DS16], Derler and Slamanig ask the question whether it is possible to use µ(∆)
instead of ∆ as input to the KH.Adapt algorithm of a key-homomorphic signature scheme.
They sketch a proof that a key-homomorphic signature scheme with this syntax would
be inherently insecure, namely not even fulfilling UUF-NMA security (Def. 3.18) which
is the weakest security notion for digital signatures. We will formally state and prove
their claim in the following.
Lemma 4.8 Let (H,+), (E, ·) be groups, Σ′

KH = (KH.PGen,KH.KGen,KH.Sign,KH.Vfy,
KH.Adapt′) be a tuple of ppt algorithms such that

(i) Σ = (KH.PGen,KH.KGen,KH.Sign,KH.Vfy) is a digital signature scheme with pub-
lic key space E, secret key space H, some message space M and some signature
space S

(ii) Σ provides a secret-to-public-key homomorphism µ

(iii) KH.Adapt′ is a ppt algorithm that takes as input a public key pk, a message m,
a signature σ and a shift amount image µ(∆) ∈ E for a ∆ ∈ H and outputs
an adapted public key pk′ and an adapted signature σ′ which satisfy the following
requirement: For all λ ∈ N, ∆ ∈ H, pp ←$ PGen(1λ), (pk, sk) ←$ KGen(pp),
m ∈M, σ ∈ S, we have

KH.Vfy(pk,m, σ) = 1 ∧ (pk′, σ′)←$ KH.Adapt′(pk,m, σ, µ(∆))
⇒Pr[KH.Vfy(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk

Then Σ′
KH is not UUF-NMA secure.

Proof. Let λ be the security parameter. We prove the statement by constructing an
adversary A with non-negligible advantage Advuuf-nma

A,Σ′
KH

(λ) in the UUF-NMA experiment
for Σ′

KH. Our construction is from the sketch from [DS16] and even has advantage 1.
The intuition behind the attack is to sign the challenge message m with a fresh key pair
(pk′, sk′) and adapt the resulting signature to the challenge key pk.
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Let pp←$ PGen(1λ), (pk, sk)←$ KGen(pp), m←$M as in Expuuf-nma
A,Σ′ (λ) from Def. 3.18.

Consider an adversary A that acts as follows on input pk:

1 : (pk′, sk′)←$ KGen(pp)
2 : σ′ ←$ Sign(sk′,m)
3 : p̂k := pk · (pk′)−1

4 : (σ′′, pk′′)←$ KH.Adapt′(pk′,m, σ′, p̂k)

First, observe that A obviously is a ppt since KGen,KH.Sign and KH.Adapt′ are. Because
Σ′

KH is a correct digital signature scheme, we get that Pr[KH.Vfy(pk′,m, σ′) = 1] = 1
and thus Pr[KH.Vfy(pk′′,m, σ′′) = 1] = 1. Furthermore, we have

pk′′ = p̂k · pk′ = pk · (pk′)−1 · pk′ = pk

so σ′′ is a valid forgery for the challenge message m under the challenge public key pk.
Thus, we get

Advuuf-nma
A,Σ′

KH
(λ) = Pr[Expuuf-nma

A,Σ′
KH

(λ) = 1] = 1

which proves the lemma.

Unforgeability Attentive readers might have noticed that we did not define a dedicated
unforgeability notion for key-homomorphic signatures. This is because they can use the
same as regular digital signature schemes from Sect. 3.2. However, there is a special
class of key-homomorphic schemes that inherently cannot fulfill sEUF-CMA which we
will analyze in the following. We will make use of the fact that calling KH.Adapt with
a shift amount from the kernel (Def. 3.11) of the secret-to-public-key homomorphism µ
which alters the input signature allows to win the strong existential-unforgeability game
for a key-homomorphic signature scheme.
Lemma 4.9 Let ΣKH be a key-homomorphic signature scheme (Def. 4.2) with message
space M, secret key space (H,+), public key space (E, ·) and secret-to-public key ho-
momorphism µ : H → E. Assume there exists an efficiently computable shift amount
∆∗ ∈ H and an efficiently computable message m ∈M with the following properties:

(i) µ(∆∗) = 1E

(ii) Pr[σ′ ̸= σ] not negligible for all λ ∈ N, pp←$ KH.PGen(1λ), (pk, sk)←$ KH.KGen(pp),
σ ←$ KH.Sign(sk,m), (pk′, σ′) ←$ KH.Adapt(pk,m, σ,∆∗) where the probability is
over the internal random choices of KH.Adapt, KH.PGen, KH.KGen and KH.Sign

Then ΣKH is not strongly existentially unforgeable.

Proof. We prove the lemma by constructing an adversary A that has non-negligible
advantage Advseuf-cma

A,ΣKH (λ) in the sEUF-CMA game Expseuf-cma
A,ΣKH (λ) from Def. 3.20. Upon

input a public key pk ∈ E, A behaves as follows:

1. A computes ∆∗ ∈ H, m ∈M with the properties from the prerequisite.
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2. A queries the signing oracle O for a signature on m, eventually obtaining σ ←$

Sign(sk,m).

3. A computes (pk′, σ′)←$ KH.Adapt(pk,m, σ,∆∗).

4. A outputs (m,σ′).

By prequisites for m,∆∗ and because Sign and KH.Adapt are ppt algorithm, A is a
ppt. Since ΣKH is correct (Def. 4.2), we have Pr[KH.Vfy(pk,m, σ) = 1] = 1 and thus
Pr[KH.Vfy(pk′,m, σ′) = 1] = 1. Furthermore, because of the properties of ∆∗, we have

pk′ = µ(∆∗) · pk = 1E · pk = pk

and thus Pr[KH.Vfy(pk,m, σ′) = 1] = 1, which yields

Advseuf-cma
A,ΣKH (A) = Pr[Expseuf-cma

A,ΣKH (λ) = 1]
= Pr[KH.Vfy(pk,m, σ′) = 1 ∧ σ ̸= σ′]
= Pr[σ′ ̸= σ]
=η(κ)

for a non-negligible function η. This proves the lemma.

We briefly summarize for which of the key-homomorphic signature schemes from
[DS16] (see Rem. 4.7) the attack from the above lemma works.

• For Schnorr signatures [Sch91], BLS signatures [BLS04], Katz-Wang signatures
[KW03], the Waters signature variant [BFG13] and Pointcheval-Sanders signatures
[PS16], there is no shift amount ∆∗ with the required properties since for all
shift amounts from the kernel of the secret-to-public-key homomorphism µ, the
signature σ′ ←$ KH.Adapt(·, ·, σ,∆∗) will always be the same as the input signature
σ.

• For Abe’s randomizable SPS [AGOT14] and the SPS proposed by Ghadafi [Gha16],
∆∗ and m as required in the lemma do exist but both schemes are not sEUF-CMA
secure (even if one prohibits the use of the KH.Adapt algorithm) since they provide
a ppt signature randomization algorithm Rand that given a message signature pair
(m,σ), outputs a new signature σ′ for m which is valid under the same public
key as the original signature σ. In fact, for an arbitrary public key pk and a shift
amount ∆∗ as in the above lemma, KH.Adapt(pk, ·, ·,∆∗) is exactly such a signature
randomization algorithm Rand with a certain failure probability.

• Consider the Guillou-Quisqater signature scheme [GQ88] with the notation used
in [DS16]. It has the following parameter generation algorithm GQ.PGen:
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GQ.PGen(λ)
1 : choose p, q ∈ P of length λ/2 bits with p ̸= q

2 : N := p · q
3 : choose odd e < φ(N) with e ∈ P
4 : (H : ZN ×M→ Ze)←$ {Hk}k

5 : return pp := (H,N, e)

Hereby, M denotes the message space of the Guillou-Quisqater signature scheme,
{Hk}k denotes some hash function family with some parameter k and φ denotes
Euler’s totient function which is defined as

φ(N) := |{x ∈ N | 0 ≤ x < N, gcd(x,N) = 1}|

for positive integers N where gcd denotes the greatest common divisor. When con-
sidering the attack from Lem. 4.9 for Guillou-Quisqater signatures, the candidates
for the shift amount ∆∗ from Lem. 4.9 are exactly the members of

AN,e,c = {x ∈ Z∗
N | xe = 1, xc ̸= 1}

It seems to be a hard problem to compute a lower bound for

Pr[AN,e,c ̸= ∅]

where the probability is over the random choices of the algorithms of the Guillou-
Quisqater signature scheme in the strong existential unforgeability game from
Def. 3.20. Computing this probability is required to compute the success prob-
ability of the adversary A from the attack from the proof of Lem. 4.9 on the
Guillou-Quisqater signature scheme [GQ88]. This is because if AN,e,c = ∅ (for
the tuple (N, e) that A is passed as part of the public parameters and the first
element c of the signature σ returned by the signing oracle), then A cannot win
this instance of the sEUF-CMA game Def. 3.20 for Guillou-Quisqater signatures.

Adaptability To be able to use adapted signatures like "normal", fresh signatures, we
need those two types of signatures to be indistinguishable. Formally, this translates to
identical distributions of fresh and adapted signatures, captured in the following two
definitions which are based on [DS16].

Definition 4.10 (adaptability) Let ΣKH be a key-homomorphic signature scheme with
secret-to-public-key homomorphism µ, secret key space H and message space M. ΣKH
provides adaptability of signatures if for every security parameter λ ∈ N, message m ∈
M and pp←$ PGen(1λ), we have that

v1 := ((pk, sk),KH.Adapt(pk,m,KH.Sign(sk,m),∆))
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with (pk, sk)←$ KGen(pp), ∆←$ H and

v2 := ((µ(sk), sk), (µ(sk) · µ(∆),KH.Sign(sk + ∆,m)))

with sk←$ H and ∆←$ H are identically distributed.
Adaptability in the above definition means that adapted and fresh signatures look the

same together with the corresponding verification key and the original public key that it
was derived from. A stronger notion is perfect adaption [DS16] which captures the above
indistinguishability with the additional requirement that the original signature that the
adapted one was computed from is known.
Definition 4.11 (perfect adaptability) Let ΣKH be a key-homomorphic signature
scheme with secret-to-public-key homomorphism µ, secret key space H and message space
M. ΣKH provides perfect adaptability of signatures if for every security parameter
λ ∈ N, message m ∈M and pp←$ PGen(1λ), we have that

v1 := (σ, (pk, sk),KH.Adapt(pk,m, σ,∆))

with (pk, sk)←$ KGen(1λ), σ ←$ KH.Sign(sk,m), ∆←$ H and

v2 := (σ, (µ(sk), sk), (µ(sk) · µ(∆),KH.Sign(sk + ∆,m))

with sk←$ H and ∆←$ H, σ ←$ KH.Sign(sk,m) are identically distributed.

BLS signatures As an example for perfectly adaptable key-homomorphic signatures,
we will consider BLS signatures [BLS04]. We formally define the scheme and then prove
its adaptability according to Def. 4.11.
Definition 4.12 (BLS signature scheme) Let {Hk}k be a hash function family. The
BLS signature scheme ΣBLS is a digital signature scheme with message space M defined
as follows:

PGen(1λ)
1 : BG := (G1, G2, GT , p, e, g1, g2)←$ BGGen(1λ, 3)
2 : (H :M→ G1) ←$ {Hk}k

3 : return pp := (BG, H)

KGen(pp)
1 : parse (BG,H) := pp
2 : x←$ Zp

3 : pk := gx
2

4 : sk := x

5 : return (pk, sk)

Sign(sk,m)
1 : parse sk =: x
2 : σ := H(m)x

3 : return σ

Vfy(pk,m, σ)
1 : parse gx

2 := pk
2 : return 1 if e(H(m), gx

2 ) = e(σ, g2)
3 : else return 0
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Observe that the BLS signature scheme has a deterministic signing algorithm. The
hash function used in it is modeled as a random oracle for the security analysis in
[BLS04]. To prepare the proof of the perfect adaptability of BLS signatures, we first
prove that they indeed are a correct digital signature scheme.
Lemma 4.13 ΣBLS is a correct digital signature scheme (with secret key space Zp, public
key space G2 signature space G1) according to Def. 3.17.

Proof. The key and signature spaces are obvious from inspection. Let λ ∈ N, BG :=
(G1, G2, GT , p, e, g1, g2) ←$ BGGen(1λ, 3), H : M → G1 ←$ {Hk}k, pp := (BG, H),
x ←$ Zp, pk := gx

2 , sk := x, σ := H(m)x, m ∈ M. Exploiting the bilinearity of the
pairing e, we get

e(H(m), gx
2 ) = e(H(m), g2)x = e(H(m)x, g2) = e(σ, g2)

which implies Pr[Vfy(pk,m, σ) = 1] = 1, so ΣBLS is correct according to Def. 3.17.

We next prove the perfect adaptability of BLS signatures. Note that while the
KH.Adapt algorithm was given in [DS16], the proof that the two views v1, v2 from
Def. 4.11 are identically distributed was only sketched. The basic idea of adaption
for BLS signatures is to sign the message with the shift amount and compute the public
key corresponding to the shift amount. Then the signatures and public keys are multi-
plied using the respective group operation. Although it was omitted in [DS16], we first
need to prove that ΣBLS is a key-homomorphic signature scheme according to Def. 4.2.
Lemma 4.14 ΣBLS is perfectly adaptable according to Def. 4.11.

Proof. We first prove that ΣBLS is a key-homomorphic signature scheme according to
Def. 4.2.

The correctness of ΣBLS as a digital signature scheme was proven in Lem. 4.13. Fur-
thermore, by definition of KGen and a simple computation, µ : Zp → G2, x 7→ gx

2 is a
secret-to-public-key homomorphism for ΣBLS.

We next define the KH.Adapt algorithm for ΣBLS from [DS16]:

KH.Adapt(pk,m, σ,∆)
1 : parse gx

2 := pk
2 : pk′ := gx

2g
∆
2

3 : σ′ := σ ·H(m)∆

4 : return (pk′, σ′)

Before proving perfect adaptability according to Def. 4.11, we need to prove that the
KH.Adapt algorithm fulfills the requirements from Def. 4.2. Let λ,BG, H, x, pk, sk, σ,m as
in Lem. 4.13. Furthermore, assume Vfy(pk,m, σ) = 1 and (pk′, σ′)←$ KH.Adapt(pk,m, σ,∆).
Exploiting the secret-to-public-key homomorphism property of µ and the fact that the
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prime order group G2 is abelian (Lem. 3.8), we get

pk′ = gx
2 · g∆

2 = µ(x) · µ(∆) = pk · µ(∆) = µ(∆) · pk

furthermore, using the bilinearity of the pairing e, we have

e(H(m), gx
2 · g∆

2 ) = e(H(m)x ·H(m)∆, g2)
⇔e(H(m), gx+∆

2 ) = e(H(m)x+∆, g2)
⇔e(H(m), g2)x+∆ = e(H(m), g2)x+∆

which proves the validity of (m,σ′) under pk′. So ΣBLS is a key-homomorphic signature
scheme according to Def. 4.2.

Next we prove its perfect adaptability according to Def. 4.11. Let λ,BG, H, pp,m as
above. Define

v1 := (v1,1, v1,2, v1,3, v1,4, v1,5) = (σ, (pk, sk), (pk′, σ′))

with (sk, pk) ←$ KGen(pp), σ ←$ Sign(sk,m), (pk′, σ′) ←$ KH.Adapt(pk,m, σ,∆), ∆ ←$

Zp. Define

v2 := (v2,1, v2,2, v2,3, v2,4, v2,5) := (σ, (µ(sk), sk), (µ(sk) · µ(∆), Sign(sk + ∆,m)))

with sk←$ Zp and ∆←$ Zp and σ ←$ Sign(sk,m).
By definition of KGen of ΣBLS, we see that (pk, sk) ←$ KGen(pp) is identically dis-

tributed to (µ(sk), sk) with sk ←$ Zp. So (σ, (pk, sk)) in v1 and (σ, (µ(sk), sk)) in v2 are
identically distributed.

The v1,4 and v2,4 are adapted versions of the public keys v1,2 and v2,2, respectively.
Since for v1,2, we have

v1,2 = pk′ = gsk
2 · g

∆
2 = µ(sk) · µ(∆)

which yields that (σ, (pk, sk), pk′) in v1 and (σ, (µ(sk), sk), µ(sk)·µ(∆)) in v2 are identically
distributed.

By definition of the (deterministic) signing algorithm Sign of ΣBLS, we have

σ′ = σ ·H(m)∆ = H(m)sk ·H(m)∆ = H(m)sk+∆ = Sign(sk + ∆,m)

so the v1,5 and v2,5 are only depending on (v1,1, v1,2, v1,3, v1,4) and (v2,1, v2,2, v2,3, v2,4),
respectively. So since (v1,1, v1,2, v1,3, v1,4) and (v2,1, v2,2, v2,3, v2,4) are identically dis-
tributed, we get that v1 and v2 are identically distributed.

Overall, ΣBLS is perfectly adaptable key-homomorphic signature scheme according to
Def. 4.11.

Derler and Slamanig [DS16] have sketched adaptability proofs for other signature
schemes than BLS (see Rem. 4.7 for a list) by providing the respective KH.Adapt algo-
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rithm and sketching the distribution argument needed for adaptability.

4.1.2 Publicly key-homomorphic signatures

Next, we define publicly key-homomorphic signature schemes which basically allow to
publicly combine multiple signatures on the same message into one. This is another
flavour of key-homomorphic signatures that was introduced by Derler and Slamanig in
[DS16]. We will start with the basic syntax and correctness of such signature schemes.
Definition 4.15 (publicly key-homomorphic signature schemes) Let (H,+), (E, ·)
groups. A publicly key-homomorphic signature scheme is a tuple of ppt algorithms
ΣPKH = (PKH.PGen,PKH.KGen,PKH.Sign,PKH.Vfy,PKH.Combine) fulfilling the follow-
ing requirements:

(i) Σ := (PKH.PGen,PKH.KGen,PKH.Sign,PKH.Vfy) is a correct digital signature
scheme with public key space E, secret key space H, some message space M and
some signature space S.

(ii) Σ provides a secret-to-public-key homomorphism µ

(iii) PKH.Combine is a ppt combination algorithm which takes as input public keys
pk1, . . . , pkn ∈ E, a message m ∈ M, signatures σ1, . . . , σn ∈ S and outputs a
combined public key p̂k ∈ E and a signature σ̂ ∈ S that satisfy the following require-
ment: For all n > 1, pp ←$ PGen(1λ), message m ∈ M, (pki, ski) ←$ KGen(pp),
σi ←$ Sign(ski,m) for 1 ≤ i ≤ n, (p̂k, σ̂)←$ PKH.Combine((pki)n

i=1,m, (σi)n
i=1):

p̂k = Πn
i=1pki ∧ Pr[PKH.Vfy(p̂k,m, σ̂) = 1] = 1

So the distinctive correctness requirement for publicly key-homomorphic signatures
is that combined signatures are valid under combined public keys. Furthermore, if not
explicitly stated otherwise, we always assume that the algorithms of a publicly key-
homomorphic signature scheme are named as in Def. 4.15.

Public adaptability Analogously to key-homomorphic signatures (Sect. 4.1.1), we can
define adaptability for publicly key-homomorphic signature schemes. Such a scheme
is (publicly) adaptable if combined signatures look the same as fresh signatures under
manually combined public keys.
Definition 4.16 (public adaptability) Let ΣPKH be a publicly key-homomorphic sig-
nature scheme with secret-to-public-key homomorphism µ, secret key space (H,+) and
message space M. ΣPKH provides public adaptability of signatures if for every security
parameter λ ∈ N, n ∈ poly(λ), pp←$ PKH.PGen(1λ), m ∈M it holds that

v1 := (((pki, ski))n
i=1,PKH.Combine((pki)n

i=1,m, (σi)n
i=1))
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with (pki, ski)←$ PKH.KGen(pp), σi ←$ PKH.Sign(ski,m) for 1 ≤ i ≤ n and

v2 := (((pki, ski))n
i=1, (Πn

i=1pki,PKH.Sign(Σn
i=1ski,m)))

with (pki, ski)←$ PKH.KGen(pp) for 1 ≤ i ≤ n are identically distributed.
Again, analogously to key-homomorphic signatures (Sect. 4.1.1), we define a stronger

notion called perfect public adaptability. It requires that combined and fresh signatures
are indistinguishable even in the case that the original signatures that were combined
are known.
Definition 4.17 (perfect public adaptability) Let ΣPKH be a publicly key-homomorphic
signature scheme with secret key space (H,+) and message spaceM. ΣPKH provides per-
fect public adaptability of signatures if for every security parameter λ ∈ N, n ∈ poly(λ),
pp←$ PKH.PGen(1λ), m ∈M it holds that

v1 := (((pki, ski, σi))n
i=1,PKH.Combine((pki)n

i=1,m, (σi)n
i=1))

with (pki, ski)←$ PKH.KGen(pp), σi ←$ PKH.Sign(ski,m) for 1 ≤ i ≤ n and

v2 := (((pki, ski, σi))n
i=1, (Πn

i=1pki,PKH.Sign(Σn
i=1ski,m)))

with (pki, ski) ←$ PKH.KGen(pp), σi ←$ PKH.Sign(ski,m) for 1 ≤ i ≤ n are identically
distributed.

BLS signatures revisited In the following, we revisit the BLS signature scheme (Def. 4.12)
and prove that it is perfectly publicly adaptable. Again, we are using the algorithm idea
for the PKH.Combine algorithm from [DS16] but do the full proof instead of just pre-
senting the PKH.Combine algorithm as in [DS16].
Lemma 4.18 ΣBLS from Def. 4.12 is perfectly publicly adaptable according to Def. 4.17.

Proof. ΣBLS is a key-homomorphic signature scheme (Def. 4.2) according to Lem. 4.14.
So ΣBLS is a digital signature scheme that provides a secret-to-public key homomorphism
µ : Zp → G2, x 7→ gx

2 . What is left to prove is that a PKH.Combine algorithm with the
properties from Def. 4.15 and Def. 4.17 exists for ΣBLS,

Define the PKH.Combine algorithm as follows:

PKH.Combine((pki)n
i=1,m, (σi)n

i=1)
1 : parse gxi

2 := pki for 1 ≤ i ≤ n
2 : p̂k = Πn

i=1pki

3 : σ̂ = Πn
i=1σi

4 : return (p̂k, σ̂)

Let n > 1, λ ∈ N, BG := (G1, G2, GT , p, e, g1, g2) ←$ BGGen(1λ, 3), H ←$ {Hk}k,
pp := (BG, H) ,(pki, ski) ←$ PKH.KGen(pp) for 1 ≤ i ≤ n, m ∈ M, σi ←$ Sign(ski,m)
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for 1 ≤ i ≤ n, (p̂k, σ̂)←$ PKH.Combine((pki)n
i=1,m, (σi)n

i=1). We have

p̂k = Πn
i=1g

x
2 = Πn

i=1pki

furthermore

e(H(m), p̂k) = e(σ̂, g2)
⇔e(H(m),Πn

i=1g
xi
2 ) = e(Πn

i=1σi, g2)

⇔e(H(m), gΣn
i=1xi

2 ) = e(Πn
i=1σi, g2)

⇔e(H(m), g2)Σn
i=1xi = e(Πn

i=1H(m)xi , g2)
⇔e(H(m), g2)Σn

i=1xi = e(H(m)Σn
i=1xi , g2)

⇔e(H(m), g2)Σn
i=1xi = e(H(m), g2)Σn

i=1xi

which yields Pr[PKH.Vfy(p̂k,m, σ̂) = 1] = 1. So we have proven the correctness re-
quirement for PKH.Combine from Def. 4.15, what is left to prove is the perfect public
adaptability of ΣBLS according to Def. 4.17. Let λ,BG, H, pp as above, n = poly(λ),
m ∈M. Define

v1 = (v1,1, v1,2, v1,3) := ((ski, pki, σi)n
i=1, (p̂k, σ̂))

where (pki, ski) ←$ PKH.KGen(pp), σi ←$ PKH.Sign(ski,m) for 1 ≤ i ≤ n, (p̂k, σ̂) ←$

PKH.Combine((pki)n
i=1,m, (σi)n

i=1) and

v2 = (v2,1, v2,2, v2,3) := ((ski, pki, σi)n
i=1, (Πn

i=1pki,PKH.Sign(Σn
i=1ski,m)))

where (pki, ski)←$ PKH.KGen(pp), σi ←$ PKH.Sign(ski,m) for 1 ≤ i ≤ n.

We see that the key-pair-signature triples v1,1 and v2,1 are identically distributed by
definition. Furthermore

p̂k = Πn
i=1g

xi
2 = Πn

i=1pki

so the public keys v1,2 and v2,2 are the product of the public keys from v1,1 and v1,2,
respectively. So (v1,1, v1,2) and (v2,1, v2,2) are identically distributed.

Finally, the fact that PKH.Sign is deterministic for ΣBLS yields that

σ̂ = Πn
i=1σi = Πn

i=1H(m)ski = H(m)Σn
i=1ski

so v1,3 and v2,3 are identically distributed and only depend on (v1,1, v1,2) and (v2,1, v2,2).
Since (v1,1, v1,2) and (v2,1, v2,2) are identically distributed, v1 = (v1,1, v1,2, v1,3) and v2 =
(v2,1, v2,2, v2,3) are identically distributed.

So ΣBLS is a perfectly publicly adaptable key-homomorphic signature scheme according
to Def. 4.17.
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4.2 Structure-preserving signatures on equivalence classes

In this chapter we introduce structure-preserving signatures on equivalence classes (SPS-
EQ) which were first defined by Hanser and Slamanig in [HS14] and first securely instan-
tiated in [FHS14]. An SPS-EQ is a signature scheme that is equipped with an equivalence
relation R on its message space. One can subsequently randomize a message-signature
pair (m,σ) to a new one (m′, σ′) where m′ ∈ [m]R is a distinct representative of the
class of m. This of course requires a change in the unforgeability game if it should
stay meaningful. To break unforgeability, an adversary must sign a message m∗ from a
class that he has not seen any signed message for, since computing valid signatures for
different representatives of some already-signed class is trivial in an SPS-EQ. Besides
unforgeability, secure SPS-EQ provide class-hiding which basically means that there is
no efficient way to tell whether two given messages m and m′ are from the same class
or not. An additional security notion for SPS-EQ is perfect adaption of signatures (see
for example [BHKS18]) which demands that fresh and randomized SPS-EQ signatures
look alike.

SPS-EQ can be seen as a complementary primitive to the flexible public key signatures
from [BHKS18] which have an equivalence relation with analogous properties on their
public key space instead of their message space. In the following, we formally introduce
SPS-EQ and their correctness and security requirements. If not otherwise stated, we
roughly follow Connolly et al. [CLPK22].
Definition 4.19 (SPS-EQ syntax) Let G be a group, M := Gl for some natural
l > 1, R ⊆ M×M an equivalence relation. An structure-preserving signature scheme
on equivalence classes (SPS-EQ) with message space M, public key space E, secret key
space H, signature space S and trapdoor space T is a tuple ΣSPSEQ of ppt algorithms as
follows:

SPSEQ.PGen(1λ) probablistic parameter generation algorithm, takes as input the security
parameter λ ∈ N and outputs public parameters pp

SPSEQ.TPGen(1λ) probablistic trapdoor parameter generation algorithm, takes as input
the security parameter λ ∈ N and outputs public parameters pp and an associated
trapdoor τ ∈ T

SPSEQ.KGen(pp, l) probablistic key generation algorithm, takes as input public param-
eters pp and the vector length l ∈ N and outputs a key pair (pk, sk) ∈ E × H,
consisting of a public key pk and a secret key sk

SPSEQ.Sign(sk,m) probablistic signing algorithm, takes as input a secret key sk ∈ H
and a message m ∈M = Gl and outputs a signature σ ∈ S

SPSEQ.ConvSigGen(pp) probablistic signature conversion randomness generation algo-
rithm, takes as input public parameters pp and outputs signature conversion ran-
domness α
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SPSEQ.ChgRep(m,σ, α, pk) probablistic change-representative algorithm, takes as input
a message m ∈ M = Gl, a signature σ ∈ S, a scalar α and a public key pk and
outputs an adapted message-signature pair (m′, σ′) ∈M× S

SPSEQ.Vfy(pk,m, σ) deterministic verification algorithm, takes as input a public key
pk ∈ E, a message m ∈M and a signature σ ∈ S and outputs a bit b ∈ {0, 1}

SPSEQ.VKey(pk, sk) deterministic key pair verification algorithm, takes as input a public
key pk ∈ E and a secret key sk ∈ H and outputs a bit b ∈ {0, 1}

If not explicitly stated otherwise, we always assume that the algorithms of an SPS-EQ
are named like in Def. 4.19. Conolly et al [CLPK22] defined SPS-EQ for signatures that
possibly have a tag t associated with them, which we omitted here for simplicity. The set
of values α that can be input into the SPSEQ.ChgRep algorithm as randomness is implic-
itly defined by the particular SPS-EQ and contains the support of SPSEQ.ConvSigGen as
a subset. The SPSEQ.VKey algorithm was missing in [CLPK22], it however is required to
formally include valid key pairs that cannot be output by the key generation algorithm
into the following SPS-EQ correctness definition.
Definition 4.20 (SPS-EQ correctness) Let G be a group, M := Gl for some l > 1,
R ⊆M×M an equivalence relation. Furthermore let ΣSPSEQ be an SPS-EQ with mes-
sage space M, equivalence relation R, public key space E, secret key space H, signature
space S and trapdoor space T . ΣSPSEQ is correct if the following requirements are met:

(i) For all λ ∈ N, pp ←$ SPSEQ.PGen(λ), (pk, sk) ←$ SPSEQ.KGen(pp, l), we have
SPSEQ.VKey(pk, sk) = 1.

(ii) For all λ ∈ N, pp ←$ SPSEQ.PGen(λ) and pp in (pp, ·) ←$ SPSEQ.TPGen(1λ) are
identically distributed.

(iii) For all λ ∈ N, pp←$ SPSEQ.PGen(λ), (pk, sk) ∈ E ×H, SPSEQ.VKey(pk, sk) = 1,
m ∈ M, α ←$ SPSEQ.ConvSigGen(pp), σ ←$ SPSEQ.Sign(sk,m), (m′, σ′) ←$

SPSEQ.ChgRep(m, SPSEQ.Sign(sk,m), α, pk), we have
a) Pr[SPSEQ.Vfy(pk,m, σ) = 1] = 1
b) Pr[SPSEQ.Vfy(pk,m′, σ′) = 1] = 1
c) m′ ∈ [m]R

The first requirement states that honestly generated key pairs are correct, i.e. can
be validated using SPSEQ.VKey. The second requirement demands that parameters
generated with and without associated trapdoor look the same. This requirement
was not explicitly listed in [CLPK22]. Note that the original SPS-EQ syntax defini-
tion from [HS14, FHS14] did not contain the trapdoor parameter generation algorithm
SPSEQ.TPGen since the SPS-EQ constructions from these papers did not require a trap-
door for the public parameters. We listed the SPSEQ.TPGen algorithm in this paper to
include SPS-EQ schemes that do need such a trapdoor into our framework. If no trapdoor
is needed, the empty string ϵ can be returned by SPSEQ.TPGen, making SPSEQ.PGen
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and SPSEQ.TPGen technically identical. The third requirement comprises regular dig-
ital signature correctness as well as the validity of randomized message-signature pairs
obtained from valid ones via SPSEQ.ChgRep.

Unforgeability Now that we are done with syntax and correctness of SPS-EQ, we can
turn towards their security. As already pointed out in the introduction of this section, the
winning condition of the standard EUF-CMA game from Def. 3.19 needs an adjustment
for EUF-CMA to be meaningful for SPS-EQ. More precisely, the adversary should not
be allowed to submit a forgery for a representative of any class of messages that he has
already seen a signature for. This is because computing such a forgery can be done
trivially using the SPSEQ.ChgRep algorithm.
Definition 4.21 (SPS-EQ EUF-CMA) Let λ ∈ N be the security parameter, l > 1
the vector length, ΣSPSEQ an SPS-EQ over some equivalence relation R. We define the
following security game for and adversary A and a challenger C:

Expspseq-euf
A,ΣSPSEQ

(λ)
1 : pp←$ SPSEQ.PGen(1λ)
2 : (pk, sk)←$ KGen(pp, l)
3 : (m∗, σ∗)←$ASign(sk,·)(pk)
4 : return 1 if (∀m ∈ Q : m∗ /∈ [m]R) ∧ SPSEQ.Vfy(pk,m∗, σ∗) = 1
5 : else return 0

with Sign(sk, ·) being a signing oracle as of the following:

Sign(sk,m)
1 : σ ←$ SPSEQ.Sign(sk,m)
2 : Q := Q ∪ {m}
3 : return σ

We define the advantage of A in the above security game as

Advspseq-euf
A,ΣSPSEQ

(λ) := Pr[Expspseq-euf
A,ΣSPSEQ

(λ) = 1]

ΣSPSEQ is existentially unforgeable under chosen-message attacks (EUF-CMA secure) if
for all ppt adversaries A Advspseq-euf

A,ΣSPSEQ
(λ) is negligible.

Class-hiding Next, we define class-hiding for SPS-EQ. Intuitively, there should be no
efficient way to tell whether two given messages m and m′ are related via the message
relation R or not. We define two distinct class-hiding notions. The first one is based on
the one given in [FHS14] by Fuchsbauer et al. which corrects a severe error that Hanser
and Slamanig overlooked when they first presented such a class-hiding notion in [HS14].
Definition 4.22 (SPS-EQ real-or-random class-hiding) Let λ ∈ N be the security
parameter, l > 1 the vector length, G a group, ΣSPSEQ an SPS-EQ with message space
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M := Gl over some equivalence relation R. We define the following security game for
and adversary A and a challenger C:

Expspseq-ror-ch
A,ΣSPSEQ

(λ)
1 : pp←$ SPSEQ.PGen(1λ)
2 : b←$ {0, 1}
3 : (state, pk, sk)←$A(pp, l)
4 : b′ ←$AOmsg(l),Oror(sk,pk,b,·,·)(state, pk, sk)
5 : return 1 if b = b′ ∧ SPSEQ.VKey(pk, sk) = 1
6 : else return 0

with oracles

Omsg(l)
1 : m←$M
2 : Q := Q ∪ {m}
3 : return m

Oror(sk, pk, b,m, σ)
1 : if m /∈ Q ∨ SPSEQ.Vfy(pk,m, σ) = 0
2 : return ⊥
3 : if Oror was not called before
4 : r ←$M
5 : M ←$ ((m,σ), (r, SPSEQ.Sign(sk, r)))
6 : persistently store m̄ := m and M [b]
7 : return
8 : else
9 : if m ̸= m̄

10 : return ⊥
11 : else
12 : α←$ SPSEQ.ConvSigGen(pp)
13 : return SPSEQ.ChgRep(M [b], α, pk)

We define the advantage of A in the above security game as

Advspseq-ror-ch
A,ΣSPSEQ

(λ) = |Pr[Expspseq-ror-ch
A,ΣSPSEQ

(λ) = 1]− 1
2 |

ΣSPSEQ is real-or-random class-hiding if for all ppt adversaries A Advspseq-ror-ch
A,ΣSPSEQ

(λ) is
negligible.

In the beginning of the game, the adversary A determines the challenge key pair
(pk, sk). Note that since it is not the goal of the game to forge some signature, it is
no problem that A knows the secret key that the challenger C will use. Depending on
the bit b, the challenger C will then operate the real-or-random oracle Oror in one of
two modes: in case b = 0, it will sign the first message m that A sends to it and upon
subsequent oracle queries for that m, it will output randomized versions of the first
created message-signature pair. In case b = 1, the message m that A submitted will be
ignored, instead C will draw and sign a uniformly random message r. Subsequent calls
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for m will be answered with randomized versions of the signed r, analogously to case
b = 0. The adversary A must decide whether it has seen randomized signed versions
of its message m or some random other message, possibly from a different class. If A
cannot do so in reasonable time (i.e. polynomial time in the security parameter), it
is hard to tell whether two given signed messages are in the same class or not. Note
that if the adversary had the freedom to choose the challenge message m ∈ Gl itself, it
could choose a vector with very remarkable features (such as identical entries) that it
might very easily distinguish from a signed random message. This is why C only accepts
uniformly random input messages for Oror that it has issued itself via the message oracle
Omsg. But A still has the freedom to query Omsg multiple times and submit the answer
it likes most to Oror.

In the class-hiding definition from [HS14], the oracle Oror returned message-signature
M [b] on the first call, which made it trivially for the adversary to distinguish the two
modes of operation b = 0 and b = 1 by just checking whether it obtained a signed
version his submitted message m or some other message r. Thus, no SPS-EQ could
fulfill the class-hiding definition from [HS14], rendering it entirely useless. So in the
above corrected version, the real-or-random oracle Oror does not return any response
when first called but just records the message it was queried for.

In [FHS19], Fuchsbauer et al. gave a distinct class-hiding notion which does not involve
signing but only requires the adversary to tell whether two given messages are related
via the underlying equivalence relation or not. The following class-hiding definition for
SPS-EQ is based on [FHS19].
Definition 4.23 (SPS-EQ (message) class-hiding) Let λ ∈ N be the security pa-
rameter, l > 1 the vector length, G a group, ΣSPSEQ an SPS-EQ with message space
M := Gl over some equivalence relation R. We define the following security game for
and adversary A and a challenger C:

Expspseq-ch
A,ΣSPSEQ

(λ)
1 : pp←$ SPSEQ.PGen(λ)
2 : m←$M
3 : b←$ {0, 1}
4 : m0 ←$ [m]R
5 : m1 ←$M
6 : b′ ←$A(pp,m,mb)
7 : return 1 if b = b′

We define the advantage of A in the above security game as

Advspseq-ch
A,ΣSPSEQ

(λ) = |Pr[Expspseq-ch
A,ΣSPSEQ

(λ) = 1]− 1
2 |

ΣSPSEQ is (message) class-hiding if for all ppt adversaries A Advspseq-ch
A,ΣSPSEQ

(λ) is negligible.
To conclude the class-hiding discussion for SPS-EQ, we formally prove that under rea-
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sonable assumptions, real-or-random class-hiding is stronger than message class-hiding.
We start with the proof that message class-hiding does not imply real-or-random class-
hiding. For this, we do not use any further assumptions but simply construct an SPS-EQ
that is message class-hiding but not real-or-random class-hiding.
Lemma 4.24 Let λ ∈ N be the security parameter, l := l(λ) the length parameter which
is a polynomial in λ. Furthermore let ΣSPSEQ be a message class-hiding SPS-EQ with
message space M and signature space S. We construct an SPS-EQ Σ′

SPSEQ consisting
of the same algorithms as ΣSPSEQ except for SPSEQ.ChgRep which is changed so that
for all m ∈M, σ ∈ S, SPSEQ.ChgRep(m,σ, ·, ·) just outputs (m,σ).

Then Σ′
SPSEQ is message class-hiding but not real-or-random class-hiding.

Proof. We see that for any adversary A, the distribution of the input of A in the message
class-hiding game Expspseq-ch

A,ΣSPSEQ
(λ) from Def. 4.23 is identical to the distribution of the

input of A in Expspseq-ch
A,Σ′

SPSEQ
(λ). This yields that

Advspseq-ch
A,ΣSPSEQ

(λ) = Advspseq-ch
A,Σ′

SPSEQ
(λ)

and thus proves that Σ′
SPSEQ is message class-hiding according to Def. 4.23 since ΣSPSEQ

is.
What is left to prove is that Σ′

SPSEQ is not real-or-random class-hiding according to
Def. 4.22. For this, we construct an adversary A that has non-negligible advantage in
the real-or-random class-hiding game for Σ′

SPSEQ. On input pp←$ SPSEQ.PGen(λ), l, A
acts as follows:

1. A creates a key pair (pk, sk) ←$ SPSEQ.KGen(pp, l) and outputs it together with
state information state.

2. When called on input state information state and key pair (pk, sk), A queries its
message oracle Omsg(l) for a message, eventually obtaining m←$M.

3. A then signs m by computing σ ←$ SPSEQ.Sign(sk,m)

4. A subsequently submits (m,σ) to Oror(sk, pk, b, ·, ·), eventually obtaining (m′, σ′).

5. A checks whether m = m′. If so, it outputs b′ = 0, else it outputs b′ = 1.

A obviously is a ppt adversary. Let b = 0. Then, for the call (m,σ) to the oracle Oror,
we have

SPSEQ.ChgRep(m,σ, ·, ·)→ (m′, σ′) = (m,σ)

by definition of Σ′
SPSEQ which concludes Pr[b′ = 0 | b = 0] = 1. Now let b = 1. Then, for

the call (m,σ) to the oracle Oror, we have

SPSEQ.ChgRep(m,σ, ·, ·)→ (r, σ′)
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with r ←$M, σ′ ←$ SPSEQ.Sign(sk, r). We obviously have

Pr[b′ = 1 | b = 1] = 1− Pr[r = m] = 1− 1
pl

since m is fixed at the time that r is drawn.
All in all, we get

Advspseq-ror-ch
A,ΣSPSEQ

(λ) = |Pr[Expspseq-ror-ch
A,ΣSPSEQ

(λ) = 1]− 1
2 |

= |Pr[b′ = b]− 1
2 |

= |Pr[b′ = 0 | b = 0] · 1
2 + Pr[b′ = 1 | b = 1] · 1

2 −
1
2 |

= |1 · 1
2 + (1− 1

pl
) · 1

2 −
1
2 |

= (1− 1
pl

) · 1
2

= 1
2 −

1
2 ·

1
pl

which is not negligible since 1
2 ·

1
pl is negligible because pl is a super-polynomial expression

in λ. This proves that Σ′
SPSEQ is not real-or-random class-hiding according to Def. 4.22.

We see that the above proof makes use of the fact that message class-hiding (Def. 4.23)
does not make any statement about the output distribution of the SPSEQ.ChgRep algo-
rithm while this distribution is of crucial importance for the real-or-random class-hiding
game. An instantiation of a message class-hiding SPS-EQ can be found in [FHS19]. So
Lem. 4.24 indeed proves that there are SPS-EQ that are message class-hiding but not
real-or-random class-hiding.

Next, we prove that real-or-random class-hiding does imply message class-hiding if
the SPS-EQ perfectly adapts signatures and its message relation R divides the message
space M into classes of equal size.
Lemma 4.25 Let λ ∈ N be the security parameter, l := l(λ) the length parameter which
is a polynomial in λ. Furthermore let ΣSPSEQ be a real-or-random class-hiding SPS-EQ
with message spaceM over message equivalence relation R with the following properties:

(i) ΣSPSEQ is real-or-random class-hiding (Def. 4.23).

(ii) For (m′, ·) ←$ SPSEQ.ChgRep(m, ·, ·, ·), we have that m′ is identically distributed
to a uniformly random message from [m]R.

(iii) ∀m,m′ ∈ M : |[m]R| = |[m′]R|, i.e. all equivalence classes of R are of the same
size.

Then ΣSPSEQ is message class-hiding.
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Proof. We use a standard reduction approach to prove this, i.e. assume that there exists
a ppt adversary A with non-negligible advantage in the message class-hiding game from
Def. 4.23. We construct an adversary R from it that has non-negligible advantage in the
real-or-random class-hiding game from Def. 4.22.

On input pp←$ SPSEQ.PGen(λ), l ∈ N, R acts as follows:
1. R generates and outputs (pk, sk)←$ SPSEQ.KGen(pp, l) together with state infor-

mation state.

2. When eventually called on state information state and key pair (pk, sk), R queries
the message oracle Omsg(l) and obtains m←$M.

3. R signs m by computing σ ←$ SPSEQ.Sign(sk,m).

4. R queries Oror(pk, sk, b, ·, ·) for (m,σ), which triggers the recording of M [b] on the
oracle side.

5. R queries Oror(pk, sk, b, ·, ·) for (m,σ), this time obtaining some (m′, σ′) eventually.

6. R computes b′ ←$ A(pp,m,m′) and outputs b′.
R obviously is a ppt since A is a ppt. Let bR, bA be the hidden bits in the game that
the respective adversary takes part in. First, let bR = 0. We see that, in this case, we
have (m′, σ′)←$ SPSEQ.ChgRep(m, ·, ·, ·), so by prerequisite, we have m′ ←$ [m]R. So in
case bR = 0, R simulates the message class-hiding game for ΣSPSEQ from Def. 4.23 with
bA = 0 for A. Now, let bR = 1. In this case, we have

(m′, σ′)←$ SPSEQ.ChgRep(r, σ, α, pk)

with r ←$M, α←$ SPSEQ.ConvSigGen(pp), σ ←$ SPSEQ.Sign(sk, r).
Let m̃ ∈M be some arbitrary fixed message. We see that

Pr[m′ = m̃] = Pr[m′ = m̃ | r ∈ [m̃]R] · Pr[r ∈ [m̃]R]

= 1
|M|

|M/R|

·
|M|

|M/R|
|M|

= 1
|M|

|M/R|

· 1
|M/R|

= 1
|M|

where we exploit that the size of each equivalence class of R is exactly

|M|
|M/R|

since all classes have the same size by prerequisite. Because m̃ was arbitrary, we thus
get that in the case bR = 1, m′ ∈ M is an uniformly random message. So, in case
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that bR = 1, R simulates the message class-hiding game for ΣSPSEQ from Def. 4.23 with
bA = 1 for A.

Let b′
R, b

′
A be the bits output by the respective adversaries. We get

Pr[b′
R = bR] = Pr[b′

R = 0 | bR = 0] · Pr[bR = 0] + Pr[b′
R = 1 | bR = 1] · Pr[bR = 1]

= Pr[b′
A = 0 | bR = 0] · Pr[bR = 0] + Pr[b′

A = 1 | bR = 1] · Pr[bR = 1]
= Pr[b′

A = 0 | bA = 0] · Pr[bA = 0] + Pr[b′
A = 1 | bA = 1] · Pr[bA = 1]

= Pr[b′
A = bA]

which yields
Advspseq-ror-ch

R,ΣSPSEQ
(λ) = Advspseq-ch

A,ΣSPSEQ
(λ)

So since ΣSPSEQ is message class-hiding according to Def. 4.23, ΣSPSEQ is real-or-random
class-hiding according to Def. 4.22.

Perfect adaptation of signatures The difference between the distribution of fresh sig-
natures generated using SPSEQ.Sign and randomized signatures generated using SPSEQ.ChgRep
is yet an open question. This motivates the definition of the following additional security
property for SPS-EQ:
Definition 4.26 (perfect adaptation of signatures for SPS-EQ) Let λ ∈ N be the
security parameter, l > 1 the vector length, G a group, ΣSPSEQ an SPS-EQ with message
space M := Gl over some equivalence relation R. ΣSPSEQ perfectly adapts signatures
(w.r.t. the message space) if for all

(pk, sk,m, σ, α) ∈ E ×H ×M×S × [SPSEQ.ConvSigGen(pp)]

with SPSEQ.VKey(pk, sk) = 1, SPSEQ.Vfy(pk,m, σ) = 1, pp ←$ SPSEQ.PGen(λ), α ←$

SPSEQ.ConvSigGen(pp) it holds that

v1 := (m′,SPSEQ.Sign(sk,m′)), v2 := SPSEQ.ChgRep(m,σ, α, pk)

are identically distributed with (m′, ·)←$ SPSEQ.ChgRep(m,σ, α, pk).
So if an SPS-EQ perfectly adapts signatures, this means that fresh and randomized

signatures on any given message are indistinguishable, even for an adversary with unlim-
ited computational power. Note that this is fundamentally different from class-hiding
which states that the uniform distribution in M is notably different from all uniform
distributions in some class [m]R ∈ M/R, not making any statement about signatures
but considering messages from more than one class. The above definition is a more
general version of the one found in [BHKS18] since it does not prescribe that the output
message m′ of SPSEQ.ChgRep is computed deterministically from the input randomness
α but is just any random representative from the input class [m]R. We made this change
since in this work, we cover general SPS-EQ over arbitrary equivalence relations while
[FHS19] and [BHKS18] focused on SPS-EQ over a specific equivalence relation.

In [FHS19], Fuchsbauer et al. provide an alternative variant of perfect signature
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adaptation that takes arbitrary maliciously generated public keys into account. We
adapt it in the same way we did for obtaining Def. 4.26 from [BHKS18], resulting in the
following definition which is more general than Def. 4.26:
Definition 4.27 (perfect adaptation of signatures under malicious public keys)
Let λ ∈ N be the security parameter, l > 1 the vector length, G a group, ΣSPSEQ an SPS-
EQ with message space M := Gl over some equivalence relation R. ΣSPSEQ perfectly
adapts signatures (w.r.t. the message space) under malicious public keys if for all

(pk,m, σ, α) ∈ E ×M×S × [SPSEQ.ConvSigGen(pp)]

with SPSEQ.Vfy(pk,m, σ) = 1, pp ←$ SPSEQ.PGen(λ), α ←$ SPSEQ.ConvSigGen(pp) it
holds that

v1 := (m′, σ′), v2 := SPSEQ.ChgRep(m,σ, α, pk)

are identically distributed with (m′, ·)←$ SPSEQ.ChgRep(m,σ, α, pk) and σ′ being iden-
tically distributed to a uniformly random signature in the set of valid signatures for m′,
i.e.

{σ̂ | SPSEQ.Vfy(pk,m′, σ̂) = 1}

In the above definition, we consider arbitrary public keys, including those that no cor-
responding secret key is known for. So we require the distribution of the output signature
σ′ of SPSEQ.ChgRep must be indistinguishable from the uniformly random distribution
on the set of valid signatures for m′ instead of the distribution of SPSEQ.Sign(sk,m′).
This is because the random variable SPSEQ.Sign(sk,m′) is not defined for public keys
pk for which no corresponding secret key sk exists.

4.3 Signatures with flexible public keys

In this chapter, we will deal with flexible public key signatures (alternatively called signa-
tures with flexible public key, in short SFPK ) which were originally introduced by Backes
et al. in [BHKS18]. An SFPK has a public key space that is divided into the equiva-
lence classes of an equivalence relation R and allows the owner of a key pair (pk, sk) to
efficiently randomize it to a new pair (pk′, sk′) where pk and pk′ are related via R. Thus,
SFPK can be seen as the complementary primitive to SPS-EQ (see Sect. 4.2), which have
an analogous equivalence relation on the message space. The possibility to randomize
a public key within its equivalence class requires a relaxation of the winning condition
of the signature unforgeability game from Def. 3.19, more precisely the adversary also
wins if it forges a signature valid under any key pk′ from the same class as the challenge
key pk. Furthermore, without access to a class trapdoor τpk it should not be possible
to efficiently tell whether some public key pk′ is in the same class as a given key pk.
This property is called class-hiding. In the following, we will formally introduce SFPK
and the security requirements sketched above. If not otherwise stated, our definitional
framework hereby is based on [BHKS18] where SFPK were first introduced. We start
with the basic syntax of a flexible public key signature.
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Definition 4.28 (SFPK syntax) A flexible public key signature (SFPK) over equiva-
lence relation R with public key space E, secret key space H, message spaceM, signature
space S and trapdoor space T is a tuple ΣSFPK of ppt algorithms as follows:

SFPK.PGen(λ) : probablistic parameter generation algorithm, takes as input the security
parameter λ ∈ N and outputs public parameters pp

SFPK.KGen(pp, ω) : deterministic key generation algorithm, takes as input public param-
eters pp and key generation randomness ω ∈ {0, 1}poly(λ) and outputs a key pair
(pk, sk), consisting of a public key pk ∈ E and a secret key sk ∈ H

SFPK.TKGen(pp, ω) : deterministic trapdoor key generation algorithm, takes as input
public parameters pp and key generation randomness ω ∈ {0, 1}poly(λ) and outputs
a key pair (pk, sk) (consisting of a public key pk ∈ E and a secret key sk ∈ H)
together with a class trapdoor τ ∈ T

SFPK.Sign(sk,m) : probablistic signing algorithm, takes as input a secret key sk ∈ H and
a message m ∈M and outputs a signature σ ∈ S

SFPK.ChkRep(τ, pk) : deterministic representative-check algorithm, takes as input a class
trapdoor τ ∈ T and a public key pk ∈ E and outputs a bit b ∈ {0, 1}

SFPK.KeyConvGen(pp) probablistic key change randomness generation algorithm, takes
as input public parameters pp and outputs key conversion randomness r

SFPK.ChgPK(pk, r) : deterministic public key adaption algorithm, takes as input a public
key pk ∈ E and randomness r and outputs a public key pk′ ∈ E

SFPK.ChgSK(sk, r) : deterministic secret key adaption algorithm, takes as input a secret
key sk ∈ H and randomness r and outputs a secret key sk′ ∈ H

SFPK.Vfy(pk,m, σ) : deterministic verification algorithm, takes as input a public key
pk ∈ E, a message m ∈M and a signature σ ∈ S and outputs a bit b ∈ {0, 1}

SFPK.VKey(pk, sk) : deterministic key pair verification algorithm, takes as input a public
key pk ∈ E and a secret key sk ∈ H and outputs a bit b ∈ {0, 1}

If not explicitly stated otherwise, we always assume that the algorithms of an SFPK
are named as in Def. 4.28. The set of values r that can be input to the SFPK.ChgPK
and SFPK.ChgSK algorithms as randomness is implicitly defined by the particular SFPK
and contains the support of SFPK.KeyConvGen as a subset. Note that the key gener-
ation algorithms SFPK.KGen,SFPK.TKGen are deterministic, with random coins that
are passed as parameters. This allows to hand the adversary in SFPK security games
the randomness that was used to generate keys. For example, in constructions where
there are elements of some cyclic group contained in a key, this models the case that the
adversary knows the respective discrete logarithms of these elements. Next, we define
the correctness constraints that an SFPK has to fulfill.
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Definition 4.29 (correct SFPK) Let ΣSFPK be an SFPK over equivalence relation R
with public key space E, secret key space H, message space M, signature space S and
trapdoor space T . ΣSFPK is correct if the following conditions are fulfilled:

(i) (pk, sk) ←$ SFPK.KGen(λ, ω) and (pk, sk) ←$ SFPK.TKGen(λ, ω) (which are ran-
dom variables in the key generation randomness ω) are identically distributed for
all λ ∈ N

(ii) For all key pairs (sk, pk) ←$ KGen(λ, ω), ω ←$ {0, 1}poly(λ), messages m ∈ M, we
have

a) Pr[SFPK.Vfy(pk,m,SFPK.Sign(sk,m)) = 1] = 1
b) For r ←$ SFPK.KeyConvGen(pp), pk′ ← SFPK.ChgPK(pk, r) and

sk′ ← SFPK.ChgSK(sk, r), we have
i. Pr[SFPK.Vfy(pk′,m,SFPK.Sign(sk′,m)) = 1] = 1

ii. Pr[SFPK.VKey(pk′, sk′) = 1] = 1

(iii) For all λ ∈ N, ω ∈ {0, 1}poly(λ), (pk, sk, τ) ←$ SFPK.TKGen(λ, ω) and all public
keys pk′ ∈ E, we have

SFPK.ChkRep(τ, pk′) = 1⇔ pk′ ∈ [pk]R

(iv) For all public parameters pp ←$ SFPK.PGen(λ), public keys pk ∈ E and random
coins r ←$ SFPK.KeyConvGen(pp), we have

SFPK.ChgPK(pk, r) =: pk′ ∈ [pk]R

So for a correct SFPK, key pairs output by SFPK.KGen and SFPK.TKGen are perfectly
indistinguishable, due to them being identically distributed. This yields that the second
requirement also holds for key pairs generated using SFPK.TKGen. It requires that
signatures generated in an honest way using a valid key pair are always valid, furthermore
a key pair whose keys are both adapted using the same randomness r stays valid. The
third requirement states that SFPK.ChkRep perfectly tells whether two keys are related
while the fourth one requires that SFPK.ChgPK outputs another representative of the
input class [pk]R.

Unforgeability With syntax and correctness defined, we next move to the security defi-
nitions for SFPK which comprise a modified version of standard signature unforgeability
(from Def. 3.19) as well as the class hiding notion already mentioned in the introduction
of this subsection. We start with unforgeability.
Definition 4.30 (SFPK unforgeability) Let λ ∈ N be the security parameter, ΣSFPK
be an SFPK over equivalence relation R. We define the following security game for and
adversary A and a challenger C:
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Expsfpk-euf
A,ΣSFPK

(λ)
1 : pp←$ SFPK.PGen(λ)
2 : ω ←$ {0, 1}poly(λ)

3 : (pk, sk, τ)←$ SFPK.TKGen(pp, ω)
4 : Q := ∅
5 : (pk∗,m∗, σ∗)←$ASign(sk,·),Sign(sk,·,·)(pp, pk, τ)
6 : return 1 if (m∗, ·) /∈ Q
7 : ∧ SFPK.ChkRep(τ, pk∗) = 1
8 : ∧ SFPK.Vfy(pk∗,m∗, σ∗) = 1
9 : else return 0

with oracles

Sign(sk,m)
1 : σ ←$ SFPK.Sign(sk,m)
2 : Q := Q ∪ {(m,σ)}
3 : return σ

Sign(sk,m, r)
1 : sk′ := SFPK.ChgSK(sk, r)
2 : σ ←$ SFPK.Sign(sk′,m)
3 : Q := Q ∪ {(m,σ)}
4 : return σ

We define the advantage of A in the above security game as

Advsfpk-euf
A,ΣSFPK

(λ) = Pr[Expsfpk-euf
A,ΣSFPK

(λ) = 1]

ΣSFPK is existentially unforgeable under chosen-message attacks (EUF-CMA) if for all
ppt adversaries A Advsfpk-euf

A,ΣSFPK
(λ) is negligible.

So intuitively, it should be hard to efficiently forge a valid signature for a new message
under a public key that is related to the challenge public key when being able to see
signatures created using any key related to the challenge secret key. Analogously to
regular digital signature schemes, we can define a stronger unforgeability notion by
weakening the winning condition, more precisely we also allow the adversary to output
a distinct signature for an already-signed message.
Definition 4.31 (SFPK sEUF-CMA) Let λ ∈ N be the security parameter, ΣSFPK
be an SFPK over equivalence relation R. We define the security game Expsfpk-seuf

A,ΣSFPK
(λ)

between an adversary A and a challenger C by replacing line 5 in the pseudocode of
Def. 4.30 by

return 1 if (m∗, σ∗) /∈ Q

We define the advantage of A in the above security game as

Advsfpk-seuf
A,ΣSFPK

(λ) = Pr[Expsfpk-seuf
A,ΣSFPK

(λ) = 1]

ΣSFPK is strongly existentially unforgeable under chosen-message attacks (sEUF-CMA)
if for all ppt adversaries A Advsfpk-seuf

A,ΣSFPK
(λ) is negligible.
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We next formulate a necessary condition for unforgeability of SFPK whose key gener-
ation algorithms output uniformly random public keys. In particular, such SFPK need
to have "small" equivalence classes.
Lemma 4.32 (small classes lemma) Let ΣSFPK be a SFPK with public key space
E which has the property that for all λ ∈ N, pk in (pk, sk) ←$ SFPK.KGen(λ, ω) is a
uniformly random element from E if ω ←$ {0, 1}poly(λ) is drawn uniformly at random.
Then it holds that

ΣSFPK EUF-CMA secure

⇒(∀[pk]R ∈ E/R : |[pk]R|
|E|

= µpk(λ) for a negligible µpk : N→ R)

Proof. We prove the theorem by contraposition, i.e. we assume that

∃[pk∗]R ∈ E/R : |[pk∗]R|
|E|

= ηpk∗(λ) for a non-negligible ηpk∗ : N→ R

and prove that ΣSFPK is not unforgeable by constructing an adversary A that has non-
negligible advantage Advsfpk-euf

A,ΣSFPK
(λ). Upon input a public key pk and a trapdoor τ ∈ T

(where T is the trapdoor space of ΣSFPK), A behaves as follows:

1. A draws random coins ω ←$ {0, 1}poly(λ) uniformly at random

2. A generates a fresh key pair (pk′, sk′)←$ SFPK.KGen(λ, ω)

3. A chooses any message m ∈M

4. A computes and outputs σ ←$ SFPK.Sign(sk′,m)

A obviously is a ppt since SFPK.KGen and SFPK.Sign are (because ΣSFPK is an SFPK). σ
obviously is a valid signature for m since ΣSFPK is a correct SFPK according to Def. 4.29,
furthermore A does not query the oracles for any messages. So we get

Advsfpk-euf
A,ΣSFPK

(λ) = Pr[SFPK.ChkRep(τ, pk′) = 1]
≥Pr[pk ∈ [pk∗]R ∧ pk′ ∈ [pk∗]R]
= Pr[pk ∈ [pk∗]R] · Pr[pk′ ∈ [pk∗]R]
=ηpk∗(λ) · ηpk∗(λ)

(which proves the lemma), where the second to last inequality holds because pk and pk′

where independently generated and the last equality holds because of the requirement
that SFPK.KGen outputs uniformly random public keys.

Class-hiding The second important security definition for SFPK is class-hiding. A
variety of class-hiding notions has been introduced over the years, starting with what we
call find-original class-hiding by Backes et al. [BHKS18]. Informally, this security notion
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states that no adversary should be able to efficiently tell to which of two public keys
pk0 and pk1 a given public key pk′ is related, even when given the randomness that was
used to generate the initial keys pk0 and pk1. The adversary can furthermore observe
signatures under the secret key sk′ corresponding to pk′. Note that the randomness
gives the adversary more information about the public keys pk0 and pk1 than just their
value itself since it also learns the corresponding secret keys sk0 and sk1 as well as some
additional information about pk0, pk1. For example, this additional information could
be discrete logarithms in a scenario where the public keys contain elements of a cyclic
group.
Definition 4.33 (SPFK find-original class-hiding) Let λ ∈ N be the security param-
eter, ΣSFPK be an SFPK over equivalence relation R. We define the following security
game between an adversary A and a challenger C:

Expsfpk-fo-ch
A,ΣSFPK

(λ)
1 : pp←$ SFPK.PGen(λ)
2 : ω0, ω1 ←$ {0, 1}poly(λ)

3 : for i ∈ {0, 1} : (pki, ski)←$ SFPK.KGen(pp, ωi)
4 : b←$ {0, 1}
5 : r ←$ SFPK.KeyConvGen(pp)
6 : sk′ := SFPK.ChgSK(skb, r), pk′ := SFPK.ChgPK(pkb, r)
7 : b′ ←$ASFPK.Sign(sk′,·)(ω0, ω1, pk′)
8 : return 1 if b = b′else return 0

We define the advantage of A in the above security game as

Advsfpk-fo-ch
A,ΣSFPK

(λ) := |Pr[Expsfpk-fo-ch
A,ΣSFPK

(λ) = 1]− 1
2 |

ΣSFPK is called class-hiding if for all ppt adversary A Advsfpk-fo-ch
A,ΣSFPK

(λ).
If not explicitly stated otherwise, we will use this find-original class-hiding definition

for SFPK since Backes et al. used it when proving their SFPK constructions from
[BHKS18] to be secure. If we would deviate to a different class-hiding notion, it might
be unclear whether it is possible to instantiate it, i.e. how to build an SFPK that fulfills
it.

Class-hiding discussion In the following, we introduce several other class-hiding notions
and relate them to the above one. We begin with real-or-random class-hiding which is
inspired by the public-key class-hiding notion for mercurial signatures which Crites et
al. introduced in [CL19]. Intuitively, an adversary should decide whether a given public
key was adapted from a known one or was freshly and independently generated.
Definition 4.34 (SFPK real-or-random class-hiding) Let λ ∈ N be the security pa-
rameter, ΣSFPK be an SFPK. We define the following security game for ΣSFPK between
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an adversary A and a challenger C:

Expsfpk-ror-ch
A,ΣSFPK

(λ)
1 : pp←$ SFPK.PGen(λ)
2 : ω1, ω2 ←$ {0, 1}poly(λ)

3 : (pk1, sk1)←$ SFPK.KGen(pp, ω1)
4 : (pk0

2, sk
0
2)←$ SFPK.KGen(pp, ω2)

5 : r ←$ SFPK.KeyConvGen(pp)
6 : (pk1

2, sk
1
2)←$ (SFPK.ChgPK(pk1, r), SFPK.ChgSK(sk1, r))

7 : b←$ {0, 1}

8 : b′ ←$ASign(skb
2,·)(ω1, pkb

2)
9 : return b = b′

We define the advantage Advsfpk-ror-ch
A,ΣSFPK

(λ) of A in the above security game as

Advsfpk-ror-ch
A,ΣSFPK

(λ) := |Pr[Expsfpk-ror-ch
A,ΣSFPK

(λ) = 1]− 1
2 |

ΣSFPK is real-or-random class-hiding if for all ppt adversaries A Advsfpk-ror-ch
A,ΣSFPK

(λ) is neg-
ligible.

Next, we formally prove that find-original class-hiding is implied by real-or-random
class-hiding.

Lemma 4.35 Let λ ∈ N be the security parameter, ΣSFPK be a real-or-random class-
hiding SFPK with message space M. Then ΣSFPK is find-original class-hiding.

Proof. Let A be a ppt adversary. The proof uses a sequence of games. We need to bridge
the gap between the case b = 0 in the find-original class-hiding game Expsfpk-fo-ch

A,ΣSFPK
(λ) from

Def. 4.33 and the case b = 1. We define a variant of the find-original class-hiding game
from Def. 4.33 where the adversary A is given a third, independently generated public
key pk2 instead of an adapted version of either pk0 or pk1. An adversary noticing this
change could distinguish fresh and adapted public keys and thus break real-or-random
class-hiding.

To make this proof more convenient, we define the following distinguishing variant of
the find-original class-hiding game for SFPK from Def. 4.33 (between an adversary A
and a challenger C):
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Expsfpk-fo-ch-b
A,ΣSFPK

(λ)
1 : pp←$ SFPK.PGen(λ)
2 : ω0, ω1 ←$ {0, 1}poly(λ)

3 : for i ∈ {0, 1} : (ski, pki)←$ SFPK.KGen(pp, ωi)
4 : r ←$ SFPK.KeyConvGen(pp)
5 : sk′ := SFPK.ChgSK(skb, r), pk′ := SFPK.ChgPK(pkb, r)
6 : return b′ ←$ASFPK.Sign(sk′,m)(ω0, ω1, pk′)

The advantage of A in the above security game is defined as

Advsfpk-fo-ch
A,ΣSFPK

(λ)∗ := |Pr[Expsfpk-fo-ch-0
A,ΣSFPK

(λ) = 1]− Pr[Expsfpk-fo-ch-1
A,ΣSFPK

(λ) = 1]|

and say that ΣSFPK is find-original class-hiding if for all ppt adversaries A the advantage
Advsfpk-fo-ch

A,ΣSFPK
(λ)∗ is negligible in λ. This find-original class-hiding definition is equivalent

to the one from Def. 4.33 (with analogous argumentation to the proof of Theorem 2.10
in [BS20]). We also analogously define a distinguishing variant of the real-or-random
class-hiding game for SFPK as follows:

Expsfpk-ror-ch-b
A,ΣSFPK

(λ)
1 : pp←$ SFPK.PGen(λ)
2 : ω1, ω2 ←$ {0, 1}poly(λ)

3 : (pk1, sk1)←$ SFPK.KGen(pp, ω1)
4 : (pk0

2, sk
0
2)←$ SFPK.KGen(pp, ω2)

5 : r ←$ SFPK.KeyConvGen(pp)
6 : (pk1

2, sk
1
2)←$ (SFPK.ChgPK(pk1, r), SFPK.ChgSK(sk1, r))

7 : b′ ←$ASign(skb
2,·)(ω1, pkb

2)
8 : return b′

We analogously define the advantage of the adversary in the above security game as

Advsfpk-ror-ch
A,ΣSFPK

(λ)∗ := |Pr[Expsfpk-ror-ch-0
A,ΣSFPK

(λ) = 1]− Pr[Expsfpk-ror-ch-1
A,ΣSFPK

(λ) = 1]|

and say that ΣSFPK is real-or-random class-hiding if for all ppt adversaries A the advan-
tage Advsfpk-ror-ch

A,ΣSFPK
(λ)∗ is negligible in λ. We remark that the real-or-random class-hiding

definition based on the above distingushing game is equivalent to the one from Def. 4.34
(this also uses an analogous argument to the one from Theorem 2.10 from [BS20]).
We continue with the actual proof of Lem. 4.35 where we use the above distinguishing
variants of find-original and real-or-random class-hiding for convenience. Let λ be the
security parameter, A be a ppt adversary. We prove the lemma using a sequence of
games as follows:

G0 find-original class-hiding game Expsfpk-fo-ch-0
A,ΣSFPK

(λ)
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G1 find-original class-hiding game Expsfpk-fo-ch-0
A,ΣSFPK

(λ), but we draw fresh randomness ω2 ←$

{0, 1}poly(λ) and generate a public key pk2 as (pk2, sk2) ←$ SFPK.KGen(pp, ω2)
before line 6. In line 6, A is then called on input ω0, ω1, pk2. The signing oracle
that the adversary can access during the game signs submitted messages with sk2.

G2 find-original class-hiding game Expsfpk-fo-ch-1
A,ΣSFPK

(λ)

Let Si denote the event that A outputs 1 in experiment i. So to prove that ΣSFPK is
find-original class-hiding according to Def. 4.33, we need to prove that |Pr[S0]−Pr[S2]|
is negligible. We get that there exist negligible functions ϵ1, ϵ2, ϵ3 such that

|Pr[S0]− Pr[S2]| = |Pr[S0]− Pr[S1] + Pr[S1]− Pr[S2]|
≤ |Pr[S0]− Pr[S1]|+ |Pr[S1]− Pr[S2]|
≤ ϵ1(λ) + ϵ2(λ)
≤ ϵ3(λ)

which proves that ΣSFPK is find-original class-hiding according to Def. 4.33. We will
explain the second upper bound in the following. We construct a ppt distinguisher D for
the real-or-random class-hiding game from an adversary A distinguishing G0 and G1. On
input (ω1, pkb

2) distributed as in Expsfpk-ror-ch-b
A,ΣSFPK

(λ) for some b ∈ {0, 1}, D acts as follows

1. D samples ω∗ ←$ {0, 1}poly(λ).

2. D runs A(ω1, ω
∗, pkb

2).
• Whenever A queries for a signature on some message m ∈ M, D queries its

own oracle SFPK.Sign(skb
2, ·) form, eventually obtaining σ ←$ SFPK.Sign(skb

2,m).
D then relays σ to A.

3. Eventually, A(ω1, ω
∗, pkb

2) returns b′. D then outputs b′.

In the following we call the input of an adversary together with the answers to its
oracle queries the view of an adversary. We now argue that if b = 0, then the view of
A is distributed as in G1, if on the other hand we have b = 1, then the view of A is
distributed as in G0.

• Let b = 0. We have ω1 ←$ {0, 1}poly(λ) and (pkb
2, skb

2) := SFPK.KGen(λ, ω2) with
ω2 ←$ {0, 1}poly(λ). Furthermore ω∗ ←$ {0, 1}poly(λ). So overall, A is called with
two uniformly random bitstrings ω1, ω

∗ and a third input which is a fresh public
key generated using SFPK.KGen and freshly drawn random coins, which means
that the input to A has the same distribution as in G1. Furthermore, A is given
access to a signing oracle that uses the signing key corresponding to the public key
which is A’s third input to answer queries. All in all, the view of A (consisting of
input to A and answers to A’s oracle queries) is identically distributed to A’s view
in G1.
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• Let b = 1. We have ω1 ←$ {0, 1}poly(λ), pkb
2 := SFPK.ChgPK(pk1, r) with (pk1, ·)←$

SFPK.KGen(λ, ω1), r ←$ SFPK.KeyConvGen(pp), pp ←$ SFPK.PGen(λ). Further-
more ω∗ ←$ {0, 1}poly(λ). So overall, A is called with two uniformly random bit-
strings and a third input that is an adapted version pk′ := pkb

2 of the public key
pk1 that can be generated using the random coins from the first component, which
means that the input to A has the same distribution as in G0. Furthermore, A
is given access to a signing oracle that uses the signing key corresponding to the
public key which is A’s third input to answer queries. All in all, the view of A (con-
sisting of input to A and answers to A’s oracle queries) is identically distributed
to A’s view in G0.

With the above distribution argument and the fact that D outputs 1 if and only if A
outputs 1, we get that

|Pr[S0]− Pr[S1]| ≤ Advsfpk-ror-ch
D,ΣSFPK

(λ)∗ ≤ ϵ1(λ)

for some negligible function ϵ1 since D is a ppt (because A is a ppt) and ΣSFPK is
real-or-random class-hiding. We can analogously prove

|Pr[S1]− Pr[S2]| ≤ ϵ2(λ)

for some negligible ϵ2 which concludes the proof.

We next prove that the reverse implication of Lem. 4.35 does not hold, i.e. that there
are find-original class-hiding SFPK that are not real-or-random class-hiding. Intuitively,
this holds since in the find-original class-hiding game, the adversary is always given an
adapted key (no matter what bit b is drawn) while in the real-or-random class-hiding
game he is given an adapted key if and only if the hidden bit is b = 1. So a find-
original class-hiding SFPK that marks its adapted keys so that they can efficiently be
distinguished from freshly generated keys output by SFPK.KGen is not real-or-random
class-hiding. This is formalized in the following lemma.
Lemma 4.36 Let ΣSFPK be a find-original class-hiding SFPK over public key space E,
secret key space H, message space M, signature space S, trapdoor space T and public
key relation R ⊂ E × E. Define the following SFPK Σmark

SFPK over public key space E′ :=
E × {0, 1}, secret key space H, message space M, signature space S, trapdoor space T
and public key relation Rmark ⊂ E′ × E′ with

R′ = {((e, b), (e′, b′)) | e ∼R e′}

with Σmark
SFPK consisting of the following ppt algorithms:

SFPK.PGenmark(λ) Computes and returns pp←$ SFPK.PGen(λ).

SFPK.KGenmark(pp, ω) Computes (pk, sk)←$ SFPK.KGen(pp, ω) and returns ((pk, 0), sk).

SFPK.TKGenmark(pp, ω) Computes (pk, sk, τ)←$ SFPK.TKGen(pp, ω) and returns ((pk, 0), sk, τ).

53



4 Advanced signature primitives

SFPK.Signmark(sk,m) Computes and returns σ ←$ SFPK.Sign(sk,m).

SFPK.KeyConvGenmark(pp) Computes and returns r ←$ SFPK.KeyConvGen(pp).

SFPK.ChkRepmark((pk, b), τ) Computes and returns b := SFPK.ChkRep(pk, τ).

SFPK.ChgPKmark((pk, b), r) Computes pk′ ←$ SFPK.ChgPK(pk, r) and returns (pk′, 1).

SFPK.ChgSKmark(sk, r) Computes and returns sk′ ←$ SFPK.ChgSK(sk, r).

SFPK.Vfymark((pk, b),m, σ) Computes and returns b := SFPK.Vfy(pk,m, σ).

SFPK.VKeymark((pk, b), sk) Computes and returns SFPK.VKey(pk, sk).

We have

(i) ΣSFPK correct (Def. 4.29) ⇒ Σmark
SFPK correct

(ii) ΣSFPK find-original class-hiding (Def. 4.33) ⇒ Σmark
SFPK find-original class-hiding

(iii) Σmark
SFPK is not real-or-random class-hiding (Def. 4.34).

Proof. ad (i) This follows from inspection.

ad (ii) Let A be a ppt adversary. Consider the find-original class-hiding experiments
Expsfpk-fo-ch

A,ΣSFPK
(λ) and Expsfpk-fo-ch

A,Σmark
SFPK

(λ) from Def. 4.33. In both games, A wins (i.e.
the output of the game is 1) if A correctly determines whether pk0 ∼R pk′ or
pk1 ∼R pk′ holds.
Fix ω0, ω1 ←$ {0, 1}poly(λ). When given ω0, ω1, pk′ in Expsfpk-fo-ch

A,ΣSFPK
(λ), A can obvi-

ously compute (ω0, ω1, (pk′, 1)), furthermore for any ω ∈ {0, 1}poly(λ) it is obviously
possible to compute SFPK.KGenmark(λ, ω) from SFPK.KGen(λ, ω) by just append-
ing a 0.
Informally speaking, A does not get any new information from the bit appended
to the ΣSFPK keys in the Σmark

SFPK game. Furthermore, the winning condition of
Expsfpk-fo-ch

A,Σmark
SFPK

(λ) is the same as the one for Expsfpk-fo-ch
A,ΣSFPK

(λ). So if ΣSFPK is find-original
class-hiding, Σmark

SFPK also is find-original class-hiding. A detailed formal reduction
is omitted here for brevity.

ad (iii) Let A be an adversary that, receiving input (ω1, (pk′, b′)) in the real-or-random
class-hiding game Expsfpk-ror-ch

A,Σmark
SFPK

(λ) for Σmark
SFPK, outputs 1 if and only if b′ = 1. It

follows from inspection that Advsfpk-ror-ch
A,Σmark

SFPK
(λ) = 1 is not negligible which proves

that Σmark
SFPK is not real-or-random class-hiding according to Def. 4.34.
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So with Lem. 4.35 and Lem. 4.36, we have proven formally that real-or-random class-
hiding for SFPK is indeed a stronger security notion than find-original class-hiding. As
mentioned above, the adversary obtains a lot of information about the public keys by
seeing the randomness that was used to generate them. So it is natural to define weaker
class-hiding notions where the adversary is given less information. An example of this
is adaptive class-hiding (with key corruption) which was defined by Backes et al. in
[BHSB19]. Here, the adversary just sees the secret keys (sk0, sk1) corresponding to the
public keys (pk0, pk1), respectively.
Definition 4.37 (SFPK adaptive class-hiding with key corruption) Let λ ∈ N
be the security parameter, ΣSFPK be an SFPK.

(i) We define the security game Expadap-fo-ch
A,ΣSFPK

(λ) between adversary A and challenger C
as the find-original class-hiding game Expsfpk-fo-ch

A,ΣSFPK
(λ) from Def. 4.33 with the only

change being that line 7 is replaced by

b′ ←$ ASign(sk′,·)(pk0, sk0, pk1, sk1, pk′)

The advantage of A in the modified security game is defined as

Advadap-fo-ch
A,ΣSFPK

(λ) := |Pr[Expadap-fo-ch
A,ΣSFPK

(λ) = 1]− 1
2 |

and we say that ΣSFPK is adaptively find-original class-hiding under key corruption
if for all ppt adversaries A Advadap-fo-ch

A,ΣSFPK
(λ) is negligible.

(ii) We define the security game Expadap-ror-ch
A,ΣSFPK

(λ) between adversary A and challenger
C as the real-or-random class-hiding game Expsfpk-ror-ch

A,ΣSFPK
(λ) from Def. 4.34 with the

only change being that line 8 is replaced by

b′ ←$ ASign(sk′,·)(pk1, sk1, pkb
2)

The advantage of A in the modified security game is defined as

Advadap-ror-ch
A,ΣSFPK

(λ) := |Pr[Expadap-ror-ch
A,ΣSFPK

(λ) = 1]− 1
2 |

and we say that ΣSFPK is adaptively real-or-random class-hiding under key corrup-
tion if for all ppt adversaries A Advadap-ror-ch

A,ΣSFPK
(λ) is negligible.

Obviously, an even weaker class-hiding notion (which we call adaptive class-hiding
without key corruption) could be defined by not even giving the adversary the secret
keys in the above security games.
Definition 4.38 (SFPK adaptive class-hiding without key corruption) Let λ ∈
N be the security parameter, ΣSFPK be an SFPK.

(i) We define the security game Expadap-fo-ch-nkc
A,ΣSFPK

(λ) between adversary A and challenger
C as the find-original class-hiding game Expsfpk-fo-ch

A,ΣSFPK
(λ) from Def. 4.33 with the only
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change being that line 7 is replaced by

b′ ←$ ASign(sk0,·),Sign(sk1,·),Sign(sk′,·)(pk0, pk1, pk′)

The advantage of A in the modified security game is defined as

Advadap-fo-ch-nkc
A,ΣSFPK

(λ) := |Pr[Expadap-fo-ch-nkc
A,ΣSFPK

(λ) = 1]− 1
2 |

and we say that ΣSFPK is adaptively find-original class-hiding without key corrup-
tion if for all ppt adversaries A Advadap-fo-ch-nkc

A,ΣSFPK
(λ) is negligible.

(ii) We define the security game Expadap-ror-ch-nkc
A,ΣSFPK

(λ) between adversary A and chal-
lenger C as the real-or-random class-hiding game Expsfpk-ror-ch

A,ΣSFPK
(λ) from Def. 4.34

with the only change being that line 8 is replaced by

b′ ←$ ASign(sk1,·),Sign(sk′,·)(pk1, pkb
2)

The advantage of A in the modified security game is defined as

Advadap-ror-ch-nkc
A,ΣSFPK

(λ) := |Pr[Expadap-ror-ch-nkc
A,ΣSFPK

(λ) = 1]− 1
2 |

and we say that ΣSFPK is adaptively real-or-random class-hiding without key cor-
ruption if for all ppt adversaries A Advadap-ror-ch-nkc

A,ΣSFPK
(λ) is negligible.

Note that in the above Def. 4.38, the adversary is given access to signing oracles for
the secret keys corresponding to the original public keys. In the class-hiding notions
with key corruption (Def. 4.37) and with randomness corruption (Def. 4.33, Def. 4.34),
the adversary did not need such oracles since it had direct access to those secret keys.
The following lemma summarizes the relations between all the class-hiding notions that
were defined above.
Lemma 4.39 We have the following relations between the class-hiding notions for SFPK:

(i) Real-or-random class-hiding (Def. 4.34) implies find-original class-hiding (Def. 4.33).
Furthermore adaptive real-or-random class-hiding with/without key corruption im-
plies find-original class-hiding with/without key corruption (see Def. 4.37, Def. 4.38).

(ii) Real-or-random class-hiding (Def. 4.34) implies adaptive real-or-random class-
hiding with key corruption (Def. 4.37) which implies adaptive real-or-random class-
hiding without key corruption (Def. 4.38).

(iii) Find-original class-hiding (Def. 4.33) implies adaptive find-original class-hiding
with key corruption (Def. 4.37) which implies adaptive find-original class-hiding
without key corruption (Def. 4.38).

where "A implies B" means that an SFPK fulfilling notion A also fulfills notion B.
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Proof. ad (i) This follows from Lem. 4.35.

ad (ii) We will sketch a proof for the claim that real-or-random class-hiding implies
adaptive real-or-random class-hiding with key corruption. The other statement is
proven analogously.
We use a simple reduction argument. LetA be a ppt adversary with Advadap-ror-ch

A,ΣSFPK
(λ)

not negligible. A ppt adversary B with non-negligible Advsfpk-ror-ch
B,ΣSFPK

(λ) can eas-
ily be constructed as follows: on input ω1, pkb

2 as in Expsfpk-ror-ch
B,ΣSFPK

(λ), B computes
(pk1, sk1) := SFPK.KGen(λ, ω1) and calls A(pk1, sk1, pkb

2). B relays all of A’s sign-
ing oracle queries to its own signing oracle and outputs the same bit that A even-
tually outputs. It is clear to see that

Advsfpk-ror-ch
B,ΣSFPK

(λ) = Advadap-ror-ch
A,ΣSFPK

(λ)

is not negligible which proves the claim.

ad (iii) This can be proven with simple reduction arguments, as seen in (ii).

Recoverable signing keys To conclude the SFPK subsection, we introduce a specific
class of SFPK which is called SFPK with recoverable signing keys and was introduced
in [BHKS18]. In a standard application, the public and secret key of a key pair are
jointly randomized by the signer. However, there are scenarios, e.g. stealth addresses
in cryptocurrency systems, where a sender randomizes the public key pk of a receiver
of cryptocurrency funds and then publishes the randomized public key pk′ ∈ [pk]R so
the receiver can retrieve it. It then sends the funds to this public key and the receiver
needs to retrieve the corresponding secret key sk′ to pk′ in order to be able to spend the
money. Note that if the receiver is able to do so, the sender can transfer money to her
without ever interacting with her. However, the standard SFPK syntax definition does
not include such a key recovery which is why the following specific type of SFPK scheme
was introduced:
Definition 4.40 (recoverable signing keys) An SFPK ΣSFPK has recoverable signing
keys if there exists a ppt algorithm

SFPK.Recover(sk, τ, pk′) : takes as input an original secret key sk, a recovery trapdoor τ
and a target public key pk′ and outputs a secret key sk′

such that for all λ ∈ N, ω ←$ {0, 1}poly(λ), r ←$ SFPK.KeyConvGen(pp), (pk, sk, τ) ←$

SFPK.TKGen(λ, ω), pk′ := SFPK.ChgPK(pk, r) it holds that

SFPK.ChgSK(sk, r) = SFPK.Recover(sk, τ, pk′)

So an SFPK has recoverable signing keys if the trapdoor τ for a key pair (pk, sk)
can be used to recover the secret key sk′ corresponding to an adapted public key pk′
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if one possesses the secret key sk corresponding to the original public key pk. Note
that if the recovery algorithm would only take the original key pair as inputs, no SFPK
with recoverable signing keys could be class-hiding (since the class-hiding adversary from
Def. 4.33 is given the secret keys corresponding to the initial public keys pk0, pk1 and
thus has access to the corresponding secret keys sk0, sk1).

An example of an SFPK with recoverable signing keys is the warm-up SFPK scheme
by Backes et al. [BHKS18] which we will cover in more detail in Sect. 5.3. Its recov-
erable signing keys make this scheme suitable to instantiate stealth address schemes as
introduced in [Tod].

4.4 Mercurial signatures

In this section, we formally define mercurial signatures which were introduced by Crites
and Lysyanskaya in [CL19]. A mercurial signature scheme allows to randomize a triple
(pk,m, σ) where σ is a valid signature for message m under public key pk to another
valid triple (pk′,m′, σ′) where m′ and m as well as pk′ and pk are related via equivalence
relations that are defined on the message and public key spaces, respectively. The
following syntax definition is based on [CL19].
Definition 4.41 (mercurial signature syntax) Let l ∈ N, M, E,H be sets, Rm ⊆
M×M, Rpk ⊆ E×E and Rsk ⊆ H×H be equivalence relations. A mercurial signature
scheme ΣMerc over message relation Rm, public key relation Rpk and secret key relation
Rsk with message space M, public key space E, secret key space H and signature space
S is a tuple of ppt algorithms as follows:

Merc.PGen(λ) probablistic parameter generation algorithm, takes as input the security
parameter λ ∈ N and outputs public parameters pp

Merc.KGen(pp, l) probablistic key generation algorithm, takes as input public parameters
pp and the length parameter l and outputs a key pair (pk, sk) ∈ E ×H, consisting
of a public key pk and a secret key sk

Merc.Sign(sk,m) probablistic signing algorithm, takes as input a secret key sk ∈ H and
a message m ∈M and outputs a signature σ ∈ S

Merc.Vfy(pk,m, σ) deterministic verification algorithm, takes as input a public key pk ∈
E, a message m ∈M and a signature σ ∈ S and outputs a bit b ∈ {0, 1}

Merc.KeyConvGen(pp) probablistic key conversion randomness generation algorithm, takes
as input public parameters pp and outputs randomness rk

Merc.ConvertPK(pk, rk) deterministic public key conversion algorithm, takes as input a
public key pk ∈ E and randomness rk for public parameters pp and outputs a public
key pk′ ∈ E
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Merc.ConvertSK(sk, rk) deterministic secret key conversion algorithm, takes as input a
secret key sk and randomness rk for public parameters pp and outputs a secret key
sk′

Merc.AdaptSig(pk,m, σ, rk) probablistic signature adaption algorithm, takes as input a
public key pk ∈ E, a message m ∈ M, a signature σ ∈ S and key conversion
randomness rk and outputs a signature σ′ ∈ S

Merc.ConvSigGen(pp) probablistic signature conversion randomness generation algorithm,
takes as input public parameters pp and outputs randomness rσ

Merc.ChgRep(pk,m, σ, rσ) probablistic signature conversion algorithm, takes as input a
public key pk ∈ E, a message m ∈M, a signature σ ∈ S and signature conversion
randomness rσ and outputs a message-signature pair (m′, σ′) ∈M× S

Merc.VKey(pk, sk) deterministic key pair verification algorithm, takes as input a public
key pk ∈ E and a secret key sk ∈ H and outputs a bit b ∈ {0, 1}

If not explicitly stated otherwise, we always assume that the algorithms of a mercurial
signature scheme are named as in Def. 4.41. The set of values rk that can be input to
the Merc.ConvertPK, Merc.ConvertSK and Merc.AdaptSig algorithms is implicitly defined
by the particular mercurial signature and contains the support of Merc.KeyConvGen as
a subset. Analogously, the set of values rσ that can be input to the Merc.ChgRep algo-
rithm is also implicitly by the particular mercurial signature and contains the support of
Merc.ConvSigGen as a subset. Note that the message and key spacesM, E,H of a mercu-
rial signature ΣMerc as well as the equivalence relations Rm, Rpk and Rsk on them depend
on the public parameters pp←$ Merc.PGen(λ). With the syntax of mercurial signatures
defined, we next formalize their correctness requirements. The following definition is
based on [CL19].
Definition 4.42 (mercurial signature correctness) Let l ∈ N, M, E,H be sets,
Rm ⊆ M ×M, Rpk ⊆ E × E and Rsk ⊆ H × H be equivalence relations, ΣMerc a
mercurial signature scheme over message relation Rm, public key relation Rpk and secret
key relation Rsk with message space M, public key space E, secret key space H and
signature space S. ΣMerc is correct if it fulfills the following conditions for all λ ∈ N,
pp←$ Merc.PGen(λ), l > 1, (pk, sk)←$ Merc.KGen(pp, l):

(i) Merc.VKey(pk, sk) = 1

(ii) For all m ∈M, σ ←$ Merc.Sign(sk,m) it holds that Merc.Vfy(pk,m, σ) = 1.

(iii) For all rk ←$ Merc.KeyConvGen(pp), pk′ := Merc.ConvertPK(pk, rk), sk′ := Merc.ConvertSK(sk, rk),
we have

sk′ ∈ [sk]Rsk ∧ pk′ ∈ [pk]Rpk ∧Merc.VKey(pk′, sk′) = 1

(iv) For all m ∈ M, σ ∈ S with Merc.Vfy(pk,m, σ) = 1, rk ←$ Merc.KeyConvGen(pp),
σ′ ←$ Merc.AdaptSig(pk,m, σ, rk) and pk′ := Merc.ConvertPK(pk, rk) we have

Merc.Vfy(pk′,m, σ′) = 1
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(v) For all m ∈ M, σ ∈ S with Merc.Vfy(pk,m, σ) = 1, rσ ←$ Merc.ConvSigGen(pp),
(m′, σ′)←$ Merc.ChgRep(pk,m, σ, rσ), we have

Merc.Vfy(pk,m′, σ′) = 1 ∧m′ ∈ [m]Rm

The first requirement demands that all honestly generated key pairs are valid. The
Merc.VKey algorithm was not part of the syntax of a mercurial signature in [CL19],
however, we added it to be able to fully express the notion of (valid) keys that were not
generated using the Merc.KGen algorithm. This is especially important when it comes
to maliciously generated keys, e.g. keys that are generated by some adversarial party as
seen in later security definitions for mercurial signatures (see for example Def. 4.51). The
second requirement is the standard correctness requirement for digital signatures which
demands that all honestly generated signatures are valid under the respective public
key. This implies that in the above setting, Σ := (Merc.PGen,Merc.KGen,Merc.Sign,
Merc.Vfy) is a correct regular digital signature scheme. The third requirement ensures
that, when its keys are randomized consistently with the same randomness rk, any
honestly generated key pair stays valid. Furthermore, the resulting secret and public
key are related to the respective old one via the respective equivalence relation. We saw
a similar correctness requirement for SFPK in Def. 4.29. The fourth requirement ensures
that a signature σ on a message m can be adapted to a new public key pk′ so that the
new triple (pk′,m, σ′) is still valid. The fifth requirement demands that Merc.ChgRep
can be used to randomize a valid message-signature pair (m,σ) into a new pair (m′, σ′)
valid under the same public key, where m′ is another representative of the class [m]Rm

of m. We had a similar correctness requirement for SPS-EQ in Def. 4.20.
As a final remark for the syntax of mercurial signatures, we note that while both

SFPK (Def. 4.28) and mercurial signatures have an equivalence relation Rpk ⊂ E×E on
the public key space E, only the mercurial definition explicitly mentions an equivalence
relation Rsk ⊂ H ×H on the secret key space H. However, the next lemma shows that
this is not actually a syntactical difference since for an SFPK (Def. 4.28) over a (public
key) relation Rpk, we can construct a secret key relation Rsk that fulfills the correctness
requirement for mercurial signatures (Def. 4.42) in a black-box way.
Lemma 4.43 Let λ ∈ N be the security parameter. Let ΣSFPK be an SFPK as in
Def. 4.29 over (public key) equivalence relation Rpk ⊂ E × E. Then we have a secret
key equivalence relation Rsk ⊂ H ×H on the secret key space H as follows:

sk ∼Rsk sk′ ⇔ ∃pk, pk′ ∈ E :SFPK.VKey(pk, sk) = 1
∧SFPK.VKey(pk′, sk′) = 1
∧pk ∼Rpk pk′

This relation fulfills the mercurial signature correctness requirement for secret key rela-
tions Rsk (Def. 4.42) which translates to

sk ∼Rsk sk′
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for all pp←$ SFPK.PGen(λ), (pk, sk)←$ SFPK.KGen(pp), rk ←$ KeyConvGen(pp), pk′ ←$

SFPK.ChgPK(pk, rk), sk′ ←$ SFPK.ChgSK(sk, rk) in the SFPK case.

Proof. Let λ ∈ N be the security parameter, pp←$ SFPK.PGen(λ). We can use Rem. 3.16
to conclude without loss of generality that H is the support of SFPK.KGen(pp) and thus
for every secret key sk ∈ H, there is a public key pk ∈ E such that SFPK.VKey(pk, sk) =
1.

With this remark, reflexivity of Rsk is obviously implied by the reflexivity of the
equivalence relation Rpk. We analogously conclude symmetry and transitivity of Rsk
from the respective properties of Rpk and thus have proven that Rsk is a (secret key)
equivalence relation.

What is left to prove is the fulfillment of the correctness requirement for mercurial
signatures. We see that by correctness of the SFPK (Def. 4.29), we get that pk ∼Rpk pk′

which by definition of Rsk immediately concludes sk ∼Rsk sk′ for honestly generated key
pairs (pk, sk) and (pk′, sk′), as required.

Note that not every SFPK or mercurial signature has to use the secret key relation
Rsk from Lem. 4.43 based on its public key relation Rpk. Lem. 4.43 is only used to
constructively prove that if a signature scheme has a public key relation Rpk, then it
also has a secret key relation Rsk.

Unforgeability After defining syntax and correctness of mercurial signatures, we now
turn towards their security. We start with adapting the standard unforgeability notion
for digital signatures. Analogously to SPS-EQ (Def. 4.21), an unforgeability adversary
must be required to forge a signature for a message from a new class for that it has
not seen any signatures yet. This is because otherwise, the Merc.ChgRep algorithm
would yield a trivial way to forge signatures. Analogously to SFPK (Def. 4.30), an
unforgeability adversary is allowed to forge a signature under an arbitrary public key
pk∗ that is related to the challenge key pk. The following unforgeability definition is
based on [CL19].

Definition 4.44 (EUF-CMA for mercurial signatures) Let λ ∈ N be the security
parameter, l : N→ N be a polynomial function. For a mercurial signature scheme ΣMerc
over message relation Rm, public key relation Rpk and secret key relation Rsk, we define
the following security game between an adversary A and a challenger C:
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Expmerc-euf
A,ΣMerc (λ)

1 : pp←$ Merc.PGen(λ)
2 : (pk, sk)←$ Merc.KGen(pp, l)
3 : Q := ∅
4 : (pk∗,m∗, σ∗)←$ASign(sk,·)(pp, pk)
5 : if ∀m ∈ Q : m∗ /∈ [m]Rm

6 : ∧ pk∗ ∈ [pk]Rpk

7 : ∧Merc.Vfy(pk∗,m∗, σ∗) = 1
8 : return 1
9 : else return 0

with oracle

Sign(sk,m)
1 : σ ←$ Merc.Sign(sk,m)
2 : Q := Q ∪ {(m,σ)}
3 : return σ

We define the advantage of A in the above security game as

Advmerc-euf
A,ΣMerc (λ) := Pr[Expmerc-euf

A,ΣMerc (λ) = 1]

ΣMerc is existentially unforgeable under chosen-message attacks (EUF-CMA secure) if
for all ppt adversaries A Advmerc-euf

A,ΣMerc (λ) is negligible.
So for an unforgeable mercurial signature scheme, it should be hard to efficiently forge

a signature for a new class under a public key that is related to the challenge key. Note
that in contrast to the SFPK unforgeability experiment from Def. 4.30, no equivalent
for the randomize-then-sign oracle Sign(sk, ·, ·) from Expsfpk-euf

A,ΣSFPK
(λ) is accessible to the

adversary in the above experiment Expmerc-euf
A,ΣMerc (λ). Note that this clearly weakens the

adversaries power since it now cannot observe any fresh signatures under randomized
versions of the challenge key sk. While the Merc.AdaptSig algorithm can be used to obtain
signatures under randomized versions of sk, it is not clear whether these signatures
have the same distribution as fresh signatures that are output using Merc.Sign. For
completeness, we will define a game for a stronger unforgeability notion for mercurials
in Def. 4.45, which gives the adversary access to such a randomize-then-sign oracle. It is
however left as an open research question whether mercurial signatures that fulfill such
a stronger unforgeability notion do exist.
Definition 4.45 (EUF-CMA game variant for mercurial signatures) Let λ ∈ N
be the security parameter, l : N → N be a polynomial function. For a mercurial sig-
nature scheme ΣMerc over message relation Rm, public key relation Rpk and secret key
relation Rsk, we define the security experiment Expmerc-euf∗

A,ΣMerc (λ) for an adversary A and a
challenger C identically to Expmerc-euf

A,ΣMerc (λ), with the only change being that A can access
another oracle Sign(sk, ·, ·) which is defined as follows:
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Sign(sk,m, r)
1 : sk′ := Merc.ConvertSK(sk, r)
2 : σ ←$ Merc.Sign(sk′,m)
3 : Q := Q ∪ {(m,σ)}
4 : return σ

To conclude the unforgeability discussion for mercurial signatures we want to remark
that, analogously to SFPK unforgeability in Lem. 4.32, the public key relation Rpk of an
unforgeable mercurial signature scheme needs to have "small" classes if the public keys
output by Merc.KGen are uniformly random.

Class-hiding Next we define class-hiding for mercurial signatures, which is split up
into two separate definitions called message class-hiding and public key class-hiding.
We begin with message class hiding which basically requires that, given two random
messages, it is hard to tell whether they are related via the message relation or not.
So message class-hiding for mercurial signatures is analogous to message class-hiding
for SPS-EQ as defined in Def. 4.23. We next formally define message class-hiding for
mercurial signatures where we base our definition on [CL19].
Definition 4.46 (message class-hiding) Let λ ∈ N be the security parameter, l :
N→ N be a polynomial function. For a mercurial signature scheme ΣMerc over message
relation Rm, public key relation Rpk and secret key relation Rsk, we define the following
security game between an adversary A and a challenger C:

Expmerc-mes-ch
A,ΣMerc (λ)

1 : pp←$ Merc.PGen(λ)
2 : m1 ←$M
3 : m0

2 ←$ [m1]Rm
,m1

2 ←$M
4 : b←$ {0, 1}
5 : b′ ←$A(pp,m1,m

b
2)

6 : return 1 if b = b′

7 : else return 0

We define the advantage of A in the above security game as

Advmerc-mes-ch
A,ΣMerc (λ) := |Pr[Expmerc-mes-ch

A,ΣMerc (λ) = 1]− 1
2 |

ΣMerc is message class-hiding if for all ppt adversaries A Advmerc-mes-ch
A,ΣMerc (λ) is negligible.

Note that we could define real-or-random message class-hiding for mercurial signatures
analogously to what we did for SPS-EQ in Def. 4.22. This is skipped here for space
reasons since the message class-hiding definition above (Def. 4.46) is the one found in
the literature [CL19].
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We next define the other class-hiding notion for mercurial signatures, which is public-
key class-hiding. We first state a definition based on the one from [CL19] which is
analogous to the SFPK real-or-random class-hiding notion (without key corruption)
from Def. 4.38.

Definition 4.47 ((real-or-random) public-key class-hiding) Let λ ∈ N be the se-
curity parameter, l : N→ N be a polynomial function. For a mercurial signature scheme
ΣMerc over message relation Rm, public key relation Rpk and secret key relation Rsk, we
define the following security game between an adversary A and a challenger C:

Expmerc-ror-pk-ch
A,ΣMerc

(λ)
1 : pp←$ Merc.PGen(λ)
2 : (pk1, sk1)←$ Merc.KGen(pp, l(λ))
3 : (pk0

2, sk
0
2)←$ Merc.KGen(pp, l(λ))

4 : rk ←$ Merc.KeyConvGen(pp)
5 : (pk1

2, sk
1
2) := (Merc.ConvertPK(pk, rk),Merc.ConvertSK(sk, rk))

6 : b←$ {0, 1}

7 : b′ ←$AMerc.Sign(sk1,·),Merc.Sign(skb
2,·)(pk1, pkb

2)
8 : return 1 if b = b′else return 0

We define the advantage of A in the above security game as

Advmerc-ror-pk-ch
A,ΣMerc

(λ) := |Pr[Expmerc-ror-pk-ch
A,ΣMerc

(λ) = 1]− 1
2 |

ΣMerc is (real-or-random) public-key class-hiding if for all ppt adversaries A Advmerc-ror-pk-ch
A,ΣMerc

(λ)
is negligible.

So public-key class-hiding for mercurial signatures basically states that it is hard to
tell whether two given key pairs are related or independently drawn and unrelated. Note
that the game works different than the find-original class-hiding game Expadap-fo-ch-nkc

A,ΣSFPK
(λ)

(without key corruption) from Def. 4.38. Here, the second key pair is either drawn
uniformly at random or derived from the first one (depending on the hidden bit b),
while in Def. 4.38, the hidden bit decides which of the two key pairs is randomized into
the challenge key pair (pk′, sk′). In the following, we will define find-original public-key
class-hiding for mercurial signatures in an analogous way than we did for SFPK.

Definition 4.48 (find-original public-key class-hiding) Let λ ∈ N be the security
parameter, l : N→ N be a polynomial function. For a mercurial signature scheme ΣMerc
over message relation Rm, public key relation Rpk and secret key relation Rsk, we define
the following security game between an adversary A and a challenger C:
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Expmerc-fo-pk-ch
A,ΣMerc

(λ)
1 : pp←$ Merc.PGen(λ)
2 : (pk0, sk0), (pk1, sk1)←$ Merc.KGen(pp, l(λ))
3 : b←$ {0, 1}
4 : rk ←$ Merc.KeyConvGen(pp)
5 : (pk′, sk′) := (Merc.ConvertPK(pkb, rk),Merc.ConvertSK(skb, rk))
6 : b′ ←$AMerc.Sign(sk0,·),Merc.Sign(sk1,·),Merc.Sign(sk′,·)(pk0, pk1, pk′)
7 : return 1 if b = b′ else return 0

We define the advantage of A in the above security game as

Advmerc-fo-pk-ch
A,ΣMerc

(λ) := |Pr[Expmerc-fo-pk-ch
A,ΣMerc

(λ) = 1]− 1
2 |

ΣMerc is find-original public-key class-hiding if for all ppt adversaries A Advmerc-fo-pk-ch
A,ΣMerc

(λ)
is negligible.
Remark 4.49 While we skip this here for space reasons, it is important to note that
one could continue the class-hiding discussion for mercurial signatures (by giving the
adversary more information about the challenge key pairs) to ultimately prove a result for
mercurial signature class-hiding that is analogous to the one for SFPKs from Lem. 4.39.
In particular, note that, analogously to SFPK, real-or-random public-key class-hiding for
mercurial signatures (Def. 4.47) is stronger than find-original public-key class-hiding for
mercurial signatures (Def. 4.48) where the proof is analogous to Lem. 4.36 and Lem. 4.35.

If not explicitly stated otherwise, we will use the real-or-random public-key class-
hiding notion from Def. 4.47 for mercurial signatures since it was used by Crites et al. to
prove their mercurial construction from [CL19] secure. Mainly for the reason of having
a single reference number for it, we formally summarize what class-hiding for mercurial
signatures means.
Definition 4.50 (class-hiding mercurial signature) A mercurial signature scheme
ΣMerc is class-hiding if it is both message class-hiding (Def. 4.46) and public-key class-
hiding (Def. 4.47).

Origin-hiding Next, we define the last security property for mercurial signatures which
is origin-hiding. This basically states that key-message-signature triples (pk′,m′, σ′) that
are obtained via the Merc.ChgRep and Merc.AdaptSig algorithms of a mercurial signature
scheme do not reveal anything about the original input triple to the algorithms. More
precisely, the output triple looks like a uniformly random public key pk′ and a uniformly
random message m′ with a uniformly random signature σ′ for it that is valid under
pk′. This should even hold in the case that the input public key pk for Merc.ChgRep
and Merc.AdaptSig was maliciously generated. The above behaviour is formalized in the
following definition which is based on [CL19].
Definition 4.51 (origin-hiding) Let l ∈ N, M, E,H be sets, Rm ⊆ M×M, Rpk ⊆
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E×E and Rsk ⊆ H×H be equivalence relations, ΣMerc a mercurial signature scheme over
message relation Rm, public key relation Rpk and secret key relation Rsk with message
spaceM, public key space E, secret key space H and signature space S. Furthermore let
λ ∈ N, m a message, pp ←$ Merc.PGen(λ), pk ∈ E. ΣMerc is origin-hiding if it fulfills
the following two conditions:

(i) Assume σ ∈ S with Merc.Vfy(pk,m, σ) = 1, rσ ←$ Merc.ConvSigGen(pp), (m′, σ′)←$

Merc.ChgRep(pk,m, σ, rσ). Then m′ is identically distributed to a uniformly ran-
dom message in [m]Rm, furthermore σ′ is identically distributed to a uniformly
random signature in

{σ̂ ∈ S | Merc.Vfy(pk,m′, σ̂) = 1}

This property is called origin-hiding of the Merc.ChgRep algorithm.

(ii) Assume σ ∈ S with Merc.Vfy(pk,m, σ) = 1, rk ←$ Merc.KeyConvGen(pp), σ′ ←$

Merc.AdaptSig(pk,m, σ, rk), pk′ := Merc.ConvertPK(pk, rk). Then pk′ is identically
distributed to a uniformly random public key in [pk]Rpk , furthermore σ′ is identically
distributed to a uniformly random signature in

{σ̂ | Merc.Vfy(pk′,m, σ̂) = 1}

This property is called origin-hiding of the Merc.AdaptSig algorithm.

Analogously to perfect adaptation of signatures for SPS-EQ, origin-hiding for mercu-
rials is fundamentally different from message class-hiding for mercurials. This is because
message class-hiding considers messages from more than one equivalence class but does
not make any statement about signatures.

Furthermore, analogously to perfect SPS-EQ adaptation of signatures under mali-
ciously generated public keys (Def. 4.27), we consider arbitrary public keys pk for
Merc.ChgRep-origin-hiding (including maliciously generated ones, for which it is pos-
sible that no secret key sk exists or is known). So we require that the distribution
of the output signature σ′ of Merc.ChgRep must be indistinguishable from the uniform
distribution on the set of valid signatures on the output message m′, instead of the dis-
tribution of Merc.Sign(sk,m′). This is because the random variable Merc.Sign(sk,m′) is
not defined for public keys pk for which no corresponding secret key sk exists.

4.4.1 Mercurial signature by Crites and Lysyanskaya

In this subsection, we will give the construction by Crites and Lysyanskaya [CL19] as an
example for a mercurial signature. We adapted the definition from [CL19] to our flavour
of mercurial signature syntax (Def. 4.41).
Definition 4.52 (Crites-Lysyanskaya mercurial signature) Consider the following
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message, secret- and public key relations:

Rm := {(M,M ′) ∈ (G1 \ {1G1})l × (G1 \ {1G1})l | ∃r ∈ Z∗
p : M ′ = M r}

Rsk := {(sk, sk′) ∈ (Z∗
p)l × (Z∗

p)l | ∃r ∈ Z∗
p : sk′ = skr}

Rm := {(pk, pk′) ∈ (G2 \ {1G2})l × (G2 \ {1G2})l | ∃r ∈ Z∗
p : pk′ = pkr}

The Crites-Lysyanskaya mercurial signature ΣCL
Merc is a mercurial signature over relations

Rm, Rsk and Rpk defined as follows:

Merc.PGen(λ)
1 : BG := (G1, G2, GT , p, e, g1, g2)←$ BGGen(λ, 3)
2 : return pp := BG

Merc.KGen(pp, l)
1 : for 1 ≤ i ≤ l : xi ←$ Z∗

p

2 : sk := (x1, . . . , xl)
3 : for 1 ≤ i ≤ l : Xi := gxi

2

4 : pk := (X1, . . . , Xl)
5 : return (pk, sk)

Merc.Sign(sk,m)
1 : parse (x1, . . . , xl) := sk, (m1, . . . ,ml) := m

2 : y ←$ Z∗
p

3 : Z := (Πl
i=1m

xi
i )y

4 : Y1 := g
1
y

1 , Y2 := g
1
y

2

5 : return σ := (Z, Y1, Y2)

Merc.Vfy(pk,m, σ)
1 : parse (X1, . . . , Xl) := pk,
2 : (m1, . . . ,ml) := m,

3 : σ := (Z, Y1, Y2)
4 : return 1 if Πl

i=1e(mi, Xi) = e(Z, Y2)
5 : ∧ e(Y1, g2) = e(g1, Y2)
6 : return 0

Merc.KeyConvGen(pp)
1 : return rk ←$ Z∗

p

Merc.ConvertPK(pk, rk)
1 : return pk′ := pkrk

Merc.ConvertSK(sk, rk)
1 : return sk′ := skrk

Merc.AdaptSig(pk,m, σ, rk)
1 : parse σ := (Z, Y1, Y2)
2 : α←$ Z∗

p

3 : return σ′ := (Zrk·α, Y
1
α

1 , Y
1
α

2 )

Merc.ConvSigGen(pp)
1 : return rσ ←$ Z∗

p

Merc.ChgRep(pk,m, σ, rσ)
1 : parse σ := (Z, Y1, Y2)
2 : α←$ Z∗

p

3 : m′ := mrσ

4 : σ′ := (Zα·rσ , Y
1
α

1 , Y
1
α

2 )
5 : return (m′, σ′)
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Merc.VKey(pk, sk)
1 : parse (X1, . . . , Xl) := pk,
2 : (x1, . . . , xl) := sk

3 : return
l∧

i=1
gxi

2 = Xi

The above mercurial signature is set in a type-3 bilinear group with groups of prime
order p ∈ P. For completeness, we quickly summarize the security results for the Crites-
Lysyanskaya mercurial signature. The following theorem was proven in [CL19] but we
omit the proof here because of scope reasons.
Theorem 4.53 The Crites-Lysyanskaya mercurial signature is unforgeable (Def. 4.44),
class-hiding (Def. 4.50) and origin-hiding (Def. 4.51) in the generic group model for
type-3 bilinear groups.
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primitives

In this chapter, we analyze the connections between the four advanced digital signature
primitives from this thesis, namely key-homomorphic signatures [DS16] (Sect. 4.1), SPS-
EQ [HS14, FHS14] (Sect. 4.2), SFPK [BHKS18] (Sect. 4.3) and mercurial signatures
[CL19] (Sect. 4.4).

To start off, note that SFPK and SPS-EQ can be seen as complementary primitives.
They both come with an an equivalence relation that divides one of their spaces into
equivalence classes where a representative of a class can efficiently be randomized to an-
other one. While SPS-EQ have such an equivalence relation on the message space, SFPK
have it on the public key space. It is notable that mercurial signatures have equivalence
relations on both of their message and public key space which immediately gives rise
to the question whether mercurials are SPS-EQ/SFPK and whether a combination of
SPS-EQ and SFPK can be used to define a mercurial signature in a black-box way. We
address this question in Sect. 5.1.

At first glance, one could assume that there is a connection between SFPK (Sect. 4.3)
and key-homomorphic signatures (Sect. 4.1.1) since they both provide a mechanism to
randomize valid key pairs into new ones. In Sect. 5.2, we discuss what actually sets
these two primitives apart. In Sect. 5.3, we furthermore examine an example SFPK
(namely the warm-up SFPK scheme by Backes et al. [BHKS18]) for key-homomorphic
properties.

5.1 Connection of mercurial signatures to SFPK and SPS-EQ

In this section, we analyze the relation of mercurial signatures, SFPK and SPS-EQ.
First, in Sect. 5.1.1, we prove that (with some minor syntactical tweaks), every secure
mercurial is a secure SPS-EQ (Thm. 5.1). Note that in [CL19], Crites and Lysyanskaya
sketch such a proof which we extend in terms of covered security notions and adapt to
our definitional framework from Sect. 4.2 and Sect. 4.4 in Thm. 5.1. We next prove in
Thm. 5.2 that every secure mercurial signature that provides some mechanism to check
whether two given public keys from its public key space E are related via the public key
relation Rpk ⊂ E×E is a secure SFPK. To conclude this section, in Sect. 5.1.2, we prove
that an SFPK is a mercurial signature if it fulfills the following additional requirements:

• it provides an equivalence relation on its message space as well as a change-
representative algorithm ChgRep in the spirit of SPS-EQ (Def. 4.19)
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• it provides an adaption algorithm AdaptSig in the spirit of mercurial signatures
(Def. 4.41)

We also examine what assumptions on the underlying primitives are required for the
above signature constructions to be secure.

5.1.1 Flexible public key signatures and structure-preserving signatures on
equivalence classes from mercurial signatures

In [CL19], Crites et al. informally sketched how unforgeable mercurial signatures can be
seen as unforgeable SPS-EQ, i.e. that mercurials are a more powerful signature type than
SPS-EQ since they also have equivalence relations on their key spaces. In the following,
we will formally adapt the proof sketch from [CL19] to our framework, extending it in
terms of security notions by giving a sufficient condition for the resulting SPS-EQ to be
class-hiding and perfectly adapting signatures.
Theorem 5.1 Let l ∈ N , G be a group. Let ΣMerc be a mercurial signature scheme
over message space M := Gl, public key space E, secret key space H, signature space S,
message relation Rm ⊂M×M, public key relation

Rpk := {(pk, pk) | pk ∈ E} ⊂ E × E

and secret key relation Rsk ⊂ H ×H. Furthermore let T be a set and assume that there
exists a ppt algorithm Merc.TPGen that takes as input a security parameter λ ∈ N and
outputs public parameters pp that are identically distributed to Merc.PGen(λ) as well
as a trapdoor τ ∈ T . Then, if ΣMerc is unforgeable (Def. 4.44), message class-hiding
(Def. 4.46) and Merc.ChgRep is origin-hiding (Def. 4.51), we have that

(i)

Σ(Merc)
SPSEQ = (SPSEQ.PGen := Merc.PGen,

SPSEQ.TPGen := Merc.TPGen,
SPSEQ.KGen := Merc.KGen,
SPSEQ.Sign := Merc.Sign,
SPSEQ.ConvSigGen := Merc.ConvSigGen,
SPSEQ.ChgRep := Merc.ChgRep,
SPSEQ.Vfy := Merc.Vfy,
SPSEQ.VKey := Merc.VKey)

is an SPS-EQ over Rm with message spaceM, public key space E, secret key space
H, signature space S and trapdoor space T .

(ii) Σ(Merc)
SPSEQ is unforgeable (Def. 4.21).

(iii) Σ(Merc)
SPSEQ is class-hiding (Def. 4.23).
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(iv) Σ(Merc)
SPSEQ perfectly adapts signatures (Def. 4.26) if for all messages m ∈ M, λ, l ∈

N, pp ←$ Merc.PGen(λ), (pk, sk) ←$ Merc.KGen(pp, l), we have that σ in σ ←$

Merc.Sign(sk,m) is an uniformly random valid signature for m under pk, i.e. a
uniformly random signature in

{σ̂ ∈ S | Merc.Vfy(pk,m, σ̂) = 1}

Proof. ad (i): It follows from inspection that Σ(Merc)
SPSEQ fulfills the syntax definition of

SPS-EQ (Def. 4.19). What is left to prove is that Σ(Merc)
SPSEQ is a correct SPS-EQ

according to Def. 4.20. Since ΣMerc is a correct mercurial signature, Merc.KGen only
generates valid key pairs and thus Σ(Merc)

SPSEQ fulfills the first correctness requirement
for SPS-EQ. By prerequisite, Merc.PGen(λ) and Merc.TPGen(λ) have the same
output distribution, so Σ(Merc)

SPSEQ also fulfills the second correctness requirement for
SPS-EQ.

To prove the third correctness requirement, let λ ∈ N, pp ←$ Merc.PGen(λ),
Merc.VKey(pk, sk) = 1, m ∈M, α←$ Merc.ConvSigGen(pp) and σ ←$ Merc.Sign(sk,m).
Then

Merc.Vfy(pk,m, σ) = 1

and
Merc.Vfy(pk,m′, σ′) = 1 ∧m′ ∈ [m]R

where (m′, σ′)←$ Merc.ChgRep(pk,m,Merc.Sign(sk,m), α) since ΣMerc is a correct
mercurial signature scheme.

So all in all, Σ(Merc)
SPSEQ is a correct SPS-EQ (Def. 4.20).

ad (ii): Let A be a ppt adversary, λ ∈ N be the security parameter. We have

AdvΣspseq-euf

A,Σ(Merc)
SPSEQ

(λ) = Pr[ExpΣspseq-euf

A,Σ(Merc)
SPSEQ

(λ) = 1]

= Pr[ExpΣmerc-euf
A,ΣMerc

(λ) = 1]

=AdvΣmerc-euf
A,ΣMerc

(λ)

negligible which proves that Σ(Merc)
SPSEQ is an unforgeable SPS-EQ according to Def. 4.21.

The second equality comes from the fact that since

Rpk = {(e, e) | e ∈ E}

we have
pk∗ ∈ [pk]⇔ pk∗ = pk

for all (pk, pk∗) ∈ E×E, which yields that the winning conditions of Expspseq-euf
A,Σ(Merc)

SPSEQ
(λ)

and Expmerc-euf
A,ΣMerc (λ) are equivalent.
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ad (iii): Let A be a ppt adversary, λ ∈ N the security parameter. Observe that
Expmerc-mes-ch

A,ΣMerc (λ) from Def. 4.46 and Expspseq-ch
A,Σ(Merc)

SPSEQ
(λ) from Def. 4.23 proceed identi-

cally. So we get that

Advspseq-ch
A,Σ(Merc)

SPSEQ
(λ) = Pr[Expspseq-ch

A,Σ(Merc)
SPSEQ

(λ) = 1]

= Pr[Expmerc-mes-ch
A,ΣMerc (λ) = 1] = 1

=Advmerc-mes-ch
A,ΣMerc (λ)

is negligible which proves that Σ(Merc)
SPSEQ is class-hiding according to Def. 4.23.

ad (iv) We need to show the identity of the two distributions from Def. 4.26 for Σ(Merc)
SPSEQ.

Let
(pk, sk,m, σ, α) ∈ E ×H ×M×S × [Merc.ConvSigGen(pp)]

with Merc.VKey(pk, sk) = 1, Merc.Vfy(pk,m, σ) = 1, pp ←$ Merc.PGen(λ), α ←$

Merc.ConvSigGen(pp) as in Def. 4.26.
Let (m′, σ′) ←$ Merc.ChgRep(pk,m, σ, α). By origin-hiding of ΣMerc we have that
m′ is distributed like m∗ ←$ [m]Rm and σ′ is distributed like a uniformly random
valid signature σ∗ for m′, i.e.

σ∗ ←$ {σ̂ | Merc.Vfy(pk,m′, σ̂)}

Using our assumption on the distribution of the signatures output by Merc.Sign,
we get that σ′ and Merc.Sign(sk,m′) are identically distributed. Since obviously
m′ ∈ [m]Rm , we have proven the required identity of distributions and thus that
Σ(Merc)

SPSEQ perfectly adapts signatures according to Def. 4.26.

So informally, the above theorem states that, if it has a suitable message space, an un-
forgeable, message class-hiding mercurial signature scheme with an origin-hiding change-
representative algorithm canonically defines an unforgeable and class-hiding SPS-EQ.
The resulting SPS-EQ perfectly adapts signatures if the Merc.Sign algorithm outputs
uniformly random valid signatures on the input message. An example for a mercu-
rial signature scheme with such a signing algorithm is the construction by Crites and
Lysyanskaya from [CL19] which we examined in Sect. 4.4.1. Note that with an analogous
argumentation as in Thm. 5.1, one could prove that origin-hiding of the Merc.ChgRep
algorithm of ΣMerc implies perfect adaptation of signatures of Σ(Merc)

SPSEQ under malicious
public keys (Def. 4.27).

As a closing remark for Thm. 5.1, note that obviously not all SPS-EQ are mercurial
signatures since they lack a public key relation that satisfies the correctness requirements
for mercurial signatures from Def. 4.42. However, there exist SPS-EQ that can be
extended to mercurial signatures by defining proper Merc.ConvertPK, Merc.ConvertSK,
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Merc.KeyConvGen and Merc.AdaptSig algorithms. An example of such an SPS-EQ is the
construction by Connolly et al. from [CLPK22].

Next, we prove that analogously, every secure mercurial signature is a secure SFPK
(see Sect. 4.3) if it has a mechanism to check class membership that is similar to the
SFPK.ChkRep algorithm. To our knowledge, this connection has not been made before
this work.
Theorem 5.2 Let λ ∈ N be the security parameter, let ΣMerc be a mercurial signature
scheme over message space M, public key space E, secret key space H, signature space
S, message relation

Rm = {(m,m) | m ∈M}

public key relation Rpk ⊆ E × E and secret key relation Rsk ⊆ H ×H. Furthermore let
T be a set and assume that there exist additional ppt algorithms as follows:

Merc.TKGen probablistic algorithm, takes as input public parameters pp and outputs a
key pair (pk, sk) ∈ E ×H (that is identically distributed as Merc.KGen(pp)) and a
trapdoor τ ∈ T for the class [pk]Rpk

Merc.ChkRep deterministic algorithm, takes as input a public key pk ∈ E and a trapdoor
τ ∈ T for public key pk′ ∈ E and outputs a bit b ∈ {0, 1}

b = 1⇔ pk ∈ [pk′]Rpk

Then, if ΣMerc is existentially unforgeable (Def. 4.45) and real-or-random public-key
class-hiding (Def. 4.47), we have that

(i)

Σ(Merc)
SFPK = (SFPK.PGen := Merc.PGen,

SFPK.KGen := Merc.KGen,
SFPK.TKGen := Merc.TKGen,
SFPK.Sign := Merc.Sign,
SFPK.KeyConvGen := Merc.KeyConvGen,
SFPK.ChkRep := Merc.ChkRep,
SFPK.ChgPK := Merc.ConvertPK,
SFPK.ChgSK := Merc.ConvertSK,
SFPK.Vfy := Merc.Vfy,
SFPK.VKey := Merc.VKey)

is an SFPK over equivalence relation Rpk, message space M, public key space E,
secret key space H, signature space S and trapdoor space T .

(ii) Σ(Merc)
SFPK is unforgeable (Def. 4.30).
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(iii) Σ(Merc)
SFPK is adaptively real-or-random class-hiding without key corruption (Def. 4.38).

Proof. ad (i): It follows from inspection that Σ(Merc)
SFPK fulfills the syntax requirements of

an SFPK. Note that whether one explicitly passes the key generation randomness
ω from Def. 4.28 to the key generation algorithm or not is not an actual syntactical
difference.
What is left to prove is that Σ(Merc)

SFPK is a correct SFPK scheme according to
Def. 4.29. By prerequisite, Σ(Merc)

SFPK fulfills the first and third security require-
ments since the output distributions of Merc.KGen and Merc.TKGen are identical,
furthermore Merc.ChkRep(τ, pk) outputs 1 if and only if pk ∈ [pk′]Rpk where τ is a
trapdoor for the class [pk′].

Because ΣMerc is a correct mercurial signature, Σ(Merc)
SFPK obviously fulfills the second

and fourth requirement of Def. 4.29 since ΣMerc fulfills the third requirement of
Def. 4.42.
So Σ(Merc)

SFPK is a correct SFPK according to Def. 4.29.

ad (ii): Let A be a ppt adversary, λ ∈ N be the security parameter. We have

Advsfpk-euf
A,Σ(Merc)

SFPK
(λ) = Pr[Advsfpk-euf

A,Σ(Merc)
SFPK

(λ) = 1]

= Pr[Advmerc-euf
A,ΣMerc (λ)]

= Advmerc-euf
A,ΣMerc (λ)

negligible which proves Σ(Merc)
SFPK is an unforgeable SFPK according to Def. 4.30. The

second equality comes from the fact that since

Rm = {(m,m) | m ∈M}

we have
m∗ /∈ [m]Rm ⇔ m∗ ̸= m

for all (m,m∗) ∈M×M which yields that the winning conditions of Expsfpk-euf
A,Σ(Merc)

SFPK
(λ)

(Def. 4.30) and Expmerc-euf
A,ΣMerc (λ) (Def. 4.45) are equivalent.

ad (iii): Let A be a ppt adversary, λ ∈ N be the security parameter. We have

Advadap-ror-ch-nkc
A,Σ(Merc)

SFPK
(λ) = Pr[Expadap-ror-ch-nkc

A,Σ(Merc)
SFPK

(λ) = 1]

= Pr[Expmerc-pk-ch
A,ΣMerc

(λ) = 1]

=Advmerc-pk-ch
A,ΣMerc

(λ)

not negligible where the second equality comes from the fact that by definition of
Σ(Merc)

SFPK , the games Expadap-ror-ch-nkc
A,Σ(Merc)

SFPK
(λ) (Def. 4.38) and Expmerc-pk-ch

A,ΣMerc
(λ) (Def. 4.47)
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proceed identically. So by Def. 4.38, Σ(Merc)
SFPK is adaptively real-or-random class-

hiding without key corruption.

Note that we used the mercurial signature public-key class-hiding definition from
the literature [CL19] here, which does not consider adversaries with any insights to
the key generation process. So the resulting SFPK Σ(Merc)

SFPK only fulfills a class-hiding
definition from the weakest tier, namely adaptive real-or-random class-hiding without
key corruption. For an overview of the different tiers of SFPK class-hiding definitions
see Lem. 4.39.

5.1.2 Mercurial signature from flexible public key signatures and
structure-preserving signatures on equivalence classes

In this subsection we examine under which assumptions mercurial signatures can be
constructed from a combination of SFPK and SPS-EQ in a black-box way. This question
is the natural counterpart of the previous Sect. 5.1.1 where we have proven that, with
some additional assumptions, mercurial signatures can be seen as both SFPK and SPS-
EQ. We examine what is the exact gap between the SFPK/SPS-EQ combination and a
mercurial signature. We begin with the black-box construction of a mercurial signature
from SFPK and SPS-EQ.
Theorem 5.3 Let E,H,M,S be sets, let ΣSPSEQ be an SPS-EQ, ΣSFPK be an SFPK
(both over the same message space M, public key space E, secret key space H and
signature space S). Let ΣSPSEQ and ΣSFPK fulfill the following requirements:

(i) SPSEQ.PGen(λ) and SFPK.PGen(λ) have identical supports for all λ ∈ N.

(ii) SPSEQ.KGen(pp, l) and SFPK.KGen(pp, ·) have identical supports for all security
parameters λ ∈ N, pp←$ SPSEQ.PGen(λ) and length parameters l ∈ N.

(iii) SPSEQ.Sign(sk,m) and SFPK.Sign(sk,m) have identical supports for all secret keys
sk ∈ H and messages m ∈M.

(iv) SPSEQ.Vfy(pk,m, σ) = 1 ⇔ SFPK.Vfy(pk,m, σ) = 1 for all pk ∈ E, m ∈ M and
σ ∈ S

(v) SPSEQ.VKey(pk, sk) = 1 ⇔ SFPK.VKey(pk, sk) = 1 for all key pairs (pk, sk) ∈
E ×H

(vi) There is a ppt algorithm AdaptSig with the following syntax and properties:

AdaptSig(pk,m, σ, r) probablistic signature conversion algorithm, takes as input a
public key pk ∈ E, a message m ∈ M, a signature σ ∈ S and key conversion
randomness r for public parameters pp and outputs a signature σ′ ∈ S
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such that for all public parameters pp, (pk, ·) ←$ SFPK.KGen(pp),m ∈ M, σ ∈ S
with SFPK.Vfy(pk,m, σ) = 1, r ←$ SFPK.KeyConvGen(pp), σ′ ←$ AdaptSig(pk,m, σ, r),
pk′ := SFPK.ChgPK(pk, r) we have

SFPK.Vfy(pk′,m, σ′) = 1

Then

Σ∗
Merc := (Merc.PGen := SPSEQ.PGen,

Merc.KGen := SPSEQ.KGen,
Merc.Sign := SFPK.Sign,
Merc.Vfy := SFPK.Vfy,
Merc.KeyConvGen := SFPK.KeyConvGen,
Merc.ConvertPK := SFPK.ChgPK,
Merc.ConvertSK := SFPK.ChgSK,
Merc.AdaptSig := AdaptSig,
Merc.ConvSigGen := SPSEQ.ConvSigGen,
Merc.ChgRep := SPSEQ.ChgRep,
Merc.VKey := SFPK.VKey)

is a correct mercurial signature scheme.

Proof. It follows from inspection that Σ∗
Merc fulfills the syntax requirements of a mercurial

signature scheme. What is left to prove is that Σ∗
Merc is a correct mercurial signature

scheme according to Def. 4.42.
Note that since the parameter generation algorithms of ΣSFPK and ΣSPSEQ have iden-

tical supports for all λ, we can use any parameters pp ←$ SFPK.KGen(λ) as input for
SPSEQ.KGen and vice versa (analogously for key generation and signing algorithms) and
still obtain the same correctness guarantees.

Since the underlying SPS-EQ ΣSPSEQ and SFPK ΣSFPK are correct (according to
Def. 4.20 and Def. 4.29, respectively), Σ∗

Merc obviously fulfills the first two correctness
requirements from Def. 4.42 which are validity of honestly generated key pairs and basic
digital signature correctness. Because ΣSFPK is a correct SFPK (Def. 4.29), Σ∗

Merc fulfills
the third correctness requirement for mercurial signatures since adapted key pairs stay
valid. Σ∗

Merc fulfills the fourth security requirement for mercurial signatures by the pre-
requisites for AdaptSig (which requires that all consistently adapted valid key-message-
signature triples stay valid). The fifth and last correctness requirement for mercurial
signatures is fulfilled by Σ∗

Merc because the underlying SPS-EQ is correct according to
Def. 4.20 (so changing the representative of a message class and adapting the signature
accordingly preserves the validity of a key-message-signature triple).

So all in all, Σ∗
Merc is a correct mercurial signature scheme.
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Note that the above construction from Thm. 5.3 makes very strong assumptions
about the underlying SFPK and SPS-EQ. Equivalently speaking, it is a strong as-
sumption that an SFPK allows to adapt signatures to both messages and public keys
in a public way and also provides an SPS-EQ-style ChgRep algorithm. It is unclear
whether meaningful secure SFPK with these properties exist. A public adaption of sig-
natures in the style of AdaptSig as mentioned above is not possible for general SFPK,
even if they have recoverable signing keys (Def. 4.40). To see this, let ΣSFPK be an
SFPK. Furthermore let (pk, sk, τ) ←$ SFPK.TKGen(pp) for some public parameters pp,
σ ←$ SFPK.Sign(sk,m) for some message m, pk′ ←$ SFPK.ChgPK(pk, r) with random-
ness r ←$ SFPK.KeyConvGen(pp). If ΣSFPK has recoverable signing keys, we can recover
the signing key sk′ for pk′ as

sk′ := SFPK.Recover(sk, τ, pk′)

according to Def. 4.40. This however is not a public recovery mechanism since the
required trapdoor τ for the key pair (pk, sk) is not intended to be published. Knowing
τ provides an adversary with a trivial way to decide whether a given public key pk∗

is related to pk (i.e. pk∗ ∈ [pk]), contradicting class-hiding. An alternative way to
adapt (m,σ) to pk′ would be to adapt the secret key sk corresponding to pk as sk′ :=
SFPK.ChgSK(sk, r) which obviously requires knowledge of the secret key sk and thus also
is no public adaption procedure.

Next we analyze the security of the mercurial signature Σ∗
Merc from Thm. 5.3, starting

with unforgeability. Σ∗
Merc is unforgeable if the underlying flexible public key signature

ΣSFPK is unforgeable. While this might look surprising at first glance, it makes sense if
one observes that all algorithms of Σ∗

Merc that are used in the mercurial unforgeability
game (Def. 4.44) come from ΣSFPK or their respective equivalents in ΣSPSEQ are assumed
to have identical output distributions.
Theorem 5.4 Let ΣSFPK, ΣSPSEQ and Σ∗

Merc as in Thm. 5.3. Additionally assume

(i) SPSEQ.PGen(λ) and SFPK.PGen(λ) are identically distributed for all λ ∈ N.

(ii) SPSEQ.KGen(pp, l) and SFPK.KGen(pp, ·) are identically distributed for all security
parameters λ ∈ N, pp←$ SPSEQ.PGen(λ) and length parameters l ∈ N.

(iii) SPSEQ.Sign(sk,m) and SFPK.Sign(sk,m) are identically distributed for all secret
keys sk ∈ H and messages m ∈M.

(iv) ΣSFPK is existentially unforgeable under chosen-message attacks (see Def. 4.30)

Then Σ∗
Merc is existentially unforgeable under chosen-message attacks according to Def. 4.44.

Proof. We prove the theorem by contraposition, i.e. assume A is a ppt adversary with
Advmerc-euf

A,Σ∗
Merc

(λ). We construct a ppt adversary B with Advsfpk-euf
B,ΣSFPK

(λ) not negligible.
Let ω ←$ {0, 1}poly(λ), λ ∈ N, pp←$ SFPK.PGen(λ), (pk, sk, τ)←$ SFPK.TKGen(pp, ω).

On input (pp, pk, τ), B acts as follows:
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1. B runs A(pp, pk).
a) Whenever A queries a signature under sk for message m ∈ M, B relays the

query m to its own signing oracle and sends the answer back to A.

2. A eventually outputs a forgery (pk∗,m∗, σ∗).

3. B outputs (pk∗,m∗, σ∗).

B obviously is a ppt since A is a ppt. By definition of Σ∗
Merc and the fact that

• SFPK.PGen(λ) and SPSEQ.PGen(λ) are identically distributed

• SFPK.TKGen(pp) and SPSEQ.KGen(pp, l) are identically distributed (by prerequi-
site and since ΣSFPK is correct)

we get that pk is distributed as prescribed by the unforgeability game Expmerc-euf
A,Σ∗

Merc
(λ).

What is left to do is analyzing the advantage of B in the unforgeability game Expsfpk-euf
B,ΣSFPK

(λ)
for ΣSFPK. We see that

Advsfpk-euf
B,ΣSFPK

(λ) = Pr[Expsfpk-euf
B,ΣSFPK

(λ) = 1]
≥ Pr[Expmerc-euf

A,ΣMerc (λ) = 1]
= Advmerc-euf

A,ΣMerc (λ)

where the inequality comes from the fact that the winning condition of Expmerc-euf
A,ΣMerc (λ)

(Def. 4.44) implies the winning condition of Expsfpk-euf
B,ΣSFPK

(λ) (Def. 4.30). This is because

SFPK.ChkRep(pk∗, τ)⇔ pk∗ ∈ [pk]Rpk

since ΣSFPK is correct and because

(∀m ∈ Q : m∗ /∈ [m]Rm)⇒ m∗ /∈ Q

This proves the theorem.

Being done with unforgeability, we continue with analyzing the class-hiding properties
of Σ∗

Merc (according to Def. 4.50, namely message class-hiding (Def. 4.46) and public-key
class-hiding (Def. 4.47)). We see that the message class-hiding of Σ∗

Merc comes from the
class-hiding property of the underlying SPS-EQ and the public-key class-hiding comes
from a suitable class-hiding property of the underlying SFPK.
Theorem 5.5 Let ΣSFPK, ΣSPSEQ and Σ∗

Merc as in Thm. 5.3. Furthermore assume that

(i) SPSEQ.PGen(λ) and SFPK.PGen(λ) are identically distributed for all λ ∈ N.

(ii) SPSEQ.KGen(pp, l) and SFPK.KGen(pp, ·) are identically distributed for all security
parameters λ ∈ N, pp←$ SPSEQ.PGen(λ) and length parameters l ∈ N.
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(iii) SPSEQ.Sign(sk,m) and SFPK.Sign(sk,m) are identically distributed for all secret
keys sk ∈ H and messages m ∈M.

(iv) ΣSFPK is adaptively real-or-random class-hiding without key corruption (Def. 4.38).

(v) ΣSPSEQ is message class-hiding (see Def. 4.23).

Then Σ∗
Merc is class-hiding according to Def. 4.50.

Proof. We need to prove that Σ∗
Merc is message class-hiding (Def. 4.46) and public-key

class-hiding (Def. 4.47).
We start with message class-hiding. Let A be a ppt adversary. We have

Advmerc-mes-ch
A,ΣMerc (λ) = Pr[Expmerc-mes-ch

A,ΣMerc (λ) = 1]
= Pr[Expspseq-ch

A,ΣSPSEQ
(λ) = 1]

= Advspseq-ch
A,ΣSPSEQ

(λ)

where the second equality comes from the fact that the by prerequisite (i) and the
definition of the security games, the inputs for A in Expmerc-mes-ch

A,ΣMerc (λ) and Expspseq-ch
A,ΣSPSEQ

(λ)
are identically distributed. So since ΣSPSEQ is class-hiding according to Def. 4.23, we get
that Σ∗

Merc is message class-hiding according to Def. 4.46.
What is left to prove is that Σ∗

Merc is public-key class-hiding according to Def. 4.47.
Let A again be a ppt adversary. We have

Pr[Expmerc-ror-pk-ch
A,Σ∗

Merc
(λ) = 1] = Pr[Expadap-fo-ch-nkc

A,ΣSFPK
(λ) = 1]

since by prerequisites (i) and (ii) and the definition of the security games, the views for
A in Expmerc-ror-pk-ch

A,Σ∗
Merc

(λ) and Expadap-ror-ch-nkc
A,ΣSFPK

(λ) are identically distributed. This yields

Advmerc-ror-pk-ch
A,Σ∗

Merc
(λ) = |Pr[Expmerc-ror-pk-ch

A,Σ∗
Merc

(λ) = 1]− 1
2 |

= |Pr[Expadap-fo-ch-nkc
A,ΣSFPK

(λ) = 1]− 1
2 |

= Advadap-fo-ch-nkc
A,ΣSFPK

(λ)

So since ΣSFPK is adaptively real-or-random class-hiding according to Def. 4.38, Σ∗
Merc is

(real-or-random) public-key class-hiding according to Def. 4.47.
So overall, Σ∗

Merc is class-hiding according to Def. 4.50, which proves the theorem.

In the final part of the security discussion for Σ∗
Merc we prove that Σ∗

Merc has an origin-
hiding Merc.ChgRep algorithm under reasonable assumptions if the underlying SPS-EQ
ΣSPSEQ perfectly adapts signatures under malicious public keys.
Theorem 5.6 Let ΣSFPK, ΣSPSEQ and Σ∗

Merc as in Thm. 5.3. Assume:

(i) ΣSPSEQ perfectly adapts signatures under malicious public keys (see Def. 4.27).
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(ii) For all pp←$ Merc.PGen(λ), pk ∈ E, σ ∈ S, rσ ←$ Merc.ConvSigGen(pp) we have
that m′ in (m′, ·)←$ Merc.ChgRep(pk,m, σ, rσ) is a uniformly random message in
[m]Rm.

Then the change-representative algorithm Merc.ChgRep is origin-hiding according to
Def. 4.51.

Proof. Let m ∈M be a message, pp←$ Merc.PGen(λ), pk ∈ E, σ ∈ S with
Merc.Vfy(pk,m, σ) = 1, rσ ←$ Merc.ConvSigGen(pp). We have

Merc.ChgRep := SPSEQ.ChgRep

and consider
(m′, σ′)←$ Merc.ChgRep(pk,m, σ, rσ)

We need to prove the properties of the output distribution of Merc.ChgRep that are
required for origin-hiding (Def. 4.51).
m′ is (distributed like a) uniformly random message in [m]Rm by prerequisite. Since

ΣSPSEQ perfectly adapts signatures under malicious public keys (according to Def. 4.27),
σ′ is a uniformly random valid signature on m′ as required for origin-hiding in Def. 4.51.

Thus, the Merc.ChgRep algorithm of Σ∗
Merc is origin-hiding according to Def. 4.51.

So Σ∗
Merc is an unforgeable and class-hiding mercurial signature with an origin-hiding

Merc.ChgRep algorithm if ΣSFPK is a secure SFPK (i.e. unforgeable and fulfills a suit-
able class-hiding notion) and ΣSPSEQ is a message class-hiding SPS-EQ that perfectly
adapts signatures under malicious public keys. Note that discussing origin-hiding of the
AdaptSig algorithm of Σ∗

Merc makes no sense since this algorithm is not constructed from
the underlying SFPK and SPS-EQ but its existence is just assumed in Thm. 5.3.

All in all, we can conclude from Sect. 5.1.1 that from a secure mercurial signature with
an SFPK-style trapdoor mechanism, we can extract a secure SFPK and a secure SPS-
EQ under reasonable assumptions. A black-box construction of a syntactically correct
mercurial signature Σ∗

Merc from SFPK and SPS-EQ is possible but it is unclear whether
it can be securely instantiated (see Sect. 5.1.2).

5.2 Relation between key-homomorphic signatures and SFPK
In this section, we analyze the relation between key-homomorphic signatures from [DS16]
(see Sect. 4.1) and SFPK [BHKS18] (see Sect. 4.3). The question about the rela-
tion between the two signature types is very natural since we remark that both key-
homomorphic signatures and SFPK provide a mechanism to randomize a valid key pair
to a new valid one. Given a key pair (pk, sk) of a key-homomorphic signature (Def. 4.2),
one can use any secret key ∆ to compute a new secret key sk′ := sk + ∆ and adapt the
public key accordingly (using the secret-to-public key homomorphism µ) by computing
pk′ := pk ·µ(∆). In contrast to this very specific mechanism, SFPKs have a more black-
box way to randomize key pairs using the SFPK.ChgPK and SFPK.ChgSK algorithms
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with some key pair (pk, sk) and the same randomness r. Furthermore note that the
space that the randomness r is drawn from is not prescribed by the syntax of SFPK. In
particular, r does not have to be a valid secret key, in contrast to the shift amount ∆
used for key-homomorphic signatures.

One of the most striking differences between key-homomorphic signatures and flex-
ible public-key signatures is that, in contrast to SFPK, key-homomorphic signatures
provide a secret-to-public-key homomorphism µ and an integrated algorithm Adapt to
publicly randomize existing valid key-message-signature triples (pk,m, σ) to new triples
(pk′,m, σ′) by adapting key and signature. To emulate this adaption behaviour for
(pk,m, σ) with SFPK, one has to randomize the public key pk and the corresponding
secret key sk separately as pk′ := SFPK.ChgPK(pk, r) and sk′ := SFPK.ChgSK(sk, r) and
then freshly sign σ with sk′. Alternatively, if the SFPK has recoverable signing keys
(Def. 4.40), one could also recover the secret key sk′ corresponding to a randomized ver-
sion pk′ := SFPK.ChgPK(pk, r) as sk′ := SFPK.Recover(sk, τ, pk′). However, since both
of these methods require knowledge of secret key or trapdoor, they cannot be seen as an
equivalent to the public adaption mechanism provided by key-homomorphic signatures.

On the other hand, in contrast to key-homomorphic signatures, secure SFPK provide
an equivalence relation with usually small equivalence classes (see Lem. 4.32) on the
public key space, as well as a trapdoor-based algorithm SFPK.ChkRep which allows to
check whether two given public keys are related or not.

In the following, we will formally examine under which assumptions we can construct
SFPK from key-homomorphic signatures and vice versa.

5.2.1 SFPK from key-homomorphic signatures

A natural SFPK construction from key-homomorphic signatures revolves around an
equivalence relation Rµ on the public key space E of a key-homomorphic signature
scheme w.r.t. homomorphism µ. Two keys pk and pk′ are related via Rµ if there is some
∆ ∈ H with

pk′ = pk · µ(∆)

We will first formally prove that the above relation Rµ indeed is an equivalence relation
and then formally construct an SFPK Σ(KH)

SFPK over Rµ from a key-homomorphic signature
scheme with secret-to-public-key homomorphism µ. As a first result concerning its (in-
)security, we prove that Σ(KH)

SFPK is not strongly unforgeable. We then prove that Σ(KH)
SFPK

is not even (weakly) unforgeable if the homomorphism µ is surjective. Note that all ex-
amples for key-homomorphic signature schemes given by Derler and Slamanig in [DS16]
(and listed in Rem. 4.7) have surjective secret-to-public-key homomorphisms and are
thus not suitable to instantiate our SFPK-from-key-homomorphic-signature construc-
tion Σ(KH)

SFPK.
As announced above, we start with the formal proof that Rµ is an equivalence relation.

Lemma 5.7 Let (H,+), (E, ·) be groups, µ : H → E be a group homomorphism. Then
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Rµ with
pk ∼Rµ pk′ :⇔ ∃r ∈ H : pk′ = pk · µ(r)

is an equivalence relation on E (according to Def. 3.3).

Proof. We need to prove that Rµ is reflexive, symmetrical and transitive. With the basic
properties of group homomorphisms (Lem. 3.10), we get

pk · µ(1H) = pk · 1E = pk

for any pk ∈ E which proves that Rµ is reflexive.
Let pk, pk′ ∈ E with pk ∼Rµ pk′. So we have

∃r ∈ H : pk′ = pk · µ(r)

Again with Lem. 3.10, we get

pk′ · µ(r−1) = pk′ · µ(r)−1 = pk · µ(r) · µ(r)−1 = pk · 1E = pk

which proves that Rµ is symmetrical.
Let pk0, pk1, pk2 ∈ E with

pk0 ∼Rµ pk1, pk1 ∼Rµ pk2

So by definition of Rµ, we have

∃r0, r1 : pk1 = pk0 · µ(r0) ∧ pk2 = pk1 · µ(r1)

This yields
pk2 = pk1 · µ(r1) = pk0 · µ(r0) · µ(r1) = pk0 · µ(r0 + r1)

which is equivalent to
pk0 ∼Rµ pk2

This proves that Rµ also is transitive and thus, Rµ is an equivalence relation according
to Def. 3.3.

We continue with the natural SFPK constrution from key-homomorphic signatures
and the proof of its insecurity.

Theorem 5.8 Let ΣKH be a key homomorphic signature scheme with secret key space
H, public key space E, key homomorphism µ : H → E, message space M and signature
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space S. We define the SFPK

Σ(KH)
SFPK = (SFPK.PGen := KH.PGen,

SFPK.KGen := KH.KGen,
SFPK.TKGen := TKGen,
SFPK.Sign := KH.Sign,
SFPK.ChkRep := ChkRep,
SFPK.KeyConvGen,
SFPK.ChgPK,
SFPK.ChgSK,
SFPK.Vfy := KH.Vfy,
SFPK.VKey)

(with the same key, signature and message spaces and over equivalence relation Rµ) as
follows (where TKGen,ChkRep are arbitrary algorithms s.t. the correctness requirements
(i) and (iii) from Def. 4.29 are fulfilled):

SFPK.KeyConvGen(pp)
1 : return r := ∆←$ H

SFPK.VKey(pk, sk)
1 : return 1 if pk = µ(sk)
2 : else return 0

SFPK.ChgSK(sk, r)
1 : return sk′ := sk + r

SFPK.ChgPK(pk, r)
1 : return pk′ := pk · µ(r)

Then we have

(i) Σ(KH)
SFPK is a correct SFPK (Def. 4.29) over the equivalence relation Rµ from Lem. 5.7.

(ii) Σ(KH)
SFPK is not strongly existentially unforgeable.

(iii) If µ is surjective, then Σ(KH)
SFPK is not unforgeable.

Proof. ad (i) We need to prove that the requirements from Def. 4.29 are fulfilled. (i)
and (iii) are clear by prerequisite, (iv) is clear by definition of Σ(KH)

SFPK. (ii) (a)
is clear since ΣKH is a key-homomorphic signature (Def. 4.2) and thus a correct
digital signature. (ii) (b) (ii) is fulfilled since we have

µ(sk′) = µ(sk + r) = µ(sk) · µ(r) = pk · µ(r) = pk′

by definition of KeyConvGen, ChgPK, ChgSK and the homomorphic property of
µ. So digital signature correctness of ΣKH yields (ii) (b) (i) and thus Σ(KH)

SFPK is a
correct SFPK over Rµ from Lem. 5.7 according to Def. 4.29.
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ad (ii) To prove that Σ(KH)
SFPK is not sEUF-CMA (Def. 4.31), we construct a ppt adversary

A that has non-negligible advantage in the strong SFPK EUF game for Σ(KH)
SFPK (see

Def. 4.31).
Let pp ←$ KH.PGen(λ), (pk, sk, τ) ←$ TKGen(pp, ω) with ω ←$ {0, 1}poly(λ) as in
said game. On input pk, τ , A acts as follows:

1. A queries the signing oracle for m←$M.
2. Eventually, A obtains σ ←$ KH.Sign(sk,m).
3. A samples ∆←$ H computes (pk′, σ′)←$ KH.Adapt(pk,m, σ,∆).
4. A outputs (pk′,m, σ′).

Let (pk′,m, σ′)←$ A(pk, τ). A obviously is a ppt algorithm, furthermore we have

pk′ = pk · µ(∆) ∈ [pk]Rµ

by definition of Rµ and the correctness requirement for KH.Adapt. This yields
ChkRep(τ, pk′) = 1. Because of the correctness requirement from Def. 4.2 for the
KH.Adapt algorithm, we also have

KH.Vfy(pk′,m, σ′) = 1

Lastly, we have (m,σ′) /∈ Q using the additional prerequisite that σ ̸= σ′ and
Q = {(m,σ)}. We can reasonably assume σ ̸= σ′ since under the circumstances
described above this would hold for all examples of key-homomorphic signature
schemes ΣKH that were listed by Derler and Slamanig in [DS16] (see Rem. 4.7).
Since (pk′,m, σ′)←$ A(pk, τ) was arbitrary, this proves

Pr[Expsfpk-seuf
A,Σ(KH)

SFPK
(λ) = 1] = 1

so Σ(KH)
SFPK is not strongly existentially unforgeable under chosen-message attacks

according to Def. 4.31.

ad (iii) Intuitively, if µ is surjective, the quotient set E/Rµ (Def. 3.3) contains only one
equivalence class and thus it is trivial to win the SFPK unforgeability game for
Σ(KH)

SFPK. More formally, we prove E/Rµ = {E} by proving that any two public keys
are related via Rµ. Let λ ∈ N be the security parameter, pk, p̃k ∈ E. Since µ is
surjective, we have that

∃r̃ ∈ H : µ(r̃) = pk−1 · p̃k

So by definition of Rµ, we get

p̃k = pk · pk−1 · p̃k = pk · µ(r̃) ∈ [pk]Rµ
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So since two arbitrary public keys are related, we get that the quotient set E/Rµ

contains just one equivalence class, i.e.

E/Rµ = {E}

Consider an adversaryA which samples a fresh key pair (pk′, sk′)←$ SFPK.KGen(pp)
and a message m←$M and outputs a forgery σ ←$ SFPK.Sign(sk′,m) for m. By
definition of the SFPK unforgeability game (Def. 4.30), we have

Advsfpk-euf
A,Σ(KH)

SFPK
(λ) = 1

and thus Σ(KH)
SFPK is not EUF-CMA secure according to Def. 4.30.

All in all, we have proven that the above natural construction of SFPK from key-
homomorphic signatures is at least hard to properly instantiate (since all commonly
known key-homomorphic signatures from Rem. 4.7 are not suitable according to Thm. 5.8),
if not entirely useless. However, we have not formally proven that it is actually impossible
to construct SFPK from key-homomorphic signatures in a black-box way.

5.2.2 Key-homomorphic signatures from SFPK

In this section we analyze under which assumptions we can construct key-homomorphic
signatures from SFPK. As already sketched in the beginning of Sect. 5.2, SPFK do not
provide a public adaption mechanism like key-homomorphic signatures. Furthermore,
SFPK do not have a secret-to-public-key homomorphism in general.

We construct a black-box key-homomorphic scheme from a given SFPK as shown
in the following definition. Note that this requires assuming that SFPK.ChgSK and
SFPK.ChgPK define a secret-to-public-key homomorphism µ as well as the existence of a
suitable Adapt which are strong assumptions. We are not aware of an SFPK that fulfills
them.
Definition 5.9 (key-homomorphic signature from SFPK) Let ΣSFPK be an SFPK
with groups (H,+), (E, ·) as secret and public key space that fulfills the following condi-
tions:

(i) There exists a secret-to-public-key homomorphism µ : H → E such that

SFPK.ChgSK(sk,∆) = sk + ∆ ∧ SFPK.ChgPK(pk,∆) = pk · µ(∆)

for all ∆ ∈ H.

(ii) There exists a ppt algorithm Adapt that takes as input a public key pk ∈ E, a
message m ∈ M, a signature σ ∈ S and a shift amount secret key ∆ ∈ H and
outputs an adapted public key pk′ ∈ E and an adapted signature σ′ ∈ S which
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satisfy the following requirement: For all ∆ ∈ H, λ ∈ N, pp ←$ SFPK.PGen(λ),
(pk, sk)←$ SFPK.KGen(pp), m ∈M, σ ∈ S, we have:

SFPK.Vfy(pk,m, σ) = 1 ∧ (pk′, σ′)←$ Adapt(pk,m, σ,∆)
⇒Pr[SFPK.Vfy(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk

We construct a key-homomorphic signature scheme Σ(SFPK)
KH from ΣSFPK as

Σ(SFPK)
KH = (KH.PGen := SFPK.PGen,

KH.KGen := SFPK.KGen,
KH.Sign := SFPK.Sign,
KH.Adapt := Adapt,
KH.Vfy := SFPK.Vfy)

It is easy to see that Σ(SFPK)
KH indeed is a correct key-homomorphic signature scheme

according to Def. 4.2. The correctness of ΣSFPK according to Def. 4.29 yields that Σ(SFPK)
KH

without Adapt is a correct digital signature scheme. Furthermore, Adapt fulfills the
requirements from Def. 4.2 by assumption and µ is a secret-to-public-key homomorphism.

The above construction uses strong assumptions and thus illustrates the gap between
SFPK and key-homomorphic signature schemes. SFPK do neither provide secret-to-
public-key homomorphisms nor a public way to adapt signatures "out of the box", how-
ever, it is possible that key changing with SFPK.ChgSK and SFPK.ChgPK is done in a
homomorphic way as shown in the above Def. 5.9.

To conclude the discussion about key-homomorphic signatures from SFPK, we prove
that the SFPK ΣSFPK used to construct the key-homomorphic signature scheme Σ(SFPK)

KH
from Def. 5.9 cannot be strongly existentially unforgeable under chosen message at-
tacks. This also implies that key-homomorphic SFPKs cannot be strongly existentially
unforgeable.

Lemma 5.10 The SFPK ΣSFPK from Def. 5.9 is not strongly existentially unforgeable.

Proof. Note that the input and output spaces of Adapt from Def. 5.9 are composed of the
key, message and signature spaces of ΣSFPK. So the construction of a ppt adversary A
that breaks the sEUF-CMA of ΣSFPK can be done analogously to the construction in the
proof that Σ(KH)

SFPK is not sEUF-CMA (Thm. 5.8). A draws a random message m, submits
it to the signing oracle, randomizes the resulting signature σ using Adapt and outputs
the randomized signature σ′ as a forgery for m. The analysis of this straightforward
attack is analogous to Thm. 5.8 and omitted here for brevity.
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5.3 Analysis of key-homomorphic properties of the Backes
warm-up SFPK

In Rem. 4.7, we listed some examples for key-homomorphic signatures that were origi-
nally given by Derler and Slamanig [DS16]. In this chapter, we are going to examine the
warm-up SFPK construction from [BHKS18] for key-homomorphic properties according
to [DS16] (see Sect. 4.1.1). We decided to cut the respective analysis of the Backes
multi-user SFPK [BHKS18], the SPS-EQ schemes by Fuchsbauer et al. [FHS14] and
Conolly et al. [CLPK22] and the mercurial signature from [CL19] for scope reasons and
leave it as open work.

The warm-up SFPK scheme Σbck-wu
SFPK from [BHKS18] is defined over the equivalence

relation Rexp from the following definition.
Definition 5.11 Let G = ⟨g⟩ be a cyclic group of prime order p ∈ P, l ∈ N. We define
the relation Rexp over (G \ {1G})l where

M ∼Rexp N :⇔ ∃r ∈ Z∗
p : M r = N

The following lemma formally proves that Rexp indeed is an equivalence relation.
Lemma 5.12 Rexp from Def. 5.11 is an equivalence relation according to Def. 3.3.

Proof. Reflexivity is clear since M1 = M for all M ∈ Gl. Symmetry comes from the
fact that

M r = N ⇔M = N1/r

for all M,N ∈ (G \ {1G})l, r ∈ Z∗
p. What is left to prove is the transitivity of Rexp. Let

M,N,Q ∈ (G \ {1G})l with
M ∼Rexp N,N ∼Rexp Q

which by definition means that

∃r, t ∈ Z∗
p : M r = N ∧N t = Q

So we get
Q = N t = (M r)t = M rt

which is equivalent to
M ∼Rexp Q

So Rexp also is transitive and thus an equivalence relation according to Def. 3.3.

The Backes warm-up scheme Σbck-wu
SFPK works in the type-2 and type-3 bilinear group

setting and uses a programmable hash function H which is a type of enhanced hash
function. However, for simplicity, we can imagine this function as a normal hash function
with a group as a codomain since the special PHF properties are only used in the
security proof for Σbck-wu

SFPK (from [BHKS18]) which we omit in this work. The general
idea of Σbck-wu

SFPK is based on a modified version of Waters’ signatures [Wat05] as described
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by Chatterjee and Menezes [CM11]. Signing works by hashing the message using a
personal (public) PHF key, then blinding the result and multiplying with a personal
(secret) group element, generated from a secret base and exponent. In the following, we
give the formal definition of Σbck-wu

SFPK based on [BHKS18].
Definition 5.13 (Backes warm-up SFPK) The Backes warm-up SFPK Σbck-wu

SFPK is
defined as follows:

SFPK.PGen(λ)
1 : BG := (G1, G2, GT , p, e, g1, g2)←$ BGGen(λ, 3)
2 : return BG

SFPK.KGen(pp, ω)
1 : KPHF ←$ PHF.KGen(λ)
2 : A,B,C,D,X ←$ G1

3 : y ←$ Z∗
p

4 : t := e(Xy, g2)
5 : pk := (A,B,C,D, t,KPHF)
6 : sk := (y,X, pk)
7 : return (pk, sk)

SFPK.TKGen(pp, ω)
1 : KPHF ←$ (gζi

1 | 0 ≤ i ≤ λ, ζi ←$ Zp)
2 : a, b, c, d, x, y ←$ Z∗

p

3 : t := e(gxy
1 , g2)

4 : pk := (ga
1 , g

b
1, g

c
1, g

xd
1 , t,KPHF)

5 : sk := (y, gx
1 , pk)

6 : τ := (d, gy
2 , g

a
2 , g

b
2, g

c
2, g

ζ0
2 , g

ζ1
2 , . . . , g

ζλ

2 )
7 : return (pk, sk, τ)

SFPK.Sign(sk,m)
1 : parse (y,X, pk) := sk
2 : r ←$ Z∗

p

3 : return σ := (Xy · (HKPHF(m))r, gr
1, g

r
2)

SFPK.KeyConvGen(pp)
1 : return r ←$ Z∗

p

SFPK.ChgPK(pk, r)
1 : parse (A,B,C,D, t,KPHF) := pk
2 : return pk′ := (Ar, Br, Cr, Dr, tr, (KPHF)r)

SFPK.ChgSK(sk, r)
1 : parse (y,X, pk) := sk
2 : pk′ := SFPK.ChgPK(pk, r)
3 : return sk′ := (y, (Xr), pk′)

SFPK.ChkRep(τ, pk)
1 : parse (pk1, pk2, pk3, X, t, pk4, . . . , pkλ+4) := pk′,

2 : (d, Y2, τ1, . . . , τλ+4) := τ

3 : return e(Xd−1
, Y2) = t∧

4 :
λ+4∧
i=1

λ+4∧
j=1

e(pki, τj) = e(pkj , τi)

88
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SFPK.Vfy(pk,m, σ)
1 : parse (σ1, σ2, σ3) := σ,

2 : (A,B,C,D, t,KPHF) := pk
3 : return e(σ2, g2) = e(g1, σ3)∧
4 : e(σ1, g2) = t · e(HKPHF(m), σ3)

SFPK.VKey(pk, sk)
1 : parse (A,B,C,D, t,KPHF) := pk,
2 : (y,X, pk′) := sk
3 : return pk = pk′ ∧ t = e(Xy, g2)

SFPK.Recover(sk, τ, pk′)
1 : parse (y, gx

1 , pk) := sk,
2 : (d, gy

2 , g
a
2 , g

b
2, g

c
2, g

ζ0
2 , . . . , g

ζλ

2 ) := τ,

3 : (Ar, Br, Cr, Dr, tr, (KPHF)r) := pk′

4 : X ′ := (Dr)(d−1)

5 : return sk′ := (y,X ′, pk′)

For scope reasons, we do not formally prove neither correctness nor security of Σbck-wu
SFPK

but only summarize the results from [BHKS18] in the following theorem.
Theorem 5.14 (i) If the decisional linear assumption (Def. A.2) holds for all λ,

BG ←$ SFPK.PGen(λ) and PHF is (1, poly(λ))-programmable then Σbck-wu
SFPK is un-

forgeable (Def. 4.30).

(ii) If for all λ ∈ N, BG ←$ SFPK.PGen(λ) the decisional Diffie-Hellman assumption
(Def. A.1) holds in G1 then Σbck-wu

SFPK is class-hiding (Def. 4.33).
At first glance, it seems that the projection µ to the public key is a good candidate

for a secret-to-public-key homomorphism for Σbck-wu
SFPK according to Def. 4.1. However,

in the following Thm. 5.15, we prove that this µ is actually not a secret-to-public-key
homomorphism for Σbck-wu

SFPK .
Theorem 5.15 Let Σbck-wu

SFPK be the Backes warm-up SFPK from Def. 5.13. Let
BG := (G1, G2, GT , p, e, g1, g2)←$ SFPK.PGen(λ) be bilinear group. Then

(i) E := G4
1 ×GT ×Gλ+1

1 is the public key space, H := Z∗
p ×G1 ×E is the secret key

space of Σbck-wu
SFPK .

(ii) µ : H → E, (y,X, pk) 7→ pk is not a secret-to-public-key homomorphism for
Σbck-wu

SFPK .

Proof. ad (i) This follows from inspection. Both H and E are groups that are direct
products of smaller groups so the group operation in H is defined component-wise,
using the group operations from the smaller groups.

ad (ii) We denote the group operation in secret key space H with +H and the group
operation in public key space E with ·E . Let sk, sk′ ∈ H with

sk := (y,X, pk), sk′ := (y′, X ′, pk′)
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and pk, pk′ ∈ E with

pk := (A,B,C,D, t,KPHF), pk′ := (A′, B′, C ′, D′, t′,K ′
PHF)

We prove the claim by proving that pk ·E pk′ = µ(sk +H sk′) is not a valid secret
key for sk +H sk′. We have

sk +H sk′ = (y · y′, X ·X ′, pk ·E pk′),
pk ·E pk′ = (A ·A′, B ·B′, C · C ′, D ·D′, t · t′,KPHF ·K ′

PHF)

According to the SFPK.KGen and SFPK.VKey algorithm of Σbck-wu
SFPK (Def. 5.13), the

corresponding public key pk∗ to sk +H sk′ must fulfill

t∗ = e((X ·X ′)y·y′
, g2)

where t∗ ∈ GT is the fifth component of pk∗. Inserting the fifth component of
pk ·E pk′ into the above equation, we get

t · t′ = e(Xy, g2) · e(X ′y′
, g2) = e(Xy ·X ′y′

, g2) = e(gx·y
1 · gx′·y′

1 , g2)

= e(gx·y+x′·y′

1 , g2)

̸= e(gx·y·y′+x′·y·y′

1 , g2) = e((gx+x′

1 )y·y′) = e((X ·X ′)y·y′
, g2)

where the inequality holds with high probability and comes from the fact that

gx·y+x′·y′

1 ̸= gx·y·y′+x′·y·y′

1

holds with high probability and the observation that because of the non-degeneracy
property of e, e(·, g2) is an injective mapping. This proves that pk · pk′ is not a
valid public key for sk +H sk′ which means that since pk, pk′ were valid public keys
for sk, sk′, respectively, µ is not a secret-to-public-key homomorphism for Σbck-wu

SFPK .

Note that Thm. 5.15 does not prove that Σbck-wu
SFPK is not a key-homomorphic signature

scheme according to Def. 4.2. There might be a different homomorphism µ̂ ̸= µ that
fulfills Def. 4.2. However, to the best of our knowledge, such a µ̂ does not exist.

To end this subsection, we want to make the following remark about the role of Waters
signatures [Wat05] for the construction of key-homomorphic signatures and SFPK. In
[DS16], Derler and Slamanig prove that the Waters signature variant from [BFG13],
which has shared hashing parameters (i.e. the parameters for the instantiation of the
Waters hash function are part of the signature schemes public parameters) is a key-
homomorphic signature according to Def. 4.2. They claim that without shared hashing
parameters, the Waters signature is not key-homomorphic since they conjecture that it
would be impossible to define a KH.Adapt algorithm satisfying Def. 4.2 in this case. On
the other hand, Backes et al. [BHKS18] use another variant (from [CM11]) of the Waters
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5.3 Analysis of key-homomorphic properties of the Backes warm-up SFPK

signature (which has no shared hashing parameters, i.e. the parameters to instantiate the
Waters hash function are generated in the key generation algorithm SFPK.KGen instead
of the public parameter generation algorithm SFPK.PGen) to construct the above flexible
public key signature (Def. 5.13).

So the difference between the two variants of the Waters hash function used to con-
struct a key-homomorphic signature in [DS16] and an SFPK in [BHKS18], respectively,
is the point at which the hash function used for signing is instantiated. This gives an
insight to why Waters hash functions can be used to build both key-homomorphic sig-
natures and SFPK, despite the fact that we have elaborated fundamental conceptual
differences between the two primitives in Sect. 5.2.
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6 Applications of the advanced signature
primitives

In the following we will give a brief overview of the advanced cryptographic primitives
that have already been constructed from the four signature types discussed in this thesis.
For a more detailed overview including explanations of the primitives, refer back to
Chapter 2.

• In [DS16], Derler and Slamanig introduced key-homomorphic signature schemes
(Sect. 4.1.1) and showed how to construct ring signatures [RST06], universal des-
ignated verifier signatures [SBWP03], simulation-sound extractable non-interactive
zero-knowledge proof systems and multikey-homomorphic signatures [DS16].

– They also introduced a related primitive called publicly-key-homomorphic
signatures and showed how to construct multisignatures [IN83] from them.

• In [FHS19], Fuchsbauer et al. showed how to construct anonymous credential
systems (ACS) from secure SPS-EQ [FHS14]. As another application of SPS-EQ,
Bobolz et al. have constructed a privacy-preserving incentive system from an SPS-
EQ in [BEK+20].

• In [BHKS18], Backes et al. introduced flexible public key signatures (Sect. 4.3)
and constructed stealth address protocols [Tod] and ring signatures [RST06] from
them. In the same paper, the authors also showed how to construct a group
signature scheme from a combination of SFPK (Sect. 4.3) and SPS-EQ (Sect. 4.2)
. Note that while group signatures were originally introduced by Chaum and van
Heyst [CH91], the construction from [BHKS18] uses the more elaborate security
definitions by Bellare et al. [BMW03].

• In [CL19], Crites and Lysyanskaya introduced mercurial signatures and showed
how to construct delegatable anonymous credentials from them in a black-box
way.

In the following, we discuss two attempts to construct some of the above cryptographic
primitives from an alternative signature type. More precisely, we discuss the construction
of the group signature by Backes et al. [BHKS18] from mercurial signatures as well as
the SSE-NIZK proof system by Derler and Slamanig [DS16] from SFPK.
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6 Applications of the advanced signature primitives

Group signature from mercurials We will first attempt to construct the group sig-
nature by Backes et al. [BHKS18] from mercurial signatures. Since in Sect. 5.1.1, it
was proven that, under reasonable assumptions, a mercurial signature can play the role
of both an SFPK and an SPS-EQ, it is a natural question whether the Backes group
signature can be constructed from mercurials alone. Note that this is a non-trivial ques-
tion since (without further analysis) it is not clear under which assumptions a given
mercurial signature ΣMerc can take the role of both the SFPK and the SPS-EQ in the
original Backes group signature construction from [BHKS18]. Furthermore, when using
a mercurial instead of an SFPK to sign messages, it is possible to efficiently random-
ize the created message-signature pairs subsequently using the Merc.ChgRep algorithm
(which SFPKs do not have an equivalent for). We discuss the implications of this for
the security of the group signature construction in Thm. 6.3.

Group signatures (originally introduced in [CH91]) allow a signer S to sign a message
on behalf of a group of n signers in total (including S himself). When producing such
a signature, S stays anonymous among the signers in the group, i.e. it is impossible
to efficiently tell publicly that S was the signer who created that signature. Note that
if not stated otherwise, the term “group” in this subsection may not be confused with
the mathematical structure introduced in Sect. 3.1. In this work, a group signature is a
tuple ΣGS = (GS.KGen,GS.Sign,GS.Vfy,GS.Open) of ppt algorithms. For details about
the syntax and security of group signatures refer to Appendix B.

We will start with stating the formal pseudocode of our mercurial-signature-based
variant of the Backes group signature from [BHKS18].
Definition 6.1 (mercurial-based Backes group signature) Let l ∈ N be the length
parameter for the mercurial signature, n ∈ N the group size, λ the security parameter.
Let ΣMerc be a mercurial signature scheme with public key space E, secret key space H,
message space M, signature space S, message relation Rm and public key relation Rpk
that fulfills the following properties:

(i) E =M

(ii) The output spaces of Merc.KeyConvGen and Merc.ConvSigGen are the same.

(iii) There is a ppt trapdoor key generation algorithm TKGen that takes as input public
parameters pp and outputs a trapdoor τ in some trapdoor space T and a key pair
(pk, sk) ∈ E × H. Furthermore there is a check-representative algorithm ChkRep
that takes as input a class trapdoor τ ∈ T as a public key pk ∈ E and outputs a bit
b ∈ {0, 1}. TKGen and ChkRep fulfill the following requirements:

a) For all λ ∈ N, pp ←$ Merc.PGen(λ), Merc.KGen(pp) and TKGen(pp) are
identically distributed.

b) For all λ ∈ N, pp ←$ Merc.PGen(λ), (pk, sk, τ) ←$ TKGen(pp) and all public
keys pk′ ∈ E we have

ChkRep(τ, pk′) = 1⇔ pk′ ∈ [pk]Rpk
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(iv) Rm and Rpk are compatible, which means that for all pp←$ Merc.PGen(λ), (pk, sk)←$

Merc.KGen(λ), (pkcert, skcert)←$ Merc.KGen(λ), σcert ←$ Merc.Sign(skcert, pk), r ←$

Merc.KeyConvGen(pp), we get that for

pk1 := Merc.ConvertPK(pk, r), pk2 ←$ Merc.ChgRep(pk, σcert, r, pkcert)

we have
pk1 = pk2

(v) Let pp ←$ Merc.PGen(λ) and for 1 ≤ i ≤ n, let (pki, ·) ←$ Merc.KGen(pp, l). We
have

Pr[∃1 ≤ i, j ≤ n : pki = pkj ] ≤ ϵ(λ)

for a negligible function ϵ.

We define the mercurial-based Backes group signature Σ(Merc)
GS,B based on ΣMerc as follows:

GS.KGen(λ, n)
1 : pp←$ Merc.PGen(λ)
2 : (pk, sk)←$ Merc.KGen(pp, l)
3 : for i ∈ [n]
4 : (pki, ski, τi)←$ TKGen(pp, l)
5 : σcert,i ←$ Merc.Sign(sk, pki)
6 : return (gpk := (pp, pk),
7 : gmsk := ((τi, pki))n

i=1,

8 : gsk[i] := (pki, ski, σcert,i))

GS.Sign(gsk[i],m)
1 : parse gsk[i] = (pki, ski, σcert,i)
2 : r ←$ Merc.KeyConvGen(pp)
3 : pk′

i := Merc.ConvertPK(pki, r)
4 : sk′

i := Merc.ConvertSK(ski, r)
5 : (pk′

i, σ
′
cert,i)←$ Merc.ChgRep(pk, pki, σcert,i, r)

6 : M := m||σ′
cert,i||pk′

i

7 : σ ←$ Merc.Sign(sk′
i,M)

8 : return σGS := (pk′
i, σ, σ

′
cert,i)

GS.Vfy(gpk,m, σ)
1 : parse σGS := (pk′

j , σ, σ
′
cert,j),

2 : gpk := (pp, pk)
3 : if Merc.Vfy(pk′

j , σ
′
cert,j , pk) = 0

4 : return 0
5 : M := m||σ′

cert,j ||pk′
j

6 : return Merc.Vfy(pk′
j ,M, σ)

GS.Open(gmsk,m, σ)
1 : parse σGS := (pk′

j , σ, σ
′
cert,j),

2 : gmsk := ((τi, pki))n
i=1

3 : if GS.Vfy(gpk,m, σGS) = 0
4 : return ⊥
5 : if ¬∃i ∈ [n] : ChkRep(τi, pk′

j) = 1
6 : return ⊥
7 : else return i

The prerequisites in Def. 6.1 include strong assumptions on the underlying mercurial
signature which are not fulfilled by state-of-the-art mercurial signature constructions
from e.g. [CL19, CLPK22]. In the following, we go through the prerequisites and
discuss the details. In the original construction from [BHKS18], every signer is equipped
with an SFPK key pair (pki, ski) together with an SPS-EQ signature σcert,i on its public
key. Signing works by randomizing the public key pki to a different representative
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pk′
i ←$ SFPK.ChgPK(pki, r) and adapting the secret key accordingly by computing sk′

i ←$

SFPK.ChgSK(ski, r). The signer then also randomizes the certificate σcert,i for the public
key before he signs the randomized public key pk′

i, the randomized certificate σ′
cert,i and

the actual message m with the randomized secret key as

σ ←$ SFPK.Sign(sk′
i,m||σ′

cert,i||pk′
i)

The resulting group signature consists of this signature sigma σ as well as the certified
public key (pk′

i, σ
′
cert,i) involved in its creation. So only if the public key space is equal to

the message space (see requirements in Def. 6.1), the certificates for the public keys as
well as the actual signatures can be created using the Merc.Sign algorithm of a mercurial
signature. This requires the creation of n+ 1 key pairs for that signature, one for each
signer and one for the group manager (needed to create the initial certificates σcert,i for
the group members’ public keys). In [CL19], Crites and Lysyanskaya state that they
are not aware of a mercurial signature construction whose message space contains the
public key space as a subset.

The opening algorithm GS.Open in the original construction relies on the SFPKs trap-
door check algorithm SFPK.ChkRep to test all SFPK user public keys pki for containment
in the class of the public key pk′

j in the signature in question. General mercurial signa-
tures do not have such a trapdoor mechanic (i.e. a TKGen and ChkRep algorithm that
fulfill similar correctness requirements to the SFPK correctness definition (see Def. 4.29
and the prerequisites of the above Def. 6.1)). It is also notable that the idea for ChkRep
of Σbck-wu

SFPK [BHKS18] from Def. 5.13 likely cannot be adapted to the Crites-Lysyanskaya
mercurial signature [CL19] from Def. 4.52 since they have fundamentally different public
key spaces: the public keys of Σbck-wu

SFPK include an element from the codomain group GT

of a pairing (amongst elements of domain group G1) while the public keys of ΣCL
Merc only

consist of G1 elements. Note that it might be possible to use public-key encryption and
zero-knowledge proofs as in the group signature by Bellare et al. from [BMW03] to mod-
ify the GS.Sign algorithm of Σ(Merc)

GS,B in an encrypt-then-prove way that makes efficient
subsequent opening of signatures possible. However, this would make the construction
mostly pointless since a large benefit of the original SFPK-and-SPS-EQ-based group
signature construction by Backes et al. (that Σ(Merc)

GS,B is based on) is that it is more effi-
cient because it explicitly does not use an encrypt-then-prove-like GS.Sign algorithm. So
the existence of some TKGen and ChkRep algorithms implementing such an SFPK-style
trapdoor mechanism in Def. 6.1 is a strong assumption. We are not aware of a mercurial
signature construction that fulfills it.

The fourth prerequisite in Def. 6.1 is the equivalent to what was defined as compat-
ibility of SFPK and SPS-EQ in [Sch20]. It basically requires that adaption of a public
key pk using pk′ := Merc.ConvertPK(pk, r) and randomization of a certified public key
using pk′ ←$ Merc.ChgRep(pkcert, pk, σ, r) (here, the public key is treated like a message)
actually yield the same public key pk′.

The correctness of the above group signature follows directly from inspection and
the correctness of the underlying mercurial signature and therefore the proof is omitted
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here. Note that without the fifth prerequisite, the opening algorithm would not work
as required by group signature correctness (Def. B.2) since it cannot tell randomized
versions of pki, pkj with pki ∼Rpk pkj apart.

We next briefly cover the security of the above mercurial-based group signature, start-
ing with full-traceability (Def. B.4).
Theorem 6.2 Let ΣMerc, Σ(Merc)

GS,B as in Def. 6.1. If ΣMerc is unforgeable (Def. 4.45),
then Σ(Merc)

GS,B is fully-traceable (Def. B.4).
It is notable that the following proof does not use the original EUF-CMA definition for

mercurials that was presented in [CL19] (see Def. 4.44) but the modified variant from
Def. 4.45 which additionally gives the adversary the possibility to observe signatures
produced with randomized versions of the challenge secret key (where the randomness
is chosen by the adversary itself). This is needed to simulate the oracle access to the
GS.Sign algorithm from Def. 6.1 during the reductions in the following security proof.
Note that, as already mentioned in Sect. 4.4, it is left as an open research question
whether mercurial signatures that fulfill Def. 4.45 do exist.

Proof. The proof is analogous to the full-traceability proof from [Sch20] for the original
group signature construction from [BHKS18]. For brevity, we only provide a proof
sketch here. Observe that there are the following two ways for an adversary A to win
the full-traceability game from Def. B.4:

• A outputs a valid but unopenable signature, which for Σ(Merc)
GS,B (Def. 6.1) means that

A somehow creates a valid signature σ′
cert,i for a public key pk′ (without knowing

the corresponding secret key sk′) that is not related to any user’s public key pki,
i.e.

pk′ /∈ [pki]Rpk

• A outputs a valid signature that opens to a honest user i which is not included
in the set of users that A corrupted during the collusion phase of Exptrace

A,Σ(Merc)
GS,B

(λ).

For Σ(Merc)
GS,B (Def. 6.1), this means that A somehow creates a valid signature for a

message (with some appended authentication data) for pki without having access
to the corresponding secret key ski (since user i is honest i.e. its secret has not
been corrupted by A).

In the first case, A would have created a forgery for the mercurial signature key pair
that is used to certify the mercurial signature public keys pki from the users’ personal
signing keys in GS.KGen. In the second case, A would have created a forgery for the
mercurial signature key pair (pki, ski) included in the i-th user’s personal signing key.
These observations allow to reduce the full-traceability (Def. B.4) of the group signature
Σ(Merc)

GS,B from Def. 6.1 to the unforgeability of ΣMerc (Def. 4.45) in a way that is analogous
to [Sch20].

To finish the discussion of the mercurial-based variant of the group signature from
[BHKS18] (Def. 6.1), we prove that it is not fully-anonymous according to Def. B.3.
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The problem here is that, under reasonable assumptions, the Merc.ChgRep algorithm
allows an adversary to randomize the challenge signature σ in the anonymity game from
Def. B.3 and submit it to the opening oracle to learn the identity of the signer behind
the challenge signature.
Theorem 6.3 Let ΣMerc, Σ(Merc)

GS,B as in Def. 6.1. Assume that for any pp←$ Merc.PGen(λ),
pk ∈ E, m ∈ M, σ ∈ S with Merc.Vfy(pk,m, σ) = 1 there is an efficiently computable
signature conversion randomness rσ such that for (m′, σ′)←$ Merc.ChgRep(pk,m, σ, rσ)
we have

Pr[m = m′ ∧ σ ̸= σ′] = 1
2 + η(λ)

for a non-negligible function η. Then Σ(Merc)
GS,B is not fully-anonymous (Def. B.3).

Note that while the requirement for Merc.ChgRep might seem oddly specific at first,
the Crites-Lysyanskaya mercurial signature (Def. 4.52) is an example for a mercurial
signature scheme with such a signature conversion randomness, namely rσ = 1 ∈ Z∗

p.

Proof. We prove the claim by constructing an adversary A with Advanon
A,Σ(Merc)

GS,B

(λ) not negli-
gible. Let (gpk, gmsk, (gsk[j])n

j=1)←$ GS.KGen(λ, n). On input (choose, gpk, (gsk[j])n
j=1),

A behaves as follows:

1. A samples and outputs i0, i1 ←$ [n], m ←$ M together with state information
state.

2. A is eventually called again on input (guess, state, σ) with σ ←$ GS.Sign(gsk[ib],m)

3. A parses σ = (pk′, σMerc, σ
′
cert) and computes M := m||σ′

cert||pk′.

4. A computes rσ from the prerequisites of this theorem.

5. A computes (M∗, σ∗
Merc)←$ Merc.ChgRep(pk′,M, σ, rσ).

6. A submits (m,σ∗ := (pk′, σ∗
Merc, σ

′
cert)) to the opening oracle, eventually obtaining

an identity k := GS.Open(gmsk,m, σ∗).

7. If k = i0, A outputs 0, else A outputs 1.

By prerequisite on the computation of rσ, A obviously is a ppt adversary since it
only calls ppt algorithms and all other actions it performs can obviously be imple-
mented as ppt algorithms. What is left to analyze is the probability that k = ib and
(m,σ) ̸= (m,σ∗), i.e. that A indeed does learn the hidden identity ib behind the chal-
lenge signature σ without “cheating”, i.e. without querying σ to the opening oracle.

We see that, since both σ and σ∗ have the same public key pk′ ∈ [pkib
]Rpk as their first

component, the definition of GS.Open yields that

GS.Vfy(gpk,m, σ∗) = 1⇒ k = ib

GS.Vfy(gpk,m, σ∗) = 1 holds because (pk′, σ′
cert) is a valid message-signature pair under

pk and (M∗, σ∗
Merc) is a valid message-signature pair under pk′ since (M,σMerc) is a valid
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pair under pk′ and Merc.ChgRep works correctly according to Def. 4.42. Furthermore,
by definition of σ∗ we have

(m,σ∗) ̸= (m,σ)⇔ σ∗ ̸= σ ⇔ σ∗
Merc ̸= σMerc

Overall this yields that

Pr[b′ = b] ≥Pr[k = ib ∧ (m,σ) ̸= (m,σ∗)]
≥Pr[M∗ = M ∧ σ∗

Merc ̸= σMerc]

=1
2 + η(λ)

which ultimately yields
Advanon

A,Σ(Merc)
GS,B

(λ) = η(λ)

which is not negligible, proving that Σ(Merc)
GS,B is not fully-anonymous according to Def. B.3.

Summing up our results, we have identified the following two crucial problems when
it comes to constructing the group signature from [BHKS18] from mercurial signatures
(see Σ(Merc)

GS,B in Def. 6.1) instead of SFPK and SPS-EQ:

• Mercurial signatures do not have an equivalent to the trapdoor mechanic from
SFPK (i.e. the SFPK.TKGen and SFPK.ChkRep algorithms) which the opening
algorithm from the original group signature construction relies on.

• Under realistic assumptions, the Merc.ChgRep allows to break the full-anonymity
of Σ(Merc)

GS,B as seen in the proof of Thm. 6.3. Since SFPKs do not have an equivalent
to the Merc.ChgRep algorithm, the attack from Thm. 6.3 does not work for the
original group signature construction by Backes et al. [BHKS18].

Non-interactive zero-knowledge proofs from SFPK Next, we discuss the simulation-
sound extractable non-interactive zero-knowledge (SSE-NIZK) proof construction from
key-homomorphic signatures (Sect. 4.1.1) that was presented in [DS16]. As part of the
research for this thesis, we attempt to do an analogous SSE-NIZK construction based
on SFPK (Sect. 4.3).

Let L be some NP-language defined via some NP-relation R. The original SSE-
NIZK construction Πsse by Derler and Slamanig [DS16] uses three ingredients, namely
an adaptable key-homomorphic signature scheme ΣKH, a strong sEUF-CMA one-time
signature Σot and a complete, witness indistinguishable NIZK proof system Π for the
language L′. L′ is defined via the relation R′ with

((x, cpk, pk), (w, csk− sk)) ∈ R′ ⇔ (x,w) ∈ R ∨ cpk = pk · µ(csk− sk)

where µ is the secret-to-public-key homomorphism of ΣKH and pk, cpk and sk, csk are
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6 Applications of the advanced signature primitives

public and secret keys for ΣKH. So one can either use an “actual” witness w to prove x
or prove knowledge of the shift amount ∆ := csk − sk derive the key pair (pk, sk) from
the root key pair (cpk, csk).

To prove a statement x using Πsse, one generates two fresh key pairs (pkot, skot), (pk, sk)
for Σot and ΣKH, respectively. The one-time public key pkot is authenticated using sk,
producing some certificate σ. A proof π for statement (x, cpk, pk) is generated using Π
and witness (w,⊥). We then sign π, x, pk and σ using the one-time signature key skot,
producing a signature σot. To simulate a proof, we setup Π in a way that we know the
secret key csk corresponding to cpk. The simulation of a proof for (x, cpk, pk) then uses
the witness (⊥, csk− sk) instead of (w,⊥).

When attempting to replace ΣKH with some SFPK ΣSFPK in the above construction,
we naturally adjust the relation R′, resulting in the relation R′

SFPK defined as follows

((x, cpk, pk), (w, r)) ∈ R′
SFPK ⇔ (x,w) ∈ R ∨ pk = SFPK.ChgPK(cpk, r)

Since the equivalence relation Rpk that the SFPK ΣSFPK is defined over can have
more than one equivalence class, we cannot guarantee that for arbitrary (pk, sk) ←$

SFPK.KGen(pp) generated for proving a statement x, cpk and pk are in the same equiv-
alence class (i.e. an r changing cpk to pk exists). It is unclear how to generally (i.e. for
a black-box SFPK) generate such a key pair (pk, sk) with pk ∼Rpk cpk without access to
csk.

The above problem illustrates that in contrast to key-homomorphic signatures, SFPK
provide an equivalence relation with small classes, while the “natural” equivalence re-
lation Rµ for key-homomorphic signatures (Lem. 5.7) consists of only one class un-
der reasonable assumptions (see Thm. 5.8 and its proof). Furthermore, the proof of
the simulation-sound extractability of the original SSE-NIZK construction Πsse [DS16]
makes use of the adaptability of the underlying key-homomorphic signature scheme. We
already mentioned in Sect. 5.2.2 that we are not aware of a way to prove that general
SFPK provide an adaption algorithm in the spirit of key-homomorphic signatures. Note
that the above discussion does not mean that no SSE-NIZK proof constructions from
SFPK or related primitives exist.
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7 Conclusion and future work

In this final chapter, we summarize the results of this thesis and point out challenges
and questions that could be addressed in future work.

Advanced signature framework In Chapter 4, we created a unified definitional frame-
work for key-homomorphic signatures [DS16] (Sect. 4.1), SPS-EQ [HS14, FHS14]
(Sect. 4.2), SFPK [BHKS18] (Sect. 4.3) and mercurial signatures [CL19] (Sect. 4.4).
Note that while we usually used the original definitions as a basis, we decided to base
parts of our SPS-EQ definitions in Sect. 4.2 on a more recent publication [CLPK22] on
SPS-EQ. As pointed out by Derler and Slamanig [DS16], we only consider linear shifts
as examples for functions to apply to secret keys in the context of key-homomorphic
signatures (see syntax in Def. 4.2). Whether there exist key-homomorphic signatures
w.r.t. other types of functions as well is left as an open question in [DS16], which we
decided to not address in this work for scope reasons. In Chapter 4, we have found the
following results about the four individual advanced signature types:

• The secret-to-public-key homomorphism µ of a key-homomorphic signature scheme
with canonical key generation (Def. 4.3) is a surjective OWF (see Lem. 4.6 and
Lem. 4.5, respectively).

• If one replaces the input shift amount ∆ in the KH.Adapt algorithm with its im-
age µ(∆) under the secret-to-public-key homomorphism µ, the scheme becomes
inherently insecure, not even fulfilling UUF-NMA security for digital signatures
(Def. 3.18). This result was originally found in [DS16] but we wrote a full proof
for the claim (see Lem. 4.8) instead of only providing an attack, without proving
that it actually works.

• We have found a condition under which the adaption algorithm KH.Adapt of a
key-homomorphic signature scheme (Def. 4.2) can be used to trivially break un-
forgeability of the scheme. More precisely, if there exists an efficiently computable
shift amount ∆ that does not change the input public key pk but changes the input
signature σ with non-negligible probability, the output signature σ can be used as
a forgery under pk. For a detailed proof, refer to Lem. 4.9.

• We have written a full formal proof of the perfect adaptability (Def. 4.11) and
perfect public adaptability (Def. 4.17) of BLS signatures [BLS04] (Def. 4.12) in
Lem. 4.14 and Lem. 4.18, respectively. The respective KH.Adapt and PKH.Combine
algorithms were already given in [DS16], along with a one-line sketches of the
distributional argument needed to prove perfect adaptability and perfect public
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adaptability (w.r.t. Def. 4.11 and Def. 4.17). We however wrote out the full proofs
for the respective statements, including a detailed distributional analysis.

• We discussed different class-hiding definitions for SPS-EQ, namely real-or-random
class-hiding (see Def. 4.22, introduced in [FHS14]) and message class-hiding (see
Def. 4.23, introduced in [FHS19]). We have proven that under reasonable as-
sumptions, real-or-random class-hiding is stronger than message class-hiding (see
Lem. 4.24 and Lem. 4.25 for the formal proof).

• We established a notion of perfect signature adaptation for SPS-EQ (Def. 4.26)
that is more general than the original one that was introduced in [BHKS18]. More
precisely, our definition allows the SPSEQ.ChgRep algorithm to compute the new
message class representative in a non-deterministic way and also considers SPS-EQ
over arbitrary equivalence relations.

• We have formulated and proven the small classes lemma (Lem. 4.32) which gives a
necessary condition for the unforgeability of SFPK and mercurial signatures whose
key generation algorithms output uniformly random public keys.

• We discussed the wide variety of different (public-key) class-hiding notions for
SFPK. We first compared find-original class-hiding (Def. 4.33; introduced in
[BHKS18]) to real-or-random public-key class-hiding (Def. 4.47, introduced in
[CL19]), finding that real-or-random class-hiding is stronger than the find-original
variant (see Lem. 4.36, Lem. 4.35 for a detailed formal proof). We also discussed
different levels of insight into the key generation process for adversaries in class-
hiding games, leading to weaker tiers of class-hiding definitions. Our results w.r.t.
SFPK class-hiding are summarized in Lem. 4.39. Note that an analogous discus-
sion could be done for mercurial signatures (see Rem. 4.49) which we decided not
to do here for space reasons. In fact, real-or-random public-key class-hiding was
first introduced for mercurial signatures in [CL19] but can be adapted to SFPK
in a straightforward manner as we demonstrated in Def. 4.34. Analogously, the
find-original public-key class-hiding notion that Backes et al. introduced for SFPK
in [BHKS18] can be adapted to mercurial signatures in a straightforward manner,
as we demonstrated in Def. 4.48.

• In Lem. 4.43, we gave a constructive proof that the existence of a public key
relation Rpk ⊂ E ×E on the public key space E of an SFPK implies the existence
of a secret key equivalence relation Rsk ⊂ H ×H on its secret key space H which
fulfills the corresponding correctness requirement for mercurial signatures. So the
explicit mentioning of a secret key relation for mercurials in [CL19] in contrast to
the implicit definition for SFPKs (see Lem. 4.43; equivalence relations on the secret
key space are not explicitly mentioned in the original SFPK paper [BHKS18]) does
not make an actual syntactic difference.

• In Def. 4.45, we added an unforgeability definition for mercurial signatures that is
different from the original one that was given in [CL19] (see Def. 4.44). The differ-
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ence between the two definitions is that in Def. 4.45, the adversary is additionally
given access to a randomize-then-sign oracle inspired by the SFPK unforgeability
definition given by Backes et al. [BHKS18] (Def. 4.30) which first randomizes the
challenge secret key with the submitted randomness before signing a message with
it. This behavior cannot be emulated with the Merc.AdaptSig algorithm since it is
unclear whether signatures output by Merc.AdaptSig are identically distributed to
fresh signatures generated using Merc.Sign.

Mercurial signatures, SFPK and SPS-EQ After establishing a unified definitional
framework for the four signature types and proving some basic results about their secu-
rity notions (Chapter 4), we analyzed their relations.

We first made the observation that mercurials provide functionality of both SFPK
and SPS-EQ, giving rise to the question whether mercurials are a combination of SFPK
and SPS-EQ. We addressed this question in Sect. 5.1. For this, we first proved that a
secure mercurial signature is a secure SPS-EQ (see Thm. 5.1 in Sect. 5.1.1). Note that
a similar claim was already made in [CL19]. However, the authors only considered the
syntax and unforgeability notions of the two signature types. We adapted their proof
sketch to our definitional framework from Chapter 4 and made a full security analysis of
the SPS-EQ Σ(Merc)

SPSEQ we constructed from a black-box mercurial signature ΣMerc. More
precisely, we have proven the following security implications:

• If ΣMerc is unforgeable (Def. 4.44), then Σ(Merc)
SPSEQ is unforgeable (Def. 4.21). Infor-

mally, this makes use of the fact that when choosing the public key relation Rpk
of ΣMerc as the identity relation, the winning conditions of the respective unforge-
ability games (Def. 4.44 for mercurials and Def. 4.21 for SPS-EQ) are equivalent.

• If ΣMerc is message class-hiding (Def. 4.46) than Σ(Merc)
SPSEQ is (message) class-hiding

(Def. 4.23). This comes from the fact that the respective security games
Expmerc-mes-ch

A,ΣMerc (λ) and Expspseq-ch
A,Σ(Merc)

SPSEQ
(λ) proceed identically for any fixed adversary A

and security parameter λ.

• We found a connection between origin-hiding of Merc.ChgRep (Def. 4.51) and per-
fect signature adaptation of SPS-EQ (Def. 4.26). More precisely, if Merc.Sign out-
puts uniformly random valid signatures then origin-hiding of Merc.ChgRep implies
perfect adaptation of signatures of Σ(Merc)

SPSEQ. This is a straightforward identical-
distribution argument.

Next, as a second contribution in Sect. 5.1.1, we have proven that from a secure
mercurial signature ΣMerc with an SFPK-style ChkRep algorithm, one can extract a
secure SFPK Σ(Merc)

SFPK (Thm. 5.2). More precisely, unforgeability of mercurial signatures
(Def. 4.44) implies SFPK unforgeability (Def. 4.30) in a straightforward manner since the
winning condition in the mercurial unforgeability game is more restrictive than the one
in the SFPK unforgeability game. Furthermore, the literature public-key class-hiding
for mercurial signatures from [CL19] (Def. 4.47) translates to adaptive real-or-random
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SFPK class-hiding without key corruption (Def. 4.38), a class-hiding notion for SFPK
that gives the adversary no insight to the key generation process.

As a last contribution in Sect. 5.1, we constructed a secure mercurial signature Σ∗
Merc

from a secure black-box SFPK ΣSFPK and ΣSPSEQ (see Thm. 5.3 in Sect. 5.1.2). This
integration of ΣSFPK and ΣSPSEQ into a mercurial signature requires strong assumptions
on the output distributions of the algorithms of the two signature schemes, so a more
intuitive idea of our mercurial signature Σ∗

Merc is to perceive it is an SFPK with a ChgRep
algorithm in the style of SPS-EQ and an AdaptSig algorithm in the style of a mercurial
signature. Note that in contrast to general mercurial signatures, Σ∗

Merc has a ChkRep
algorithm in the spirit of SFPK. Furthermore, the Merc.AdaptSig algorithm can be seen
as the “gap” between mercurial signatures and an SFPK-SPS-EQ combination since
neither general SFPK nor general SPS-EQ provide a way to publicly adapt signatures
on a message m to different public keys using the same randomness used to randomize
keys.

Key-homomorphic signatures and SFPK After having analyzed the connection be-
tween mercurial signatures [CL19], SFPK [BHKS18] and SPS-EQ [HS14, FHS14] in
Sect. 5.1, we turned towards the connection of key-homomorphic signatures [DS16] and
SFPK in Sect. 5.2. It is immediate that both of them have a mechanism to efficiently
randomize a key pair (pk, sk) into a new one, furthermore both signature types can be
used to construct ring signatures [RST06] (the respective ring signature constructions
from key-homomorphic signatures and SFPK can be found in [DS16] and [BHKS18],
respectively).

Despite these first-glance resemblances, in Sect. 5.2, key-homomorphic signatures and
SFPK turn out to be different primitives. We list the differences briefly in the following.

• Key-homomorphic signatures provide an adaption algorithm KH.Adapt that allows
to publicly adapt a signature σ on a message m that is valid under some public
key pk to a new public key pk′. Publicly hereby means that the secret key sk corre-
sponding to pk does not have to be known to the adapting party. It is not possible
to emulate such a mechanism with a black-box SFPK in a way that adaption can
still be done publicly.

• Key-homomorphic signatures provide a secret-to-public-key homomorphism
(Def. 4.1) µ : H → E between their secret key space H and their public key
space E. The existence of such a homomorphism µ is not implied by the syntax
of an SFPK. The individual µ furthermore prescribes how the aforementioned
randomization of key pairs works for a specific key-homomorphic signature scheme.
More precisely, the new secret key sk′ is computed as sk′ := sk + ∆ and the
respective public key is adapted as pk′ := pk · µ(∆) for a secret key ∆ that is
seen as a shift amount. For SFPKs, the key pair randomization is done using the
algorithms SFPK.ChgPK and SFPK.ChgSK with the same randomness r on the
public and secret key, respectively. SFPK.ChgPK and SFPK.ChgSK can be seen as
black boxes whose inner workings are entirely determined by the individual SFPK.
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Furthermore, the randomness r does not have to be a secret key as it needs to be
for the key pair randomization process of key-homomorphic signatures.

• Secure (more precisely, unforgeable) SFPK provide an equivalence relation on the
public key space. This relation has small equivalence classes if the key genera-
tion algorithm SFPK.KGen outputs uniformly random public keys, as proven in
the small classes lemma (Lem. 4.32). Thm. 5.8 illustrates that it seems to be
hard to construct an SFPK with such a public key relation from key-homomorphic
signatures in a black-box way. In this theorem, we have constructed a canoni-
cal SFPK Σ(KH)

SFPK from a key-homomorphic signature scheme by using the key pair
randomization procedure for key-homomorphic signatures to define the key change
algorithms SFPK.ChgSK and SFPK.ChgPK as follows:

SFPK.ChgSK(sk, r)
1 : return sk′ := sk + r

SFPK.ChgPK(pk, r)
1 : return pk′ := pk · µ(r)

The resulting SFPK Σ(KH)
SFPK is over the equivalence relation Rµ from Lem. 5.7

which is defined as follows:

pk ∼Rµ pk′ :⇔ ∃r ∈ H : pk′ = pk · µ(r)

In case of a surjective µ (for examples of such schemes, see Rem. 4.7), the quotient
set of this equivalence relation just consists of one equivalence class which means
that Σ(KH)

SFPK is obviously not unforgeable according to Def. 4.30. This is because
any signature for an arbitrary message under an arbitrary key pair can be used as
an existential forgery as discussed in Thm. 5.8.

• To conclude the discussion on conceptual differences between SFPK and key-
homomorphic signatures, we analyzed an existing SFPK construction, namely the
warm-up SFPK Σbck-wu

SFPK from [BHKS18] (Def. 5.13), for key-homomorphic prop-
erties in Sect. 5.3. We have not found a secret-to-public-key homomorphism µ
that fulfills Def. 4.2. We however proved the projection to the public key space, a
natural candidate for such a µ, unsuitable in Thm. 5.15.

Applications of the four signature types In Chapter 6, we further illustrated the
similarities and differences between the four digital signature types from Chapter 4. We
first listed existing construtions of advanced cryptographic primitives from the signature
types from Chapter 4 and then gave alternative constructions for some of them that
were based on a different signature type than the original one. In the following we
briefly list our construction attempts and the insights they gave to the signature types
from Chapter 4.

• We attempted to construct the SFPK-and-SPS-EQ group signature from [BHKS18]
from mercurial signatures in Chapter 6. Our construction requires the used mer-
curial to have an SFPK-like ChkRep algorithm for the signature opening process
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7 Conclusion and future work

to work in the same trapdoor-based-way as it did for the original group signa-
ture construction from [BHKS18]. Our construction (Def. 6.1) is fully-traceable
(Def. B.4) but not fully anonymous (Def. B.3). This is due to the fact that the
Merc.ChgRep algorithm allows for a simple efficient attack that breaks anonymity
(for details, see Thm. 6.3).

• We discussed why it is not promising to construct SSE-NIZK proof systems from
SFPK with an analogous approach to the key-homomorphic-signature-based con-
struction from [DS16]. This discussion illustrated the key differences between
key-homomorphic signatures and SFPK (which we already discussed in Sect. 5.2):
a key-homomorphic signature scheme provides a KH.Adapt algorithm that allows
to publicly adapt signatures while an SFPK provides an equivalence relation on
the public key space with small classes.
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Appendix A

Computational Hardness Assumptions

In this chapter, we are going to briefly summarize the computational hardness assump-
tions that we use in this work. We start with the decisional Diffie-Hellman assumption.
It states that given three powers in a cyclic group, it is hard to tell whether the expo-
nent of the third power is the product of the first two exponents or not. It is used in
[BHKS18] to prove that the warm-up SFPK construction (see Def. 5.13) is class-hiding
according to Def. 4.33.

Definition A.1 (decisional Diffie-Hellman assumption) Let G = ⟨g⟩ be a cyclic
group of prime order p ∈ P. We define the following security experiment for G between
an adversary A and a challenger C:

Expddh
A,G(λ)

1 : α, β, γ0 ←$ Zp

2 : γ1 := α · β
3 : b←$ {0, 1}
4 : b′ ←$A(gα, gβ , gγb)
5 : return b = b′

We define the advantage of A in the above security game as

Advddh
A,G(λ) := |Pr[Expddh

A,G(λ) = 1]− 1
2 |

We say that the decisional Diffie-Hellman assumption holds for G if for all ppt adver-
saries A the advantage Advddh

A,G(λ) is negligible.

We next formally define the symmetric decisional linear assumption as it is used by
Backes et al. in [BHKS18] to prove the unforgeability of their warm-up SFPK construc-
tion Σbck-wu

SFPK (see Thm. 5.14).

Definition A.2 (symmetric decisional linear assumption) Let
BG := (G1, G2, GT , p, e, g1, g2) ←$ BGGen(λ, 3) be a bilinear group. We define the fol-
lowing security game for BG between an adversary A and a challenger C:
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A Computational Hardness Assumptions

Exps-d-lin
A,BG(λ)

1 : f, h, a, c←$ Z∗
p

2 : z0 := a+ c, z1 ←$ Zp

3 : b←$ {0, 1}
4 : f1 := gf

1 , h1 := gh
1

5 : f2 := gf
2 , h2 := gh

2

6 : b′ ←$A((f1, h1, f
a
1 , h

c
1, g

zb
1 ), (f2, h2, f

a
2 , h

c
2, g

zb
2 ))

7 : return 1 if b = b′

We define the advantage of A in the above security game as

Advs-d-lin
A,BG(λ) := |Pr[Exps-d-lin

A,BG(λ) = 1]− 1
2 |

We say that the symmetric decisional linear assumption holds for BG if for all ppt
adversaries A the advantage Advs-d-lin

A,BG(λ) is negligible.
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Appendix B

Group signatures

In this section, we will recap the basic syntax and security definitions for group signa-
tures. Group signatures were first introduced by Chaum and van Heist in [CH91]. A
group signature involves a group of n signers where each of them has a personal signing
key gsk[i] as well as access to the group public key gpk. Group member i uses their
personal signing key gsk[i] to sign messages on behalf of the group. Subsequently, any
party (in particular, non-group members) can use the group public key gpk to verify
that some message was signed by a member of the group. However, without the group
manager secret key gmsk, it is not possibly to efficiently recover the identity of the signer
i who produced some group signature σ on some message m. gmsk is generated by the
group manager, who is an authority that is not part of the group. Advanced models
of group signatures exist that allow to alter the group of signers subsequently as well
as splitting the responsibilities of the group manager between multiple entities (see par-
tially dynamic group signatures from [BSZ05] and fully-dynamic group signatures from
[BCC+16]). In this work, we will only deal with static group signatures which involve
a static group of n signers (i.e. once the group is established, no one can join or leave
it). This group is administrated by a single group manager which is responsible for both
key generation and opening of signatures. We will use the static group signature defi-
nitions given by Schürmann in [Sch20]. Schürmann based his work on [BMW03] which
broke down multiple overlapping security notions for group signatures to the two central
notions of full-anonymity and full-traceability.

Before dealing with security, we first formally define the syntax and correctness of a
static group signature scheme. For brevity and since we do not use other group signature
types in this work, we simply refer to static group signature schemes as group signature
schemes in the following.
Definition B.1 (group signature syntax) A group signature scheme ΣGS is a tuple
of ppt algorithms as follows:

GS.KGen(λ, n) : probablistic key generation algorithm, on input the security parameter
λ ∈ N, the group size n ∈ N, it outputs a group public key gpk, a group manager
secret key gmsk and personal signing keys (gsk[j])n

j=1

GS.Sign(gsk[i],m) : probablistic signing algorithm, on input a personal signing key gsk[i]
of some group member i ∈ [n] and a message m, it outputs a signature σ
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GS.Vfy(gpk,m, σ) : deterministic verification algorithm, on input a group public key gpk,
a message m and a signature σ, it outputs a bit b ∈ {0, 1}

GS.Open(gmsk,m, σ) : deterministic opening algorithm, on input a group manager secret
key gmsk, a message m and a signature σ, it outputs an identity i ∈ [n] or the
error symbol ⊥ /∈ [n]

If not explicitly stated otherwise, we always assume that the algorithms of a group
signature scheme are named as in Def. B.1. With the syntax of group signatures defined,
we next turn to their correctness. In a nutshell, all honestly generated signatures must
be valid and it must be possible to retrieve the signer’s identity for them (using gmsk).
In this work, we only require the above constraints to hold with high probability.
Definition B.2 ((computational) group signature correctness) Let ΣGS be a
group signature scheme, λ ∈ N be the security parameter, n ∈ N be the group size,
(gpk, gmsk, (gsk[i])n

i=1) ←$ GS.KGen(λ, n), i ∈ [n], m be a message. ΣGS is (compu-
tationally) correct if there exists negligible functions κ1, κ2 such that the following two
conditions are met:

(i) Pr[GS.Vfy(gpk,m,GS.Sign(gsk[i],m)) = 1] = 1− κ1(λ)

(ii) Pr[GS.Open(gmsk,m,GS.Sign(gsk[i],m)) = i] = 1− κ2(λ)
We next cover security of group signatures. We begin with the notion of full-anonymity

which basically requires that without the group manager secret key gmsk, it is not
possible for an adversary to efficiently tell which of the group members produced a given
valid group signature. This should even hold if the adversary is allowed to choose two
signers, one of which then must produce a signature.
Definition B.3 (full-anonymity) Let λ ∈ N be the security parameter, let n ∈ N be
the group size. We define the following security experiment for a group signature scheme
ΣGS between an adversary A and a challenger C:

Expanon
A,ΣGS(λ)

1 : b←$ {0, 1}
2 : (gpk, gmsk, (gsk[j])n

j=1)←$ GS.KGen(λ, n)
3 : (state, i0, i1,m)←$AGS.Open(gmsk,·,·)(choose, gpk, (gsk[j])n

j=1)
4 : σ ←$ GS.Sign(gsk[ib],m)
5 : b′ ←$AGS.Open(gmsk,·,·)(guess, state, σ)
6 : if A did not query GS.Open oracle with (m,σ) in guess phase return b′ = b

7 : else return 0

We define the advantage of A against ΣGS in the above security game as

Advanon
A,ΣGS(λ) := |Pr[Expanon

A,ΣGS(λ) = 1]− 1
2 |

We call ΣGS fully-anonymous if for all ppt adversaries A Advanon
A,ΣGS(λ) is negligible in λ.

114



The full-anonymity security experiment Expanon
A,ΣGS(λ) is split in two phases. In the

choose phase, the adversary A has to choose two identities i0, i1, one of which must
subsequently produce the challenge signature σ on the challenge message m (which is also
chosen by A). While doing so, A can query the challenger for the signer identities behind
arbitrary signatures. In the guess phase, the adversary is provided with a challenge
signature σ created by one of the previously chosen signers i0, i1. A must then decide
which of those two signers produced σ. While still having access to the GS.Open oracle,
A of course is not allowed to query the challenge message-signature pair to the oracle
since this would make guessing the signer identity trivial.

With full-anonymity defined, we next turn towards the other important security re-
quirement for group signatures which is full-traceability. The basic idea behind it is that
it should be infeasible to create a group signature that cannot be traced back to one of
the signers involved in its creation at opening time.

Definition B.4 (full-traceability) Let λ ∈ N be the security parameter, let n ∈ N be
the group size. We define the following security experiment for a group signature scheme
ΣGS between an adversary A and a challenger C:

Exptrace
A,ΣGS(λ)

1 : (gpk, gmsk, (gsk[j])n
j=1)←$ GS.KGen(λ)

2 : C := ∅
3 : state←$AGS.Sign(gsk[·],·),OC(·)(choose, state)
4 : (m,σ)←$AGS.Sign(gsk[·],·)(guess, state)
5 : if GS.Vfy(gpk,m, σ) = 0
6 : return 0
7 : if GS.Open(gmsk,m, σ) = ⊥
8 : return 1
9 : if ∃i ∈ [n] : GS.Open(gmsk,m, σ) = i ∧ i /∈ C ∧ (i,m) not queried by A to the GS.Open oracle

10 : return 1
11 : else return 0

with OC being an oracle as follows:

OC(j)
1 : C := C ∪ {j}
2 : return gsk[j]

We define the advantage of A against ΣGS in the above security game as

Advtrace
A,ΣGS(λ) := Pr[Exptrace

A,ΣGS(λ) = 1]

We call ΣGS fully-traceable if for all ppt adversaries A Advtrace
A,ΣGS(λ) is negligible in λ.
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The full-traceability experiment Exptrace
A,ΣGS(λ) is also split in two phases. In the choose

phase, the adversary can form the set of signers that are involved into the creation of the
malicious group signature σ in the subsequent guess phase. A signer j being involved
hereby means that A gains access to their personal signing key gsk[j]. The signers
colluding with A are recorded in the collusion set C. In the subsequent guess phase, A
is tasked with computing a group signature σ that is not traced back to any signer i ∈ C
by GS.Open. This means that A must either create a signature that is unopenable or
opens to an honest signer i /∈ C.

Note that the anonymity and traceability experiments Expanon
A,ΣGS(λ) and Exptrace

A,ΣGS(λ)
from Def. B.3 and Def. B.4 actually also depend on the group size n. To capture
this in the respective advantage definitions, it would be necessary to define negligible
two argument functions. Since this is just a technical detail that does not change the
argumentation in our discussions about group signatures, we omit it in this thesis.
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