'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Fakultat fur Elektrotechnik, Informatik und Mathematik
Arbeitsgruppe Codes und Kryptographie

Privacy-Preserving Collection and
valuation of Log Files

Bachelor’s Thesis

in Partial Fulfillment of the Requirements for the
Degree of

Bachelor of Science

by
ANGELINA KocH

submitted to:
Prof. Dr. Johannes Blomer
and

Prof. Dr.-Ing. Juraj Somorovsky

Paderborn, May 25, 2023

Contents

1 Introduction

1.1 Related Work e
1.2 Contribution
1.3 OVerview

2 Preliminaries

2.1 Notations e
2.2 Terms of our Scenario
2.3 Negligibility, Super-poly, Poly-bounded, Adversaries, and Security Games
2.4 Hashing Definitions
2.5 Encryption Definitions o oo
2.6 Prio Definitions
3 Scenario
3.1 Storage of Log Files and their Content
3.2 Evaluation Functions oo
3.3 Privacy Risk Assessment
3.4 Privacy Goals
3.5 Grading e
4 Basic Approaches
4.1 Hashing
4.1.1 Complete Hashing,
4.1.2 Partial Hashing o o
4.2 Encryption e
4.3 Hashing and Encryption oo o
5 Advanced Approaches
5.1 Prio . . . o e
5.1.1 How Prioworks. o
5.1.2 Security and Privacy of Prio
5.1.3 Adapted Scenario. o
5.1.4 Evaluation
5.1.5 Extensions and related work: Prio2, Prio3, Prio+, VDAF, PPM
5.2 Differential Privacy o
5.3 PriowithLogFiles

21
21
23
25
27
28

29
29
31
37
42
o4

61
61
62
64
67
68
81
82
84

iii

Contents

5.4 Private Set Intersectiono 93
5.4.1 How Private Set Intersection works 93

5.4.2 Evaluation 94

6 Overall Solution 101
6.1 Result of Basic Approaches 101
6.2 Result of Advanced Approaches L. 102
6.3 Possible Improvementso Lo 103

7 Conclusion 105
7.1 Outlook e 105
Bibliography 107
A Exemplary Database Tables and Overall Grading Tables 113
A.1 Example of the Log_Files Database Table. 113
A.2 Explanation of Log File Entry, Column, Cell 113
A.3 Overall Grading Tables 115

B Proofs 117
B.1 Proof of Claim 4.2.1 117
B.2 Proof of correctness of Prio’s sum-AFE 118

iv

1 Introduction

New technology evolves fast and so do new threats. The number of found vulnerabili-
ties per year increases' and with them the possibilities for new attacks. Since attacks
can have huge impacts on companies, it is important to avoid or at least detect them.
Otherwise, the companies could face a decreasing reputation due to downtimes from
denial-of-service attacks or be threatened by blackmail. To avoid these situations, the
companies can use log files. Each entry of such a log file contains data about a request
that was submitted by an employee to a specific website. By using log files, it is possi-
ble to find out where malicious software came from or who and which device accessed
a malicious website and downloaded malware. This can be very useful, but not with
regard to preserving privacy. In our scenario, the data in these log files can be sensitive.
In particular, they contain information about when an employee of a company visited
which websites. Every time an employee sends a request to the internet, a server stores
the necessary data as a new log file entry in the company’s log file database. Then this
data can be analyzed to e.g., find out which employee infected the company’s device with
the detected malware. Since not all employees can be blamed for a malicious download,
it is not necessary to see all employees’ log entries in the clear. Otherwise, it would
violate their privacy without good reason.

To underline the importance of privacy, we first try to explain what it means. Privacy
can be described as information about us that we do not want to be known publicly,
not being revealed to the public nor a single unauthorized person. But as described in
[Par83], privacy is more complex since it cannot be preserved for anything already public
and only as long as the persons themselves want their data to be private. Furthermore,
privacy has many principles that are defined in [PH10]. The most interesting ones for us
are anonymity and unlinkability. In our context, anonymity means that a log file entry
cannot be linked to the employee who caused it. Hence, each issuer of a request stays
anonymous. Moreover, unlinkability refers to the fact that it cannot be told whether
two different log entries are related. Additionally, we are talking about pseudonymity
if we store pseudonyms instead of the names of the employees. Privacy has many more
principles, but we do not focus on those. Plus, in the cryptographic sense, privacy
can also be defined by an adversary, that interacts with a function over database entries
without learning more about the entries than the function’s results [GLP11]. This should
give a good idea of what privacy is to understand its importance. And this is why we
investigate a way to collect and evaluate log files for more security without violating the
privacy of innocent employees.

"https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severit
y-distribution-over-time

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

1 INTRODUCTION

1.1 Related Work

Some previous work on privacy-preserving log files anonymize the sensitive parts of data
to improve privacy [Rat16, OHS13]. The paper of Oliver et al. [OHS13] proposes their
framework that helps to anonymize the sensitive data inside the log files. For this,
the users must define some clean-up functions that remove unnecessary data. Those
functions could for example, generalize a stored location to only the country or hash the
user’s ID. Whether this completely preserves privacy, depends on how well these clean-
up functions are made. And this requires deciding which data is sensitive and which is
not. If the log file is unstructured, in contrast to our log files which contain predefined
values, finding the sensitive values can be challenging. For example, if we find a person’s
name in a search query, this can be sensitive data, if it is the issuer’s name. But it
would not be sensitive if it is some celebrity the issuer searches for. A solution to clearly
divide sensitive data from non-sensitive is presented in [Rat16]. They designed a system
with two streams of log files. One stream contains the original, raw data including all
sensitive data. This one needs to be encrypted to ensure privacy and security. But
this first stream is not used for analysis. Instead, Rath [Rat16] recommends creating a
second stream which only contains sensitive data that is anonymized. For this stream,
the logging function takes templates (without any sensitive data) and the sensitive data
as two distinct inputs. Due to this distinction, the users know the sensitive data and can
replace sensitive strings by strings of * or only their first letter. These anonymized log
file entries are stored unencrypted and are used for analysis. But there is a problem with
those self-created anonymizing functions: Imagine a company has an employee named
Yorgens, such that the anonymizing function would change Yorgens to Y and this log file
entry would then be stored unencrypted. Since everyone has access to the unencrypted
log file and Yorgens is the only employee in this company that starts with Y, everyone
can derive that the entries with Y are from Yorgens. Hence, for him, we cannot preserve
privacy anymore. Therefore, we want a solution, that does not only shorten the values
in the log files but makes them completely anonymized.

The second idea we discuss has been designed for the log files of search engines, such as
Google and Yahoo [BCV16]. A goal of search engine owners is to sell the logged data to
make a profit with it. But if the data would be anonymized, this would not be possible
anymore because they then cannot extract and infer the information from the logged
data as before [BCV16]. Due to this, Bondia-Barcelé et al. created a logging system
that is privacy-preserving while it allows to sell the log entries’ content for profit. To
do so, they first remove sensitive data, that can reveal the sender’s identity, from each
search query. Second, they analyze the words inside the remaining content of each query
to find its overall purpose. These purposes could for example, be health, science, or
shopping. Log file entries of the same overall purpose are stored in the same collection.
If this collection is filled with a specified number of log entries, they are anonymized.
For this, one of the log entries and one of the metadata of the entries is each chosen at
random?. Then, Bondia-Barcelé et al. replace the metadata of the chosen entry by the

2Per definition, the chosen log file entry and metadata should not originate from the same search query.

1.1 Related Work

randomly chosen metadata and achieve a log file entry with metadata from a different
person. This is considered to be privacy-preserving because no information about the
issuer, but of an issuer with the same overall interest, is leaked. This approach is also
not optimal for our purposes because the change of each request’s metadata makes it
impossible to find the person that downloaded the malicious software.

Next, we take a look at Differential Privacy. This was first mentioned by Dinur,
Nissim, and Dwork in [DN03, DMNS06]. Afterward, many papers were published that
either make use of Differential Privacy for their specific purposes or that try to further
improve it [DR14, MKB*19, Vin22|. In the use case of Differential Privacy, a function
is evaluated on sensitive data. To protect the users’ privacy, the function’s output is
afterward added with random noise®. This leads to changed output such that the given
output does not reveal too much information about the sensitive data that was used.
Nevertheless, the altered output is still close enough to the correct output to be useful.
We discuss Differential Privacy and whether it can be applied to our scenario in more
detail in Section 5.2.

Moreover, there also exist cryptographic approaches to preserve the users’ privacy.
The first one we mention here, is [UKH"21, UKK*22], which is another work in the
context of logging users’ queries to web search engines. To avoid the users from being
linkable to their queries, Ullah et al. group the users [UKH'21]. After that, each
query of a user is forwarded by another member of his group such that the true identity
of each query’s issuer is unknown to the web search engine. Later on, Ullah et al.
extended their work such that group members are as different as possible to improve
unlinkability [UKK'22]. A disadvantage of this general approach is that it heavily
depends on symmetric and asymmetric encryption, which is used to avoid the members
of a group reading each other’s queries and responses. Furthermore, the search queries
themselves can contain sensitive data that reveal the issuer’s identity. Therefore, this
information must additionally be removed to hide the identity of each search query’s
sender. Thus, we are still looking for a better solution to preserve privacy in our scenario.

The second cryptographic approach we mention here is called Searchable Encryption
[ABOO7, BBOO7]. This fits our scenario very well since its goal is to encrypt the cells
of database tables while enabling search queries on the data. For this, one computes
tags for each value in the database’s tables. Those tags can be computed with the value
itself as input, as well as from its ciphertext. Therefore, these tags can be used to form
queries and respond to them without accessing the real data. But the problem with
this is, that it focuses more on searchability than on privacy and thus data is revealed
if this is necessary to respond to a query. Moreover, one of the schemes that belongs
to this concept, needs the stored values to have a "high min-entropy" [BBOO07]. But
this requirement cannot be met in our scenario, since we most likely have small spaces
of e.g., IP addresses of the employees since those are limited to a fixed and not huge

31t is also possible to add random noise to the function’s inputs and then apply the function on
the altered input. But this version of Differential Privacy is not discussed in this work, since the
distribution of the noise can be learned then [AS00][DMNSO06, page 268].

1 INTRODUCTION

number.* Additionally, we want to regard encryption as one of our basic approaches
to give a first impression of what can be achieved by using less complex mechanisms.
For those approaches, the work about searchable encryption is already too complex and
hence not suitable as basic approach. Though searchable encryption fits our scenario
and the goals of this work well, we do not discuss it as advanced approach since our
focus is already on Prio [CB17].

There exist many more cryptographic approaches for privacy. One of them is the
commercial solution XOR, which is introduced by Inpher and makes use of multi-party
computation [Inp22]. Another paper from Liu et al. describes a privacy-preserving
way to track Covid-19 infections with a warning system [LZCW23]. This approach uses
blockchains, group signatures, zero-knowledge proofs, and more to ensure privacy in each
context of monitoring the spread of the virus.

More importantly, we discuss other related work such as Prio [CB17] with and without
log files, newer variants of Prio, Poplar [BBC*21], Private Set Intersection [DMRY09],
and Differential Privacy in Advanced Approaches (Chapter 5) in detail.

1.2 Contribution

In this work, we design a system that allows private collection and evaluation of data
stored in log files. Our contribution is to define evaluation functions (Section 3.2) that
can be computed using those data. Furthermore, we define privacy goals (Section 3.4)
which describe the privacy properties we want to ensure in the scenario we assume in
this work. Given this basic construction, our work consists of analyzing the different
cryptographic approaches, that we find most interesting for our purposes. Those make
use of hash functions, encryption, Prio [CB17], Poplar [BBC*21], Differential Privacy
[DN03, DMNSO06], and Private Set Intersection [DMRY09]. We use these thoroughly
selected cryptographic approaches to design our privacy-preserving log file collection
and evaluation system. For this, we introduce a grading system (Section 3.5) that is
used to grade and compare all those approaches. Regarding our encryption approaches,
we prove that we cannot recognize whether two ciphertexts originate from the same
plaintext unless our used probabilistic encryption scheme is insecure against chosen
plaintext attacks (Section 4.2 and Appendix B.1). For Prio and Poplar, we describe in
all details how those approaches are applied to our evaluation functions (Sections 5.1
and 5.3). This is more complicated than for other approaches since each evaluation
function must be realized differently. Moreover, for one of those aggregation functions
from Prio (maximum), we also figure out how it works in particular for our setting and
implement it (Section 5.1.4). Additionally, for the less complex approaches, we design
a construction which allows us to check whether malicious employees tampered their
request data before the evaluation (Section 5.3). In the end, we use our findings to
create our privacy-preserving log file collection and evaluation system (Chapter 6).

4This problem can be reduced with bucketization, where we output shorter digests to achieve more
collisions for the tags. See [BBOOT7] for more details.

1.3 Overview

1.3 Overview

In the following, we describe and analyze the cryptographic approaches that can be
useful for our privacy-preserving log file collection and evaluation system. To do so,
we first list some preliminaries in Chapter 2 to get started with the formal definitions
and notations we use in this thesis. After that, we describe the scenario in Chapter 3
for which our privacy-preserving log file system is designed. In that chapter, we also
discuss which values in our scenario’s log entries are sensitive and which are necessary
for our evaluations. Next, we analyze the different approaches. The first of them are
basic approaches (Chapter 4). There, we analyze hashing and encryption and grade how
well they work for our scenario. After that, we consider more advanced approaches in
Chapter 5. Thereby, our main interest is in Prio [CB17]. But we also name advantages of
newer variants of Prio, such as Prio3 [BBC*19], Prio+ [AGJ*22], Poplar [BBC*21], and
our Prio extension using log files in Section 5.3. Moreover, we investigate as advanced
approaches the concepts of Differential Privacy [DN03, DMNS06] and Private Set Inter-
section [DMRY09]. After that, in Chapter 6, we compare the results of the functionality
and privacy grading of all analyzed approaches. This helps us find a solution for our
scenario that is as well privacy-preserving as functional regarding the defined functions.
In the last chapter (Chapter 7), we conclude the thesis by summarizing the important
results and findings.

2 Preliminaries

In this chapter, we list definitions that are fundamental to the cryptography we use in
this work. At first, we mention negligibility and poly-bounded adversaries, which are
central to all concepts that are defined in this chapter. Next, we explain the concepts of
hashing and encryption. Additionally, we require some mathematical constructions that
are used by our advanced approach Prio in Section 5.1. The following definitions are
inspired and partly adopted from A Graduate Course in Applied Cryptography written
by Boneh and Shoup [BS22]. But first, we name the notations that are used in this
work.

2.1 Notations

The first notation we use is N which contains 0, hence we denote N = {0,1,2,...}. We
also use the notation a := b to denote that the variable a is set to value b. Moreover, a
field F, contains the set {0,...,p — 1} and all mathematical operations are executed in
mod p. We use P[A] to denote the probability that some event A occurs. The notation
¥ is used for vectors. Additionally, by x < X, we denote that the value x is chosen
uniformly at random from the space X. Furthermore, we define s € {0,1}",n € N to
be a string and |s| = n its length. With s[0..z] we denote a substring of s with length
z < |s|. Hence, it holds that s[0..|s|]] = s and s[0..0] is the empty word.

2.2 Terms of our Scenario

Next, we define the notations that belong to our log file database scenario: By
Log Files we denote our database’s table which contains all important data regard-
ing issued requests.! Log Files contains R € N log file entries entry,,,, with row €
{1,2,...,R}. A log file entry entry,,, is represented as a row in the Log Files ta-
ble. Moreover, this table has |CO| columns where each col € CO is also represented
as column®. If we only talk about a specific column but the log entry is arbitrary,
we write entry[col] to address a column of a log file. Further, we write entry,,,,[col]
when we want to address a single value stored in a cell of entry entry,,, in column
col. For example, if we want to investigate the timestamp of the 5th log entry, we
address this value with entry;[timestamp]. For clarity, the terms log file entry, column,
and cell are also displayed in Figure A.1. The value set V., defines which values are

!There are two other tables in our database, but they are only for administrative purposes and are
hence not defined in more detail than in Section 3.1.
2The columns that we use in our specific scenario are defined in Section 3.1.

2 PRELIMINARIES

valid for which of the columns, such that an entry entry,,,[col] is valid if and only if
entry, ., [col] € Veor, row € {1,2,..., R}.

2.3 Negligibility, Super-poly, Poly-bounded, Adversaries, and
Security Games

In this section, we explain important terms in the sense of cryptography. We start with
negligibility, which can roughly be understood as so tiny that it is nearly 0.

Definition 2.1 (Negligibility). We define a function f : N — Rx(to be negligible, if
and only if it holds that Vp € Ry : 3zg € N\{0} : Vo > z¢ with z € Z : |f(x)| < =7P.
Or in other words: For any x that is larger than some boundary xo, f(x) becomes very
small.

The term negligibility is often used in cryptography to describe the advantage that an
adversary® should have in the best case. This would mean, that an adversary that plays
a security game, has a very low probability of succeeding or guessing the correct value.

The next important term is super-poly. A function can never be super-poly and
negligible simultaneously.

Definition 2.2 (Super-poly). We define a function f : N — Rx>q to be super-poly if
its inverse g := 1/ f is negligible as defined above.

The term super-poly is often used to describe a number of queries that can be sent by
e.g., an adversary.

The last essential term is poly-bounded. With this term, an adversary is described
that can at most submit a polynomial number of queries. For understandability, one can
think of an adversary that only has limited computational power available. The term
adversary is defined afterward.

Definition 2.3 (Poly-bounded). We define a function f : N — R>(to be poly-bounded,
if it holds that Ip,q € Rsg : Vo € N: |f(x)| < 2P +gq.

Additionally, we understand by the term adversary a person or software that tries to
harm the company’s system or its employees. In our case, this adversary tries to violate
the employees’ privacy.

Definition 2.4 (Adversary). We define adversary A as an algorithm that uses internal
randomness to output y on input z. If A is poly-bounded as defined above, we call A an
efficient adversary.

Additionally, we define the term winning for the following security games.

Definition 2.5 (Winning a Security Game). We define that an adversary A wins a
security game G against a challenger if and only if the challenger outputs 1 at the end
of G. Otherwise, we say that A loses G.

Next, we list important definitions of the approaches that we regard during this thesis.

3The formal definition of adversary follows in Definition 2.4.

2.4 Hashing Definitions

2.4 Hashing Definitions

One of our basic approaches is hashing. For this, we consider three different types of
hash functions: Keyless hash functions e.g., SHA-256 and SHA-3, hash functions with
salt where a random value is additionally used as input, and keyed hash functions.

The first version of hashing that we want to regard is keyless hashing. For this, the
hash function is a function that maps from a very large message space to a much smaller
digest space without any additional input. We refer to the elements of a message space
as plaintexts. Additionally, we call the elements from the digest space digests.

Definition 2.6 (Keyless Hash Functions). We define a keyless hash function H to
be a deterministic function that maps from an infinite message space M = {0,1}* to a
much smaller digest space D = {0,1} with | € N. Hence, our keyless hash function is
defined as H : M — D and takes no additional input.

Often the spaces M and D are used as binary ones, e.g., M = {0,1}* and D = {0, 1}!.
Then our hash function can take inputs of arbitrary length and always outputs a digest
with the fixed length [. But in practice, the hash function H can take arbitrary ASCII
symbols as input and outputs a hexadecimal value of fixed length [/4, which is not
human-readable anymore. In our scenario, most of the values in the log entries are non-
numerical. Hence, it would not suffice to assume binary preimage and image spaces.
But, whenever we argue with M and D being binary, these considerations can be easily
applied to scenarios where input and output are not binary. For this, we only have to
translate the ASCII symbols and hexadecimals into bits or vice versa.

But there is another problem with keyless hashing that cannot be solved as easily.
Since hashes can be precomputed using rainbow tables*, we need another version of
hashing to protect our log entries. Thus, we next regard hashing with salt (or pepper).
For this, a randomly chosen value, the salt is also given as input to the hash function. If
this value differs for e.g., each user®, adversaries must compute one rainbow table per user
to reverse all hashes of the database. Hence, the salt complicates the precomputation of
digests that can be done with rainbow tables. Therefore, we understand salted hashing
as:

Definition 2.7 (Salted Hash Functions). We define a salted hash function Hg to
be a deterministic function that maps from an infinite message space M = {0,1}* and
a finite salt space S = {0,1}*, u € N to a finite digest space D = {0,1}',1 € N. Hence,
our hash function is defined as Hgy : M X § — D and takes the p-bits salt € S as
additional input. Thus, our salted hash function is defined over the triple (M,S, D).

4Rainbow tables use a reduction function R : D — M. This function R cannot compute the inverse of
the hash function, but it maps from the digest space to the message space and is (alternating with
the hash function) applied to a digest. This approach allows computing hashes of a huge part of the
message space if R is well-designed. This way, huge tables called rainbow tables are created. With
these, adversaries can look up the preimages of the precomputed digests. Thus, rainbow tables can
get large and need a lot of storage. Hence, if we force adversaries to compute many different rainbow
tables, to precompute a single database, we slow them down and increase their need for storage. See
[KKJ*13] for more.

5In our scenario they are named employees.

2 PRELIMINARIES

Unlike pepper, which is used as salt, but stored in a second database, the salt of
salted hashing is stored along with the data it is used for. Therefore, it is all the more
important to generate a new random salt for each user. Otherwise, if adversaries get
access to the database, they additionally get to know the salt that is stored there. Then,
they could use this salt as input to the hash function to compute a single rainbow table,
that would suffice to reverse all digests from the database.

The third version of hash functions also complicates the precomputation of hashes
that uses rainbow tables. Those hash functions are keyed hash functions, where instead
of the salt, a key is used as a second input to the hash function.

Definition 2.8 (Keyed Hash Functions). We define a keyed hash function Hy.y, to
be a deterministic function that maps from an infinite message space M = {0,1}* and
a finite key space K = {0,1}), X\ € N to a finite digest space D = {0,1}!,1 € N. Hence,
our keyed hash function is defined as Hyey : M X K — D and takes the \-bit key k € K
as additional input. Moreover, we identify the hash function over the triple (M, IC, D).

The key k of a keyed hash function Hy., must not be secret. It is used to pick a
hash function from a large set of hash functions at random, and thus complicates the
precomputation of rainbow tables. Moreover, this key cannot be compared to keys that
are used in the context of encryption. Those keys can encrypt and decrypt, while this
hash key can only be used to hash messages, but the reverse is impossible.

Security Definitions of Hashing

In practice, it is important to choose whether the applied hash function uses salts or
keys and which specific function should be used. Hence, we discuss some security defi-
nitions regarding hash functions that we consider important for our analysis of hashing
in Section 4.1. Since we only regard security definitions for keyed hash functions, we
denote them by H instead of Hye,. And as the key k for a keyed hash function H is not
meant to be secret, k is always given to the adversary in the following security games.

We use two of the existing security definitions: One-wayness and collision resistance.
The first one, we want to focus on, is one-wayness. If a hash function is one-way, then it
is hard for any efficient adversary to find any preimage of the hash function’s outputs.

Definition 2.9 (One-wayness of Keyed Hash Functions). We define one-wayness for
a keyed hash function H that is defined over the spaces (M,IC,D) by introducing the
following security game between a challenger and an arbitrary adversary A:

10

2.4 Hashing Definitions

Security Game: One-wayness of Keyed Hash Functions

Challenger A
m «— M
k+ K

if

m' € M and
H(m' k) =d
output 1

else output 0

Hence, we call H one-way if and only if every efficient adversary A wins the previously
defined security game with negligible probability.

Hence, one-wayness as a security requirement for our hash function, ensures that it is
hard to find any preimage of a hashed log file entry. For us, that means, that no one
can easily regain the original values of the log file entries after we hashed them.

The second and last security definition we want to name is collision resistance. To do
so, we first explain the term collision, which describes the problem of different messages
being hashed to the same digest.

Definition 2.10 (Collision). We define a collision as two different messages m, m’' €
M, m #m! being mapped to the same digest H(m,k) = H(m/, k) with k < K.

This property can become very important for our analysis. For the hashing approach,
we hash the values in our log files. If different values would be hashed to equal digests,
we would recognize them as identical values by mistake. Next, we present the security
definition for collision resistance:

Definition 2.11 (Collision Resistance of Keyed Hash Functions). We define collision
resistance for a keyed hash function H that is defined over the spaces (M, K, D) by
introducing the following security game between a challenger and an arbitrary adversary

A:

11

2 PRELIMINARIES

Security Game: Collision Resistance of Keyed Hash Functions

Challenger A
k+ K
k
(m,m’)
if

m,m’ € M and
m#m' and
H(m,k) = H(m', k)
output 1

else output 0

Hence, we call H collision resistant if and only if every efficient adversary A wins
the previously defined security game with negligible probability.

In other words, if it is hard for every efficient adversary to find two different values
with the same digests, we denote the hash function H as collision resistant. Important is
that it is only hard to find such two colliding messages. But since the digest space D can
be much smaller than the message space M, we cannot completely prevent collisions. It
thus can always happen that some of our log file entries are hashed to the same digest,
though they are completely different. We deal with this problem in Section 4.1, where we
discuss the approach of hashing in detail. Nevertheless, we prefer using hash functions
that are collision resistant because their probability for collision and hence their rate of
incorrectly identified log file entries is lower.

2.5 Encryption Definitions

In the following section, we list the definitions that are useful for our second basic
approach, which is encryption. For this, we first identify deterministic encryption and the
necessary security definition. Next, we regard probabilistic encryption and its security
definition as well. But we discuss in Section 4.2 why probabilistic encryption cannot
serve our purposes well enough.

At first, we focus on the definition of deterministic encryption schemes. The most
secure ones are Shannon ciphers, which are perfectly secure but only for keys with the
same length as the plaintext. Since some values in our log entries, such as the URL, can
become very long, we consider computational ciphers instead of Shannon ciphers.

Definition 2.12 (Computational Ciphers). We define a computational cipher E as
a tuple of two deterministic algorithms (Enc,Dec) for message space M, key space K,
and ciphertext space C. Those algorithms are defined as follows:

12

2.5 Encryption Definitions

e Enc(m, k) takes as input a message m € M and a key k € K and outputs a
ciphertext ¢ € C.

o Dec(m, k) takes as input a ciphertext ¢ € C and a key k € K and outputs a message
m € M.

For the correctness of a computational cipher E, we require that:

Vm € M :Vk € K : Dec(Enc(m, k), k) = m.

One may recognize that we defined Enc to be deterministic, while it is usually defined
as a probabilistic algorithm. This restriction is necessary because the ciphers would
otherwise not be useful for our scenario. When we analyze the encryption approach in
Section 4.2 we encrypt each log file entry and we evaluate our evaluation functions which
are defined in Section 3.2 with the encrypted log entries as input. Hence, we need that
two identical messages are encrypted to the same ciphertext. Or more formally said:

For each pair of messages mi, me € M with m; = mo and each key k£ € K, we require
that Enc(mg, k) = Enc(mag, k) with probability 1.

Hence, we can only regard Enc algorithms that are deterministic such that their out-
puts are still comparable. Some ciphers that can be used for our analysis in Section 4.2
are e.g., stream ciphers which use pseudorandom generators or block ciphers in ECB
mode. To specify the security of the deterministic computational ciphers from above,
we use the security game for semantic security:

Definition 2.13 (Semantic Security). We define semantic security for a deterministic
cipher E that is defined over the spaces (M, IKC,C) by introducing the following security
game between a challenger and an arbitrary adversary A:

13

2 PRELIMINARIES

Security Game: Semantic Security

Challenger A
b+ {0,1}

(mo,m1)

kK
¢ := Enc(mp, k)

be {0,1}

if

mg, m1 € M and
|mo| = |m1| and
b=">

output 1

else output 0

Hence, we call a cipher E semantically secure if and only if every efficient adversary A
outputs the correct b = b with probability at most 1/2 + €, with £ being negligible. This
means, that each adversary A must be slightly better than simply guessing the correct b.

Nevertheless, if we only use deterministic ciphers, the security and therefore the pri-
vacy of the log file entries suffers. Since we can recognize ciphertexts of equal log entries,
any employee and adversary can do so as well. For example, they can send a request
and compare the ciphertext of the URL with all other ciphertexts of URLs in the log
file. Thus, they can get information about which websites have been visited. Moreover,
they can do this for any value in the log entries since we use deterministic encryption.
Therefore, it would be better to use probabilistic encryption. This can be achieved if the
algorithm Enc of our computational cipher E is probabilistic. The probabilistic cipher
FE is correct if it holds that:

Vm € M :Vk € K : P[Dec(Enc(m, k), k) = m] = 1.
Then, for the definition of E’s security, we consider the following security game:
Definition 2.14 (Security against Chosen Plaintext Attacks). We define security
against chosen plaintext attacks for a cipher E that is defined over the spaces

(M, K,C) by introducing the following security game between a challenger and an arbi-
trary adversary A:

14

2.5 Encryption Definitions

Security Game: Chosen Plaintext Attack
Challenger A
b+ {0,1}

kK

forie {1,2,...} send queries:

(m¢,07 mi,l)

C; = Enc(mi’mk)

ci

be {0,1}
if
Yi:m, o, mi1 € M and
Vit |m; o = |mi1| and
b=b
output 1

else output 0

Hence, we call a cipher E secure against chosen plaintext attacks (or shortly: CPA
secure) if and only if every efficient adversary A outputs the correct b = b with probability
at most 1/2 + e, with € being negligible. This means, that each adversary A must be
slightly better than simply guessing the correct b.

To get a cipher that is CPA secure, Enc must be probabilistic.

All previously defined encryption schemes are symmetric, but we could use asymmetric
encryption as well. Hence, in the following we describe asymmetric encryption which
uses different keys for encryption and decryption. Moreover, the key for encryption is
public such that there is no need to share different keys with different communication
partners.

Definition 2.15 (Asymmetric Encryption Schemes). We define an asymmetric en-
cryption scheme E as a triple of algorithms (Gen, Enc, Dec) for message space M and
ciphertext space C.

o Gen() outputs a secret key sk and a public key pk.

o Enc(m, pk) takes as input a plaintext m € M and a public key pk and outputs a
ciphertext ¢ € C.

o Dec(c, sk) takes as input a ciphertezt ¢ € C and a secret key sk and outputs a
plaintert m € M.

15

2 PRELIMINARIES

For the correctness of an asymmetric encryption scheme, we require that
P[Dec(Enc(m, pk), sk) = m] = 1.

This implies that Dec must always be deterministic because otherwise it could mot be
ensured that any ciphertext is correctly decrypted to the original plaintext.

In Section 4.2 we explain that we can only use deterministic encryption for the purpose
of comparing ciphertexts instead of their plaintexts. Hence, we can only use deterministic
encryption schemes. Moreover, this leads to Enc being deterministic and thus it already
suffices for the correctness of a deterministic asymmetric encryption scheme to fulfill:

Dec(Enc(m, pk), sk) = m.

But it can be shown that asymmetric encryption schemes that are also deterministic
are not CPA secure. The definition of CPA security for asymmetric encryption schemes is
similar to Definition 2.14 unless for asymmetric encryption schemes, the keys are chosen
differently. Hence, the challenger picks (pk, sk) <— Gen() and also sends pk to the adver-
sary. Additionally, the encryption of the adversary’s queries is done by the asymmetric
encryption algorithm Enc(m; p, pk). To win this security game, an adversary would only
have to pick the same message for mg twice and two different messages for m; and can
already determine whether the chosen bit b is 0 or 1. Moreover, deterministic asymmet-
ric encryption schemes are not semantically secure as well. For this, the adversary A
only has to compute the ciphertexts of the messages mg, m; he chose using the public
key pk. Then, he compares them to the provided ¢ to decide which of the messages was
encrypted by the challenger. Therefore, we use another security game called message
recovery attack, which can be ensured for deterministic asymmetric encryption schemes.

Definition 2.16 (Security against Message Recovery Attacks). We define security
against message recovery attacks for an asymmetric encryption scheme E that is
defined over spaces (M,C) and uses algorithms (Gen, Enc,Dec) by introducing the fol-
lowing security game between a challenger and an arbitrary adversary A:

16

2.6 Prio Definitions

Security Game: Message Recovery for Asymmetric Encryption

Challenger A
m +— M

(pk, sk) < Gen()

¢ < Enc(m, pk)

(pk,c)

if

m' € M and
m =m
output 1

else output 0

Hence, we call a cipher E secure against message recovery attacks if and only if
every efficient adversary A wins the previously defined security game with probability at
most 1/|M| + e, with € being negligible.

Since in the previously defined security game, the adversary must output the whole
message m correctly, this security definition is weaker than CPA security and semantic
security. But nevertheless, we can ensure this security definition with deterministic
asymmetric encryption schemes such that it is useful though.

We use the previously defined ciphers and encryption schemes to analyze their privacy-
preservation for our scenario in Section 4.2.

2.6 Prio Definitions

For our use of Prio as advanced approach in Section 5.1, we use additional definitions
that are necessary for the understanding of Prio from Corrigan-Gibbs and Boneh [CB17].

Since our scenario for Prio is different from the one described in Chapter 3, we also
introduce other terms that substitute those from Section 2.2. For Prio, each client (in
our scenario employee) t € {1,2,..., T} owns a secret sec; that should be sent to the
servers and analyzed. All those secrets sec; can either be binary (€ {0,1}) or numerical
in N. A secret is valid if it lies in our value set V. The servers compute an aggregate
function f(secy, seca, ..., sect) over all (valid) secrets sec;.

The following definitions are adopted from the paper [CB17] of Corrigan-Gibbs and
Boneh where we use our notations for vectors, secret data, and string truncation and
mention the inputs and outputs of the AFE’s algorithms. For Prio we need more ad-
vanced math, thus we explain briefly what arithmetic circuits are:

17

2 PRELIMINARIES

Definition 2.17 (Arithmetic Circuits). We define an arithmetic circuit AC to be a
mapping F" — F. Hence, AC takes as input a vector U = (v, v1,...,0n—1) € F™ of size
n € N and outputs a value in F. Additionally, AC' can be represented as directed acyclic
graph with the following vertices:

e FEach Input vertex represents a variable v; from the input vector v € F™ or a single
value u € F. Moreover, each input vertex has no incoming input edges.

o Gate vertices represent a mathematical symbol that describes the operation that
is applied on the values from both incoming edges. Those symbols can be '+’ for
addition and "X’ for multiplication. One single edge forwards the result to the next
verter.

o The last vertex contains AC’s result and is called output vertex. There is exactly
one output vertex per arithmetic circuit and it has no outgoing edges.

Following the directed edges constructs a term that only contains variables from ¥ =
(vo,V1,...,0p—1) € F" and u € F that are summed or multiplied. The result of this term
1s the result of the circuit AC.

In Prio, arithmetic circuits are used to ensure the validity of the clients’ inputs. How
this works in particular, is explained in Section 5.1.1.

Next, we explain affine-aggregatable encodings. Those are used to enable Prio to
perform different aggregation functions f. Therefore, AFEs increase the set of possible
functions for Prio.

Definition 2.18 (Affine-Aggregatable Encodings). An affine-aggregatable encoding
(AFE) is defined as a triple of efficient algorithms (Encode, Valid, Decode). It computes
the result of an aggregation function f on input secrets (secy, seca,...,secy) from T
clients. Moreover, each AFE has the parameters k,k’ € Z with k¥ < k. The three
algorithms of an AFE make use of a field F and are defined as follows:

e Encode takes as input a secret sec; and outputs an encoding e, € F* from client
te{1,2,..., T} of this secret.

o Valid takes as input an encoding e; € F* and outputs 0 or 1 depending on e;.

e Decode takes as input all encodings e; and outputs the result of the aggregation
function f.

For the correctness of an AFE that computes an aggregation function f, we require

that for all combinations of secrets (secy, seca, ..., secy):
T
Decode(z Encode(sec)[0..5']) = f(seci, seca, ..., secr).
t=1

Moreover, an AFFE is sound, if it holds that

Ve € F* : Valid(e) = 1 if and only if Isec : Encode(sec) = e.

18

2.6 Prio Definitions

And an AFFE is private regarding a function f if there exists an efficient simulator

Sim that for all possible combinations of secrets secy, seca, ..., sect simulates such that
the distributions of Sim(f(sec1, seca, ..., secr)) and Y.L | Encode(sec)[0..x"] are indis-
tinguishable.

Intuitively, this means that an efficient simulator Sim takes as input f (sec1, seca, . ..,
sect) and simulates the inputs of Encode in a way that the input of Decode is indis-
tinguishable from Y., Encode(sec;)[0..']. In particular, it picks random sec;,Vt €
{1,2,..., T}, computes their encoding by simulating Encode and outputs a sum of trun-
cated encodings. This sum is indistinguishable from the input of Decode that is produced
by an arbitrary adversary that runs the AFE. According to [CB17], the function f re-
veals few more information than the aggregation function f. This additional leakage is
quantified with L(secy, seco, ..., secr) and depends on the executed AFE.

Given these security and privacy properties, an AFE does improve the functionality
and privacy of Prio. We discuss this in more detail in Section 5.1. In the following
chapter, we define our scenario for which we want to analyze the approaches for our
privacy-preserving log file collection and evaluation system.

19

3 Scenario

For this thesis, we imagine the following scenario. In a company, there are many employ-
ees that use their devices e.g., computers and tablets (also called clients in the following)
to communicate with websites and services over the internet. Each of the employees’
requests is sent to a proxy server that forwards the requests to the internet and caches
the responses in a web cache for later use!. Additionally, the proxy server filters known
malicious websites to prevent employees from accidentally downloading malware from
there. For this purpose, it can be helpful to learn about new malicious websites to add
them to the proxy server’s blacklist.

In the following, we consider four types of actors. First, the efficient adversaries that
were defined in Definition 2.4. Those actors try to get access to the stored log files and
try to learn the sensitive data. Then, there are the employees that, in the worst case,
have legal access to the log files. Hence, if we do not protect or hide the sensitive data
in the log files, the adversaries and employees are able to read them all. The other two
actors are admins® (special privileged employees) and data analysts from third parties,
which analyze the data that is produced by all employees?. Thus, both admins and data
analysts have special knowledge and privileges i.e., reading permission on the log files
and secret keys which they could misuse to injure the employees’ privacy.

3.1 Storage of Log Files and their Content

Additionally, each of the employees’ requests is forwarded to the log file server. This
server takes the requests and parts of the corresponding responses. Then it stores the
necessary data in the log files, which are realized with our log file database. In the
following, we assume that the log file server is run by the company and thus trustworthy.
Otherwise, since it receives the requests and thus the employees (sensitive) data, it would
be a great risk for privacy. Fach of the produced log file entries is stored in the Log_Files
table. And each log entry contains the column user_id, which identifies the submitting
employee, and a column with device_id, which specifies the used device. The device_id
depends on the device that was used to send a request, while the user_id depends on
which employee is currently logged in on this device. This distinction seems useful
because it is important to find an employee that accessed a malicious website. For this,
we need the user_id because devices are not necessarily fixed to a single employee.

"ttps://www.avg.com/en/signal/proxy-server-definition

?We use the term admin to identify the employees that use their privileges and knowledge to analyze
the stored data. Those actors are not related to the typical understanding of admins.

3As admins work for the company as well, they also produce (sensitive) data that must be protected.

21

https://www.avg.com/en/signal/proxy-server-definition

3 SCENARIO

If we only used device_id, a worst-case scenario would be that a malicious employee
downloaded malware before being fired. The malware is first discovered weeks later when
a new employee is already using the infected device. The log entries would allow the
conclusion that this new employee is guilty because he uses the infected device, but that
would be wrong. Nevertheless, the device_id is also necessary because when malicious
software is found on a specific device, the task is to find its source. Due to the stored
device_id we must only analyze a subset of all log entries that have to do with this
device. As both IDs are not used otherwise than in the log files, those are only known to
admins and data analysts since those can access Users and Devices. Additionally, the
log files we analyze contain the client mac_address and the client_ip_address, which
store the MAC and IP address of the sending device. Those are useful to filter all log
entries for the infected device, too. Furthermore, for any company that does not store
a user_id nor a device_id, they can use client mac_address and client_ip_address
instead to find connections between devices and websites. We also collect data about
the accessed website’s URL and IP address in target_url and target_ip. For better
readability, we prefer target_url, but since a website can have different URLSs, we also
store the corresponding IP address in target_ip for clarity. For downloads, we also
store the number of downloaded bytes in session_bytes. If there was no download, the
value of this column is zero. Furthermore, we use a column to store the status_code of
the response. This is important because malware could be downloaded after the client is
redirected to another, malicious website. Otherwise, we would identify a non-malicious
website as malicious and thus accidentally blacklist it. Last, each entry contains a
datestamp and timestamp. This allows us to reduce the set of possibly interesting log
file entries to a subset of entries from the affected period. As usual, each entry has a
log_id that makes it unique inside the Log Files table and corresponds to the row of
the entry. It holds that entry, , [log_id] = row. In summary, an entry of the Log Files
table consists of columns

CO :={log.id, user_id, device_id, client_ip_address, client mac_address,
target_url, target_ip, session_bytes, status_code, datestamp, timestamp}4.

The database also stores two other tables. The first one is Users, which maps user_id
to the corresponding employee’s full name. The other one is Devices, which is a mapping
from device_id to e.g., the number of the workplace of a computer or a tablet’s name.
Since, these two tables store very sensitive data, we assume that both are encrypted
and can only be accessed and decrypted by admins. Hence, we assume that it is not
possible to get access to these tables. Though this data must be stored such that there is
the possibility to learn e.g., the names of malicious employees. Although all previously
introduced columns seem very important, some of them could be redundant in practice.
Thus, we briefly recommend in Chapter 6 how the amount of stored data can be kept
to a minimum.

For a better understanding of our assumed scenario, Figure 3.1 shows all servers,
actors, and their relationships. We decided that the proxy server and the log file server

“Thus, |CO| = 11.

22

3.2 Evaluation Functions

= |[—>
OO0 00 / T as
|:| D I:l D /\F:/ri(:r):ybls:crl\(lﬁ;c\ é world wide web

company

web cache

devices \ é % —8
] I
log file server Aﬁle database data analysts

Figure 3.1: Diagram of our assumed scenario

employees&

admins

should be displayed as two different entities since they represent different functionalities.
Thus, we can easily substitute the log file server depending on what is necessary for our
analyzed approaches while keeping the functionality of the proxy server. However, in
practice, the tasks of the log file server and the proxy server could also be done by a
single server to save resources.

3.2 Evaluation Functions

All these collected data can then be analyzed for the following purposes. These are
mainly discovering new malicious websites by finding the sources of detected malware
and if possible learning who downloaded it. After the malicious website is found, it could
be interesting to reveal how many devices are also affected by the malware. The data
can be analyzed by the company’s admins or this task can be given to the data analysts
from a third party.

For our analysis, we define the following evaluation functions that can be executed
to get useful information from the log files. Those can then be used for the previously
described purposes. In the following, we use three different notations for the columns:
user_id refers to the column of the database, user_id denotes a variable containing a
value from the column and user_id is used in texts.

1. Max_Download_Size(), Avg_Download_Size(): At first, we would like to know the
maximum and the average number of downloaded session_bytes. A very large
download or download sizes that strongly derivate from the average can be indi-
cators for downloaded malware.

Input: session_bytes, Output: result € R (float)

23

3 SCENARIO

. Number_Requests(): Second, we want to evaluate the number of requests per

device_id (in a given period e.g., day or month). A device with significantly many
requests could be infected with malware and trying to perform a denial-of-service
attack. So, with this function, we have an indicator for malware on a device.
Input: device_id, Output: result € N (integer)

. Most_Visited_Websites(): We also have an evaluation function that outputs the

website that has been visited most often and the number of accesses to this page.
These results can be a good indicator to find a website which is attacked with
a denial-of-service attack by one of the devices. Hence, we can use it to find an
infected device, too®.

Input: -, Output: target_ip, target_url, result € N (integer)

. Malicious_Source(): Next, we want to find a target_ip or target_url that corresponds

to a specific number of downloaded session_bytes. This can be used to find the
website that is the source of detected malware of size session_bytes. Each log entry
that is found by this function is marked as suspicious by adding its log_id to a set
of IDs of suspicious log entries. We can add the website to the proxy server’s
blacklist, after we ensured that it is indeed a source of malware.

Input: session_bytes, Output: target_ip, target_url

. Infected_Devices(): Further, we are interested in the number of devices (device_ids)

that accessed a given website specified by target_ip or target_url. Thus, we can
detect which of all devices can also be infected with that malware because they
accessed the same website.

Input: target_ip, target_url, Output: result € N (integer)

. On_Purpose(): This evaluation function should detect whether an employee ac-

cessed a malicious website on purpose or not. For this, it takes the log_id of a
given log entry and checks whether the status_code is a redirection or not. If it
is a redirection, the output should be ’0’ which stands for not on purpose and ’1’
otherwise. If the access was a redirection, the log entry is no longer marked as
suspicious and we protect that entry in the following investigations.

Input: log_id, Output: result € {0,1}

. Malicious_Issuer(): Additionally, we want an evaluation function that outputs the

user_ids of employees that accessed a given target_ip or target_url with a thus
infected device. Thus, we can find the employee that downloaded the malware and
start further investigations on this.® Since we output a user_id, which is only a

5Furthermore, this evaluation function could be used to detect websites that are essential for the

daily work in the company. Thus, the websites we find with it should never be blacklisted to avoid
disrupting the processes of the company. But this functionality must be kept secret, because otherwise
it could be misused to avoid malicious websites from being blacklisted by querying them very often.

5This function can be used for arbitrary websites. Hence, it depends on its users e.g., admins and data

24

analysts to only search for malicious websites and to not use this function for tracking the employees’
behavior.

3.3 Privacy Risk Assessment

pseudonym and therefore allows conclusion on who really owns the data in this log
entry, we need to lock the usage of this evaluation function. For this, a password
is required as additional input and it is only known to the admins. Only if this
password is correct, the computation starts. Otherwise, the function should wait
a random time until it outputs null”. Hence, only admins and third party data
analysts are able to execute this evaluation function.

Input: password, device_id, target_ip, target_url, Output: user_id

8. Period_Preselection(): At last, we also introduce a function that should improve the
performance of all other functions. For this, it takes datestamp and timestamp
and only outputs log entries of the therefore specified period.

Input: datestamp, timestamp, Output: list of log entries entry,,,,

All evaluation functions should work together. The functions Avg_Download Size(),
Max_Download_Size(), Number_Requests(), and Most_Visited_Websites() should be at help
to find infected devices inside the company’s system. Then, Malicious_Source() can be
used to find the source of detected malware on a device. All log entries that were found
by it are suspicious since they could be the reason for the infected device. Moreover,
the function Infected _Devices() must be started to find all devices that could be infected
with the found malware, too. Next, we discover whether the malware was downloaded
on purpose with On_Purpose(). And last but not least, the function Malicious_Issuer() is
useful to find the employee that accessed the website with the malware and hence infected
his device. In fact, On_Purpose() and Malicious_Issuer() are only used on suspicious log
entries. The evaluation function Period_Preselection() can be used to preselect the log
entries that are given to any of the other evaluation functions. For this, each of the
other evaluation functions takes datestamp and timestamp as optional input®. If they
are provided, each function first executes Period_Preselection() on these inputs and then
computes on the remaining list of log entries. Hence, we can improve the performance
of each evaluation function, by providing a period that should be investigated. With all
these functions, we are able to construct a log file collection and evaluation system that
can be used for the previously named purposes.

3.3 Privacy Risk Assessment

Since preserving privacy is one of our main goals, we need to think about which columns
must not be revealed to the public to ensure the employees’ privacy. Then, for all
sensitive data, it holds that: If the log entry was completely analyzed in its hidden
form i.e., using all evaluation functions except Malicious_lssuer() and is still classified as
suspicious, we allow revealing sensitive data. This is necessary because if we completely
forbid revealing the identity of an issuer, it would for example, be impossible to find a
malicious employee that downloaded malware on purpose or to find an adversary in the
system. Whether this opening is necessary and how this should be applied then, depends

"The random waiting should complicate password guessing attacks.
8This is not denoted in the previous listing of inputs to avoid redundancy.

25

3 SCENARIO

on the approach we use and is discussed in the corresponding section. As a side note,
the value log_id is only stored for administrative purposes and should thus not contain
any sensitive information. This is why we ignore it when we evaluate the privacy of our
approaches.

Firstly, the most important value to hide is user_id because this has a direct mapping
to the name of the employee that caused this log entry. So, if we cannot hide the
user_id from unauthorized reading access’, we can never ensure anonymity. One could
claim, that the values in user_id are indeed a pseudonym and thus not a threat to
the anonymity since it can be chosen independently from the employees’ names. But
pseudonymity only fulfills its purpose as long as the connection between true name
and fixed pseudonym is not revealed. Hence, we do not want to rely on pseudonymity
and hide the values in user_id whenever possible. Moreover, we want to hide the
values of the device_id column from being read. Those values directly map to the
number of a working place or a specific device. We assume, that these numbers can
be seen by every employee because they are e.g., the devices’ names. Thus, if the
company has a fixed seating arrangement or if the employees use the same device every
day, this would enable finding the connection between a device_.id and the name of
the employee that uses it given access to the Devices table. The same as already
discussed for user_id and device_id also holds for the values of client_ip_address
and client_mac_address. Hence, we also hide them from any unauthorized access. The
values target_ip and target_url are independent from the employees, since every employee
is allowed to open every URL. Thus, target_ip and target_url cannot reveal sensitive
data of the employees and it is thus possible to not hide those columns. This also comes in
handy when we want to find out where malicious software of a known byte size has been
downloaded. Moreover, for the values of the session bytes column is also no need to
hide them. As before, the data is independent from the employees, since every employee
can download every file of a specific byte size. Further, this decision is very useful since
we can then compute maximums and averages over a true value, which would not be
possible if every byte size was mapped to a random value. Next, there is the risk that
is caused by the value in status_code. Again, it holds, that this is independent from
its issuer and hence we do not have to hide it. Finally, the datestamp and timestamp
values of a log file can reveal information about the employees that caused them if they
are out of the norm. For example, if there is only one employee that stays in the office
until 10 pm. Therefore, it is clear that all log entries with this timestamp belong to this
specific employee. But we assume for this work, that the company has fixed days per
week and fixed time slots at which the employees are working there. Thus, the company
is closed during out-of-norm periods such that no log entries can be caused. Moreover, it
is important to not hide the values in datestamp and timestamp because if we mapped
them to randomly chosen values, we could not find the entries of a specified period.
Hence, we do not try to hide the values in datestamp and timestamp.

9Unauthorized in this sense is everyone that (1) has no permission to analyze the log entries, meaning
someone not working as a data analyst or admin for the company or (2) someone that tries to read
log entries that were not classified as suspicious.

26

3.4 Privacy Goals

Thus, the columns user_id,device_id, client_ip_address, and client mac_address
are considered to be sensitive. With this knowledge of sensitive and less sensitive values
in our log entries, we can better judge whether privacy is preserved or not. Further, we
can decide, which values in the entries must be hidden to preserve privacy and which
must stay unchanged to ensure the functionality of the evaluation functions.

3.4 Privacy Goals

For the discussion of whether our approaches in Chapter 4 and Chapter 5 preserve
privacy, we define the following privacy goals that should be ensured by each approach.

1. Unreadability: Sensitive data as defined in Section 3.3 is hidden, such that it is
hard to reveal the data by e.g., decrypting it.

2. Anonymity: For everyone with access to the log files, it should be hard to find the
issuer of any log entry.

3. Unlinkability: 1t is hard to decide whether two or more log entries are related. For
example, it is hard to decide whether two different log entries were caused by the
same employee.

4. Presumption of Innocence: Our evaluation functions should not output sensitive
data of innocent employees. Thus, if we need to reveal sensitive data, then only
from suspicious log entries.

5. Admin-Privacy: Our approaches target to hide the sensitive data from all employ-
ees. But the admins, as special employees, also have special privileges. Therefore,
they can leak sensitive data to enable the evaluation of our functions. Hence, we
use this privacy goal to denote whether we can protect the employees’ privacy from
their admins and all actors that gain access to similar privileges.

6. Ephemerality: The data of the request (i.e., in the log entries), but especially the
sensitive data, is not permanently stored by the admins. Hence, they have no
permanent access to those (sensitive) data.

7. Validity: Given that each column col € CO has a value set V., that contains all
valid values for column col. We want to ensure that no adversary or employee is
able to send invalid requests to influence the results of the evaluation functions.
Otherwise, those invalid requests could harm other (innocent) employees.

The goal of Pseudonymity is already fulfilled, since we never store the employees’ names
in our database Log Files and only pseudonyms (user_ids) instead. Moreover, the pri-
vacy goals Unreadability, Anonymity, and Unlinkability should hold for all non-privileged
actors, namely for all normal employees and all adversaries that gained access to the
system. For the privileged admins and data analysts, we use Admin-Privacy to de-
note whether their special knowledge and permissions allow injuring one of our goals
Unreadability, Anonymity, or Unlinkability.

27

3 SCENARIO

Table 3.1: Example of Functionality Grad-

e Table 3.2: Example of Privacy Grading

’ Evaluation Functions \ Approach ‘ ’

Privacy Goals \ Approach ‘
Avg_Download_Size() X —
- Unreadability X
Max_Download_Size() X T " >
Number_Requests() v RORYTHLY
— . Unlinkability X
Most_Visited_Websites() X .
— Presumption of Innocence v
Malicious_Source() ~ - -
. Admin-Privacy X
Infected_Devices() X -
Ephemerality X
On_Purpose() X Validit »
Malicious_Issuer() v anarty
Period_Preselection() X | Result 1P
’ Result ‘ 2.5 P. ‘

3.5 Grading

For the comparison of the different approaches, we introduce a grading system. Each
approach is represented as a column in a table that displays the overall grading with
regard to all evaluation functions (see Section 3.2). An example of such a table is
Table 3.1. For each evaluation function that can be realized using the analyzed approach,
this is denoted with a 'v"’. If an evaluation function cannot be realized, this is denoted
with ’x’. For approaches that only produce an approximately correct solution, we denote
this with '~

To also introduce some kind of ranking between the approaches, each v’ is worth 1 P.,
each '~’ is worth 0.5 P. and the ’x’ is worthless. Then, we can compare the results of our
analysis based on larger or smaller results. But thanks to the symbols in the table, we
still have the information, which approach fulfills which requirements and we get a good
overview of the results. In Section 3.2 we described that most of the evaluation functions
depend on each other. This means, that if we cannot evaluate Malicious_Source() we
have no input for the functions Infected_Devices() and Malicious_Issuer(). Nevertheless,
we analyze each evaluation function individually to decide whether it could be computed
if we had the necessary input.

Since we want to discuss the trade-off of privacy and functionality, we also introduce
a similar grading system for privacy using the previously defined privacy goals (Sec-
tion 3.4). As we did for the Functional Grading, we use the symbols v’ for ensured
privacy goals and ’'x’ for injured ones. If we can ensure a privacy goal only for under
some conditions, we denote this with '~ Further, we also introduce a mapping from
the symbols to numerical values for better comparability: The 'v"’ is worth 1 P. and '~’
is worth 0.5 P., while "x’ is again worthless.

The two grading tables that sum those grading results are designed as Tables 3.1
and 3.2.

28

4 Basic Approaches

For the previously described scenario, we could provide that all evaluation functions from
Section 3.2 can be computed, if we just stored all data in the clear. But this would mean
that the collection of data we achieve is not privacy-preserving at all. In particular, we
would not fulfill a single privacy goal (Section 3.4) since all data, including the sensitive
data, could be read by every employee of the company.

Thus, in this chapter, we discuss the basic approaches with hashing and encryption
that we use for our privacy-preserving log file collection and evaluation system. For each
of the basic approaches, we discuss and grade whether our defined evaluation functions
from Section 3.2 can be realized. Further, we grade each approach’s preservation of the
employees’ privacy regarding our privacy goals from Section 3.4.

4.1 Hashing

At first, we want to analyze the basic approaches only depending on hash functions as
defined in Section 2.4. For this, we first discuss general aspects that are important for
the choice of the used hash function.

Design Decisions

In Section 2.4 we mention the security definitions that we find important for hashing log
file entries. The first of them is one-wayness. If our used hash function H is one-way,
it holds that no employee, admin, or adversary can compute any preimage of a given
digest. This also holds for the original preimage which was the original input to the
hash function H. Therefore, we use a hash function H that is one-way as this ensures
that no actor can compute the preimages of the hashed log entries.

Moreover, when we use hash functions, we have to deal with the risks of hash collisions.
Those can influence the outcome of our evaluation functions and lead to false results.
For example, if two different values from target_ip were hashed to the same digest,
the output of Most_Visited_Websites() could be influenced. If both websites together
are visited more often than any other website, the function outputs those websites as
most visited, though only their summed accesses is the maximum. Hence, we use a
collision resistant function H to decrease the possibility of accidental hash collisions in
the following basic approaches (Chapter 4). Additionally, it becomes hard for adversaries
to create colliding log entries to affect our evaluation functions on purpose.

Before we can start applying a hash function to our log entries, we must first decide
which hash functions can be used. To not lose generality, we do not choose a specific
hash function, but which kind of hash function is useful in our scenario. For this, we

29

4 BASIC APPROACHES

previously defined keyless, salted, and keyed hash functions in Chapter 2. If we used a
keyless hash function, then adversaries could use rainbow tables to compute the hashes’
preimages e.g., for MD5 [KKJ*13]. Hence, we could not preserve the privacy, especially
the Unreadability, of the sensitive data in our log files. To avoid those rainbow table
attacks, the hashes can be salted. Then, in addition to the data in the log entry, a
random salt <— § is input to hash function H. The difference between salting a hash
function and its related approach called peppering is that the salt is stored along with
the hashed data. Hence, every person that has access to the log files also has access to
the salt, which is thus not secret. As a result, the employees and adversaries that gained
access to the database can therefore look up the salt and precompute a rainbow table
using this. Then, we have the same problem as with keyless hash functions. Therefore,
for hashing passwords, it is recommended to use different salts for each user. If we apply
this recommendation to our scenario, we must use a new salt for every user_id since
this value differs for each of the employees. But if we do so, we cannot recognize equal
entries from different employees anymore. For example, a website that has been visited
by two different employees would be hashed to different digests due to the different
salts. Then we lose a lot of information and it would be hard to evaluate our functions
from Section 3.2. Therefore, we need to use keyed hash functions, where the key k is
picked uniformly at random from a huge set of keys K. Then, it is very unlikely that
any adversary already precomputed a rainbow table for the specific key we choose!.
But, we cannot use different keys for different employees because this would lead to the
same problem as if we used one salt per employee. Then, there would be different hash
functions for each employee and thus identical values from different employees would be
hashed to different digests with high probability. Hence, we could not compare digests
from different employees in Log Files.

The hash function H we picked in the previous considerations is applied to each cell
of our database Log Files? separately. This means, that we compute H (entry,,,,[col], k)
for all rows row € {1,2,..., R}, a subset of all columns col € CO* C CO3, and our key
k + K. Otherwise, if we hashed each column col € CO of the table completely, we
could not argue on any data that was presented in a specific log entry. And if we used a
complete log entry entry,,,, (namely a row of the table) as input to the hash function, we
could not argue about values of different columns entry[col]. For example, we could not
tell whether a specific log entry is from the same day as any other log entry. Therefore,
we lose the least amount of information by hashing the database table cell by cell. In
the following, we distinguish between two different kinds of hashing approaches. The

!The choice of keyed hash functions is useful for theoretic considerations, such as proving the security
of a hash function. Nevertheless, in practice, keyless hash functions with salt are often used instead.

2In this work, we only focus on how to protect the Log_Files database. The other databases Users
and Devices were only introduced for administrative purposes, since those must exist somewhere
in practice. Though the following findings also apply to those databases, they are not part of our
analysis.

3In fact, we should not hash the column log_id at all or use a different hash function than for all other
columns. This column would contain digests of all numerical values from 1 to R sorted in ascending
order. Thus, for a large amount of numerical inputs, the digests are already precomputed, which
simplifies learning the mapping of numerical values and their digests.

30

4.1 Hashing

first one named Complete Hashing hashes the cells from all columns, specifically from
columns in CO* = CO. Whereas the second approach called Partial Hashing only hashes
cells from some of our columns, namely columns from CO** € CO. Cells in the columns
CO\CO* thus stay preimages, i.e., are not hashed.

Since for keyed hashing the key k is considered to be public as it defines the used
hash function, we cannot hide it from any of the actors. Hence, if we want to avoid the
employees from starting the evaluation functions on their own, the functions must take
a password as additional input. This password should be known only to admins or third
party data analysts. In the next sections, our two hashing approaches are described in
detail, analyzed, and graded.

4.1.1 Complete Hashing

For our first approach with hash functions, we hash each cell of each column in CO in
our log file database. This provides a lot of privacy since it is hard for every actor to
make sense of the digests stored in our log file database. Thus, we fulfill a lot of our
privacy goals with our approach of Complete Hashing. On the other hand, it is hard to
do any computations on this hashed data. Therefore, we only have a very small subset of
evaluation functions (Section 3.2) that can be computed. To show these statements, we
explain how Complete Hashing is applied to our scenario in the next section. After that,
we analyze and grade the functionality and privacy of this approach according to the
grading system that was introduced in Section 3.5 and we discuss the results afterward.

Application

Since the application of our hash function is already discussed in Section 4.1 we only
summarize the results briefly. We use a keyed hash function that is collision resistant and
one-way. Moreover, we hash each cell entry,,,, [col], Vrow € {1,2,..., R}, col € CO* =CO
separately. Hence, our Complete Hashing is applied as follows: Given a keyed hash
function H and a key k < K that is chosen uniformly at random: For all row €
{1,2,..., R} with R € N being the number of log file entries and for all columns col € CO
we compute H (entry,,,,[col], k) to individually hash each cell of our log files.

Functionality Grading

Since the application of Complete Hashing is defined in the previous section, we can
grade which of our evaluation functions can be evaluated using this application. In
particular, we show in this section that we can only evaluate Number_Requests() and
Most_Visited_Websites() only partly. These results can be seen in Table 4.1.

Avg_Download_Size() For the evaluation function Avg_Download_Size() we need the val-
ues from the session_bytes column to compute the average of all downloaded

4The complete definition of CO* can be found in the Application section of Partial Hashing in Sec-
tion 4.1.2

31

4 BASIC APPROACHES

bytes (from a specific period). But all values are hashed in the session_bytes
column and this can hardly be reversed by any actor since the hash function H is
one-way. Therefore, admins and data analysts cannot do any useful computation
with this data as input.

Max_Download_Size() The functions Avg_Download_Size() and Max_Download_Size() take

the same input. Thus, we can conclude that there exists the same problem for
Max_Download_Size() as for Avg_Download_Size(): Due to the hashed and not re-
versible values in the session bytes column, admins and data analysts cannot
compute the maximum of all downloaded bytes (from a specific period).

Number_Requests() This evaluation function takes as input a device_id and outputs the

number of submitted requests per device (in a given period). To do so, the evalua-
tion function first hashes its input, specifically it computes H (device_id, k). Then,
this function compares the digests in the device_id column with its hashed input.
We can ensure that each pair of identical digests corresponds to a pair of identi-
cal preimages, since H is deterministic and also collision resistant. For each such
match, this function increases its result by one and outputs it at the end. Therefore,
it exists a possibility to compute Number_Requests() with our Complete Hashing
approach®.

Most_Visited_Websites() This evaluation function takes no input and should output the

website with the most accesses (in a given period). For this, the function first
groups the log entries by their values in target_ip (or target_url) and computes
the size of each group. Since H is collision resistant, there are as many groups as
distinct values in target_ip. Hence, we can compute the number of accesses to
each website only using the digests instead of their preimages. Then, the evalu-
ation function outputs the size of the largest group. But it cannot output useful
information about the most visited website’s URL or IP address since those are
hashed and due to H being one-way their preimages cannot easily be reconstructed.
Therefore, Most_Visited_Websites() can only output a part of the necessary data
and hence only be realized partly.

Malicious_Source() For computing, Malicious_Source() takes device_id and session_bytes

as input. Given those, it should output websites that could be the source of a
given malicious download with size session_bytes. This function could compute
digests of its inputs to find the relevant log entries and output their target_ips
or target_urls. But since our output values in target_ip and target_url are
hashed, the resulting values are only digests, which are unreadable. Thus, and
because we cannot compute any preimages as H is one-way, this data is not useful.
As a result, the Malicious_Source() evaluation function cannot be realized with
Complete Hashing.

5This construction is linear in the size of rows R of the log file.

32

4.1 Hashing

Table 4.1: Functionality Grading for Complete Hashing

’ Evaluation Functions ‘ Complete Hashing ‘ Comments

Avg_Download_Size() X unreadable input data
Max_Download_Size() X unreadable input data
Number_Requests|() v -

Most_Visited_Websites|() ~ partly unreadable output data
Malicious_Source() X unreadable output data
Infected_Devices() X unreadable output data

On_Purpose() X unreadable input data
Malicious_Issuer() X unreadable output data
Period_Preselection() X unreadable input data
’ Result ‘ 1.5 P. ‘

Infected Devices() Also for Infected_Devices() we cannot do any computations due to the
previously described problem of Malicious_Source(). This means, that the input,
which is a target_ip or target_url could be hashed to find the relevant log entries.
But the values we are looking for (in this case values from device_id) are hashed.
Thus, they are unreadable strings and since H is one-way their preimages can also
not be regained. Therefore, Infected_Devices() cannot be computed when we use
Complete Hashing as our approach.

On_Purpose() To compute this function, we need to regard the values in status_code
but those are also hashed. Since H is one-way it is hard to find the preimages of the
cells’ content. Therefore, we cannot make any sense from the data in status_code
and thus not compute this evaluation function.

Malicious_Issuer() For this function, we have a similar problem as for Malicious_Source().
It takes as input a target_ip or target_url and device_id and should output values
from the user_id column. To find all necessary log entries, it could hash its inputs
and compare them to the digests in the device_id and target_ip respectively
target_url columns to find the interesting log entries. But given the resulting
log entries, their values in user_id are useless since those are hashed. This is a
problem since we cannot compute their preimages because H is one-way and the
digests themselves reveal no useful information about their preimages. Thus, we
cannot compute Malicious_Issuer() with Complete Hashing.

Period_Preselection() We cannot compute our Period_Preselection() evaluation function
since the input, namely the values from datestamp and timestamp, is hashed.
Hence, admins and data analysts cannot figure out, which log entries belong to a
specified period and which do not. Therefore, this evaluation function cannot be
realized using Complete Hashing.

33

4 BASIC APPROACHES

Privacy Grading

Next, we grade which of our privacy goals from Section 3.4 can be ensured with our
approach Complete Hashing. For this, we use the grading system that was introduced
in Section 3.5. Further, we regard efficient adversaries A that can gain access to the
company’s system and therefore access the Log Files database. But those adversaries
should not be able to read the requests’ data which is sent between the internet, em-
ployees, log file server and database. As we also assume that every employee can access
this database (but not Users and Devices) both actors are considered in privacy goals
Unreadability, Anonymity, and Unlinkability. Additionally, the admins and data ana-
lysts have the same privileges as employees since they are also allowed to access the
Log Files database. But they do not own special knowledge because the key k of
the hash function H is public. We show that this approach of Complete Hashing al-
lows us to ensure three of our privacy goals from Section 3.3. Those are Unreadability,
Anonymity, and Presumption of Innocence, which is denoted in Table 4.2. The privacy
goals Admin-Privacy and Validity can only be ensured under conditions we further ex-
plain in the following section.

Unreadability We could not ensure this privacy goal, if sensitive data could be read by
any employee or adversary with access to the Log_Files database. Since, we use a
hash function to hide the table’s content, every of these actors has to compute the
digests’ preimages to make sense of it. But because our hash function H is one-
way, computing these preimages is hard for every actor. Thus, Log Files’ content
cannot easily be retrieved and read. Therefore, we can ensure Unreadability with
high probability®.

Anonymity We could not ensure this privacy goal, if employees or adversaries could find
the issuer of a log entry given the data in Log Files. Regarding the considera-
tions from Section 3.3 the columns user_id,device_id, client_ip_address, and
client mac_address reveal information about which employee caused a given log
entry. But, as already described, Complete Hashing ensures Unreadability for all
columns. This means, that none of the regarded actors can learn the sensitive
data which corresponds to exactly those four named columns. Since, employees
and the regarded adversaries cannot learn the values in those sensitive columns,
they can also not link the digests to any employee. But it would be feasible for
e.g., a small set of user_ids to compute the corresponding digests to learn the
mapping of preimages and digests. This could then be used to identify each log
entry’s value in user_id. Nevertheless, all user_ids are kept secret, Users stores
the mapping to the names, and neither employees nor adversaries can access those
database tables. Hence, the identity of the issuer could though not be revealed in
this scenario. Thus, we can ensure Anonymity for Complete Hashing.

5The probability that this privacy goal can be injured depends on the used hash function H. It
furthermore is the probability that an efficient adversary wins the security game for one-wayness
(Definition 2.9) against H. As H is one-way, this probability is negligible.

34

4.1 Hashing

Unlinkability The hash function H is collision resistant and collisions are thus unlikely.
Hence, we can compare digests to detect whether two different log files are e.g.,
submitted by the same employee. This property is used to evaluate the log files.
But this also means, that every employee or adversary is able to detect whether two
distinct log entries contain equal digests. Hence, they learn whether two entries
are linked to each other. Therefore, we cannot ensure Unlinkability when using
Complete Hashing.

Presumption of Innocence We could not ensure Presumption of Innocence if we re-
vealed sensitive data to evaluate the functions from Section 3.2. But since H is one-
way the actors can hardly reveal the data since computing the digests’ preimages is
hard. Therefore, we can ensure Presumption of Innocence with Complete Hashing.

Admin-Privacy We could not ensure Admin-Privacy if the admins or data analysts could
use their special privileges to injure Unreadability, Anonymity, or Unlinkability. H
is one-way and thus it is hard for every actor given H and k to compute preimages
of any digests. Therefore, this is also hard for the admins and data analysts since
their privileged knowledge e.g., k is public in the security game of one-wayness
(Definition 2.9) and they thus have no advantage compared to all other actors.
Thus, we can ensure nearly the same privacy goals for admins and data analysts
as for all non-privileged actors. Nevertheless, admins and data analysts know the
existing user_ids and can compute the digests of all those. Due to this and their
access to Users they can learn the identity of the employees that caused given log
entries. Hence, if Vygser_iq is small enough to allow this attack, admins and data
analysts can injure Anonymity. As this also holds for all value sets from sensitive
columns, those privileged actors can additionally injure Unreadability. Therefore,
we only ensure Admin-Privacy as long as all V,,; are huge.

Ephemerality We cannot ensure Ephemerality since all data is permanently stored in
the log file database and admins and data analysts can access the database.

Validity And for the privacy goal of Validity, we need to ensure that invalid log entries
do not influence the evaluations’ results and thus harm innocent employees. Since
for this approach we use the scenario as it is defined in Chapter 3, the log file
server would need to check whether the values in incoming requests are valid. This
means, that it must check whether session_bytes are in a range of meaningful values
(Vsession,bytes)- But it would be hard to define such a value, since conspicuously
huge values could be invalid values or originate from attacks that try to overflow the
memory. Moreover, the log file server must check whether information is missing
that would be needed to create the log entries. It also has to check whether the
status_codes are in the range from 100 to 5997. But the biggest problem is to
check all IP addresses and URLs to be part of the existing websites. Since there
exist more than 1.88 billion websites worldwide® it is infeasible to check for each

"https://httpwg.org/specs/rfc9110.html
Shttps://www.statista.com/chart/19058/number-of-websites-online/

35

https://httpwg.org/specs/rfc9110.html
https://www.statista.com/chart/19058/number-of-websites-online/

4 BASIC APPROACHES

Table 4.2: Privacy Grading for Complete Hashing

Privacy Goals Complete Hashing ‘ Comments
Unreadability v -
Anonymity v -
Unlinkability X digests are comparable
Presumption of Innocence v -
Admin-Privacy ~ only for huge value sets V.
Ephemerality X permanent storage
Validity ~ only for small value sets V.
Result 4 P. ‘

incoming request whether it uses existing URLs and IP addresses. Hence, only
most of the values could be checked by the log file server before it creates the log
entries. Therefore, Complete Hashing can partly ensure Validity.

Result

Regarding our results from the previous analysis, Complete Hashing is not very useful for
our scenario. As we can see in Table 4.1, we are only able to partly compute two of the
evaluation functions. This is far from what we want to achieve. Nevertheless, we can
already assure 3 of 7 privacy goals completely. Therefore, hashing the values in our log
entries seems to be a good first approach, but we need more functionality in the next
one.

An interesting fact it that we require large value sets V.,; for Admin-Privacy and small
sets Vo for Validity. Since those two requirements contradict each other, we are not
able to ensure Anonymity and Validity at once.

Moreover, when we use hashing, we always have the risk of collisions appearing. For
this, we use a hash function that is collision resistant. Yet, it can only ensure that
collisions are unlikely, but they are possible though. For both realizable evaluation
functions Number_Requests() and Most_Visited_Websites() those collisions would lead to
incorrect results. Nevertheless, as H is collision resistant and collisions are very unlikely
in practice, we grade the resulting risk as low and thus acceptable.

To improve this construction, we could use different hash functions (i.e., different keys
k) per column. Then, it would be harder to link the stored digest to known preimages,
since this must be done for each column individually. But we only profit from this, if
equal data is stored in different columns. Otherwise, finding a digest of a preimage in
column a would not help to learn preimages from digests in column b. Additionally,
we could use ephemeral keys k. Then, for each period, a new hash function would be
used. The advantage of this is that we can ensure forward-secrecy and backward-secrecy.
Hence, if any adversary can reverse a hash function, he can still not learn the preimages
from older or newer periods.

36

4.1 Hashing

As Complete Hashing only enables the evaluation of two functions, we further im-
prove our hashing approach. Thus, in the next section, we introduce our second hash-
ing approach, which enables more functions while preserving our privacy goals from
Complete Hashing.

4.1.2 Partial Hashing

Since our previous attempt to apply hashing to the stored log entries led to a huge number
of not realizable evaluation functions (Section 3.2), we introduce Partial Hashing. This
time, we only hash the sensitive data defined in Section 3.3. All other columns of the log
file entries should be stored as preimages. We expect to not lose any privacy with this
approach since we still hide the sensitive data. But due to some unhashed log entries,
we can perform more computations on the stored data.

Application

As already defined in Section 4.1, we hash each cell entry,,,,[col] in our log files separately.
Hence, we can preserve most information from the storing hashed data. Further, we also
use the one-way and collision resistant keyed hash function from Section 4.1.

Then, we apply Partial Hashing as follows: Given a keyed hash function H that is one-
way and collision resistant and a key k < K that is chosen uniformly at random: For all
row € {1,2,..., R} with R € N being the number of log file entries and for all columns
col € CO* = {user_id,device_id, client_ip_address, client mac_address} C CO we
compute H(entry,,,[col], k) to hash each cell in our log files individually.

Functionality Grading

At first, we grade which of our evaluation functions (Section 3.2) are realizable with
Partial Hashing. Indeed, we can compute all our evaluation functions except the function
Malicious_Issuer(). This result is also denoted in the corresponding Table 4.3. How
the evaluation functions must be realized to achieve these results, is described in the
following.

Avg_Download_Size(), Max_Download_Size() Since the input of these functions is not
hashed, admins or data analysts can use all preimages (of a given period) from
the session bytes column to compute the maximum and the average of all (non-
zero) values in session_bytes. Therefore, we can realize both functions with
Partial Hashing.

Number_Requests() For the Number_Requests() evaluation function, the same implemen-
tation is possible as for the Complete Hashing approach in Section 4.1.1. To do
so, the function first hashes its input device_id. Then, the function compares its
hashed input to every digest in the device_id column and counts the matches.
The used hash function H is collision resistant and deterministic and thus, we can
assume that each digest originates from exactly one preimage. Therefore, it is

37

4 BASIC APPROACHES

allowed and useful to compare the digests instead of their preimages. Thus, this
evaluation function is also realizable.

Most_Visited_Websites() This function first groups the log entries by their values in
target_ip (or target_url) and computes the size of each group. After that,
Most_Visited_Websites() outputs the size of the largest group and the target_ips
or target_urls from the log entries in that group. Those values are also stored as
preimages such that they can be output as readable data. Hence, this function
can additionally provide information about which websites were visited most of-
ten. Thus, with Partial Hashing, admins and data analysts can completely compute
Most_Visited_Websites().

Malicious_Source() This evaluation function takes session_bytes as input and compares
it to all preimages in the session bytes column (in the specified period). This
comparison is no problem, since the cells in session_bytes are not hashed. Then,
it outputs every preimage target_ip and target_url that is in the matching log en-
tries. For this, the admins and data analyst do not have to compute the preimages,
which would be hard given that H is collision resistant, since they are stored as
preimages. Additionally, they only have to consider a subset of log entries with
the given device_id in the corresponding column. To find those, the function must
compute H(device_id, k) and selects all log entries with the resulting digest in their
device_id column. This only works if H is collision resistant. Otherwise it would
also collect log entries from different devices, if their preimages would map to
the same digest as device_id. Hence, the Malicious_Source() is feasible and can be
evaluated using Partial Hashing.

Infected_Devices() This function compares its input, which is a target_ip or target_url to
the preimages in target_ip and target_url (of the specified period). Since the
used hash function H is collision resistant and deterministic, it is unlikely that
different preimages map to the same digest. Moreover, for each preimage exists
only one digest. Given these facts , it is useful to compare the digests instead
of their preimages. In the next step, Infected_Devices() groups the matching log
entries by their values in device_id and outputs the number of groups. Hence,
admins and data analysts can learn the number of devices that are also infected
with the detected malware. Thus, we conclude that Infected_Devices() is realizable
using Partial Hashing.

On_Purpose() Since all values in the status_code column are stored as preimages, this
function only needs to find the log entry with the given log_id, which is also not
hashed. Then, it outputs whether the access to the (malicious) URL was on
purpose by outputting 0 if the value in status_code lies between 300 and 399
and 1 else. Hence, we can compute this evaluation function with our approach
Partial Hashing.

Malicious_Issuer() This evaluation function gets values from target url or target_ip as
input. At first, it decreases the amount of interesting log entries by only picking the

38

4.1 Hashing

Table 4.3: Functionality Grading for Partial Hashing

’ Evaluation Functions ‘ Partial Hashing ‘ Comments

Avg_Download_Size()
Max_Download_Size()
Number_Requests()
Most_Visited Websites()
Malicious_Source()
Infected_Devices()
On_Purpose()
Malicious_lIssuer()
Period_Preselection()

’ Result ‘

unreadable output data

| ENEIRNENENENENENEN

Qo

entries from a device with device_id. As H is collision resistant and deterministic,
we can assume that the comparison of digests instead of preimages is success-
ful. Since all target_urls and target_ips are stored as preimages in the entries,
Malicious_Issuer() can find all log entries that contain the access to the specified
website. But as the data it should output i.e., user_id is hashed, admins and data
analysts can still not learn the malicious issuer. This also holds since H is one-
way and those actors can thus not compute the digests’ preimages. Therefore, we
cannot compute the Malicious_Issuer() function.

Period_Preselection() This evaluation function can be computed since the values from
datestamp and timestamp are not hashed. Thus, it only needs to pick the log
entries that were created in the specified period. Therefore, Period_Preselection()
is realizable and can be used by admins and data analysts to preselect log entries
from a given period.

Privacy Grading

In this section, we analyze the preservation of privacy of Partial Hashing with regard to
our privacy goals from Section 3.4. The adversaries we consider in the following sec-
tion have access to the company’s system. Thus, they can read all data that is stored
inside the Log Files database. Further, we assume that the requests, responses and
communication with the log file server and database are encrypted. Hence, those adver-
saries cannot read the network traffic. We learn in this section that Partial Hashing en-
sures the same privacy goals as Complete Hashing. Those are Unreadability, Anonymity,
Presumption of Innocence, and partly also Admin-Privacy and Validity. Again, the re-
sults are summed in Table 4.4.

Unreadability We could not ensure Unreadability if the sensitive data was stored as

39

4 BASIC APPROACHES

preimages. Since we applied H on all sensitive columns col € CO* defined in
Section 3.3 this is not the case. Moreover, Unreadability could be injured if any
of the employees or adversaries with access to the log file database was able to
compute the preimages of the sensitive data given their digests. Then, that data
would become readable to them and this would injure the employees’ privacy.
Nevertheless, computing the preimages is hard since the digests were produced
with a one-way hash function H. Thus, it is very unlikely that any of those
actors is able to compute preimages of the stored digests. Hence, we can ensure
Unreadability for Partial Hashing with high probability.

Anonymity The privacy goal Anonymity would be injured if any actor was able to link

a specific log entry to the employee that caused this entry. Since the values in
the columns col € CO\CO™ are independent from their issuers (Section 3.3), those
cannot be useful to link log entries to employees. All other columns col € CO* are
hashed using H on input k. Thus, it is necessary to compute the preimages from
those columns’ data to link the entries to the corresponding employees. But again,
computing those preimages is hard for all actors since H is one-way. Thus, we can
prevent the employees and adversaries from injuring Anonymity.

Unlinkability For this privacy goal, we have nearly the same issue as when we used

Complete Hashing. We enable the comparison of digests to evaluate our log files in
a hidden way. This only works since the hash function H is collision resistant and
deterministic. But this also allows all employees and adversaries with access to the
database to compare digests and preimages to learn whether some log entries are
related. Therefore, we cannot ensure Unlinkability with Complete Hashing.

Presumption of Innocence We could not ensure this privacy goal if we revealed sensitive

data during our evaluations. Due to this, we avoid revealing sensitive data for the
evaluation of the functions (Section 3.2) and analyze sensitive data only as digests.
Furthermore, as H is one-way it would also be hard for admins and third party
data analysts to reveal those hashed data if it should be revealed. Therefore, we
can ensure this privacy goal for Partial Hashing.

Admin-Privacy If admins or data analysts had a higher probability to win the security

40

game for one-wayness (Definition 2.9) against H, they could use their privileges to
injure Unreadability or Anonymity. But the only privileged knowledge (i.e., the key
k) of admins and data analysts is already considered public. Therefore, they have
the same probability of winning the game as all other actors and this is negligible
since H is one-way. But, if for example, the number of employees is so small, that
any privileged actor could efficiently compute H (user_id, k) for all user_ids, they
can injure both Unreadability and Anonymity. For this, admins or data analysts
compare the computed digests to the ones in Log Files to learn the stored data.
Since they have access to the Users and Devices tables, they can also learn the
issuers of arbitrary log entries. As a result, we can only ensure Admin-Privacy if
the value set V., of all sensitive columns is huge.

4.1 Hashing

Table 4.4: Privacy Grading for Partial Hashing

Privacy Goals ‘ Partial Hashing ‘ Comments
Unreadability v only for sensitive data
Anonymity v -
Unlinkability X digests are comparable
Presumption of Innocence v -
Admin-Privacy ~ only for large value sets V.
Ephemerality X permanent storage
Validity ~ only for small value sets V.
Result ‘ 4 P. ‘

Ephemerality This specific privacy goal cannot be ensured since we permanently store
the log entries in our log file database. Moreover, the admins and data analysts
can access the database whenever they want.

Validity Since we use the same scenario as for Complete Hashing, and thus the same
log file server, it holds the same argument as in Section 4.1.2. The log file server
can check most of the values that are provided by each request before creating
the corresponding log entries. But that server is not able to check IP addresses
and URLs. Therefore, Partial Hashing can ensure the privacy goal Validity only
partially.

Result

The second hashing approach Partial Hashing is more successful than Complete Hashing.
We can still ensure all privacy goals, we also ensure with Complete Hashing. Additionally,
we can compute nearly every of our evaluation functions if we use Partial Hashing.

As a side note: We considered some columns to be not sensitive for our analysis, such
as timestamp and target_url. But if an employee works until late one day or if there
is an employee that is the only one that works with a specific website, privacy can be
threatened. Then, their colleagues can link their log entries to them if those entries are
not hidden in any way. Hence, every preimage from a log entry could be linkable to its
issuer, if the value derivates from the norm. Therefore, in practice, Partial Hashing is a
risky approach. But this problem does not only exist for our specific scenario but for all
situations in practice. Therefore, Partial Hashing is good given all our assumptions but
bad in practice. Due to this, we next investigate an approach for which we can hide all
data and none of them is stored as preimages. In particular, our next section discusses
our basic approach Encryption.

41

4 BASIC APPROACHES

4.2 Encryption

Our two previous approaches use hashing and we can already realize many useful eval-
uation functions at least with Partial Hashing. Furthermore, we can ensure many of our
privacy goals with those hashing approaches. But one thing that cannot be circumvented
is the small risk of hash collisions that could influence the results of our functions. This
is a risk we are willing to take, but we though discuss another approach where those colli-
sions are impossible. Thus, the next basic approach we analyze for our privacy-preserving
log file collection and evaluation system is Encryption (Definitions 2.12 and 2.15). A cor-
rect? encryption scheme would never provide a pair of identical ciphertexts that would
be decrypted to different plaintexts. Otherwise, it would not be clear to which plaintext
a ciphertext should be decrypted and the correctness would be injured. Moreover, with
Encryption, we can permanently hide the data inside the Log_Files database table and
reveal it with decryption to allow the evaluation of our functions from Section 3.2. As
long as the used cipher or encryption scheme is secure, it is hard for all efficient adver-
saries to learn the stored data given its ciphertexts. Thus, in contrast to Partial Hashing
we can hide the data and it is though useful for our evaluations. All in all, Encryption
enables a large set of realizable evaluation functions (Section 3.2) while preserving pri-
vacy as well. In the following, we describe how in particular the Encryption approach is
applied to our scenario and we grade its functionality and privacy. The corresponding
grading tables are Tables 4.5 to 4.7.

Application

At first, we need to discuss which encryption schemes are feasible for our application.
For all possible encryption schemes, we only allow admins access to the secret/private
key to decrypt the suspicious log entries for further investigations. Thus, in contrast to
the previous hashing approaches, the key must be given to each evaluation function as
additional input. This ensures that only admins can start the evaluation functions and
none of the other employees of the company. To also allow the analysis by third party
data analysts but though preserve the employees’ privacy, it would be preferable to only
give encrypted data to them. Then, we could ensure that admins are the most powerful
actors and expect them to be trustworthy. But in practice, it is more useful if the data
analysts have access to the same data as the admins, as they sometimes substitute admins
or cannot analyze ciphertexts. Thus, data analysts have as well access to the decryption
keys and the database, but those are given to them by the admins. Moreover, we do
not choose a specific encryption scheme or cipher such that we avoid losing generality.
Instead, we discuss whether symmetric or asymmetric encryption is more useful and why
probabilistic encryption is not at all'?. Then, we describe how these encryption schemes
can be applied to the data in our log files.

9The correctness of the used encryption schemes is defined in Definitions 2.12 and 2.15.

10With searchable encryption, we could indeed use probabilistic encryption to hide the data because
deterministic tags are computed as well. Those tags are then used to find the interesting log entries.
For more information on searchable encryption, see [BBO07, ABOO07]

42

4.2 Encryption

Different Kinds of Encryption First, we need to discuss the influence of different
kinds of encryption. Our log file database could use encryption at rest, such that the hard
drives themselves are encrypted. But since the data is still unencrypted for every legal
user of the database, this does not serve our purposes and is thus not further considered.
Additionally, we do not deal with the encryption that is done for the communication
from the devices to our database with e.g., TLS''. TLS can serve our purposes well since
adversaries cannot read the data that is sent to the log file server. Nevertheless, this
kind of encryption is out of scope of this thesis. We assume the worst case that not only
data analysts but also employees have legal access to the database. Hence, to avoid all
of them reading the sensitive data, we encrypt the log files such that only ciphertexts
are stored in the database.

Symmetric or Asymmetric Encryption The first discussion is whether to prefer a
symmetric or an asymmetric encryption scheme. In our scenario, the log file server is
the only entity that processes and thus encrypts the data from the requests. Hence, the
advantage of asymmetric encryption that allows everyone to encrypt data is not well-used
here. Due to this, symmetric encryption would be more useful for our considerations.
But to give more control to the employees, we could slightly change our scenario for the
application of asymmetric encryption. Instead of sending their requests to the log file
server, every employee’s device already constructs a log file entry on its own. Then, it
encrypts this log file with the public key and forwards it to the log file server. In this
adapted scenario, the server has the simple task to store these received and encrypted
log entries into the log file database. Thus, the employees must no longer rely on the log
file server to correctly encrypt their data because they are responsible themselves. Plus,
the trust in the log file server can be low, since it only stores the encrypted log entries
inside the database, but never sees sensitive data. Additionally, the data is already
encrypted before transmitting such that using transit encryption as included in TLS
is less important. On the other hand, we cannot ensure that the employees correctly
encrypt their log entries. If a malicious employee wants to avoid his log entry being
decrypted and read, he only needs to use a wrong public key for the encryption. This
would cause that the admins or data analysts cannot correctly decrypt and therefore
not read the corresponding entry. Furthermore, our log file server can no longer check
the data it stores as this is decrypted. Thus, the employees could send arbitrary log
entries with data that does not originate from their requests. Therefore, we cannot
ensure Validity in the asymmetric case, which is also mentioned in Section 4.2.

But whether we use symmetric encryption schemes and the scenario defined in Chap-
ter 3 or asymmetric encryption schemes and the adapted scenario instead does not
influence the following functionality grading. This is because we only regard the content
of the log file database, which is in both cases encrypted data that can be decrypted

1VWe are aware that there exist older versions of TLS that still have weaknesses regarding security. Thus,
we assume for this thesis that the newest version (currently TLS 1.3) is used instead. The advantages
of TLS 1.3 are described at https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/ and
in [Res18].

43

https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/

4 BASIC APPROACHES

using the corresponding key.

Deterministic or Probabilistic Encryption Next, we discuss whether we need a de-
terministic or a probabilistic encryption scheme. If we use a probabilistic encryption
scheme, then for two equal plaintexts their ciphertexts differ with high probability. This
would mean that we cannot compare the encrypted cells in our log files since there are
different ciphertexts for each plaintext. For example, if we want to find the most often
visited website, we would only count the appearances of each ciphertext. But different
ciphertexts can originate from the same URL. Thus, we would distribute the number
of accesses of a website to all its ciphertexts and can hence not hope for correct re-
sults. Hence, it would be preferable if we could recognize that two different ciphertexts
originate from the same plaintext such that we can count them as one URL.

But in Appendix B.1 we prove the following claim:

Claim 4.2.1. Given a (symmetric) probabilistic cipher E defined over the set of spaces
(M, K,C) that is also secure against Chosen Plaintext Attacks as we defined it in Defi-
nition 2.14, we cannot distinguish whether two different ciphertexts would be decrypted
to the same plaintext. Or more formally said: For two distinct ciphertexts cg,c1 € C we
cannot decide whether Dec(cy, k) = Dec(cy, k) holds.

This claim also implies that if we could decide whether different ciphertexts belong to
the same plaintext, then the used encryption scheme E would not be CPA secure. Hence,
we cannot use any probabilistic encryption schemes for our purposes and only discuss
deterministic encryption in the following. We should be aware that if our encryption
scheme is an asymmetric one, it cannot be CPA secure and deterministic. This is because,
in the CPA game, an adversary could encrypt both chosen messages himself and if
the scheme is deterministic he can recognize and decide by comparing the ciphertexts
whether b is 0 or 1. Nevertheless, deterministic asymmetric encryption schemes are
secure against message recovery attacks (Definition 2.16). Thus, we can at least ensure
that it is hard for all efficient adversaries to regain the plaintexts from the database’s
cells given their stored ciphertext. But given a small set of possible plaintexts, we cannot
ensure that those adversaries are able to determine which of those plaintext’s ciphertext
is stored in a given cell. In comparison, the symmetric encryption scheme FE is considered
to be semantically secure (Definition 2.13), which is more secure than the asymmetric
scheme.

Inputs Last but not least, we learned in the previous section that we preserve the
largest amount of information if we only hash our data cell by cell. This idea can also
be used in this Encryption approach. Therefore, we encrypt each cell entry,,, [col] with
row € {1,2,..., R} and col € CO individually.

Moreover, the encryption scheme we use should be a correct one as defined in Def-
initions 2.12 and 2.15 such that we can decrypt the ciphertext and use the resulting
plaintexts for our evaluations. These considerations lead to the following application
of our Encryption approach: In the symmetric case, we use a correct, semantically

44

4.2 Encryption

secure computational cipher FEgyy, with two deterministic algorithms (Enc, Dec). And
we pick k < K as the symmetric key. Then, we compute Enc(entry,,,[col],k) for all
row € {1,2,..., R} and for all col € CO using FEgym. Alternatively, for the asymmetric
scenario, we use the correct encryption scheme Fugyn with algorithms (Gen, Enc, Dec).
Where E,gym is secure against message recovery attacks. We pick (pk, sk) <— Gen(), with
public key pk and secret key sk. Then we apply our approach to the log file by computing:
Enc(entry,,,,[col], pk) for all rows row € {1,2,..., R} and all columns col € CO.

Functionality Grading

In the following, we analyze which of our evaluation functions can be evaluated using this
Encryption approach. We have the possibility to decrypt our stored data and therefore
get useful information, though everything is stored as ciphertexts. Due to this, we
can compute all of our evaluation functions. How the functions must be applied, is
described in the following listing and the results can also be seen in Table 4.5. In the
following, we use the fact that our encryption scheme is deterministic and correct to
analyze ciphertexts as well as their plaintexts depending on the function. Since the
scheme is deterministic, there exists exactly one ciphertext per plaintext. And since it
is correct, there must be one plaintext per ciphertext, because otherwise Dec could not
output the correct plaintext. All evaluation functions take the symmetric key k£ in the
symmetric scenario and the secret key sk in the asymmetric scenario as additional input.
Therefore, only admins and data analysts can start the following functions:

Avg_Download_Size() This function should compute the average of all values that are
stored in session bytes. Since, we cannot compute the average of the stored
ciphertexts'?, the function first decrypts the necessary data in session_bytes!'?.
As we encrypted each cell individually, we can decrypt those cells without decrypt-
ing any other ciphertext. Then, Avg_Download_Size() computes the average of all
resulting, non-zero plaintexts and outputs the result. Therefore, this evaluation

function is realizable by using the Dec algorithm.

Max_Download_Size() The next function, Max_Download_Size() should output the max-
imum of all values in session bytes (of a given period). To find the maxi-
mum, we need to compare the size of the plaintexts, which is not possible given
their ciphertexts'?. Therefore, this function decrypts the ciphertexts first. Then,
Malicious_lIssuer() only searches for the largest plaintext (of the given period) and
outputs it. Hence, admins can compute the Max_Download_Size() function with
our Encryption approach.

12 Alternative encryption schemes where decryption is not necessary to compute an average of ciphertexts
are presented in the section about Useful Extensions

13We assume that the data is only decrypted inside the memory of the executing device instead of
decrypting the whole database.

411 the section Useful Extensions, we discuss an alternative encryption scheme that would allow even
this comparison of ciphertexts.

45

4 BASIC APPROACHES

Number_Requests() This function takes a device_id as input and outputs the number of
requests that were sent by the specified device. It can be computed because we
use a deterministic encryption scheme and ciphertexts from identical plaintexts in
device_id are also identical. Thus, this function encrypts its input device_id with
the given key and compares the result to all ciphertexts in the device_id column.
For each match, it increases the result by 1 and outputs result at the end. Since
we do not want employees to start the functions, all keys must be given as input
to this function, though we do not use the private key here. Hence, admins can
compute this evaluation function even without decryption.

Most_Visited_Websites() This function regards the target_ip (or if given instead the
target_url) column and should output the website with the most visits (in a
given period). To do so, it groups all entries by their ciphertexts in target_ip and
outputs the number of log entries in the largest group. Since admins might also
be interested in the corresponding IP address and URL, Most_Visited_Websites()
randomly picks one of the log entries in the largest group, decrypts its value in
target_ip and outputs it. Then, the same is done to receive a URL from (most
probably) another log entry. Hence, admins can use this evaluation function to
successfully determine the number of requests per device with Encryption.

Malicious_Source() This evaluation functions gets a device_id as input and uses it to select
all log entries that were issued by this device. For this, it computes the ciphertext
of its input and selects all log entries with that ciphertext in their device_id col-
umn. Additionally, it gets as input a value session_bytes and sldo it encrypts this
input with the used cipher or encryption scheme. Then, it compares the encrypted
input to all values in the session bytes column. For each matching log entry,
Malicious_Source() outputs the found ciphertexts in target_ip and target_url.
But those values are encrypted and thus not readable to humans. Hence, to out-
put useful data, the function also decrypts the resulting ciphertexts. Since this
information is not sensitive and only belongs to suspicious log entries, their de-
cryption is allowed. Therefore, admins can compute this evaluation function with
the Encryption approach.

Infected_Devices() We can realize this evaluation function such that it successfully out-
puts all devices that accessed a given (malicious) website. For this, it encrypts
its input target_ip'® and compares it to the ciphertexts in the target_ip column.
After that, Infected_Devices() counts the number of different values in device_id
in all matching log entries and outputs the result. Thus, admins can compute the
Infected _Devices() evaluation function using our approach Encryption.

On_Purpose() This function outputs whether the response to an employee’s request that
is stored in a log entry was a redirection or not. To do so, it first applies Enc on its

We could alternatively use target_url as input, if we have no IP address given. But the IP address
is more useful since it covers all different URLs that could have been used to access the website or
download.

46

4.2 Encryption

input log_id. Then, it picks the log entry with the corresponding ID and analyzes
its ciphertext in the status_code column. Since there exist at most 100 status
codes for a redirection, the evaluation function can encrypt all those possible codes,
store their ciphertexts for later use. If entry;,, ;4[status_code] is equal to one of the
stored redirection ciphertexts, this function outputs 0 and otherwise 1. Thus,
admins can compute On_Purpose() without decryption of the employees’ data.

Malicious_lssuer() The next function is defined to output the user_ids of employees that
accessed a given malicious website from an infected device with device_id. For
this, the function first detects the relevant log entries by choosing the ones with
Enc(device_id, k) (or Enc(device_id, pk) in the asymmetric case) in the device_id
column. Additionally, Malicious_lIssuer() gets target_ip or target_url as input. It
computes Enc(target_ip, k) (or Enc(target_ip, pk) in the asymmetric case) to com-
pare the resulting ciphertext to all ciphertexts in the target_ip column. For all
matching log entries, it outputs the corresponding value in user_id, which reveals
the identity of its issuer. But this data is also encrypted and decrypting it means
revealing the most sensitive data. On the other hand, if the value from user_id is
output of this function, then because it is suspicious and we do not necessarily pre-
serve privacy for suspicious log entries. In this situation, the log entry is suspicious
since it accessed a website we think malware was downloaded from. Therefore, we
allow the revealing of the user_id because otherwise admins could never find a
malicious employee. Thus, they can compute the Malicious_Issuer() function as
well.

Period_Preselection() This function selects all log entries of a given period. All values in
the datestamp and timestamp columns are encrypted but the ciphertexts reveal no
information about the order of the log entries and when which were created. Hence,
the function decrypts log entries to find out when they were created. To avoid
encrypting all of them, it decrypts a randomly chosen log entry entry,,,, [datestamp]
with log_id row € {1,2,..., R} and depending on whether it is too new or too old,
it picks another log entry row’ < row or row’ > row. This is done until the two
log entries are discovered where the one is still outside the period and the next is
already inside. Hence, admins can compute Period_Preselection() and only need to
encrypt some log entries for this.

Useful Extensions As we can see, Encryption relies on the decryption algorithm Dec
for 6 out of 9 evaluation functions, which is much. Using decryption means revealing
data, which can also reveal sensitive information. Moreover, since our encryption scheme
E must be deterministic to allow more computations, every revealing of the data allows
admins to memorize the connection between some plaintext and its ciphertext. And this
weakens the privacy of this approach since ciphertexts become readable once someone
has memorized the corresponding plaintext. Therefore, it would be preferable to use
other encryption schemes that allow the evaluation of some functions without using the

47

4 BASIC APPROACHES

Table 4.5: Functionality Grading for Encryption

’ Evaluation Functions ‘ Encryption ‘ Comments

Avg_Download _Size() v with decryption
Max_Download_Size() v with decryption
Number_Requests|() v -
Most_Visited Websites() v with partial decryption
Malicious_Source() v with decryption
Infected Devices() v -
On_Purpose() v -
Malicious_Issuer() v with decryption of sensitive data
Period_Preselection() v with decryption
’ Result ‘ 9P. ‘

decryption. For this, we could use homomorphic, order-preserving, and prefix-preserving
encryption schemes.

With homomorphic encryption, we could sum two ciphertexts from session_bytes
without decrypting them [Gen09, OTD13, EDG14]. For this, we only need to sum the
ciphertexts and decrypt the result to receive the sum of their plaintexts. Hence, if we
used homomorphic encryption to encrypt the session_bytes column, we could compute
Avg_Download _Size() without decrypting all ciphertexts in it.

With order-preserving encryption schemes [BCLO09] the ciphertexts would have the
same order as their plaintexts. Hence, the largest plaintext also results in the largest
ciphertext. Thus, we could detect which of the ciphertexts from session_bytes is the
largest to find their maximum. This way, we can compute Max_Download_Size() by only
decrypting the largest ciphertext in session_bytes. But to achieve that both evaluation
functions Avg_Download_Size() and Max_Download_Size() can be evaluated without using
Dec, we would need the session bytes column twice. One of them would be encrypted
using homomorphic encryption and the other one would be encrypted with an order-
preserving encryption scheme.

Moreover, we could use prefix-preserving encryption [XFAMO02, XY12] which leads
to plaintexts with the same prefix being encrypted to ciphertexts with equal prefixes
as well. Then, the admins or data analysts would be able to detect whether all the
client_ip_addresses originate from the network of the company or if there are requests
with completely different IP addresses'®. This would work since the requests of the
company all originate from the same subnet, such that at least the first two parts of the
IP addresses would be identical. Second, we could also compute our Period_Preselection()
function without using the decryption on every cell. Given the date format YYYY-MM-
DD HH:mm:ss, we can see which ciphertexts are from the same year, month, day, and so

16For this, the storage of the data must be outside the LAN to prevent that Network Address Translation
(NAT) translates the global IP addresses to local ones.

48

4.2 Encryption

forth. The ciphertexts from datestamps from e.g., the same year would have the same
prefixes and we can use that to pick all log entries from e.g., the past year. For this,
we only have to find all log entries where the first four characters of the ciphertext in
datestamp are equal.

Hence, if we used all these different encryption schemes, we could enable to compute
6 of 9 evaluation functions without the usage of Dec. This would mean that we could
ensure more privacy since the risk of memorizing the connection between plaintexts
and their ciphertexts decreases. But on the other hand, it means high effort to use at
least three different encryption schemes to only protect a single log file. Moreover, it
is inefficient to store redundant columns only to encrypt them in two different ways.
And since we want to discuss Encryption as a basic approach, using all these useful but
expensive encryption schemes is out of scope of this work. Hence, we leave this idea for
further research.

Privacy Grading

In this section, we regard the privacy preservation of Encryption. For this, we use our
grading system from Section 3.5 to decide which of our privacy goals can be ensured and
which not. As before, we regard efficient adversaries that gained access to the systems
of the company. Thus, those adversaries and the employees have access to Log Files
database. But we assume the communication inside the system to be encrypted such
that those actors cannot read the sent requests. We analyze the privacy goals that can
be injured by those actors in Unreadability, Anonymity, and Unlinkability. Moreover,
there are the admins and data analysts that additionally own the keys (k or (pk, sk))
to decrypt the log files. Their privacy-injury is regarded in Admin-Privacy. The result
of this analysis is that only Unreadability, Anonymity, and Presumption of Innocence
can be completely ensured by our Encryption approach. We can also ensure Validity,
but not for all columns in the database and only for symmetric encryption schemes. As
before, the analysis is further described in the following and the results for symmetric
and asymmetric encryption schemes are summed in Tables 4.6 and 4.7.

Unreadability To injure the privacy goal Unreadability the employees and adversaries
with access to the database must be able to read the content of the log files.
In the symmetric case, our computational cipher F is semantically secure. That
means that for each efficient adversary (which could be any of the actors) it is hard
to detect which one of two different plaintext’s ciphertext they see. Thus, they
are unlikely to decrypt a given ciphertext without knowing the symmetric key k.
And in the asymmetric case, the encryption scheme F is secure against message
recovery attacks. This implies that it is hard for them to learn the plaintext
of a given ciphertext. But given that asymmetric schemes are not CPA secure,
the adversaries could at least learn some information about the plaintexts that
allow them to distinguish their ciphertexts from other ciphertexts. Nevertheless,
in both cases, the actors cannot easily decrypt the ciphertexts that are stored
inside the database. Therefore, they only see the ciphertexts which reveal no

49

4 BASIC APPROACHES

helpful information about the plaintext. Hence, we can ensure Unreadability with
Encryption.

Anonymity To ensure Anonymity, we must show that none of the values stored in the

database reveals information about the employee that caused the specific log en-
try. Given the considerations from Section 3.3, we can limit the columns con-
taining such information to the sensitive columns. Those are user_id, device_id,
client_ip_address, and client mac_address. For all those columns, we only
store ciphertexts in the database’s table. If they could be easily read and under-
stand, the actors with access to the database could link those sensitive information
to the employee that issued the corresponding requests. Nevertheless, since F is
semantically secure in the symmetric and secure against message recovery in the
asymmetric scenario, there is no easy connection between ciphertext and plaintext
that reveals information about the stored plaintext. Otherwise, the adversaries
in the games (Definitions 2.13 and 2.16) would be able to learn the plaintext m
and would win their games with more than negligible probabilities. But since £
is secure in those senses, the adversaries cannot learn enough from the ciphertexts
to learn the plaintext. Therefore, they cannot use the content of the ciphertexts
to link a log entry to its issuer. One might also think, that due to allowing the
decryption of the user_id column to enable Malicious_lssuer() we cannot ensure
Anonymity. But we defined in Section 3.2 that for this evaluation function a pass-
word must be given as additional input, which is only known to the admins. Thus,
the actors we consider in this section (employees and adversaries with access to
the database), cannot start that evaluation function or see its results. Hence, we
can ensure Anonymity.

Unlinkability Since we use deterministic encryption, ciphertexts from identical plaintexts

are also identical. This is necessary to compare ciphertexts, but it can also be used
maliciously. Due to this, adversaries can detect whether two different log entries
are similar by comparing the ciphertexts in each column. They can for example,
detect whether two entries accessed the same IP address or were submitted by
the same employee. As F is also correct (Definitions 2.12 and 2.15), two equal
ciphertexts must always belong to the same plaintext. Thus, we cannot ensure
Unlinkability for the Encryption approach.

Presumption of Innocence This privacy goal means, that the evaluation functions are

50

only allowed to output sensitive data if the analyzed log entry is suspicious. For
most of the evaluation functions, we only need to decrypt ciphertexts of non-
sensitive columns, unless for the function Malicious_Issuer(). That evaluation func-
tion is the last one in the order of all evaluation functions. This means that if we
execute Malicious_lssuer(), we find malware on a company’s device, detect its source
and ensure that the website was not accessed due to a redirection. Hence, the only
missing piece of information is the employee that accessed a malicious website on
purpose. Thus, we decrypt the user_id of a suspicious employee. Therefore, we can

4.2 Encryption

protect the privacy of innocent employees and can ensure this privacy goal using
the Encryption approach.

Admin-Privacy We cannot ensure these privacy goals if the admins (or data analysts)
own any special privileges or knowledge that allow them to injure Unreadability,
Anonymity, or Unlinkability. In fact, they own the symmetric key k respectively
the key pair (pk, sk). Those allow the admins (or data analysts) to decrypt the
ciphertexts inside the database and injure the Unreadability though they are not
allowed to. Moreover, if they can read this data in plaintexts, they can use this to
find the employee that issued a given request. For example, they could decrypt the
value from the user_id column and learn the user_id of the employee. Then, they
could use the Users table to find the employee’s name and hence Anonymity is
injured by the admins (or data analysts). Hence, we cannot ensure Admin-Privacy
for Encryption.

Ephemerality As we permanently store all data of the log files in our database and
admins can access that data, we cannot ensure this privacy goal.

Validity The privacy goal Validity depends on what our log file server can do. For
Encryption, we use again our scenario from Chapter 3 where the log file server is
described as the server that creates log entries from the requests that are sent to
the internet. As already mentioned above, we cannot ensure Validity at all, if E is
asymmetric. Since the log file server only sees ciphertexts and owns no secret key,
it is not able to check any of the values inside the log entries. In the symmetric
case, the log file server must check whether correct user_ids and device_ids are
given. Additionally, it needs to check whether status_code and session_bytes are
values in meaningful ranges. Those tasks can be done, though they slow down
the log file server. The main problem is checking whether a URL or IP address
is valid. Since there exist many websites world-wide, it is hard to compare all of
them to a single value in a request. And this is even harder, thinking of the many
requests that must be processed per second. Hence, the log file server can check
values only for some columns col € CO. Thus, Validity can only be partly ensured
by a symmetric F.

Result

For this Encryption approach, we can compute all of our evaluation functions. This is
possible, as the option to decrypt and therefore reveal hidden data allows us to eval-
uate all functions while still storing the data encrypted. Furthermore, compared to
Partial Hashing none of the columns must be stored unhidden to enable the evaluation
functions. On the other hand, Encryption only ensures 3 of 7 privacy goals. In com-
parison to the previous hashing approaches, we lose Admin-Privacy privacy. To avoid
that malicious admins can decrypt the stored data though they are not meant to, we
could use secret-sharing. Then, the key k or sk would be split with addition and each

o1

4 BASIC APPROACHES

Table 4.6: Privacy Grading for Symmetric Encryption

Privacy Goals ‘ Encryption,,,, ‘ Comments
Unreadability v -
Anonymity v -
Unlinkability o E i§ deterministic and allows com-
parison
Presumption of Innocence v -
Admin-Privacy X admins own the key (pair)
Ephemerality X permanent storage
Validity ~ only for small value sets V.
Result 3.5 P.

Table 4.7: Privacy Grading for Asymmetric Encryption

Privacy Goals ‘ Encryption ;s ‘ Comments
Unreadability v -
Anonymity v -
Unlinkability o E i‘s deterministic and allows com-
parison
Presumption of Innocence v -
Admin-Privacy X admins own the key (pair)
Ephemerality X permanent storage
Validity o log file server cannot check cipher-
texts
Result 3P.

52

4.2 Encryption

admin (or data analyst) gets a part of the key. As a result, the admins can only decrypt
the data by cooperating and a subset of malicious admins cannot decrypt any secret
data. The more admins we share the key to, the more admins must be malicious to be
still successful. But this also complicates the computations if all admins are needed to
compute a single function.

Nevertheless, if we use deterministic encryption, there is always the risk that the actors
that can see the ciphertexts as well as the plaintexts can memorize their connections.
Hence, any actor could recognize a ciphertext and already knows which plaintext it
belongs to since he has already seen their connection. But this problem cannot be
avoided in our case because we need to use deterministic encryption to compute our
evaluation functions with at least decryption as possible.

To further improve this scheme, we could use ephemeral keys. Hence, the symmetric
key or in the asymmetric case the public key pair is only used for a specified period. And
e.g., monthly or weekly, a new key (pair) must be generated and used to encrypt all log
entries that are created in the following. This would mean, that if we decrypt ciphertexts
from a given column, then only those from the last e.g., month or week. Thus, we can
ensure better privacy for older entries that are not part of our interest and would be
decrypted and thus revealed unintentionally. But on the other hand, we would have to
store all deprecated keys for a much longer time than a month or week. Since infected
devices can sometimes be detected months after they got infected, we need those keys
to also analyze the older log entries. Hence, storing all those keys takes more storage
than only one key (pair).

Additionally, we could use one key (pair) per column col € CO. Then, only one key
(pair) could be given to each admin, such that the keys for all cells are distributed among
all admins of the company. This would ensure that a single admin can at least see the
sensitive data of one column if he maliciously decrypts them. Moreover, he could not link
any information from different columns since all other columns are encrypted by the other
admins and are therefore not human-readable. Hence, we can ensure Unlinkability and
Admin-Privacy, unless for the cell for which he owns the key (pair). On the other hand,
this would mean that for each evaluation function, many admins must work together.
We defined that the keys must be given as additional input to the evaluation functions.
Hence, all admins must input the keys they hold. This is very impractical since no
computations can be done if one of the admins is not at work on a given day. But even,
if only the keys of the necessary columns must be given as additional input, there is still
need for teamwork to start a function. Moreover, we need to store eleven different key
(pairs) which again needs more storage than simple storing one global key (pair) for all
columns col € CO.

Another idea is to use a a key (pair) per employee. But then, the same problem occurs
as for salted and keyed hashing. Equal plaintexts from different employees would be
encrypted to different ciphertext. Then all evaluation functions that rely on comparing
the ciphertexts to each other would no longer be realizable.

Since we cannot ensure enough privacy goals with Encryption, we analyze one last
basic approach that combines the two best of our previously described approaches.

93

4 BASIC APPROACHES

4.3 Hashing and Encryption

For this last basic approach named Hashing & Encryption we combine Partial Hashing
with Encryption. In Section 4.2 we decrypted almost none of the sensitive data. Hence,
in this approach, we hash all sensitive data such that no one, not even the admins,
can reveal it. Furthermore, we encrypt all data that has been stored as preimages in
Partial Hashing, namely the set of non-sensitive columns. Thus, we can still compute our
evaluation functions using decryption, but the data is only stored as ciphertexts.

In the following sections, we describe how Hashing & Encryption is applied to our
scenario and grade its privacy as well as its functionality.

Application

As for the other approaches before, we use a collision resistant and one-way keyed hash
function H. In addition to transit encryption and encryption at Rest, we use a correct!”
deterministic encryption scheme to encrypt our data such that each actor only sees the
ciphertexts when accessing the database. For this approach, we can use a symmetric
encryption scheme as well as an asymmetric encryption scheme. As described in Sec-
tion 4.2 of our previous approach, the deterministic asymmetric encryption scheme only
provides security against message recovery attacks. Thus, if an adversary could recon-
struct ciphertexts, those only contain non-sensitive data such that no privacy goals are
injured. In both symmetric and asymmetric cases, the data is stored encrypted and can
be decrypted with a key that is only owned by the admins or data analysts. Hence,
whether we use symmetric or asymmetric encryption does not influence the analysis
of the functionality. Instead, they ensure different privacy goals, which is regarded in
Section 4.3. Additionally, in the asymmetric case we would have a slightly different
scenario'® which is described in Section 4.2, Symmetric or Asymmetric Encryption. As
for Encryption in Section 4.2 the decryption key must be given to each evaluation func-
tion as additional input to ensure that only admins are able to start these functions
(and to allow the functions to decrypt data). As before, many companies do not have
special employees that could work as admins and thus hire third party data analysts.
In those cases, these analysts need the same privileges and knowledge as we allow to
admins. Therefore, those have access to the keys of the cipher or encryption scheme F.
Additionally, those analysts are considered for the privacy grading of Admin-Privacy.
Moreover, we hash and encrypt each cell individually. All in all, Hashing & Encryption
is applied as follows:

We define the subset CO* to be the set of all sensitive columns meaning CO* =
{user_id,device_id, client_ip_address,client mac_address} C CO. Given a keyed
hash function H, we pick a key ky ¢ Kpy uniformly at random. In the symmetric
case, we use a semantically secure computational cipher F with deterministic algorithms
(Enc, Dec) and a symmetric key kg < Kg. Otherwise, in the asymmetric case, we use

"Hence, it should hold the definitions for correctness in Definition 2.12 for our symmetric case and
Definition 2.15 for the asymmetric case.
18See Chapter 3 for the original scenario.

54

4.3 Hashing and Encryption

an asymmetric encryption scheme E with algorithms (Gen, Enc, Dec) where Enc must
be deterministic for our purposes. In this case, the keys are chosen by computing
(pk, sk) < Gen(). Additionally, E should be secure against message recovery attacks
(Definition 2.16).

Then, for each log entry row € {1,2,..., R} and for each column col € CO*, we
compute H (entry,,,,[col], k). For all remaining columns col € CO\CO™* (namely all non-
sensitive columns) and for all log entries row € {1,2,..., R}, we compute the ciphertexts
with Enc(entry,,,,[col], kg) if E is symmetric or Enc(entry,,,[col], pk) if E is asymmetric.

Functionality Grading

In this section, we regard each of our evaluation functions from Section 3.2 under the
application of Hashing & Encryption. For this, we first describe which of the functions can
be realized and how this is done. The results are as usual denoted in the corresponding
Table 4.8. We can see, that for this approach, most of the evaluation functions can be
realized. Only Malicious_Issuer() is not realizable, since we hash the sensitive data inside
the column user_id. Each of the evaluation functions additionally takes the secret key
k or key pair (pk, sk) as input. More details of this analysis are given in the following
listing.

Avg_Download_Size() The function’s inputs are the ciphertexts from the session_bytes
column. Thus, it should compute the average of all session_bytes. For this, it
must decrypt the stored ciphertext in the session_bytes column and computes
the average of all non-zero plaintexts. Alternatively, we could use homomorphic
encryption as already discussed in Section 4.2, Useful Extensions. Hence, the
admins can use this evaluation function to compute the average of all downloaded
bytes.

Max_Download_Size() To find the largest plaintext in the session bytes column, the
stored ciphertexts must be decrypted first. Hence, Max_Download_Size() decrypts
all those ciphertexts with the key that was given as input and compares the re-
sulting plaintexts to find their maximum. Therefore, admins or data analysts can
run Max_Download_Size() to obtain the largest download (in a given period).

Number_Requests() This functions gets as input a value device_id. Since the values from
column device_id are sensitive, they are stored as digests. Therefore, the function
Number_Requests() computes H(device_id, k) with our hash function H and the
previously chosen key kg to compare its input to all digests in the device_id
column. For each matching log entry, it increases result by one and outputs it
after it compared all log entries (from a given period). Hence, the admins or data
analysts can run Number_Requests() to learn the number of sent requests per device
and thus detect running denial-of-service attacks.

Most_Visited_Websites() This evaluation function should output the most often visited
websites. For this, it groups all log entries (of a given period) by their ciphertexts

95

4 BASIC APPROACHES

in the target_ip (or target_url) column. Then, it outputs the size of the largest
group. Additionally, it decrypts and outputs an IP address and a URL from that
group by picking a random log entry for each IP and URL. Hence, admins or data
analysts get all necessary data as output, since decryption can be used. Thus, they
can compute this evaluation function with the Hashing & Encryption approach.

Malicious_Source() This function takes a value session_bytes as input. Since, the corre-
sponding values in column session bytes are encrypted, Malicious_Source() en-
crypts its input as well. This means, that in the symmetric case, it computes
Enc(session_bytes, kg) where kg is the key we picked at the beginning. Other-
wise, the encryption of its input must be computed by Enc(session_bytes, pk). It
then compares the encrypted input to all ciphertexts in the corresponding col-
umn. For every matching log entry, it decrypts the ciphertexts in the target_ip
and target_url columns and outputs them in the end. Therefore, admins and
data analysts can execute the evaluation function Malicious_Source() with our
Hashing & Encryption approach.

Infected_Devices() For this, the evaluation function gets target_ip (or target_url) as input.
As all values in target_ip are encrypted, it then encrypts its input by computing
Enc(target_ip, kg) with kg being the key we picked in Section 4.3 if E is symmetric.
In the asymmetric case, it instead computes Enc(target_ip, pk). Next, the function
compares its encrypted input to all ciphertexts in the target_ip columns and
groups all matching log entries by their digests in device_id. After that, it outputs
the number of different groups. Hence, admins and data analysts can compute this
evaluation function with Hashing & Encryption.

On_Purpose() The output of this function is stored in the status_code column, which is
encrypted. If a symmetric encryption scheme is used, On_Purpose() firstly encrypts
the given log_id by computing Enc(log_id, kg) with kg being the encryption key
that was picked in Section 4.3. If the encryption scheme is asymmetric instead,
On_Purpose() encrypts its input with Enc(log_id, pk). After that, it picks the log
entry with the corresponding ciphertext in log_id. Then, On_Purpose() compares
the corresponding ciphertext in status_code to all ciphertexts belonging to 300 -
399. If the ciphertext in status_code belongs to a redirection code, On_Purpose()
outputs 0 and otherwise 1. Thus, we can realize this evaluation function with
Hashing & Encryption.

Malicious_Issuer() Since the values in the user_id column are hashed with our one-way
hash function H, it is hard to compute their preimages. Moreover, we do not
want to try this since we use hash functions to avoid that the sensitive data can
be revealed. Therefore, we cannot output the (malicious) issuer of any suspicious
request and thus admins and data analysts cannot compute this evaluation function
with Hashing & Encryption.

Period_Preselection() For this evaluation function, we can do the same computations
as for the previous approach with Encryption. The function needs to decrypt a

56

4.3 Hashing and Encryption

Table 4.8: Functionality Grading for Hashing with Encryption

’ Evaluation Functions ‘ Hashing & Encryption ‘ Comments

Avg_Download_Size() v with decryption

Max_Download_Size() v with decryption
Number_Requests() v -

Most_Visited Websites() v with decryption

Malicious_Source() v with decryption
Infected Devices() v -

On_Purpose() v with decryption

Malicious_lIssuer() X unreadable output data
Period_Preselection() v with decryption
’ Result ‘ 8 P. ‘

randomly picked value in the datestamp column and if it is out of range for the
given period, it picks another log entry that is newer respectively older than the
previous one. This way, it only decrypts a few log entries until it finds the last log
entry that still belongs to the given period and the first entry that is already in that
period. Then, it outputs all log entries with log_ids in between.'® Thus, admins
can also compute Period_Preselection() with the Hashing & Encryption approach to
preselect interesting log entries.

Privacy Grading

This section again contains the analysis of our privacy goals (Section 3.4). This time, we
consider them under the application of Hashing & Encryption. In addition, we assume
that the regarded adversary has access to the Log Files database but cannot read the
traffic in the company’s system since it is encrypted with e.g., TLS. Again, the privacy
goals Unreadability, Anonymity, and Unlinkability are only regarded for employees and
the above described adversaries. While admins and data analysts are considered in
Admin-Privacy. Our resulting grading table (Table 4.9) shows that we can ensure 3 of 7
privacy goals. While Validity can only be ensured for most columns and Admin-Privacy
only if the value sets V., are large. Why we can achieve these goals is further described
in the following listing.

Unreadability We could not ensure this privacy goals if any employee or adversary with
access to the database was able to read the data stored in our log file database. For
the sensitive columns col € CO*, those actors must make sense of the given digests

9Since entry,,,[Llog-id] = row, all log entries are ordered by their log_id. Otherwise, it would be hard
to find all log entries from a given period. Moreover, we would need to decrypt all log entries, since
the ones we are looking for could be widely distributed among the other entries outside our period.

57

4 BASIC APPROACHES

or compute the digests’ preimages. Since H is one-way, every efficient adversary
can learn the preimage of a given digest with negligible probability. Thus, for
all regarded actors, it is hard to learn the data in the sensitive columns CO*. All
other columns col € CO\CO* are encrypted using Egym or Eagym. In both cases, the
ciphertexts must reveal information about their plaintext such that these employees
or adversaries can reveal the data in the database. But Egy, is semantically secure
(Definition 2.13), which implies that efficient adversaries are unlikely to recognize
the ciphertext of a known plaintext. And F,eym is secure against message recovery
attacks (Definition 2.16) such that it is hard for efficient adversaries to decrypt
a given ciphertext. Hence, in both cases, the ciphertexts do not reveal enough
information to learn their plaintexts. Therefore, the regarded actors cannot learn
any information from the stored data with high probability. Thus, for all columns
col € CO we can ensure Unreadability.

Anonymity Since the hash function H is used to hide the sensitive columns col € CO*,

we can conclude the same as for the hashing approaches (Sections 4.1.1 and 4.1.2).
The only columns that reveal information about a log entry’s issuer are the sensitive
ones. In the usual case, their data can help find such an issuer if they are readable
to the actors with access to the database. But as already described previously, we
ensure Unreadability. This means that the sensitive data cannot be learned and
thus also not be linked to any employee. Hence, we can ensure Anonymity.

Unlinkability Since our encryption scheme E and our hash function H are deterministic,

we can compare ciphertexts with ciphertexts and digests with digests. Moreover,
the correctness of £ and the collision-resistance of H imply that equal ciphertexts
(or digests) belong to equal values. Hence, comparing ciphertexts or digests is
equivalent to comparing their plaintexts or preimages. This can also be used to
e.g., identify whether two different log entries were issued by the same employee.
Thus, we cannot preserve Unlinkability for Hashing & Encryption.

Presumption of Innocence The privacy goal Presumption of Innocence would only be

injured if we revealed sensitive data to enable our evaluation functions (Sec-
tion 3.2). As H is one-way, computing a preimage given a digest is hard. More-
over, none of the previously defined evaluation function includes the revealing
of a sensitive column. Thus, we do not reveal any sensitive column’s content
(for any employee) and therefore Presumption of Innocence can be ensured using
Hashing & Encryption.

Admin-Privacy To injure Unreadability, Anonymity, or Unlinkability, admins or data

o8

analysts need specific tokens or knowledge to reveal the hidden data. As the
sensitive columns col € CO* are hashed with the one-way hash function H, the
privileged actors only know the key kpy. But this is already considered to be
public in the security game (Definition 2.9) and thus gives no advantage to them
compared to all non-privileged actors. On the other hand, the admins and data
analysts own the secret key kg in the symmetric case and the key pair (pk, sk)

4.3 Hashing and Encryption

Table 4.9: Privacy Grading for Hashing and Encryption

Privacy Goals ‘ Hashing & Encryption ‘ Comments
Unreadability v -
Anonymity v -

H, E are deterministic and al-

Unlinkability X .
low comparison
Presumption of Innocence v -
Admin-Privacy ~ only for large value sets Vo,
Ephemerality X permanent storage
Validity ~ only for small value sets V.,
’ Result 4 P. ‘

in the asymmetric one. With those keys, the privileged actors can easily regain
the plaintexts from the stored ciphertexts. In particular, they can decrypt all
ciphertexts in non-sensitive columns col € CO\CO*. But for Unreadability we are
only interested in hiding the sensitive columns. And for Anonymity, only sensitive
columns could reveal information about the identity of an employee. But again, if
any of the sensitive value sets V., col € CO* is small, malicious privileged actors
can efficiently compute all corresponding digests. Thus, they can learn the data
stored in the sensitive columns and injure Unreadability. Additionally, given access
to the Users database, they can learn the identity of the log files’ issuers and also
injure Anonymity. Hence, the privileges of admins and data analysts can enable
them to injure already ensured privacy goals. Therefore, Hashing & Encryption
ensures Admin-Privacy as long as V., col € CO* is huge.

Ephemerality As all the data, sensitive and non-sensitive, is permanently stored in our
log file database and can be accessed by all admins and data analysts, we cannot
ensure Ephemerality.

Validity If we want to provide this security goal, we need to ensure that our log file server
is able to check all values from all columns col € CO since we use the scenario
from Chapter 3. Our log file server needs to verify the values for session_bytes
and status_code to be in valid ranges. Moreover, it must check the values for
client_ip_address and client_mac_address to be valid addresses of the company’s
network. Otherwise, such a request would be suspicious. The data from columns
target_ip and target_url is hard to check since for those the value set is ex-
tremely huge and the log file server has not much time to process a single request.
Hence, we conclude that the log file server can only ensure Validity for most of the
database’s columns. Therefore, we denote Validity as only partly ensured.

99

4 BASIC APPROACHES

Result

After we have analyzed all interesting aspects of our Hashing & Encryption approach,
we can compare this approach to the previously described ones. With regard to func-
tionality, this approach is much better than Complete Hashing because the possibility
of decryption enables the computation of nearly all evaluation functions. But on the
other hand, we cannot realize as many functions as with Encryption because this time
Malicious_Issuer() cannot be computed. If we only regard their privacy preservation
we can ensure the same privacy goals as we can ensure with Complete Hashing and
Partial Hashing. Moreover, we can ensure more privacy goals as with Encryption. In-
deed, Hashing & Encryption ensures the same privacy goals and enables the same eval-
uation functions as Partial Hashing. Nevertheless, Hashing & Encryption is better re-
garding privacy since none of the data is stored unhidden. We can summarize that for
Hashing & Encryption, we can compute the most evaluation functions while still ensuring
the most privacy goals. Hence, Hashing & Encryption combines the best of all previously
described approaches. One thing that stands out in all analyzes is that we can never
ensure Unlinkability or Ephemerality. Moreover, we cannot completely ensure Validity
in all our basic approaches. Another huge disadvantage of the basic approaches is that
we require deterministic algorithms. Thus, given small value sets, there always exists
the risk of malicious actors computing all digests or ciphertexts from known plaintexts.
Thus, the (sensitive) data would no longer be hidden if those mappings are learned. Due
to this, we next analyze our advanced approaches e.g., Prio. Those use randomness to
avoid this simple connection between secret and hidden data. Moreover, they can ensure
Unlinkability and Ephemerality as well as Validity.

60

5 Advanced Approaches

In the following chapters, we concentrate on the advanced approaches. Those use sev-
eral cryptographic techniques to allow privacy-preserving evaluation. In particular,
we analyze Prio [CB17], Differential Privacy [DMNS06], and Private Set Intersection
[DMRY09]. Since they are private per design, we expect them to ensure more privacy
goals than our basic approaches. Moreover, these are the promising candidates for our
privacy-preserving log file collection and evaluation system.

5.1 Prio

The previously regarded basic approaches are already good as we can realize all eval-
uation functions with Encryption and half of our privacy goals can be ensured by each
approach. But we are still hoping for a better approach that also guarantees Unlinkability
and FEphemerality. Therefore, the next and most promising approach we investigate is
Prio, based on the paper of Corrigan-Gibbs and Boneh [CB17]. Hence, the following
description of Prio and its privacy and security properties in Sections 5.1.1 and 5.1.2 are
mainly based on that paper from Corrigan-Gibbs and Boneh [CB17]. We add informa-
tion on how this approach can be adapted to our scenario (Chapter 3) in Section 5.1.3.
Further, we use their protocol to realize our evaluation functions (Section 3.2) in Sec-
tion 5.1.4 and grade the privacy that is preserved in our scenario by using our privacy
goals (Section 3.4) in Section 5.1.4.

Prio allows the aggregation of secret data that belongs to many different clients. This
is done in a privacy-preserving way by using at least two servers and secret-sharing. The
Prio protocol from Corrigan-Gibbs and Boneh [CB17] can recognize invalid data that is
provided from a client, such that we can ensure Validity. Furthermore, Prio can avoid the
computing servers from learning the clients’ secret data and thus preserves the privacy
of the clients i.e., the employees. Additionally, Prio ensures anonymity. Those security
and privacy properties of Prio are discussed in more detail in Section 5.1.2. Moreover,

Prio is already used by Mozilla! and to trace Covid-19 infections during the pandemic?.

"Mozilla’s blog: https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-prese
rving-telemetry-with-prio/,
Mozilla’s presentation of Prio application: https://www.facebook.com/atscaleevents/videos/sc
ale-2019-firefox-origin-telemetry-with-prio/468109414055086/,
Gibbs’ presentation slides: https://rwc.iacr.org/2020/slides/Gibbs.pdf,
GitHub: https://github.com/mozilla/prio-processor
*https://www.abetterinternet.org/post/prio-services-for-covid-en/ and [AG21] for more
details.

61

https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://www.facebook.com/atscaleevents/videos/scale-2019-firefox-origin-telemetry-with-prio/468109414055086/
https://www.facebook.com/atscaleevents/videos/scale-2019-firefox-origin-telemetry-with-prio/468109414055086/
https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://github.com/mozilla/prio-processor
https://www.abetterinternet.org/post/prio-services-for-covid-en/

5 ADVANCED APPROACHES

5.1.1 How Prio works

The main goal of Prio is to compute an aggregation function over the secret data of
different clients without revealing the secret data to the servers computing the aggregates
[CB17]. Hence, it fits our scenario where many clients (used by our employees®) send
their requests containing data we would like to analyze. In order to work correctly
and in a privacy-preserving way, Prio needs at least two servers (i.e., Prio servers in
the following) for the evaluation. Only then, secret-sharing can be used such that each
server only computes a part of the clients’ inputs and can thus not learn their secret
data. As Prio can only compute sums of client data, Affine-Aggregatable Encodings
(AFEs) (Definition 2.18) are used. Those run the Encode algorithm on the clients’
secret data before it is sent to the servers and the Decode algorithm after the aggregate is
computed. These encodings allow Prio to evaluate several different aggregation functions
i.e., average, variance, boolean AND and OR, frequency count, union of sets, see [CB17]
for more details. Before starting the evaluation function, public parameters e.g., the
necessary AFE with its parameters «, ' (and more, depending on the AFE) are given to
all clients and servers. Moreover, Prio can ensure the Validity of the secrets with secret-
shared non-interactive proofs (SNIPs). Due to the use of SNIPs and the AFEs’ Valid
algorithm, the servers can check which client’s secret shares are valid without access
to the whole secret. Hence, with Prio, it is ensured that only valid inputs influence
the output of the evaluation functions while preserving privacy. Next, we describe the
execution of Prio in detail.

1. Each client ¢ owns secret data sec; (e.g., a visited website’s URL) which should be
used as input to the evaluation functions without revealing sec; to the computing
Prio servers. Before sending sec; to the servers, each client must compute the
encoding e; = Encode(sec;) using the Encode algorithm of the used AFE.

2. Next, the clients need to create the secret shares of their encoded secret e; for all
S servers. Each such share [e], is created for and sent to server s. It holds that
er == Y% ,[es]s. Moreover, S — 1 shares are chosen at random (i.e., [es]s + N for
numerical secrets)?. Thus, the shares are independent from sec;. This construction
is called additive secret-sharing [CB17].

3. Then, to ensure the Validity of the sent shares, each client must prepare a SNIP
proof®.

a) For this, the clients compute Valid(e;), where the algorithm Valid depends
on the chosen AFE. Valid uses an arithmetic circuit AC (Definition 2.17) to

3Fach of the employees uses a device which is the client in this setting. Thus, for each employee
exists exactly one client that executes the Prio protocol with the secret data that is produced by this
employee.

4 According to Corrigan-Gibbs and Boneh [CB17] this can also be done more efficiently for shared
vectors by using a pseudo-random generator (PRG). Then, instead of shares, PRG keys are chosen
at random that represent the much longer shares. See [CB17, Appendix H] for details.

®For a detailed description of SNTP proofs see [CB17].

62

5.1 Prio

compute whether the given encoding e; = Encode(sec;) is valid (Valid(e;) =
1).

b) In the next step, the clients compute two functions f(z) and g(x) that each
represent one of the inputs of multiplication gate x of the circuit AC.

c¢) From those functions, the clients compute a third function h(z) = f(z) - g(z)
which represents the outputs of each multiplication gate z.

4. After that, the clients send their tuple of shares ([e]s, [h]s, [@]s, [B]s, [V]s)® to server
s using a secure and authenticated channel as provided by TLS. As the clients only
send a single share of the proof to the servers and there is no additional client-
server communication, Prio’s zero-knowledge proof system is non-interactive’. The
shares [a]s, [5]s, [7]s are created from «, 8,y € F with regard to vy = - 3 € F. The
servers need them for the multiplication of shares which is necessary to check the
SNIP. The share [h]s is a share of h’s coefficients, which is more efficient than
transmitting shares of h’s whole truth table®.

5. After receiving these shares, each server s verifies the SNIP proof by checking
whether h delivers the necessary result that Valid outputs 1 and thus the received
secret sec; is valid. For this, they first reconstruct the shares [f]; and [g]s given
the shares from sec; and h. Second, the servers ensure that f-g = h holds. In
particular, those three functions are only evaluated on a randomly chosen input
r < R since this is more efficient than checking each value in R. If one of those
two checks fails, the share is invalid and thus ignored in the following®.

6. If e; is a validly encoded secret share from client ¢, a server s adds [e;]4[0..+'] to its
internal sumsg, which is initialized with 0. Whereas, ' is a parameter of the chosen
AFE and describes the length of the share that should be regarded.

7. In the end, all internal server-sums sumg are published. Hence, any server can
compute the Decode algorithm of the chosen AFE with Decode(Zle sums) to get
the final result of the aggregation function. In fact, this task can be done by a leader
server, which coordinates the whole protocol, computes the result from all sums
and stores the resulting aggregate along with a datestamp and timestamp. But this
server should be the most trusted one. The stored result is the chosen aggregate
on input all secrets secy,t € {1,2,..., T} (see Appendix B.2 for a formal proof

Tn particular, each client must send as many shares of (a,b,c) triples as AC has multiplication gates
since each triple is only used once.

"https://www.youtube.com/watch?v=dEOKJxxe3xI

8 Another even more efficient solution would be to already evaluate h on each point on client-side and
to send shares of that evaluation of h to the Prio servers [CB17].

9The Prio servers use multi-party computation (MPC) to verify the correctness of the SNIP proofs.
This is necessary since the servers must combine their intermediate results of the arithmetic circuit
AC to reconstruct the final result of Valid. In particular, MPC is required to compute the product
of two shares and for adding the servers’ final resulting shares of Valid’s output. Thus, the servers
learn whether Valid outputs 1 without learning the values of the internal nodes in the circuit AC.
For more details see [CB17].

63

https://www.youtube.com/watch?v=dE0KJxxe3xI

5 ADVANCED APPROACHES

of the fundamental sum aggregation). To compute different aggregation functions
(i.e., evaluation functions), different AFEs must be chosen. For example, an AFE
for computing an average is necessary to compute Avg_Download_Size().

The whole protocol of Prio is also shown in the following figures. For better readability,
it is split into client-side (Figure 5.1) and server-side executions (Figure 5.2).

=

server 1

= > Encode(=) 1 ’J_‘)
secret i
C”‘:‘“ Encode(=2) i |En! od r(S17) °
[—
° A e Torod !
Valid SNIP proof s Inip' 'proo | f
: aiid([==]) ipl - prod ¢ .
T
R= S B
L s
clientT

server S

Figure 5.1: Execution of Prio protocol, client-side

5.1.2 Security and Privacy of Prio

For the security and privacy of Prio there are several types of adversaries (e.g., mali-
cious clients and servers) that have to be considered. First of all, adversaries that take
control of one or more servers can impersonate them to influence the computations of
the aggregates. Adversaries that are able to interrupt client-server-communication can
cause unavailability of the whole system or exclude specific clients from participation.
Moreover, malicious clients (or clients controlled by adversaries) could try to send wrong
secrets to influence the aggregates. According to Corrigan-Gibbs and Boneh [CB17], Prio
is secure against adversaries that can control clients and servers as long as one server is
still trustworthy'?. They additionally consider adversaries with access to the company’s
network that can arbitrarily manipulate the sent packets. These adversaries can thus
cause attacks we describe in Section 5.1.4. Nevertheless, protection against adversaries
reading the transmitted traffic is provided by Prio by assuming secure and authenticated
channels, as provided by TLS. In comparison, the adversaries we considered in the basic
approaches (Chapter 4), only passively observed the log file’s content. Due to this, the
adversaries we regard for Prio have many more abilities and are thus stronger.

10A Prio server is trustworthy if it executes the Prio protocol correctly i.e., as described in Section 5.1.1
or [CB17].

64

5.1 Prio

valid publish sum
2 increase sum 2 Decode()—> result

t==T+1
server 1

invalid //

forall clients 0 < t < T+1

publish sum
—>) [] []

serverS

Figure 5.2: Execution of Prio protocol, server-side

As Prio makes use of the AFEs and SNIP proofs, both must ensure security and
privacy properties such that Prio can be secure and private as well. For this, an AFE
should be private, correct, and sound as described in Definition 2.18. Moreover, a SNIP
must also be correct and sound and should further provide zero-knowledge. In detail,
for correctness, a SNIP must ensure that each client’s secret w that is inside the defined
language £ of valid inputs and correctly encoded, is accepted by the Prio servers. While
soundness implies that all others secrets where w ¢ L or Valid(Encode(w)) # 1 are
rejected by the servers with high probability!!. Furthermore, SNIPs must provide zero-
knowledge such that none of the single secrets w can be learned by the servers and only
whether Valid(Encode(w)) = 1 holds. Then, given AFEs and SNIPs with these security
and privacy properties, Prio can ensure f-privacy, anonymity, validity, and robustness.
These properties are informally described in the following and based on [CB17].

o f-privacy implies that the Prio servers do not learn the clients’ inputs w given the
final aggregate of function f. In particular, there exists a simulator Sim that sim-
ulates the view of all malicious clients and servers of the computation without any
secret w as input. For the formal definition of this simulator, see [CB17, Appendix
A,G]. In other words, the view is a tuple of all transmitted data in the Prio proto-
col. It contains the data that is generated by the malicious and trustworthy clients
i.e., secret shares and SNIP proofs. Additionally, the internal sums of all malicious
and trustworthy servers are simulated by Sim and thus also part of the view. For
this, the simulator takes as input the final aggregate f(secy, seca, ..., sec;) and the
data that is generated by malicious clients and servers. This shows us, that Sim

"This also holds for very efficient malicious client i.e., super-polynomial time (Q(n?),p € N, Defini-
tion 2.2) adversaries .

65

5 ADVANCED APPROACHES

executes the protocol’s steps in a wrong order i.e., the output is taken as input
to simulate the protocol without the clients’ secrets as input. The distribution of
those simulated data is then computationally indistinguishable from the distribu-
tion of all transmitted data in the maliciously controlled execution of the protocol.
Even during the collaborative computation of the multiplication gates of the arith-
metic circuit AC, the Prio servers learn no information that aids reconstructing
the secrets as long as the SNIP provides zero-knowledge. Thus, Prio can protect
the privacy of the employees against malicious clients and servers. Nevertheless,
if all servers were malicious, they could exchange their secret shares and recon-
struct the secrets. Thus, at least one of the servers must be trustworthy to ensure
f-privacy!'?. Overall, the AFE must be private (see Definition 2.18) and the SNIP
must provide zero-knowledge. The detailed proof of this statement can be found
in [CB17, Appendix GJ. For us, this means, that an adversary learns at most S — 1
of S shares and the final aggregate, but not the secret w of any client.

¢ Anonymity can be provided by Prio for all symmetric and f-private aggregation
functions f. A function f is called symmetric if it holds that f outputs the same
result regardless in which order it receives its inputs. Or more formally, it must
hold that f(w1,wa, ..., wr) = f(Wr), Wr(2)s- - - Wr(ry) for all client inputs w;, i €
{1,2,..., T} and permutation 7. The proof of this is located in [CB17, Appendix
A]. For our scenario, this means that the aggregate of the evaluation function does
not reveal any information about the owner of a secret besides what is revealed
by the aggregate itself. Thus, the protocol protects the clients i.e., the employees
from malicious servers.

« Validity'? implies that (with high probability) only valid client-inputs w are used
to update the servers’ aggregate sum. An input is valid if and only if it holds that
w € L and Valid(Encode(w)) = 1. For our scenario, validity ensures that all secrets
sec that are not inside the value set V4 or wrongly encoded are rejected by the Prio
servers with high probability. Otherwise, if sec € V and Valid(Encode(sec)) = 1
the secret is aggregated to the servers’ sum and thus influences the final aggregate.
Due to this, Prio servers are protected from malicious clients.

¢ Robustness in the sense of failing servers is also ensured by Prio. But it requires
all servers to be trustworthy. Corrigan-Gibbs and Boneh [CB17] mention that
one could also construct Prio to ensure robustness given a subset of trustworthy

121p the protocol, the Prio servers communicate with each other in order to verify the secrets by checking
the SNIP proofs. For this, they compute the result of the arithmetic circuit AC without learning
the values of the internal nodes. If all clients were malicious, they could sum their values from the
internal nodes and also reconstruct the values from the input node. Thus, they learn the clients’
secrets. Due to this, at least one server must be trustworthy to ensure privacy.

131n the original paper called robustness, but this collides with the robustness against failing Prio servers,
such that we use validity instead.

1YWe define a V., for each column col. This is necessary since session_bytes stores different data than
target_ip and thus needs another range of valid values. But we omit the index whenever possible
to simplify the expressions.

66

5.1 Prio

servers, but then, the privacy of the whole protocol suffers. In the case of some
defect servers, the remaining servers must compute the aggregate without them,
to ensure robustness. But this means that also a subset of servers suffices to
reconstruct the secrets. Thus, if exactly this number of servers were malicious,
they could regain the clients’ secrets and hence injure the privacy of the employees.

5.1.3 Adapted Scenario

In this section, we describe how we adapt our scenario to allow evaluations with Prio,
as it is very different to how we analyze data in the previous chapters. In contrast to
all previously shown approaches, we do not store log files anymore. Instead, we directly
evaluate all incoming data and only store the results of the data’s aggregate. This leads
to more privacy since the data of the clients’ requests is not completely stored anymore.
On the other hand, it is hard to do any evaluation once the data is gone. Thus, it is
important to start as much evaluation functions as possible to store enough results for
further investigations. Furthermore, we remove the log file server, which was only meant
to create the log file entries for the database. We replace it with at least two Prio servers
which get their inputs directly from the clients (i.e., devices) and store the results in a
storage we name result storage. As we divided proxy and log file server into different
entities, the proxy server is not affected by the adaptions we need to do for the usage of
Prio. Moreover, for Prio, each client ¢ needs to prepare the computation of an evaluation
function itself. Thus, it needs to pick the necessary values called its secret data sec; from
the previously submitted request. Additionally, all admins and data analysts only have
access to the result storage using their personal logins and can then use those aggregated
data for their investigations. Hence, the secret data of the clients remains secret as long
as it cannot be concluded from the results of the evaluation functions.

As described in [CB17], the servers aggregate shares until they received a share from
each client. Thus, in the original Prio scenario, each client is only allowed to vote once.
This suffices, if their admins for example, want to learn the most used browsers. But in
our scenario, we want to find the device with most requests and if we only allowed each
device to vote once, before computing the result of the evaluation function, we would
never get a useful result. Moreover, if we tried to ensure that each client sends exactly
one share per evaluation, the clients (and thus the employees) must wait with further
requests until everyone has sent its share. Or alternatively, we would have to ignore
all meanwhile incoming requests, which is also not preferable. Hence, in our scenario,
we need to allow that every device can send as many votes as it submits requests in a
given period. Thus, the given inputs must be evaluated after a predefined period is over.
Alternatively, the servers accept a predefined number of shares K > 1 before publishing
their sums. This second option is more useful, since we always know the number of
received input shares per execution of an evaluation function.

As the clients now participate in the evaluation by sharing their secrets, they need
to know which data must be encoded with which AFE. It can be seen that we need to
execute some evaluation functions periodically with the same kind of input data. Thus,
we do not need to notify each client separately to encode its secret for a specific evaluation

67

5 ADVANCED APPROACHES

p—
00020
OO0 00

proxy server
with blacklist

world wide web

company
web cache
employeesg devices ‘ —> _8
data analysts

admins result storage

Prio servers

Figure 5.3: Diagram of the adapted scenario for our approach using Prio

function. Instead, we implement all clients to automatically construct the shares from
their requests. Moreover, they take the necessary user_id from the currently logged in
employee and the device_id from themselves. Then, for each evaluation function that
is specified in Section 5.1.4, each client picks the demanded values from the requests,
produces the shares and proofs and sends everything to the Prio servers which compute
that particular evaluation function!®.

The whole adapted scenario for Prio can be seen in Figure 5.3.

5.1.4 Evaluation
Application

For each of our evaluation functions from Section 3.2 we need different AFEs to realize
them. The overall application from creating shares of the secret data over sending the
shares to the servers to aggregating the server’s internal sums is equal for all evaluation
functions and can be seen in Section 5.1.1. The details of each application are described
in the following section.

Functionality Grading

In this section, we analyze which evaluation functions from Section 3.2 can be realized
if our used approach is Prio. As we can see, there are only four of them realizable. This
is caused by Prio only being able to compute aggregate statistics and using live data.

5 As the Prio servers cannot see the secrets, they cannot determine to which evaluation function a share
should be aggregated. In practice, one could send (not shared) identifiers with each share that tell
the Prio servers (i.e., their leader) for which evaluation function the share should be used.

68

5.1 Prio

Which functions in particular can be realized and how this is done in detail is described
in the following. The results of this functionality grading are summed in Table 5.1.

Avg_Download_Size() This evaluation function gets as input the values that would belong
to the column session_bytes!® and computes the average of all those values.
Given an upper border B'7 such that for each secret sec it holds that sec <
28 — 1 (each secret can be represented as B-bit binary). We use the AFE of Prio
that can compute the average of the (non-zero) secret inputs [CB17]. First, the
Encode algorithm computes the binary representation of a client’s secret meaning
bits b; € {0,1} with regard to sec = Zf:ol 2! . b; and outputs the tuple e; =
(sec,bg,b1,...,bp_1). Then, the clients use additive secret-sharing to produce the
shares as described in Section 5.1.1. Additionally, they create the SNIP proofs
from the AFE’s Valid algorithm and produce their shares as well. After that, all
those shares are sent to the servers. Those use the SNIP proof to check whether
the given tuple contains the secret sec and its bit representation. Hence, all client-
provided secrets are rejected that were e.g., no integers in [0, 27 — 1]. If a share is
valid, each server s only adds the first part (k' = 1) of the encoding e;, which is
the share of sec, to its sum,. After the servers treated all K received shares this
way, they publish their sums and one of them (or their leader) executes Decode on
input Zle sumg. Since the result is already the sum of all secrets, Decode only
has to divide its input by the number of shares which is K. Again, the proof of
the correctness of the used sum-AFE (which is equal to the avg-AFE except that
Decode does nothing) is given in Appendix B.2. Hence, this evaluation function
can be correctly computed with Prio and thus admins can use it to compute the
average of downloaded bytes.

Max_Download_Size() This function takes all values from session_bytes (from a given
period) as input and outputs their maximum. For this, each client must send
the size of its downloaded session_bytes after issuing a single request. Hence,
the secret of each client is sec; = session_bytes;. In order to find the maxi-
mum max;<¢<7(session_bytes,) of all secrets, Prio’s max-AFE must be used to
encode each sec; [CB17]. We assume that we already defined an upper border B
that defines the largest size of a download. The Encode algorithm of the max-
AFE creates encodings of the secrets by representing each sec; in unary. Thus,
Encode(sect) = (bo,b1,...,bp—_1) such that the first by to bse,,—1 are 0 and all
bsec, to bp_1 are 1. The servers then use the bitwise and-AFE to aggregate the
shares. Hence, each 1 in the encoding is replaced by a string 0” and each 0 is
replaced by a random string in {0, 1}" with n € N being one of the public param-
eters. The Valid algorithm does always accept because Encode outputs randomly

6Since we do not need databases containing log entries for Prio there are also no columns with data in
it. Nevertheless, we use the names of the columns in CO to identify which kind of data is analyzed.

"We can find the upper border B of all those session_bytes with the AFE for finding the maximum.
But that AFE also needs an upper border B as input. Hence, it can be complicated to find B. This
can e.g., be done by regarding previous maximums and adapting B to them.

69

5 ADVANCED APPROACHES

chosen strings. Thus, every binary share is accepted. Then, bitwise xor is used
instead of sum to produce the shares, update the servers’ sums, and compute
aggregate = @le sums. The servers run the Decode algorithm with input ag-
gregate and the algorithm translates each string only containing 0s to 1 and else
to 0. The resulting string (bf,),...,b)5_;) is the AND of all encodings and its
smallest j with b} = 1 is the maximum max;<;<7(session_bytes,) = j [CB17].
Therefore, with this evaluation function, admins and data analysts can find the
largest downloads.

Number_Requests() This function takes as input a device_id and outputs the number of
requests that were issued by the specified device (in a given period). Using the
previous approaches, we had to run this function for each single device_id, but with
Prio we can evaluate it for a small value set V' C Vjeyice_id at once. For significant
large sets of e.g., device_ids, this application is inefficient, thus an approximate
variant is explained in [CB17]. For this, Corrigan-Gibbs and Boneh adapt the
data structure count-min sketches'® [MDC16] to the existing Prio protocol. Never-
theless, for our purposes, the simple version efficiently covers all sizes of sets that
are reasonable in the context of device_ids, thus V' = Vyeyice_iq- T0 realize this func-
tion with Prio, we use the AFE for frequency counting that is described in [CB17].
After sending a request, a client has to encode its secret sec = device_id, which rep-
resents the currently used device, as follows: Given a vector ' = (vo, v1, ..., v)y|-1)
that represents all valid device_ids, a client sets ¢ to be zero everywhere except
a single v;. That value v;,7 € {0,1,...,|V| — 1} represents its secret device_id
and is set to 1. Then, for each request, a client creates the S shares from its en-
coded secret Encode(sec) = U using additive secret-sharing. Moreover, each client
needs to prepare the SNIP proof using Valid from the used AFE and sends a share
([F]s, [R]s, []s, [Bls, [7]s) to server s with s € {1,2,...,S}. At the servers, the Valid
algorithm of the AFE accepts a share if it only contains a single 1 and the rest
is all 0. Then, the servers add each accepted share to their surh and output the
resulting vector after receiving K shares. After that, all servers’ surhs are added
again by one of the servers and the result is a vector that identifies which device_id
issued how many requests (in the regarded period). Thus, the Decode algorithm
does nothing since the output already contains the number of requests per device.
The admins only need to store the mapping between device_id and its number of
requests. Thus, Max_Download_Size() can be realized as well if we use Prio.

Most_Visited_Websites() To apply this evaluation function, we use the frequency counting
AFE of Prio [CB17]. For this, each client prepares a vector ¥ = (vg, vy, . .. s VW |—1)
that represents with W C Vigrget_ip all interesting websites from e.g., Alexa top

18 Count-min sketches are two-dimensional arrays A that use one hash function H; per row j to efficiently
store and update the frequency of each possible value i.e., secret sec. To encode their sec, the clients
increase the value A;[H;(sec)] in each row j and column Hj(sec) of A by 1. After the servers added
all received shares of A, the minimum of all values A;[H;(sec)] of all rows j is an upper border of the
frequency count of sec. See [CB17, MDC16] for more details.

70

5.1 Prio

1000'°. Except the value v; = 1,5 € {0,1,...,|W|—1} that represents the website
that has been accessed by the client, ¥ must be all 0. Hence, the constructed ¢
is the encoding of the client’s secret using Encode. Then, each client creates the
shares for ¢’ using additive secret-sharing on each v; and sends a share [¥/]; to server
s. The Valid algorithm rejects all ¢’ that contain more or less than a single 1. Next,
each server adds the shares it receives to its sum and publishes this after all K
shares are processed. In the end, one of the servers sums the published sums and
achieves a vector that describes the amount of accesses to each website in ¥ (in
the regarded period). Since the result is already the result we expect when using
Prio’s frequency count, the Decode algorithm does nothing in this case. To find
the most visited website, the admins must only find the largest value in this vector
and output the e.g., URL it belongs to. Hence, using this implementation, the
evaluation function outputs much more information than needed. In particular,
it also outputs which website is visited how often, while admins might only be
interested in the most visited websites. To solve this problem, the Decode function
could be defined to output the i for the largest v; in ¥. Then, the admins must
only look up the corresponding URL (or IP address). But still the number of visits
of each website can be read by the executing Prio server, though we do not store
it in the result storage.

Alternatively, to cover a larger set of investigated websites than W, we can use
the extension of Prio called Poplar. This approach is introduced in [BBC*21] and
solves the heavy-hitters problem. If we use Poplar, we can find all URLs that are
visited at least o times. It does investigate all possible URL strings and not only
a predefined subset of most popular websites as before. This is more useful in our
scenario, since the website that an infected device starts a denial-of-service attack
against must not be one of those popular websites. To use Poplar, each client
must first translate the target_url (or target_ip as long as it is consistent) into bits
b; € {0,1}. Then, the client produces a binary tree by following the given rules.
The tree is zero everywhere except on a given path, which depends on the string’s
binary. If by is O then the left child of the tree’s node (starting from the root) is 1.
Otherwise, if by = 1, the right child is set to 1. This is done for each level of the
tree until the last bit b,, of the secret and therefore the tree’s last level is reached.
Thus, such a tree represents an arbitrary string with n bit representation. For
this tree, the shares are computed and sent to the Prio servers. To allow efficient
transmission of huge trees, Distributed Point Functions [GI14] are used to transmit
the non-zero path in the binary tree. For more details on this, see [BBC*21]. The
servers then sum the shared trees and their result is thus a tree that in its leaves
denotes the numbers of accesses for each possible URL string. Since this tree is
too large to completely traverse, Boneh et al. [BBC*21] decided to truncate the
branches of the tree that are smaller than o. Hence, they dramatically decrease the
size of the resulted tree by each level’s investigation. In the end, the servers’ result
is a set of websites that have been visited at least o times. Hence, the admins could

https://www.htmlstrip.com/alexa-top-1000-most-visited-websites

71

https://www.htmlstrip.com/alexa-top-1000-most-visited-websites

5 ADVANCED APPROACHES

use this extension to investigate a much larger set of visited websites. Moreover,
depending on o is chosen, the admins receive several websites that have been visited
suspiciously often and not only a single one. And again this function leaks more
information than originally needed. Moreover, it outputs the frequency of each
substring. Nevertheless, we can realize Most_Visited_Websites() using Prio.

Malicious_Source() This function takes as input a value session_bytes and should output

a website where malware of session_bytes bytes has been downloaded. If we knew
the download size session_bytes before the malware has been downloaded, we could
ask all clients that downloaded files of that size to send the corresponding target_ip
(or alternatively target_url) as their secret data. Then, we could compute the union
of those secret with the corresponding AFE described in Prio ([CB17]) to output
all suspicious websites. But in the original setting, this evaluation function should
find the results for a single infected device with device_id. This is also more useful
as the websites with the corresponding size must not be malicious, especially if
the devices that visited those were not infected. Therefore, we are only interested
in a single client’s input and we also want to output the union of all secret data
that is sent by this client. Specifically, we could demand the client that uses the
device with device_id to send all requests’ e.g., target_ips that downloaded files of
size session_bytes, to the Prio servers. Those servers could then perform the union-
AFE of Prio and output a set of all target_ips that were requested by the device and
caused a download of size session_bytes. But nevertheless, this construction does
not work since we do not know the session_bytes before the malware is detected
on a device. Hence, when we find the malware and want to do the evaluation
with Prio, the necessary data is already lost since it is not stored. Moreover, this
construction can neither ensure Anonymity since the issuer is always the same, nor
Unlinkability because all secret data is from the same issuer, nor Unreadability as
the secret data of the client is shown in the result as set of all secret data. Hence,
it would destroy the whole idea of Prio if we realized this evaluation function as
described above. Thus, Malicious_Source() is not realized using Prio.

Infected_Devices() This evaluation function takes as input a target_ip or target_url and

72

should output the number of devices that accessed the therefore specified websites
in a predefined period. Given a malicious website, we could let the clients vote
whether they accessed this website or not. Hence, each one would only need to
send a bit 1 for accessed and 0 otherwise. Then, the servers could use the sum-
AFE to compute the sum of all 1s, and hence output how many devices could be
infected due to visiting this website. But for this, we need the knowledge of the
malicious website. If we use votes from current requests after we have found the
malicious website, we could as well add the website to our blacklist to block all
further accesses. Hence, if we want to learn which devices visited this website a
long time ago, we need to store the requests’ target_ips or target_urls. Then, the
clients would have to send votes for all their stored requests in hindsight. Thus, we
would need a storage for that data to compute this evaluation function correctly

5.1 Prio

and usefully. Since a storage or log files are not part of the Prio approach, we
cannot realize Infected_Devices().

On_Purpose() This evaluation function takes as input a log_id and should output the cor-
responding value in status_code. As log files could be recognized by their unique
log_id this was useful to find the necessary log entry in the database. Otherwise,
in Prio there exist no log files anymore and thus the log_id cannot be used to
find any data. Alternatively, a combination of datestamp, timestamp (and maybe
one more) could be unique for all issued requests and be used instead to find the
needed request. Then, there would remain the problem that Prio only analyzes live
data. But, we only know the request that should be investigated after it has been
issued. Thus, its status_code is no longer available. Moreover, we would have to
output the status_code of a single request, which would be the secret data. Hence,
after summing the sums, the executing server learns the secret data of the single
participating client, which is against Prio’s zero-knowledge requirement. Due to
these aspects, we do not realize On_Purpose() with Prio.

Malicious_Issuer() In our scenario (Chapter 3) this function should take a device_id and
a target_ip (or target_url if given instead, as well as the password) as input. Then,
it should output the user_id of the client i.e., employee that issued the specified
(malicious) website. If we knew the malicious website’s target_ip when the web-
site is issued and the malware downloaded, we could execute the following: We
could ask the client to encode its sec; = user_id; with a vector ¥ that represents
all user_ids. For this, it must only set the corresponding v; to 1 and the rest of
7 = (vo, V1. .., vjy|—1) to 0 (for all device_ids V' = Vievice_ia)- Then, using the sum-
AFE, the Prio servers could compute the aggregate of all those client-provided vec-
tors. The result would be a vector that represents with v; > 0,5 € {0,1,...,|V|-1}
the user_ids of clients that might have downloaded the malware. But as already
said, we need the target_ip before the malware is downloaded to realize this idea.
Since that is not possible, those values must be stored, which is not contained in
Prio. And to observe whether the guilty employee accesses the malicious website
with the same device again, is not useful. Since the malware is already downloaded,
that employee would beware to repeat that suspicious action. Thus, we can also
not realize Malicious_Issuer() with this approach.

Period_Preselection() Prio cannot output whole log entries since it only outputs aggregate
data. But we could define a different version that is similar to Period_Preselection():
Additionally to the secret data, each client also gives its datestamp and timestamp
as input. Those should be part of the encoding. And the Valid algorithm verifies
whether the given secret data is inside the specified period. Then, the servers
would only aggregate shares from the correct period. Nevertheless, the clients
can only send live data, as they do not store any additional data. Thus, if the
Prio servers asked for another period than the current one, the clients would send
and produce the shares and proofs, but all of them would be rejected by Valid.
Hence, to allow the clients to send secrets from previous periods, we would have

73

5 ADVANCED APPROACHES

Table 5.1: Functionality Grading for Prio

’ Evaluation Functions ‘ Prio ‘ Comments

Avg_Download_Size() v’ | with avg-AFE

Max_Download_Size() v | with max-AFE
Number_Requests() v | with frequency-count-AFE

Most_Visited Websites() | v* | with frequency-count-AFE or Poplar
Malicious_Source() X | needs storage
Infected_Devices() X | needs storage
On_Purpose() x | would injure zero-knowledge

Malicious_lssuer() X | needs storage

Period_Preselection() X | not useful here

| Result B

to store the data, which is not part of Prio. Moreover, it would be useless to start
Period_Preselection() for the current period since per construction the clients are
only able to send current requests’ data to the servers. Therefore, there is no need
to ensure that secrets originate from the current period. Thus, Period_Preselection()
is unnecessary and not realizable as long as there is no older data stored.

A note on Prio’s max-AFE In the original paper [CB17] the description of max-
AFE is missing detailed information on how the shares are constructed. Those are
important since that AFE depends on binary shares such that additive secret-sharing
would not work. Moreover, the paper demands to use or-AFE for realizing the max-AFE,
though it only works if and-AFE is used instead. Therefore, we had to figure out which
construction is needed to create a working max-AFE. Thus, we realize max-AFE using
and-AFE. Moreover, we use the xor function to create the shares from binary secrets?.
Thus, for all secrets sec, it holds that sec = @3_, [sec]s. Since only or-AFE is explained
in detail in [CB17], we also figured out how to change Encode to realize the and-AFE. For
this, we adapt Encode to map each 1 to a string of 0s and each 0 to a binary string that
is chosen uniformly at random. The Valid algorithm still does nothing in this case, as all
random binary strings are possible and valid. For the Decode algorithm, we map each
string that only contains Os to 1 and everything else to 0. That the previously described
construction works correctly, is shown by our implementation of the max-AFE?!.

29Later on, we discovered that the xor function is also used to create shares for binary secrets in Prio+
[AGJT22].
2https://github.com/anliko/prio_max_afe

74

https://github.com/anliko/prio_max_afe

5.1 Prio

Privacy Grading

In this section, we analyze the privacy we can preserve with Prio. Hence, we discuss which
of the defined privacy goals from Section 3.4 can be ensured. For this, we regard the
adversaries described in Section 5.1.2. We again consider adversaries that can read the
traffic of the company in Unreadability, Anonymity, and Unlinkability. Those adversaries
that gain the privileges of admins and data analysts or learn the aggregates by controlling
the (leader) server are regarded in Admin-Privacy. In fact, Prio is able to preserve all our
privacy goals. The whole discussion can be read in the following paragraphs and Prio’s
privacy grading table is Table 5.2. Additionally, do a brief, separate privacy grading for
the second variant of Most_Visited_Websites() using Poplar. This is useful since Poplar
is based on the same idea but still different to Prio and also ensures other privacy and
security properties. That grading can be found in Section 5.1.4

Unreadability We could not ensure Unreadability for Prio if a secret sec could be read
(i.e., learned) by any client or adversary except its owner. Thus, the first opportu-
nity to see such a secret is while it is send to the Prio servers. Since any actor that
eavesdrops all send shares can easily reconstruct the secret, this would injure the
privacy of the transmitting client. But shares are only sent via a secure channel
that is constructed by e.g., TLS. Intuitively, it would be hard for each eavesdrop-
ping actor to reconstruct the secrets from the encrypted shares. Thus, the phase of
transmission is considered to be secure and private. The next privacy issue would
occur if the secret could be reconstructed and read by the Prio servers. As already
mentioned in Section 5.1.2, Prio can ensure f-privacy respectively zero-knowledge.
This means that it is hard for every adversarial actor to reconstruct the secrets of
the clients given the result that is output of the Prio servers. Or put more formally,
given the result of aggregation function f on input secrets secs, t € {1,2,..., T}, a
simulator Sim can execute the servers’ steps of the Prio protocol without knowledge
of the secrets sec;. Additionally, the simulated credentials have the same distri-
bution as in the execution that is done by the malicious servers. Thus, as long
as at least one server executes the protocol correctly, the malicious servers cannot
reconstruct the secrets given their shares. Therefore, each server only learns the
shares which are chosen uniformly at random ([e]s <— N or [e]s < {0,1}",n € N)
and thus reveal no information about a secret. Additionally, the servers are not
able to learn the secrets from the result as long as Prio is f-private for the aggrega-
tion functions we used. Those are avg, max, and frequency count and according to
[CB17] all of them are f-private. Nevertheless, if we use the aggregation functions
sum, average, or maximum, we need at least two shares as input. Otherwise, the
result would be the secret itself??. Then, any malicious leader server, admin, or
data analyst, knowing that there was only one secret, can learn this by reading
the result. But as the number of evaluated shares is always K > 1, we avoid those

22 An interested reader might recognize the relation to zero-knowledge proof systems. In particular, the
protocol is witness indistinguishable in that case, but not zero-knowledge. Those who are not yet
familiar with zero-knowledge proof systems might be interested in [FS90].

75

5 ADVANCED APPROACHES

issues. On the other hand, some aggregates as set union reveal all secrets because
it is their purpose to output them?3. Since we do not need that aggregation func-
tion, this does not influence our privacy grading?®. As a result, we can ensure
Unreadability if K > 1 and there is at least a single trustworthy Prio server. And
both conditions are already part of how Prio should be constructed.

Anonymity As is already proved by Corrigan-Gibbs and Boneh in [CB17], Prio en-
sures Anonymity if the used function is f-private and symmetric (Section 5.1.2).
If we regard our implementations of the evaluation functions, we make use of
Prio’s avg-AFE, max-AFE, and frequency-count-AFE. According to their paper, all
those AFEs are f-private. Moreover, we realize the functions Avg_Download_Size(),
Max_Download_Size(), Number_Requests(), and Most_Visited_Websites() using Prio.
For the both first of them, it does not matter in which order they receive their
inputs since they only use mathematical operations sum, division, and max that
are commutative. The evaluation function Most_Visited_Websites() uses the sum-
AFE and it does not matter in which order we add the vectors that represent the
device_ids. This holds for the vector-based realization of Most_Visited_Websites(),
as well. Furthermore, in our scenario, the admins must not notify the clients to
send their secrets since it is automatically done for each request. Otherwise, if the
admins asked a small set of clients explicitly to send secrets, they would be known
by the admins and Anonymity could not be ensured. Thus, if there is at least
one trustworthy server and no sensitive data is output, we can ensure Anonymity.
The condition of one trustworthy server is fulfilled, as it is a requirement for our
approach and the zero-knowledge property of Prio ([CB17]). In addition, in the
previous functionality grading (Section 5.1.4), no sensitive data is part of the Prio
server’s result. Thus, we can ensure Anonymity with Prio.

Unlinkability We could not preserve this privacy goal if it were possible to find con-
nections between different secrets. This means recognizing equal secrets as well
as secrets that originate from the same client. But those secrets are only seen
by their owners. In particular, their shares are transmitted via the secure and
authenticated channel that is produced by e.g., TLS. Intuitively, this implies that
the transmitted shares are hard to decrypt and thus learn for every efficient adver-
sary that observes the traffic. Since each share [e;]s is chosen uniformly at random
from N or {0,1}", comparing their ciphertexts even if deterministic encryption is
used, reveals nothing about the secret or the share’s issuer. A subset of malicious
servers could reconstruct the secrets to find connections to other secrets or issuers.
But since Prio ensures f-privacy, we can provide that the secrets of the clients
cannot be reconstructed from the results. Hence, adversarial servers cannot learn

231n [Cel22] it is also discussed that a subset of the aggregation functions outputs more data than needed.
One of them is variance, which is not used in this thesis and thus no risk for our scenario.

24In scenarios where such functions are needed, k-anonymity could be used to improve the privacy.
Then, only a subset of all secrets that were sent at least k£ € N times should be inside the result. This
could be realized with frequency counting or Poplar.

76

5.1 Prio

the secrets and thus not compare them. And since the shares that are seen by
the servers are chosen uniformly at random, connections to other shares are only
coincidence. Thus, they also cannot reveal information about the secrets except
an upper border if they know the length of the shares. Hence, with Prio, we can
ensure Unlinkability which was not possible with any of the previous approaches.

Presumption of Innocence We have already shown that Prio is f-private (Section 5.1.2)
for all evaluation functions we realize in Section 5.1.4. Due to that, the servers are
not able to learn the secrets given the shares and aggregates as long as at least a
single server is trustworthy. Thus, the admins are neither able to learn any of the
provided inputs (i.e., secrets) nor their senders (i.e., the employees). Moreover, we
can ensure Unreadability and Anonymity. As we never output sensitive data such
as user_ids, we further avoid that the owner of any secret can be found. Thus, we
cannot reveal a secret or the identity of a suspicious employee. But that is less a
problem regarding that Prio ensures Validity and thus avoids malicious employees
and adversaries from significantly influencing our resulting aggregate. As neither
the secret data of innocent nor malicious employees can be revealed, we ensure
Presumption of Innocence.

Admin-Privacy As already mentioned for the previous approaches, data analysts need
the same privileges and knowledge as admins to correctly perform their work.
Thus, both admins and data analysts are able to see the results that are stored
within the result storage. Hence, they learn everything that can be concluded from
those aggregates. Given that Prio is f-private (Section 5.1.2) they cannot learn the
single secrets of the clients. Hence, depending on the used aggregation function of
Prio, admins learn at most the aggregates of the secrets. But in the worst case,
if the function is for example set union, all secrets are a visible part of the result
and thus leaked. Moreover, if the other aggregation functions are only computed
using a single input, then most results would as well reveal that secret. But we
pick K > 1 and therefore we can ensure that the aggregation functions we use (i.e.,
average, maximum, and frequency count) do not output a secret as aggregate. One
main advantage is that analysis with Prio is done by the Prio servers and not by the
admins. Hence, once the evaluation functions that should be executed periodically
are defined, the admins cannot misuse their privileges to injure the employees’
privacy. Furthermore, in this case, admins do not own any additional knowledge
compared to all non-privileged actors. Their sole advantage is the access to the
result storage, which again does not help learning the secrets as Prio is f-private,
union-AFE is not used, and K > 1. Thus, we can also ensure Admin-Privacy using
the Prio approach.

Ephemerality Since Prio is realized without log files, none of the requests are stored.
Instead, we store the results of the evaluation functions in the result storage. This
includes the session_bytes and accessed target_ips or target_urls but only as aggre-
gated data. The admins and data analysts can permanently access the aggregates
in the result storage, but regarding our functionality grading from Section 5.1.4

77

5 ADVANCED APPROACHES

no sensitive data (defined in Section 3.3) is directly stored there. As already dis-
cussed for the previous privacy goals, the result storage stores only aggregates that
contain no secrets since K > 1. Moreover, no secrets from sensitive data can be
concluded from the stored data, as Prio is f-private. Therefore, Prio is private in
the sense of our privacy goal Ephemerality.

Validity One might first think that we cannot ensure Validity since the servers never
see the true secrets from the clients and can thus not check them. But thanks
to Prio’s usage of SNIP proofs and the Valid algorithm of the AFEs, we can in-
deed ensure Validity. For this, the SNIPs ensures soundness. Thus, all clients’
secrets sec; that are encoded incorrectly or lie outside a predefined range lead to
Valid(Encode(sect)) = 0 with high probability. Then, those secrets are ignored by
the servers and not aggregated to the sums. Since SNIPs are also correct, all valid
secrets sec; that are encoded using the correct Encode algorithm and for which
secret sec; € V holds, lead to Valid(Encode(sec;)) = 1 for sure. Thus, with high
probability the result of the aggregation function that is computed is only created
using valid secret sec; € V. Then, the result cannot be negatively influenced by
out of range secrets e.g., unrealistically huge session_bytes that should cover the
true maximal downloaded session_bytes. Hence, we can ensure Validity with Prio.

Privacy Grading of Poplar Poplar ([BBC'21]) is used in this thesis to realize the
Most_Visited_Websites() evaluation function for a significantly larger set of possible se-
crets than with Prio. Thus, we need to discuss the privacy that is ensured by Poplar.
First, it ensures robustness (respectively Validity) against malicious clients since it uses
validity proofs as well [BBCT21]. Hence, if clients send secrets that are invalid, those are
ignored with high probability. But they are still able to send incorrect secrets without
being spotted. Similar to Prio, Poplar ensures privacy if at least one of the comput-
ing servers executes the protocol correctly. Hence, the servers only learn the aggregate
f(secy, secy, ..., seck) and none of the K secrets. Moreover, Poplar ensures complete-
ness if all servers and clients are trustworthy [BBC*21]. This property means that the
aggregate on input the clients’ secrets can be computed correctly. As in Prio, we do not
need to store data to realize Most_Visited Websites() with Poplar. Thus, Poplar ensures
Ephemerality in our scenario. On the other hand, Poplar does reveal more information
than only the aggregated result. As the setting is the same as for Prio, the admins and
data analysts have access to the result storage. Therefore, they learn the aggregated
result, the secrets that are part of this result and the additionally leaked data. Thus,
admins or data analysts also learn the prefixes of the most visited website(s) and how
often those were accessed. The concrete leakage is computed in [BBC*21]. But accord-
ing to Boneh et al. Anonymity is not injured by this additional output of information
[BBC*21]. Therefore, the owner of any secret URL cannot be spotted and the data
of a specific client cannot be revealed. Hence, Presumption of Innocence is ensured as
well. Since each server only sees a binary tree with nodes containing random values,
actors that see those shares i.e., (malicious) server and adversaries analyzing the net-
work traffic learn nothing useful to compare those shares to each other. Only the final

78

5.1 Prio

Table 5.2: Privacy Grading for Prio

Privacy Goals ‘ Prio ‘ Comments

Unreadability

Anonymity -
Unlinkability
Presumption of Innocence
Admin-Privacy
Ephemerality
Validity

Result \ 7

B ENENENENENENEN

result can be used to e.g., learn which website is visited more often than other websites
or which websites are nearly as often visited as each other. As this data can only be
seen by the admins (or data analysts), only those actors can injure Unlinkability. Thus,
Unlinkability can be ensured and Admin-Privacy not. Since Poplar outputs all secrets
of URLs that are visited at least o times (o-anonymity), we can only partly ensure
Unreadability. Thus, we can conclude that Poplar at ensures Anonymity, Unlinkability,
Presumption of Innocence, Ephemerality, and Validity.

Result

Prio ensures all privacy goals, which is the best result we could hope for. But on the other
hand, we can only realize 4 of 9 evaluation functions from Section 3.2. This is caused by
Prio only using the live data that is provided by current requests. As Prio is specialized
to compute statistical aggregates, all of our statistical evaluation can be implemented.
In particular, those are the functions we need to find malware on a device, which is an
interesting circumstance. All other evaluation functions are not realizable, as they need
data from the moment the malware was downloaded and hence need storage to access
those requests’ data at a later time. Moreover, Prio only accepts integers (decimal or
binary) as input, which complicates evaluations of strings. For those, Poplar can be used
instead, though it suffers from huge proof sizes due to the binary-tree-shares.

Though Prio is the most privacy-preserving approach we investigated thus far, it also
has some disadvantages and issues that should not be omitted. Firstly, Prio can ensure
Validity (i.e., robustness in [CB17]) against malicious clients using the AFE’s Valid al-
gorithm and SNIP proofs. But they cannot protect from malicious servers. Thus, each
malicious server can tamper the received shares arbitrarily without any party recogniz-
ing the changes. The reason we renamed that requirement from robustness to Validity
is that Prio can only ensure that values from outside a predefined range are rejected.
For this, it relies on the fact that each client sends exactly one share. Thus, if each
client can only send one vote for a given target_ip, we can ensure that this vote is not
influenced by malicious clients. But in our scenario we have to allow arbitrary many

79

5 ADVANCED APPROACHES

requests by arbitrary clients as we cannot ensure that each client sends exactly one re-
quest in the regarded period. Thus, to influence the result, a malicious client only has
to send many shares with the same target_ip to e.g., push the number of visits to the
maximum. Moreover, Prio is not able to check whether malicious clients use exactly the
data from their requests because the sent shares do not reveal any information about
the secrets. Additionally, Prio also requires that at least one server is trustworthy to en-
sure Unreadability i.e., zero-knowledge. Moreover, as already described in Section 5.1.2,
Prio can only ensure robustness i.e., successful computation despite failing servers, if all
servers are trustworthy. Otherwise, the construction would decrease the privacy Prio can
preserve.

Furthermore, Prio is vulnerable against selective denial-of-service and intersection at-
tacks [CB17]. The first ones can be executed by an adversary that blocks T'— 1 from T
many clients. Then, this adversary pretends to be all blocked clients by sending 7" — 1
secrets to the Prio servers. This kind of attacks where a single adversary pretends to
be many clients (or other entities) is also called Sybil Attack [Dou02]. As the aggregate
is computed with only one unknown input, the adversary can easily compute the secret
of the remaining client given his own secrets and the aggregate. To avoid this attack,
Corrigan-Gibbs and Boneh [CB17] recommend to e.g., let the servers check the number
of participating distinct clients by instructing each client to sign its secret with a secret
key sk. Hence, they can count the number of different participating clients given the
different signatures. Then, the servers must only wait for some other clients to send their
secrets. For our scenario, this means that the evaluation is slowed down to protect from
those attacks and we need to ignore incoming secrets from already participating clients,
which influences our results. Alternatively, the ignored secrets could be stored and send
to a later time, which is descried for Prio & Log Files in Section 5.3. The second attack
is the insertion attack which allows the adversary e.g., a malicious client to learn the
secret of one of the participating clients. For this, the adversary first learns the aggregate
resulty computed from T secrets. After that, he interrupts the connection of client ¢ and
waits for the Prio servers repeating the evaluation with the same clients sending the same
secrets. Given the result of the second evaluation (results computed from T —1 secrets),
the adversary can then compute the secret of the interrupted client. For example, if f
is the average, the adversary computes sec; = T - resulty — (T — 1) - resulty. The fact
that our Prio approach only analyzes the live data is an advantage here, as the clients’
secrets change for each evaluation. Thus, this attack does not work in our scenario.

Another disadvantage of Prio is that the SNIP proofs can be very large due to the
usage of arithmetic circuits [Cel22]. Hence, the variants of Prio described in the following
section target reducing the size of those proofs. In addition, in their paper [CB17]
Corrigan-Gibbs and Boneh already suggest a different way to evaluate the arithmetic
circuit which is more efficient, especially if many arithmetic circuits AC1, ACs, ..., ACN
are used. For this, Valid outputs 0 for accept, which is in contrast to the previous design.
But due to this, each server verifies "% ; 7;-v; = 0 with N € N many arithmetic circuits,
r; < N,1 <i < N and v; being the output of AC;. Thus, the sum of those server-side
computations should be 0 if the client’s input is accepted by all arithmetic circuits.

80

5.1 Prio

The issues of this Prio version are solved with its newer variants Prio2, Prio3 and
Prio+. Those are shortly regarded in the following section. Another advantage of Prio
is that it does not require public-key cryptography (except the cryptography used in
e.g., TLS). Thus, it is easier to implement and faster than comparable approaches.
Since Differential Privacy is important for Prio2 and Prio3, we discuss this in detail in
Section 5.2. And to allow the realization of more than only four evaluation functions,
we introduce Prio & Log Files in Section 5.3. For this, storing the missing data on
the client-side is the solution to all problems that appear in this functionality grading
(Section 5.1.4).

5.1.5 Extensions and related work: Prio2, Prio3, Prio4+, VDAF, PPM

Due to the previously mentioned problems of the first version of Prio from [CB17],
namely huge SNIP proofs or more data leakage than desirable, many variants of Prio
were designed. Those are described briefly in this section.

Prio2 is an extension of the original Prio that was created by a cooperation of Apple
and Google. Their version of Prio served tracking infections during the COVID-19
pandemic. In addition to the original construction, Prio2 uses Differential Privacy
to randomize the secrets before they are shared with the Prio servers [AG21]. This
further decreases the amount of data that is leaked in addition to each function’s
resulting aggregate. Moreover, they adapt the SNIP proofs to their dedicated
purposes. As well as Prio, Prio2 only allows secrets that are numerical [Cel22].
Hence, Prio2 improves the privacy of Prio, but it does not allow any additional
aggregation functions [AG21].

Prio3 uses a fully linear proof system to reduce the size of the SNIP proofs that are
necessary for Prio [BBCT19]. Since the arithmetic circuits that are used for Prio’s
SNIP proofs can become huge, smaller proofs can decrease the size of the shares
and reduce the computation time for the clients. Then, also the servers profit as
they do not need to verify the SNIPs. Moreover, this variant of Prio still allows
only numerical secrets and thus can execute the same aggregation functions as the
original Prio and Prio2. As this is the newest variant of Prio, the IETF currently

discusses this construction as a candidate for the PPM standardization process?®.

Prio+ is another version of Prio that also tries to reduce the size of the SNIP proofs. For
this, the authors use boolean secret-sharing?® instead of the SNIP proofs [AGJ*22]

for checking the shares’ validity 27. This results into easier computation tasks on
the client-side. Nevertheless, for the aggregation functions except MIN, MAX,

https://www.ietf.org/archive/id/draft-gpew-priv-ppm-01.html

26With boolean secret-sharing, the numerical shares are represented as binary and xor is used to create
the shares. Prio’s or and and-AFE are used similarly.

2"But for some aggregation functions such as variance and linear regression, SNIP proofs are still nec-
essary [AGJT22].

81

https://www.ietf.org/archive/id/draft-gpew-priv-ppm-01.html

5 ADVANCED APPROACHES

AND and OR, the binary shares must be converted to additive shares, which is ex-
pensive. Regardless of the efficiency, Prio+ allows the same aggregation functions
as Prio does.

VDAF This idea is based on an internet-draft published by the IETF2?®. Verifiable Dis-
tributed Aggregation Functions (VDAFs) is an interface that allows the computa-
tion of aggregates over distributed (and sensitive) user data in a way that none
of the computing devices learns parts of or complete users’ inputs. Hence, it also
takes several clients’ secrets as inputs and uses them to evaluate an arbitrary ag-
gregation function. For this, the whole procedure is split into four different steps:
Sharding, Preparation, Aggregation and Unsharding®®. In the case of Prio this
means creating the shares in Sharding, checking the SNIP proofs in Preparation,
summing the shares to the servers’ sums in Aggregation, and adding all sums in
Unsharding. Additionally, the Verifiable in VDAF stands for the validity check
that we already know from Prio. Thus, it can be seen that Prio and its variants
are all elements of the large group of VDAF protocols.

PPM Additionally, the IETF is currently standardizing privacy preserving measurement
(PPM)?3, which implements the VDAF interface. PPM targets to combine already
existing approaches as Prio3 and Poplar to a general class of privacy preserving
measurements. It has the same goal as the previously described extensions, to
compute aggregates of (sensitive) user data without the computing servers learning
those data. For this, secret sharing is used as well and the servers have dedicated
roles. One role is the collector, which collects the encrypted measurements (in
our scenario the metadata from the requests). All other servers are aggregators
and in specific each of them is either helper or leader. In this setting, the leaders
coordinate the execution of the protocol by instructing the helpers. Those helpers
perform the actual computation of the aggregated shares.

5.2 Differential Privacy

Our next approach Differential Privacy is already briefly introduced in Section 1.1. We
rely on [DN03, DMNSO06] for the information we require in the following. Given these
information, we discuss whether Differential Privacy can be useful for our scenario (Chap-
ter 3). Differential Privacy describes the technique of obfuscating sensitive data to in-
crease privacy. Put more formally, each secret data sec is added?! with random noise ¢ <
D that is chosen uniformly at random from a distribution D e.g., binomial, gaussian, or
Laplace. Hence, the resulting data sec* = sec+e¢ is only an approximate value for the true
data sec. This complicates the computation of the evaluation functions, since the larger

nttps://wuw.ietf.org/archive/id/draft-irtf-cfrg-vdaf-03.html

29Gee Footnote 28

30nttps://wuw.ietf.org/archive/id/draft-gpew-priv-ppm-01.html

31This is possible for each type of data, if we represent it as e.g., binary and then add the also binary
noise to it.

82

https://www.ietf.org/archive/id/draft-irtf-cfrg-vdaf-03.html
https://www.ietf.org/archive/id/draft-gpew-priv-ppm-01.html

5.2 Differential Privacy

we pick €, the more incorrect becomes the result. But since the data is obfuscated, this
also ensures some privacy for the employees. We can apply Differential Privacy on each
input of an evaluation function f(secj, secs, ..., sec’), sec; = secj+¢ej,Vj € {1,2,...,J}
or on its output f(secy, seca,...,secy) + ¢.

If we used Differential Privacy as a stand-alone approach, we would store all data in the
Log Files database as described in Chapter 3. But this time, each cell stores the obfus-
cated data entry,, [col]* = entry, ., [col] + €row,cols Erow,col — D to improve the privacy of
the stored data. Given these data, we could compute our evaluation functions as already
described in the basic approaches in Chapter 4. Thus, we could compute the maximum
and average of all obfuscated values in session bytes. But as each cell is added with
its own noise (i.e., £ depends on row and col), this construction is similar to randomized
encryption. Thus, we cannot compare different device_ids to compute the number of
requests for a device, since equal device_ids are mapped to different device_id™s. More-
over, 6 of 9 evaluation functions cannot be realized if we cannot compare the obfuscated
values to each other. Therefore, we must pick a fix e for each new value (or each column
col) such that Differential Privacy becomes deterministic. Only then, we can compare
the obfuscated data to realize the evaluation functions as already shown in the basic
approaches (Chapter 4). This construction does not ensure Ephemerality as the data is
still stored with access for all employees, admins, data analysts, and adversaries with
access to the company’s system. Furthermore, Unreadability cannot be ensured as values
in the columns session_bytes and status_code are too close to the original data if ¢ is
small. Especially, the values in status_code are easy to reconstruct since only few values
(e.g., 100-103, 300-30832) are indeed used. As Differential Privacy must be deterministic
to enable the evaluation functions, Unlinkability is again injured as well. In some cases,
the noise that was added to the inputs can be removed from the result to achieve the
true results [DNO3]. This would improve the correctness of the evaluation functions, but
then, we could not ensure Admin-Privacy as all privileged actors can remove the noise
and learn the secret data. Thus, Differential Privacy as a stand-alone approach does ei-
ther allow few evaluation functions or injures half of the privacy goals. Additionally, the
more we try to improve the privacy, the more we increase € and the less accurate is the
result of the evaluation function. Hence, by now, Differential Privacy is no improvement
compared to our previous approaches.

Due to these findings, Differential Privacy can only improve the privacy for statistical
evaluations and not for look-up-tasks. That is exactly the kind of evaluation functions,
we realized with Prio. Hence, Differential Privacy can be used to improve the privacy
of Prio by obfuscating the aggregated results. This is already recommended in Prio
[CB17] and realized by Prio2 and Prio3. For some aggregation functions, Prio leaks
more data than necessary. One of them is the variance aggregate, which also reveals the
expectation [CB17]. This additional leakage can be reduced by obfuscating the result
of Prio with random noise € < D. Furthermore, in Section 5.3 we discuss the problem
of the union-AFE revealing all secrets, as they are the desired output. If this result
was obfuscated with e, we could increase the privacy, since only approximate secrets

3nttps://developer.mozilla.org/en-US/docs/Web/HTTP/Status

83

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

5 ADVANCED APPROACHES

would be leaked. But this only works if each element in the resulting set is obfuscated
separately. Otherwise, if the set was perturbed as a whole, the result could become
useless. In Section 5.1, we discussed selective denial-of-service attacks where all but
one client are blocked such that the adversary can learn the remaining client’s secret
from the aggregate. If the aggregate is additionally obfuscated, the adversary could
not compute the client’s secret correctly. Moreover, if the clients added noise to their
secrets before executing the Prio protocol, they could protect from malicious servers.
Thus, if all servers were malicious and reconstructed the secrets, they would only learn
the obfuscated secrets due to the Differential Privacy. Since Prio already ensures some
privacy, the amount of noise € that must be added to the result can be small enough to
still allow correct evaluations. As a result, Differential Privacy is not recommended as a
stand-alone approach in our scenario but works very well in addition to Prio. Combined,
they improve Prio’s privacy and complicate the selective denial-of-service attack.

5.3 Prio with Log Files

The approach Prio was already very successful with regard to privacy. Therefore, with
Prio & Log Files we want to realize the evaluation functions (Section 3.2) that could
not be realized with Prio. Those successful functions are all executed periodically to
detect malware or running attacks. But the remaining functions must be executed on
demand, when malware has been found on a device. Due to this, we use Prio as before
and use the information of Prio’s construction from the paper of Corrigan-Gibbs and
Boneh from 2017 [CB17]. But in the following, we extend this protocol to enable the
remaining evaluation functions and verify the received secrets. For this, we slightly
adapt the scenario from Section 5.1.3 and analyze the functionality and privacy of the
resulting approach in Section 5.3. The main difference to Prio is that the required data is
now stored by the clients. Thus, Prio & Log Files allows the evaluation of the remaining
functions while preserving nearly as much privacy goals as Prio.

Application

For this approach, each client locally stores a reduced log entry with columns CO’' =
{target_url, target_ip, session bytes, status_code, datestamp, timestamp} C CO.
Additionally, each device knows its ID (device_id) and the currently logged in employee
(user_id). Hence, the clients must not store sensitive data in their log files and are also
the only entity that stores this data permanently. In addition, their log files can be
encrypted such that the clients’ data is collected in a privacy-preserving way. When
malware is detected, the admins (or data analysts) start the evaluation functions. For
this, the public parameters of the required AFE, its parameters and the kind of needed
input data are distributed to all clients. Thus, only if asked, each client accesses its
stored data, picks the necessary values from it and sends them as secrets to the Prio
servers. For each of the evaluation functions we want to realize, we output a set of
secrets as a result. Unless Period_Preselection(), which is only an extension of the Valid

84

5.3 Prio with Log Files

algorithm that detects secrets from invalid periods.

Correctness of the Clients’ Log Files Prio already ensures validity checks, but those
cannot verify whether a client really e.g., visited the website it pretends to. Thus, for
malicious clients, it would be easy to store and send wrong data to the Prio server
to avoid being caught. Hence, we introduce the following construction to avoid that
malicious clients can send tampered, out-of-order secrets. For this, we re-introduce the
log file server. This receives all clients’ requests (via a secure, authenticated channel
e.g., TLS) and constructs the reduced log entries. Additionally, each client has a public
key pair (pk, sk) and the log file server encrypts each log entry? with the corresponding
client’s public key pk. Moreover, we want to prevent malicious clients from decrypting,
tampering, and encrypting ciphertexts in their log files. To do so, the log file server
stores all accessed target_ips, target_urls, and all existing user_ids as digests in the digest
storage. For this, the hash function H from our hashing approaches (Section 4.1) can
be used?*. Then, given a result of Prio, the admins (or data analysts) hash all elements
from the provided set and remove all elements whose digests are not stored in the digest
storage. This provides that malicious clients could not change their secrets to arbitrary
data. Nevertheless, we do not store which digests belong to which client to not injure
Anonymity. Thus, malicious clients are still able to change their secrets to not out-of-
order data. For example, those clients can replace their target_ips by other IP addresses
they (or other clients) accessed. On the other hand, the set of all existing user_ids is only
stored in the Users table and thus only known to admins and data analysts. Due to this,
we can ensure that a malicious client cannot replace its user_id to hide that it accessed
the malware’s website. Hence, invalid and false out-of-order secrets cannot influence our
final results. Additionally, we could secret share the secret key sk of the client such that
client and log file server each own a share. Then, the clients could only decrypt their
data when they are allowed to i.e., the log file server uses its second share. This further
complicates tampering secrets for malicious clients. Without this construction, we must
trust that each client correctly creates its log file entries from the requests. Thus, as it
becomes feasible if we store the data and provides more trust in the correctness of the
client-provided secret shares, our construction is useful for Prio & Log Files.

Functionality Grading

In this section, we describe how the remaining evaluation functions can be realized with
Prio & Log Files. Hence, we describe which kind of data and which AFE are needed to
achieve the results we defined in Section 3.2. Thereby, some evaluation functions are
realized slightly differently than defined. This is necessary as the original functions are

33In particular, each cell is again encrypted separately, such that the clients can pick any ciphertext of
their log file and construct shares of it without need to decrypt ciphertexts from other columns.

34Using a different hash function H; (or different key k;) for each client ¢ could increase the privacy of
the employees. But this would lead to the problem that we must know which client contributed which
secret to correctly perform the checks. And since Prio ensures Anonymity, this cannot be guaranteed.

85

5 ADVANCED APPROACHES

designed for centralized log files only. Then, we can realize all the remaining functions
with Prio & Log Files, which is also shown in Table 5.3.

Malicious_Source() This evaluation function allows us to find all target_ips or target_urls
where downloads of size session_bytes have been downloaded. We expect that one
of them is the source of the session_bytes-sized malware. Thus, we distribute the
sesston_bytes as public parameter to start this function. Then, each client ¢ should
send the target_ips (or target_urls) of requests that caused downloads of that spe-
cific size as its secret sec;. Using the union-AFE the servers could compute the
union of all client-provided websites. But the union-AFE is not efficient for the
amount of possible secrets we expect here [CB17]. And the announced approxi-
mation of the union-AFE cannot be found in the Prio paper3®. Thus, we can only
enable the analysis of a small subset of all possible websites W' C Vigrget_ip- We
cannot ensure that the malicious source is inside this subset. But given W, each
client prepares the encoding Encode(sec) = @ = (vo, v1,...,vw|—1) and for each
website it accessed with download size session_bytes it adds a 1 to the v; that rep-
resents the target_ip. Thus, in this case, several v; can be 1 and all other v;,j # 1
are set to 0. Since union-AFE is realized using the or-AFE, each client additionally
encodes ¥ a second time. For this, each 0 in ¢ is mapped to 0™ and each 1 to a
randomly chosen string in {0,1}", where n € N is a public parameter. Valid does
nothing, since all arbitrary strings in {0, 1}" are allowed. The servers aggregate the
shares of ¥ using the xor-function. Then, with Decode each string 0™ is mapped to
0 and all others are mapped to 1. Thus, every 1 in the resulting vector represents
a website’s target_ip that caused a download of size session_bytes. As a result, the
admins could find websites that could be the cause for detected malware with this
realization of Malicious_Source(). But in practice there could occur the following
problems. First, it would be more successful to only take secrets from infected
devices, since those accessed the malicious website for sure. But we cannot know
whether other, not recently investigated, devices are infected as well. Additionally,
only communicating with a small subset of devices could injure Anonymity. The
other problem is that an infected device could as well deny participating in the
evaluations. Since we ensure Anonymity with Prio, we can neither detect them nor
find the source of this malware without the device’s help.

Infected_Devices() To realize this evaluation function with Prio & Log Files, the malicious
website’s target_ip or target_url is part of the public parameter and distributed to
all clients. Further, we have two options to implement it. Firstly, each client
checks whether this target_ip or target_url is inside its locally stored log file and
sends 1 if it is inside and 0 otherwise. Then, using the sum-AFE of Prio, the
servers can compute how many clients accessed the specified malicious website.
The second option is to also include the device_ids of the clients to additionally

35We could instead use the approximate frequency count AFE with only regarding whether the frequency
is 0 or 1. But as the used data structure only outputs an upper border, it could be hard to tell whether
the true count is 0 or 1.

86

5.3 Prio with Log Files

learn which devices are infected. For this, the or-AFE is used. At first, a vector

U = (vo,v1, ..., V)y|—1) encodes all possible device_ids in V' = Vyeyice_ia- If a client
has stored a request that issued the specific website (in the given period), it sets
v;,i € {0,1,...,[V|—=1} to 1, where i represents its device_id. Every other v;, j # i

is set to 0. Otherwise, ¥ should be all zero, because not sending a share could also
reveal information about an employee. Next, each client additionally encodes ¢
with the Encode algorithm of the or-AFE. Thus, each 0 is replaced by 0™ and each
1 by a randomly chosen string in {0, 1}" with public parameter n € N. After that,
the client creates the S shares by using the xor function and also creates the SNIP
proofs for the servers. The Valid algorithm accepts every binary, since arbitrary
strings are produced by Encode. After the aggregation with xor, a server runs the
Decode algorithm on the aggregated secrets, which maps each string 0" to 0 and
the others to 1. Thus, the result is a vector that contains a 1 in each v; if the
client with the ith device_id accessed a malicious website and could be infected.
This second option does not only reveal the number of probably infected devices,
but also which clients visited a given website and which not. As a result, we can
realize Infected_Devices() with Prio & Log Files.

On_Purpose(), Malicious_Issuer() For these functions, the clients need access to the stored
mapping of their target_ip (or target_url) and the corresponding status_code. As
in the previous case, the malicious website’s target_ip (or target_url) is part of the
public parameters that are given to all clients. With usage of the or-AFE, the
Prio servers can compute whether any of the clients ever accessed the specified
malicious website (on purpose). For this, a vector ¥ = (vo,v1,...,vy|—1) is used
to encode all existing user_ids (V = Vyser_iq) of the company. Every client has to
set the v; that belongs to its user_id to 0 if the website that is asked for, has been
accessed with status_code 3xx and to 1 otherwise. The rest of ¥ is set to be all
0. If the client did not access the specified website at all, it should create ¢ only
containing 0s. Again, the clients use the Encode algorithm of the or-AFE. Given
the public parameter n € N, Encode maps every 0 to 0™ and 1 to {0,1}" chosen
uniformly at random. The shares are created using xor and the Valid algorithm
does accept all binary encodings. When the servers finished the aggregation of all
K shares with xor, one of them (or their leader) computes Decode(&D5_; sums).
Then, the result is a vector of all user_ids in Ve g Where each v; contains a 1 if
the corresponding client i.e., employee accessed the specified malicious website on
purpose. In the original scenario, On_Purpose() should reveal whether an issuer is
malicious or innocent before revealing his identity, but this cannot be done with
this realization. Hence, it would be better to only execute On_Purpose() to avoid
revealing the identity of innocent employees. But, we cannot ensure the correctness
of the status_code as it is no part of the secret. Nevertheless, we can realize both
evaluation functions.

Period_Preselection() This function should ensure that the secrets that are sent by the
clients really belong to the period that is asked for. Hence, to realize it, each

87

5 ADVANCED APPROACHES

Table 5.3: Functionality Grading for Prio with Log Files

’ Evaluation Functions ‘ Prio & Log Files ‘ Comments

Malicious_Source() v with union-AFE
Infected_Devices() v with sum-AFE or OR-AFE
On_Purpose() v with OR-AFE
Malicious_lIssuer() v with OR-AFE
Period_Preselection() v as extension of Valid
] Result ‘ 5 P. ‘

client must send the datestamp and timestamp in addition to its secret sec to the
servers. If we do assume that sending that data to the servers in clear does not
injure any privacy goals, we can send them additionally to each share. Thus, the
servers can read that data and reject secrets outside the period before starting
the validity check. Otherwise, adding the check of datestamp and timestamp to
the Valid algorithm requires adapting Valid for each run of an evaluation function.
But then, this function could for example, be executed by creating a vector ¢ that
contains the secret, the year, the month, and more as single entries v;. The Valid
algorithm must check whether the v; (most likely from year and month) are inside
a defined range. This way, we can define an extension that verifies whether secrets
are really from the demanded period and can ensure it using the trustworthy
Validity check system that is already part of Prio [CB17]. Moreover, since stored
data is used as secrets, this evaluation function is useful for Prio & Log Files though
it was not for Prio. But we cannot verify whether the sent secrets really originate
from the specified period, as we do not store the necessary information. Still, we
can realize Period_Preselection() with Prio & Log Files.

Privacy Grading

In the following section, we grade the privacy of Prio & Log Files. For this, we argue
for each of the privacy goals that are defined in Section 3.4 whether it can be ensured.
We regard the same adversaries as in Prio Section 5.1. Thus, they can control arbitrary
many clients and up to S — 1 from S servers. Moreover, they can read the sent requests
and shares unless they are encrypted and can manipulate the transferred packets. In
particular, Unreadability, Anonymity, and Unlinkability are investigated for not privi-
leged actors as the employees of the company or passive adversaries that try to learn
secrets by observing the traffic. Every malicious client or adversary that gained access to
knowledge or privileges of admins injures the privacy goals as defined in Admin-Privacy.
As a result, we can ensure 6 of 7 privacy goals. This can also be seen in Table 5.4.

Unreadability We denote Unreadability to be injured if any of the (sensitive) data defined
in Section 3.3 is leaked. Thus, leakage could occur during the transmission of the

88

5.3 Prio with Log Files

shares, at the Prio servers which know the shares and the result, at the result
storage that contains the results and at the digest server which stores all secrets.
Since we assume the log file server to be trustworthy, we do not discuss the leakage
of data that could be caused by this entity. Due to the usage of e.g., TLS, the shares
are transmitted via a secure and authenticated channel. Hence, we assume that
for every efficient (eavesdropping) adversary it is hard to decrypt and reconstruct
a secret given the encrypted shares. Moreover, for Prio & Log Files as for Prio,
we require that at least one Prio server is trustworthy. Thus, the remaining S —
1 servers cannot reconstruct the secrets of the employees given the shares they
received and can thus not read a client’s secret. Since the non-privileged actors
cannot access the result storage, we can conclude that they can also not learn the
results of the evaluation functions. Therefore, they do not learn the secret data,
though it is a part of the results. And the last problematic entity is the digest
storage. If employees or eavesdropping adversaries could learn the data that is
stored there, Unreadability would be injured. But the log file server computes
H(sec, k) before sending the secrets to the digest server. As H should be one-
way>%, malicious actors could not learn the secrets even if they had access to the
digest server. Therefore, Unreadability can be ensured for Prio & Log Files.

Anonymity This goal is injured if any adversary or employee could find the employee
that sent a specific secret sec. In the usual case, Prio does ensure Anonymity if
the used aggregation function is f-private and symmetric. Further, this means
for each evaluation function f on inputs seci, secs, ..., seck and permutation 7 :
f(secy, seca, ..., seck) = f(secq(1), 8€Cr(a); - -, 5€Cr(k)). Moreover, the AFE we
use i.e., OR-AFE (and union which is based on OR) are f-private according to
Corrigan-Gibbs and Boneh [CB17]. Thus, it exists a simulator Sim that can simu-
late the view of the Prio servers with a distribution that is computationally indis-
tinguishable from the malicious execution of the protocol. Thus, given the security
properties of Prio, we can ensure Anonymity as long as there is no other possibility
to reveal the identity of the issuer. As this approach also outputs sensitive data,
revealing an employee’s identity becomes possible. But, this can only be done us-
ing the result storage, since all sensitive data is stored there. Since employees and
the regarded adversaries have no access to that storage, those actors cannot learn
sensitive data from the result storage to reveal identities. Thus, Prio & Log Files
also ensures Anonymity.

Unlinkability We could not ensure this privacy goal if any client or e.g., eavesdropping
adversary was able to find connections between different secrets. First, each client
only stores its own secrets, thus finding connections to other clients’ secrets is hard.
When, the secrets are sent as shares via the secure and authenticated channel, those
can only be reconstructed by an adversary that is able to decrypt the shares. But

36This could again be injured if the number of preimages was so small that computing all preimages’
digests is feasible. Since we store target_ips and target_urls which have large value sets Viarget_ip and
Viarget_urt this is no problem in our scenario.

89

5 ADVANCED APPROACHES

we assume that this is hard for every efficient adversary as a secure authenticated
channel is used for transmission. Alternatively, a malicious actor must control all
the Prio servers to reconstruct and learn the secrets to compare them. Thus, at
least one of the servers must be trustworthy and not controlled by a malicious
actor to ensure Unlinkability. Otherwise, comparing the shares that a single server
can see is not useful, as those are only picked at random ([sec]s = N or [sec|; <
{0,1}™,n € N) and can thus reveal nothing about the secrets. Last but not least,
malicious employees and the regarded adversaries would need access to the result
storage or digest storage to interact with the stored results and secrets. Since those
privileges are not given to them and we only regard passive actors for this goal,
they have no access to (foreign) secrets. As Prio assumes that at least one server is
not under malicious control and the regarded actors cannot gain access to foreign
secrets, we can ensure Unlinkability for Prio & Log Files.

Presumption of Innocence This privacy goal is important for this approach, since we
are able to output results for Malicious_Issuer(). Hence, we are forged to leak sensi-
tive data of employees. In particular, both evaluation functions Malicious_lssuer()
and On_Purpose() could injure the privacy of the company’s employees as they
output user_ids. To though ensure Presumption of Innocence, we must guaran-
tee that the output of those evaluation functions is correct such that the identity
of innocent employees is not revealed. Due to the previously described construc-
tion Section 5.3, we can ensure that malicious employees could not provide the
user_ids of innocent employees instead of their own. This is avoided since all
user_tds stored in the Users table are kept secret and are thus only known to the
admins (or data analysts)3”. Therefore, we can ensure that an employee whose
name is output of Malicious_Issuer() or On_Purpose() must be connected to the
malicious action. As On_Purpose() is an extension of Malicious_Issuer() that only
outputs user_ids of suspicious employees, we should only use On_Purpose(). Other-
wise, Malicious_Issuer() might output Userss of innocent employees as well, which
injures Presumption of Innocence. Due to this, we can ensure that none of the
innocent employees’ names are revealed and preserve Presumption of Innocence.

Admin-Privacy In this scenario (Sections 5.1.3 and 5.3), the admins (and data analysts)
have access to the result storage using their login data. This means, that given any
of the results, those actors can learn a huge set of the employees’ secrets since each
result is a collection of secrets. Moreover, for Infected_Devices(), On_Purpose(),
and Malicious_Issuer(), admins or data analysts learn the secrets that were created
from sensitive data i.e., user_ids and device_ids. Thus, Prio & Log Files injures
Unreadability according to the performed evaluation function. We cannot avoid
this leakage, since admins and data analysts need a way to learn the identity of
malicious clients or employees. Moreover, if we forbid leaking the user_ids of em-

37To improve the secrecy of the user_ids, arbitrary strings could be used instead of integers. According
to the way we realized Malicious_lssuer() and On_Purpose() those IDs must not be numeric but only
map to an index of ¥ such that IDs as strings become possible.

90

5.3 Prio with Log Files

ployees we could not realize all evaluation functions. To also injure Anonymity,
admins and data analysts only have to relate the sensitive data from the result stor-
age to the data stored in Users and Devices. Unlinkability could as well be injured
with access to the result storage. But admins and data analysts can only learn the
secrets but no relationships between them as each secret only appears once. Thus,
Unlinkability is still ensured against privileged actors. As a result, Admin-Privacy
cannot be ensured for Prio & Log Files, as admins and other privileged actors can
injure two of the already preserved privacy goals.

Ephemerality According to the definition of Ephemerality, this privacy goal is ensured as
long as admins or data analysts cannot permanently access the employees’ request
data. Since for this approach we store the data on client-side, admins (or data
analysts) should not be able to access it. Moreover, even if they were able to
access the log files of the clients, they were still not able to learn their (secret)
data within since this is encrypted using the employees’ public keys pk. Hence, we
can ensure Ephemerality, too.

Validity Again, we profit from the advantages of Prio. As described in Section 5.1.2,
Prio guarantees soundness and correctness. Thus, each invalid secret sec ¢ V (or
wrongly encoded secret Valid(Encode(sec)) # 1) is detected with high probability.
And each secret that fulfills sec € V and Valid(Encode(sec)) = 1 is accepted by
the Prio servers. Due to the security properties of Corrigan-Gibbs’ and Boneh'’s
Prio protocol [CB17], Validity is already ensured for Prio & Log Files given the
AFE’s Valid algorithm and the SNIP proofs. Furthermore, the construction we
described in Section 5.3 ensures even more. In the original Prio setting, the em-
ployees could send arbitrary data as their secrets as long as those was inside a
predefined range V. But our construction limits the set of undetected tampered
secrets to the set of secrets that originate from real requests. In particular, the
storage of all secrets as digests H(sec) ensures that data cannot be changed from
data originating from a request to completely arbitrary data. Furthermore, since
H is also collision resistant, it is hard for all malicious actors to send tampered
secrets sec’ that cause a hash collision in the digest server such that sec’ would
not be detected. Therefore, each malicious employee could only adapt his client
to send secrets that were already sent by him or other employees to avoid being
detected. But this, also means that malicious employees must know a user_ids to
tamper their secrets in Malicious_Issuer(). As those IDs are kept secret, tamper-
ing the secret becomes hard. The same holds for the device_id that must be sent
for the Infected_Devices() function. This means, that our application complicates
the tampering of secrets, especially for the evaluation functions Infected_Devices(),
On_Purpose() and Malicious_Issuer(). Thus, due to Prio, we can ensure Validity by
Prio & Log Files and further improve it with our additional construction.

91

5 ADVANCED APPROACHES

Table 5.4: Privacy Grading for Prio with Log Files

Privacy Goals ‘ Prio & Log Files ‘ Comments
Unreadability v -
Anonymity v -
Unlinkability v -
Presumption of Innocence v If Malicious_Issuer() is replaced by

On_Purpose()
Admins learn secret elements and

Admin-Privacy X

identities
Ephemerality v -
Validity v -
Result ‘ 6 P. ‘

Result

The advantages of the previously described Prio & Log Files approach is that we can
analyze all remaining evaluation functions with it. Additionally, we can preserve 6 out
of 7 privacy goals. Thus, storing the clients’ secrets and revealing parts of them as result
only impacts the privacy that must be preserved against privileged actors. All other
privacy goals can be ensured, though.

Moreover, the log files that are stored by the clients only contain non-sensitive columns,
namely (target_ip,target url, session bytes, status_code,datestamp, timestamp).
This is possible since user_id and device_id are both known to the client and must
hence not be additionally stored. Furthermore, since the clients store and encrypt their
data themselves, their privacy is preserved as long as no adversary gains access to the
company’s system and the employees’ login credentials. On the other hand, this approach
depends on much trust to the employees. As those are able to pick and create their shares
from data they store themselves, we need to trust that those stored data is indeed
sent as secrets. If a malicious employee tampers the stored log entries, he could send
manipulated shares to influence the result of the Prio server’s analysis. But due to our
construction that allows the log file server to see and store the secrets as digests, the
impact of those actions can be decreased.

As the main principle is still based on Prio, the already described attacks are still
feasible. The insertion attack where an adversary eavesdrops a result, blocks client ¢
and eavesdrops the result again but this time without client #’s secret becomes possible
for Prio & Log Files. For Prio, it was impossible since Prio is only executed on live data
and thus the Prio servers never receive the same K secrets from the same clients. But
Prio & Log Files does store the data and thus it could be possible that the same function
f is executed on the same inputs as before. But if we apply Differential Privacy to the
aggregate results, the adversaries could no longer compute the exact secret of the client
given the perturbed results. Thus, we can complicate this attack with Differential Privacy

92

5.4 Private Set Intersection

but we cannot completely avoid it. The other attack is the selective denial-of-service
attack. For this, an adversary blocks all but one client, sends the K — 1 shares himself
and eavesdrops the resulting aggregate to compute the secret of the not blocked client.
This attack can be avoided by using signatures. If each client must sign its shares with
a secret key sk, the Prio servers could verify that a huge set of clients participates and
therefore prevent that an adversary sends all K — 1 secrets. Still, this means that the
clients cannot send arbitrary many secrets. But as the evaluation is not live anymore,
the clients could send a given threshold (e.g., K\T for K > T and T clients) of secrets
and the remaining secrets are sent during the next execution.

All in all, the approach Prio & Log Files is a successful way to realize the remaining
evaluation functions from Section 5.1 with Prio. In fact, the idea of hashing the secrets
to compare them to a set of results is similar to the approach we want to analyze next.

5.4 Private Set Intersection

In the following, we alternatively realize the evaluation functions (Section 3.2) that
cannot be realized with Prio using our final advanced approach based on Private Set
Intersection (PSI)3®. This provides a way of comparing different sets of two parties
without revealing the sets to each other. All information that are given regarding Private
Set Intersection are taken from [DMRY09, KRST19, Wei21]. PSI ensures many of our
privacy goals from Section 3.4 because the private data of the employees is not completely
revealed to the admins or data analysts.

5.4.1 How Private Set Intersection works

In the setting of PSI participate two parties P and) where each owns a secret set X
respectively Y. The goal is to compute X N Y without P learning Q)’s set Y and vice
versa. The intersection can be learned by one party or both, depending on the scenario.

In fact, there exist many different ways to realize PSI. In [DMRY09] they use poly-
nomials P to encode each x € X such that P(z) = 0 and encrypt its coefficients with
homomorphic encryption. Other versions make e.g., use of (blind) RSA or El-Gamal
encryption schemes. We avoid focusing on a specific variant to remain general in the
following. But all those variants rely on the same basic construction that we briefly
describe. Each party hides its set X with an algorithm we denote as Hideg. It is useful
if this algorithm differs for each pair (P, @,) which can e.g., be done by picking the key
k < K uniformly at random. This key depends on whether PSI uses a hash function,
an encryption scheme or another cryptographic approach. Then, these hidden elements
x* = Hideg(z),x € X and y* = Hidex(y),y € Y can be exchanged and compared to learn
the intersection X N Y.

38We only regard not yet realized evaluation functions as Prio already ensures all privacy goals and
we can thus not find a better solution for them. Moreover, those realized evaluation functions need
statistical analysis, which is better provided by Prio than PSI.

93

5 ADVANCED APPROACHES

To illustrate this process, we exemplarily describe the variant using oblivious pseudo-
random functions (OPRFs)3°. Each party Q computes Hideg(y;) := Fy(y;) with key
k + K, pseudo-random function (PRF) F', and y; € Y. Then, @ sends all Fj(y;) to
P. After that, both parties use OPRF to compute Fy(x;) for all x; € X of P using the
key k from Q. Thus, party P learns its F(z;) and can compare them to Q’s Fj(y;). To
learn the intersection X N'Y, P collects all {z; € X|Jy; € Y : Fy(z;) = Fr(y;)}1°.

5.4.2 Evaluation
Application

Again, we must slightly adapt our scenario from Chapter 3 to make it fit this approach.
For this, the admins (or data analysts) are party P and each employee’s client is party
Q.,t € N. Further, we want only the admins (or data analysts) P to learn the intersec-
tions XN Y,. Moreover, this approach needs storage to store the necessary data from the
requests. To store this data in a more privacy preserving way as considered in the basic
approaches (Chapter 4), we again use the application we described for Prio & Log Files
in Section 5.3. Hence, the log file server receives the requests and constructs encrypted
log entries with columns (target_ip, target url, status_code, datestamp, timestamp)
that are stored by the clients themselves. Additionally, it stores digests of the sent data
(target_ip, target_url) inside the digest storage. We recommend that for this, a collision
resistant and one-way keyed hash function H is used. Then, the elements in Z = XNY
can be hashed with H. All resulting digests H(z),z € Z that are not inside the digest
storage are removed from Z. This way, we avoid that data, that was never part of a
request and is thus obviously tampered, influences the results of our evaluation functions.

We additionally enable admins (or data analysts) to perform PSI on a huge set of
private sets Y,,¢ € {1,2,...,n},n € N, if they apply it round by round. At first, we need
to define the set X with which the admins P begin the intersection. If it is impossible
or inefficient to define the necessary set, the admins compute it as follows. For this, the
admins (or data analysts) initiate PSI between two parties @)1 and Q3. The protocol is
computed as usual, except that ()1 and Q2 sent their hidden elements to P. After that,
the admins can perform the intersection to learn X = Y7 N Y5. In particular, they must
query the clients on the hidden elements to obtain all z; € X*!. It is more useful to query
both clients, to avoid that a single client learns the complete intersection. Then, the
admins can continue PSI by computing the intersection of their set X and the remaining
Y, . € {3,4,...,n}. After each round, P sets X to be the previous intersection. Thus,
we use that intersection is associative i.e., (o Y. = (...((Y1iNYy) N Y3)...NnY,) to
intersect private sets of n clients J,. As the admins execute PSI with a single client per

39An OPRF is a pseudo-random function F that is computed by two parties P and Q. Q picks the key
k < K and P its input . Then Fj(z) is computed such that only P learns it. Neither k nor x is
revealed to each other [KRS'19].

“OMore details on this kind of PSI are provided in [Wei21].

“In fact, P does learn z; = Hidey(x;) for all z; € Y1 N Y. But for the following rounds, it needs all z;.
As those are only known to the clients that computed x; = Hideg(x;), P must query them on all zj.
Moreover, as P is learning the intersection of @1 and @2, x; must be known to both parties.

94

5.4 Private Set Intersection

row, they can relate the elements in X to the client they communicate with by analyzing
the network traffic. Hence, we avoid sending sensitive data such that the admins (or
data analysts) cannot learn them, too.

Functionality Grading

As before, we use this section to analyze the functionality of our approach PSI. For
this, we describe how each evaluation function from Section 3.2 can be realized. And
again, we need to adapt the inputs of some evaluation functions such that they can be
realized in this setting. We can realize all five remaining evaluation functions without
transmitting any sensitive data. This can also be seen in Table 5.5.

Malicious_Source() This function gets as input a value session_bytes. Then, it outputs
target_ips or target_urls that caused downloads of that size. Hence, given a set of
infected clients, they create their Y, with target_ips (or target_urls if stored in-
stead) that correspond to downloads of size session_bytes. For this, session_bytes
must be distributed among all clients first. For X, the admins must pick a set of all
target_ips (or target_urls) which is too large. Hence, X = Y7 N Y3 is computed in
the first round as described above. After that, all parties collaboratively compute
the intersection (,—; Y,,¢ € {3,4,...,n} using the round by round construction
from Section 5.4.2, Application. The result is a set of websites that could have
infected the regarded devices. Therefore, this execution is only useful if all devices
@, are infected with the same malware i.e., the malware was downloaded from
the same website. Otherwise, the intersection results in an empty set. Neverthe-
less, the admins or data analysts would still learn that there is more than one
malicious website. Our problem is that we do not know all infected devices, as
Malicious_Source() prepares the execution of Infected_Devices(). Thus, picking the
right clients @, is challenging but not discussed in more detail. As a result, we
defined a realization for Malicious_Source() such that admins or data analysts can
find sources of malware.

Infected_Devices() This evaluation function outputs the number of devices that accessed
a given malicious website. For this, each client @, adds all its target_ips (or the
target_urls if given instead) from its log file to Y,. On the other side, the ad-
mins’ set X contains all known malicious websites*?. Then, P and Q, execute
PSI as described in Section 5.4.1 to compute the intersection of X and a single
client’s set Y,. If it holds that |X N Y,| > 1, the investigated client visited one of
the malicious websites and could be infected with malware. An advantage of this
idea is that many malicious websites can be checked at once. On the other hand,
Infected_Devices() must be performed for each client separately, such that the ad-
mins can learn which devices are infected. Since we only want Infected Devices()

42In fact, it contains the malicious websites that should be analyzed. Websites that were already
blacklisted a long time ago must not be further regarded here.

95

5 ADVANCED APPROACHES

to output the number of infected devices, the admins should compute the inter-
section X N Y, without revealing which elements are inside. Told differently, if the
admins find a hidden element y* that equals any of their hidden elements x*, they
know that the investigated device is infected. Thus, they must not find out which
x particularly belongs to z*. This way, they learn whether the device is infected,
but not which malicious websites were accessed by that client. Hence, there exists
a way to realize Infected_Devices() with PSI.

On_Purpose(), Malicious_Issuer() With these functions, the admins (or data analysts)
want to learn whether a given client accessed any of the known malicious websites
(on purpose). Thus, each client picks its set Y, to contain all target_ips (or alterna-
tively target_urls) that were accessed (on purpose). For On_Purpose(), it only picks
those that were accessed with status_code ¢ {300,301, ...,399}. And the admins’
set X again contains all known malicious websites. Then, the parties P and @,
execute the PSI protocol such that P learns the intersection Z = XNY,. If |Z| > 1,
the regarded client accessed at least one of those malicious websites (on purpose).
We can see that On_Purpose() can be used as an extension of Malicious_lssuer().
An advantage of this construction is that several malicious websites can be checked
at once. Nevertheless, the goal of our evaluation functions is only achieved if the
admins can identify each client after they communicated. Only then, it is possible
to learn the identity of a malicious issuer. For this, they could for example, exam-
ine the network traffic to find the IP address of the client they executed PSI with.
Alternatively, the admins (or data analysts) define their set X to also contain all
user_ids. Then, given that Y, also contains the user_id of the client of @Q,, the
intersection Z would reveal the party the admins communicated with. Therefore,
this realization delivers the (malicious) issuers of downloaded malware given the
admins.

Period_Preselection() To evaluate requests from a given period, the clients must be asked
to only use data from that period. To check this, they must send the datestamp and
timestamp along with the hidden set Y,. Then, the admins check that data before
they execute the PSI protocol with Y,. But we cannot verify whether the provided
datestamp and timestamp are correct, as only the clients store them. Nevertheless,
we can realize this function with PSI.

Privacy Grading

In the following section, we analyze the privacy of our last advanced approach PSI. For
this, we again use our privacy goals from Section 3.4 and discuss which of them can
be ensured. Moreover, we consider efficient adversaries with access to the company’s
system that can thus see all sent data i.e., eavesdropping adversaries. As this also
holds for clients, we consider both with the privacy goals Unreadability, Anonymity,
and Unlinkability. Further, adversaries that control the party P, can injure privacy by
executing PSI and learning the intersections. We analyze the privacy goals that are

96

5.4 Private Set Intersection

Table 5.5: Functionality Grading for Private Set Intersection

’ Evaluation Functions ‘ PSI ‘ Comments

Malicious_Source() v -
Infected_Devices() v
On_Purpose() v
Malicious_lIssuer() v -
Period_Preselection() | v/
P. |

] Result ‘ 5

injured by those adversaries with Admin-Privacy because they own privileges of admins
and data analysts then. In contrast, adversaries that control clients (), can also influence
the results but only by sending target_ips (or target_urls) that were already accessed
once, due to our construction in Section 5.3, Application. Moreover, each variant of
PSI ensures different privacy properties. While all of them ensure that party P does
not learn QQ’s private set and vice versa, some also ensure additional protection against
malicious clients. But we only assume that the first of those properties is guaranteed
because it holds for all variants. In fact, PSI can ensure almost 5 of 7 privacy goals. This
result is also displayed in Table 5.6.

Unreadability We could not ensure this privacy goal if any client or adversary with
access to the system could learn a secret set or parts of it. At first, each client can
only access its own secret set, which does not injure privacy. But beyond this, a
client neither learns the sets Y, of the clients it performs PSI with nor the admins’
set X. This is provided by PSI, which ensures that the clients @}, do not learn
each others’ sets i.e., Y, and the set X of malicious websites. Moreover, we regard
malicious clients or adversaries with access to the sent data by eavesdropping the
secrets Hidey(y). In particular, if they knew the key k, they could test for many
elements y’ whether Hidey(y) = Hidex(y’) holds to learn element y. But this key is
only known to the parties that compute the intersection*3. Furthermore, we can
assume that the exchange of this key is done via a secure channel such that stealing
it is hard. Additionally, only the admins (or data analysts) P learn the intersection
i.e., subsets of the clients’ secret sets. But only adversaries that manage to control
P can use this to learn the secrets. As those already have the same privileges as
admins, we consider this case for Admin-Privacy. Hence, there is no way for clients
and the regarded adversaries to learn the intersections. Therefore, we can preserve
our privacy goal Unreadability for PSI.

Anonymity We cannot ensure Anonymity if the malicious employees or adversaries we
regard here can learn the identities of clients participating in PSI. In fact, we
already saw that they cannot learn data from the execution of the protocol. Thus,

43In particular, only one of the parties executing the protocol knows the key k.

97

5 ADVANCED APPROACHES

even if the clients sent sensitive data for PSI, the malicious actors could not learn
enough from it to derive the clients’ identities. As we only demand that target_ip or
target_url, along with datestamp and timestamp should be sent and none of them
is sensitive, this is no risk to Anonymity. Nevertheless, PSI is always executed
pairwise. Hence, any eavesdropping adversary can detect which two devices are
executing the protocol using a tool as Wireshark**. But as this is out-of-scope of
this thesis, we leave such possible attacks for future work. As a result, we cannot
ensure Anonymity since the participating devices can be located in the network*®.

Unlinkability We can ensure this privacy goal as long as the employees and adversaries
with access to the company’s system cannot find connections between different
secrets. To learn whether some secret elements belong to the same client or two
clients share a secret element, those malicious actors must learn the intersections.
But as already discussed in Unreadability, the actors we regard here cannot learn
them due to the security properties of PSI. Therefore, we can ensure Unlinkability
against malicious clients and the regarded e.g., eavesdropping adversaries.

Presumption of Innocence This privacy goal is injured if we leak sensitive data of
innocent employees. Firstly, the actors can only learn non-sensitive data from
each client, as each one only sends its target_ips or target_urls. But to enable
Malicious_Issuer(), the admins must reveal the identity of the client they executed
PSI with if the intersection is not empty. To do so, they learn the e.g., IP ad-
dress of the other participant by analyzing the traffic. Due to this, we can only
provide Presumption of Innocence, if this revealing of the IP address is only done
for suspicious clients. As those can be detected with On_Purpose(), we should
only execute this function instead of Malicious_Issuer(). Then, we could ensure
that the admins or data analysts only reveal identities of suspicious employees.
Thus, Presumption of Innocence can be ensured as long as Malicious_lIssuer() is not
executed.

Admin-Privacy This goal is ensured if the privileges of admins and data analysts do not
allow them to injure one of the previous privacy goals Unreadability, Anonymity, or
Unlinkability. As the admins additionally learn the intersections and should reveal
the identity of suspicious clients, they are a greater risk to privacy. First, malicious
admins and adversaries that control party P can learn the elements that are in-
side the intersections from Infected_Devices(), On_Purpose(), and Malicious_Issuer().
For this, they must only find out which of their elements z; € X map to the
same hidden elements Hidey(x;) = Hidey(2;) as z; € X N Y,. This, also works for
Malicious_Source() except that the preimages of the elements must be learned by
querying the clients. To increase the amount of learned secret elements, admins
and adversaries controlling P can choose huge sets X that contain more than only

“nttps://wuw.wireshark.org/

45Prio avoids this problem by communicating with a huge set of clients at once. But that does not work
for PSI since either all sets must be sent in clear to the admins and privacy injured or the same key
k must be used for all clients though it should only be used once.

98

https://www.wireshark.org/

5.4 Private Set Intersection

malicious websites. But as sensitive data is never part of those sets Y,, admins can-
not injure our privacy goal Unreadability. Further, we demand that the admins are
able to learn the clients’ identities given e.g., the network traffic. This is necessary
because we could otherwise not realize On_Purpose() or Malicious_Issuer(). But due
to this, Anonymity is injured by admins and the regarded adversaries. To injure
Unlinkability, the privileged actors only have to compare PN Q, and PN Q1. If
both those intersections contain the same element x, they can conclude, that x is
owned by Y, and Y,y;. This holds for the evaluation functions Infected_Devices(),
On_Purpose(), and Malicious_Issuer(). And given any intersection Z = X N'Y, from
Malicious_Source(), admins, data analysts or those adversaries also learn that Z is
a subset of all previous parties’ sets Yy,1 < ¢. Due to this, Unlinkability is also
injured. Hence, we cannot ensure Admin-Privacy for PSI.

Ephemerality We would injure this privacy goal if admins or data analysts could per-
manently access the clients’ request data. But due to our construction, the data
is stored on client-side and is thus not accessible for privileged actors. Hence, we
can also ensure FEphemerality for PSI.

Validity To ensure this privacy goal, we must prevent that invalid sets or sets with
invalid elements y € Y, influence our final intersections. Whereas invalid relates
to elements y that are not inside their value sets V. As PSI does not ensure any
Validity checks besides the ones that are done by the algorithms we described with
Hideg, we need to rely on our constructions. On the one hand, the log file server
could check the data from the requests, before it stores those in the digest server.
But this does not work as the only data we store are target_ips or target_urls
and comparing those to a set of valid addresses is infeasible. At least, we can
ensure that only truly accessed websites can be part of the resulting intersections.
This is possible since our construction allows us to learn whether the elements in
intersection Z = X N Y, only contain elements from our digest storage. Thus,
admins can remove all invalid elements z € Z such that the resulting intersections
are not influenced by the invalid client data. A limitation is that we only recognize
whether an element was ever part of a request, but not if it was specifically that
client that issued the given website in the regarded period. Moreover, we can
not verify the correctness of sent datestamp and timestamp and thus not ensure
Validity for Period_Preselection(). Hence, we can ensure Validity for most of the
evaluation functions with PSI.

Result

Given the previous privacy and functionality considerations, we learn that PSI enables
all remaining evaluation functions. Meanwhile, it ensures almost 5 of 7 privacy goals.
Additionally, the log files we need for PSI are smaller than those defined in Section 3.1 and
also than those for Prio & Log Files. In particular, only a small log file with non-sensitive
columns (target_ip,target_url, session bytes, status_code,datestamp, timestamp)

99

5 ADVANCED APPROACHES

Table 5.6: Privacy Grading for Private Set Intersection

Privacy Goals ‘ PSI ‘ Comments
Unreadability v -
Anonymity X pairwise execution reveals identity in traffic
Unlinkability v -
Presumption of Innocence v if Malicious_Issuer() is replaced by On_Purpose()
Admin-Privacy X admins learn intersections
Ephemerality v -
Validity ~ not possible for Period_Preselection()
Result ‘ 4.5 P. ‘

must be stored. Thus, each reduced log file is stored in a privacy preserving way since
only the client can access its own data and PSI is less expansive regarding storage
consumption.

Another advantage of PSI is that only one party i.e., admins and data analysts learn
the intersections. Moreover, we do not need to publish the malicious websites to the
clients to enable the evaluation functions. Thus, malicious clients do not learn malicious
websites that could be used to harm the company or whether their own website was
already found.

Furthermore, our realization of Malicious_Issuer() does preserve more privacy than the
other functions, as all clients can participate and the final result does not only depend
on a single client’s secret set. But it is not possible to apply this to the other evaluation
functions, as we want to know whether a single client is infected or whether particularly
this client caused the malicious download. Computing the intersection with all clients
means that e.g., client ()1 is not malicious i.e., accessed none of the malicious websites.
Thus, the intersection X N Y7 would be empty. This causes that all following intersection
for Q),,¢ > 1 cause an empty set as well since X is empty. Due to this, we would never
find any client that accessed a malicious website if we applied the round by round variant.

In comparison, Prio & Log Files enables the same evaluation functions while preserving
more of our privacy goals. On the other hand, as it only realizes a simple set intersection,
PSI is easier to understand than approaches using Prio. Moreover, Prio is complex using
the encoding and sharing and because each aggregation function requires another AFE.
PSI is comparable easy to realize, though this still depends on the specific variant. But
if we already realized Prio, Prio & Log Files is the better extension for this.

100

6 Overall Solution

Finally, we regarded all approaches that are interesting for this work. Hence, we can
design our privacy-preserving log file collection and evaluation system using the most
promising approaches. For this, we briefly describe the problems that occurred with our
basic approaches (Chapter 4) in Section 6.1. After that, we design our log file system
with advanced approaches (Chapter 5) in Section 6.2. In the end, we recommend some
further improvements to the proposed system.

The reason we only use advanced approaches for the final system design is that basic
and advances approaches significantly differ in the way they protect privacy. While the
goal of the basic approaches is to privately store data such that it can still be evaluated,
the advanced approaches target private evaluation while storing as least data as possible.
Due to this, the advanced approaches can ensure more of the privacy goals we defined
and are thus better for our privacy-preserving log file system.

6.1 Result of Basic Approaches

As a result, our basic approaches Complete Hashing, Partial Hashing, Encryption, and
Hashing & Encryption have two main issues in common. First, all of them depend on the
storage of the request data i.e., on centrally stored log files. Thus, their main goal is to
secure and hide the (sensitive) data inside to increase the employees’ privacy. For this,
we need to balance privacy and functionality since too much privacy complicates the
evaluations as in Section 4.1. Second, as all basic approaches depend on deterministic
hash functions or encryption, it is always possible to memorize the connection of the se-
cret data and its digest or ciphertext. This enables revealing the hidden secret data and
thus limits the privacy. While Hashing & Encryption seems to be a good solution to both
problems, it still ensures few privacy goals compared to the advanced approaches we
analyze in Chapter 5. Therefore, for our privacy-preserving log file system, we need ap-
proaches that have none of these problems. We sum our findings of the basic approaches’
privacy and functionality grading in Tables A.2 and A.3.

As a result, the basic approaches are good solutions for any company that wants to
improve the privacy of the stored employees’ data. Since they do not require changing
the whole system (as the advanced approaches do) basic approaches are easier and faster
to realize. But in practice, log files and databases are often compressed to save storage.
This becomes complicated as the encrypted or hashed log entries have a high entropy
such that compression algorithms can hardly be applied. Nevertheless, compared to log
files that are completely stored in clear, these basic approaches already have a huge
positive impact on privacy.

101

6 OVERALL SOLUTION

6.2 Result of Advanced Approaches

But for our privacy-preserving log file collection and evaluation system, we desire more
private approaches. To ensure more privacy, we must prevent from secret data being
stored or sent. And though this work was meant to find a way of privately analyzing
log files, we learned that using no (centrally stored) log files is the more private solu-
tion. With Prio, there is a way of realizing the evaluation functions (Section 3.2) we
thought of without storing secret data or (directly) transmitting it to admins or data
analysts. As Prio alone does not enable all evaluation functions, we additionally use
Prio & Log Files. If we completely abandoned log files, our system could execute few
helpful evaluation functions. But if the requests’ data is only stored at the employees’
devices and not on a centrally accessible log file, we can keep the stored data private.
Thus, our privacy-preserving log file collection and evaluation system is a combination
of Prio! and Prio & Log Files, as we described those approaches in Sections 5.1 and 5.3.
Hence, a part of all requests’ data is directly sent to the Prio servers to perform the
periodically malware detection. Additionally, the requests are forwarded to the log file
server, which creates and encrypts the log file entries. After that, the log file server sends
those log entries to the employee that submitted the corresponding request. Moreover,
the log file server stores the necessary secrets as digests inside the digest server. This final
scenario is displayed in Figure 6.1. Then, all evaluation functions that detect malware
are executed with Prio, while the remaining ones can be realized due to Prio & Log Files.
Since both approaches ensure nearly the same privacy goals, this combined approach
is more private (regarding our privacy goals) than all other analyzed approaches. In
particular, our system then ensures all privacy goals except Admin-Privacy, which de-
pends on the evaluated function. But since it is necessary that the admins (or data
analysts) learn at least few data from the evaluation functions’ outputs, we cannot
avoid this. Additionally, we can verify some results (e.g., from Max_Download_Size() or
Most_Visited_Websites()) computed with Prio by comparing them to the data stored in
the digest storage. This becomes possible as all requests’ session_bytes and websites are
already stored for Prio & Log Files. The grading that can be expected if we combine
both approaches can be seen in Tables 6.1 and 6.22. Additionally, a summary of the
advanced approaches’ gradings can also be found in Tables A.4 and A.5. As a result, our
log file system allows private evaluation of secret data due to Prio. Moreover, though
we need to store some requests’ data, the collection of that data is privacy-preserving as
well.

Tn fact, Prio3 should be preferred since it allows the same aggregation functions but is more efficient
due to the new proofs. For more details, see Section 5.1.5.

2The ~ in this case means that we can ensure a privacy goal depending on which evaluation function
is executed.

102

6.3 Possible Improvements

Table 6.1: Overall Functionality Grading of Final Construction

’ Evaluation Functions ‘ Prio ‘ Prio & Log Files ‘ Final Construction

Avg_Download_Size()
Max_Download_Size()
Number_Requests()
Most_Visited Websites()
Malicious_Source()
Infected_Devices|()
On_Purpose()
Malicious_lIssuer()
Period_Preselection()

’ Result

..UXXXXX\\\\
1 ENENENENENENENENEN

=
ot
©

Table 6.2: Overall Privacy Grading of Final Construction

Privacy Goals ‘ Prio ‘ Prio & Log Files ‘ Final Construction

Unreadability

Anonymity
Unlinkability
Presumption of Innocence

Admin-Privacy
Ephemerality
Validity
’ Result \ 7

B ENENENENENENEN
S RS ANE

6.3 Possible Improvements

As already announced in Section 3.1, we recommend which kind of data can be removed
from the log files since it is never used for any of the analyzed approaches. Since in
practice each kind of data reveals sensitive or private information, we can improve privacy
by storing as least data as possible. At first, it suffices to store either the target_ip or
the target_url as both are used for the same. We recommend using the IP addresses,
as each website has one IP address but perhaps several registered URLs. Moreover,
the data for the status_code must not be stored if a bit identifies whether the request
was redirected instead. In addition, if the company analyzes data from a fixed period
(e.g., always a complete month), it suffices to store the month and year, instead of the
complete datestamps and timestamps. This increases the employees’ privacy and avoids
that those stamps can be used to identify specific employees given their working hours.
Last, we never made use of client_ip_address or client_mac_address. Those must only be
stored if a company does not identify each device with a device_id. But then, one must

103

6 OVERALL SOLUTION

be aware that client_mac_addresses can be tampered by malicious employees and that
client_ip_addresses might change over time. If only one of those three options is stored,
this suffices for our privacy-preserving log file collection and evaluation system.

To further improve our privacy-preserving log file collection and evaluation system,
we could use homomorphic encryption [Gen09, OTD13]. If the clients encrypted their
secrets using homomorphic encryption, the shares and servers’ sum would be encrypted
as well. Thus, even if all servers were malicious and cooperated to reconstruct the secrets
from their shares, they could only see the encrypted secret. In this case, we would only
allow the admins (or data analysts) to decrypt the ciphertexts that are stored in the
result storage. But this requires that homomorphic encryption provides all mathematical
operations that are used by Prio, which includes xor and displaying integers as binaries
or unaries. Since one of Prio’s advantages is that it does not require on additional
encryption, the performance of this proposed improvement should not dramatically slow
down Prio. Thus, further research is necessary to check whether current homomorphic
encryption schemes can provide what we ask for. Hence, this improvement could be
investigated in future work.

_— >
0000 / E
0000 N
proxy server —_— world wide web
with blacklist —_—
company

web cache

employees&

admins

| |
\
\ & Prio servers result storage

sec

log entries

~

H(sec)

log file server digest storage

Figure 6.1: Diagram describing the scenario of our privacy-preserving log file collection
and evaluation system

104

7 Conclusion

In this thesis, we regarded several different cryptographic approaches to find a solution
for our privacy-preserving log file collection and evaluation system. In the end, our final
construction makes use of Prio (Section 5.1) and Prio & Log Files (Section 5.3). Those
can evaluate our defined evaluation functions from Section 3.2 without revealing sensi-
tive data of innocent employees. On the other hand, it still allows detecting malicious
employees and adversaries that try to harm the company. The important findings of our
analysis and our construction of the privacy-preserving log file collection and evaluation
system are summarized in Chapter 6.

As we only analyze our specific scenario and a subset of probably useful functions and
privacy goals, this work is still not exhaustive. Other researchers might be interested in
privacy-preserving storage of databases, where our basic approaches might already be
at help by hiding sensitive data. Alternatively, one could use our scenario to analyze
different functions that focus on servers’ performance or memory consumption of e.g., a
proxy server. Nevertheless, the approaches we use in this thesis are also useful for other
settings. Prio, for example, can be used for statistical evaluation on distributed secret
data. In this thesis, we assumed that some data is sensitive and some not. In practice,
each data can reveal information about an employee. Thus, one would have to hide and
protect even more data than we did in this work. This leads to e.g., Partial Hashing
being less useful in practice than in our specific scenario, since a huge amount of data
is stored in clear. In other work, the identification of sensitive data must be adapted to
the specific scenario, as this is still hard to decide in general. Depending on the scenario,
a name can be sensitive data if it belongs to an employee and might not be sensitive if
it is part of the accessed URL. But finding a way to decide this in general could also be
interesting future work.

A last limitation of this work is that we assume trust in the log file server. Since
this server sees the (sensitive) data from all sent requests, it would be problematic if
this entity was untrusted or controlled by any adversary. Then, all (sensitive) data
would be leaked and privacy is injured for all employees. But in practice, such a trusted
entity is hard to guarantee. Thus, it could be interesting to identify how we can remove
this dependency on a trusted log file server without completely changing the system we
created here.

7.1 Outlook

We chose a few interesting approaches, but there exist many more cryptographic pro-
tocols or schemes that enable private collection and evaluation of log files. One of our

105

7 CONCLUSION

planned advanced approaches could not be regarded in detail as it is meant for machine
learning and had thus to be used for a completely different scenario than we regarded
here. This approach is Federated Learning. Federated Learning [KMY 16, MMR*17] is
a technique that allows machine learning models to learn from users’ secret data without
collecting the data centrally. For this, the current model is sent to the users, updated
using their data and sent back to be merged to the previous model version. This could
also be used to learn about employees’ behavior in the scenario we analyzed. But as
for the average of all downloads’ sizes, the employees must update a given average and
given this update, it would always be possible to learn their provided data. Thus, fed-
erated learning must be adapted to avoid this leakage of the users’ data. Due to this,
using Federated Learning as an approach for private log files is a task that can be re-
garded in future work. We also briefly mention the concept of Searchable Encryption in
Section 1.1. This could be another interesting approach to investigate further.

It might also be interesting to formalize our privacy-preserving log file collection and
evaluation system. This would include a formal definition of the necessary evaluation
functions and privacy requirements. Given those, it becomes feasible to formally prove
which of our approaches ensure which privacy requirements. Moreover, we do not focus
on the performance of the proposed system and approaches. Regarding this, Prio is
also promising as it provides scalability and does not require (additional) public key
cryptography [CB17]. For practical usage of our system, the performance would be
interesting and could thus be analyzed in future work. For all this, our thesis can be
seen as a groundwork that already defines the scenario and analyzes the functionality
and privacy of the presented approaches.

106

Bibliography

[ABOO7]

[AG21]

[AGJ122]

[ASO0]

[BBC*+19]

[BBC*21]

[BBOO7]

Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. New se-
curity models and provably-secure schemes for basic query support in out-
sourced databases. In 21st Annual IFIP WG, volume 11, pages 811, 2007.

Apple and Google. Exposure notification privacy-preserving analytics (enpa)
white paper. 2021.

Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni
Polychroniadou. Prio+: Privacy preserving aggregate statistics via boolean
shares. In Clemente Galdi and Stanislaw Jarecki, editors, Security and Cryp-
tography for Networks - 13th International Conference, SCN 2022, Amalfi,
Ttaly, September 12-14, 2022, Proceedings, volume 13409 of Lecture Notes
in Computer Science, pages 516-539. Springer, 2022.

Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data min-
ing. In Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors,
Proceedings of the 2000 ACM SIGMOD International Conference on Man-
agement of Data, May 16-18, 2000, Dallas, Texas, USA, pages 439-450.
ACM, 2000.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Zero-knowledge proofs on secret-shared data via fully linear pcps. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III, vol-
ume 11694 of Lecture Notes in Computer Science, pages 67-97. Springer,
2019.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Lightweight techniques for private heavy hitters. In 42nd IEEE Sym-
posium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021, pages 762-776. IEEE, 2021.

Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and
efficiently searchable encryption. In Alfred Menezes, editor, Advances in
Cryptology — CRYPTO 2007, volume 4622 of Lecture Notes in Computer
Science, pages 535-552. Springer, Heidelberg, August 2007.

107

Bibliography

[BCLOOY]

[BCV16]

[BS22]

[CB17]

[Cel22]

[DMNS06]

[DMRY09)]

[DN03]

[Dou02]

108

Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill.
Order-preserving symmetric encryption. In Antoine Joux, editor, Advances
in Cryptology — EUROCRYPT 2009, volume 5479 of Lecture Notes in Com-
puter Science, pages 224-241. Springer, Heidelberg, April 2009.

Julio Bondia-Barcelo, Jordi Castella-Roca, and Alexandre Viejo. Building
privacy-preserving search engine query logs for data monetization. In 2016
Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/loP/SmartWorld), Toulouse, France, July
18-21, 2016, pages 390-397. IEEE Computer Society, 2016.

Dan Boneh and Victor Shoup. A graduate course in applied cryptography.
2022.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scal-
able computation of aggregate statistics. In Aditya Akella and Jon Howell,
editors, 14th USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages
259-282. USENIX Association, 2017.

Sofia Celi. A note on Privacy-Preserving Measurements Techniques. page 11,
2022. https://www.ietf.org/archive/id/draft-ietf-ppm-dap-02.html.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis. In Shai Halevi and Tal
Rabin, editors, TCC 2006: S3rd Theory of Cryptography Conference, vol-
ume 3876 of Lecture Notes in Computer Science, pages 265—284. Springer,
Heidelberg, March 2006.

Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Effi-
cient robust private set intersection. In Michel Abdalla, David Pointcheval,
Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS 09: 7th Inter-
national Conference on Applied Cryptography and Network Security, volume
5536 of Lecture Notes in Computer Science, pages 125-142. Springer, Hei-
delberg, June 2009.

Irit Dinur and Kobbi Nissim. Revealing information while preserving pri-
vacy. In Frank Neven, Catriel Beeri, and Tova Milo, editors, Proceedings of
the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, June 9-12, 2003, San Diego, CA, USA, pages
202-210. ACM, 2003.

John R. Douceur. The sybil attack. In Peter Druschel, M. Frans Kaashoek,
and Antony I. T. Rowstron, editors, Peer-to-Peer Systems, First Interna-
tional Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002,

Bibliography

[DR14]

[EDG14]

[FS90]

[Gen09]

[GI14]

[GLP11]

[Inp22]

[KKJ*13]

[KMY+16]

Revised Papers, volume 2429 of Lecture Notes in Computer Science, pages
251-260. Springer, 2002.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Found. Trends Theor. Comput. Sci., 9(3-4):211-407, 2014.

Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private collection
of traffic statistics for anonymous communication networks. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scotts-
dale, AZ, USA, November 3-7, 201/, pages 1068-1079. ACM, 2014.

Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In 22nd Annual ACM Symposium on Theory of Computing, pages
416-426. ACM Press, May 1990.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Comput-
ing, pages 169-178. ACM Press, May / June 2009.

Niv Gilboa and Yuval Ishai. Distributed point functions and their appli-
cations. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 201). Proceedings, volume 8441 of Lecture Notes in
Computer Science, pages 640-658. Springer, 2014.

Johannes Gehrke, Edward Lui, and Rafael Pass. Towards privacy for social
networks: A zero-knowledge based definition of privacy. In Yuval Ishai,
editor, Theory of Cryptography - S8th Theory of Cryptography Conference,
TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings, volume
6597 of Lecture Notes in Computer Science, pages 432—-449. Springer, 2011.

Inpher. XOR Secret Computing Engine, 2022. https://inpher.io/xor-secret-
computing/.

Himanshu Kumar, Sudhanshu Kumar, Remya Joseph, Dhananjay Kumar,
Sunil Kumar Shrinarayan Singh, Ajay Kumar, and Praveen Kumar. Rain-
bow table to crack password using md5 hashing algorithm. In 2013 IEEE
Conference on Information & Communication Technologies, pages 433—439,
2013.

Jakub Koneény, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies
for improving communication efficiency. CoRR, abs/1610.05492, 2016.

109

Bibliography

[KRS*19]

[LZCW23]

[MDC16]

[MKB*19]

[MMR*17]

[OHS13]

[OTD13]

[Pars3]

[PH10]

110

Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker,
and Christian Weinert. Mobile private contact discovery at scale. In Nadia
Heninger and Patrick Traynor, editors, 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages
1447-1464. USENIX Association, 2019.

Momeng Liu, Zeyu Zhang, Wengiang Chai, and Baocang Wang. Privacy-
preserving COVID-19 contact tracing solution based on blockchain. Comput.
Stand. Interfaces, 83:103643, 2023.

Luca Melis, George Danezis, and Emiliano De Cristofaro. Efficient pri-
vate statistics with succinct sketches. In 28rd Annual Network and Dis-
tributed System Security Symposium, NDSS 2016, San Diego, California,
USA, February 21-24, 2016. The Internet Society, 2016.

Felix Mannhardt, Agnes Koschmider, Nathalie Baracaldo, Matthias Wei-
dlich, and Judith Michael. Privacy-preserving process mining: Differential -
privacy for event logs (extended abstract). Inform. Spektrum, 42(5):349-351,
2019.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agiiera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Aarti Singh and Xiaojin (Jerry) Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA,
volume 54 of Proceedings of Machine Learning Research, pages 1273—-1282.
PMLR, 2017.

Tan Oliver, John Howse, and Gem Stapleton. Protecting privacy: Towards
a visual framework for handling end-user data. In Caitlin Kelleher, Mar-
garet M. Burnett, and Stefan Sauer, editors, 2013 IEEE Symposium on
Visual Languages and Human Centric Computing, San Jose, CA, USA,
September 15-19, 2013, pages 67-74. IEEE Computer Society, 2013.

Monique Ogburn, Claude Turner, and Pushkar Dahal. Homomorphic en-
cryption. In Cihan H. Dagli, editor, Proceedings of the Complex Adap-
tive Systems 2013 Conference, Baltimore Marriott Inner Harbor at Cam-
den Yards, Baltimore, Maryland, USA, November 13-15, 2013, volume 20
of Procedia Computer Science, pages 502-509. Elsevier, 2013.

William A Parent. A new definition of privacy for the law. Law and Philos-
ophy, 2(3):305-338, 1983.

Andreas Pfitzmann and Marit Hansen. A terminology for talking about
privacy by data minimization: Anonymity, unlinkability, undetectability,
unobservability, pseudonymity, and identity management. http://dud.inf.tu-
dresden.de/literatur/Anon_ Terminology v0.34.pdf, August 2010. v0.34.

Bibliography

[Rat16]

[Res18]

[UKH*21]

[UKK*22]

[Vin22]

[Wei21]

[XFAMO2]

IXY12]

Christof Rath. Usable privacy-aware logging for unstructured log entries.
In 11th International Conference on Awailability, Reliability and Security,
ARES 2016, Salzburg, Austria, August 31 - September 2, 2016, pages 272—
277. IEEE Computer Society, 2016.

Eric Rescorla. The transport layer security (TLS) protocol version 1.3. RF'C,
8446:1-160, 2018.

Mohib Ullah, Rafiullah Khan, Muhammad Inam Ul Haq, Atif Khan, Wael
Alosaimi, Muhammad Irfan Uddin, and Abdullah Alharbi. Multi-group ob-
scure logging (mg-oslo) A privacy-preserving protocol for private web search.
IEEE Access, 9:79005-79020, 2021.

Mohib Ullah, Rafiullah Khan, Irfan Ullah Khan, Nida Aslam, Sumayh S.
Aljameel, Muhammad Inam Ul Haq, and Muhammad Arshad Islam. Pro-
file aware obscure logging (paoslo): A web search privacy-preserving proto-
col to mitigate digital traces. Secur. Commun. Networks, 2022:2109024:1—
2109024:13, 2022.

Staal A. Vinterbo. Differential privacy for symmetric log-concave mecha-
nisms. CoRR, abs/2202.11393, 2022.

Christian Weinert. Practical Private Set Intersection Protocols for Privacy-
Preserving Applications. PhD thesis, Technical University of Darmstadst,
Germany, 2021.

Jun (Jim) Xu, Jinliang Fan, Mostafa H. Ammar, and Sue B. Moon. Prefix-
preserving IP address anonymization: Measurement-based security evalua-
tion and a new cryptography-based scheme. In 10th IEEE International
Conference on Network Protocols (ICNP 2002), 12-15 November 2002,
Paris, France, Proceedings, pages 280-289. IEEE Computer Society, 2002.

Liangliang Xiao and I-Ling Yen. Security analysis and enhancement for
prefix-preserving encryption schemes. Cryptology ePrint Archive, Report
2012/191, 2012. https://eprint.iacr.org/2012/191.

111

https://eprint.iacr.org/2012/191

Appendix A

Exemplary Database Tables and Overall
Grading Tables

A.1 Example of the Log Files Database Table

The following Table A.1 is a simplified example of our database table Log_Files. It only
contains the first columns from CQO. In practice, this table would contain all columns in
CO and significantly more log entries. Nevertheless, it gives a first impression of what
we are working with.

Table A.1: Example of the database table Log Files

log_id | user_id | device_id | client_ip_address ‘ ‘

1 73 11 192.168.3.11
2 112 19 192.168.3.29

A.2 Explanation of Log File Entry, Column, Cell

Additionally, Figure A.1 explains the terms Log File Entry, Column and Cell, which are
often used in Chapter 4 about our basic approaches. We hope that it is helpful to see
these terms marked in an example of the database table Log Files to understand the
explanations and thoughts in this thesis.

Collimn Cell
’ log_id ’ user_id | device_id c/ient,ip,address ’ ‘
1] 73 11 / 192.168.3.11 \

Log File__ =513 19 192.168.3.29 | ...
Entry ‘

Figure A.1: Explanation of Log Entry, Column, and Cell

113

A EXEMPLARY DATABASE TABLES AND OVERALL GRADING TABLES

114

A.3 Overall Grading Tables

A.3 Overall Grading Tables

d7¥ d€ d §¢ d7 d7 Hnsoy

~ x ~ ~ ~ fipproA

X X X X X fiyyoauioydny

~ X X ~ ~ flovaiug-urupy

M N 2 Pa N u0uUUl Jo uopdwnsalJ
X X X X X figapqoyuzyun

S A A A S figfivouy

A 2 A M N figapqpoa.uy)

" 01300 " WOT309 ‘F UO1109 "“T'F U010 "T'§ UO0I309
co_paAM_wcm x wm_v;mm_._ M%WsOnguﬂW %mwwo_pa\fumvm_ Mm_“mﬂ_._ _m_tmmnw_ m_M_ﬁsmHmﬂ mpm_acmwu SeoD AovAtid

sotpeorddy oiseq jo Suipein) AoeAll] [[BISAQ €'V 9[qeL

o0

(=)

o0

—

Ynsoy

()uoi1sesaiq-pouiad

()4enss|~snomie|p

()ssoding-uQ

()s921neg~pa1234u|

()924nog snoije|y

()s91UGaAN Pa1ISIA SO

()s1senbayssquin

XN [XX | XX |[X|[ho

()sz1G-peojumoq-xe|\

N NG N N N N N VR N | =

N NG N N N N N N N | =

SN NG NG NG N N N O N =2

X

()sz15-peojumoq-3ny

(¢'y woroeg)

(g1 woroeg)

uonndAinug 29 Suiysey uonndAioug

(¢ T% uorog)
SuiyseH |e1ed

(1'% woroag)
Suiysey 919|dwo)

SUOTOUN,] UOT)eN[RAG]

sotproiddy orseq Jo uipelrr) AY[RUonOUN [[RILAQ) g’V O[qRL,

115

A EXEMPLARY DATABASE TABLES AND OVERALL GRADING TABLES

Table A.4: Overall Functionality Grading of Advanced Approaches

Evaluation Functions

Prio
(Section 5.1.4)

Prio & Log Files
(Section 5.3)

PSI
(Section 5.4.2)

Avg_Download_Size()

Max_Download_Size()

Number_Requests()

Most_Visited_Websites()

Malicious_Source()

Infected_Devices()

On_Purpose()

Malicious_Issuer()

Period_Preselection()

Result ‘

,.UXXXXX\\\K

W

Table A.5: Overall Privacy Grading of Advanced Approaches

Privacy Goals Prio Prio & Log Files PSI
(Section 5.1.4) | (Section 5.3) | (Section 5.4.2)

Unreadability v v v

Anonymity v v X

Unlinkability v v v

Presumption of Innocence v v v

Admin-Privacy v X X

Ephemerality v v v

Validity v v ~

’ Result 7P. 6 P. 4.5 P.

116

Appendix B

Proofs

B.1 Proof of Claim 4.2.1

In this section we prove Claim 4.2.1. It says that CPA security (Definition 2.14) of a
(symmetric) probabilistic cipher E implies that we cannot detect whether two different
ciphertexts ¢; # co originate from the same message m. This fact leads to the problem
that we cannot use probabilistic ciphers (or encryption schemes) for our basic approach
Encryption. The proof is also shortly displayed in Figure B.1.

Proof. Given an adversary A that takes two different ciphertexts c¢; # c¢o as input
and outputs 1 if and only if both ciphertexts originate from the same message i.e.,
Dec(cy,k) = Dec(co, k), k € K, we construct an adversary B from A that plays the
CPA security game (Definition 2.14) against a (symmetric) probabilistic cipher E and a
challenger. We construct B as follows:

1. B picks three messages mq, mo, mg < M uniformly at random from the message
space. It must hold that mo # mg3 and |my| = |ma| = |ma|*.

2. B sends m as my o and mg as my to the challenger.

3. Since the challenger encrypts one of the received messages m; ; according to b <
{0,1}, B receives the corresponding ciphertext c;.

4. Then B sends m as ma o and m3 as ma 1 to the challenger.
5. After receiving the second ciphertext ca, B sends ¢1, ¢o to A.
6. If and only if A outputs 0, BB sends 1 to the challenger, otherwise he sends 0.

Since the challenger encrypts the same message mq twice in experiment b = 0, A outputs
1 with high probability. Then, adversary B would correctly output 0 with the probability
that A succeeds. On the other side, for b = 1 the challenger encrypts two different
messages msy # mg which are encrypted to different ciphertexts due to the definition
of correctness of probabilistic ciphers. Hence, A would output 0 with high probability.
Therefore, our adversary B would output the correct b=1=b with A’s probability of

If necessary, we pick new values at random until they fulfill these requirements.

117

B PRrOOFS

succeeding. As a result, adversary B is efficient and would output the correct b with
high probability.

Thus, CPA security implies that we cannot detect whether two different ciphertexts

originate from the same message. O
Challenger B
b+ {0,1} mi,ms, m3 < M with
k+ K mg # mg and
[ma| = [ma| = [ms]

m1,07 ml,l miyo:=my,My,1 = M2

c1 = EnC(me,kJ)
C1

m2,0,M21 | Mg :=m1, M1 = M3

c2 = Enc(map, k) o

C1,C2

Figure B.1: Black Box Diagram displaying the proof of Claim 4.2.1

B.2 Proof of correctness of Prio’s sum-AFE

Claim B.2.1. We claim that the encoding and decoding of the sum-AFE Prio uses is
correct. Thus, given the correct application of the Encode algorithm to each secret secy,
the output of Decode should be the sum of all secrets Zszl sec;j (for K secrets).

In the following, we prove Claim B.2.1 exemplarily for one of the AFEs that are used
by Prio. Let f be the aggregation function that sums the secrets of all K sent secrets:
f(secy, seca, ..., seck) = ZjK:l sec; Then, we pick the AFE that encodes for the sum
computation. Hence, Encode computes the tuple e = (sec, by, b1,...,bp_1) € FB+1 with
sec = Y8120 p; and & = 1 [CB17]. The algorithm Valid then checks whether the
set of b;,7 € {0,...,B — 1} is a valid bit representation of the first value i.e., sec in the
encoding e. Since £’ = 1, applying [o..x] on the encoded secret already outputs the
secret sec itself. Thus, Decode has no impact on its input since it is already decoded.
Then, the following holds given all steps executed by the servers s,s € {1,2,...,S} of
the Prio protocol:

118

B.2 Proof of correctness of Prio’s sum-AFFE

Proof.

S
Z sumg =
s=1

M«
M=

.
Il

[Encode(secj)]s[o..m’])

1

V)
Il
—

.
M«

<
Il
—
V)
I
—

[Encode(sec;)]s[0..1]

.
M

e
Il
—
W
I
—

[secj]s

I
7~
w»
8

<
Il
—

Vo)
8

—_

S
= Decode (Z sums> =

s=1

]:
= f(secy, seca, ..., seck)

119

	Introduction
	Related Work
	Contribution
	Overview

	Preliminaries
	Notations
	Terms of our Scenario
	Negligibility, Super-poly, Poly-bounded, Adversaries, and Security Games
	Hashing Definitions
	Encryption Definitions
	Prio Definitions

	Scenario
	Storage of Log Files and their Content
	Evaluation Functions
	Privacy Risk Assessment
	Privacy Goals
	Grading

	Basic Approaches
	Hashing
	Complete Hashing
	Partial Hashing

	Encryption
	Hashing and Encryption

	Advanced Approaches
	Prio
	How Prio works
	Security and Privacy of Prio
	Adapted Scenario
	Evaluation
	Extensions and related work: Prio2, Prio3, Prio+, VDAF, PPM

	Differential Privacy
	Prio with Log Files
	Private Set Intersection
	How Private Set Intersection works
	Evaluation

	Overall Solution
	Result of Basic Approaches
	Result of Advanced Approaches
	Possible Improvements

	Conclusion
	Outlook

	Bibliography
	Exemplary Database Tables and Overall Grading Tables
	Example of the Logwidth.3emFiles Database Table
	Explanation of Log File Entry, Column, Cell
	Overall Grading Tables

	Proofs
	Proof of Claim:deterministicencr
	Proof of correctness of Prio's sum-AFE

