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Abstract—Automated frameworks for approximate accelerator
synthesis employ an iterative search-based approach to gener-
ate approximate instances of hardware. While offering distinct
savings in terms of hardware area and power consumption,
approximate circuits are potentially at risk of being infected with
hardware Trojans mainly due to the fact that the approximation
is typically provided by third-party approximate accelerator
synthesis frameworks which utilize components libraries to
perform substitutions during the design space exploration phase.
In this paper, we propose a threat model that discusses the
potential of hardware Trojans insertion during the approximate
accelerator synthesis. Moreover, we present MAAS, a framework
that exploits a search-based approximate accelerator synthesis
technique to demonstrate the applicability of our threat model
by hiding Trojans in approximate circuits. The experimental
results show that the approximate circuits generated by MAAS
containing infected hardware Trojans are slightly larger than the
approximate designs and are hard to identify via conventional
area and power measurement techniques. To the best of our
knowledge, this is the first effort to demonstrate the hardware
Trojan insertion in the third-party approximate accelerator
synthesis flow via library component substitution.

Index Terms—Approximate Computing, Hardware Trojans,
Approximate Circuit Synthesis

I. INTRODUCTION

Approximate Computing (AC) has emerged as an effec-
tive alternative for performance improvement in computing
systems. It targets the intrinsic error resilience present in
several applications, e.g., image and signal processing, com-
puter vision, and machine learning. Approximate computing
has been largely applied to generate hardware accelerator
circuits that offer substantial benefits of power consumption,
area, and delay while occasionally providing erroneous yet
acceptable outputs. Existing works in approximate accelerator
circuits synthesis provide various automated frameworks, such
as the one proposed in [1], which accepts the original circuit
description along with an error bound defined by the user and
generates an approximate version of the circuit that adheres
to the given bounds. The main target of approximation is
arithmetic components, such as adders and multipliers. How-
ever, security breaches due to the inclusion of third-party’s
malicious arithmetic components in a circuit have not been
investigated yet.

Recent advancements in automated approximation circuit
synthesis, like the MCTS-based framework [1] and the CIRCA
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framework [2], have demonstrated significant reductions in
area, power, and delay. These frameworks could, however, be
a simple target for an attacker to infiltrate the approximate
synthesis flow, either by adding malicious code via a com-
promised tool chain or by a bad employee binding a Trojan
during the synthesis.

Third-party EDA tools may be untrustworthy [4] and sub-
verted EDA tools can be used to insert malicious logic into a
circuit [5]. Recently, Ahmed et al. in [6] have demonstrated an
FPGA design flow attack to leak secret information from an
encrypted module by using the compromised EDA tools. This
is considered to be a powerful attack since it maintains control
over the circuit throughout the design flow while still being
sneaky. In such attacks, the executable binaries of certain tools
in an EDA tool chain are replaced by malicious ones to carry
out the successful attack. There may also be a hidden system of
communication between the tools for the insertion and activa-
tion of malicious logic if more than one tool is engaged. These
kind of attacks can be engineered for a targeted user/device or
the entire design batch could be undermined over the internet
to perform higher-level attacks and can circumvent techniques
such as Proof-Carrying Hardware (PCH) [7] used for the
verification of tools’ binaries.

To investigate the aforementioned threat model, the state-
of-the-art approximate circuit synthesis flows [1], [2] can be
manipulated with malicious approximate components, which
likely meet the constraints such as error and performance
parameters but may result in catastrophic results later when
the Trojan is activated. Furthermore, Trojan insertion in ap-
proximate circuits has so far been limited to the netlist
level, whereas state-of-the-art approximate circuit synthesis
frameworks, i.e., [1], target higher levels of abstraction, such
as mirco-architectural level e.g., a design written in SystemC.

In order to evaluate hardware Trojan insertion in the approx-
imate accelerator circuits synthesis flow at a higher level of
abstraction, we propose a Malicious Approximate Accelerator
Synthesis (MAAS) framework, which conceals a Trojan in
approximate circuits in a way that keeps it below the error
threshold for circuit verification and activates under specific
conditions.

In short, MAAS demonstrates how a third-party synthesis
flow can insert hardware Trojan during the generation of
approximate circuit synthesis. The main contributions of this
paper are as follows:

• We propose a threat model for hardware Trojan insertion
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in approximate accelerator synthesis via an automated
search-based synthesis framework. To the best of our
knowledge, this is the first work that inserts hardware
Trojan in approximate circuits at the micro-architectural
level, e.g., SystemC design.

• We propose a novel Trojan insertion framework, MAAS,
that exploits a search-based framework to generate ap-
proximate circuits with hardware Trojan insertion via li-
brary component substitution and experimentally demon-
strate its applicability on various practical benchmarks
with marginal differences in the area and power consump-
tion results of approximate and approximate+infected
designs.

The rest of the paper is organized as follows: Section II
lays out the previous efforts in the field of approximate
accelerator synthesis as well as of hardware Trojan insertion.
In Section III, the threat model and the proposed MAAS
framework are explained. Experimental results and discussions
are provided in Section IV. Finally, the paper is concluded in
Section VI.

II. RELATED WORK

The development of real-time data-intensive and intelligent
applications has given a boost to both academia and industries
to modernize the current architecture to a new paradigm
that could enhance the performance and reduce the power
consumption and area of a circuit. The approximate computing
paradigm has been in competition for a few years and performs
exceptionally well in terms of area saving and power efficiency
of a circuit while maintaining an acceptable output. However,
security is the major concern to adopt yet another paradigm for
future computing which has largely been ignored so far. Be-
sides, confidentiality, integrity, and design theft, a circuit can
be infiltrated with additional/malicious circuitry, also known
as hardware Trojan [8]–[10]. Under particular conditions, a
hardware Trojan could alter the functionality of the circuit,
leak information, or introduce a denial of service attack.

Regazzoni et al. [11] have discussed some of the possible
security outcomes and concluded that the Approximate Circuit
(AxC) could be an easy target for hardware Trojans inser-
tions. However, no practical example of a hardware Trojan
threat has been demonstrated. Considering the implementa-
tion, approximate computing can be classified and separated
into four different schemes based on abstraction levels such
as system-level approximation, software-level approximation,
circuit-level approximation, and storage approximation.

Yellu et al. in [12] have generally assessed the vulnerability
of AxC to each of the levels, however, the authors focused on
the potential attacks on the storage, while the hardware Trojan
attack on higher levels has been overlooked. Ariful Islam
in [13] presented a hardware Trojan attack on the approximate
computing system during the synthesis of an approximate
module. The author analyzed each of the approximate modules
with respect to architecture and the required objective function
to insert the hardware Trojan. However, the approach works
only on the netlist level. The approximation on the higher

levels of the circuit design, i.e., the microarchitectural level
has a higher impact on the objective function, therefore, could
be an attractive abstraction for an attacker to target. Wang et
al. in [14] evaluated the data modification vulnerability in the
AxC modules and demonstrated it on the Approximate Error
Tolerant Adder Type I (ETAI), where the error produced by
the infected circuit remains inside the boundary of the error
threshold set by the user. The precision flag is not modified,
thus, the error produced by modifying the data bits would not
be distinguishable from the original error. However, the attack
is not evaluated for other approximate components used in
approximate accelerator circuits synthesis.

Arithmetic circuits such as adders and multipliers are the
main target in approximate computing where the approximated
bits directly affect the transition probability of the circuit. A
lower transition probability could be an exciting opportunity
for an attacker to hide a Trojan circuit/trigger, which can
be exploited in later stages to jeopardize the functionality
of the circuit. Dou et al. in [15] explored and assessed the
transition probability of an exact low-part-or-adder (LOA)
circuit and the approximate version of that which shows the
significant reduction in the transition probability between the
exact and the approximate circuit when the number of modules
is increased.

III. METHODOLOGY

This section introduces the threat model that is considered
to demonstrate our attack, followed by an explanation of the
approximate accelerator synthesis and the proposed Trojan
insertion framework in approximate circuits.

A. Threat Model

Approximate computing provides an opportunity for an
attacker to hide a Trojan circuit due to its inexact nature of
components and lack of a powerful testing mechanism. On
the other hand, it is challenging for an attacker to reverse
engineer the circuit to retrieve the original design as some
of the components are modified or approximated. There may
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be multiple ways to insert a hardware Trojan into an ap-
proximate circuit, however, in this paper we target the Trojan
insertion by a third party during the approximate accelerator
circuits synthesis. Figure 1 illustrates the threat model we
have proposed and followed in this paper. Our threat model
in a third-party approximate accelerator circuits synthesis
flow is based on the following assumptions. a) malicious
designer could replace the approximate components with the
Trojan inserted/compromised approximated components. b) a
rogue employee can deliberately change the configurations
of approximate components and c) a subverted approximate
accelerator synthesis tool can automatically replace the ap-
proximate components with the compromised ones during the
synthesis of a circuit, without the knowledge of a designer or
the user. This work is based on assumption c) and practically
demonstrates the subversion of approximate accelerator syn-
thesis tool to hide Trojans in approximate circuits. Note that,
the original components can also be replaced by any of the
malicious parties, however, this would have a large impact on
the output parameters of the circuit. So, the attacker’s aim is
to target the approximate circuit to insert Trojans, as the user
would not be able to notice any changes in the parameters due
to the approximation, while the error bound check would still
be verifiable by the user.

Based on our threat model, the existing frameworks for
approximate accelerator circuits synthesis can potentially be
exploited to insert malicious logic during the synthesis flow.
Majority of the existing frameworks follow an iterative search-
based flow and employ component substitution via component
library provided as input to the framework for approxima-
tion [2]. More often, open-source component libraries are
available from multiple sources providing large number of
implementations offering trade offs of area and power con-
sumption at different error values. Therefore, in this paper,
we implement our framework as an iterative search-based
approximation flow to show that the third party approximate
accelerator circuits tools are vulnerable to the Trojan attacks.

B. Automated Approximate Accelerator Synthesis

Automated generation of hardware accelerators from the
original design is a quite challenging task. Typically, the
process involves exploring a large design space of possible
solutions with varying trade-offs for error and target metric,
such as circuit area and power consumption. This iterative
process starts with the original circuit configured as the root
or seed and then repeatedly improves the hardware cost by
applying approximations on the current design and generating
new designs from the current design. The process only exits
when there is no improvement possible without exceeding the
allowed error threshold set by the user.

In the presence of multiple objectives to improve, such as
hardware area and power consumption, where the error is
included as a constraint, automated synthesis of approximate
instances becomes a complex optimization problem. In addi-
tion, a large number of arithmetic components, that can be
used to substitute exact components of the circuits, spawn

an enormously large solution space that cannot be explored
exhaustively. To deal with such a massive number of combi-
nations in a reasonable time, often a heuristic (such as greedy-
based) approach is used with a downside that it could overlook
promising combinations [3]. A more extensive reward-based
albeit time-consuming approach is to employ a learning-
based algorithm such as Monte Carlo Tree Search (MCTS)
to find promising paths in the search space [1]. In this work,
we implement a search-based approximation flow based on
a rather balanced search policy i.e., a modified version of
MCTS [1], as a reference implementation and manipulate its
approximation step to demonstrate hardware Trojan insertion
via third-party synthesis tools. The modified approximation
framework coupled with Trojan infected component library
is what we call MAAS. It could accept an accelerator design
coded in SystemC and generates an approximated version of
the design that provides maximum area savings under the
given error threshold. MAAS follows a two stage design space
exploration policy. In the first stage, it generates analytical
models from the training data obtained from the simulations
of the design variants. In the following stage, it explores the
design space using a reward-based MCTS search method to
find feasible designs via an iterative process. The designs are
then filtered and the best design in terms of area savings
estimate is then chosen as the output of the framework.

C. Malicious Approximate Accelerator Synthesis (MAAS)

This paper presents MAAS, a new hardware Trojan insertion
framework, targeting third-party approximate accelerator cir-
cuit synthesis flow to hide malicious logic in approximate cir-
cuits. Figure 2 shows the complete flow of the proposed MAAS
framework. The preprocessing stage of the framework identi-
fies components for approximation and generates training data
from the simulations of various configurations of the original
design and gathers error information. Based on the obtained
data, it creates lightweight analytical models that are capable
of faster error estimation than the conventional cycle-accurate
simulation.

The main step of iterative approximation runs a search-
based flow for a predefined number of iterations. In each
iteration, one of the identified components is identified for ap-
proximation, and a new approximate configuration is obtained
from a node by approximating one of the non-approximated
operations in the parent node. However, MAAS uses a pre-
characterized library of approximate+infected operators which
are obtained by inserting malicious logic in an extended
version of EvoApproxLib [17], an open-source library of
approximate components. Consequently, the new approximate
configuration contains the infected component substituted. The
subsequent step verifies that the new approximate config-
uration adheres to the quality bounds set by the user by
performing an error estimation step. The error estimation takes
place by invoking lightweight error estimation models trained
in the preprocessing step. Note that, the error estimation only
checks the error magnitude information of the approximate
configuration. Any additional logic inserted in the approximate
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design could not be checked in this step since typically
approximate components (adders and multipliers) have various
implementations each having a significant difference in terms
of hardware area. This is exactly the reason what we advocate
in this paper i.e., that malicious logic could be hidden behind
the approximation step.

In order to demonstrate the hardware Trojan insertion in
an approximate accelerator circuits synthesis flow, we first
generate Trojan-infected versions of the components provided
in the EvoApproxLib. We select the components that lie on
the Pareto-frontier line for the mean arithmetic error vs. power
consumption. For each of the components, we modify the
circuit description by including malicious logic which triggers
when a specific input pattern is encountered. For instance, for
the adder circuit that accepts two 16-bit inputs a and b, the
adder logic would produce a highly invalid output when both
a and b are zero. We applied this trigger logic (a = b = 0)
to all the benchmarks having different adders and multipliers.
The payload on activation turns the output bits to “1” thus
resulting in an erroneous output. For instance, in case of
an image processing filter, e.g., Gaussian Blur Filter, this
could produce catastrophic results on the activation of the
payload for multiple instances of the infected components.
As a result, the image pixels could get highly corrupted,
consequently compromising the underlying algorithms that
typically perform critical decision-making in applications such
as autonomous driving, security surveillance, and medical
imaging technology, just to name a few. In all other cases,
the adder circuit would produce a legitimate output. This is
a trivial example that shows how malicious logic can turn an
approximate component into a hardware Trojan.

The infected version of the components is then included in
the library and provided to the framework as input. The frame-
work is then configured to choose the infected components as
replacements to generate the approximate instances of the ac-
celerator circuit. During the run of the approximation flow, the
framework chooses an available candidate from the circuit and

replaces it with an approximate component from the library.
Since the library is now containing infected components, the
framework seamlessly can integrate the infected component
into the circuit as the approximation process progresses. It
is important to note that this malicious activity will remain
unnoticeable to the testing/verification step of the framework
since the test vectors which are used to evaluate the accuracy
of the circuit during the verification step are also provided to
the framework and do not contain the trigger combination that
invokes the Trojan. Hence, the verification step will behave
exactly the same as it was with the non-infected versions of
the components. The attacker depending upon the threat model
can activate the Trojan when the approximate circuits are
integrated into a system-on-chip (SoC), e.g., an attacker can
activate the trigger logic by giving an input pattern (a = b = 0)
to activate the payload thereby resulting in illegitimate output.

Once the framework completes the assigned number of iter-
ations, the next step is to identify the best available version of
the approximate or approximate+infected circuit that provides
the maximum improvement in the target metric (in this case
the hardware area). This step is accomplished in the post-
processing step with a heuristic function that evaluates all
the designs explored during the process and chooses the best
design. The design is then realized as a Verilog circuit and
synthesized to estimate the actual area and power values.

IV. EXPERIMENTAL SETUP

Table I shows the details of the accelerator circuits that are
manipulated by MAAS to demonstrate the hardware Trojan
insertion. We have selected four commonly used benchmark
accelerator circuits, e.g., Ternary Sum and FIR Filter, having
16 inputs/outputs (I/O) each, and RGB2GRAY and Gaussian
Blur Filter, each having 8 inputs/outputs. All accelerator
circuits are coded in SystemC whereas the area and power
consumption information of each of the circuits is obtained
by synthesizing the equivalent Verilog circuits using Synopsys
Design Compiler. The circuits range from small to medium-



TABLE I: Benchmark accelerator circuits

Circuit I/O QoR § Area (µ2)* Power (mW)*

Ternary Sum 16/16 MRE(%) 454.00 1.04
FIR Filter 16/16 MRE(%) 7485.26 6.06
RGB2GRAY 8/8 MRE(%) 2427.50 0.10
Gaussian Blur Filter 8/8 PSNR 7729.23 0.75

§ Error metric used for quality of results.
* The area and power of the accelerator circuits are measured using Synopsys

Design compiler using a 22nm technology library

sized accelerators and are selected from different domains such
as arithmetic, signal and image processing. Mean relative error
percentage (MREP) is used as the error metric for all the
circuits except the Gaussian Blur Filter which is evaluated
with peak signal-to-noise ratio (PSNR), a commonly used error
metric for image processing applications.

For hardware Trojan insertion, SystemC description of the
adders and multipliers of EvoApproxLib [17] is altered by
adding the malicious logic that triggers the payload when
the specific input patterns occur. The infected components are
then added to the library of the approximate components and
the resultant component library is referred to as approx.+inf.
component library. This allows for the substitution of ap-
proximate components with infected components during the
approximation process (see Figure 2).

The framework is run for 1000 iteration for all the bench-
marks for an error bounds of [15 dB, 25 dB, 35 dB, 45 dB] for
PSNR and [0.5%, 1.0%, 2.5%, 5%] of MREP for the Gaussian
Blur Filter and other benchmarks, respectively. The experi-
ments are performed on a system running a scientific Linux
7.2 (Nitrogen), comprising 16 nodes with an Intel® Xeon E5-
2670 @ 2.6GHz and 256 Gigabytes of main memory.

V. RESULTS

Figure 3 shows the normalized area results of the original,
approximate, and approximate+infected of the benchmarks
from Table I. The normalized area for both the approximate
and approximate+infected versions obtained by the MAAS
framework on each benchmark is reported and compared.
The former represents a circuit in an approximated form
where one or more components have been substituted with
their approximate versions from the library but without any
malicious logic. The latter represents the same configuration as
the approximate version but with all approximate components
containing malicious logic. The results are shown for different
error bounds for each benchmark.

For Ternary Sum benchmark, the difference between the
normalized area of approximate and approximate+infected is
as small as 1.4% in case of 5% error bound and as large as
3.2% for 1% error bound. In the case of the FIR Filter, the
minimum area difference remained 2.6% and the maximum
area difference was 2.8%. For the benchmark RGB2GRAY,
the difference could reach up to 3.9% while the minimum
difference remains 3.2%. Finally, for the Gaussian Blur Filter,
the approximate+infected version was 3.9% bigger than the
approximate version. Overall, the difference between the two

versions in terms of the hardware area varies from 1.4% to
3.9%. Since the approximation frameworks are typically based
on stochastic search methods such as simulated annealing [2]
and MCTS [1], they do not guarantee the same solution with
every run of the framework, it is quite challenging to differen-
tiate whether the area difference is due to the different search
path of the design space resulting in a different approximate
instance, or due to the malicious hardware hidden in the
approximate instance. We, therefore, claim that the automated
search-based approximation frameworks are prone to potential
hardware Trojans insertion during the approximation process.
Consequently, with such a small margin of area, they are quite
hard to be identified during the post-processing of the flow.

Similarly, we report the power consumption results of the
same benchmarks in Figure 4, in normalized form and again
for various error bounds. Although the power consumption
of a circuit mainly depends on the switching activity and the
workload given, however, for a better demonstration of our
attack, we also measure and compare the power consumption
of approximate and approximate+infected designs. Moreover,
since the underlying search algorithm is driven via stochastic
sampling (i.e., MCTS), which might steer the design space ex-
ploration differently in each run, a slight variation of estimated
area and power values is possible. To minimize this effect, we
run the framework five times and then average the values.

Here, again we see a general trend of marginal difference
between approximate and approximate+infected designs. For
Ternary Sum, we have the smallest difference in terms of
power consumption i.e., 0.1%, and even in case of 5% error
bound, the approximate+infected design is 0.2% smaller than
the approximate. For FIR Filter, the difference of power con-
sumption ranges from a minimum of 1.8% up to a maximum
of 2.0% and a similar trend can also be seen for Gaussian
Blur, where the difference could reach up to 3.1% and the
minimum difference remains 1.4%. However, in the case of
RGB2GRAY, the difference in power consumption reaches up
to 14% and even the minimum difference remains 5.2%.

While the overall trend of power consumption for both
approximate and approximate+infected hints that the hardware
Trojan insertion will go unnoticeable and is challenging to
identify via power tracing tools. One of the benchmarks i.e.,
RGB2GRAY provides an interesting case where the power con-
sumption of approximate+infected is considerably higher. One
possible reason for this could be the hardware configuration
of the benchmark which allows aggressive approximation of
components, more specifically, multipliers. Since RGB2GRAY
contains a relatively smaller number of components of which
the majority are multipliers, the approximation of these multi-
pliers with Trojan logic might cause higher switching activity
and thus more power consumption. Nevertheless, we also see
that the power consumption difference decreases with the
increase in error bound. This might be caused by the harsh
approximations due to larger error levy. However, this is out
of scope of this paper and might be an interesting future work
to investigate the effect of hardware Trojan infection in such
circuits.
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VI. CONCLUSION

This paper presents and demonstrates the threat model of
hardware Trojan insertion in approximate accelerators through
automated search-based synthesis framework. In particular,
it presents MAAS, a framework that utilizes a search-based
approximate accelerator synthesis flow and employs mali-
cious library component substitution to generate Trojan in-
serted approximate versions of the accelerators. Essentially,
MAAS exploits the approximation phase of the framework
to substitute approximate+infected components thereby cre-
ating approximate versions that have infected components.
The resultant approximate version could circumvents the test-
ing/verification because the Trojan only triggers on a particular
input sequence. Additionally, MAAS demonstrate the potential
of hiding the hardware Trojan in the context of approximate
computing/circuits and attempts to uncover new challenges
for approximate computing. The vulnerability of approximate
circuit synthesis in the wake of hardware Trojans puts them
exploitable and additional steps could be required in the au-
tomated synthesis to identify malicious logic insertion during
the process.

In the future, we will investigate our framework for larger-
scale experiments, including newer and larger benchmark
circuits with more hardware Trojan instances with multiple
trigger conditions and varying payloads, such as modifying
functionality and information leakage, for example, using
side channels. Furthermore, we would like to investigate the
accuracy versus efficiency trade-offs for original, approximate,
and approximate+infected circuits. In addition to that, we
would also like to explore the possible defense mechanism
for the presented attack.
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