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Abstract

The overall quality of last-mile delivery in terms of operational costs and customer satisfaction is
primarily affected by traditional logistics planning and the consideration and integration of driver
knowledge and behavior. However, this integration has yet to be exploited. This phenomenon is
mirrored in two largely separated research bodies on logistics planning and driver behavior. Bridg-
ing this gap by using and integrating historical data from actually driven tours into last-mile delivery
planning is promising for research and practice. Still, it also leads to complex and large-scale rout-
ing problems, which require the development of an overall methodology that goes beyond classical
optimization approaches as the needed approach requires a multi-stakeholder perspective, calls for
a hybrid-analytical approach by incorporating tour prediction and prescription, and requires both
data science and optimization methods. Accounting for these challenges, we suggest a hybrid de-
cision support framework for the traveling salesman problem with time windows that combines
machine learning techniques and conventional optimization methods and considers the deviation
between suggested and predicted tours. We demonstrate the applicability of our framework in a
case study that draws on real-world logistics data. Relying on a sensitivity analysis, we investigate
and illustrate the trade-off between the level of deviation between predicted and suggested tours
and tour costs. Our case study draws general managerial implications and recommendations that
guide decision makers in building their decision support systems for last-mile delivery routing by
instantiating our generic framework.
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1. Introduction1

By 2025, the number of packages delivered worldwide is expected to climb to 200 billion, com-2

pared to less than 90 billion in 2018 (Szczepanski et al., 2021). Coupled with this development is an3

increased demand for last-mile delivery operations, which is the most expensive part of the supply4

chain (Seghezzi et al., 2020). In addition, last-mile deliveries substantially impact the satisfaction5

of customers, who expect fast, flexible, and reliable deliveries (Vakulenko et al., 2019). Overall,6

planning last-mile logistics requires decision makers to consider both the minimization of costs and7

the maximization of customer satisfaction.8

A common approach to address last-mile delivery problems is drawing on the well-known travel-9

ing salesman problem with time windows (TSPTW), for which the literature provides an abundance10

of mathematical models and algorithms (Gendreau et al., 1998; Ohlmann and Thomas, 2007; Bal-11

dacci et al., 2012). However, while TSPTW models and corresponding solutions mainly aim at12

optimizing traditional logistics criteria, such as the overall travel time (Ohlmann and Thomas,13

2007) or the arrival time at the depot (Langevin et al., 1993; López-Ibáñez et al., 2013), they14

usually do not account for tacit driver knowledge and behavior, which may lead to deviations from15
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suggested tours. For example, a study by Li and Phillips (2019) on the realized driver tours of16

a large soft drinks company based in Mexico and the U.S. reveals that drivers did not follow the17

planned tour in three out of four deliveries. The findings of Samson and Sumi (2019) further sup-18

port the idea that drivers tend to prioritize their familiarity with routes over the suggested tours19

provided by their navigation systems after conducting an investigation of the daily commuting20

habits of drivers in both Japan and the Philippines. However, it should be noted that drivers21

may deviate from prescribed routes for different reasons. Drivers may have gained knowledge of22

logistics conditions not included in tour prescription systems; for example, drivers may have col-23

lected experience with temporal traffic and parking conditions. When considering such conditions,24

driver deviations may result in tours that outperform tours prescribed by optimization systems in25

terms of key organizational metrics, such as tour length, time windows, and customer satisfaction.26

Hence, fostering this effect is crucial, as drivers’ personal knowledge can have a positive impact on27

organizational success. Despite this, drivers may also choose to deviate from suggested tours based28

on individual personal preferences, resulting in tours that are inferior to prescribed tours, which29

should, undisputably, be avoided.30

It seems reasonable to assume that both of the abovementioned effects are implicitly included in31

the set of driven tours recorded. From an empirical perspective, the extent of both effects can only32

be determined if additional information on why drivers selected their routes is available. However,33

as recorded data include historical tours driven by many drivers, we assume that (homogeneous)34

logistics knowledge is shared by many individual drivers and thus implicitly included in many tours.35

In contrast, individual preferences vary across drivers and are unlikely to lead to consistent devi-36

ations in driven tours. Thus, we assume that predictions based on patterns identified in a set of37

historical tours are more likely to be affected by driver knowledge rather than driver preferences.38

Therefore, considering predictions based on patterns found in historical tours when making pre-39

scriptions is advantageous for organizations. The closer a prescribed tour is to the predicted one,40

the more likely drivers will adopt it. However, when the deviation between the suggested and the41

driver’s preferred route is significant, drivers are more likely to reject the prescribed tour in favor42

of their individually preferred routes. This driver behavior has the potential to adversely affect43

organizational objectives by reducing the overall efficiency and effectiveness of the delivery system.44

Although, in the absence of empirical data, one can only speculate that the incorporation of pat-45

terns from historical data will foster drivers’ compliance with suggested tours, it seems reasonable46

to assume that this effect actually occurs in practice since the patterns are likely to mirror collective47

logistics knowledge of drivers, which may increase the trust of drivers in the quality of suggested48

tours and, in turn, the likelihood that drivers will adopt suggested tours.49

However, research on driver knowledge and behavior in vehicle routing is scarce. Srinivas and50

Gajanand (2017) state that studies on driver behavior have constituted a separate body of research51

for many years and have yet to be integrated into routing prescription, despite the availability of52

historical data of actually driven tours. Exploiting and integrating such data into last-mile delivery53

problems lead to complex and large-scale routing problems, which require the development of54

methods that go beyond classical optimization approaches in different regards: First, the approach55

requires a multi-stakeholder perspective by considering both an organization’s objective to identify56

cost-minimal tours and the driver’s expectation that the suggested route seems reasonable based57

upon her/his knowledge and experience so that she/he actually adopts the suggested tour; second,58

it calls for a hybrid-analytical approach by incorporating tour prescription and tour prediction;59

and third, it requires a hybrid and non-conventional methodology by drawing on both operations60

research (OR) optimization methods and data science methods.61

In this paper, we propose a novel generic methodological decision support framework that62

accounts for the challenge above. Rather than extending a TSPTW model to a (yet unknown)63
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“enriched model“ that explicitly addresses the variety of reasons, including local conditions and64

uncertainties, why drivers may deviate from TSPTW solutions in practice (purely prescriptive65

approach), we adopt a two-step approach that first uses machine learning to predict the “real”66

route taken by a driver, which would have been found by an “enriched model”, and then integrates67

this prediction into the TSPTW model by adding a constraint which limits the extent of deviation68

between a suggested tour and the predicted driver tour (predictive-prescriptive paradigm); thereby69

the abovementioned reasons of tour deviations by drivers are considered implicitly.70

The underlying motivation of our hybrid approach is to combine the two epistemologically dif-71

ferent approaches of tour prescription, which follows a classical, normative operations research ap-72

proach using a mathematical model and an exact or heuristic approach, and tour prediction, which73

follows a behavioral and data-based approach. We constrain the “greediness” of the optimization74

algorithm by the prediction of the driver’s route as a surrogate for enriching the (TSPTW) model75

with real-life constraints, which are generally challenging to incorporate into classical optimization76

models. The ultimate purpose of our approach is to suggest tours that are dominant over those77

produced by a simplistic and unrealistic TSPTW model in terms of both a) higher quality which is78

achieved under real-life conditions (e.g., in terms of total distances traveled) and b) higher level of79

acceptance by drivers, which, in turn, increases the likelihood that suggested tours are adopted by80

drivers. To the best of our knowledge, no behavior-oriented hybrid framework combining machine81

learning with conventional operations research methods has been suggested in the literature.82

Our framework is generic in several regards and can be adapted to suit contextual needs. First,83

our framework allows using various machine learning methods for tour prediction and different84

(exact or heuristic) solution methods for prescribing solutions of TSPTW instances. Second, it85

allows the implementation of different deviation measures between a suggested and a predicted86

tour. Third, it allows tour planners to control the degree to which driver behavior is considered by87

adjusting the tour deviation limit.88

We demonstrate the applicability of our framework in a case study that draws on real-world89

logistics data provided in the Amazon Last-Mile Routing Research Challenge (ALMRRC) (Merchan90

et al., 2022). In this case study, we develop a deep learning approach to predict driver tours and91

employ a variable neighborhood search (VNS) (Wei et al., 2015) to solve the resulting extended92

TSPTW instances. As a tour deviation measure, we use the Jaro distance (Jaro, 1989) and the93

longest common subsequence (LCSS) distance (Bergroth et al., 2000). We conduct a sensitivity94

analysis to investigate the trade-off between the level of deviation between the predicted (driver)95

tours and the suggested tours and tour quality in terms of costs.96

The remaining structure of the paper is as follows: Section 2 gives an overview of related works.97

Section 3 provides the mathematical problem description. In Section 4, we expose the proposed98

framework. Section 5 exhibits our experimental case study using real-world data. Finally, we discuss99

our results and derive managerial implications in Section 6 and conclude the paper in Section 7.100

2. Related work101

2.1. Tour prescription102

First, the literature on last-mile delivery routing provides an abundance of models and methods,103

and, as a result, it is out of the scope of this article to provide a complete overview of this field.104

For a review of the general class of vehicle routing problems (VRPs) and variants, see, for example,105

the works of Braekers et al. (2016); Bräysy and Gendreau (2005); Elshaer and Awad (2020); Toth106

and Vigo (2014). Yet, in this research, we focus on methods for solving the traveling salesman107

problem with time windows (TSPTW). The TSPTW consists of finding an optimal tour starting108

and ending at a given depot and visiting a set of nodes, with the restriction that each node must109
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be visited within a given time window. Exact approaches and heuristics have been developed110

to tackle the problem. Christofides et al. (1981) and Baker (1983) develop a branch-and-bound111

algorithm to solve the TSPTW with up to 50 nodes to optimality. Dumas et al. (1995) apply a112

dynamic programming approach by taking advantage of the time window constraints to reduce113

the state space significantly. Dash et al. (2012) partition the time windows into sub-windows and114

solve the problem with a branch-and-cut algorithm. Baldacci et al. (2012) introduce a dynamic115

programming algorithm that exploits tour relaxations. Pesant et al. (1998) presents a constraint116

logic programming model for the traveling salesman problem with time windows which yields a117

branch-and-bound algorithm.118

Heuristics have been intensively applied to instances with large numbers of nodes (> 200) and119

wide time windows (Ohlmann and Thomas, 2007). Savelsbergh (1985) proposes a local search120

heuristic and proves that already finding a feasible solution to the TSPTW is an NP-hard prob-121

lem. Gendreau et al. (1998) develop an insertion heuristic which consists of a construction and122

post-optimization phase. Calvo (2000) proposes an algorithm that first solves an assignment prob-123

lem that produces multiple sub-tours, which are then inserted into the main tour using a greedy124

insertion procedure. A local search procedure is then applied to improve the initial solution. Carl-125

ton and Barnes (1996) suggest a tabu-search heuristic that considers infeasible solutions in the126

search by penalizing late arrivals. Ohlmann and Thomas (2007) extend this penalty approach by127

incorporating variable time window penalties in a simulated annealing heuristic, named compressed128

annealing. López-Ibáñez et al. (2013) adapt the compressed annealing approach to the TSPTW129

where the makespan is minimized. In a study by da Silva and Urrutia (2010), a feasible solution130

is generated by a variable neighborhood search (VNS) and then improved with a general variable131

neighborhood search (GVNS) heuristic.132

2.2. Driver factors in tour prescription133

Driver factors have been incorporated in prescriptive models for variants of the VRP. One direc-134

tion of research focuses on consistent routing with the aim of increasing driver-customer familiarity.135

For this purpose, Groër et al. (2009) introduce the consistent vehicle routing problem (ConVRP).136

Goeke et al. (2019) develop the first exact method for the ConVRP. Kovacs et al. (2015) suggest a137

multi-objective problem that accounts for driver consistency and arrival time consistency next to138

the classical objective of minimizing tour costs. Luo et al. (2015) formulate the multi-period vehicle139

routing problem with time windows and limited visiting quota (MVRPTW-LVQ). This problem140

requires customers to be served by a limited number of vehicles over the planning horizon. In Ul-141

mer et al. (2020), the authors assume that the customer service time decreases with an increasing142

number of visits of an individual driver. Another research direction considers historical customer143

sequences to construct tours. In a recent study, Quirion-Blais and Chen (2021) extend the objective144

function of a classical vehicle routing problem with time windows (VRPTW) formulation by a term145

that maximizes the number of historical customer chains in the solution. A construction heuristic146

is developed to generate a solution for the problem. The method is instantiated with driver data147

from an online retailer in China. This approach is based on reusing solutions of previously solved148

similar problems (Rochat and Taillard, 1995; Louis and Li, 2000; Tarantilis and Kiranoudis, 2002).149

2.3. Route choice behavior and route prediction150

Predictive models mainly consider trip-based route choices, i.e., a driver’s decisions when navi-151

gating between one origin-destination pair. This type of problem is referred to as the “route choice152

problem” in the literature. Ben-Akiva et al. (1984) apply a two-stage decision process to model153

drivers’ route choice behavior. In the first step, a set of alternative routes is generated. In the sec-154

ond stage, a multinomial logit (MNL) model is applied to model the drivers’ choices. Bekhor et al.155
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(2006) evaluate different route choice set generation algorithms. Frejinger and Bierlaire (2007)156

capture the correlation between alternative route choice sets by introducing a subnetwork that157

simplifies the road network only containing easily identifiable and behaviorally relevant roads. In158

Frejinger et al. (2009), the authors assume that the choice set contains all paths connecting an159

origin-destination pair. A cost function assigns a probability to each link between the origin and160

destination. Higher probabilities are assigned to links with a low distance to the shortest path. In161

a random walk procedure, links are then added to the path successively, based on the probabilities162

of the respective link. Fosgerau et al. (2013) introduce recursive models where the route choice163

is modeled as the sequence of link choices, and no choice set generation is required. Dynamic164

programming is applied to trace the route with the highest expected utility, i.e., the route that165

is expected to be chosen. Zimmermann et al. (2017) show the method’s advantages by predicting166

urban bike routes. Mai Anh et al. (2016) propose a decomposition method to reduce the computa-167

tional complexity of the approach. Oyama and Hato (2017) argue that drivers’ choice in networks168

with real-time traffic is often myopic, i.e., immediate utility is maximized.169

2.4. Machine learning in vehicle routing170

In recent years, machine learning methods have started making their appearance in the field of171

combinatorial optimization (CO). In fact, contemporary advancements in deep learning algorithms172

and architectures have kickstarted research in this OR-heavy discipline and, as a result, enabled the173

modeling of various vehicle routing problems, such as the TSP or the TSPTW. Machine learning174

has the benefit of replacing computationally heavy calculations with fast approximations while175

enabling the decomposition of a given problem into smaller yet more manageable learning tasks176

(Bengio et al., 2021).177

Following the pioneering work by Gambardella and Dorigo (1995), researchers have relied heav-178

ily on reinforcement learning (RL) when it comes to solving CO problems, i.e., an approach aiming179

to maximize cumulative reward by which an agent learns from the interactions with a given envi-180

ronment (e.g., Nazari et al., 2018; Zhang et al., 2020; Li et al., 2021). Even though the algorithms181

and methods vary widely, most works rely on RL approaches’ explorative, adaptive, and gener-182

alization capabilities. Moreover, given the defining characteristics of VRPs and their relatively183

straightforward reward function, RL is, by nature, particularly well suited for such observational184

tasks (Bello et al., 2017). In point of fact, Nazari et al. (2018) report that their RL approach185

can find near-optimal solutions for most VRP instances. In contrast, Zhang et al. (2020) expose186

that their proposed approach outperforms a conventional tabu-search heuristic when applied to187

a traveling salesman problem with time windows and rejection (TSPTWR). Moreover, most re-188

search emphasizes that RL methods are not only reliable but also inherently faster than the more189

conventional heuristics (e.g., Zhang et al., 2020; Li et al., 2021).190

Still employing an RL methodology, various works aimed at solving CO problems further rely191

on the so-called pointer network architecture (e.g., Bello et al., 2017; Alharbi et al., 2021; Stohy192

et al., 2021). This approach, i.e., an encoder-decoder architecture capable of sorting sequences of193

variable lengths, differs from more traditional sequence-to-sequence approaches in which the weights194

produced by an attention mechanism, as proposed by Bahdanau et al. (2014), act as an indicator, or195

pointer, to the specific tokens in an input sequence building the ordered output sequence (Vinyals196

et al., 2015). Models trained using this highly flexible architecture are, according to the authors,197

even capable of generalizing on sequences longer than they were trained on (Vinyals et al., 2015).198

Focusing on the underlying relationships found in geospatial data, researchers have, of late,199

started using graph neural networks to tackle CO problems (e.g., Li et al., 2018; Joshi et al., 2019;200

Hu et al., 2021). The natural characteristics of TSP datasets are particularly well suited for 2D201

representations and, as a result, for such graph-based approaches, i.e., vertex attributes (nodes),202
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edge attributes (links), and global attributes. In truth, Li et al. (2018) exhibit that their approach203

based on a graph convolutional network architecture can not only outperform modern deep learning204

approaches but that it can also perform neck and neck with highly optimized heuristic solvers.205

Moreover, Joshi et al. (2019) showed that their approach, also based on a graph convolutional206

network architecture, can dramatically reduce the optimality gap. Lastly, still leveraging the graph207

structure, Kool et al. (2018) reveal that their approach based on the graph attention network208

architecture (Veličković et al., 2017) can “[...] significantly improve over recent learned heuristics”209

and outperform “[...] a wide range of baselines and getting results close to highly optimized and210

specialized algorithms” (p.1).211

3. Problem description212

Our perspective on the problem to be solved includes the determination of tours which show213

high quality in terms of both a) total distances traveled (in order to save cost and time) and b) the214

extent of deviations from tours preferred by drivers (in order to achieve a high level of acceptance215

by drivers). As both goals may conflict, the problem at hand can be perceived as a bi-objective216

optimization problem, which opens up opportunities to draw on the broad set of modeling and217

solution approaches available in the multi-criteria field decision making. From those approaches,218

we decided to model goal a) with an objective function and goal b) with a hard constraint that219

guarantees that the solution deviates from the preferred route not more than a predefined level.220

The rationale of our approach lies in our perspective that the organizational goal of minimizing221

tour length should be focused on by embedding it in the objective function.222

From a problem and model perspective, we extend the classical TSPTW with soft time win-223

dows; i.e., the violation of time windows is possible yet penalized in the objective function by an224

additional constraint that considers the deviation of the suggested tour from the predicted tour.225

We first present the mathematical formulation of our extended TSPTW and then illustrate the226

tour deviation constraint with an example.227

3.1. Mathematical formulation228

We draw on the TSPTW formulation of Ohlmann and Thomas (2007). Let G = (N,A) be a229

finite graph, where N = {0, 1, ..., n} is the finite set of nodes and A = N × N is the set of arcs230

connecting nodes. There exists an arc (i, j) ∈ A for every (i, j) ∈ N . A tour is defined by the231

ordered sequence in which the n customers are visited and denoted by T = {p0, p1, ..., pn, pn+1}232

where pi denotes the index of the customer in the ith position of the tour. The depot is denoted by233

customer 0 and every tour begins and ends at the depot, i.e., p0 = pn+1 = 0. Each of the remaining234

n customers is assigned to one position between p1 and pn including. For j = 0, ..., n, traversing235

the arc aj = (pj , pj+1) comes with a cost c(aj). This cost of traversing the arc between customer236

pj and customer pj+1 includes the service time at customer pj and the time needed to travel from237

customer pj to customer pj+1. The objective is to minimize the total travel time. The time window238

of customer i is represented with [ei, li], where ei is the time window start and li is the time window239

end. The depot does not have time windows. In the formulation by Ohlmann and Thomas (2007),240

late arrivals are allowed, and the vehicle needs to wait in case of early arrivals. As waiting at the241

customer’s site in case of last-mile delivery routing is unreasonable, we penalize early arrivals with242

parameter λe and late arrivals with parameter λl. The variable Api represents the arrival time at243

node i. We extend the TSPTW formulation by adding constraint (5): Let ϕ be a tour deviation244

measure, T any tour, T ′ a predicted tour, and δ an upper bound on the allowed deviation between245

tours T and T ′. Then, the constraint ensures that feasible tours only deviate from the predicted246

tour up to a predefined level of deviation δ. We refer to the resulting, new optimization problem as247
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the traveling salesman problem with time windows and deviation (TSPTW-Dev); a mathematical248

formulation of the TSPTW-Dev is presented below.249

min
n∑

i=0

c(ai) +
n∑

i=1

[λl ·max(0, Ai − li) + λe ·max(0, ei −Ai)]

Api = Api−1 + c(ai−1) i = 1, ..., n (1)

Ap0 = 0 (2)

p0 = 0 (3)

pn+1 = 0 (4)

ϕ(T, T ′) ≤ δ (5)

pi ∈ {1, 2, ..., n} i = 1, ..., n (6)

pi ̸= pj i, j = 1, ..., n, i ̸= j (7)

Api ≥ 0 i = 1, ..., n (8)

3.2. Illustrative example of the tour deviation constraint250

Figure 1 shows a visual example of the tour deviation constraint. Assume that we have a251

predicted tour T ′. A feasible tour T to be suggested is a tour where the tour deviation between252

T and T ′ does not exceed δ. If δ equals 0, a suggested tour is not allowed to deviate from the253

predicted tour, i.e., T = T ′. Assume that we choose a moderately low value for δ in our example254

depicted in Figure 1. In tour T , customers B and C of T ′ are swapped. This results in a feasible255

tour that slightly modifies the sequence of customers, and ϕ(T, T ′) ≤ δ holds. By contrast, the256

order of customers in tour T ∗ largely differs from that in tour T ′ with ϕ(T ∗, T ′) > δ; therefore, tour257

T ∗ is infeasible.258

Figure 1: Illustrative example of the tour deviation constraint
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4. Decision support framework259

Based upon the mathematical formulation of the TSPTW-Dev problem suggested in the pre-260

ceding section, we now approach the questions of how the prediction of tour T ′ and the prescription261

of tour T can be accomplished. Our framework provides some degrees of freedom: First, based262

on the set of historical tour data, an appropriate machine learning algorithm has to be selected.263

Second, an optimization procedure for solving problem instances needs to be selected based on run-264

time complexity and the “quality” of solutions when a (meta/mat)heuristic approach is applied.265

Finally, a tour deviation measure Φ, an upper bound δ, and penalties λe and λl for violating time266

windows need to be defined based upon the individual preferences of the decision maker.267

The ultimate choices of decision makers need to cover issues of both tour prediction and tour268

prescription, which are covered in the learning and configuration phase of the suggested framework.269

It precedes the application phase, in which problem instances are built based on machine learning270

and solved using optimization techniques, ultimately leading to the suggested tours.271

Accounting for the abovementioned algorithmic variety, it is hardly helpful to suggest one272

single bundle of machine learning and optimization techniques to predict tours, build TSPTW-273

Dev instances based upon this prediction, and solve these instances. It appears more suitable274

to designate a methodological framework (as a general methodology) that outlines the essential275

steps decision makers must undertake when confronted with TSPTW-Dev problem instances. Any276

concrete methodology implemented by decision makers can be considered an instantiation of the277

methodological pattern, which we refer to as a decision support framework. An overview of the278

framework can be retrieved from Figure 2. In the remainder of this section, we first describe the279

tour prediction methodology and machine learning approach to predict drivers’ preferred tours280

before we unfold how the tour prescription methodology, in terms of optimization, draws on the281

predicted tour to develop tour suggestions.282

4.1. Tour prediction283

As exposed, our hybrid decision support framework necessitates a predictive element based on284

machine learning capable of forecasting how a given set of delivery stops would be visited by a given285

or an arbitrary driver, i.e., T ′. In this case, a tour T ′ is predicted using either pairs of coordinates,286

distance or travel-time matrices, or a combination of all three, and, optionally, features related287

to diverse behavioral and environmental factors, e.g., driver preferences, weather forecasts, road288

works, or traffic conditions.289

Following the traditional machine learning pipeline depicted in Figure 2, the goal in this initial290

learning and configuration phase is to train a model, based on historical data, capable of predicting291

the most-likely sequence of delivery stops. Given the generic nature of the presented approach, any292

architecture capable of either making discrete classifications (sequential) or sorting variable-sized293

sequences, such as pointer networks (Vinyals et al., 2015), can be employed. This training stage294

is crucial to the success of the presented framework and should be thoroughly assessed. In fact,295

our framework emphasizes that a predefined performance threshold, which should be defined by296

domain experts using a task-specific test set, should first be met before moving on to the application297

phase, in which the trained model can be deployed to predict tours (T ′) on unseen data. Such298

a performance threshold might involve a comparison to a heuristic approach or state-of-the-art299

machine learning approaches.300

4.2. Tour prescription301

Based upon the mathematical problem formulation suggested above, decision makers need to302

configure and instantiate the optimization model in several regards. In order to build the tour de-303

viation constraint (5), i.e., ϕ(T, T ′) ≤ δ, one needs to determine a tour deviation measure ϕ, which304
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reflects the similarity between a predicted tour T ′ and any tour T . Several measures have been305

suggested in the literature for strings and sequences, including the Levenshtein distance (Leven-306

shtein, 1966), the Jaro distance (Jaro, 1989), and the longest common subsequence (LCSS) distance307

(Bergroth et al., 2000). Such measures are helpful in our context when tours are represented as308

strings or sequences of nodes visited in the order they appear in the string or sequence. Assuming309

without loss of generality that low values of ϕ(T ′, T ) indicate high similarities between tours T ′ and310

T , possible deviation values need to be defined in terms of an upper bound δ, which indicates the311

extent with which a suggested tour may deviate from a predicted tour, thereby indicating the level312

of importance with which (predicted) preferences of drivers are considered during the development313

of tour suggestions.314

Further parameters λe and λl need to be specified which penalize time window violations (early315

and late arrivals, respectively) in the objective function. In one extreme scenario, decision makers316

require all time windows to be adhered to, leading to substantial values of λe and λl, which prevent317

any violations of time windows. In many other scenarios, time windows may be violated and318

are considered “soft”; then, the effect of violations on the objective function can be set by fixing319

appropriate λe and λl values. In this regard, the suggested framework as well as the mathematical320

model are flexible.321

Having defined the value of λe and λl, a TSPTW model instance can be built using problem322

data from an instance database. Adding the tour deviation constraint, based upon the predicted323

tour T ′, the chosen deviation measure ϕ , and the upper bound of deviation δ, finally yields the324

TSPTW-Dev model instance I to be solved by an optimization algorithm, leading to the suggested325

tour T .326

Solving instance I can be accomplished by drawing on a plethora of optimization algorithms,327

including meta-heuristic approaches. Often, the selected optimization algorithm needs to be con-328

figured in various ways. For example, many meta-heuristics, such as tabu-search, or variable neigh-329

borhood search, require the definition of one or more problem-specific local neighborhoods, which330

are used in the search process controlled by the meta-heuristic. The application of the configured331

optimization algorithm on the problem instance I finally results in the suggested tour.332

5. Case study333

In this section, we demonstrate the suggested decision support framework through its applica-334

tion on the problem case of the Amazon Last-Mile Routing Research Challenge (ALMRRC) (Mer-335

chan et al., 2022). For tour prediction, we choose a recursive logit-modeling approach in combination336

with a feedforward neural network; for tour prescription, we draw on a variable neighborhood search337

(VNS) meta-heuristic to solve TSPTW-Dev instances. In our computational experiments, we use338

an Intel Core i9 processor with 3.6 GHz and 64 GB RAM. The neural network is implemented with339

Pytorch (Paszke et al., 2019), and the VNS is implemented in Python.340

In the first part of this section, we describe our instantiation of the framework in detail, address-341

ing the used dataset, the logit-modeling and neural network approach, the VNS meta-heuristic, and342

selected sequence deviation measures for measuring tour deviations. In the second part, we present343

the results of our computational evaluation.344

5.1. Framework instantiation345

5.1.1. Data346

We draw on real-world data provided in the ALMRRC (Merchan et al., 2022). The dataset347

consists of 6,112 historical driver tours in a last-mile delivery context and was collected between348

July and August 2018 in five metropolitan areas in the U.S. The dataset consists of realized driver349
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Figure 2: Decision support framework
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tours; it does not include the tours as initially planned. In each tour, 148 customers are served on350

average with a standard deviation of 31. A route took, on average, 8.1 hours, of which 3.6 hours351

were spent on transit and 4.5 hours on service. Beyond driver tours, the dataset also includes travel352

times between stops, the latitude and longitude of each stop, and a delivery time window, which353

has an average length of nine hours and a standard deviation of 2.7 hours. For further information354

on the dataset, we refer to Merchan et al. (2022).355

Amazon decomposes the set of customers by using customer clusters: customers belonging to356

the same cluster need to be served in a sequence before customers of another cluster are visited.357

On average, the clusters have 7.3 customers. In our formulation of the TSPTW-Dev described in358

Section 3, this requirement can be considered by adding a large constant M to the costs of an arc359

which connects customers in distinct clusters, leading to the adherence of customer clusters in any360

optimal tour.361

5.1.2. Driver tour prediction362

Different than the route choice problem presented in the related work section of this paper, in363

our case, a sequence of stops needs to be predicted. We draw on the myopic link choice model by364

Oyama and Hato (2017). In every iteration, a selection probability is assigned to every unvisited365

destination. We assume that, in each iteration, the driver chooses the destination with the highest366

probability. This process is repeated until no unvisited destination exists. We divide the prediction367

model into two phases: In the first phase, hereafter referred to as cluster phase, the sequence of368

customer clusters is predicted. In the second phase, hereafter referred to as customer phase, the369

sequence of customers in these clusters is predicted. The features applied in the cluster phase are370

presented in Table 1.371

Table 1: Features to predict next cluster chosen by driver

No. Feature

1 Average travel time and geographical distance from current cluster to
candidate cluster

2 Average travel time and geographical distance from the candidate cluster
to not yet visited clusters

3 Average travel time and geographical distance from current cluster to
the depot

4 One-hot encoded vector representing opening hours
5 Percentage of customers already visited

The one-hot encoded time window vector consists of 24 binary entries, each representing if a372

cluster can be served in that hour (1) or not (0). In each cluster, we define the opening time as the373

time between the latest start and the earliest closing of each individual customer in that cluster.374

In case no time window is specified, the vector solely consists of 1’s.; i.e., customers in that cluster375

can be served at any time. The features applied in the customer phase are presented in Table 2.376
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Table 2: Features to predict next customer chosen by driver

No. Feature

1 Travel time and geographical distance from the current stop to the can-
didate stop

2 Average travel time and geographical distance from the candidate stop
to not yet visited stops in current cluster

3 Average travel time and geographical distance from the candidate stop
to not yet visited stops in next cluster

4 Travel time and geographical distance from the candidate stop to its
closest stop in next cluster

In both phases, a feedforward neural network is applied as prediction architecture, and min-max377

normalization is applied to scale all features in each iteration, as suggested for neural approaches by378

Basheer and Hajmeer (2000). For the sake of simplicity, the feedforward neural network contains379

three hidden layers and rectified linear (ReLU) activation functions. The output layer consists of a380

sigmoid function, as we deal with multiple binary predictions in every decision iteration, enabling381

the selection of the destination with the highest probability. As a loss function, we apply the Binary382

Cross Entropy loss, which takes the following form:383

BCELoss =
1

N

N∑
i=1

yi · log ŷi + (1− yi) ∗ log(1− ŷi) (9)

We tune the hyperparameters of the network, such as the hidden layer sizes, learning rate, and384

batch size, with the ASHA algorithm (Li et al., 2020) in both phases separately. The hyperparam-385

eters can be retrieved from Appendix A.386

5.1.3. Variable neighborhood search387

To solve TSPTW-Dev instances, we draw on the VNS meta-heuristic, which has been success-388

fully applied to routing problems, including the VRPTW (Zhang et al., 2021). In particular, we use389

an approach for the capacitated vehicle routing problem with two-dimensional loading constraints390

suggested by Wei et al. (2015).391

Our VNS is presented in pseudocode formulation in Algorithm 1. As the VNS is an improving392

(meta-)heuristic, it requires having an initial tour solution S as input; for S, we use the tour T ′
393

as predicted through machine learning (see Figure 2). Prior to executing the search, the VNS also394

needs to define a set of H different neighborhood structures NSh (h = 1, . . . ,H); a definition of H =395

3 neighborhood structures is provided below. In an outer loop, the VNS conducts an iterative search396

for improving tour solutions, terminating upon the execution of maxNonImp consecutive iterations397

without any improvement; in our pretests, no improvement has been made after approximately 30398

iterations, and, therefore, we set the value of maxNonImp to 30. For the current tour solution S,399

in an inner loop iterating over all neighborhood structures NSh (h = 1, . . . ,H), the VNS proceeds400

as follows: it randomly generates a neighbored solution S′ from the current neighborhood h. The401

tour solution S′ is then improved with a local search procedure, resulting in tour solution S′′. The402

local search procedure consists of applying the full enumeration of the three local search operators403

described below. If the new solution S′′ is better than our best-known solution S∗, the VNS updates404

the best solution and our current solution S before restarting the inner loop with neighborhood405
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h = 1. Otherwise, the next neighborhood h+1 is applied analogously. If all neighborhood structures406

have been applied without improving the solution, the VNS diversifies the current best solution S∗,407

and a new iteration of the outer loop starts.408

Algorithm 1 Variable Neighborhood Search

Input: S
Define a set of neighborhood structures NSh(h = 1, ...,H)
S∗ = S, nonImp = 0
while nonImp < maxNonImp do

nonImp = nonImp+ 1
h = 0
while h < H do

h = h+ 1
Generate a random neighboring S′ of S using NSh

S′′ = LocalSearch(S′)
if S′′ is better than S∗ then

Set S = S′′, S∗ = S′′

h = 0, nonImp = 0
end if

end while
S = Diversify(S∗)

end while
return S∗

We employ the three neighborhood structures and local search operators as suggested by Zhang409

et al. (2021). While all neighborhood structures employ the reordering of customer clusters, in410

the local search procedure, the order of clusters remains unchanged, but the sequence of customers411

within the clusters is adjusted. The neighborhood structures and local search operators are vi-412

sualized in Figure 3. The neighborhood structures are defined through tour solutions that result413

from cluster relocate, where a cluster is relocated to a different position, cluster swap, which ex-414

changes the position of two clusters, and cluster 2-opt, in which a sequence of consecutive clusters415

is reversed.416

The three local search operators work based upon the same principles but are applied to cus-417

tomers in a single cluster rather than to clusters themselves: Relocate moves a customer to a418

different position in the same cluster, swap exchanges the position of two customers within one419

cluster, and 2-opt reverses the sequence of consecutive customers within one cluster. Before the lo-420

cal search starts, the order of operators is shuffled. The search then evaluates all possible moves (in421

every cluster) applying the first operator. If an improvement is made, it is accepted immediately,422

the order of operators is shuffled, and the search procedure restarts. If no improvement is made in423

any of the clusters based on the current operator, the next operator is applied to all clusters. The424

local search terminates when all possible moves of all three operators do not yield a better solution425

in any of the clusters.426

The diversification procedure follows a ruin-reconstruct approach. In the ruin phase, a number427

of clusters are removed from the tour and added to a pool. In the reconstruct phase, the removed428

clusters in the pool are re-inserted into the tour. The insertion is accomplished by iterating over429

a) all clusters in the pool and b) all possible positions in the tour and then choosing the cluster-430

position pair, which results in the lowest additional costs per added stop. The inserted cluster is431

then removed from the pool, and the next iteration begins. The procedure finishes when the pool of432
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Figure 3: Neighborhood Structure and Local Search Operators

removed clusters is empty. In the implementation of Wei et al. (2015), the degree of destruction (in433

terms of the number of clusters removed) depends on the number of iterations without improvement434

nonImp, and is set to min{0.5 · N, 0.1 · N + nonImp}, where N is the total number of stops in435

a complete tour. In our implementation, the degree of destruction additionally depends on the436

parameter value of the deviation limit δ. Based on pretests, in our implementation, we set the437

number of removed clusters to ⌊min{min{δ, 0.5} · N, 0.05 · N + nonImp}⌋, where N is the total438

number of clusters and δ ∈ [0, 1]. Our setting implies that the number of clusters removed in the439

ruin phase and re-inserted in the reconstruct phase is small when both nonImp and δ are small440

and when not more than 50% of the clusters are removed.441

5.1.4. Sequence deviation measures442

In order to measure the deviation between two tours, we apply, as briefly exposed earlier, two443

alternative deviation measures Φ: the Jaro distance (Jaro, 1989) and the LCSS distance (Bergroth444

et al., 2000; Sevaux et al., 2005). The Jaro distance is defined as the inverse of the Jaro similarity445

(Jaro, 1989), a metric that measures the similarity between two sequences. The metric has been446

developed for record linkage, which deals with linking records of the same entity within data sources.447

We choose to apply this metric for two reasons: First, in contrast to other measures, such as the448

Levenshtein distance (Levenshtein, 1966), the Jaro distance not only considers the number of edits449

but also the relative positions of the stops. Second, in the record-linkage literature, good results450

have been obtained based upon this measure (Cohen et al., 2003). Hence, for the following case451

study, the Jaro distance between two tours t1 and t2 with an identical number of stops can be452

defined as453

JaroDistance(t1, t2) = 1− 1

3
(
2m

n
+

m− trans

m
),

where n is the number of stops, m is the number of matching stops between the tours and trans454

is the number of needed transpositions to convert the matching stops of one tour into the other.455
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A stop is considered matching, if its position in the first and second tour does not differ by more456

than (n2 − 1). The measure is bounded between [0, 1], where 0 indicates the presence of two457

identical tours. Consider the tour t1 = A − B − C −D − E − F − G −H − A and a second tour458

t2 = A−G−H −D−E −F −B −C −A, in which the customers pairs B-C and G-H have been459

swapped. Stop G is at the 7th position in t1 and at the second position in t2. As |7− 2| ≥ 9
2 − 1,460

stop G is not considered matching. The same procedure applies to stops H, B and C. Stops461

A − D − E − F − A, in turn, are considered matching, so m = 5. As the order in which these462

matching stops appear in both tours is identical, no transpositions are needed. The Jaro distance463

between these two tours is therefore given by:464

JaroDistance(t1, t2) = 1− 1

3
(
2 · 5
9

+
5− 0

5
) = 0.296.

The longest common subsequence distance is based on the longest common subsequence (LCSS),465

which is widely used to measure the closeness of sequences in various disciplines (see Bergroth466

et al. (2000)). The LCSS is defined as the maximum number of identical symbols in two strings,467

preserving the symbol order (Bergroth et al., 2000). The LCSS distance is defined as n minus the468

length of the LCSS, divided by (n− 1) (Sevaux et al., 2005), where n is the length of the sequence:469

dLCSS(t1, t2) =
n− |LCSS(t1, t2)|

n− 1
.

Similar to the Jaro distance, the LCSS distance is bounded between [0,1]. Reconsider the tours
t1 and t2 from the previous example. The longest subsequence that is shared by both tours is
A−D − E − F −A with a length of 5. The LCSS distance between the two tours is therefore

dLCSS(t1, t2) =
9− 5

9− 1
= 0.5.

We remark that both the Jaro and LCSS deviation measures do not consider the geographical470

distance of customers, i.e., the distance between two customers is disregarded when transposing one471

(sub-) sequence to another. A driver might experience that a swap of customers might change his472

tour more significantly when customers are further away from each other, compared to a swap of473

customers who are close to each other. However, to the best of our knowledge, sequence deviation474

measures that consider the distance between customer stops do not exist in the literature. Future475

research could develop such measures, e.g., through weighting transpositions by the absolute change476

in tour length the transposition would cause. In the scope of this paper, we rely on the above477

mentioned deviation measures from literature, that have been proven useful in various disciplines478

(Bergroth et al., 2000; Cohen et al., 2003).479

5.2. Computational study480

5.2.1. Tour prediction results481

In this section, we look at our machine learning model’s predictive accuracy and the Jaro482

distance between predicted and observed tours. For our computational study, we split our data483

into a training set and a test set comprised of 5,112 and 1,000 samples, respectively. The confusion484

matrices depicted in Table 3 and 4 summarize the prediction results of both the cluster and customer485

predictions. We benchmark the predictions with a nearest neighbor strategy in which the closest486

customer in the same cluster as the current customer is visited next. If all customers of a cluster487

have been visited, the nearest customer, disregarding the cluster, is visited next. Note that the488

number of false positives and false negatives are equal, as a wrong prediction logically leads to both489

a false positive and a false negative. The data is unbalanced for the following reason: Given that490
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there are n clusters in the first iteration, the driver can choose from n clusters, among which only491

one is finally chosen. In the second iteration, the driver can choose from (n − 1) clusters among,492

again, only one is chosen, and so on. Therefore, there are more “not chosen” clusters than chosen493

clusters. The same logic applies to the customer phase.494

Table 3: Confusion matrices cluster phase

(a) Neural network

Predicted

Actual Chosen Not chosen

Chosen 14, 141 3, 854
Not chosen 3, 854 182, 646

(b) Nearest neighbor

Predicted

Actual Chosen Not chosen

Chosen 12, 882 5, 113
Not chosen 5, 113 181, 217

Table 4: Confusion matrices customer phase

(a) Neural network

Predicted

Actual Chosen Not chosen

Chosen 99, 592 25, 485
Not chosen 25, 485 463, 917

(b) Nearest neighbor

Predicted

Actual Chosen Not chosen

Chosen 94, 457 30, 620
Not chosen 30, 620 458, 782

In our case, it is especially interesting to look at the sensitivity of the predictions, i.e., the proba-495

bility that we correctly predict the chosen cluster/customer. In the cluster phase, the sensitivity, or496

recall, is 0.786 for the neural approach, compared to 0.716 for the nearest neighbor strategy. In the497

customer phase, the neural approach yields a sensitivity of 0.794 compared to 0.755 for the nearest498

neighbor approach. The neural approach clearly outperforms the nearest neighbor strategy in both499

phases, showing that the selected features have predictive power and are, as a result, explanatory500

of driver behavior. Our approach slightly outperforms the best neural network approach submitted501

to the ALMRRC, i.e., an accuracy of 77% on predicting the next chosen customer (Huang et al.,502

2021). This benchmark serves as our predefined performance threshold and proves the acceptability503

and usability of the proposed model.504

Table 5: Tour prediction results

(a) Predicted tours

Mean Median Std

Jaro 0.306 0.274 0.151
LCSS 0.703 0.716 0.144

(b) Nearest neighbor tours

Mean Median Std

Jaro 0.317 0.312 0.126
LCSS 0.729 0.741 0.119

Figures B.5 and B.6, which can be found in the Appendix, show the distribution of the Jaro and505

LCSS distances between predicted tours and driver tours in the test set, respectively. Summary506

statistics are presented in Table 5. The mean and median Jaro distances are 0.306 and 0.274,507

respectively. The standard deviation is 0.151. The mean and median LCSS distances amount to508

0.703 and 0.716, respectively. The standard deviation is 0.144. Figures B.7 and B.8 show the509

distribution of the Jaro and LCSS distances between the nearest neighbor tours and driver tours510

in the test set. The mean and median Jaro distance is 0.317 and 0.312, respectively. The standard511
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deviation is 0.126. The mean and median LCSS distance is 0.729 and 0.741, respectively. The512

standard deviation is 0.119. These results confirm that the neural network approach outperforms513

the nearest neighbor approach.514

5.2.2. Tour prescription results515

As the decision support framework shown in Figure 2 indicates, the instantiations of TSPTW-516

Dev model instances allow but also require the ex-ante determination of the tour deviation measure517

Φ, the maximum deviation allowed δ, and penalty multipliers λe and λl. In our casestudy, we assume518

that early and late arrivals lead to similar extents of customer dissatisfaction (e.g., caused by failed519

deliveries) and thus, we apply equal values for λe and λl by setting them to a single value λ. In our520

experiments, we used and combined various measures and parameter values of δ and λ. For δ, we521

choose the set of values {0, 0.04, . . . , 0.96, 1} as both the Jaro distance and the normalized LCSS522

distance are bounded between 0 and 1. Regarding λ, Guo and Mak (2004) choose the values of 1,523

10 and 100. We extend this set by choosing values of {0, 0.5, 1, 5, 10, 20, 50, 100}.524

Figure 4 shows, for the Jaro distance, how the objective values of tours suggested by our VNS525

meta-heuristic relate to the objective values of driven tours as predicted by our machine learning526

algorithm. The grey line represents the ratio between the suggested tour’s objective value and527

the predicted tour’s objective value. All ratios are averaged over the test data of 1, 000 historical528

driver tours. The black line represents the distance between the suggested and predicted tours.529

Analogously, the averaged (Jaro) distances between suggested and predicted tours are plotted. The530

plots for the normalized LCSS distance, as well as detailed values of our results, can be retrieved531

from Figure C.9 and Tables C.7-C.10 in Appendix C.532

6. Discussion533

6.1. Analysis of computational results534

The parameterization of the TSPTW-Dev model allows controlling the extent to which the535

violations of time windows are penalized and to which feasible tours may deviate from (predicted)536

driven tours. For the various selected values of parameters λ and δ, we thus analyze the relative537

improvements of the quality of suggested tours over driven tours (referred to as “the ratio”) and538

similarities between both types of tours using deviation measures. While the former metric refers539

to an organization’s objective to minimize tour costs, the latter addresses drivers’ adoption of sug-540

gested tours. Our evaluation of both metrics across sets of parameter values allows for determining541

the sensitivity of the parameters.542

Figure 4 reveals that, across all values of λ, the ratios decrease, and the Jaro distances increase543

with increasing values of δ. The decrease of ratios – and thereby the improvement of tour qualities544

– is reasonable as larger values of δ allow larger deviations between suggested tours and driven545

tours, which, in turn, corresponds to larger feasible regions (see constraint (5) in the mathematical546

formulation of the TSPTW-Dev). The results show a steep decrease of ratios for relatively small547

values of λ, which indicates that even low deviations from driven tours improve tour quality.548

However, the curve of ratios immediately flattens, for all values of λ, when δ exceeds δ∗ ≈ 0.15.549

This effect means that any further improvements of tour qualities can only hardly be achieved when550

tours may substantially deviate from driven tours, i.e., the shadow price of constraint (5) gets close551

to zero when δ > δ∗ ≈ 0.15. Apparently, the qualities (in terms of costs) of driven tours, as552

predicted by the employed machine learning approach, are already reasonably good. Interestingly,553

δ∗ does not depend on how strong time window violations are penalized, i.e., δ∗ does not depend on554

λ. However, the extent of tour improvements substantially depends on λ: for the minimum value555

λ = 0, time window violations are not penalized, and the original TSPTW degenerates to the TSP,556
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(a) λ = 0 (b) λ = 0.5

(c) λ = 1 (d) λ = 5

(e) λ = 10 (f) λ = 20

(g) λ = 50 (h) λ = 100

Figure 4: Relationships between suggested tours and (predicted) driven tours - Jaro distance
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which is easier to solve. Thus, it is not surprising that the driven tours are of high quality and can557

be improved by the VNS meta-heuristic only slightly by up to 4%. With increasing values of λ, the558

relevance and impact of time window violations also increase, and obtaining good tour solutions559

becomes more challenging as time windows need to be considered in tour planning to an increasing560

extent. For example, for λ = 100, time window constraints become almost “hard constraints”, and561

applying the VNS meta-heuristic leads to an improvement of tour quality of about 28%. Overall,562

our computational results indicate that, in particular, for high values of λ, applying optimization563

is substantially beneficial.564

The development of (Jaro) distance values can be explained similarly. With increasing values565

of δ, for all values of λ, deviations of feasible tours from driven tours may become more significant,566

resulting in increasing (Jaro) distance values. Unsurprisingly, the distance curve starts flattening567

at δ∗ ≈ 0.15, the value at which the ratio curve starts flattening. This phenomenon is reasonable568

to expect as increasing the allowed extent of deviations from driven tours beyond δ∗ does not result569

in yielding tours of increasing quality so that the distances between tours suggested by the VNS570

meta-heuristic and driven tours can be expected not to increase either. However, and in contrast571

to the development of ratios, the (Jaro distance) values to which the distance curves “converge”572

do not depend on the value of λ, i.e., the extent to which time window violations are penalized do573

not affect the maximum level of dissimilarity between suggested tours and driven tours.574

Substituting the Jaro distance with the normalized LCSS distance results in similar observations,575

as Figure C.9 shows. The effects described above hold again, but δ∗ is different as the dissimilarity576

between tours is measured differently. In particular, for all values of λ, the extent of improvements of577

tour qualities through the application of the VNS meta-heuristic are very similar to those achieved578

when using the Jaro distance. Overall, our results are robust against the selected deviation measure.579

6.2. Managerial implications580

With our case study, we not only demonstrate the instantiation and application of the suggested581

decision support framework, but we also point to the general domain and algorithmic issues that582

need to be considered by organizational decision makers when implementing a decision support583

system for last-mile logistics.584

While our framework does not limit the application of machine learning and optimization al-585

gorithms, it leaves algorithm selection and configuration to the decision maker. The choice may586

depend on the algorithmic experience, the available tools, and the prediction and prescription qual-587

ity of the algorithms when applied to the tour data at hand. The portfolio of results for different588

parameter values λ and δ provides insights into the quantitative effects that selected penalties of589

time window violations and maximum deviations from predicted tours have on quality improve-590

ments over and on actual deviations of suggested tours from predicted tours. Although we do591

not expect the selected deviation measure to impact the trade-off between tour improvements and592

deviations significantly, we recommend that decision makers include variations of measures in their593

experiments. Of course, the selected deviation measures affect the value of δ∗.594

Decision makers need to determine the extent to which time window violations are penalized595

(fixing the value of λ). In some cases, the importance of avoiding time window violations may be596

evident and exogenously given; for example, when time windows do not play an essential role, λ597

may be set to zero, and when time windows need to be adhered to, λ may be set to a value which598

is prohibitively large to allow any time window violations.599

In other cases where the parameter λ can be set to any value in a given range, the results of600

computational experiments may advise decision makers on how to parameterize λ.601

One key decision that needs to be made prior to implementing a decision support system is602

related to the abovementioned trade-off between tour improvements and deviations from predicted603

19



tours. On the one hand, allowing large deviations from predicted tours may improve tour quality,604

thereby reducing tour costs. On the other hand, such large deviations may reduce the probability605

that drivers accept and actually follow the tour suggestion, thereby marginalizing the impact of606

tour suggestions on actually driven tours. The ultimate decision on how to address this trade-off607

(by parameterizing δ) depends on the decision maker’s preferences. Assuming that the curve of608

tour quality improvements starts flattening at δ∗, it is reasonable to set δ ≤ δ∗ for two reasons:609

first, substantial tour improvements may not be expected for δ > δ∗ but (at least slight) increases610

of tour deviations may occur; second, with increasing values of δ, the solution space increases,611

which often reduces the efficiency of optimization algorithms. Conducting extensive computation612

experiments supports decision makers in fixing the value of δ according to their preferences.613

7. Conclusions614

From an organizational perspective, logistics providers usually draw on optimization approaches615

to plan last-mile operations, aiming at minimizing travel times/ distances or makespans. At the616

same time, drivers may derive from tour suggestions based upon their knowledge of temporal traffic617

and parking conditions, customer preferences, and safety conditions, for example. Literature on618

both organizational and behavioral issues of vehicle routing exists, but they are largely disconnected.619

With our study, we aim to bridge this gap by proposing a hybrid decision support framework that620

enables the simple integration of driver behavior into the optimization process. This framework621

integrates a machine learning approach to analyze and predict driver behavior based on historical622

tour data with an optimization approach that suggests tours by considering the predicted driven623

routes. From a modeling perspective, we suggest a mathematical formulation of a modified TSPTW624

model, the TSPTW-Dev model. From an algorithmic perspective, our framework is generic and625

allows the use of various machine learning and optimization approaches.626

We illustrate the instantiation and application of the suggested framework by implementing a627

deep learning approach to predict driver tours and a VNS meta-heuristic to suggest tours, drawing628

on real-world tour data. We conduct extensive computation results and a sensitivity analysis to629

demonstrate the effects of various parameter values of the TSPTW-Dev. We use our insights gained630

in the computational case study to derive managerial implications beyond our analysis and target631

all logistics providers that strive to exploit historical data for planning their last-mile logistics.632

With our computational study, we quantify the effects of applying an optimization approach633

to the predicted tour; that is, our analysis relates the objective value of a suggested tour to the634

objective value of the predicted tour. Decision makers may also be interested in quantifying the635

(empirical) effects of considering predicted tours (and thus driver knowledge) in the prescription of636

tours. In order to analyze this effect and thus the empirical value of our suggested framework, an637

empirical study would need to track and compare actually driven tours under two different condi-638

tions: while condition (1) assumes that drivers receive suggested tours based on an optimization639

approach that does not consider predicted tours, condition (2) assumes that predicted tours are in-640

cluded in tour suggestions as implemented with our framework. Conducting this empirical analysis641

would allow determining whether and to what extent actually driven tours based upon condition642

(2) are superior (e.g., in terms of tour characteristics, customer satisfaction, adoption of tour sug-643

gestions by drivers) over actually driven tours based upon condition (1) due to the incorporation of644

driver knowledge. However, this empirical analysis needs to be conducted in an empirical follow-up645

study that goes far beyond our computational study.646

Our research has several limitations which open avenues for future research. First, we have647

modeled the partly conflicting goals of tour cost minimization and closeness to predicted tours by648

considering the latter as a constraint. We have yet to analyze other multi-objective optimization649
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approaches, such as using multiple-objective definitions. Future research should investigate such650

approaches and compare their appropriateness with our approach. Second, we have implemented a651

single deep learning approach and a single meta-heuristic. Future work may develop and evaluate652

other machine learning and optimization approaches. Third, driver-related features and environ-653

mental factors, such as road and traffic conditions, should also be considered for the training and654

optimization steps. Fourth, we have instantiated and evaluated the framework in a single case study.655

In future work, other data sets should be investigated. These investigations may disclose relation-656

ships between the structure and volume of tour data and the appropriateness of selected machine657

learning and optimization algorithms. Finally, the empirical value of our suggested framework, as658

discussed in the preceding paragraph, should be investigated.659
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Appendix A. Hyperparameters of the feedforward neural network859

Hyperparameters of the feedforward neural network used to predict driver tours, determined860

by the ASHA algorithm Li et al. (2020).861

Table A.6: Hyperparameters of feedforward neural network

Phase Hidden layer size

one

Hidden layer size

two

Hidden layer size

three

Learning

rate

Batch size

Cluster 128 64 16 0.00113 32
Customer 64 32 8 0.000589 4

Appendix B. Detailed figures of prediction results862

Figure B.5: Distribution of Jaro distances to historical driver tours - Neural Network

Figure B.6: Distribution of LCSS distances to historical driver tours - Neural Network
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Figure B.7: Distribution of Jaro distances to historical driver tours - Nearest Neighbor

Figure B.8: Distribution of LCSS distances to historical driver tours - Nearest Neighbor
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Appendix C. Detailed figures of the application of VNS meta-heuristic863

(a) λ = 0 (b) λ = 0.5

(c) λ = 1 (d) λ = 5

(e) λ = 10 (f) λ = 20

(g) λ = 50 (h) λ = 100

Figure C.9: Relationships between suggested tours and (predicted) driven tours - normalized LCSS distance
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Table C.7: Objective value change using Jaro distances

λ 0 0.5 1 5 10 20 50 100
δ

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.04 0.979 0.973 0.963 0.914 0.884 0.866 0.839 0.828
0.08 0.967 0.958 0.948 0.889 0.855 0.829 0.802 0.789
0.12 0.958 0.946 0.935 0.870 0.835 0.807 0.779 0.766
0.16 0.957 0.945 0.929 0.855 0.819 0.782 0.758 0.738
0.20 0.959 0.942 0.927 0.849 0.808 0.776 0.745 0.732
0.24 0.959 0.945 0.924 0.843 0.804 0.774 0.742 0.721
0.28 0.959 0.944 0.923 0.841 0.802 0.766 0.734 0.718
0.32 0.958 0.944 0.923 0.839 0.801 0.767 0.733 0.716
0.36 0.960 0.942 0.923 0.839 0.799 0.764 0.731 0.716
0.40 0.959 0.942 0.923 0.837 0.799 0.765 0.733 0.717
0.44 0.958 0.943 0.924 0.839 0.799 0.766 0.733 0.714
0.48 0.960 0.942 0.922 0.839 0.798 0.764 0.732 0.714
0.52 0.958 0.942 0.921 0.839 0.800 0.763 0.731 0.713
0.56 0.960 0.943 0.924 0.839 0.797 0.764 0.733 0.713
0.60 0.958 0.944 0.923 0.838 0.799 0.765 0.732 0.714
0.64 0.959 0.943 0.924 0.839 0.800 0.766 0.732 0.714
0.68 0.958 0.943 0.922 0.841 0.800 0.765 0.732 0.714
0.72 0.959 0.942 0.923 0.837 0.798 0.764 0.733 0.717
0.76 0.960 0.943 0.924 0.839 0.799 0.764 0.733 0.719
0.80 0.959 0.943 0.922 0.838 0.799 0.762 0.736 0.714
0.84 0.959 0.942 0.922 0.838 0.797 0.764 0.735 0.712
0.88 0.959 0.943 0.923 0.838 0.799 0.763 0.735 0.714
0.92 0.959 0.943 0.923 0.837 0.798 0.765 0.732 0.715
0.96 0.957 0.942 0.921 0.838 0.799 0.765 0.732 0.715
1.00 0.958 0.942 0.922 0.838 0.799 0.763 0.732 0.713
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Table C.8: Jaro distances

λ 0 0.5 1 5 10 20 50 100
δ

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.04 0.031 0.031 0.032 0.033 0.033 0.033 0.033 0.033
0.08 0.070 0.072 0.070 0.072 0.073 0.073 0.073 0.073
0.12 0.093 0.096 0.096 0.096 0.099 0.098 0.098 0.098
0.16 0.097 0.103 0.106 0.107 0.107 0.108 0.106 0.108
0.20 0.101 0.107 0.110 0.113 0.114 0.112 0.112 0.114
0.24 0.100 0.110 0.113 0.114 0.116 0.116 0.116 0.116
0.28 0.101 0.110 0.114 0.116 0.120 0.118 0.118 0.120
0.32 0.100 0.111 0.119 0.119 0.124 0.119 0.121 0.124
0.36 0.101 0.114 0.119 0.122 0.124 0.121 0.127 0.125
0.40 0.104 0.115 0.122 0.123 0.126 0.128 0.124 0.125
0.44 0.101 0.119 0.121 0.125 0.124 0.128 0.125 0.129
0.48 0.103 0.118 0.119 0.128 0.129 0.129 0.127 0.131
0.52 0.104 0.115 0.121 0.126 0.129 0.125 0.129 0.130
0.56 0.105 0.120 0.123 0.127 0.128 0.129 0.127 0.128
0.60 0.102 0.117 0.121 0.129 0.127 0.131 0.126 0.130
0.64 0.105 0.122 0.125 0.125 0.132 0.129 0.128 0.130
0.68 0.102 0.119 0.121 0.125 0.129 0.129 0.128 0.133
0.72 0.102 0.118 0.121 0.124 0.128 0.125 0.126 0.129
0.76 0.102 0.117 0.119 0.128 0.129 0.129 0.127 0.127
0.80 0.104 0.117 0.122 0.128 0.126 0.127 0.132 0.130
0.84 0.103 0.116 0.122 0.126 0.129 0.129 0.129 0.130
0.88 0.101 0.119 0.119 0.126 0.128 0.129 0.127 0.129
0.92 0.105 0.119 0.121 0.128 0.128 0.126 0.130 0.126
0.96 0.100 0.116 0.121 0.127 0.127 0.126 0.127 0.128
1.00 0.103 0.119 0.123 0.128 0.128 0.127 0.127 0.129
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Table C.9: Objective value change using LCSS distances

λ 0 0.5 1 5 10 20 50 100
δ

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.04 0.997 0.994 0.989 0.963 0.955 0.943 0.930 0.923
0.08 0.989 0.983 0.976 0.940 0.907 0.890 0.867 0.866
0.12 0.983 0.977 0.969 0.918 0.894 0.869 0.845 0.837
0.16 0.978 0.971 0.960 0.910 0.884 0.857 0.830 0.817
0.20 0.976 0.969 0.959 0.910 0.883 0.851 0.823 0.807
0.24 0.969 0.962 0.951 0.897 0.858 0.836 0.806 0.798
0.28 0.966 0.956 0.946 0.883 0.853 0.824 0.793 0.786
0.32 0.962 0.953 0.941 0.881 0.847 0.811 0.794 0.774
0.36 0.960 0.949 0.936 0.873 0.841 0.812 0.784 0.766
0.40 0.960 0.948 0.934 0.872 0.836 0.808 0.778 0.760
0.44 0.960 0.948 0.929 0.862 0.822 0.797 0.768 0.756
0.48 0.959 0.945 0.930 0.865 0.831 0.799 0.762 0.750
0.52 0.958 0.944 0.929 0.858 0.816 0.790 0.758 0.742
0.56 0.961 0.945 0.931 0.853 0.819 0.789 0.755 0.733
0.60 0.959 0.942 0.927 0.848 0.812 0.788 0.750 0.733
0.64 0.959 0.945 0.923 0.847 0.807 0.778 0.745 0.730
0.68 0.961 0.943 0.925 0.841 0.808 0.777 0.742 0.724
0.72 0.960 0.945 0.924 0.842 0.797 0.772 0.738 0.721
0.76 0.962 0.943 0.924 0.837 0.796 0.769 0.734 0.717
0.80 0.961 0.944 0.920 0.836 0.797 0.766 0.734 0.715
0.84 0.961 0.942 0.922 0.836 0.797 0.767 0.734 0.709
0.88 0.961 0.944 0.922 0.834 0.798 0.766 0.733 0.713
0.92 0.960 0.943 0.921 0.836 0.795 0.770 0.733 0.714
0.96 0.961 0.941 0.923 0.837 0.796 0.765 0.733 0.712
1.00 0.960 0.942 0.921 0.836 0.800 0.767 0.733 0.715
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Table C.10: LCSS distances

λ 0 0.5 1 5 10 20 50 100
δ

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.04 0.010 0.011 0.013 0.014 0.014 0.014 0.014 0.014
0.08 0.046 0.050 0.052 0.053 0.053 0.054 0.055 0.053
0.12 0.090 0.092 0.095 0.098 0.099 0.095 0.096 0.097
0.16 0.134 0.138 0.141 0.141 0.141 0.141 0.142 0.141
0.20 0.163 0.166 0.169 0.169 0.171 0.172 0.170 0.171
0.24 0.212 0.215 0.218 0.218 0.219 0.218 0.218 0.220
0.28 0.245 0.251 0.256 0.256 0.256 0.256 0.257 0.255
0.32 0.275 0.281 0.284 0.284 0.289 0.284 0.284 0.283
0.36 0.296 0.300 0.304 0.307 0.308 0.308 0.307 0.310
0.40 0.303 0.317 0.319 0.322 0.321 0.319 0.318 0.319
0.44 0.317 0.327 0.329 0.331 0.333 0.330 0.335 0.334
0.48 0.311 0.333 0.336 0.339 0.338 0.337 0.339 0.338
0.52 0.320 0.334 0.338 0.339 0.341 0.342 0.342 0.345
0.56 0.320 0.332 0.350 0.346 0.346 0.345 0.350 0.349
0.60 0.316 0.343 0.345 0.351 0.351 0.352 0.355 0.350
0.64 0.322 0.344 0.351 0.360 0.361 0.358 0.358 0.360
0.68 0.329 0.346 0.363 0.355 0.364 0.361 0.362 0.369
0.72 0.323 0.348 0.363 0.367 0.369 0.367 0.373 0.370
0.76 0.319 0.363 0.363 0.373 0.383 0.367 0.371 0.385
0.80 0.321 0.358 0.368 0.378 0.367 0.377 0.377 0.378
0.84 0.325 0.355 0.369 0.384 0.372 0.378 0.387 0.381
0.88 0.325 0.359 0.374 0.382 0.387 0.383 0.384 0.385
0.92 0.324 0.358 0.374 0.374 0.383 0.371 0.381 0.385
0.96 0.320 0.351 0.366 0.376 0.384 0.391 0.382 0.381
1.00 0.325 0.353 0.368 0.374 0.385 0.380 0.383 0.388
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