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Abstract
Popular speech disentanglement systems decompose a
speech signal into a content and a speaker embedding,
where a decoder reconstructs the input signal from these
embeddings. Often, it is unknown, which information is
encoded in the speaker embeddings. In this work, such a
system is investigated on German speech data. We show
that directions in the speaker embeddings space correlate
with different acoustic signal properties that are known
to be characteristics of a speaker, and manipulating these
embeddings in that direction, the decoder synthesises a
speech signal with modified acoustic properties.

Introduction
With the advent of deep learning, speech processing has
reached an unprecedented level of performance. Just
like any other statistical model class, deep neural net-
works can be categorized into discriminative and gener-
ative models. While classification tasks are traditionally
approached by discriminative models, generative models
allow for the generation of speech samples. A prominent
example is the variational autoencoder (VAE) that has
been shown to generate realistic speech samples, in par-
ticular, if extended for sequence modeling as is done in
the dynamical variational autoencoder. The VAE con-
sists of an encoder and a decoder neural network. The
encoder maps the observed data to a latent space that
corresponds to the parameters of a normal distribution,
which serves as variational approximation to an analyti-
cally intractable posterior. Then samples are drawn from
the normal distribution which the decoder takes as input
to generate new data points.

In [1] we have shown, that by using two encoders in-
stead of one, a speech signal can be disentangled in a
completely unsupervised fashion into embedding vectors
that capture short-term (fast) variations of the signal
and an embedding vector that captures the temporally
stable properties of the signal. We call the former con-
tent and the latter speaker or style embedding in the
following. The rationale behind this is the intuition that
fast variations are caused by the linguistic content, while
properties of the speaker, the environment or other long-
term properties, e.g., emotion, are temporally stable or
change only very slowly. With this in mind appropriate
loss functions can be designed for the training of this so-
called Factorized Variational Autoencoder (FVAE). Fur-
ther, by exchanging the speaker embeddings with those
of another speaker, while leaving the content embeddings
untouched, voice conversion can be carried out, as was

illustrated in [2].

However, what is exactly encoded in the the speaker
embedding, and can the components of the embedding
vector be interpreted acoustically or even perceptually?
We carry out a statistical analysis of the embedding vec-
tors to find out whether they indeed encode acoustic sig-
nal properties that are known to be characteristic of a
speaker. To this end, we investigate which acoustic fea-
tures are encoded in which components of the embedding
vector. We take the widely used openSMILE [3] feature
set and we choose two features for a case study, the mean
of the fundamental frequency and the Hammarberg in-
dex. The former is known to encode, among others, the
gender of the speaker, while the second, the ratio of the
maximum power below 2000Hz to the maximum power
in the range 2000Hz− 5000Hz, can be used for emotion
recognition, as was shown in [4].

With a Canonical Correlation Analysis (CCA), we de-
termine the direction in the latent speaker space, that
has highest correlation with those two acoustic features.
We then modify the speaker embedding along those di-
rections and qualitatively evaluate the effect on the syn-
thesized speech signal1. Clearly, the analysis shows that
acoustic properties are not aligned with the coordinate
axes of the latent feature space. While utterances of the
same speaker form well-defined clusters in speaker space,
indicating that indeed speaker and content-induced vari-
ations are well separated, specific acoustic features are
not encoded in single dimensions of the speaker space,
calling for better disentanglement, as will be investigated
in future work.

Factorized Variational Autoencoder
Here, we briefly describe the FVAE that is used for map-
ping the speech signal into two latent spaces, one captur-
ing the slow (i.e., speaker/style) and one the fast varia-
tions (i.e., content) in the speech signal. For a detailed
description, the reader is referred to [1]. From a given ut-
terance, log-mel features X = [x1, . . . ,xT ] are extracted,
which serve as input signal to the FVAE. To achieve the
disentanglement, the model uses two encoders, a speaker
encoder and a content encoder, see Figure 1. The speaker
encoder extracts an embedding S = [s1, . . . , sT ]. It is as-
sumed, that the speaker properties are not changing over
time, so a Global Average Pooling (GAP) is applied over
the time dimension to create the speaker vector s̄.

To avoid that the content encoder embeds speaker in-

1Audio examples: go.upb.de/daga23
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Figure 1: Architecture of the FVAE

formation, the speaker properties in its input are dis-
torted with Vocal Tract Length Perturbation (VTLP)
and Instance Normalization. From this preprocessed sig-
nal, the content encoder extracts the content embedding
C = [c1, . . . , cT ]. Both embeddings are used by the de-

coder to reconstruct the input signal X̂, such that the
framewise Mean Squared Error (MSE) is minimized

Lrec =
1

T

∑
T

||x̂t − xt||22 . (1)

To push the disentanglement further, Contrastive Pre-
diction Coding (CPC) is applied on speaker and content.
We assume that the speaker does not change over time.
For this reason, the speaker embedding st+τ must be
similar to st, where τ is the number of steps into the
future. But these embeddings must be different to em-
beddings from other utterances. This is described by the
contrastive prediction loss

L(S)
cpc = − 1

T − τ

T∑
t=τ+1

exp(sTt · st−τ )∑
B exp(s̃Tt · st−τ )

, (2)

where B is a minibatch of speaker embeddings from other
speakers. A similar approach is applied to the content
embeddings. Here, ct+τ and ct should not contain any
mutual information and to achieve this, the CPC loss is
maximized for the content. This gives the overall loss of

L = Lrec + λsL
(S)
cpc − λcL

(C)
cpc . (3)

Acoustic features capturing speaker char-
acteristics
Our goal is to manipulate the voice characteristics of a
speaker. Some of these characteristics can be captured
by acoustic features. Consequently, if some of the acous-
tic features of a speech signal are manipulated, then the
properties of the speaker are also changed. OpenSMILE
[3] is a toolkit to extract acoustic features y for the anal-
ysis and classification of speech signals. In this work,
we are focusing on two acoustic features, the utterance-
wise mean of the pitch yp, which correlates strongly with
gender, and the utterance-wise mean of the Hammarberg
index yh, which can be used for emotion recognition [4].

Canonical Correlation Analysis
Figure 2 shows the speaker embeddings s̄ of 15 speakers
with 4 different utterances each, which are extracted from
a pretrained FVAE. The colours represent the speaker
IDs or the gender labels. The plot shows, that speaker
embeddings from different utterances, but same speaker,
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Figure 2: Speaker embeddings s̄ of 15 speakers (unseen in
training of FVAE) with 4 utterances each, visualized with t-
SNE. In the left picture the embeddings are colored by the
speaker ID and on the right by gender.

form clusters, and that the embeddings are clustered ac-
cording to gender.

It is unclear, though, whether these embeddings also form
clusters regarding a speaker-related acoustic feature. To
determine the correlation between the embedding and
the acoustic feature, we carry out a CCA. CCA is used to
find a linear projection u = âTs̄, which has the maximum
correlation with an investigated acoustic feature y, so it
follows

â = argmax
a

ρ
(
aTs̄, y

)
, (4)

where u is the canonical variable and ρ is the Pearson
correlation coefficient.

Speaker embedding manipulation
The idea of the FVAE is to disentangle a speech signal
in a content and a speaker embedding, and the decoder
reconstructs the input speech signal from these two em-
beddings. If the speaker embedding is now replaced by
that of another speaker, a speech signal with the same
content, but different speech characteristics is generated.
Which speech characteristics this speech signal has, de-
pends on the location of the embedding in the latent
speaker space. With (4), the projection vector â, i.e.,
the linear combination of components of s̄, is found in
the latent speaker space, that correlates most with the
acoustic feature y. Manipulating the speaker embedding
in the direction of the maximum correlation and using
this embedding as input for the decoder, a speech signal
with that acoustic feature being manipulated should be
generated. We define

s̄m = s̄+
â

||â||
· γ , (5)

where γ is a scaling factor for the manipulation and s̄m
is the manipulated embedding, which is used as speaker
input for the decoder.

Experiments
To train the FVAE, we employed two different data sets.
The first is LibriVoxDeEn [5], a data set containing 86
German audio books from the open source platform Lib-
riVox. It consists of ≈ 547 h of read German speech.

The goal of the FVAE is to disentangle content from
style. So the task should be language independent, and
therefore we took the LibriSpeech corpus as the second



Table 1: Disentanglement performance measured with PER on content embeddings (lower is better), EER on style embeddings
(lower is better) and WER / CER on synthesized speech signal (lower is better). All values are stated in %.

# Model Training set Test set EER(s̄) PER(C) WER(x̂) CER(x̂)

1 Clean - NSC(de) - - 9.6 3.0
2 Feature extractor - NSC(de) - - 10.1 3.3
3 FVAE [1] LibriSpeech(en) LibriSpeech(en) 2.2 16.7 - -
4 FVAE LibriVoxDeEn(de) NSC(de) 3.1 36.9 24.5 9.3
5 FVAE LibriSpeech(en) NSC(de) 2.0 34.5 22.2 8.4

6 FVAE
LibriSpeech(en)

NSC(de) 1.69 34.5 21.33 8.0
+ LibriVoxDeEn(de)

training corpus, despite containing the speech of English
audiobooks. The subsets train-clean-100 ≈ 100 h and
train-clean-360 ≈ 360 h are used for training, with 251
and 921 speakers each. Following [1], 60% of the speaker
utterances from train-clean-100 are used for training.

The validation and testing is done on the Nautilus
Speaker Characterization (NSC) corpus [6]. This is a
German data set, which consists of ≈ 8 h scripted and
≈ 15 h of semi-spontaneous dialogues, with a total of 300
speakers. We used the semi-spontaneous dialogues for
validation and the scripted dialogues for testing.

In all trainings, the utterances are segmented to a maxi-
mum length of 4 s and segments shorter than 2 s are dis-
carded. To compensate for the mismatch between the
data sets, all audio data is normalized to zero mean, a
standard deviation (std) of 0.02 and resampled with a
sampling frequency of 24 kHz. Training of the FVAE is
performed with a batch size of 32 and a learning rate of
5 · 10−4. The checkpoint that achieves the lowest recon-
struction error on the validation set is used to report the
results on the test set.

The performance of the FVAE is evaluated regarding
the disentanglement of speaker and content. Following
[1], we perform a speaker verification evaluation on the
style embedding and report the Equal Error Rate (EER),
where lower EER indicates better style embeddings. To
measure the linguistic information of the content embed-
ding, we trained a phone classifier on C, similar to [1],
but using 65 target classes. We used [7] to extract the
phonemes. To assess the intelligibility of the synthesized
speech x̂, we report the Word Error Rate (WER) and
the Character Error Rate (CER) of Automatic Speech
Recognition (ASR) experiments, which were conducted
with a pretrained German recognizer [8].

German speech disentanglement
Table 1 shows the results for different training- and test
set combinations. As a reference, row #1 reports the
result of the ASR model trained on clean data and row

Input Reconstruction
Feature ρ(u, y) ρ(u, ŷ)

Pitch 0.961 0.960
Hammarberg index 0.845 0.790

Table 2: Correlation between the canonical variable u and
the extracted acoustic feature from the input y and output ŷ

#2 when a HiFi-GAN [9] is used to synthesize the time-
domain signal from log-mel features. The latter WER
marks the top line for the other models evaluated on the
German data set.

Row #3 shows the disentanglement performance of the
FVAE evaluated on LibriSpeech and the following two
rows present the performance on the NSC data set. It
can be seen that using LibriSpeech as training set, bet-
ter performance is achieved, despite the language mis-
match. But comparing these results with those achieved
on the LibriSpeech test set, it is obvious, that the per-
formance in terms of Phone Error Rate (PER) is much
worse. Further, comparing the WERs on the NSC test
set with the top line in row #2, it can be seen, that
the model seems to generate too many artifacts, leading
to an increase in WER. The last row shows the result
of a model trained on LibriSpeech, where the training
is continued on LibriVoxDeEn, while the encoders were
frozen. The performance of the EER and the WER im-
proved slightly. Note, that the test set was normalized
with the combined training statistics of LibriSpeech and
LibriVoxDeEn, while the model or row #5 only used the
training statistics of LibriSpeech explaining the difference
in EER despite the frozen encoders.

Style embedding manipulation
The speaker vectors of the model of row #6 of Table 1
are investigated in the following. Two projection vectors,
one, âp, for the pitch and another, âh, for the Hammar-
berg index, are estimated on the German training set
according to Eq. (4). The associated acoustic features
y are determined on clean data and the speaker embed-
dings s̄m are extracted from the speaker encoder. Fig. 3
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Figure 3: Absolute values of the projection vectors



shows the absolute values of the found projection vec-
tors. The plot shows how strong each component of the
speaker embedding contributes to the correlation with
the acoustic feature. Obviously, and unfortunately, the
information about the acoustic feature is widely spread
over the components of the speaker vector.

To quantify, how much of the acoustic feature is encoded
in the speaker embedding, the correlation between the
canonical variable u = âTs̄ and the acoustic feature y
extracted from the input signal is determined on the test
set. The results are shown in the second column of Table
2. As indicated by the high correlation, there is a strong
linear dependency between the projection of the speaker
vector and the acoustic feature. To test whether this
property also holds for the synthesized voice, the corre-
lation between the canonical variables and the acoustic
features extracted from the synthesized voice are calcu-
lated. These results are shown in the third column. It
can be seen, that the correlation regarding the Hammar-
berg index is slightly reduced.

As a last experiment, the style embedding is manipulated
according to Eq. (5), in an effort to modify the acoustic
feature in the synthesized speech. The pitch of 30 male
and female speakers with 5 random utterances each were
manipulated. The same was also done with the Ham-
marberg index. Figure 4 shows the mean value of the ex-
tracted acoustic feature ŷ of the synthesized voice, plot-
ted over the manipulation factor γ, where γ = 0 denotes
the reconstruction without manipulation. It can be seen,
that the acoustic feature of the synthesized voice can be
manipulated by shifting the style embedding, whereby
the strength of manipulation is controlled by γ.

Conclusions
In this paper, we took a closer look at the speaker embed-
ding vectors obtained from a FVAE that encodes speaker
and content induced variations in different embedding
vectors. Using CCA, we determined the directions in the
latent speaker space that are strongest correlated with
the mean average pitch and the Hammarberg index. We
showed that these two acoustic features can be manip-
ulated by shifting the speaker embeddings along those
found directions. However, the acoustic properties are
not well aligned with the coordinate axes of the latent
speaker space. Thus, the modification of one acoustic fea-
ture will also affect the other, which limits the usefulness
of acoustic feature modification though manipulation of
the latent speaker vectors.
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