
Advanced Algorithm Selection

with Machine Learning:

Handling Large Algorithm Sets, Learning From

Censored Data, and Simplifying Meta Level Decisions

Alexander Tornede

Defense: June 19, 2023

Version: Published

Department of Computer Science

Warburger Straße 100

33098 Paderborn

Dissertation

In partial fulĄllment of the requirements for the academic degree of

Doctor rerum naturalium (Dr. rer. nat.)

Advanced Algorithm Selection

with Machine Learning:

Handling Large Algorithm Sets, Learning From

Censored Data, and Simplifying Meta Level Decisions

Alexander Tornede

1st Reviewer Prof. Dr. Eyke Hüllermeier
Institute of Informatics

Ludwig Maximilian University of Munich

2nd Reviewer Prof. Dr. Axel-Cyrille Ngonga Ngomo
Department of Computer Science

Paderborn University

3rd Reviewer

(external)

Prof. Dr. Marius Lindauer
Institute of ArtiĄcial Intelligence

Leibniz University Hannover

Supervisor Prof. Dr. Eyke Hüllermeier

Defense: June 19, 2023

Alexander Tornede

Algorithm Selection with Machine Learning:

Handling Large Algorithm Sets, Learning From Censored Data, and

Simplifying Meta Level Decisions

Dissertation, Defense: June 19, 2023

Reviewers: Prof. Dr. Eyke Hüllermeier, Prof. Dr. Axel-Cyrille Ngonga Ngomo

and Prof. Dr. Marius Lindauer

Supervisor: Prof. Dr. Eyke Hüllermeier

Department of Computer Science

Warburger Straûe 100

33098 Paderborn

Abstract

There exists a plethora of algorithms for most computationally hard problems, which

all have their strengths and weaknesses on different instances of said problems.

Correspondingly, practitioners are constantly faced with the question: Which al-

gorithm should be chosen for this particular problem instance to achieve strong

performance? Research on algorithm selection tries to answer this question by

developing decision policies, called algorithm selectors, prescribing an algorithm for

a given problem instance. Most of such selectors are based on data-driven learning

methods leveraging recorded evaluations of algorithms on problem instances. Al-

though many algorithm selectors have been developed over the last few decades,

selecting from large sets of algorithms, learning from censored data, and choosing

an appropriate algorithm selector itself remain important practical challenges. With

this thesis, we substantially improve the practical applicability of algorithm selection

by suggesting advances to the underlying machine learning methods to cope with

the challenges mentioned above. In particular, we demonstrate that representing

algorithms in the form of feature vectors enables one to efficiently learn an algorithm

selector capable of selecting from an extremely large set of algorithms. Moreover,

we leverage methods from the field of survival analysis and multi-armed bandits

to let algorithm selectors learn from censored data in offline and online settings.

On a more abstract level, we employ ensemble learning techniques to combine

multiple algorithm selectors into a single meta selector, reducing the burden of

selecting an appropriate algorithm selector for a practitioner and further improving

the robustness of algorithm selection. In extensive experimental evaluations on

standard algorithm selection benchmarks, we demonstrate the effectiveness of our

solutions. Our contributions do not only overcome some of the last challenges for

democratizing algorithm selection but also have the potential to lead to impactful

research on related meta algorithmic problems such as algorithm configuration and

automated machine learning.

v

Zusammenfassung

Für die meisten rechenintensiven Probleme gibt es eine Vielzahl an Algorithmen,

die alle ihre Stärken und Schwächen auf verschiedenen Instanzen der genannten

Probleme haben. Dementsprechend sehen sich Anwender ständig mit der Frage kon-

frontiert: Welcher Algorithmus sollte für dieses spezielle Problem gewählt werden,

um eine hohe Lösungsgüte zu erreichen? Die Forschung auf dem Gebiet der Algorith-

menselektion versucht, diese Frage zu beantworten, indem sie Entscheidungsstrate-

gien, so genannte Algorithmenselektoren, entwickelt, die einen Algorithmus für

eine bestimmte Probleminstanz vorschlagen. Die meisten dieser Selektoren basieren

auf datengetriebenen Lernmethoden, die auf Basis aufgezeichneter Evaluationen

von Algorithmen auf Probleminstanzen betrieben werden. Obwohl in den letzten

Jahrzehnten viele Algorithmenselektoren entwickelt wurden, bleiben die Auswahl

aus groûen Mengen von Algorithmen, das Lernen auf Basis zensierter Daten, und

die Wahl eines geeigneten Algorithmenselektors selbst, wichtige praktische Her-

ausforderungen. In dieser Arbeit verbessern wir die praktische Anwendbarkeit der

Algorithmenauswahl erheblich, indem wir Fortschritte bei den zugrunde liegenden

Methoden des maschinellen Lernens vorschlagen, um die oben genannten Heraus-

forderungen zu bewältigen. Insbesondere zeigen wir, dass die Darstellung von

Algorithmen in Form von Featurevektoren es ermöglicht, einen Algorithmenselektor

effizient zu lernen, der in der Lage ist, aus einer extrem groûen Menge von Algo-

rithmen auszuwählen. Darüber hinaus nutzen wir Methoden aus dem Bereich der

Überlebensanalyse und der mehrarmigen Banditen, um Algorithmenselektoren aus

zensierten Daten in Offline- und Online-Settings zu lernen. Auf einer abstrakteren

Ebene setzen wir Ensemble-Lerntechniken ein, um mehrere Algorithmenselektoren

zu einem einzigen Meta-Selektor zu kombinieren, wodurch die Last der Auswahl

eines geeigneten Algorithmus-Selektors für einen Anwender verringert und die

Robustheit der Algorithenselektion weiter verbessert wird. In umfangreichen experi-

mentellen Auswertungen mit Standard-Benchmarks zur Algorithmenselektion zeigen

wir die Wirksamkeit unserer Lösungen. Unsere Beiträge überwinden nicht nur einige

der letzten Herausforderungen bei der Demokratisierung von Algorithmenselektion,

sondern haben auch das Potenzial, zu bedeutenden Forschungsarbeiten über ver-

wandte meta-algorithmische Probleme wie die Algorithmenkonfiguration und das

automatisierte maschinelle Lernen zu führen.

vi

Acknowledgement

What an incredible ride the years of my Ph.D. endeavor have been! I was lucky to be

supported by and work with many awesome people along the way, and I want to

take this opportunity to thank them. While there certainly is a weak ordering among

the different paragraphs below, most of the ordering is not meant to express any

form of significance in my gratefulness. Despite great care, I will most likely have

forgotten someone important in the already quite extensive list below Ð if you are

among them, please let me thank you upfront.

First, I want to thank my Ph.D. supervisor Eyke Hüllermeier, whom I got to know

when I was still a bachelor’s student. You sparked the joy for data-driven methods

in me and supported me already during my time as a student by enabling me to

work on several projects in your group. Once close to the end of my studies, you

offered me the opportunity to do a Ph.D. in your group. The time you invested in me,

especially during my first year as a Ph.D. student when the Intelligent Systems group

at Paderborn University was still rather small, helped me to quickly get into research,

deepen my understanding of a broad spectrum of topics, and become a much better

writer. Moreover, your rigorous theoretical view on topics is an incredibly useful skill,

which shaped my view on topics as well as me as a researcher in general. I would

like to highlight that even when you decided to accept an offer from the LMU, you

continued to supervise all of us, who did not decide to move to the south of Germany

with you, and ensured that everyone had sufficient funding for a reasonable amount

of time.

Second, I want to thank my former office mate Marcel Wever for onboarding me

so well from the very first day on. Your support enabled me to kickstart my Ph.D.

Our discussions and your critical opinion on topics formed the researcher I am today.

More importantly, I will never forget the fun we had in our office when trash-talking

and making bad jokes. I am incredibly grateful for the time with you and for the

friendship we have formed.

Third, I would like to thank Kevin Tierney for sparking my joy for artificial intelli-

gence topics, in particular, optimization, and supporting me throughout my bachelor

and master studies. Your extremely motivating and funny manner made working

with you always fun, and it managed to take my head off the stress of my studies. I

vii

am not sure whether I would have done a Ph.D. in machine learning without getting

in touch with artificial intelligence first in your courses in such a great way. Thank

you for being such an awesome teacher and taking me under your wing when I was

still a bachelor’s student.

Fourth, I want to thank all former members of the Intelligent Systems group at

Paderborn University. Thank you, for flawlessly integrating me as a new team

member. I will always remember our discussions during our sometimes rather

extensive coffee and lunch breaks and, in particular, our Eldritch Horror sessions

on weekends! In particular, I would like to thank Felix Mohr, who onboarded me

together with Marcel and also guided me during my first year as a Ph.D. student

before he left for Columbia to become a professor. Moreover, I would like to thank

Elisabeth Lengeling, our secretary, who has gone above and beyond every day to

make sure that everyone of us could focus on their research. You took extremely

much off our shoulders in terms of organizational work but also kept us mentally

sane with your kind words and consistent supply of sweets. Similarly, I would like

to thank Theodor Lettmann, who always had an open door for everyone. Let it be

research technicalities, organizational matters, or personal problems Ð you always

listened and offered valuable advice. Thank you, for always being there, Theo. At

the same time, I would like to thank the "ZM2 gang" Ð the part of the Intelligent

Systems group, which relocated to the new ZM2 building after Eyke left Paderborn.

The lunch breaks, social evenings, and discussions we had made my last months in

Paderborn much more enjoyable. Moreover, I would like to thank Helena Graf, in

particular, whom I truly got to know during the last few years. I do not want to miss

the truly meaningful friendship we have formed. I am very grateful for the time and

conversations we shared and your emotional support during the last stages of this

work.

Fifth, I want to thank the CRC 901 for funding most of my time as Ph.D. student and,

in particular, Friedhelm Meyer auf der Heide for becoming my "Fachvorgesetzter"

after Eyke left. During our first conversation, you offered me a safe harbor in case

any problems would arise during my remaining time, but also left me the freedom

to finish this thesis. Moreover, I want to thank Ulf-Peter Schröder and Marion

Hucke for their support with any organizational questions regarding the CRC and

my contracts. On the same occasion, I want to thank the SICP and, in particular,

Henning Wachsmuth and Stefan Sauer for offering me an office at the ZM2, after

Eyke left for Munich. You made sure that the rest of the group could stay together,

which helped us immensely in keeping in touch with each other and helping each

viii

other with our research. I would also like to thank Sonja Saage for helping out with

any organizational issues, which came with our move to the ZM2.

Sixth, I want to thank all of my incredible and awesome co-authors for working

with me on our various meta algorithmic projects. Your perspectives and opinions

helped me shape my view on the topic and made me both a much better writer and

researcher. It’s been a blast with you! Similarly, I want to thank Stefan Werner and

Lukas Gehring, who worked for me as student assistants during my time as a Ph.D.

student and took some cumbersome work off my shoulders.

Seventh, I want to thank Karlson Pfannschmidt, again Marcel Wever, and my wife

Tanja Tornede for proofreading my thesis, and Viktor Bengs for proofreading the

more theoretical parts. Your suggestions and critique made this a much better work.

In addition, Karlson was always of great help when I had any thesis design questions.

Similarly, I want to thank Tanja and Helena for their help in designing most of

the figures presented in this thesis. I also want to thank all members of my Ph.D.

committee for agreeing to be part of it and, in particular, the reviewers for taking

the time to review this thesis. I know that your to-do lists are only ever-growing and

that your time is precious. Thus, I really appreciate that you take the time to dive

into the work, which I have spent my time with during the last years.

Eighth, and starting with a more personal matter, I want to thank my family for their

trust in me. In particular, I want to thank my mother for raising me to be a curious

person and thus offering me the opportunity to study in the first place. Furthermore,

I want to thank my aunt and my two cousins with their families for being with me

during the last few years. Your support helped me through some hard times, and

our events were a source of joy during good times. I would also like to thank the

family Tornede, which I have married into, for welcoming me so warmheartedly, in

particular, my father-in-law, who always has our back.

Last, but not least and most importantly, I want to thank my beloved gorgeous wife,

Tanja Tornede, for her constant, unbreakable support even in the darkest times. You

have always had my back and helped me get back up when I struggled. The fun

we shared always got my mind off of work, but at the same time, I cannot express

how much I love to tech talk with you about our research. As a side note, this thesis

certainly would have looked different without your help in designing figures, fixing

LATEX code, and keeping me sane during the last sprint. I am incredibly grateful for

the opportunity to share our lives with each other and light up the fire together. I

would by far not be the person I am today without you. I love you ♥.

ix

Contents

1 Introduction 1

1.1 Content, Contributions and Preceding Publications 3

1.2 Potential Impact of This Thesis . 5

1.2.1 Practicability of Algorithm Selection 5

1.2.2 Research on Related Meta Algorithmic Problems 7

1.3 Scope of This Thesis . 7

1.4 How to Read This Thesis . 8

1.5 Co-Author Contribution Statement 9

1.6 Additional Publications . 11

2 Background 13

2.1 Algorithm Selection Problem Variants 13

2.1.1 The Instance-Specific Offline Algorithm Selection Problem . . 14

2.1.2 The Online Instance-Specific Algorithm Selection Problem . . 15

2.1.3 The Offline Instance-Specific Meta Algorithm Selection Problem 17

2.1.4 Connection Between Problem Variants 20

2.2 Distinction From Related Problems 20

2.2.1 Algorithm Scheduling . 20

2.2.2 Meta Learning . 22

2.2.3 Algorithm Configuration . 22

2.2.4 Hyperparameter Optimization 23

2.2.5 Automated Machine Learning 23

2.3 Common Algorithm Selection Solutions 24

2.3.1 Desired Properties of Surrogate Loss Functions 26

2.3.2 Learning Surrogate Loss Functions 27

2.4 Algorithm Selection Loss Functions for Common Algorithmic Problem

Classes . 42

2.4.1 Algorithm Selection Loss Functions for Constraint Satisfaction

Problems . 42

2.4.2 Algorithm Selection Loss Functions for Optimization Problems 48

2.5 Instance Features . 49

2.5.1 Requirements for Instance Features 49

2.5.2 Different Kinds of Instance Features 52

xi

2.5.3 Feature Preprocessing . 56

2.6 ASlib: The Algorithm Selection Library 57

3 Extreme Algorithm Selection: Generalizing Across Algorithms 61

3.1 From Standard to Extreme Algorithm Selection 62

3.1.1 Differences to Existing Problem Settings 63

3.2 Standard Algorithm Selection Solutions in the Context of XAS 63

3.2.1 Ranking and Regression Solutions 64

3.2.2 Classification Solutions . 65

3.2.3 Collaborative Filtering Solutions 65

3.2.4 Clustering Solutions . 66

3.3 Exploiting a Dyadic Feature Representation 66

3.3.1 Regression . 67

3.3.2 Ranking . 68

3.3.3 Advantages and Disadvantages of Dyadic Approaches 70

3.4 Experimental Evaluation: A Case Study 71

3.4.1 Benchmark Scenario . 71

3.4.2 Baselines . 75

3.4.3 Performance Metrics . 77

3.4.4 Experimental Setup . 78

3.4.5 Results . 79

3.5 Related Work . 86

3.6 Conclusion and Future Work . 87

4 Offline Algorithm Selection Under Censored Feedback 89

4.1 The Problem of Censored Training Data 89

4.1.1 Existing Solutions . 90

4.2 Survival Analysis and Random Survival Forests 92

4.2.1 Basic Concepts of Survival Analysis 92

4.2.2 Random Survival Forests . 94

4.3 Survival Analysis for Algorithm Selection 95

4.3.1 Decision-Theoretic Algorithm Selection 96

4.3.2 Risk-Averse Algorithm Selection 98

4.4 Experimental Evaluation . 99

4.4.1 Experimental Setup . 100

4.4.2 Baselines . 101

4.4.3 Results . 102

4.5 Related Work . 105

4.6 Conclusion and Future Work . 106

xii

5 Online Algorithm Selection Under Censored Feedback 109

5.1 The OAS Problem From a Bandit Perspective 110

5.1.1 Reformulation of the PARK 110

5.1.2 OAS as a Bandit Problem . 111

5.2 Modeling Runtimes . 112

5.3 Stochastic Linear Bandits Approaches 113

5.3.1 Imputation-Based Upper Confidence Bounds 114

5.3.2 Randomization of Upper Confidence Bounds 115

5.3.3 Bayesian Approach: Thompson Sampling 116

5.4 Expected PAR10 Loss Minimization 118

5.4.1 LinUCB Revisited . 119

5.4.2 Thompson Sampling Revisited 121

5.5 Evaluation . 122

5.5.1 Ablation Study . 124

5.5.2 Comparison to Competitors 126

5.5.3 Sensitivity Analysis . 128

5.6 Related Work . 129

5.7 Conclusion and Future Work . 131

6 Algorithm Selection on a Meta Level 137

6.1 Considering Algorithm Selection on a Meta Level 138

6.2 Selecting Single Algorithm Selectors Through Meta Learning 139

6.2.1 Limits Imposed by Selecting a Single Algorithm Selector . . . 140

6.3 Constructing Ensembles of Algorithm Selectors 141

6.3.1 Aggregation Strategies . 143

6.3.2 Voting . 145

6.3.3 Bagging . 146

6.3.4 Boosting . 147

6.3.5 Stacking . 148

6.3.6 Comparison of the Approaches 149

6.4 Experimental Evaluation . 150

6.4.1 Experiment Setup . 151

6.4.2 Meta Learning for Selecting an Algorithm Selector 152

6.4.3 Voting Ensembles . 154

6.4.4 Bagging Ensembles . 155

6.4.5 Boosting Ensembles . 156

6.4.6 Stacking . 158

6.4.7 Overall Comparison . 159

6.4.8 Discussion of Results . 161

xiii

6.5 Related Work . 166

6.6 Conclusion and Future Work . 167

7 Conclusion and Future Work 169

7.1 Conclusion . 169

7.2 Future Directions for Algorithm Selection 170

7.2.1 Novel Settings . 171

7.2.2 Conceptual Approach Changes 172

7.2.3 Benchmarking . 174

7.3 Thesis Contribution and Impact in a Nutshell 174

A Appendix 177

A.1 Details on the Experimental Evaluation of Chapter 3 177

A.1.1 Hardware . 177

A.1.2 Software . 177

A.1.3 Hyperparameter Settings . 178

A.2 Details on the Experimental Evaluation of Chapter 4 179

A.2.1 Hardware . 180

A.2.2 Software . 180

A.2.3 Hyperparameter Settings . 180

A.3 Details on the Experimental Evaluation of Chapter 5 182

A.3.1 Hardware . 182

A.3.2 Software . 182

A.3.3 Hyperparameter Settings . 183

A.3.4 Caveat . 183

A.3.5 Detailed Performance Data 184

A.4 Theoretical Additions to Chapter 5 185

A.4.1 Deriving the Bias-Corrected Confidence Bounds 185

A.4.2 Deriving the Refined Expected Loss Representation 189

A.4.3 Pseudocode and Space-Complexity Details 191

A.5 Details on the Experimental Evaluation of Chapter 6 192

A.5.1 Hardware . 192

A.5.2 Software . 192

A.5.3 Hyperparameter Settings . 193

Full List of my Publications 197

Bibliography 201

List of Symbols 221

xiv

List of Abbreviations 223

List of Figures 225

List of Tables 231

xv

Introduction 1

The world we live in has become increasingly complex along various dimensions,

and this trend seems to be increasing in speed. Overcoming particular challenges,

such as reliable and large-scale goods logistics, sometimes incurs new challenges, for

which other solutions are sought. Often such challenges are extremely hard to solve

optimally for humans. Correspondingly, more and more such hard problems are

nowadays solved by algorithms on computers. As a computer scientist, the problem

of Boolean satisfiability (SAT) will immediately come to one’s mind, which is about

determining whether there is a satisfying interpretation of a Boolean formula. De-

spite its age, SAT has quite some practical relevance as a (sub-)problem in fields such

as model checking, planning or bioinformatics [Mar08]. More immediate, consider,

for example, the problem of stacking containers at large logistics ports in a way that

minimizes crane movements when vessels have to be loaded, known as the container

premarshalling problem (CPMP) [TM15], or the problem of routing a mailperson

delivering packages in a fuel-saving way between customers Ð a form of the vehicle

routing problem (VRP) [EVR09]. In fact, most of such combinatorial optimization

problems are NP-hard and thus even hard to solve for modern computers in general.

As a consequence, there often exists a plethora of different algorithms solving the

same problem with different strengths and weaknesses, which are often designed to

perform well on different edge cases. This is not very surprising and quite in line

with theoretical results proving that there is ªno free lunchº, i.e. that no algorithm

uniformly dominates all others on a problem under certain assumptions [WM97].

This phenomenon is sometimes denoted as performance complementarity among the

algorithms [Ker+19].

While it is generally positive that the set of applicable algorithms is often quite

extensive, given a certain algorithmic problem, this situation imposes a new problem

on the practitioner: Which of these algorithms should be chosen in what situation?

Or in other words, given a specific instance of such a problem, e.g., a certain set of

containers with departure times (CPMP) or a certain set of package and customer

locations (VRP), which algorithm generates the most suitable solution? This question

was first formalized by Rice [Ric76] coining the algorithm selection (AS) problem

1

in the last century, quantifying suitability in terms of a function mapping from the

instance space and algorithm set (via detours) to the real numbers.

Since then, AS has received considerable attention in the scientific world featuring

a plethora of publications (nicely summarized in two surveys [Ker+19; Kot16])

elaborating on the problem and/or suggesting different algorithm selection solutions,

called algorithm selectors. The field comprises several competitions [LRK19], scien-

tific events, and communities [COSEAL; AutoML-Conf; MTL; AutoML-FS]. Moreover,

AS was generalized towards other related meta algorithmic problems such as al-

gorithm configuration (AC) [Sch+22] or automated machine learning (AutoML)

[HKV19] Ð some of which have become extremely popular on their own.

The vast majority of existing approaches to AS are data-driven and based on machine

learning. In order to make good algorithm recommendations, approaches learn from

existing data featuring algorithm runs on prior problem instances. Such instances

are represented in the form of characteristics describing relevant properties, known

as instance features, in order to generalize across them [Ric76; Ker+19].

The goal of this thesis is to advance AS by drastically improving the core machine

learning elements used in modern algorithm selectors to be more suited for the

challenges arising from the data in varying AS settings. In particular, we design

algorithm selectors powered by learning algorithms leveraging solutions to the

aforementioned challenges. By doing so, we aim to provide algorithm selectors

with a better selection performance under challenging conditions than the hitherto

state of the art and to make it faster and less cumbersome for practitioners to apply

algorithm selection tailored to their needs. We strongly believe that this thesis

represents a significant step forward for the applicability of algorithm selection and

that it has the potential to impact a wide range of applications, including machine

learning and optimization as we detail in Section 1.2.

The remainder of this chapter is organized as follows: Section 1.1 gives an overview

of the contributions presented in this thesis, including corresponding preceding

publications made during my time as a Ph.D. student, and also explains the overall

thesis structure. Section 1.2 aims at detailing the potential impact of this thesis.

Section 1.3 elaborates on the scope of this thesis and, in particular, what elements

of the AS problem this thesis is focused on and which elements are only sparsely

discussed. In order to facilitate the reading process, Section 1.4 contains some tips

and tricks, which hopefully help to digest this thesis more easily. The introduction is

2 Chapter 1

closed by Section 1.5, where I give credit to the co-authors of my publications, on

which this thesis is partly based.

As common, throughout this thesis, I will use the scientific ºweº instead of ºIº except

for very few parts where it is important to avoid ambiguities in the credit assignments

to my co-authors.

1.1 Content, Contributions and Preceding Publications

The following serves as an overview of both the remainder of this thesis and the

contributions made by the remaining chapters of this thesis. Figure 1.1 tries to

visually capture, in particular, the methodological contributions described in the

following.

Algorithm Selector Selector

Run2Survive (Chapter 4)
[Tor+20a]

XAS (Chapter 3)
[TWH19,TWH20a]

OAS (Chapter 5)
[TBH22]

MetaAS (Chapter 6)
[TWH20b,Tor+22]

Instance

Training
Data

Algorithm

Feedback

Run
Solution

Extremely
Many Algorithms X

X
X

Algorithm Selector

Fig. 1.1: Highlight of the contributions of this thesis affecting various components of AS,
color-coded, such that each main chapter has its own color.

Chapter 2: This chapter contains prerequisites, which are often assumed to be

known in the AS literature. In particular, we formally define several AS

problem variants Ð some of which have been developed as part of work

put into this thesis Ð in a unified fashion, compare them to each other and

distinguish the AS problem from related ones such as AutoML. Moreover,

we present a thorough taxonomy of existing algorithm selection approaches,

formally defining them within a unified framework, and discuss the strengths

and weaknesses of the corresponding approaches. Similarly, we describe

existing loss functions for AS, once again including a discussion of strengths

1.1 Content, Contributions and Preceding Publications 3

and weaknesses. We close the background chapter by discussing desired

properties of instance features and reviewing methods for generating such

features.

Chapter 3: This chapter deals with a variant of the algorithm selection problem,

where the number of algorithms to choose from grows extremely large such

that existing algorithm selectors reach their limits. We dub this the extreme

algorithm selection (XAS) problem and discuss several implications coming

with the increase in the number of algorithms, most importantly, the limi-

tations of standard approaches to algorithm selection in such cases and the

corresponding causes. To alleviate these limitations, we suggest not only rep-

resenting instances but also algorithms by features yielding a dyadic feature

representation that allows learning a single joint model across all algorithms.

In order to show that our proposed solution does indeed alleviate the problems,

we design an XAS benchmark scenario and perform an extensive experimental

evaluation. Parts of this chapter have been published in [TWH19; TWH20a].

Chapter 4: In this chapter, we investigate the implications of the common procedure

of executing algorithms under tight time constraints, so-called cutoffs, after

which the algorithm is forcefully terminated to avoid running them extremely

long. As a consequence of this procedure, targets of datapoints arising from

such algorithm runs are only of limited use to standard learning algorithms as

they constitute a right-open interval, called right-censored datapoint, instead

of a precise numeric value. We elaborate on the consequences arising from this

observation and on the disadvantages of existing methods to cope with such

censored datapoints. Furthermore, we propose the use of survival analysis

methods together with a decision-theoretic decision rule to learn risk-averse

algorithm selectors, which inherently can learn from censored data. Our

experimental study reveals that our proposed strategy yields a new state-of-

the-art algorithm selector called Run2Survive. Parts of this chapter have been

published in [Tor+20a].

Chapter 5: In contrast to the previously discussed problem of censored data in the

offline AS setting, this chapter deals with solving the same problem in an online

manner, i.e. the online AS setting. Although this transition might seem easy at

first glance, the online setting requires completely different approaches since,

for most of the standard survival analysis approaches, it is not easily possible to

update them incrementally. Instead, we revisit well-known contextual bandit

approaches and discuss their suitability for dealing with the online algorithm

4 Chapter 1

selection (OAS) problem and adapt them in a theoretically grounded way

towards runtime-oriented losses under the assumption of partially censored

data with a time- and space-complexity independent of the time horizon.

To empirically validate our proposed approaches, we perform an extensive

experimental evaluation and show that we can improve upon existing OAS

approaches in terms of performance while featuring a better time- and space-

complexity. Parts of this chapter have been published in [TBH22].

Chapter 6: Taking a step back, we consider the AS problem from a meta level moti-

vated by the idea that the performance complementarity among algorithms can

also be observed among the algorithm selectors. Correspondingly, we tackle

the problem of selecting between algorithm selectors for a given instance. To

this end, we present several solutions, including meta learning an algorithm

selector and ensembling multiple selectors. In an extensive experimental eval-

uation, we show that the meta algorithm selection (MetaAS) problem can be

solved efficiently and that solutions can provide remarkable improvements in

performance, often significantly better than the hitherto state of the art. Parts

of this chapter have been published in [TWH20b; Tor+22].

Chapter 7: We close this thesis by discussing its content in a larger context and

elaborate on possible paths for future work in a broader context, connecting

several of the topics discussed throughout this thesis.

1.2 Potential Impact of This Thesis

The contributions made within this thesis have the potential for a large impact

along two dimensions: practicability of AS and research on related meta algorithmic

problems.

1.2.1 Practicability of Algorithm Selection

Since no algorithm dominates all others on all instances of a problem, for many

problems, there exists a plethora of algorithms that are tailored to perform well in

very specific cases, such as instances with certain properties. Unfortunately, most

algorithm selectors can only effectively choose from a handful to tens of algorithms

1.2 Potential Impact of This Thesis 5

due to the design of their underlying machine learning model. As a consequence,

a practitioner has to pre-select some algorithms, which the algorithm selector can

then choose from. Naturally, such a pre-selection is not only a tedious task but

also bears the danger of making detrimental mistakes as the practitioner has to

anticipate which algorithms might be more useful than others. Our work on XAS

removes this burden from the practitioner as we develop algorithm selectors capable

of choosing from an extremely large set of algorithms such that no pre-selection has

to be performed. Correspondingly, the practitioner can focus on other important

design decisions, such as designing good instance features (cf. Section 2.5), enabling

a faster and less error-prone algorithm selection application.

Similarly, most existing algorithm selectors can only deal with censored data to a

certain degree such that, ideally, training data for algorithm selectors should not

contain any censoring. Consequently, a practitioner wanting to apply AS has to

ensure high training data density in the sense that, in the best case, each algorithm

has been evaluated on many training instances. This is not only very time-consuming

and often practically unachievable due to extremely long algorithm runtimes but,

in the spirit of green meta algorithmic topics [Tor+21a], is also harmful to the

environment due to unnecessary evaluations and produced CO2. Our contributions

in Chapter 4 and Chapter 5 allow for a faster algorithm selection system setup as we

enable effective training of algorithm selectors based on censored data both in an

offline and online scenario.

Lastly, whenever a practitioner aims at using AS, they are faced with the question of

which algorithm selector to employ for their system. Although this question does not

have to be answered for each instance necessarily, it has to be answered at least once

when setting up the overall AS workflow for their use case. Once again, this decision

is complex as algorithm selectors are complementary, which make them more suited

for some settings than for others. Our work on meta algorithm selection presented in

Chapter 6 reduces this burden of the practitioner by demonstrating that ensembling

algorithm selectors yields state-of-the-art algorithm selection performance. As such,

they do no longer have to choose an algorithm selector, but can leverage our meta

algorithm selector, which ensembles the state of the art in algorithm selection.

Overall, the contributions of this thesis drastically improve the AS workflow from a

practitioner’s point of view. We enable true end-to-end algorithm selection, removing

possibilities for errors, improving the setup time of algorithm selection systems, and

thus substantially improve the robustness of AS.

6 Chapter 1

1.2.2 Research on Related Meta Algorithmic Problems

Some of the contributions of this thesis have the potential to improve the practicabil-

ity of solutions to other related meta algorithmic problems in a similar manner. In

particular, properly dealing with censored data through dedicated methods instead

of rather naive solutions and selecting among or ensembling meta algorithmic ap-

proaches can be, and in parts have already been, generalized to other problems, such

as algorithm configuration or automated machine learning. Moreover, combinations

of the contributions made within this thesis open up new interesting AS problem

variants as we detail in Section 7.2.

1.3 Scope of This Thesis

As AS is a very large field, even long scientific manuscripts such as a thesis like

this have to focus on certain parts and rather neglect others. This thesis is mostly

centered around machine learning based meta algorithmic approaches to algorithm

selection. In particular, we focus on the machine learning techniques at the core of

most algorithm selectors and try to elaborate on weaknesses of existing solutions.

To alleviate these, we propose mitigation techniques in different settings of the AS

problem. We largely ignore the problem of instance feature design/generation in

the technical chapters of this thesis and, instead, give an overview as part of the

background (Section 2.5.2) and simply assume instance features to be available.

Furthermore, we largely neglect other components which can often be found in

algorithm selectors, such as feature selection. Instead, we focus on the design

and evaluation of the aforementioned machine learning model at the core of an

algorithm selector. Correspondingly, we use very simple feature preprocessing

across all compared selectors in the different evaluation sections (they may vary

by evaluation section, though), use the standard configuration of most selectors,

and do not perform any presolving. We are aware that these are rather restrictive

assumptions, but they allow us to focus on the core component and rule out many

possible confounding factors when evaluating our proposed approaches.

1.3 Scope of This Thesis 7

1.4 How to Read This Thesis

To alleviate some of the hassles that often come with reading documents as long as

this thesis, we suggest certain reading strategies based on the reader’s knowledge in

AS followed by some general tips.

Beginner: As a beginner, we recommend reading the complete background chapter

before advancing to the technical chapters to get familiar with the problem

and some assumptions, which are rather hidden in the AS literature.

Advanced: As an advanced researcher in AS, the reader can most likely skip large

parts of the background chapter. However, we recommend skimming the

problem definitions (Section 2.1.1, Section 2.1.2 and Section 2.1.3) to get

accustomed with the notation. For the same reason, we recommend skimming

our taxonomy of algorithm selection solutions (Section 2.3).

The technical chapters, i.e. Chapters 3±6 can in principle be read independently

of each other and in a rather arbitrary order. However, we recommend reading

Chapter 4 before Chapter 5 to support a better understanding. Nevertheless, when

reading the chapters in a different order, some back pointers might not be easily

understandable.

A list of used abbreviations can be found in Chapter A.5.3. Furthermore, all abbre-

viations are hyperlinks such that clicking on the abbreviations brings the reader to

their meaning. Similarly, all notation frequently used in formulas can be found in

Table A.5.3 for reference. Symbols, which are only used once or twice within the

paragraph where they are defined, are left out to avoid cluttering the list. Similarly,

the list only contains atomic symbols, i.e. composite symbols constructed from those

atomic ones are not listed.

The appendix contains details on the experimental evaluations presented in the

corresponding chapters featuring reproducibility information. It also contains the

proofs for the theoretical results presented in Chapter 5.

8 Chapter 1

1.5 Co-Author Contribution Statement

As noted at the start of the corresponding chapters, some partial content of chapters

of this thesis has been published at workshops, conferences, and journals during

my time as a Ph.D. student. I was fortunate enough to collaborate with fantastic

colleagues on all of my papers and thus would like to note my particular contribution

to each of these publications in the context of all authors’ contributions in the

following. The papers are grouped by the respective chapters, which are based on

them.

Chapter 3

[TWH19] Eyke Hüllermeier motivated this work and I took the lead in writing. An

original version of the manuscript was written by myself and Eyke Hüllermeier

and later jointly improved by all authors. The actual evaluation was imple-

mented by me, although the underlying dyad ranking model was implemented

by students as part of a group project.

[TWH20a] I both motivated this work and took the lead in writing. An original

version of the manuscript was written by myself and later jointly improved

by all authors. The actual evaluation was implemented by me, although the

underlying dyad ranking model was implemented by students as part of a

group project and the Alors approach by a student assistant. Furthermore,

Marcel Wever wrote code for the generation of the result tables and the

statistical tests.

Chapter 4

[Tor+20a] The idea of employing Survival Analysis for AS was motivated by Eyke

Hüllermeier, who also contributed the idea of the expected PAR10 minimization

within the survival analysis framework. After he pitched the idea to me, I took

the lead. An original version of the manuscript was written by Stefan Werner

and me, who wrote parts of the section on the experimental evaluation, and

1.5 Co-Author Contribution Statement 9

later jointly improved by all authors. The evaluation was jointly implemented

by Stefan Werner and me, who worked as a student assistant for me.

Chapter 5

[TBH22] Eyke Hüllermeier and me jointly motivated this work, which was then lead

by me. An original version of the manuscript was written by Viktor Bengs and

me, who initially derived and described most of the theoretical results shown

in the paper, which were later jointly refined by the two of us. In particular,

the theoretical details given in Section A.4 were derived and described by

Viktor Bengs and jointly refined. I further refined the description of these

derivations for the appendix of this thesis. The idea to incorporate imputation

through the Buckley-James estimator into the revisited Thompson sampling

was proposed by me and later formally integrated into the manuscript by

Viktor Bengs. The runtime modeling was proposed by me and jointly refined.

The complete document was refined jointly by all authors. The evaluation was

solely implemented by me.

Chapter 6

[TWH20b] This work was motivated by me, and I also took the lead in writing.

An original version of the manuscript was written by myself and later jointly

improved by all authors. The actual evaluation was implemented by me.

Marvel Wever wrote code for the generation of the result tables.

[Tor+22] This work was motivated by me, and I also took the lead in writing. An

original version of the manuscript was written by myself and later jointly

improved by all authors. In particular, Eyke Hüllermeier made a substantial

amount of suggestions for improvements. Most figures were designed by Tanja

Tornede. The implementation of the evaluation was performed jointly by Lukas

Gehring and me, who worked for me as a student assistant.

10 Chapter 1

1.6 Additional Publications

Except for the papers mentioned above, I published several other papers, which are

at least loosely related to AS or related concepts, but which did not result in one

of the main chapters of this thesis. Together with several co-authors, I published a

total of 21 papers during my time as a Ph.D. student. A complete list can be found

before the final bibliography at the end of this thesis in Chapter A.5.3.

1.6 Additional Publications 11

Background 2
As the thesis title suggests, the central topic of this thesis is algorithm selection; in

particular, we present our work on problem extensions and novel methods. Before

elaborating on each of our contributions in more detail in the following chapters,

we introduce some background. To this end, we will first formally introduce three

different versions of the algorithm selection (AS) problem, which we tackled as

part of this thesis: The offline AS problem (Section 2.1.1), the online AS problem

(Section 2.1.2) and the meta AS problem (Section 2.1.3). Right after the definition,

we put them into context of each other (Section 2.1.4). Secondly, we distinguish the

core AS problem from related problems in Section 2.2, followed by a taxonomy of

common AS solutions (Section 2.3) where we elaborate on the working principles of

most AS solutions. Furthermore, in Section 2.4, we elaborate on loss functions in the

context of AS before explaining the concept of instance features in Section 2.5. Since

most evaluations found in this thesis are based on the standard AS benchmark called

algorithm selection library (ASlib) [Bis+16], we close this chapter with Section 2.6

by giving a short introduction to the benchmark itself.

2.1 Algorithm Selection Problem Variants

Roughly speaking, the algorithm selection problem formalizes the task of selecting

an algorithm from a set of candidate algorithms, also called portfolio, most suitable

for solving a given task. Here, suitability is often quantified in terms of a specific

measure rating how good (or bad) a certain algorithm performs on a given task.

Such tasks are often present in the form of an instance of some algorithmic problem,

such as a formula of a Boolean satisfiability problem.

In the following, we will introduce and formalize three variants of the problem,

which will be tackled within this thesis. The first variant (Section 2.1.1) is known

as the de-facto standard version, which as originally introduced by Rice [Ric76].

Here, one is tasked with creating a decision rule to select an algorithm for a given

instance, often called algorithm selector, in an offline phase before actual instances

13

have to be solved. After this phase, the approach cannot be changed. The second

variant (Section 2.1.2) relaxes exactly the previously mentioned assumptions of a

prior offline phase and the immutability of the approach. Instead, one is tasked

with designing an algorithm selector, which can adapt itself after each instance

depending on how the selected algorithm performs. The last variant (Section 2.1.3)

is concerned with selecting among algorithm selectors themselves instead of the

algorithms and thus works on the meta level.

2.1.1 The Instance-SpeciĄc Offline Algorithm Selection Problem

When the literature speaks about the (standard) algorithm selection problem, it

mostly refers to the instance-specific offline algorithm selection problem, which is

the most basic form of the AS problem and was first introduced by Rice [Ric76].

As mentioned at the beginning of this work, it is motivated by the phenomenon of

performance complementarity [Ker+19] according to which different algorithms

perform differently well on different tasks or instances and hence, choosing among

the algorithms for a given instance can yield better solutions. We present solutions

to this problem variant with the focus on different assumptions in Chapter 3 and

Chapter 4.

2.1.1.1 Formal Problem DeĄnition

More formally, the instance-specific offline AS problem is composed of an instance

space I of some algorithmic problem1, a set of algorithms A which can solve instances

from the instance space, and a costly-to-evaluate loss function

l : I ˆ A ÝÑ R (2.1)

indicating how well the given algorithm performs on the given instance. For sim-

plicity, we assume that l maps to R, although it could in principle also map to other

spaces, e.g. a multi-dimensional vector space for multi-criteria AS settings [BT18].

1Examples include the boolean satisfiability (SAT) problem, traveling salesperson (TSP) problem,
constraint satisfaction problem (CSP) or even just a machine learning problem such as classification.

14 Chapter 2

The goal underlying the AS problem then is to find a selector

s : I ÝÑ A , (2.2)

which, given an instance i P I, preferably selects the optimal algorithm from the set

of A, also called portfolio, according to a loss function l. Hence, we seek to find

the optimal instance-specific algorithm selector s˚, also called oracle or virtual best

solver (VBS), defined as

s˚piq P arg min
aPA

E rlpi, aqs (2.3)

for all problem instances i P I. The expectation operator in Equation 2.3 accounts

for any potential randomness in the application of the algorithm making lpi, aq
a random variable. Corresponding randomness can be caused, for example, by

an element of the algorithm itself, which might leverage randomization such as a

random initialization or randomized heuristic.

To construct such an algorithm selector, we are provided training instances ID Ă I

and corresponding evaluations of lp¨, ¨q for some, but often not all of the candidate

algorithms A. Furthermore, in order to generalize across the instance space, we

assume that there exists a d-dimensional feature representation for each instance,

which can be computed using an instance feature map/function f : I ÝÑ R
d. For

the remainder of this work, we will denote an instance by i and its corresponding

feature representation by f i.

For the SAT problem, examples of such features include the number of clauses or the

number of variables. In general, to perform reasonable instance-specific algorithm

selections, such features should be correlated with the performance of the algorithms

on the corresponding instance. In practice, designing such features is cumbersome

and a research problem on its own, as our discussion including an overview of

relevant literature in Section 2.5 shows.

2.1.2 The Online Instance-SpeciĄc Algorithm Selection Problem

The online instance-specific algorithm selection (online algorithm selection (OAS))

problem2 generalizes the AS problem (Section 2.1.1) to the online case in the sense

2We would like to note that while this is our understanding and formalization of the problem, the
term online algorithm selection is ambiguously understood in the community as we detail in
Section 5.6

2.1 Algorithm Selection Problem Variants 15

that (1) no training instances ID are available and (2) the selector can be updated

after each prediction / selection. Hence, the selector s has to be constructed and

updated in an online fashion. For this purpose, it receives feedback after each

selection. We present solutions to this problem variant in Chapter 5.

2.1.2.1 Formal Problem DeĄnition

More formally, the OAS problem is an iterative decision making problem, which, just

like the AS problem, consists of a problem instance space I and a set of candidate

algorithms A, which can solve such instances. As depicted in Figure 2.1, the problem

is conducted over several rounds, i.e. timesteps, such that at each timestep an

instance it P I arrives and an algorithm at P A has to be selected to solve the

instance. This selection is performed by an online algorithm selector

sonline : H ˆ I ÝÑ A , (2.4)

such that at “ sonlinepht, itq where ht “ tpik, ak, lkqut´1
k“1 P H denotes the history

of the selection process up to (but excluding) timestep t. Such history triplets

pik, ak, lkq consist of the instance ik, the selected algorithm ak and some feedback

concerning the performance of the algorithm on the instance in terms of an evalua-

tion lk “ lpik, akq, where the loss function l is defined as in the offline AS problem

(Equation 2.1).

Depending on how long this process continues, we differentiate between the infinite

horizon case, in which no final timestep exists, and the finite horizon case, in which

the process ends at some final but unknown timestep T . For simplicity, we exclusively

focus on the finite horizon case, where we define the goal as constructing an online

algorithm selector sonline, which minimizes the average loss achieved over the course

of time

Lonlinepsonlineq “ 1

T

Tÿ

t“1

lpit, sonlinepht, itqq . (2.5)

The optimal online selector, i.e. online oracle or online VBS, can be defined similarly

as in the offline AS problem as

s˚
onlinepht, itq “ arg min

aPA

E rlpit, aqs (2.6)

16 Chapter 2

History

Instance
...

...
Algorithm

Run
Solution

Algorithms

Algorithm Selector

Feedback

Ti
m
e

Fig. 2.1: The OAS problem is conducted over several timesteps such that at each timestep
an instance it P I arrives and an algorithm at P A has to be selected by the online
algorithm selector sonline. Based on this selection, the selector receives feedback
in the form of a loss function evaluation lpit, atq, which is added to the history ht.
The elements making this setting differ from the standard offline AS problem are
depicted in blue.

for all timesteps t. Once again, the expectation accounts for any potential random-

ness included in the algorithm a making lpit, aq a random variable.

2.1.3 The Offline Instance-SpeciĄc Meta Algorithm Selection

Problem

As mentioned in Chapter 1, the AS problem (and its variants) is motivated by the

phenomenon of performance complementarity across problem instances, roughly

meaning that the best algorithm varies across different instances. Since the AS

problem was introduced, several algorithm selectors have been proposed such that

the amount of available selectors is large (cf. Section 2.3). As an algorithm selector

is an algorithm as well (although with a different task, namely, taking a problem

instance as input and returning a presumably well-performing algorithm as output),

one may wonder whether selecting among the algorithm selectors themselves can

be beneficial. In fact, a certain complementarity across algorithm selectors can

indeed be observed (see [Tor+20a]), motivating the meta algorithm selection (meta

algorithm selection (MetaAS)) problem, which was first mentioned by Lindauer et al.

[LRK19] and Kerschke et al. [Ker+19]. Roughly speaking, the MetaAS problem is

concerned with the question: Given a problem instance, a set of algorithms, and a

2.1 Algorithm Selection Problem Variants 17

set of algorithm selectors, which algorithm selector(s) should be used to select the

final algorithm for solving the instance?

Of course, such a question could be answered with a selector on the meta level,

i.e. an algorithm selector selector, which selects an algorithm selector, which in turn

selects the algorithm actually solving the problem instance. However, selecting only

a single algorithm selector is unnecessarily restrictive, as one can also select multiple

algorithm selectors and aggregate their algorithm choices into a final one in order

to (hopefully) make a better final selection. Naturally, this line of thought leads

to ensemble learning [Die00], a class of machine learning methods dealing with

combining several predictors into a joint, stronger one.

In Chapter 6, we will elaborate on several ways of tackling the MetaAS problem and

also demonstrate that the ensemble idea is much more promising than selecting a

single selector.

2.1.3.1 Formal Problem DeĄnition

Formally, in addition to all components of the offline AS problem (Section 2.1.1), the

MetaAS problem is composed of a set of algorithm selectors S Ď ts | s : I ÝÑ Au.

The goal underlying the problem is to find a mapping

ass : I ÝÑ 2S , (2.7)

called algorithm selector selector, and an aggregation function

agg : I ˆ 2S ÝÑ A , (2.8)

such that the algorithm output by aggregation function agg optimizes the loss

function l. In other words, we aim at finding the best tuple pagg, assq of aggregation

function agg and algorithm selector selector ass, such that ideally for all instances

i P I the best algorithm is returned, i.e.

aggpi, asspiqq P arg min
aPA

E rlpi, aqs . (2.9)

To deepen the understanding of the reader, Figure 2.2 demonstrates the relation

between algorithms, algorithm selectors and algorithm selector selectors.

18 Chapter 2

AlgorithmsAlgorithm SelectorsAlgorithm Selector
Selectors

Fig. 2.2: Illustration of the notions algorithms (A), algorithm selectors (S) and algorithm
selector selectors. Algorithms solve instances of an algorithmic problem, whereas
algorithm selectors select a single algorithm from A given an instance. Finally,
algorithm selector selectors select one or multiple algorithm selectors, which in
turn each select an algorithm. To arrive at a single algorithm to be returned at the
end, an aggregation function (not displayed here) aggregates the choices of the
different algorithm selectors.

We would like to point out the following aspects related to the definition above:

1. Although the MetaAS problem could, in principle, also be generalized to the

online case, i.e. a combination of the MetaAS and the OAS problem, we define

it based on the standard (offline) AS problem as all work on the MetaAS

problem presented in this thesis is limited to the offline case.

2. In the definition of the aggregation (Equation 2.9), we allow it to depend on

the instance, thereby formally opening up the possibility for learning instance-

specific aggregation functions.

3. Although it might seem counter-intuitive at first sight, we let the aggregation

function depend on the powerset of selectors S instead of the algorithms, as

this simplifies the notation in later chapters. For example, defining a weighted

aggregation, where each selector receives a certain weight, is easier with the

notation above. Nevertheless, the aggregation aggregates the outputs of the

different selectors and not the selectors themselves.

2.1 Algorithm Selection Problem Variants 19

2.1.4 Connection Between Problem Variants

We close the presentation of the problem variants by a short summary of the

connections between the standard instance-specific AS problem, the OAS problem,

and the MetaAS problem in terms of the most distinctive characteristics. Recall

that the definition of the corresponding problem always features a distinction from

the other problem variants. While the AS problem can be seen as the core and

standard problem, OAS is a generalization to the online case in the sense that no

upfront training data is available, and correspondingly, the underlying surrogate

loss function has to be learned in an iterative fashion online. In contrast to that,

MetaAS shifts the problem to the meta level (as the name suggests), no longer

directly choosing between algorithms, but rather among selectors, which in turn

select an algorithm.

2.2 Distinction From Related Problems

Before discussing how different classes of AS solutions work, let us shortly distinguish

the AS problem in its basic form, i.e. the one defined in Section 2.1.1, from other

related problems in the domain of automated algorithm design.

Table 2.1 shows a visual representation of some of the differences discussed in the

following, in particular focusing on the differences in terms of the prediction target

and the algorithmic problem domain.

2.2.1 Algorithm Scheduling

Algorithm scheduling [Hoo+15; Kad+; PT09] can be seen as a generalization of

algorithm selection, where, instead of suggesting a single algorithm for an instance,

a schedule of algorithms, i.e. a sequence of algorithms mostly in combination with a

runtime for each, is suggested. While making this a more complicated problem, it is

desirable from the point of view of a practitioner, who in the end wants an instance

solved and thus might favor fallback solutions in case a single suggested algorithm

cannot solve the instance. It also allows for more flexibility to leverage algorithms

that either terminate very quickly or tend to take rather long to solve an instance.

20 Chapter 2

Tab. 2.1: Visual representation of some of the differences between automated algorithm
design problems in terms of the prediction target and the algorithmic problem
domain.

Autom. alg. design problem Prediction target Alg. problem domain

A
lg

or
it

h
m

Sc
h

ed
u

le

C
on

fi
gu

ra
ti

on

Pi
pe

lin
e

Va
ri

ou
s

A
n

y

M
ac

h
in

e
le

ar
n

in
g

AS ✓ ✓

Algorithm scheduling ✓ ✓

AC ✓ ✓

Meta learning ✓ ✓

HPO ✓ ✓

AutoML ✓ ✓

CASH ✓ ✓ ✓

Consider an example, visualized in Figure 2.3, with two algorithms a1, a2, which

always return a valid solution upon termination. Let us assume that a1 terminates

with a probability of 25% at 0.3 seconds, and else it terminates at 20 seconds (with

probability 75%). In contrast, a2 terminates at 2 seconds with a probability of 100%.

When choosing an algorithm in the standard AS setting according to its expected

runtime, a2 would be the clear choice as its expected runtime is 2 seconds compared

to roughly 15 seconds of a1. However, in algorithm scheduling, the optimal schedule

would be to run a1 for 0.3 seconds and then switch to a2 for another 2 seconds as

the expected runtime of that schedule would be 0.25 ¨ 0.3 ` 0.75 ¨ 2.3 “ 1.8 seconds

and thus 0.2 seconds faster than just selecting a2.

Due to its form, algorithm scheduling solutions often internally compute rankings

across the algorithms and then create a schedule such that higher-ranked algorithms

come first in the schedule. Algorithm scheduling is often subsumed under the notion

of algorithm selection in the literature. However, due to their different prediction

targets, we believe a distinction is sensible.

2.2 Distinction From Related Problems 21

0.3
 15.075

20
2
2
2

0.3
1.8

2.3
Schedule

Runtime in seconds

Best
Average

Worst

Fig. 2.3: Visualization of an example with two algorithms a1, a2, which always return a
valid solution upon termination. Algorithm a1 terminates with a probability of
25% at 0.3 seconds and else it terminates at 20 seconds (with probability 75%). In
contrast, a2 terminates at 2 seconds with a probability of 100%. When choosing an
algorithm in the standard AS setting according to its expected runtime, a2 would
be the clear choice as its expected runtime is 2 seconds compared to roughly 15

seconds of a1. However, in algorithm scheduling, the optimal schedule would
be to run a1 for 0.3 seconds and then switch to a2 for another 2 seconds as the
expected runtime of that schedule would be 0.25 ¨ 0.3 ` 0.75 ¨ 2.3 “ 1.8 seconds
and thus 0.2 seconds faster than just selecting a2.

2.2.2 Meta Learning

Meta learning [Van18] is about learning to learn, i.e. learning about the behavior of

learning algorithms, often in order to improve them in one way or the other. As such,

meta learning is a large field spanning a plethora of topics such as few-shot learning

[Wan+20], transfer learning [WKW16], machine learning pipeline composition,

and also model selection. AS and meta learning can overlap, if (1) the algorithmic

problem is a machine learning problem, (2) the instance space consists of machine

learning datasets, and (3) the set of algorithms A consists of learning algorithms. In

such a case, the AS problem is a meta learning problem in the classic sense. However,

although the two fields intersect, they also differ from each other as meta learning

is much broader in terms of the suggestion targets, whereas AS can also consider

other algorithmic problems than machine learning ones.

2.2.3 Algorithm ConĄguration

Most algorithms expose a set of parameters (also called hyperparameters, if the al-

gorithmic problem is machine learning), which can be adapted to further control the

algorithm and fine-tune its behavior. Algorithm configuration (AC) [Sch+22] deals

with automatically suggesting suitable parameter configurations for an algorithm for

a single (instance-specific AC) or a set of instances (standard AC). Instance-specific

22 Chapter 2

AC can be thought of as a strict generalization of the (instance-specific) AS problem

in the sense that the set of algorithms A is no longer discrete, but potentially infinite

and consists of all possible configurations of a single algorithm. Standard AC, in

contrast, simplifies this idea by not trying to find a configuration for a particular

instance, but rather a configuration, which works well on a (homogeneous) set of

instances and, thus, does not need to be adapted. Correspondingly, both instance-

specific AS and AC make the assumption that instances from the instance space I

are heterogeneous and, thus, require different algorithms or configurations, whereas

standard AC assumes the instances to be rather homogeneous such that a single

configuration suffices for all instances.

2.2.4 Hyperparameter Optimization

Hyperparameter optimization (HPO) [Bis+23] can be viewed as a special case of

algorithm configuration where the algorithm to configure is a machine learning

algorithm. Instead of parameters, one uses the term hyperparameter here in order to

distinguish a configurable algorithm parameter from a model parameter, sometimes

also called weight. Often, HPO is instance-specific in the sense that a hyperparameter

configuration of a machine learning algorithm for a particular problem, i.e. machine

learning dataset, should be found.3

2.2.5 Automated Machine Learning

The notion of automated machine learning (AutoML) [HKV19] subsumes many as-

pects related to the vision of automating steps and tasks related to the application of

machine learning for a specific task at hand. Arguably, the most studied subproblem

of AutoML is the combined algorithm selection and hyperparameter optimization

(CASH) problem [Tho+13], where the goal is to compose and configure a concrete

machine learning pipeline for a given machine learning dataset with the goal to

achieve the best predictive performance possible. Thus, CASH, as the name suggests,

is a combination of the HPO and a very specific version of the AS problem for

machine learning algorithms. However, research on AutoML covers many more

topics such as automated data cleaning and wrangling [VR17; Mah+19], automated

3We note that a clear distinction between AC and HPO is not easy and is a frequently discussed topic
in the community.

2.2 Distinction From Related Problems 23

feature engineering [Khu+16] and even automated explanation of models and

CASH approaches themselves [Zöl+22; Sas+22; Moo+22]. Although the CASH

problem was originally mostly studied on single-label classification tasks, many more

tasks can now be solved with CASH tools, for example, multi-label classification

[Wev+19; Wev+21] or predictive maintenance [Tor+20b; Tor+21b]. Perhaps, the

most prominent subfield of AutoML is neural architecture search (NAS) [EMH19],

which deals with finding suitable architectures for neural networks. Depending

on the concrete sub-community, the notion of AutoML sometimes also refers to

CASH while topics such as automated data cleaning are subsumed by the term of

automated data science [Bra+22; Bie+22].

2.3 Common Algorithm Selection Solutions

Since the topic of AS is around for quite some time, naturally, a lot of different

approaches to AS have been suggested in the literature. In the following, we

elaborate on how all of these approaches are similar in a specific sense and present

a framework, which allows one to formalize the majority of existing approaches in

a rather simple notation. Note that for the remainder of this section, we focus on

the standard offline AS problem (Section 2.1.1) and present existing solutions to

that problem. The concepts required to tackle the OAS problem are in principle the

same, although the approaches have to deal with different challenges, as we discuss

in Chapter 5. Solutions to the MetaAS problem are left out here on purpose as we

propose, to the best of our knowledge, the first existing solutions to that problem in

Chapter 6.

A good starting point in order to understand how AS approaches work, is the oracle,

i.e. the perfect algorithm selector, definition

s˚piq P arg min
aPA

E rlpi, aqs

originally introduced in Equation 2.3 as it inherently hints at a way of solving the

problem despite being a purely theoretical concept. Naturally, we could obtain an

empirically very good4 approximation of the oracle by exhaustively enumerating the

set of algorithms and trying each algorithm on a given instance N times in order

4Note that it is not necessarily optimal due to a noisy loss function.

24 Chapter 2

to select the one, which performs best on average over the different runs on the

corresponding instance, i.e.

spiq P arg min
aPA

1

N

Nÿ

n“1

lpi, aq . (2.10)

Unfortunately, this is no real solution in practice since (1), as noted earlier, the

loss function l is assumed to be costly to evaluate, and (2), even more importantly,

enumerating all algorithms defeats the purpose of the algorithm selection altogether

Ð let alone executing the same algorithm multiple times. In the end, we are

interested in the solution for the instance produced by the best algorithm, which we

would already obtain during the process of choosing the algorithm. Correspondingly,

by the time we have solved the AS problem in the form of the corresponding instance,

the instance itself would already be solved by the best algorithm available to us.

However, this instance solution comes at extremely large costs as all algorithms have

to be run multiple times in the strategy above. In the case of constraint satisfaction

problems, such as SAT, where the most commonly considered loss function is the

time until solution, the strategy above would always yield a worse result than

choosing any algorithm at random.

Note that the problems of the naive solution approach above arise from the fact that

l is costly to evaluate, or in other words that, in order to evaluate l for a particular

algorithm a, the algorithm has to be run. If the loss function l was very cheap

to evaluate, we could simply enumerate all algorithms as the overhead would be

negligible. Consequently, the solution above can be made viable by replacing l with a

surrogate pl : I ˆ A ÝÑ R featuring the same signature, but being cheap to evaluate.

Assuming that pl is a deterministic function, we can even dispense with the multiple

evaluations shown in Equation 2.10 yielding a canonical algorithm selection strategy

defined as

spiq P arg min
aPA

plpi, aq . (2.11)

Naturally, this selector definition via a surrogate raises two important questions:

1. What should pl look like, i.e. which properties should it fulfill?

2. How to obtain pl?

In the following, we answer these questions in a systematic manner.

2.3 Common Algorithm Selection Solutions 25

2.3.1 Desired Properties of Surrogate Loss Functions

Before we delve deeper into the large variety of existing methods on learning surro-

gate functions, i.e. answer Question 2, we will first introduce desirable properties

such surrogate functions should have, i.e. answer Question 1.

First, as already mentioned, a good surrogate loss function in our context should

be cheap to evaluate, where the exact definition of cheap varies depending on the

algorithmic problem tackled and the associated true loss function l. Consider, once

again, the problem of SAT, where one often tries to find the algorithm solving a

given instance the fastest. In such a case, pl should be fast to evaluate in terms of

time.

Second, ideally, a surrogate loss function should be order-preserving such that if

the original loss function imposes a certain ordering on the algorithms for a given

instance, the surrogate loss function should impose the same ordering. Formally,

we want that for all instances i P I and any two algorithms a1, a2 P A that it holds

that

lpi, a1q ď lpi, a2q ñ plpi, a1q ď plpi, a2q . (2.12)

In principle, this property can even be weakened such that it does not have to hold

for any two algorithms, but rather for the best algorithm

a˚
i P arg min

aPA

lpi, aq

and any algorithms a P A:

lpi, a˚
i q ď lpi, aq ñ plpi, a˚

i q ď plpi, aq . (2.13)

In other words, the weakened property requires that for each instance the best

algorithm according to the original loss function l is also the best algorithm according

to the surrogate loss function pl. The stronger version of this property is of interest, if

the algorithm selector is not only asked to predict a single algorithm, but potentially

a ranking across the algorithms (see, for example, Chapter 3). Many algorithm

selectors do this internally anyway due to the surrogate loss function being used.

The interested reader might have noticed that the canonical AS strategy (Equa-

tion 2.11) equipped with a surrogate function fulfilling Properties 1 and 2 (weak

or strong version) directly yields the oracle selector s˚. Unfortunately, Property 2

26 Chapter 2

is often violated at least for some part of the instance space I in practice for all

surrogate functions such that the canonical algorithm selection strategy only approx-

imates the oracle. Naturally, this violation arises as the surrogate loss function in

practice only approximates the actual loss functions due to a variety of practical

problems such as noise in the training data, lack of training data, or insufficiently

informative instance features. Similarly, choosing an inappropriate model class for

the surrogate loss function can lead to a difference between the surrogate and the

actual loss function.

2.3.2 Learning Surrogate Loss Functions

The answer to the second question, i.e. how to obtain pl, is easy: Machine learning.

Of course, we could in principle ask a domain expert to define rules when to apply

which algorithm and define a surrogate loss function based on these rules. However,

we, and so does the literature, focus on algorithm selection approaches learned

from data. This is done as even domain experts often have trouble knowing upfront,

which algorithm will perform best for a given instance. Moreover, even if such

experts exist, they are, at best, sparsely available.

Although often not the case in practice, note that for the remainder of this section

we assume for simplicity that we have evaluations lpi, ¨q for all algorithms on all

training instances i P ID. Chapter 3 and Chapter 4 will touch on how to handle the

problem of missing evaluations (due to different causes) in more detail.

We start by defining the arguably most simple data-driven algorithm selector, called

the single best solver (SBS). The SBS is a feature-free approach in the sense that

it does not require any instance features computed by f since its prediction is not

instance-specific. It simply always suggests the algorithm, which performed best on

the training instances ID, i.e.

sSBSpiq P arg min
aPA

plSBSpi, aq (2.14)

with
plSBSpi, aq “ 1

|ID|
ÿ

i1PID

lpi1, aq . (2.15)

2.3 Common Algorithm Selection Solutions 27

Algorithm Selection Solutions

Classification Regression Ranking

Regression & Ranking Hybrids

Clustering Collaborative
Filtering

Fig. 2.4: Taxonomy of different algorithm selection solutions.

Due to its simplicity, the SBS is often considered as a baseline for algorithm selectors

in the sense that any reasonable algorithm selector should at least perform better

than the SBS.

In the following, we will present a taxonomy of different algorithm selection so-

lutions based on the type of learning problem tackled to learn the surrogate loss

function and give some examples of algorithm selectors leveraging loss functions

of the corresponding kind. Thereby, we mainly focus on the machine learning

component of the corresponding approach. Furthermore, we do not claim the list

of approach categories and approaches to be exhaustive, but instead focus on for-

malizing several common approach classes under a unified framework and then

give a small set of examples for each of such categories. A visual overview of the

taxonomy is presented in Figure 2.4. Although we believe that the following sections

are more than enough to get a deep understanding of AS approaches, we refer to

Kotthoff [Kot16] and Kerschke et al. [Ker+19] for a complete overview of existing

AS literature.

2.3.2.1 ClassiĄcation Solutions

Classification-based algorithm selection approaches work by directly trying to learn

the selector s : I ÝÑ A through the means of classification instead of learning

a surrogate loss function. Correspondingly, assuming that |A| ą 2, they solve a

28 Chapter 2

multi-class classification problem. Although they do not explicitly learn a surrogate

loss function, they can be defined in a way that fits the framework introduced above

as follows:

sclassificationpiq P arg min
aPA

plclassificationpi, aq (2.16)

where

plclassificationpi, aq “

$
&
%

0 if hpf iq “ a

1 else
(2.17)

Here, h : Rd ÝÑ A is the actual classification model predicting a suitable algorithm

based on an instance feature vector f i. The training dataset Dclassification required

to learn the classifier h can be constructed from the training instances (for which

evaluations are available), as

Dclassification
..“ tpf i, a

˚q | i P ID ^ @a P A : lpi, a˚q ď lpi, aqu Ă fpIq ˆ A (2.18)

With such a dataset, essentially any (multi-class) classification technique can be

employed to solve the problem. This approach is denoted as MultiClass or Multi-

ClassSelector throughout the experiments in this thesis.

There exist various approaches in the literature, which directly follow this scheme

using different kinds of machine learning models to model h such as decision

trees (e.g., [Gen+10; GM04]), k-nearest neighbor models (e.g., [Mal+11]) or

support vector machines (e.g., [HW06]). Arguably, the most famous example

from this category is SATzilla’11 [Xu+11], which employs an all-pairs (one-vs-one)

decomposition approach [LCG08] to the multi-class classification problem, learning

a cost-sensitive classifier for each pair of algorithms and determining the selected

algorithm by majority voting5. Moreover, some approaches employ the classification

idea on top of other loss function surrogates as done by Kotthoff [Kot12] Ð an idea,

which we further explore in Chapter 6.

In practice, this direct approach of learning an algorithm selector tends to be subpar

in the sense that it yields rather bad algorithm selections as one can also see in

the evaluations of Section 4.1 and Chapter 6. However, SATzilla’11 is a good

counterexample as it is still among the state-of-the-art AS tools. A clear reason

why classification approaches often fail in AS is Ð to the best of our knowledge Ð

unknown. However, considering the success of SATzilla’11 with its cost-sensitivity

and regression-based approaches (cf. Section 2.3.2.2), we hypothesize that the

5We note that one could also classify SATzilla’11 as a ranking approach leveraging pairwise compar-
isons (cf. Section 2.3.2.3).

2.3 Common Algorithm Selection Solutions 29

reason for this is grounded in the loss of information induced by the binary or

categorical labels in the training data compared to the true loss values. It seems that

the information contained in the concrete loss value associated with an algorithm

on an instance makes a difference (cf. Equation 2.18 and Equation 2.19).

2.3.2.2 Regression Solutions

Instead of treating the AS problem as a classification problem, the canonical AS

strategy (Equation 2.11) suggests treating it as a multi-target regression problem

with one regression target for each algorithm. This regression target is the algo-

rithm’s loss function value according to l. Correspondingly, we can also aim to learn

a multi-target regression function

hregression : Rd ÝÑ R
|A|

where we assume for ease of notation that hmrpf iqa gives us the predicted loss

function value for algorithm a P A on instance i. The dataset required to learn such

a function can be constructed from the training instances (and available evaluations

on them) as

Dregression
..“

␣`
f i,

“
l pi, a1q , . . . , l

`
i, a|A|

˘‰˘
| i P ID

(
Ă fpIq ˆ R

|A| (2.19)

With such a function, we can then define the algorithm selector and the correspond-

ing surrogate loss function as

sregressionpiq P arg min
aPA

plregressionpi, aq (2.20)

and
plregressionpi, aq “ hregressionpf iqa . (2.21)

With this definition, the underlying multi-target regression problem can be used

with any method amendable to that problem. In the practice of AS a commonly used

(quite strong) baseline, called the PerAlgorithmRegressor in this thesis, decomposes

the multi-target regression problem into separate standard regression problems,

learning one regressor for each algorithm independently of the remaining ones as

depicted in Figure 2.5.

30 Chapter 2

Feature 1

New instance

Fig. 2.5: Decomposition of multi-target regression AS problem formulation, where one
regressor is learned separately for each algorithm. We assume that instances are
represented only by a single feature. The training data points are depicted in
different colors corresponding to different algorithms, the learned models are
represented by lines. The feature of a new instance inew, for which a selection
should be made, is depicted as a pink dashed vertical line. Here, a2 would be
chosen according to the learned regressors as hmrpf inew

qa2
yields the lowest loss

value.

One of the most famous examples of AS approaches following this technique is

called SATzilla, which in its first two versions SATzilla’04 [Nud+04a] and SATzilla’07

[Xu+08] Ð both predecessors of SATzilla’11 Ð employs one regression model for

each algorithm for predicting its corresponding loss function value. In general, a

large set of literature exists, which suggests methods leveraging regression models

to predict the performance of an algorithm on an instance [HW09; RHF07; Hut+06;

LNS02]. The problem of runtime prediction in particular received a significant

amount of attention during the last decade (see [Hut+14] for an overview).

Naturally, while being simple and yielding a surprisingly good AS strategy in prac-

tice, the algorithm-wise decomposition also carries the disadvantage that it ignores

dependencies/correlations between algorithms and their loss function values. Con-

sidering that many algorithms are based upon each other (consider for example

the SAT domain where the most successful algorithms are variations of the same

base algorithm), this approach can be disadvantageous, especially in cases where

training data is limited (cf. Chapter 3). Moreover, posing the problem as a regression

problem aims at trying to learn a surrogate loss function, which predicts the true

loss function values as correctly as possible. However, recalling the second desired

property of surrogate loss functions, trying to mimic the exact loss function as closely

as possible is a sufficient criterion for having order preservation, but not a necessary

2.3 Common Algorithm Selection Solutions 31

one. Correspondingly, one may wonder whether by solving a regression problem of

the kind above we solve a problem more difficult than actually necessary. This line

of thought naturally leads to the idea of posing the problem as a ranking problem,

which we discuss next.

2.3.2.3 Ranking Solutions

As mentioned earlier, ranking-based AS solutions are motivated by the observation

that the ability to predict a correct ranking across the algorithms for a given instance

is potentially an ability easier to achieve than the ability to correctly predict the true

loss function value for each algorithm. Here, the goal is to learn a function

hranking : Rd ÝÑ RpAq , (2.22)

that, given instance features, predicts a ranking across the algorithms such that

the algorithm ranked at position one is the best one and the one ranked at the

last position is the worst one, where RpAq is the set of possible rankings over the

set of algorithms A. Correspondingly, the problem we are trying to solve here is a

label ranking problem [VG10], where each algorithm corresponds to a label and the

context is defined by the instance (features). The function can be learned using a

dataset of the form

Dranking
..“

␣`
f i, raπip1q ą . . . ą aπip|A|q

˘
s | i P ID

(
Ă fpIq ˆ RpAq (2.23)

where a1 ą a2 means that a1 is preferred over a2 and πi : N ÝÑ N gives the ID of

the algorithm, which is ranked at the given position for instance i according to the

loss function l. Note that we assume here, for simplicity of notation, that the loss

function value of no two algorithms is the same for an instance, which in practice is

often not the case. Nevertheless, one can adjust the definition of the dataset above

such that ties between algorithms are allowed.

With such a function, we can then define the algorithm selector and the correspond-

ing surrogate loss function as

srankingpiq P arg min
aPA

plrankingpi, aq (2.24)

and
plrankingpi, aq “ hrankingpf iqa ,

32 Chapter 2

where we assume that hrankingpf iqa gives the position of algorithm a in the predicted

ranking hrankingpf iq.

Once again, the problem of learning the label ranking function can, in principle,

be tackled by any label ranking algorithm that can potentially handle ties between

labels, i.e. algorithms. If the ranking model is based on a latent utility function,

as in the case of the Plackett-Luce model [CHD10], the most straightforward way

to tackle the problem above is a decomposition enabling to learn one latent utility

function per algorithm similar to the regression decomposition discussed earlier.

In practice, existing methods apply different label ranking approaches to the problem.

For example, Cunha et al. [CSC18] evaluate a set of label ranking approaches based

on nearest-neighbor strategies or label ranking trees [CHH09]. Similarly, Kotthoff

[Kot14] empirically evaluate different approaches to convert the predictions of

machine learning models into rankings and thus also inherently solve a label ranking

problem. As a last example, Oentaryo et al. [OHL15] employ a probabilistic ranking

model trained based on a likelihood formulation of the rankings available in the

training data. Although most AS approaches are inherently able to generate a

ranking over the complete set of algorithms (e.g. regression-based approaches), the

majority of existing work does not evaluate the capability to do so in the classical AS

problem as defined in Section 2.1.1. A larger amount of explicit ranking strategies

can be found in the literature considering the algorithm scheduling problem (cf.

Section 2.2.1), which, depending on the concrete problem form, can be cast as a

ranking problem.

One of the main downsides of ranking based AS approaches is that they often ignore

a large part of the numerical loss function values available for the training instances

as they only take into account the ranking across algorithms based on these values

instead of the values themselves for training. This leads to a loss of information,

which could be used as part of the training process. Consider, for example, a case

where two algorithms, say a1 and a2, feature very similar loss function values on an

instance i, say lpi, a1q “ 2.33 and lpi, a2q “ 2.34. While a regression-based approach

would at least in principle be able to capture that these two algorithms perform very

similarly on the instance and in practice there might not be much of a difference at

all, the training dataset (Equation 2.23) provided for a ranking approach is unable

to capture this information as we would only have that a1 ą a2. Although more

advanced label ranking algorithms can in principle handle ties, one would need to

define how close two algorithms are allowed to be wrt. their loss function values in

2.3 Common Algorithm Selection Solutions 33

order to justify a tie in the training data, which introduces another hyperparameter

that could largely influence the success of an algorithm selector.

2.3.2.4 Hybrids of Ranking and Regression Solutions

Quickly revisiting the regression and ranking-based solutions, one could argue that

the two are extremes of the same idea of being able to rank algorithms. While the

regression idea takes the one extreme by trying to mimic the actual loss function as

closely as possible and thus inherently generates a ranking, the ranking idea takes

the other extreme in the sense that it just wants to achieve the correct ranking, but

has no intention and often also no possibility of correctly predicting the actual loss

function values. Correspondingly, one may wonder whether hybrids of ranking and

regression approaches might be a good idea to alleviate each other’s weaknesses Ð

a concept, which has been demonstrated effective on different tasks (not including

AS) by Sculley [Scu10].

Following the strategy of many ranking approaches, the general idea here is to learn

a utility function

u : I ˆ A ÝÑ R (2.25)

on the basis of which a ranking can be constructed at the end. However, in contrast

to ranking approaches, the utility function is learned based on a combination of a

ranking loss function Lranking, such as the hinge ranking loss [SS06], and a regression

loss function Lregression , such as the squared error. Leveraging such a utility function

u, we can then define both the corresponding selector and the surrogate loss function

as

shybridpiq P arg min
aPA

plhybridpi, aq (2.26)

and
plhybridpi, aq “ ´upf i, aq .

This idea was proposed by Hanselle et al. [Han+20] who suggest learning one

utility function separately per algorithm (similar to the decomposition approach

presented for the regression models), based on a convex combination of regression

and ranking loss functions. It was later refined by Fehring et al. [FHT22] who learn

34 Chapter 2

such a function across algorithms6. According to the authors, this can indeed yield

better algorithm selection performance in some cases.

2.3.2.5 Clustering Solutions

Clustering-based AS approaches differ considerably from the previously seen ap-

proach classes as they can be seen as decomposition approaches. They decompose

the algorithm selection on the complete instance space to multiple AS problems for

different (possibly overlapping) subregions of the instance space I or more precisely

the feature space fpIq Ď R
d as Figure 2.6 depicts. To achieve this decomposition,

clustering-based AS approaches firstly cluster the training instances based on a

distance function such that at the end K different clusters of instances exist. The

concrete distance function, the form of clusters and the number of clusters are either

hyperparameters or inherently defined by the clustering algorithm used and differ

depending on the concrete approach as we will shortly see. After these clusters are

obtained, clustering-based approaches then can train one of the previously described

AS approaches for each cluster. Then, when the approach is asked to select an

algorithm for a new instance, the closest cluster according to the distance function is

determined and the local AS model trained on the corresponding cluster is queried

to select the algorithm.

For ease of notation let us assume that we have a function

hcluster : Rd ÝÑ C (2.27)

mapping from the instance feature space to the set of clusters C previously learned,

which, given an instance in the form of its feature vector to its corresponding closest

cluster. Then, if we assume that

pllocal : I ˆ A ˆ C ÝÑ R (2.28)

returns the value of the local loss function surrogate learned for a given cluster c P C,

the surrogate loss function and the corresponding algorithm selector can be defined

as

sclusterpiq P arg min
aPA

plclusterpi, aq (2.29)

6Although the author of this thesis is also an author of the corresponding papers, we do not list these
as contributions of this thesis as the author of this thesis is not the main author of the papers.

2.3 Common Algorithm Selection Solutions 35

Feature 1

Fe
at

ur
e

2

New instance

Fig. 2.6: General idea of clustering-based AS approaches where we assume instances to be
represented by two features. Training instances are clustered according to their
features by some clustering algorithm. Then, for each cluster, a local surrogate
loss function of any kind is learned. If a new instance (depicted in magenta)
arrives, the closest cluster (c3 in this case) is determined and the presumably
best algorithm according to the local loss function surrogate associated with that
cluster is selected.

and
plclusterpi, aq “ pllocalpi, a, hclusterpf iqq .

Note that the local loss function surrogates for each cluster can in principle be of any

of the previously discussed functions and thus can be instantiated by any previously

discussed class of AS approaches.

Examples following this strategy are ISAC [Kad+10], which leverages g-means

clustering [HE03] and is originally designed to perform instance-specific algorithm

configuration. However, it can be easily adapted as an algorithm selection strategy

by returning the algorithm performing best on average on the instances of the cluster

closest to a new given instance. Similarly, Malitsky et al. [Mal+13] propose CSHC

(originally for instance-specific algorithm configuration), a cost-sensitive hierarchical

clustering technique, which determines clusters based on the consensus about the

best algorithm among instances and then suggests the corresponding consensus

algorithm of the closest cluster when given a new instance. As a last example,

but without any upfront clustering, SUNNY [AGM14] collects the closest instances

leveraging a k-nearest neighbor approach given a new instance and then returns the

algorithm performing best on average on these neighboring instances.

36 Chapter 2

As clustering based AS systems can in principle use different AS approaches for

the different clusters (although this is not done in practice), they are very versatile

and highly configurable and thus also highly adaptable. Unfortunately, this large

amount of hyperparameters can also be seen as a negative point since they have

to be set correctly in order to achieve a good performance. Moreover, due to the

rather local AS models being learned for each cluster, dealing with instances, which

are far away from these clusters (outliers) can be problematic. For this reason,

some approaches define a fallback strategy for such instances, which can make

the approach deteriorate in practice as we explain in more detail in Section 6.4.

Lastly, likewise nearest neighbor and clustering techniques in general, these kinds of

approaches are very susceptible to non-informative features as they have no means

of down-weighing a feature, if it carries a low amount of information.

2.3.2.6 Collaborative Filtering Solutions

Collaborative filtering (CF) [SK09] based AS solutions are motivated by treating the

AS problem as a recommendation problem similar to, for example, recommending

products (i.e. algorithms in our case) to customers (i.e. instances in our case). A

fundamental concept is the so-called (usually sparse) rating or performance matrix

R|ID|ˆ|A|, where an entry Ri,a “ lpi, aq corresponds to the performance of algorithm

a on instance i P ID according to l if known, and Ri,a “ ? otherwise. A visualization

can be seen in Figure 2.7. Common problems to tackle in the field of recommender

systems are then either predicting missing entries in this matrix (e.g. if a customer

likes a certain product or not) or, known as the cold-start problem, predicting

a complete row in case a new customer (i.e. instance) is added to the matrix.

Obviously, the second problem is of more interest in the case of AS, where we are

interested in choosing the best algorithm for a previously unseen instance. In general,

CF approaches can be categorized into two kinds of approaches: memory-based or

model-based.

Memory-based approaches work by quantifying similarities between instances by

applying a similarity function (or equivalently a distance function) either to the in-

stance features or directly to the loss function evaluations available for the instances.

Then, when a new instance arrives, the loss function value for each algorithm is

predicted as the aggregation of the values associated with a set of similar instances,

which are available in the performance matrix R. More formally expressed in the

2.3 Common Algorithm Selection Solutions 37

2.2 1.2

24.5

4.3 8.1

8.7

?

?

?

? 10.3

11.1

Fig. 2.7: Example of a rating matrix with one row per training instance and a column per
algorithm. Each cell Ri,a contains the loss of algorithm a on instance i according
to a given loss function l. Missing values are depicted by a ’?’.

notation established so far, the surrogate loss function value for any algorithm a P A

for a new instance i P I can be computed as

plCF´memorypi, aq “ agg
`␣
Ri1,a | i1 P Γpiq

(˘
(2.30)

such that

sCF´memorypiq P arg min
aPA

plCF´memorypi, aq (2.31)

is the corresponding algorithm selector.

Here, Γpiq : I ÝÑ 2I is a neighborhood function returning a set of instances, which

are similar to the given instance according to some defined similarity function and

agg : 2R ÝÑ R aggregates a set of loss function values into a single one. Popular

choices for the similarity functions include measures quantifying correlations be-

tween variables such as the Pearson correlation [CB21] or standard vector similarity

functions such as the cosine-similarity [SK09]. Aggregation can be performed with

virtually any aggregation function such as the average or sum.

As mentioned, the neighborhood function Γ can either work based on performance

matrix entries or based on instance features. In our case, i.e. the cold-start problem,

there are no performance entries available for a new instance such that similar

instances have to be computed based on the instance features. Correspondingly,

memory-based CF approaches are very similar to clustering-based approaches dis-

cussed in the previous section and to any approach working with nearest-neighbor-

based algorithms. As a consequence, they suffer from similar weaknesses. In

particular, the predictions are rather based on local trends and thus are in danger

of missing subtle global trends as Koren [Kor08] argues. However, this can also be

38 Chapter 2

Fig. 2.8: Visualization of the matrix decomposition for model-based collaborative filtering.
The performance matrix R is decomposed into two matrices U P R

|ID|ˆk and
V P R

kˆ|A|. The latent features of an instance i are given by U i,‚ P R
k and by

V ‚,a P R
k for algorithm a.

seen as advantageous since the predictions are highly specialized and not disturbed

by potentially irrelevant information associated with dissimilar instances.

In contrast, model-based CF approaches work by learning a model on the perfor-

mance matrix R as the name suggests. While there exists a plethora of approaches

to CF in general [SK09], we focus on matrix decomposition techniques, which have

been used in the context of AS. They work by decomposing the performance matrix

R into two matrices U P R
|ID|ˆk and V P R

kˆ|A| w.r.t. some loss function LpR,U, V q,
such that

R « pR “ UV J , (2.32)

where U can be interpreted as latent features of the instances and V as latent

features of the algorithms, and k is the number of latent features. In principle, any

matrix decomposition technique such as a singular value decomposition (SVD) can

be used to solve the decomposition problem. Often, a corresponding technique

comes with an associated loss function LpR,U, V q. However, one should consider

that techniques dealing with missing values7 are preferable since the performance

matrix is often sparsely filled. If one works with techniques, which cannot handle

missing values, memory-based CF approaches can be applied before decomposing

the matrix in order to fill in missing values. Obviously, this bears the danger of error

propagation. A visualization of the decomposition idea can be seen in Figure 2.8.

7Note that SVD in its standard form cannot deal with missing values.

2.3 Common Algorithm Selection Solutions 39

Having latent features U i,‚ P R
k for an instance i and V ‚,a P R

k for each algorithm

a P A, we can predict the loss value as

plCF´modelpi, aq “ pU i,‚q⊺V ‚,a (2.33)

yielding an algorithm selector as

sCF´modelpiq P arg min
aPA

plCF´modelpi, aq . (2.34)

In principle, instead of using the linear model based on the latent features shown

in Equation 2.33, one can even learn any machine learning model on top (as also

suggested by Malitsky and O’Sullivan [MO14]), i.e. perform a form of stacking

[Wol92], to potentially obtain more precise estimates of the underlying target loss

function l.

Unfortunately, these latent instance features are computed once when decomposing

the performance matrix spanned by the training instances and are thus unavailable

for new instances making the computation of plCF´model as defined above infeasible.

One solution to this problem is to simply recompute the complete decomposition

every time a new instance arrives and attach this instance to the matrix. However,

this is not only computationally expensive (and thus yields very long algorithm

selection times), but also bears the danger of yielding bad loss function surrogate

estimates as the complete performance row associated with the instance is empty be-

fore the decomposition. A second solution was suggested by Malitsky and O’Sullivan

[MO14] and later also Misir and Sebag [MS17], who propose to solve the cold-start

problem by learning a function hinstance : Rd ÝÑ R
k mapping from the original

instance feature space to the latent instance feature space such that the latent fea-

tures U i,‚ “ hinstancepf iq of an instance can be predicted upon arrival based on the

computed instance features f i.

The first work formalizing the AS problem as a CF problem is by Stern et al. [Ste+10]

who suggest a model-based approach rooted in a probabilistic loss function quan-

tifying the quality of the performance matrix decomposition. Later, Misir and

Sebag [MS13; MS17] suggest a memory-based and a model-based CF AS approach.

The memory-based approach measures the similarity between problem instances

using the cosine similarity of the associated performance matrix rows whereas

the suggested model-based approach leverages CoFiRANK [Wei+07] to decompose

40 Chapter 2

the performance matrix optimizing the ranking across algorithms via the NDCG

[Wan+13] ranking loss function.

While memory-based CF approaches mostly capture local trends, model-based CF

approaches are better at capturing global trends [Kor08]. Solving the cold-start

problem is much harder for model-based approaches than for memory-based ones as

the only really suitable solution in the context of AS is the one originally suggested by

Malitsky and O’Sullivan [MO14] (and later used by Misir and Sebag [MS13; MS17])

in the form of learning a mapping from the instance feature space to the latent

feature space, which is a rather difficult problem to solve upfront. This is particularly

unfortunate, as Malitsky and O’Sullivan [MO14] have shown that instantiating the

surrogate loss function by a linear model trained based on the ground truth latent

features can in practice reach oracle performance. Obviously, this assessment is an

optimistic one as the ground truth latent features can only be obtained from the

complete performance matrix, meaning that they are based (in parts) on the actual

test data. However, this is unavoidable, if one wants to quantify the quality of the

ground truth latent features in terms of their predictive power in the context of AS.

When trying to predict the latent features based on the actual instance features as

suggested, Malitsky and O’Sullivan [MO14] observe that the performance is much

worse and similar to standard regression-based AS approaches.

2.3.2.7 Further Automating Algorithm Selection

As the previous sections have shown, there exists a large variety of different AS

approaches, which learn a surrogate loss function based on very different kinds of

strategies. Furthermore, most of these strategies have a large variety of hyperpa-

rameters and components, which in turn can be implemented using a plethora of

sub-approaches. Naturally, this leads to a set of questions such as when to apply

which AS approach and how to correctly configure it. While we try to answer the

first question in Chapter 6 on an instance level, one can also pose this question on

the level of scenarios, i.e. sets of instances. This problem of both selecting and

configuring the AS approach for a given set of instances is tackled by AutoFolio

[Lin+15], which is extremely effective. Similar problems have been tackled in

related problems such as AutoML (cf. Section 2.2.5) [FH18].

2.3 Common Algorithm Selection Solutions 41

2.4 Algorithm Selection Loss Functions for Common

Algorithmic Problem Classes

When considering loss functions for the AS problem, it is important to distinguish

between two kinds of algorithmic problems for which an algorithm should be

selected. On the one hand, there are so-called constraint satisfaction problems

for which any solution adhering to a set of given constraints should be found.

On the other hand, there are so-called (constrained) optimization problems, for

which a solution should be found, which (potentially) also adheres to a set of

constraints, but in addition is as good as possible according to a given objective

function. This distinction is important as one often considers different loss functions

in the context of AS for these problem types, calling for different AS approaches. In

the following, we discuss how the two problem classes differ from the perspective of

AS and correspondingly, why often different loss functions are used. As part of this

discussion, we provide an overview of common loss functions.

Once again, we focus on the offline instance-specific AS problem (cf. Section 2.1.1)

for this section for ease of understanding. Most of the presented loss functions

are easily transferable to the online setting as they are naturally instance-wise

decomposable.

When describing losses formally in the following, we will denote them as functions

following the signature

L : 2I ˆ S ÝÑ R . (2.35)

Hence, they return the loss of a specific selector s on a finite set of instances I Ă I,

also called scenario.

2.4.1 Algorithm Selection Loss Functions for Constraint Satisfaction

Problems

Formally, a constraint satisfaction problem can be defined as a triple pZ,R,Bq where

Z “ tZ1, . . . , Znu is a set of variables, R “ tR1, . . . , Rnu is a set of domains, Ri is

the domain of variable Zi, and B “ tB1, . . . , Bmu is a set of constraints essentially

defining which variables can be assigned what values from their corresponding

42 Chapter 2

domain. The solution to such a problem is an assignment of values to all variables

in Z such that all constraints in B are fulfilled.

As the name of the problem suggests, solutions either satisfy the constraints and

thus are feasible or they do not satisfy the constraints and thus are infeasible. Conse-

quently, constraint satisfaction problems come with a binary notion of suitability or

quality of a solution. Under the assumption that an algorithm only returns feasible

solutions, the most important quantity to optimize for is the time until such a solu-

tion is found or the number of solved instances within a certain time, often called

cutoff time.

2.4.1.1 Algorithm Runtime

Viewed from the perspective of AS it might be tempting to believe that the time until

a solution to a problem is found, is equivalent to the time the selected algorithm

runs, i.e. algorithm runtime, and thus one should try to optimize algorithm runtime.

However, this is not the case. In fact, under certain conditions, the time until a

solution is found is equivalent to the runtime of the algorithm selector selecting the

algorithm.

To understand this, let us take a closer look at the properties of the candidate

algorithms A. More precisely, consider the property of completeness. We call an

algorithm complete, if (1) it terminates for all problem instances from I and (2) yields

a valid solution to the corresponding instance as a result upon termination. If the

algorithm does not satisfy these two conditions, we call it incomplete.

Now, suppose that we are given an instance i P I and have a selector s, selecting

algorithm spiq “ a P A. If a is incomplete, the runtime of a is obviously not

equivalent to the time until a solution is found, as a might very well not output a

solution upon termination or it might not terminate at all. In the first case, algorithm

a clearly has a runtime, but the time until a solution is found is undefined. In the

second case, both quantities are undefined. But even if a is complete, the runtime of

a is not equivalent to the time until a solution is found, because

1. the algorithm selector s might require the computation of instance features f i

before being able to make a selection, which requires time to compute; and

2.4 Algorithm Selection Loss Functions for Common Algorithmic Problem

Classes

43

Time until solution is found

Algorithm runtimes

Feature computation time
Selection time

Fig. 2.9: This figure depicts the time until a solution is found of two complete algorithms
a1, a2 and an algorithm selector s. In this example, the algorithm selector first
computes features and then selects algorithm a1. As one can see, the time until
a solution is found associated with the algorithm selector s is larger than simply
running the selected algorithm a1 due to the feature computation time and the
time the actual selection takes. Note that the latter is mostly negligible, but for
visualization purposes, we depicted it here much larger than it would normally be.

2. the selection process itself does take time as well.

Correspondingly, if a is complete, the time until a solution is found is equivalent to

the runtime of the algorithm selector s, if one assumes that the selector actually runs

the selected algorithm at the end, as depicted in Figure 2.9. Moreover, algorithm

runtime on its own can be trivially optimized by always selecting an algorithm,

which instantly terminates without providing any solution as output.

Altogether, algorithm runtime on its own is not a good loss function, as

1. it does not consider whether a feasible solution to the problem has been

generated by the selected algorithm,

2. it does not account for the computation of instance features which are often

required by the algorithm selector; and

3. it does not account for the time the selection process itself requires.

While Item 2 can be accounted for by simply adding the feature computation time

to the algorithm runtime and Item 3 is often negligible in practice, Item 1 requires

explicit consideration in the loss function.

In practice, even if a is complete and hence eventually returns a solution to a

given instance, there are often no guarantees or upper bounds on the runtime of

44 Chapter 2

0 1 2 3 4 5 6 7 8
Runtime t

0.0

0.2

0.4

0.6

0.8

1.0

(t)

exponential
heavy-tail

Fig. 2.10: Visualization of a heavy-tail runtime distribution (blue) in comparison to an
exponential runtime distribution (red). Roughly speaking, as the name suggests, a
heavy-tail distribution has a tail, which is heavier than the one of the exponential
distribution.

an algorithm in AS problems. Correspondingly, a might run extremely long and

potentially not finish within hours, years, or even decades. This behavior can be

formalized by the observation that constraint satisfaction algorithms often exhibit

so-called heavy-tail runtime distributions [GSC97]. Roughly speaking, this means

that while an algorithm might solve some instances extremely fast, it might run

extremely long on a subspace of I. Figure 2.10 illustrates this phenomenon.

As a consequence, algorithms are usually run under a timeout, a so-called cutoff

time C, and are forcefully terminated if they exceed this cutoff time. Naturally, this

leads to the same problems as if a was incomplete, i.e. the instance we are originally

trying to solve remains unsolved Ð a situation that should be avoided.

2.4.1.2 Number of Unsolved Instances

One way to overcome the problem of potentially unsolved instances that one faces

when considering algorithm runtime as a loss function is to additionally track the

number of such unsolved instances. For this purpose, one can define an indicator

2.4 Algorithm Selection Loss Functions for Common Algorithmic Problem

Classes

45

loss function, which evaluates to 1, if no feasible solution is returned, and to 0, if a

feasible solution is returned, i.e.

lunsolvedpi, aq “

$
&
%

1 if a does not return a solution to instance i (until a cutoff)

0 else
(2.36)

Then, in order to assess the loss of an algorithm selector s on a set of instances

I, such a loss function can be used to count the number of unsolved instances by

summation over these:

LunsolvedpI, sq “ 1

|I|
ÿ

iPI

lunsolvedpi, spiqq (2.37)

Similarly to the algorithm runtime, the number of unsolved instances can be trivially

optimized by always selecting a complete algorithm (in the worst case, a brute-force

algorithm), which is guaranteed to eventually solve an instance, and thus, it should

only be considered in combination with the algorithm runtime (including the feature

computation times) yielding a multi-objective optimization problem. In fact, those

two loss functions can even be contradicting as the two trivial optimization options

we outlined show.

2.4.1.3 Penalized Average Runtime

Instead of directly tackling this multi-objective optimization problem, most existing

AS research focused on constrained optimization problems falls back to an adapted

algorithm runtime, which is penalized in case of unsolved instances, called the

penalized average runtime (PAR).

The idea underlying the penalized average runtime is to penalize those algorithm

runs, which did not solve an instance, i.e. which did not yield a solution until the

cutoff time C (either because they failed or did not terminate). Let

lprKpi, aq “

$
&
%
lruntimepi, aq if lruntimepi, aq ď C

K ¨ C else
(2.38)

46 Chapter 2

be the K-penalized runtime of algorithm a on instance i where K P N controls the

degree of penalization. Then, the K-penalized average runtime (PARK) of a selector

s is defined as

LPARKpI, sq “ 1

|I|
ÿ

iPI

lprKpi, spiqq . (2.39)

The most common choice for K is K “ 10 resulting in a very strong penalty in case

an algorithm did not solve an instance.

Unfortunately, the PARK cannot be reasonably aggregated over different sets of

instances with potentially different runtime distributions and different cutoffs C due

to large variances within the corresponding PARK scores. To mitigate this issue, one

usually defines the normalized PARK score as

LnPARKpI, sq “ LPARKpI, sq ´ LPARKpI, s˚q
LPARKpI, SBSq ´ LPARKpI, s˚q , (2.40)

which is normalized with respect to the oracle s˚ and SBS performance. Successful

algorithm selectors should achieve an nPARK score below 1 as 1 corresponds to the

performance of the SBS, values between 0 and 1 correspond to an improvement

beyond the SBS, and a value of 0 corresponds to oracle performance.

Although variants of the PARK are arguably the most prominent loss functions

to assess the quality of an algorithm selector in the algorithm selection literature

[Lin+15; Bis+16; Tor+20a], the PARK has two main downsides. First, the concrete

choice of the K is hard to make and thus rather arbitrary. While it is obvious that

large choices of K coincide with a large penalty for timeouts, it is much less clear

how a concrete requirement, for example, regarding the relative amount of timeouts,

maps to a specific K [GLR22]. Second, simplifying the underlying multi-objective

problem discussed earlier to an optimization of the PARK loss function is a rather

crude approach in the form of a scalarization with all the potential disadvantages

[ED18].

A potential solution to these problems is to abandon the simplification to a single-

objective optimization problem altogether and directly tackle the underlying multi-

objective optimization [Deb14] problem and then compare algorithms (and thus

selectors) based on the notion of Pareto dominance and dominated hypervolume

as suggested by Bossek and Trautmann [BT18]. However, as PARK is still the most

dominant loss function used in the literature, most experimental parts of this thesis

are based on evaluations of PARK.

2.4 Algorithm Selection Loss Functions for Common Algorithmic Problem

Classes

47

2.4.2 Algorithm Selection Loss Functions for Optimization Problems

The concept of a constrained optimization problem is a generalization of the con-

strained satisfaction problem, where solutions satisfying the constraints are no

longer necessarily equally preferred. Instead, an objective function o : X ÝÑ r0, 1s
assigning an objective value to a given solution is provided8. Then, the goal is to

find a feasible solution maximizing the objective function o.

2.4.2.1 Solution Quality

While one is mostly interested in optimizing the time until a solution is found

by the selected algorithm in the case of constraint satisfaction problems, one can

alternatively optimize a measure based on the quality of the solution, i.e. its

objective function value according to o, produced by the selected algorithm in the

case of optimization problems. Nevertheless, even in cases where solution quality

is optimized, algorithms can (and in fact often are), in principle, be run with a

certain cutoff time. However, in practice, most optimization algorithms produce

intermediate solutions during their run and often have a solution ready quite early

in the process, such that unsolved instances can be neglected as they mostly do not

exist. Correspondingly, solution quality is often the most important quantity to be

optimized when considering constrained optimization problems in the context of

algorithm selection.

In concordance with the previous notation, one can define solution quality in terms

of a loss function as

lqualitypi, aq “ 1 ´ opapiqq (2.41)

where apiq denotes the solution obtained from applying algorithm a on instance i.

Equivalently, the loss of a selector can then be defined as

LqualitypI, sq “ 1

|I|
ÿ

iPI

lqualitypi, spiqq . (2.42)

8Note that we assume for simplicity that the objective function o maps to the unit interval. In
principle, it could also map to other domains such as R.

48 Chapter 2

2.5 Instance Features

As mentioned earlier, a usual assumption associated with the AS problem is ac-

cess to a feature map f : I ÝÑ R
d which, given an instance i P I generates a

d´dimensional feature representation of that instance. Such a representation allows

one to generalize over instances and, in particular, to generate instance-specific

algorithm selection suggestions on unseen instances using an underlying model,

which depends on such features.

Before discussing different kinds of instance feature design methods (Section 2.5.2.1),

we elaborate on the requirements of instance features in the following. Lastly, we

shortly touch on feature preprocessing in Section 2.5.3. We note that although the

design of such features is not the focus of this thesis, we want to provide the reader

with a rough understanding of what kind of features are commonly used.

2.5.1 Requirements for Instance Features

In order to be useful in the context of algorithm selection, a (group of) feature(s)

should fulfill a certain set of requirements. We note the following ones:

1. Correlation: The value of a feature for a specific instance should correlate with

the performance of some or ideally all algorithms in A.

2. Computation time: A feature should be fast to compute.

3. Feature amount: The total amount of features should be as small as possible.

4. Complementarity: Features should be complementary to each other in terms of

their information.

5. Domain independence: Ideally, a feature should be problem domain-independent,

such that it can be used on a large set of algorithmic problems.

Roughly speaking, Requirement 1, i.e. correlation, refers to the expressiveness of

a feature wrt. to making good algorithm selection suggestions. If the value of a

feature is completely uncorrelated with the performance of the algorithms in A

2.5 Instance Features 49

it only contributes noise and should thus be removed. Consider, for example, a

SAT problem where instances are named according to a 12-digit number drawn

uniformly at random. Obviously, as long as the number is truly randomly drawn

as described, a feature consisting of the instance number is not correlated with the

performance of any algorithm and, thus, is of no use for selection suggestions. On

the contrary, a feature describing the number of clauses and the number of literals

is correlated with the empirical hardness of an instance and correspondingly the

performance of many SAT solvers [Nud+04b] and thus might indeed be a good

feature.

Requirement 2, i.e. computation time, is of a rather practical nature. Regardless

of whether satisfaction or optimization problems are considered as underlying

algorithmic problems, runtime often plays an important role in practice. Thus,

algorithm selection suggestions are often required to be performed quickly such that

the chosen algorithm can be run as soon as possible. Accordingly, the computation

of a feature needs to be rather fast. This is especially important in satisfaction

problems, where the given loss function l is often based on the runtime of the chosen

algorithm in one way or the other and includes the time the algorithm selection

process requires. Naturally, the overhead induced by the instance-specific algorithm

selection process compared to simply running the SBS on all instances should be

less than the difference in runtime between the chosen algorithm and the SBS (at

least on average). Thus, it is crucial to include the feature computation times when

evaluating how a certain AS approach performs.

Similarly, Requirement 3, i.e. feature amount, is also rather practically oriented.

Firstly, a large set of features should be avoided as even when the features on their

own are fast to compute, the sum over computation times of the features can quickly

become non-negligible. Secondly, training data for algorithm selection is mostly

rather sparse as often, there exists only the evaluation of a single algorithm (instead

of all algorithms) on an instance in the training data. Consequently, complex machine

learning models should only be used carefully to avoid the curse of dimensionality

[Bac17]. Lastly, the larger the set of features, the larger the prediction time of the

machine learning model used as part of the AS approach, and thus, the larger the

overhead induced by AS becomes.

Along the same lines, Requirement 4, i.e. complementarity, is meant to describe

that features should not share redundant information and, in particular, should

not be correlated to each other. This is desirable since instance features, which

are correlated with each other, tend to be problematic for some machine learning

50 Chapter 2

Tab. 2.2: Tabular comparison of the requirements imposed upon good instance features by
this work and by Kerschke et al. [Ker+19].

This work Kerschke et al. [Ker+19]

Correlation Informative
Computation time Cheaply computable
Feature amount Ð
Complementarity Complementary
Domain independence Generally applicable
Ð Interpretable

models [Ali10] and, even more importantly, they unnecessarily increase the number

of features leading to the same problems discussed above.

Lastly, Requirement 5, i.e. domain independence, concerns the re-usability of feature

designs. Unfortunately, most features found in algorithm selection are problem

dependent as they are carefully designed for a particular problem in order to fulfill

Requirement 1 (correlation) [Ker+19]. As a consequence, they are often not easily

transferable to a new problem class, which consequently requires a new set of

domain experts to design a new set of features. Unfortunately, this design process

is extremely cumbersome and also expensive due to its need for domain experts.

Thus, it constitutes a research problem on its own [Ker+19]. A possible remedy

for this problem lies within the idea of automated feature generation/extraction

[Bra+22] Ð a process, which automatically tries to extract or generate features

from a raw representation of an instance without the need for a domain expert.

While this process yields domain-dependent features, the process itself is at least to

some degree domain-independent and thus more broadly applicable.

We note that the set of requirements listed at the beginning of this section slightly

deviates from the requirements listed by Kerschke et al. [Ker+19]. While Kerschke

et al. [Ker+19] also list equivalent notions of our requirements 1 (correlation),

2 (computation time), 4 (low inter-feature correlation) and 5 (domain indepen-

dence), we deviate in the remaining ones. In addition to the requirements just given,

Kerschke et al. [Ker+19] note that features should be interpretable [DLH19]. We

believe that interpretability of instance features is not necessarily required as this

highly depends on the application. There certainly are applications where inter-

pretability and correspondingly, explainable artificial intelligence [DBH18] methods

can be beneficial in the context of AS. However, interpretability is not necessarily

required to select the best-performing algorithm. A visual representation of the

discrepancies in the requirements between Kerschke et al. [Ker+19] and this work,

2.5 Instance Features 51

Tab. 2.3: Overview of the requirements fulfilled by different kinds of instance features. A ✓

symbol indicates that the requirement is well fulfilled, a ⃝ symbol indicates that
it is somewhat fulfilled, whereas a ✗ symbol indicates that the requirement is not
fulfilled. We intentionally left the assessment blank (?) for some requirements as
this depends on the actual approach configuration.

Requirements Instance feature kind

Syntactic Probing Deep learning-based

Correlation ⃝ ✓ ✓

Computation time ✓ ✗ ✓

Feature amount ? ? ?
Complementarity ? ? ?
Domain independence ✗ ✗ ⃝

including differences in the notions used to describe the requirements, can be found

in Table 2.2.

2.5.2 Different Kinds of Instance Features

We distinguish between three kinds of instance features, which are commonly used

in AS. First, we elaborate on syntactic instance features, which are often very domain-

dependent and thus cannot be easily transferred across problem classes. Second,

we discuss so-called probing features, which are based on statistics gained from

very short algorithm runs. Third and last, we summarize work on automatically

generated instance features based on deep learning.

For each such category of features, we also discuss whether they adhere to the

requirements of instance features mentioned in Section 2.5.1. A visual overview of

this assessment can be found in Table 2.3.

2.5.2.1 Syntactic Instance Features

As mentioned several times by now, handcrafted instance features are usually

carefully designed by domain experts and correspondingly domain-dependent. While

it is hard to give a general overview due to their domain-dependent nature, they are

generally based on statistical quantities regarding the syntactic nature of an instance

[OMa+08]. Examples include the number of decision variables of the instance

52 Chapter 2

and their corresponding domains [Bis+16]. In addition, information extracted

from structures computed from an instance (e.g. a constraint graph in the case

of a constraint satisfaction problem [Gen+10]) are often used [Bis+16]. Due to

the wide range of such instance features, we refrain from an excessive survey of

corresponding work and refer the interested reader to Kerschke et al. [Ker+19].

In the field of meta-learning [Van18], which is concerned with learning about

machine learning algorithm performance (for more details, see Section 2.2.2), the

same kind of (meta-) features are called statistical (meta-)features.

Regarding the requirements of instance features (Section 2.5.1), syntactic ones

can adhere to Requirement 1 (correlation), if correctly designed [KT19]. While

most of them can be computed quite quickly such that they also fulfill Requirement

2 (computation time), the classical approach often involves using a large set of

syntactic features to begin with, which is then reduced using feature selection

techniques (cf. Section 2.5.3). Unfortunately, due to their domain dependence,

most syntactic features inherently violate Requirement 5, as they cannot be easily

transferred to other problem classes.

2.5.2.2 Probing Instance Features

Probing features refer to features, which are extracted from the trajectory obtained

from a short run of an algorithm (possibly, but not necessarily from A). Correspond-

ing examples include the number of nodes explored up to a certain point in time in

a heuristic search algorithm or the amount of pruned search nodes [Bis+16].

When considering continuous blackbox optimization as an underlying problem in AS,

probing features are often called exploratory landscape analysis (ELA) [Mer+13]

features. ELA is a set of techniques concerned with characterizing the blackbox

function to optimize using a set of features ranging from simple sampling strategies

to more complex information extracted from algorithm runs. ELA features have been

shown to be quite useful in the context of AS [Bis+11; KT19]. Once again drawing

the connection to meta-learning, similar kinds of features are called landmarking

(meta-) features in that field.

Due to their high correlation with algorithm performance (Requirement 1), they are

very frequently used in practice [Nud+04b; OMa+08; Xu+08; Hut+14]. Unfortu-

2.5 Instance Features 53

nately, they are often more complicated to compute than syntactic ones and thus also

require more computation time. For this reason, they are sometimes also computed

based on a timeout, which possibly results in missing feature values, if the timeout is

reached, and the desired quantity is not computable using the acquired information.

Although less domain-dependent than syntactic features, probing features still need

to be adjusted to the corresponding problem class. Ideally, they are also adjusted

based on the set of algorithms A involved, such that there are features specific to

each of the algorithms.

2.5.2.3 Deep Learning-Based Instance Features

As our discussion so far and Table 2.2 illustrate, both syntactic and probing features

are domain-dependent. In fact, the vast majority of existing work on algorithm

selection (including the work presented in this thesis) is based on domain-dependent

instance features, which inherently violate Requirement 5, i.e. domain independence,

as also noted by Kerschke et al. [Ker+19]. In the last years, deep learning approaches,

which can automatically learn complex features from rather raw input data [Ben12],

have been leveraged to alleviate this problem.

Approaches going in this direction mostly follow the overall principle depicted in

Figure 2.11. Instead of computing instance features using a domain-dependent

feature function, they convert a raw instance i P I into a representation ri, which

can be fed into a neural network. In most cases, this representation is either an

image as input for a convolutional neural network (CNN) [LB95] or a series of

numbers for online problems as input for a recurrent neural network (RNN) [Sch15].

This network is then supposed to predict the best-performing algorithm given the

representation of the raw instance, i.e. it solves a classification task. The training of

these networks works in a supervised manner based on classification training data

Dtrain “ tpri, a
˚
i q | i P IDu (2.43)

consisting of raw representations ri of the training instances i P ID and the algorithm

a˚
i P A performing best on the corresponding instance i 9.

9Depending on the concrete work, the label of an instance can also be of other nature, e.g., a one-hot
encoded bit-vector inherently defining the associated algorithm by a 1 as in [Pra+21].

54 Chapter 2

Generate representation

Neural network

Fig. 2.11: Visualization of the working principle underlying AS approaches based on auto-
mated instance feature generation. In order to avoid computing instance features
prior to performing algorithm selection, the raw instance is transformed into
a representation ri, such as an image, which can be fed into a neural network.
Based on the input representation of the instance, the neural network outputs an
algorithm a P A to be applied.

Approaches following this scheme mainly differ in the input instance representation

fed into the neural network and the architecture of the neural network used to

predict, which algorithm should be selected.

An overview of literature following the scheme described above is given in Table 2.4.

Most of these works perform successful algorithm selection in the sense that they

beat the SBS on the corresponding loss function considered in the work. Moreover,

some perform on par with standard AS approaches based on domain-dependent

features and some even outperform such standard methods. We believe that this is

an impressive achievement, considering that most of such approaches adhere to re-

quirement 5 and are thus much more versatile in comparison to standard approaches.

Furthermore, this kind of approaches feature a relatively low computation time as

they mainly require computing the raw input representation followed by a pass

through the neural network to compute the actual features and make a selection.

On the downside, a reader taking a closer look at the work in Table 2.4 may wonder

to what degree the approaches are really domain-independent in the sense that no

domain expert is required. While some [Lor+16] leverage a very general approach

to represent instances by converting a text file to an image, the work by Seiler et al.

[Sei+20] is specifically tailored towards TSP instances, where cities are represented

by dots in an image. In fact, Seiler et al. [Sei+20] even show that when integrating

domain knowledge into the image generation process, the performance of the overall

approach can be increased.

2.5 Instance Features 55

Tab. 2.4: Overview and categorization of literature focusing on deep-learning-based auto-
mated instance feature generation.

Work Problem N
N

in
pu

t
re

pr
.

N
et

w
or

k
ty

pe

B
et

te
r

th
an

SB
S

?

B
et

te
r

th
an

st
d

.
A

S
?

[Lor+16] SAT, CSP Image CNN ✓ ✗

[SB17] Path finding in video games Image CNN ✓ ?
[Sie+19] Planning Image CNN ? ?
[ASH19; ASH22] Online bin packing Sequence RNN ✓ ✓

[Sei+20] TSP Image CNN ✓ «
[Pra+21] Single-objective blackbox optimization Image CNN ✓ «
[Zha+21] TSP Image CNN ✓ ✓

In the same spirit, a reader may wonder whether the notion of feature-free used

by some of the approaches mentioned above to describe themselves is a good

fit. As discussed, at least a raw representation of an instance is required as input

for the corresponding neural network, which in itself is a feature representation.

Correspondingly, we avoid the term in this work.

Moreover, while these works are certainly promising, a comprehensive study applying

a general, possibly deep learning-based, instance representation technique as part

of an AS approach over a wide range of different problems is, to the best of our

knowledge, still missing. The study covering the widest range of problems was

performed by Loreggia et al. [Lor+16], which covers SAT and CSP problems.

2.5.3 Feature Preprocessing

As discussed earlier, most instance feature representations violate at least one of

the requirements listed in Section 2.5.1, and correspondingly, feature preprocessing

can be useful to alleviate this situation at least to a certain degree. Most notably,

imputation of missing feature values is often required in practice since instance

features are often computed under a timeout as some of them, e.g. probing features

(cf. Section 2.5.2.1), are quite time-intensive to compute. Correspondingly, if a

timeout is hit during the computation, a feature value might be missing. Further-

more, as standard in machine learning, preprocessing steps can improve the overall

56 Chapter 2

performance of an algorithm selector as, for example, demonstrated by Hutter

et al. [HHL13], Amadini et al. [Ama+15], Bischl et al. [Bis+16], and Heins et al.

[Hei+21].

As a particularly useful preprocessing technique in AS, feature selection [GE03] has

the potential to reduce the overhead incurred by AS, if fewer features have to be

computed for an instance. In fact, even when largely reducing the set of instance

features, the (relative) performance of an algorithm (compared to a set of others)

can still be sufficiently estimated [RH09; KM11; HHL13; Faw+14; Bis+16]. On

the contrary, there also exist cases where feature selection does not seem beneficial

[Kot+15]. Naturally, possible improvements evoked by feature selection, among

other things, also depend on the machine learning model underlying the used AS

approach.

2.6 ASlib: The Algorithm Selection Library

The ASlib [Bis+16] is a curated collection of AS scenarios featuring different prob-

lem domains 10 and is the de-facto standard benchmark for algorithm selection

approaches 11. Its format was designed in order to unify different formats for

publishing AS scenarios, which have been used in the literature before.

An ASlib scenario consists of the following elements:

• A set of instances of an algorithmic problem, which is fixed across the scenario.

• A set of computed instance features, usually grouped by the procedure com-

puting them, and their associated computational costs for each instance. In

addition, it can also contain information about the computation status, e.g.,

failure or success, for each feature group.

10The concrete algorithmic problems included in ASlib are: answer set programming (ASP), bayesian
network structured learning (BNSL), container premarshalling problem (CPMP), CSP, SAT, sub-
graph isomorphism (SGI), maximum satisfibility problem (MAXSAT), mixed integer programming
(MIP), machine learning (ML), quantified boolean formula (QBF), TSP, traveling thief problem
(TTP).

11The current set of scenarios can be found at https://github.com/coseal/aslib_data

2.6 ASlib: The Algorithm Selection Library 57

https://github.com/coseal/aslib_data

• A predefined cross-validation split across the instances. This allows to easily

compare evaluation results across papers as long as they used the predefined

splits and the same evaluation measures.

• A set of algorithms, which can solve the instances.

• One or multiple loss functions l1, . . . , ln.

• Evaluations of the loss function(s) l for the associated algorithms on the

instances. In almost all cases, these evaluations are computed under a timeout,

such that some algorithms time out on some instances resulting in missing

evaluations in those cases (cf. Table 2.5). In addition, it can also contain

information regarding the algorithm run status, e.g., if it crashed or timed out.

• Additional information such as the algorithm cutoff time, feature cutoff time,

possibly algorithm configurations, and memory cutoffs for both features and

algorithms.

Table 2.5 gives an overview of the scenarios contained in ASlib. Note that the

concrete set of scenarios used in the different chapters might differ due to different

loss functions being considered or due to certain properties of the scenarios making

them unappealing for the corresponding chapters. The concrete set of scenarios

used in this thesis is defined in the corresponding evaluation section Ð often as part

of the result table. Moreover, ASlib is continuously growing and the results shown

in this thesis have been developed over the course of four years such that not all

scenarios were available when some of the evaluations were performed.

58 Chapter 2

Tab. 2.5: Scenarios and corresponding statistics contained in ASlib.

Scenario A
lg

or
it

h
m

ic
pr

ob
le

m

#
In

st
an

ce
s

#
A

lg
or

it
h

m
s

#
Fe

at
u

re
s

#
U

n
so

lv
ed

in
st

an
ce

s

R
el

at
iv

e
#

u
n

so
lv

ed
in

st
an

ce
s

R
el

at
iv

e
#

m
is

si
n

g
ev

al
u

at
io

n
s

C
u

to
ff

(s
)

Lo
ss

ASP-POTASSCO ASP 1294 11 138 82 0.06 0.20 600 runtime
BNSL-2016 BNSL 1179 8 86 0 0.00 0.28 7200 runtime
CPMP-2015 CPMP 527 4 22 0 0.00 0.28 3600 runtime
CSP-2010 CSP 2024 2 86 253 0.12 0.20 5000 runtime
CSP-MZN-2013 CSP 4642 11 155 944 0.20 0.70 1800 runtime, solved
CSP-Minizinc-Obj-2016 CSP 100 22 95 0 0.00 0.28 1 obj, time
CSP-Minizinc-Time-2016 CSP 100 20 95 17 0.17 0.50 1200 PAR10
GLUHACK-2018 SAT 353 8 50 116 0.33 0.55 5000 runtime
GLUHACK-2018-ALGO SAT 353 8 50 116 0.33 0.55 5000 runtime
GRAPHS-2015 SGI 5725 7 35 117 0.02 0.07 1.0 ˆ 108 runtime
GRAPHS-2015-ALGO SGI 5725 4 35 117 0.02 0.07 1.0 ˆ 108 runtime
MAXSAT-PMS-2016 MAXSAT 601 19 37 45 0.07 0.39 1800 PAR10
MAXSAT-WPMS-2016 MAXSAT 630 18 37 89 0.14 0.58 1800 PAR10
MAXSAT12-PMS MAXSAT 876 6 37 129 0.15 0.41 2100 runtime
MAXSAT15-PMS-INDU MAXSAT 601 29 37 44 0.07 0.49 1800 runtime
MAXSAT19-UCMS MAXSAT 572 7 54 132 0.23 0.37 3600 runtime
MAXSAT19-UCMS-ALGO MAXSAT 572 7 54 132 0.23 0.37 3600 runtime
MIP-2016 MIP 218 5 143 0 0.00 0.20 7200 PAR10
OPENML-WEKA-2017 ML 105 30 103 0 0.00 0.00 1 pred. accuracy
OPENML-WEKA-2017-ALGO ML 105 21 103 0 0.00 0.00 1 pred. accuracy
PROTEUS-2014 CSP 4021 22 198 456 0.11 0.60 3600 runtime
QBF-2011 QBF 1368 5 46 314 0.23 0.55 3600 runtime
QBF-2014 QBF 1254 14 46 241 0.19 0.56 900 runtime
QBF-2016 QBF 825 24 46 55 0.07 0.36 1800 PAR10
SAT03-16_INDU SAT 2000 10 483 269 0.13 0.25 5000 PAR10
SAT03-16_INDU-ALGO SAT 2000 8 483 269 0.13 0.25 5000 PAR10
SAT11-HAND SAT 296 15 115 77 0.26 0.61 5000 runtime
SAT11-HAND-ALGO SAT 296 11 115 77 0.26 0.61 5000 runtime
SAT11-INDU SAT 300 18 115 47 0.16 0.33 5000 runtime
SAT11-INDU-ALGO SAT 300 18 115 47 0.16 0.33 5000 runtime
SAT11-RAND SAT 600 9 115 108 0.18 0.48 5000 runtime
SAT11-RAND-ALGO SAT 600 8 115 108 0.18 0.48 5000 runtime
SAT12-ALL SAT 1614 31 115 20 0.01 0.54 1200 runtime
SAT12-HAND SAT 767 31 115 229 0.30 0.67 1200 runtime
SAT12-INDU SAT 1167 31 115 209 0.18 0.50 1200 runtime
SAT12-RAND SAT 1362 31 115 322 0.24 0.73 1200 runtime
SAT15-INDU SAT 300 28 54 17 0.06 0.24 3600 runtime
SAT18-EXP SAT 353 37 50 67 0.19 0.51 5000 runtime
SAT18-EXP-ALGO SAT 353 37 50 67 0.19 0.51 5000 runtime
SAT20-MAIN SAT 400 67 108 77 0.19 0.52 5000 runtime
TSP-LION2015 TSP 3106 4 122 0 0.00 0.10 3600 runtime
TSP-LION2015-ALGO TSP 3106 4 122 0 0.00 0.10 3600 runtime
TTP-2016 TTP 9720 21 55 0 0.00 0.05 1 solution quality

2.6 ASlib: The Algorithm Selection Library 59

Extreme Algorithm Selection:

Generalizing Across

Algorithms

3

In this chapter, we discuss a change to a hidden assumption associated with the

instance-specific offline algorithm selection (AS) setting. In particular, one often

assumes that the set of algorithms only contains a handful, i.e. up to tens of

algorithms, whereas we consider the case that the size of the set of algorithms A

is extremely large, i.e. hundreds to thousands. In line with the emerging topic of

extreme classification [Ben+18], we dub this setting with a significantly larger set

of algorithms extreme algorithm selection (XAS) 1. After explaining the differences

to the standard offline AS setting in detail (Section 3.1), we elaborate on why the

change of the size of the set of algorithms makes standard algorithm solutions

impractical (Section 3.2) and how to adapt them in order to generalize across

algorithms mitigating those problems (Section 3.3). In particular, we suggest

not only representing instances but also algorithms, by features to enable such

a generalization across algorithms Ð we call this a dyadic feature representation.

We verify these claims in an experimental case study based on a benchmark AS

scenario created for this work (Section 3.4), before putting our work into the context

of existing work (Section 3.5).

For the remainder of this chapter, we assume no specific loss function. Moreover, we

assume the formal setting of the standard algorithm selection problem as defined in

Section 2.1.1 with some variations as discussed above.

The content presented in this chapter has been partly published in the form of a

workshop paper [TWH19] and a conference paper [TWH20a].

1Note that we do not introduce this problem variant in the background chapter since its formal
definition is equivalent to the offline AS problem, but it differs in certain aspects of hidden
assumptions associated with the offline AS problem as we discuss in the following sections.

61

3.1 From Standard to Extreme Algorithm Selection

Hitherto practical applications of AS, as selecting a boolean satisfiability (SAT) solver

for a logical formula, typically comprise candidate sets consisting of at most tens

of algorithms, and this is also the order of magnitude that is found in standard AS

benchmark suites such as ASlib (cf. Section 2.6). This is in contrast with the prob-

lems of algorithm configuration (AC) [Sch+22] and combined algorithm selection

and hyperparameter optimization (CASH) [Tho+13] as considered in automated

machine learning (AutoML) [HKV19], where the number of potential candidates

is very large and potentially infinite [Tho+13; Feu+15; MWH18] (see also Sec-

tion 2.2). Corresponding methods mostly rely heavily on computationally extensive

search procedures combined with costly online evaluations of the performance

measure to optimize for, since learning effective meta models for an instantaneous

recommendation becomes very hard.

In this part of the thesis, we propose XAS as a novel setting in-between traditional

AS and AC / CASH, which is motivated by application scenarios characterized by

• the demand for prompt recommendations in quasi real-time,

• an extremely large (though still finite) set of candidate algorithms.

An example is the scenario of ªOn-the-fly computingº [Hap+13], including ªOn-

the-fly machine learningº [Moh+19] as one of its instantiations, where users can

request online (machine learning) software services customized towards their needs.

Here, users are unwilling to wait for several hours until their service is ready, but

rather want to claim a result quickly. Hence, for providing a first version of an

appropriate service, costly search and online evaluations are not affordable. As

we will see, XAS offers a good compromise solution: Although it allows for the

consideration of extremely many candidate solutions, and even offers the ability to

recommend algorithms that have never been encountered so far, it is still amenable

to AS techniques and avoids costly online evaluations.

In a sense, XAS relates to standard AS as the emerging topic of extreme classification

(XC) [Ben+18] relates to standard multi-class classification. Similar to XC, the

problem of learning from sparse data is a major challenge for XAS: For a single

algorithm, there are typically only observations for a few instances, if at all.

62 Chapter 3

Tab. 3.1: Overview of the characteristics of the problem settings we distinguish.

Characteristics/Setting AS XAS AC CASH

Size of A at most tens extremely many potentially infinite potentially infinite
Training data some missing sparse mostly not present mostly not present
Online evaluations no no yes yes

3.1.1 Differences to Existing Problem Settings

More concretely, the XAS setting distinguishes itself from the standard AS setting

(cf. Section 2.1.1) by two important properties. Firstly, we assume that the set of

candidate algorithms A is extremely large. Thus, approaches need to be able to scale

well with the size of A. Secondly, due to the size of A, we can no longer reasonably

assume to have evaluations for most algorithms on most training instances. Instead,

we assume that the training matrix spanned by the training instances and algorithms

is only (very) sparsely filled. In fact, we might even have algorithms without any

evaluations at all. Hence, suitable approaches need to be able to learn from very

little data and to tackle the problem of zero-shot learning [Wan+19], i.e. estimate

the performance of a previously unseen algorithm.

Similarly, the XAS setting differs from the AC and CASH settings in two main points.

Firstly, dealing with real-valued hyperparameters, the set of (configured) algorithms

A is generally assumed to be infinite in both AC and CASH, whereas A is still finite

(even if extremely large) in XAS. More importantly, in both AC and CASH, one

usually assumes having time to perform online evaluations of solution candidates

at recommendation time. However, as previously mentioned, this is not the case in

XAS, where instantaneous recommendations are required. Hence, the XAS setting

significantly differs from the AS, AC, and CASH settings.

A summary of the main characteristics of these settings is provided in Table 3.1.

3.2 Standard Algorithm Selection Solutions in the

Context of XAS

In order to elaborate on the weaknesses of standard, i.e. non-dyadic, solutions in

the XAS setting, in the following, we shortly recall the main classes of AS solutions

presented in Section 2.3 and discuss their weaknesses in the XAS setting.

3.2 Standard Algorithm Selection Solutions in the Context of XAS 63

3.2.1 Ranking and Regression Solutions

As mentioned in Section 2.3.2.2 and Section 2.3.2.3, both regression and ranking

solutions often learn an algorithm-specific surrogate loss model

pla : I ÝÑ R (3.1)

for each algorithm a P A where the target domain either is a true loss estimate or

rather a qualitative estimate as in the case of pointwise ranking models. The idea

behind this model is to estimate the outcome of applying algorithm a to instance i in

terms of the actual loss function l, i.e. lpi, aq. The final selection is then performed

by selecting the algorithm with the lowest predicted loss according to the set of

learned surrogate loss functions.

While this approach is easy and straightforward, it has a major disadvantage in the

XAS setting. The number of surrogate modelspla to be learned is extremely large as

the number of algorithms is extremely large by virtue of the setting. Consequently,

the approach has to keep track of a large number of models and also has to query

each of these models in order to propose an algorithm selection when a new instance

arrives. Moreover, since the training data is very sparse, the amount of datapoints

available to train each of these surrogate loss models pla is potentially very small

which may result in rather bad-performing models. Even worse, if there are no

evaluations at all for an algorithm, which may very easily happen as discussed earlier,

no model can be trained at all.

The situation is even more problematic for approaches, which, instead of learning

a surrogate loss for each algorithm, learn models for subsets of algorithms such as

SATzilla’11. SATzilla’11 learns one model for each distinct pair of algorithms (cf.

Section 2.3.2.1), enlarging the number of models to be learned.

Overall, this makes both standard ranking and regression approaches, including

corresponding hybrids (Section 2.3.2.5), rather unsuitable for the XAS setting.

64 Chapter 3

3.2.2 ClassiĄcation Solutions

In contrast to regression and ranking solutions, classification solutions (Section 2.3.2.1)

do not learn an algorithm-specific surrogate loss, but rather directly try to predict

the correct algorithm by learning a multi-class classification model of the form

s : I ÝÑ A (3.2)

and hence do not suffer from the same problems discussed above. However, as

they are solving an extreme classification problem [Ben+18] in the XAS setting,

they suffer from every problem associated with extreme classification, such as the

problem of unbalanced datasets or tail labels. Tail labels are those kinds of labels,

which are very rarely or maybe not at all present in the training (and also have a

low probability in the underlying actual distribution). Correspondingly, they are

inherently hard to predict correctly. Due to the very sparse training data of the XAS

setting, the set of tail labels is rather large and those labels, which are present in the

training data, might even occur only once or very rarely depending on the size of

the dataset.

For this reason, we decided not to use them for the practical case study at the end of

this chapter as we deem them unsuitable.

3.2.3 Collaborative Filtering Solutions

In contrast to the other three solution classes discussed so far, collaborative filtering

(CF) solutions (Section 2.3.2.6) are inherently much better suited for the XAS setting

due to their origin in the field of recommender systems, which deal with both

large amounts of users (instances) and items (algorithms). As a short reminder,

(model-based) CF solutions work by decomposing the (usually sparse) performance

matrix R|ID|ˆ|A|, where an entry Ri,a “ lpi, aq corresponds to the performance of

algorithm a on instance i P ID according to l, if this performance is known, and

Ri,a “ ? otherwise. The rating matrix is decomposed into two matrices U P R
|ID|ˆk

and V P R
kˆ|A| w.r.t. some loss function LpR,U, V q, such that

R « pR “ UV J , (3.3)

3.2 Standard Algorithm Selection Solutions in the Context of XAS 65

where U can be interpreted as latent features of the instances and V as latent

features of the algorithms. Here, k is the number of latent features. Thus, CF

approaches inherently learn a dyadic feature representation and, in particular, a

latent feature representation for each of the algorithms.

Overall, due to their origin in the field of recommender systems and their design

with a large number of items (algorithms) in mind, CF solutions are very well suited

for the XAS setting in terms of their capabilities and limitations as long as they are

paired with a solution to the cold-start problem discussed in Section 2.3.2.6.

3.2.4 Clustering Solutions

Recall that clustering solutions (Section 2.3.2.5) can be seen as decompositional AS

approaches leveraging other AS approaches on the formed clusters. Since they suffer

from the same disadvantages as the approaches, which are used on the clusters, we

do not consider them in the case study.

3.3 Exploiting a Dyadic Feature Representation

As previously discussed, very few of the standard approach classes to AS explained in

Section 2.3 scale well to the XAS setting, as they do not generalize over algorithms;

instead, the models are algorithm-specific and trained independently of each other.

A natural idea, therefore, is to leverage explicit feature information on algorithms as

well and correspondingly joint models.

More specifically, we propose to use a feature function fA : A ÝÑ R
p representing

algorithms as p-dimensional, real-valued feature vectors. Analogously to the instance

feature function f defined in Section 2.1.1, we denote the corresponding feature

representation, i.e. vector, of an algorithm a by fA
a P R

p.

Then, instead of learning one surrogate loss function per algorithm, the joint feature

representation of an instance and an algorithm, allows us to learn a single joint

model
pl : fpIq ˆ fApAq ÝÑ T , (3.4)

66 Chapter 3

and hence to estimate the loss of a given algorithm a on a given instance i in terms

of plpf i,f
A
a q. Here, T either corresponds to R (in case a regression approach is

sought) or to the set of all rankings over algorithms RpAq (in case of a ranking

approach). Note that this is also a very natural idea in terms of the signature of the

true loss function definition in Section 2.1.1. In line with the notion of the dyadic

feature representation, in the following, we will denote such a pair of instance and

algorithm as a dyad.

In the following, we show how both regression and ranking approaches can be

adapted to incorporate the joint representation idea.

3.3.1 Regression

With the additional feature information at hand, we resolve to a single joint dataset

comprised of examples
´
ψ
`
f i,f

A
a

˘
, lpi, aq

¯
with dyadic feature information for all

instances i P ID and algorithms a P A for which a loss value lpi, aq is known, instead

of constructing one dataset per algorithm (and thus learning algorithm-specific loss

surrogates). Here,

ψ : Rd ˆ R
p ÝÑ R

q (3.5)

is a joint feature map that defines how the d-dimensional instance and the p-

dimensional algorithm feature vectors are combined into a single feature representa-

tion of a dyad of length q. What is sought, then, is a (parametrized) surrogate loss

functionplθregression : Rq ÝÑ R, such that

plθregression

´
ψ
`
f i,f

A
a

˘¯
(3.6)

is a (good) estimate of the loss of algorithm a on instance i, i.e. lpi, aq. Here, θ P R
q

is a real-valued, q-dimensional (weight) vector.

Obviously, the choice of ψ will have an important influence on the difficulty of the

regression problem and the quality of the model (3.6). The regression task itself

comes down to learning the parameter vector θ. In principle, this can be done

exactly as in the non-dyadic case (cf. Section 2.3.2.2).

Note that this is a generalization of the approach used by SMAC [HHL; Lin+22] for

predicting performances across instances in algorithm configuration. We allow for

a generic joint feature map ψ and an arbitrary model forplθregression, whereas SMAC

3.3 Exploiting a Dyadic Feature Representation 67

limits itself to a concatenation of features and trains a random forest for modeling
plθregression. Once again, it is noteworthy that SMAC by itself is not applicable in the

XAS setting, as it relies on costly online evaluations. However, we apply an approach

similar to the model used for performance predictions by SMAC in the case study of

this part of the thesis.

3.3.2 Ranking

A similar adaptation can be made for (label) ranking approaches discussed in

Section 2.3.2.3. Formally, this corresponds to a transition from the setting of label

ranking to the setting of dyad ranking (DR) as proposed by Schäfer and Hüllermeier

[SH18].

The first major change in comparison to the ranking approach class discussed earlier

concerns the training data, where the rankings πi for instance i are now of the

form

ψ
`
f i,f

A
aπip1q

˘
ą . . . ą ψ

`
f i,f

A
aπip|A|q

˘
. (3.7)

Thus, we no longer represent an algorithm a simply by its label (a) in the ranking, but

by the result of applying the feature map ψ to the dyadic representation composed

of the instance features f i and the algorithm features fA
a . Furthermore, as in the

case of the dyadic regression idea presented earlier, we no longer learn one loss

surrogate per algorithm, but a single joint model of the form (3.6) based on the

dyadic feature representation.

3.3.2.1 Dyadic Plackett-Luce Model

We chose a Plackett-Luce (PL) [CHD10; SH18] model as a ranking model, which

specifies a parameterized probability distribution on rankings over dyads, i.e. in-

stance and algorithm pairs. In comparison to other models, e.g., the Mallows model

[Mal57], the PL model is well-suited for our case as it can be rather easily learned

when rankings are incomplete [CHD10] in the sense that they do not feature the

complete algorithm set A. In fact, this is quite likely in the XAS setting. In the context

of ranking models, one often rather uses utility models instead of loss functions as

this is much more intuitive regarding the computation of the probability of a ranking

68 Chapter 3

as we will see shortly. For this purpose, instead of learning a surrogate loss function,

we learn a parameterized, joint utility model

puθ
rank : I ˆ A ÝÑ Rě0 , (3.8)

which estimates how well an algorithm is suited for a given instance. In principle,

we could convert puθ
rank into a loss function, but we abstain from doing so for better

understandability. It is noteworthy, that we do not try to make puθ
rank a good estimate

of the actual (inverted) loss function l here, but rather want to learn a function,

which allows to qualitatively rank between dyads.

We model the latent utility puθ
rank as a log-linear function

puθ
rankpi, aq “ exp

´
θJ

`
ψ
`
f i,f

A
a

˘˘¯
, (3.9)

where θ P R
q is once again a real-valued, q-dimensional (weight) vector, which has

to be learned.

Using this latent utility function, the PL model specifies a probability distribution on

rankings over the algorithms: given an instance i P I, the probability of a ranking

a1 ą . . . ą az over any subset ta1, . . . , azu Ď A is

Ppa1 ą . . . ą az | θq “
zź

n“1

puθ
rankpi, anq

puθ
rankpi, anq ` . . .` puθ

rankpi, azq . (3.10)

A probabilistic model of that kind suggests learning the parameter vector θ via

maximum likelihood estimation, i.e. by maximizing the likelihood function

ź

iPID

Ppπi | θq (3.11)

associated with Equation 3.10; this approach is explained in detail by Cheng et al.

[CHD10]. Hence, the associated loss function under which we learn is now of a

probabilistic nature (the logarithm of the PL-probability). Once again, it no longer

focuses on the difference between the approximated algorithm lossplθregressionpi, aq as

in the regression case and the true loss of an algorithm lpi, aq, but on the ranking of

the algorithms with respect to lÐ putting it in the jargon of preference learning,

the former is a ªpointwiseº while the latter is a ªlistwiseº method for learning to

rank [Cao+07].

3.3 Exploiting a Dyadic Feature Representation 69

As a concrete instantiation of the latent utility function puθ
rank we use a feed-forward

neural network, where θ represents its weights, which, as shown by Schäfer and

Hüllermeier [SH18], can be learned via maximum likelihood estimation on the

likelihood function implied by the underlying PL model. Note that the use of

a neural network is of particular interest here, since it allows one to learn the

underlying joint feature map ψ implicitly. Although both instance and algorithm

features are simply fed as a concatenated vector into the network, it can recombine

these features due to its structure and thus implicitly learn such a joint feature

representation.

3.3.3 Advantages and Disadvantages of Dyadic Approaches

The dyadic feature representation allows to generalize both across instances and

algorithms and thus also allows to rate an unknown algorithm as long as a feature

representation of the algorithm can be computed. Furthermore, leveraging a joint

feature map in order to combine the instance and algorithm features, enables one

to learn a joint loss surrogate instead of algorithm-specific ones. Correspondingly,

dyadic approaches overcome the scaling problems of standard AS methods in the

XAS setting discussed in Section 3.2. In particular, the extremely sparse training

data is less of a problem for dyadic approaches as all data can be used to train the

joint model instead of splitting the already limited data onto multiple models.

On the downside, designing good algorithm features is a tedious task, and very little

work leading in this direction has been done (cf. Section 3.5). Consequently, this

is a considerable limitation of our proposed dyadic approach. For the empirical

evaluation in the form of a case study, we will use the parameter values of the

algorithm as features as explained in detail in Section 3.4.1. Furthermore, combining

the instance and algorithm features in a reasonable way, i.e. designing a good joint

feature map ψ, is also a non-trivial problem and thus also a limitation of dyadic

approaches. In the case study, we demonstrate two forms of such joint feature maps

Ð a simple concatenation and an inherently learned joint feature map.

70 Chapter 3

3.4 Experimental Evaluation: A Case Study

In our experiments, we evaluate well-established approaches to AS as well as the

proposed dyadic approaches in the XAS setting. More specifically, we consider the

problem of selecting a machine learning classifier (algorithm) for a new classification

dataset (instance) as a case study related to the ªon-the-fly machine learningº

scenario [Moh+19] 2. To this end, we first generate a benchmark scenario3 and

then use this benchmark for comparison. The generated benchmark scenario as

well as the implementation of the approaches, including detailed documentation, is

provided on GitHub4. We used custom implementations of all approaches considered

for the evaluation, although we used several libraries for some of their components.

More details on this can be found in Section A.1 and the GitHub repository.

3.4.1 Benchmark Scenario

In order to benchmark the dyadic approaches presented above in the XAS setting,

we consider the algorithmic problem of machine learning. More precisely, the

algorithmic problem is to select a classification algorithm for an (unseen) dataset,

corresponding to an instance in the AS jargon. That being said, when talking about

an instance we do not refer to the instance being part of a classic machine learning

dataset, but to the corresponding dataset itself.

The benchmark scenario is fully defined by a finite set of algorithms A for classifica-

tion, a set of instances I corresponding to classification datasets, and a loss function

l estimating the loss of the corresponding XAS method. All of these are described in

the following.

3.4.1.1 Algorithms

We define the set of candidate algorithms A by sampling up to 100 different param-

eterizations of 18 classification algorithms from the machine learning library WEKA

2This is just one among many conceivable instantiations of the XAS setting, which is supposed to
demonstrate the performance of the presented methods

3We chose the notion of a scenario in line with ASlib (cf. Section 2.6).
4https://github.com/alexandertornede/extreme_algorithm_selection

3.4 Experimental Evaluation: A Case Study 71

https://github.com/alexandertornede/extreme_algorithm_selection

[Fra+05]. This yields a total of |A| “ 1, 270 algorithms. The amount of parametriza-

tions for each algorithm depends on the number and types of hyperparameters it

features. We refer to the potential set of parametrizations drawn for a classification

algorithm as the family of that algorithm. An overview of the algorithm families,

their hyperparameters, and the number of instantiations contained in A is given in

Table 3.2.

3.4.1.2 Instance Space

The instance space I is based on the OpenML CC-18 benchmarking suite5 [Van+13],

which is a curated collection of 71 classification datasets that are considered inter-

esting from a model selection and hyperparameter optimization point of view. This

property makes the datasets particularly appealing for the XAS benchmark scenario,

as it ensures more diversity across the algorithms.

Accordingly, the total rating/performance matrix spanned by the algorithms and

classification datasets in principle features 1, 270 ¨71 “ 88, 900 entries. An evaluation

of each algorithm on each dataset results in filling 55, 919 of such entries with a loss

value of the corresponding algorithm on the corresponding dataset, whereas the rest

is unknown due to errors during the evaluation.

3.4.1.3 Loss Function

In the domain of machine learning, one is usually more interested in the generaliza-

tion performance of an algorithm instead of its runtime. Therefore, the loss function

l should assess the quality of the machine learning model produced by a machine

learning algorithm a on instance i. To this end, we carry out a 5-fold cross-validation

on the corresponding instance, i.e. machine learning dataset, and measure the mean

accuracy across the folds.

We note that accuracy is not a loss function, but rather a performance measure.

Nevertheless, one can be easily converted into the other.

5https://docs.openml.org/benchmark/#openml-cc18 (Excluding datasets 554, 40923, 40927,
40996 due to technical issues.)

72 Chapter 3

https://docs.openml.org/benchmark/#openml-cc18

Tab. 3.2: The table shows the types of classifiers used to derive the set A. Additionally, the
number of numerical hyperparameters (#num.P), categorical hyperparameters
(#cat.P), and instantiations (n) is shown.

Learner 0R 1R B
ay

es
N

et

D
ec

is
io

n
St

u
m

p

D
ec

is
io

n
Ta

bl
e

IB
k

J4
8

JR
ip

K
St

ar

Lo
gi

st
ic

LM
T

M
u

lt
ila

ye
rP

er
ce

pt
ro

n

N
ai

ve
B

ay
es

PA
R

T

R
E

PT
re

e

R
an

d
om

Fo
re

st

R
an

d
om

Tr
ee

SV
M

#num.P 0 1 0 0 1 1 2 2 1 1 2 2 0 2 3 3 4 1
#cat.P 0 0 2 0 3 3 6 2 2 0 5 6 2 2 2 2 4 2

n 1 30 12 1 45 89 100 100 99 100 100 100 3 91 100 99 100 100

As the measure of interest, accuracy is a reasonable though to some extent arbitrary

choice. Note that in principle any other measure could have been used for generating

the benchmark as well.

3.4.1.4 Instance Features

For the setting of machine learning, the instances are classification datasets and

the corresponding feature representations are called meta-features as discussed in

Section 2.5.2. We use a specific class of meta-features in order to represent the

datasets, called landmarkers, which are performance scores of cheap-to-validate

algorithms on the respective dataset. More specifically, we use all 45 landmarkers as

provided by OpenML [Van+13], for which different configurations of the following

learning algorithms are evaluated based on the error rate, area under the (ROC)

curve, and Kappa coefficient: Naive Bayes, One-Nearest Neighbor, Decision Stump,

Random Tree, REPTree, and J48. Hence, in total, we use 45 features to represent a

classification dataset, i.e. an instance in the benchmark scenario.

3.4.1.5 Algorithm Features

The presumably most straightforward way of representing an algorithm in terms of

a feature vector is to use the values of its hyperparameters. Thus, we describe each

individual algorithm by a vector of their hyperparameter values.

Due to the way in which we generated the set of candidate algorithms A, we can

compress the vector sharing features for algorithms of the same type. For example, if

3.4 Experimental Evaluation: A Case Study 73

1 5 0 1

Activation Bits

RF SVMRF
 m

ax
. d

ep
th

SV
M

 co
m

ple
xit

y

many

Fig. 3.1: Exemplary visualization of the algorithm feature vector concept. Each algorithm’s
hyperparameters are encoded in the first part of the vector whereas the last part
contains an activation bit for each of the algorithms.

we consider multiple algorithms, which have a learning rate as a hyperparameter, we

only need a single entry for the learning rate in the vector. Additionally, we augment

the vector with a single categorical feature denoting the type of algorithm. Given

any candidate algorithm, its feature representation is obtained by setting the type of

algorithm indicator feature to its type, each element of the vector corresponding to

one of its hyperparameters to the specific value, and other entries to 0. Categorical

hyperparameters, i.e. features, are one-hot encoded yielding a total of 153 features

to represent an algorithm. An exemplary visualization of this idea can be found in

Figure 3.1.

Although simple, such a representation limits the applicability of our approach, since

we cannot represent an arbitrary algorithm but only one that comes from any of the

known families. Moreover, the representation is limited in terms of generalization

across different algorithm families, as these are essentially represented by disjoint

subvectors of the original vector if they do not share any hyperparameter. For the

same reason, large parts of the vector will simply be 0 depending on the algorithm

for which the representation was computed, which might yield a rather problematic

behavior when trying to estimate the loss or performance of the algorithm based on

its feature vector. Nevertheless, our experimental results show that even with such a

simple representation, we can obtain good selection performance even under sparse

training data.

74 Chapter 3

3.4.1.6 Caveats

We would like to note that the problem underlying this benchmark scenario could

of course be cast as an hyperparameter optimization (HPO)/AC or CASH problem.

However, in order to instantiate the XAS setting we deliberately drastically limit

the configuration possibilities such that a very large, but finite set of algorithms to

choose from is created. We make the assumption that there is no time for costly

online evaluations due to the on-the-fly setting (Section 3.1) and hence standard

HPO/AC and CASH methods are not applicable. In a way, one can think of this

benchmark scenario as a zero-shot HPO problem [Özt+22] with a very limited

configuration space.

3.4.2 Baselines

Throughout the study, we employ various baselines to better relate the performance

of the different approaches to each other and to the problem itself, i.e. assessing

whether the more sophisticated approaches prove beneficial compared to simple and

straightforward approaches.

All of the baselines are defined in a way to be able to create a ranking across

algorithms instead of selecting only one to foster a more advanced comparison.

We define the following simple baselines:

RandomRank is a naive baseline choosing ranks for each algorithm at random.

AvgPerformance first averages the observed performance values across all training

datasets for each algorithm. Then, it derives a statically predicted ranking,

sorting the candidate algorithms according to their average performances. Ob-

serve that according to the definition, the highest ranked algorithm according

to AvgPerformance is the single best solver (SBS).

1-NN LR is a nearest-neighbor-based label ranking approach which, given a new

dataset, retrieves the training dataset with the smallest Euclidean distance to

this new dataset based on their feature representations. The ranking associated

with the respective training dataset is then returned as a prediction.

3.4 Experimental Evaluation: A Case Study 75

2-NN LR retrieves the two closest training datasets, averages the performances of

each algorithm across these two datasets and returns the ranking implied by

these average performance values.

Since a static ranking based on the average ranks of the algorithms across datasets is

commonly used as another baseline in the standard AS setting, we note that we omit

this baseline on purpose. This is because meaningful average ranks of algorithms are

difficult to compute in the XAS setting, where the number of algorithms evaluated,

and hence the length of the rankings of algorithms, vary from dataset to dataset.

In addition to the rather simple baselines above, we also compare against more

sophisticated methods:

PAReg refers to the approach of learning a set of algorithm-specific loss function

surrogates pla, one for each algorithm a, through a regression technique as

explained in Section 3.2.1. Here, we employ a random forest per algorithm.

The ranking produced by PAReg for an instance i is then obtained by ranking

all algorithms in A according to their estimated loss valuesplapiq in increasing

order. For those algorithms with no training data at all, we make PAReg

predict an accuracy of 0, as recommending such an algorithm does not seem

reasonable. Recall that it is not uncommon in the XAS setting that there is no

training data for some algorithms.

Alors (REGR) / Alors (NDCG) [MS17] is a CF approach, which can deal with un-

known instances by learning a feature map from the original instance to the

latent instance feature space. It leverages the CF approach CoFiRANK [Wei+07]

using the normalized discounted cumulative gain (NDCG) [Wan+13] as loss

function LpR,U, V q. Since the NDCG is a ranking loss, it focuses on decom-

posing the rating/performance matrix R so as to produce an accurate ranking

of the algorithms. More precisely, it uses an exponentially decaying weight

function for ranks, such that more emphasis is put on the top and less on the

bottom ranks. Alors (REGR) is a slight variation of Alors, which optimizes a

regression loss instead of the NDCG.

76 Chapter 3

3.4.3 Performance Metrics

We compute the following performance metrics measuring desirable properties of

XAS approaches.

regret@k is the difference between the performance value of the best algorithm

within the predicted top-k of algorithms and the actual best algorithm. The

domain of regret@k is r0, 1s, where 0 is the optimum meaning no regret.

NDCG@k is a position-dependent ranking measure (normalized discounted cumulative

gain) to measure how well the ranking of the top-k (k ď |A|) algorithms can

be predicted. It is defined as

NDCG@kpπ, π˚q “ DCG@kpπq
DCG@kpπ˚q “

ˆ
kř

n“1

2lpi,πipnqq´1

logpn`2q

˙

ˆ
kř

n“1

2
lpi,π˚

i
pnqq´1

logpn`2q

˙ ,

where i is a (fixed) instance, π is a ranking and π˚ the optimal ranking, and

πipnq gives the algorithm on rank n in ranking π for instance i. The NDCG

emphasizes correctly assigned ranks at higher positions with an exponentially

decaying importance. It ranges in r0, 1s, where 1 is the optimal value.

KendallŠs τ is a rank correlation measure. Given two rankings (over the same set

of elements, i.e. algorithms) π and π1, it is defined as

τpπ, π1q “ C ´Da
pC `D ` Tπq ¨ pC `D ` Tπ1q

(3.12)

where C/D is the number of so-called concordant/discordant pairs in the

two rankings, and Tπ/Tπ1 is the number of ties in π/π1. Two elements are

called a concordant/discordant pair if their order within the two rankings

is identical/different, and tied if they are on the same rank. Intuitively, this

measure determines on how many pairs the two rankings coincide. It takes

values in r´1, 1s, where 0 means uncorrelated, ´1 inversely, and 1 perfectly

correlated.

3.4 Experimental Evaluation: A Case Study 77

3.4.4 Experimental Setup

In the following experiments, we investigate the performance of the different ap-

proaches and baselines in the setting of XAS for the example of the proposed

benchmark scenario as described in Section 3.4.1.

We conduct a 10-fold cross-validation to divide the benchmark scenario into 9 folds

of known and 1 fold of unknown benchmark scenario instances. In order to estimate

how well the different approaches can deal with limited training data, we draw a

sample of 25, 50, or 125 pairs of algorithms for every instance from the resulting set

of known performance values under the constraint that the performance of the two

algorithms is not identical. Thus, a maximum fill degree of 4%, 8% respectively 20%

of the performance matrix is used for training, as algorithms may occur more than

once in the sampled pairs. The sparse number of training examples is motivated by

the large number of algorithms in the XAS setting. The assumption that performance

values are only available for a small subset of the algorithms is clearly plausible

here. Throughout the experiments, we ensure that all approaches are provided

the same instances for training and testing, and that the label information is based

on the same performance values. We note that the labels are not identical for all

approaches, as, obviously, ranking approaches require other labels than regression

approaches.

In the experiments, we compare two approaches leveraging a dyadic feature repre-

sentation, which we derived in this chapter (Section 3.3) to the baselines described

in Section 3.4.2. They internally fit either a random forest for regression (DFReg Ð

cf. Section 3.3.1) or a feed-forward neural network as a dyad ranking model (DR Ð

cf. Section 3.3.2). As a joint feature map ψ we use the simple concatenation of the in-

stance and algorithm features for the dyadic approaches. As already mentioned, the

neural network-based dyad ranking approach implicitly learns a more sophisticated

joint feature map. However, DFReg only leverages this simple concatenation.

In contrast to the other methods, the ranking model DR is only provided the infor-

mation which algorithm of a sampled pair performs better, as opposed to the exact

performance value that is given to other methods. A summary of the type of features

and label information used by the different approaches/baselines is given on the left

side of Table 3.3.

78 Chapter 3

Tab. 3.3: Overview of the data provided to the approaches and their applicability to the
considered scenarios. Recall that f computes instance feature function and fA

computes algorithm features. An l in the label column indicates that the approach
is trained on the loss function evaluations, whereas a π indicates that it is trained
on rankings.

Approach f fA Label Approach f fA Label

A
d

va
n

ce
d Alors (REGR) ✓ ✗ l

B
as

el
in

es RandomRank ✗ ✗

Alors (NDCG) ✓ ✗ l AvgPrfm ✗ ✗ l

PAReg ✓ ✗ l k-NN LR ✓ ✗ l

DFReg ✓ ✓ l

DR ✓ ✓ π

Note that DFReg corresponds to the model underlying SMAC on an algorithmic level

as discussed earlier. However, it is only trained once offline and not updated with

costly online evaluations, which are not feasible in the XAS setting.

The test performance of the approaches is evaluated by sampling 10 algorithms for

every (unknown) instance to test for and letting the approaches rank these. The

comparison is done with respect to different metrics detailed further below, and the

outlined sampling evaluation routine is repeated 100 times.

Statistical significance w.r.t performance differences between the best method and

any other method is determined by a Wilcoxon signed rank sum test with a threshold

of 0.05 for the p-value. Significant improvements of the best method over another

one is indicated by ‚.

3.4.5 Results

We visualize the results of the experiments described both in form of Table 3.4 and

Figures 3.2 ± 3.6. While the table displays the performance of the corresponding

approach for the corresponding fill rate under a certain measure, there is one

figure for each measure showing how the performance of the different approaches is

affected by changes in the fill rate. However, the information displayed is in principle

the same both for the table and the figures.

3.4 Experimental Evaluation: A Case Study 79

3.4.5.1 Performance of Dyadic Approaches

When considering Kendall’s τ as a measure, either DR or DFReg performs best for

each fill rate and even outperforms all other baselines significantly, meaning that

they generate the best rankings across all considered approaches. The standard

approach of training one model per algorithm to consider, i.e. PAReg, performs

second best for all fill rates closely followed by the simpler baselines. Strikingly, both

Alors variants perform very badly. Regarding the change in performance with an

increasing fill rate, most approaches behave as expected and improve. However, the

nearest neighbor approaches deteriorate and thus seem to be negatively impacted by

the additional training data. Similarly, the DFReg approach decreases in performance

for a fill rate of 8% compared to 4%, but improves again for a fill rate of 20%. While

we could not find a concrete reason for this behavior, one has to keep in mind that

the approach optimizes a regression loss and thus not necessarily generates a good

ranking, but rather aims at predicting the algorithm performances as precisely as

possible. Moreover, the NDCG variant of Alors does perform similarly for all fill

rates.

Analyzing the approach behavior in terms of the NDCG measures, most of the trends

discussed above for the Kendall’s τ remain valid. Most strikingly, Alors (NDCG),

which internally optimizes for the NDCG as a target measure, still yields rather bad

results and even drops in performance for a fill rate of 8% compared to 4%.

Lastly, looking at the regret measure variants, other trends can be observed. First,

although either DR or DFReg still yield the best performance for all fill rates, they do

not outperform all other approaches significantly anymore. In fact, for a fill rate of

4%, the difference to the AvgPerformance baseline, performing very well, is very

small but becomes larger with increasing fill rate. Once again, both Alors variants

perform very badly and only slightly better than the RandomRank baseline indicating

that the top elements of the ranking are not well chosen by Alors.

Overall, it becomes evident that the methods for standard algorithm selection tend

to fail especially in the scenarios with only a few algorithm performance values per

instance, although, depending on the considered measure, some of the baselines

perform astonishingly well despite very little data. Moreover, Alors even fails to

improve over simple baselines, such as AvgPerformance and k-NN LR. With an

increasing number of training examples, PAReg improves over the baselines and also

performs better than Alors, but never yields the best performance for any of the

80 Chapter 3

4 8 20

Fill rate

0.0

0.1

0.2

0.3

0.4

K
en
d
al
l’
s
τ
−
→

Change in performance with fill rate change (Kendall’s τ)

PAReg

Alors (NDCG)

Alors (REGR)

DR

DFReg

RandomRank

AvgPerformance

1-NN LR

2-NN LR

Fig. 3.2: Performance of different approaches for different fill rates in terms of Kendall’s τ .

considered settings or metrics. We attribute the bad performance of Alors to its

need to predict the latent instance features from the given meta-features and thus a

potential error propagation. Moreover, it seems that the algorithm underlying the

optimization of the NDCG, i.e. CoFiRANK does not perform very stable on our data.

Independent of whether a regression loss or the NDCG is optimized, the final training

loss achieved by Alors was often rather high. Nevertheless, the bad performance

of Alors is very disappointing since CF based approaches are naturally very well

suited for the XAS setting as discussed earlier. Note that despite the greatest care,

we can, of course, not exclude that this performance might be caused by an error in

the application of the CoFiRANK executable on our side.

In contrast to this, the proposed dyadic feature approaches clearly improve over

both the methods for the standard AS setting and the considered baselines for all the

metrics. Interestingly, DFReg performs best for the setting with only 25 performance

value pairs, while DR has an edge over DFReg for the other two settings. We attribute

this to the neural network used as a model in the PL model within the DR approach,

which seems to require more data than the 25 pairs. Still, the differences between the

dyadic feature approaches are never significant, whereas significant improvements

can be achieved in comparison to the baselines and the other AS approaches.

3.4 Experimental Evaluation: A Case Study 81

4 8 20

Fill rate

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

N
@
3
−
→

Change in performance with fill rate change (N@3)

PAReg

Alors (NDCG)

Alors (REGR)

DR

DFReg

RandomRank

AvgPerformance

1-NN LR

2-NN LR

Fig. 3.3: Performance of different approaches for different fill rates in terms of NDCG@3.

4 8 20

Fill rate

0.91

0.92

0.93

0.94

0.95

0.96

0.97

N
@
5
−
→

Change in performance with fill rate change (N@5)

PAReg

Alors (NDCG)

Alors (REGR)

DR

DFReg

RandomRank

AvgPerformance

1-NN LR

2-NN LR

Fig. 3.4: Performance of different approaches for different fill rates in terms of NDCG@5.

82 Chapter 3

4 8 20

Fill rate

0.03

0.04

0.05

0.06

0.07

0.08

0.09

re
gr
et
@
1
←
−

Change in performance with fill rate change (regret@1)

PAReg

Alors (NDCG)

Alors (REGR)

DR

DFReg

RandomRank

AvgPerformance

1-NN LR

2-NN LR

Fig. 3.5: Performance of different approaches for different fill rates in terms of regret@1.

4 8 20

Fill rate

0.005

0.010

0.015

0.020

0.025

re
gr
et
@
3
←
−

Change in performance with fill rate change (regret@3)

PAReg

Alors (NDCG)

Alors (REGR)

DR

DFReg

RandomRank

AvgPerformance

1-NN LR

2-NN LR

Fig. 3.6: Performance of different approaches for different fill rates in terms of regret@3.

3.4 Experimental Evaluation: A Case Study 83

Kendall’s τ NDCG@3 NDCG@5 Regret@1 Regret@3

Metric

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el
at
iv
e
im

pr
ov
em

en
t
(f
ol
d
)

2
.7
5
9

1
.0
1
9

1
.0
2
3

1
.1
1
6

1
.1
3
9

1
.8
9
6

1
.0
2
4

1
.0
1
9

1
.6
4
3

2
.2
8
7

1
.7
7
4

1
.0
2
7

1
.0
1
9

2
.1
7

1
.5
2
7

Relative improvement when using best AS approach instead of AvgPerformance

4 % fill rate

8 % fill rate

20 % fill rate

Fig. 3.7: This figure shows the relative improvement of the best approach for various fill
rates in terms of the corresponding metric from Table 3.4 over the AvgPerformance

baseline.

3.4.5.2 Benchmark Heterogeneity

Moreover, our study demonstrates the heterogeneity of the benchmark scenario. As

described by Lindauer and Hoos [LH12], a relevant measure for heterogeneity is the

per-instance potential for improvement over a solution that is static across instances,

i.e. what is often called the single best algorithm or solver (SBS). In this case study,

the SBS is represented by the AvgPerformance baseline, which is always worse than

the oracle by definition on the regret@k measures and also on the other measures

as there is another approach reaching better performance in all cases as Table 3.4

shows.

In order to further support the claims made above, Figure 3.7 visualizes the relative

improvement of the best approach over the AvgPerformance baseline for each fill

rate and each measure. It becomes evident that for a very small fill rate of 4% the

largest improvement over the AvgPerformance is possible in terms of the Kendall’s

τ measure and hence in terms of improving the overall ranking. Considering the

other metrics, an improvement is possible as well, but not to a large extent. This

assessment drastically changes when increasing the fill rate to 8% and 20%, where

84 Chapter 3

Tab. 3.4: Results for the performance metrics Kendall’s tau (τ), NDCG@k (N@3, N@5),
and regret@k (R@1, R@3) for a varying number of performance value pairs used
for training. The best performing approach is highlighted in bold, the second best
is underlined, and significant improvements of the best approach over others are
denoted by ‚.

Approach
4% fill rate / 25 performance value pairs

τ N@3 N@5 R@1 R@3

PAReg 0.1712 ‚ 0.9352 ‚ 0.9433 ‚ 0.0601 ‚ 0.0185 ‚
Alors (NDCG) 0.0504 ‚ 0.9205 ‚ 0.9223 ‚ 0.0686 ‚ 0.0225
Alors (REGR) 0.0303 ‚ 0.9117 ‚ 0.9191 ‚ 0.0794 ‚ 0.0190 ‚
DR 0.3445 0.9523 0.9604 0.0381 0.0089
DFReg 0.3819 0.9564 0.9652 0.0302 0.0079

RandomRank -0.0038 ‚ 0.8933 ‚ 0.9105 ‚ 0.0878 ‚ 0.0272 ‚
AvgPerformance 0.1384 ‚ 0.9388 ‚ 0.9433 ‚ 0.0337 0.0090
1-NN LR 0.1227 ‚ 0.9290 ‚ 0.9310 ‚ 0.0733 ‚ 0.0230 ‚
2-NN LR 0.1303 ‚ 0.9278 ‚ 0.9310 ‚ 0.0642 ‚ 0.0193 ‚

Approach
8% fill rate / 50 performance value pairs

τ N@3 N@5 R@1 R@3

PAReg 0.2537 ‚ 0.9453 0.9594 0.0493 0.0136
Alors (NDCG) 0.0472 ‚ 0.9155 ‚ 0.9164 ‚ 0.0614 ‚ 0.0208
Alors (REGR) 0.0807 ‚ 0.9172 ‚ 0.9304 ‚ 0.0754 ‚ 0.0285 ‚
DR 0.3950 0.9584 0.9685 0.0322 0.0087

DFReg 0.3692 0.9573 0.9661 0.0300 0.0123

RandomRank -0.0038 ‚ 0.8933 ‚ 0.9105 ‚ 0.0878 ‚ 0.0272 ‚
AvgPerformance 0.2083 ‚ 0.9355 ‚ 0.9508 ‚ 0.0493 ‚ 0.0199 ‚
1-NN LR 0.1059 ‚ 0.9246 ‚ 0.9296 ‚ 0.0564 ‚ 0.0209
2-NN LR 0.0874 ‚ 0.9269 ‚ 0.9343 ‚ 0.0541 ‚ 0.0206

Approach
20% fill rate / 125 performance value pairs

τ N@3 N@5 R@1 R@3

PAReg 0.3003 ‚ 0.9525 0.9632 0.0395 0.0107
Alors (NDCG) 0.0540 ‚ 0.9220 ‚ 0.9242 ‚ 0.0542 ‚ 0.0228 ‚
Alors (REGR) 0.1039 ‚ 0.9160 ‚ 0.9329 ‚ 0.0604 ‚ 0.0222 ‚
DR 0.4507 0.9696 0.9715 0.0241 0.0055

DFReg 0.4264 0.9629 0.9720 0.0292 0.0071

RandomRank -0.0038 ‚ 0.8933 ‚ 0.9105 ‚ 0.0878 ‚ 0.0272 ‚
AvgPerformance 0.2541 ‚ 0.9437 ‚ 0.9536 ‚ 0.0523 ‚ 0.0084
1-NN LR 0.1152 ‚ 0.9245 ‚ 0.9318 ‚ 0.0594 ‚ 0.0249 ‚
2-NN LR 0.1142 ‚ 0.9292 ‚ 0.9350 ‚ 0.0412 0.0176 ‚

the potential for improvement becomes slightly less in terms of Kendall’s τ , but

much larger for both regret versions.

Overall, this analysis demonstrates that one can improve over the AvgPerformance

baselines using instance-specific algorithm selection on the proposed benchmark

scenario.

3.4 Experimental Evaluation: A Case Study 85

3.5 Related Work

As mentioned earlier, there is very little work representing algorithms as features,

in particular in the context of AS. The arguably most similar work was recently

proposed by Pulatov and Kotthoff [PK20] and revised in [Pul+22], who also suggest

leveraging a joint model exploiting both instance and algorithm features. In contrast

to our algorithm feature representation in the form of algorithm hyperparameters,

they suggest analyzing the source code of the algorithms and extracting features

based on that. Starting with simple statistical code features such as the number

of lines or the number of files in their first work [PK20], Pulatov et al. [Pul+22]

additionally propose to compute features based on the abstract syntax tree computed

from the source code in their follow up work. Similar to us, they show in an

experimental study on a part of ASlib that leveraging algorithm features does indeed

improve algorithm selection performance. Similarly, Hilario et al. [Hil+09] also

suggest identifying characteristics of algorithms, which allow to generalize over

algorithms, such as the optimized loss function, and summarize these in an ontology

Ð a suggestion, which was later also mentioned by Vanschoren [Van10]. Hough

and Williams [HW06] represent algorithms by their hyperparameters among other

features and even go a step beyond and also represent the execution environment

using features in the context of AS. More recently, de Nobel et al. [dWB21] describe

a technique to represent CMA-ES variants based on timeseries describing their

behavior during optimization.

Furthermore, as mentioned earlier, representing algorithm configurations by their

hyperparameters is quite often done in the field of AC, in order to estimate the

performance of a configuration, for example in SMAC [HHL; Lin+22] or GGA++

[Ans+15]. Similarly, in AutoML, in particular neural architecture search, complete

pipelines or neural network architectures are represented in terms of features to

estimate their performance. Representing a neural network architecture can, for

example, be done using graph neural networks [KW16] which take a graph, i.e.

the architecture itself, as input. For an overview of related approaches, we refer to

White et al. [Whi+21].

Lastly, as detailed in Section 2.3.2.6, model-based CF approaches also inherently

compute (latent) algorithm features. Apart from the literature mentioned earlier,

famous examples can also be found in the field of AutoML [Yan+19; FSE18].

86 Chapter 3

3.6 Conclusion and Future Work

In this chapter we discussed the extreme algorithm selection problem, featuring an

extremely large amount of algorithms and sparse training data, and elaborated on

the weaknesses of existing AS approaches in this setting. Moreover, we suggested to

leverage algorithm features as part of a dyadic feature representation to generalize

across algorithms and learn a single joint model across all algorithms as a way to

cope with the challenges of the XAS problem. As part of this, we discussed the

advantages and disadvantages of dyadic approaches and come to the conclusion that

finding a suitable algorithm feature representation is a very challenging problem. To

analyze the performance of our suggested approaches, we designed a heterogeneous

benchmark scenario featuring more than one thousand algorithms. The results

of our experimental evaluation on that benchmark scenario show that, for our

particular case study, algorithm selectors with strong generalization performance

can be obtained despite the small number of training examples using our dyadic

feature approaches. Moreover, the results suggest that there is indeed a need for the

development of specific methods addressing the characteristics of the XAS setting as

standard approaches show a rather disappointing performance.

There are various paths to improve the work presented in this chapter of the thesis

Ð we will focus on the three important ones. As should have become evident

by now, designing good algorithm features, which go beyond the rather simple

representation we chose, is one of these paths. One approach, which we deem

particularly promising is the one of extracting discriminative algorithm features

from timeseries describing the algorithm behavior during application de Nobel et al.

[dWB21], which we also mentioned earlier. We believe that information about

the behavior of the algorithm should be very useful in order to determine, if an

algorithm will perform well on a new instance and should in principle also allow to

generalize across algorithms behaving similarly. The second most important path

to follow is the one of designing a good feature map ψ, which combines instance

and algorithm features into a joint feature vector. While learning this map in an

implicit fashion using a neural network works well in our approach, we believe that

explicitly learning the map is a path that should be further explored. Lastly, in order

to allow for easier research on the topic, more benchmark scenarios featuring both a

large number of algorithms and algorithm features should be created and published

in a unified format, for example as part of ASlib.

3.6 Conclusion and Future Work 87

Offline Algorithm Selection

Under Censored Feedback

4

In this chapter, we introduce the problem of so-called censored training data in

algorithm selection (AS) and elaborate on why treating censored data is important in

the context of AS and in how far existing methods struggle to do so (Section 4.1). To

alleviate those problems, we suggest resorting to methods from the field of survival

analysis, which we shortly introduce (Section 4.2). We then draw on survival analysis

methods in order to design risk-averse algorithm selectors specifically tailored

towards avoiding the selection of timeouting algorithms under loss functions that

impose a high penalty on such timeouts (Section 4.3). In an extensive experimental

evaluation on ASlib we show that existing approaches for treating censored data do

indeed perform poorly and that our suggested approaches majorly improve over the

state of the art in AS (Section 4.4). Before closing the chapter with a recap, we put

our work into the context of related work (Section 4.5).

For the remainder of this chapter, we will assume the standard offline AS setting

defined in Section 2.1.1. Moreover, we will assume that the considered AS loss

function l is either the runtime of the selected algorithm or a penalized version

thereof.

The content presented in this chapter of the thesis has been partly published in the

form of a conference paper [Tor+20a].

4.1 The Problem of Censored Training Data

Recall that in the instance-specific offline AS setting, we assume to have training

data given to the algorithm selectors in the form of evaluations of the loss function l,

i.e. algorithm runtime, for the algorithms A on the training instances ID. However,

in combinatorial optimization, some algorithms may take extremely long to solve

some instances yielding so-called heavy-tailed runtime distributions [GSC97] (as

89

5
4

Runtime

Fig. 4.1: This figure depicts how algorithms are often run in the context of AS. Here, algo-
rithms a2 and a3 terminate before the cutoff C and thus feature a corresponding
runtime. Algorithm a1, however, is forcefully terminated as it did not finish until
timestep C, and thus, C is only an upper bound on its runtime yielding a right-
censored datapoint.

mentioned in Section 2.4). Due to this, the generation of training data for surrogate

loss models in algorithm selection is usually time-constrained in the sense that

a time limit C, called cutoff, is set when running an algorithm. If the algorithm

does not solve the instance prior to this timeout, the execution is aborted to save

computational costs. In such a case, the runtime data is right-censored [KK10] in

the sense that lpi, aq ą C, i.e. the true runtime is known to exceed C. This process

is depicted in Figure 4.1. In cases where the data is not explicitly generated for

training, but comes from a real-world scenario, it usually features only one true

algorithm runtime for each instance, as in the absence of an algorithm selector,

it is common practice to run many algorithms in parallel and stop all others as

soon as the first one solves the instance. Hence, the rating/performance matrix

R P R
|ID|ˆ|A| of known loss values spanned by the set of training instances ID and

algorithms A, similar to the performance matrix depicted in Figure 2.7 in Chapter 2,

is only partially filled with known runtimes. As an example, consider the algorithm

selection benchmark ASlib [Bis+16], where in some cases, more than 70% of the

data points are censored (cf. Table 2.5). Correspondingly, those datapoints should

somehow be handled as they can make up a significant amount of the data to learn

from.

4.1.1 Existing Solutions

A naïve approach to deal with this problem is to either impute missing runtimes with

a default value or ignore them altogether when training a surrogate losspl. Common

choices for a default are the cutoff time C or ten times the cutoff time, motivated by

the penalized average runtime (PAR10) score (cf. Section 2.4.1). As a short reminder,

90 Chapter 4

the PAR10 score corresponds to the runtime, if the algorithm did not time out, or ten

times the cutoff, if it timed out. However, all these strategies exhibit considerable

drawbacks:

1. Any form of imputation is a deliberate distortion of the training data and

thus should be done with care. In scenarios with many censored data points,

e.g., the one with over 70%, imputation may lead to strongly biased surrogate

models. More specifically, the imputation of missing values with the cutoff

time, which is lower than the actual runtime, can lead to a systematic underes-

timation of true runtimes. In fact, one can even show theoretically that this

is the case under certain assumptions as we elaborate on in more detail in

Section 5.3.1.

2. Dropping censored samples altogether is a waste of valuable information.

Although the censored samples do not inform about precise runtimes, they

still carry information, namely that lpi, aq ą C. Furthermore, by dropping

the long and keeping the short runtimes, there is again a danger of inducing

over-optimistic models.

Although we are not the first to remark these problems of censored data (cf. Sec-

tion 4.5), very little work has been done on solving them in the context of algorithm

selection. A method for imputing censored data points introduced by Schmee and

Hahn [SH79] was studied in the context of algorithm configuration (AC) [HHL11;

Egg+18] and AS [Xu+08]. A generalization of this method proposed by Hutter et al.

[HHL11] and later decoupled from random forests by Eggensperger et al. [Egg+18],

starts by fitting a model on the uncensored data points, and then uses it to predict

the mean µ and the variance σ2 of the distribution for each censored data point.

Based on these statistics, a truncated normal distribution N pµ, σ2qěC , where C is a

known lower bound on the true runtime, is computed. Lastly, each censored data

point is imputed with the mean of its associated truncated normal distribution and

the model is refit based on both the censored and uncensored data points. This

process is repeated until a stopping criterion is reached. Note that this method relies

on the assumption of a normal distribution for runtimes, which is in contradiction to

the more common heavy-tail assumption [GSC97]. Accordingly, the runtime data to

learn from is usually log-transformed before applying the method to comply with

the heavy-tail assumption.

Despite the fact that this approach is a common way to deal with censored data in

the context of AS and AC, the method was originally introduced for linear models

4.1 The Problem of Censored Training Data 91

and shown to work well for problems with only a single feature, but there is no

strong justification for why the method should work well for higher-dimensional

problems and more powerful models. In practice, we observe that the method often

fails to improve over training with the censored data directly in our experiments

(see Figure 4.3).

4.2 Survival Analysis and Random Survival Forests

In this section, we explain some basic concepts of survival analysis (SA) required to

understand the remainder of this thesis chapter. Moreover, we present an existing

non-parametric approach to fitting survival distributions, based on tree induction

and ensembling techniques, on the basis of which we construct an algorithm selector

later in this chapter. For an in-depth introduction to SA, we refer to Kleinbaum and

Klein [KK10].

4.2.1 Basic Concepts of Survival Analysis

In SA, we typically proceed from historical data of the form

D “ tpxn, yn, δnquN
n“1 , (4.1)

where xn P X Ď R
d is a d-dimensional feature representation of a context, yn P R`

is the observed time until the event of interest occurred for the given context, and

δn P t0, 1u indicates whether the sample is (right-)censored (δn “ 1) or uncensored

(δn “ 0), i.e. yn is the true time until the event occurred or a right-censored version

thereof. More precisely,

yn “

$
&
%
Tn if δn “ 0

Cn if δn “ 1
, (4.2)

where Tn is the uncensored and Cn the censored survival time one of instance n,

which means that yn is only a latent representation of Tn. Observe that the censored

survival time Cn can be different for each instance in principle. Given such historical

recordings, one is interested in inferring a model

z : X Ñ R` , (4.3)

92 Chapter 4

which, given a context x, correctly predicts the unknown survival time T P R`.

In our setting of algorithm selection, the event of interest is the termination of an

algorithm, and a context is given by a problem instance, or more precisely, its feature

vector. Moreover, since we consider a fixed cutoff C for a timeout for all instances

and algorithms, Cn “ C for all 1 ď n ď N .

Obviously, the problem of inducing Equation 4.3, as stated above, is very similar to

the problem of standard regression. However, since the target variable is censored,

the training data contains partial information and hence uncertainty. Accordingly,

to capture this uncertainty, the majority of survival analysis approaches employ

probabilistic models. To this end, the time until an event of interest T occurs is

considered a random variable, which is modeled via a probability distribution using

the so-called survival function (SF):

Spt,xq “ P pT ě t | xq , (4.4)

i.e. the probability that the event of interest occurs at time t or later, given context

x P R
d. Note that the survival function can be equivalently expressed in terms

of the cumulative (death) distribution function (CDF) F pt,xq “ P pT ď t | xq as

Spt,xq “ 1 ´ F pt,xq. While the survival function is defined according to the

non-occurrence of the event until a certain time, the hazard function

hpt,xq “ lim
∆tÑ0

P pt ď T ă t` ∆t | T ě t,xq
∆t

(4.5)

can be interpreted as expressing a degree of propensity of the event to occur at time

t, under the condition that it did not occur before. The above functions are closely

related to each other, and knowing one of them suffices to derive the others:

Spt,xq “ exp

˜
´
ż t

0

hpu,xqdu
loooooomoooooon

Hpt,xq

¸
, hpt,xq “ ´

ˆ
dSpt,xq{dt

Spt,xq

˙
(4.6)

where Hpt,xq is the cumulative hazard function. To further understand this con-

nection, consider the example of Spt,xq “ exp p´λ ¨ tq and hpt,xq “ λ, where the

hazard rate is modeled as a constant λ independent of the context. In practice,

this assumption will, of course, be overly simplistic, and the hazard function will

depend on the context features x (also called covariates in SA). Moreover, to model

the dependence on t, several parametric families of functions for instantiating the

hazard function have been proposed, such as log-normal and Weibull functions.

4.2 Survival Analysis and Random Survival Forests 93

A survival model can be used in various ways to obtain a real-valued prediction of

the survival time, as requested by Equation 4.3. A natural predictor is the expected

survival time, i.e. the expectation of the random variable T :

zpxq ..“ E rT s “
8ż

0

Spt,xq dt “
8ż

0

1 ´ F pt,xq dt (4.7)

4.2.2 Random Survival Forests

Due to their excellent predictive power, random forests are often chosen to tackle

standard regression problems and also serve as a strong baseline in AS for modeling

a surrogate modelplpi, aq. For this reason, we chose to model the runtime distribution

of an algorithm a via the survival function Sa in the form of a random survival forest

[Ish+08], an adaptation of standard random forests for survival analysis.

While similar to standard random forests, random survival forests differ in the way

they (a) build the individual survival trees and (b) generate predictions from these

individual trees. Similar to the CART algorithm [Bre+84], the individual survival

trees are binary trees that are built via a recursive splitting approach. Splits are

chosen to maximize survival difference between child nodes, i.e. by maximizing the

difference in observed times y associated with these nodes. This process is continued

until at least one of possibly multiple stopping criteria is reached, e.g., a node must

contain at least d0 uncensored samples. After such a survival tree has been built, it

can be used to estimate the cumulative hazard function Hpt,xq for a query instance

x in the following way: Starting at the root node, one recursively determines which

subtree the query instance x belongs to, depending on the split criterion of the

considered node until a leaf node epxq is reached. Let

• t1 ă . . . ă tNpepxqq be the distinct times of events associated with leaf node

epxq,

• dt,epxq be the number of samples in node epxq where the event occurred at

time t, i.e. with δ “ 0 and y “ t

• and Yt,epxq the number of samples where the event has not occurred until time

step t, i.e. with δ “ 1 or y ą t.

94 Chapter 4

Then, the cumulative hazard function Hpt,xq is estimated using the Nelson-Aalen

estimator [Nel72; Aal78] as follows:

Hpt,xq “
ÿ

tiăminptNpepxqq,tq

dti,epxq

Yti,epxq
(4.8)

This can be seen as an empirical estimation of the hazard function for each event

time ti, and an accumulation of these estimates over time. Note that the cumulative

hazard function fully defines the survival distribution for a single survival tree. To

obtain the distribution based on the entire forest, one simply takes the mean over

the cumulative hazard function estimates of the single trees.

4.3 Survival Analysis for Algorithm Selection

To tackle the problem of algorithm selection using SA, we learn one survival distri-

bution, i.e. algorithm runtime distribution, for each algorithm a separately, using

the above-mentioned random survival forests. To this end, we leverage the training

data available by constructing algorithm-specific training datasets of the form shown

in Equation 4.1 as

Da “
␣

pf i, lpi, aq, Jlpi, aq “ CKq | i P ID

(
, (4.9)

where we assume that an occurrence of an algorithm runtime lpi, aq equal to the

cutoff time C, i.e. lpi, aq “ C, indicates a timeout of algorithm a on instance i and

hence a censored sample. Based on this, we estimate the associated survival distri-

bution Sa for each algorithm a, which is fully defined by the associated cumulative

hazard function Ha. Recall that f i is the instance feature vector associated with

instance i.

In practice, the random survival forests estimate survival step functions pSa for each

algorithm a. Thus, we can approximate the integral of the survival function as

follows:
ż 8

0

Sapt,f iq dt «
ÿ

tk,tk`1Pt0uYTaYtCu

tk ¨
”
pSaptk,f iq ´ pSaptk`1,f iq

ı
, (4.10)

4.3 Survival Analysis for Algorithm Selection 95

where Ta denotes the set of event times, i.e. points of termination, observed for

algorithm a. Likewise, other integrals related to the survival function, such as the

expected runtime, can be approximated.

4.3.1 Decision-Theoretic Algorithm Selection

A survival distribution Sa can be seen as a generative model, which, in contrast to

standard regression models, not only provides a point estimate of an algorithm’s

runtime but characterizes the runtime of algorithm a on problem instance i in

terms of a complete probability distribution of a random variable Ta,i. This is a

rich source of information, which can be used to realize algorithm selection in a

more sophisticated manner by means of a decision-theoretic approach, adopting

the principle of expected utility maximization [Sch82], or, equivalently, expected loss

minimization. More specifically, this principle suggests a very natural definition of a

loss function surrogate pl and thus an algorithm selector s : I ÝÑ R according to the

framework introduced in Section 2.3 as

spiq ..“ arg min
aPA

plpi, aq , (4.11)

with
plpi, aq “ E rL pTa,iqs (4.12)

where L : R` Ñ R` is a decision-theoretic loss function which maps runtimes to

real-valued loss degrees.

At first sight, a natural decision criterion is the expected survival time (cf. Equa-

tion 4.7), i.e. the expected algorithm runtime, which was also suggested by Gagliolo

and Schmidhuber [GS06]. This is obtained as a special case of Equation 4.11 with

L ptq “ t:

E rL pTa,iqs “ E rTa,is “
ż 8

0

Sapt, iq dt . (4.13)

However, the expected algorithm runtime may appear sub-optimal in cases where

the AS loss function l of interest substantially punishes algorithms running into a

timeout. For example, the PAR10 score (cf. Section 2.4) assigns the runtime of an

algorithm as its loss if it adheres to the timeout, but 10 times the cutoff if it times out.

This is not accounted for by the expected runtime in Equation 4.13, which considers

all regions of the survival function as equally important and tends to underestimate

the risk of a timeout.

96 Chapter 4

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Algorithm Runtime

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Algorithm 0
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Algorithm Runtime

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Tr
un

ca
te

d
Ri

sk
 S

co
re

 D
iff

er
en

ce

E[T1
1] E[T1

3]
E[T2

1] E[T2
3]

E[T4
1] E[T4

3]
E[T6

1] E[T6
3]

Fig. 4.2: Left: Survival functions of various algorithms on a problem instance. Right:
Truncated risk score difference between the runtime of algorithm 1 (yellow on
the left) and algorithm 3 (green), i.e. E rTα

1
|T1 ď ts ´ E rTα

3
|T3 ď ts. Values

below the zero line for the non-truncated score indicate that E rTα
1

s ă E rTα
3

s and
hence algorithm 1 is selected over algorithm 3, which is only the case with higher
risk aversion. Furthermore, indeed larger values of α emphasize the tail of the
distributions as the difference is close to zero for small values of t.

In fact, an algorithm can have a shorter runtime than another one in expectation,

while having a higher probability of running into a timeout. To see this, consider the

comparison between the first and third algorithm in Figure 4.2 on some example in-

stance; time is normalized to make the cutoff C “ 1. The left plot shows the survival

functions of five algorithms computed based on Equation 4.6 and Equation 4.8. In

the right plot, for now, we focus only on the light blue curve, which, for each point in

time t, depicts how much longer algorithm 1 is expected to run compared to algorithm

3, given that both algorithms run for at most t, i.e. E rT1|T1 ď ts ´ E rT3|T3 ď ts.
Looking at the value of this curve at t “ 1, it is clear that algorithm 3 has a better

expected runtime (Equation 4.13) than algorithm 1. However, the left plot also

shows that algorithm 3 has a substantially higher probability to time out, as its prob-

ability to terminate at t “ 1, i.e. at the cutoff, is larger than for algorithm 1. While

a risk-averse view would focus on the survival probability at the timeout and then

prefer algorithm 1 over algorithm 3, the expected algorithm runtime prefers 3 over

1, because it weights all parts of the distribution equally Ð clearly a sub-optimal

choice when timeouts are strongly punished.

As an alternative, the PAR10 score itself may serve as a loss function:

L ptq “ PAR10ptq “

$
&
%
t if t ď C

10 ¨ C else
. (4.14)

4.3 Survival Analysis for Algorithm Selection 97

The principle of expected loss minimization (Equation 4.11) then comes down to

minimizing the expected PAR10 score, which was also suggested earlier by Biedenkapp

et al. [Bie+17] as part of a study on algorithm parameter importance analysis. If

this score plays the role of the decision-theoretic loss function and hence the loss

function surrogate, on the basis of which the choice of an algorithm will eventually

be assessed, this would indeed be a natural idea. On the other side, it is true that the

PAR10 loss is rather extreme in the sense of strongly focusing on the probability mass

close to the cutoff. While we argued that uniformly averaging over the entire range

of runtimes (i.e. computing the expected runtime) is sub-optimal, this behavior

could be overly conservative and hence not optimal either. To understand this,

consider again Figure 4.2. The desire to avoid timeouts at any cost would require

choosing algorithm 1. At the same time, however, a preference for algorithm 3

appears by no means absurd, since there is undeniably a considerable probability

that this algorithm is substantially faster than algorithm 1 Ð all the more keeping in

mind that the survival functions are only estimates of the underlying ground truth

distributions, and hence E rL pTa,iqs is only an estimate of the true expected loss.

4.3.2 Risk-Averse Algorithm Selection

In light of the above discussion, our general goal should be to trade off the different

regions of the runtime distributions, keeping in mind the advantages of potentially

very short runtimes on the one hand, and the risk of timeouts on the other hand. To

this end, we consider two parameterized classes of functions for instantiating L .

Both functions are convex, thereby reflecting a risk-averse attitude in decision-making

[Fis69]. In the context of algorithm selection, where decisions are algorithms and

the avoidance of timeouts has the highest priority, risk aversion appears to be a very

natural and meaningful property.

The first class of functions consists of polynomials

L αptq “ tα , (4.15)

where α P R` controls the degree of risk aversion. Hence, larger values of α ě 1

result in stronger risk aversion and are therefore better suited for hard algorithmic

problems with a large risk of timeouts, whereas smaller values 0 ă α ă 1 should

be chosen for simpler problems where the majority of algorithms terminate before

the cutoff time. One can observe that the higher α, the less important is the

98 Chapter 4

behavior of the algorithms for low runtimes (the head of the distribution) and the

more important for long runtimes (the tail of the distribution), leading to a clear

preference of the ªsaferº alternatives for α ą 2. In our experimental evaluation,

we demonstrate that α can be tuned effectively using hyperparameter optimization

(HPO) techniques (cf. Section 2.2.4).

As a second class of functions, we consider functions of the form

L α,βptq “ min t´α logp1 ´ tq, βu , (4.16)

where α P r0, 1s again defines the degree of risk aversion, with smaller values

encouraging more risk-averse selections, i.e. potentially safer algorithm choices,

and β P R` constitutes an upper bound on L to limit extreme behavior. Here, we

assume that t P r0, 1s, which can be achieved via rescaling all runtimes such that

C “ 1. Again, both parameters α and β can be learned as we demonstrate in the

experiments (cf. Section 4.4).

In practice, there is no obvious heuristical choice of a suitable function and corre-

sponding parameters for a problem at hand. Therefore, we suggest to determine the

most suitable function in a data-driven way using HPO techniques. In the experi-

mental evaluation, we present an approach based on Bayesian optimization [Fra18],

automatically selecting either the polynomial or the log-based function as well as

adequate parameters α (and β) for a given scenario. This is similar to what is done

by Lindauer et al. [Lin+15] in their tool called AutoFolio, who go a step beyond and

automatically select the best AS approach from a set of AS approaches for a given

scenario and automatically tune all of its hyperparameters.

4.4 Experimental Evaluation

In this section, we provide an extensive evaluation of the proposed methodology

based on survival analysis, applying it to algorithm selection library (ASlib) (cf.

Section 2.6 for an overview) and comparing it to state-of-the-art approaches. The

list of the scenarios considered in this evaluation can be inferred from Figure 4.3.

4.4 Experimental Evaluation 99

4.4.1 Experimental Setup

We evaluate each approach by conducting a 10-fold cross-validation for every sce-

nario where the concrete folds are provided by the corresponding scenario. Unsolv-

able instances, for which no valid solution could be determined by any algorithm

before violating the fixed timeout, are subsequently removed from the test fold as

all selectors are equally bad on them anyway.

Complete algorithm selection systems commonly integrate complementary tech-

niques such as pre-solvers or feature selectors. For our experimental study, we

consider pure algorithm selection models without any pre-solvers or feature selec-

tors to focus on the models themselves and their suitability to deal with censored

data. However, since some instance features are missing and for better comparability,

we imputed missing feature values with their respective mean across all training

instances for all considered approaches and baselines. Moreover, we standardize all

features. The time for computing the corresponding instance feature representations

required by the approaches is part of their runtime as well.

The performance of the approaches is assessed via the PAR10 metric (cf. Sec-

tion 2.4.1) defined as the penalized average runtime of the selected solver re-

quired to solve problem instances. Here, timeout violations are explicitly pe-

nalized by a factor of 10. Recall that, whether the proposed techniques consti-

tute improvements over the single best solver (SBS) baseline, and consequently

close the gap to the virtual best solver (VBS), can be assessed in terms of the

normalized PAR10 (nPAR10) metric (cf. Section 2.4.1) defined as nPAR10 “
pP AR10Model´P AR10V BSq{pP AR10SBS´P AR10V BSq. Here, the SBS refers to the algorithm

being best on average wrt. PAR10, whereas the (hypothetical) VBS denotes the

optimal algorithm selector. Normalized scores greater than 1 denote that the ap-

proach is on average less efficient than the SBS, whereas scores below 1 indicate an

improvement over the SBS baseline.

Our experimental study specifically distinguishes the examined baselines according

to their performance under different treatments of censored data as discussed in

Section 4.1. We initially examine which of the previously proposed methods to

address censoring works best with each baseline, and subsequently compare their

respective best results in terms of their PAR10 performance against our proposed

methodology. Consequently, each baseline selector is evaluated under removal of

censored data (Ignored), imputation by the cutoff (Runtime), and imputation by a

100 Chapter 4

timeout penalty (PAR10). Where applicable, we also evaluate the method proposed

by Schmee and Hahn [SH79] discussed in Section 4.1. We choose the most effective

method for coping with censored data for each baseline selector based on the median

PAR10 performance aggregated over all considered ASlib scenarios.

In the overall comparison, we include three variants of our approach leveraging

random survival forests for estimating the survival functions. First, we consider

a variant selecting algorithms according to their expected runtime as defined in

Equation 4.13 (referred to as Run2SurviveExp). Second, a selection according to

the expected PAR10 score of an algorithm as defined in Equation 4.14 (referred to

as Run2SurvivePAR10) is evaluated. Lastly, a variant making use of the previously

introduced polynomial and log-based functions is used, where (a) the type of the

function and (b) respective parameters are tuned by means of Bayesian optimization

on the training data (Run2SurvivePoly/Log).

The code for all experiments and the generation of plots, including detailed doc-

umentation, can be found on Github1. More technical details can be found in

Section A.2.

4.4.2 Baselines

In the following, we give a short overview of all baselines we compare with. For a

categorization of these approaches, refer to Section 2.3.

SUNNY [AGM14] retrieves the k nearest neighbors of a queried problem instance

in terms of Euclidean distance w.r.t. the feature representation. From this

set, the most efficient algorithm in terms of the (possibly imputed) training

runtimes is chosen.

ISAC [Kad+10] leverages a g-means clustering algorithm instead of a kNN approach

to partition the feature space. Originally designed for algorithm configuration,

we transfer ISAC to algorithm selection by borrowing SUNNY’s decision strat-

egy. More specifically, we first assign the new instance to the closest centroid

and subsequently select algorithms performing best on the training instances

associated with the respective cluster.

1https://github.com/alexandertornede/algorithm_survival_analysis

4.4 Experimental Evaluation 101

https://github.com/alexandertornede/algorithm_survival_analysis

SATzillaŠ11 [Xu+11] leverages pairwise comparisons of algorithms. For each pair

of algorithms, a random forest is trained to decide which one performs better

for a given problem instance. An explicit cost-sensitive loss function weighs

instances subject to the absolute difference in their imposed computational

cost. Faced with a new instance, the algorithm that wins the highest number

of pairwise comparisons is predicted.

PerAlgorithmRegressor learns one random forest per candidate algorithm to

predict each algorithm’s performance while facilitating algorithm selection

according to their respective estimates.

MultiClassSelector follows a multi-class classification approach, where instances

are first labeled with the most effective selections, and a random forest is

subsequently employed as a classifier to establish suitable selections.

4.4.3 Results

Figure 4.3 summarizes the results for the examined baselines subject to different

methods of handling censoring. We find that imputing censored algorithm runs with

their timeout works best for the PerAlgorithmRegressor, SATzilla’11, and SUNNY,

whereas the PAR10 imputation is more effective for ISAC. We further find an iterative

adjustment of censored values according to the technique proposed by Schmee

and Hahn [SH79] to not benefit the PerAlgorithmRegressor in terms of median

performance. Since an instance’s most efficient solver is preserved regardless of

whether censored algorithm runs are imputed with their exact timeout, PAR10

penalty or even entirely ignored, we note that the MultiClassSelector’s performance

is insensitive to prior imputation methods and thus not included in Figure 4.3. While

treating censored values as their exact timeout or PAR10 score evidently yields

similar results, obviously, discarding censored algorithm runs is the least appealing

method, as depending on the ASlib scenario, up to 73.5% of runs are ignored.

Figure 4.4 compares the methods based on survival analysis proposed in this paper

against the respectively most effective results w.r.t. the imputation procedure for

each previously discussed baseline. The best results for each scenario are printed

in bold, and an overline indicates beating all baselines. Evidently, neither ISAC

nor the MultiClassSelector establish competitive algorithm selection on the ASlib

benchmark, as they are consistently outperformed across all scenarios. This ob-

102 Chapter 4

PA
R10

Run
tim

e

Ign
ore

d

S &
 H

ASP-POTASSCO
BNSL-2016
CPMP-2015

CSP-2010
CSP-MZN-2013

CSP-Minizinc-Time-2016
GRAPHS-2015

MAXSAT-PMS-2016
MAXSAT-WPMS-2016

MAXSAT12-PMS
MAXSAT15-PMS-INDU

MIP-2016
PROTEUS-2014

QBF-2011
QBF-2014
QBF-2016

SAT03-16_INDU
SAT11-HAND
SAT11-INDU

SAT11-RAND
SAT12-ALL

SAT12-HAND
SAT12-INDU

SAT12-RAND
SAT15-INDU

TSP-LION2015

0.32 0.32 0.89 0.3
0.2 0.18 0.91 0.19
0.88 0.91 1.9 0.83
0.37 0.36 2.2 0.5
0.14 0.13 1.3 0.14
0.51 0.51 1.3 1.1

6 4 5.2 4.4
0.75 0.65 1.3 0.76
0.47 0.39 3.8 1.4
0.3 0.26 0.53 0.36
0.54 0.42 2.6 0.6
10 10 27 10
0.45 0.45 1.6 0.48
0.2 0.22 1.4 0.24
0.33 0.35 1.5 0.36
0.63 0.61 1.6 1.5
0.85 0.87 1.7 0.87
0.45 0.67 1.6 0.6
0.62 0.61 1.6 0.56
0.11 0.14 1 0.16
0.36 0.37 1.6 0.32
0.36 0.33 1.6 1
0.82 0.78 9.5 9.5
1.2 1 3.6 1.3

0.97 0.72 1.8 0.65
2.2 2.4 2.5e+02 2.5e+02

PA
R10

Run
tim

e

Ign
ore

d

0.65 0.65 2.1
0.83 0.83 3.7
0.98 0.98 1.9
0.37 0.37 6.2
0.34 0.34 2.5
0.7 0.7 4.6
4.6 4.6 1.6e+02
1 0.92 21

0.76 0.85 15
0.49 0.49 5.4
1 1.1 1.1
3 0.78 77

0.64 0.64 2.1
0.33 0.33 2.4
0.52 0.52 2.9
0.58 0.58 3.3
0.96 0.93 2.6
0.63 0.83 2
0.95 1 1.7
0.58 0.61 1.9
0.68 0.69 2.7
0.63 0.65 2.1
0.99 0.93 6
1.1 1.1 22
0.75 1 4.3
25 25 2.1e+02

PA
R10

Run
tim

e

Ign
ore

d

0.43 0.47 0.67
0.2 0.18 0.94
0.85 0.85 0.94
0.24 0.3 0.48
0.21 0.21 1.5
0.5 0.4 0.95
8.2 4.7 50
0.59 0.59 1.7
0.43 0.47 3.2
0.24 0.24 0.39
0.43 0.4 1.3
9.7 9 9.8

0.58 0.57 2.1
0.17 0.15 1.1
0.36 0.35 1.7
0.64 0.62 1.4
0.88 0.85 1.3
0.45 0.44 1.4
0.84 0.79 1.3
0.37 0.36 1.1
0.43 0.4 1.5
0.31 0.28 1.6
0.64 0.64 1.8
0.92 0.89 1.3
0.8 0.73 1
41 40 75

PA
R10

Run
tim

e

Ign
ore

d

0.17 0.2 0.95
0.25 0.24 1.5
1.1 0.99 1.9
0.4 0.34 1
0.13 0.14 0.83
0.52 0.52 1.9
12 12 60
0.49 0.49 1.8
0.24 0.28 2.4
0.28 0.28 0.85
0.24 0.24 3.2
8.9 8.9 26
0.47 0.47 1.6
0.22 0.23 1.1
0.4 0.39 1.6
0.51 0.51 2
0.85 0.82 2
0.7 0.56 1.7

0.85 0.77 1.7
0.13 0.13 1.1
0.4 0.42 1.6
0.42 0.42 1.3
0.81 0.83 3.6
1.1 1.1 1.9
1 1 2.1
11 11 2.2e+02

0

1

2

3

4

5

No
rm

al
ize

d
PA

R1
0

Median 0.49 0.48 1.6 0.62 0.72 0.8 3.1 0.48 0.47 1.4 0.48 0.48 1.8

Mean 1.2 1.1 13 11 1.9 1.8 22 2.7 2.5 6.3 1.7 1.6 13

PerAlgorithmRegressor
Mean Rank 2 1.6 3.9 2.5

ISAC*like
1.4 1.6 3

SATzilla'11*like
1.8 1.2 3

SUNNY*like
1.5 1.5 3

Fig. 4.3: Normalized PAR10 results of baselines for different ways of dealing with censored
data: labeling data points as proposed by Schmee and Hahn [SH79] (S&H), with
the PAR10 score (PAR10), the cutoff C (runtime), or the corresponding data points
are ignored. The best results for each scenario are printed in bold.

servation is also reflected in the median/mean normalized PAR10 scores and the

average ranks, which are much worse than the ones of all other approaches. The

PerAlgorithmRegressor, SUNNY, and SATzilla’11, in contrast, broadly attain competi-

tive results and consequently represent strong competitors to the random survival

forests. However, Figure 4.4 illustrates each of our Run2Survive variants to out-

perform their adversaries in terms of median, mean nPAR10, as well as mean

rank performance, aggregated across all scenarios. Compared to the baselines,

Run2SurviveExp facilitates more effective per-instance algorithm selection on 8

scenarios, whereas Run2SurvivePAR10 yields superior results on 13 scenarios. While

Run2SurvivePoly/Log beats all baselines in only 12 scenarios, it achieves an nPAR10

score below 1 on all scenarios except one, and hence consistently beats the SBS,

which is not the case for any baseline. Furthermore, Run2SurvivePoly/Log beats the

SBS in two scenarios where no other approach is able to.

Our findings further illustrate the usefulness of risk-averse decision-making in al-

gorithm selection, as Run2SurviveExp can be improved upon in terms of median

4.4 Experimental Evaluation 103

Run
2S

urv
ive

Ex
p

Run
2S

urv
ive

PA
R10

Run
2S

urv
ive

Po
ly/

Log

ASP-POTASSCO

BNSL-2016

CPMP-2015

CSP-2010

CSP-MZN-2013

CSP-Minizinc-Time-2016

GRAPHS-2015

MAXSAT-PMS-2016

MAXSAT-WPMS-2016

MAXSAT12-PMS

MAXSAT15-PMS-INDU

MIP-2016

PROTEUS-2014

QBF-2011

QBF-2014

QBF-2016

SAT03-16_INDU

SAT11-HAND

SAT11-INDU

SAT11-RAND

SAT12-ALL

SAT12-HAND

SAT12-INDU

SAT12-RAND

SAT15-INDU

TSP-LION2015

0.3 0.34 0.31

0.2 0.22 0.19

0.97 0.81 0.93

0.26 0.26 0.24

0.11 0.11 0.11
0.46 0.46 0.46

2.4 2.4 0.77
0.57 0.41 0.59

0.46 0.38 0.37

0.27 0.29 0.27

0.39 0.46 0.39

4.5 1.6 0.96

0.41 0.41 0.41
0.19 0.19 0.19

0.3 0.31 0.31

0.47 0.49 0.49

0.72 0.76 0.73
0.51 0.36 0.39
0.66 0.74 0.71

0.14 0.082 0.11

0.37 0.35 0.35
0.35 0.34 0.34

0.73 0.75 0.77

1 0.9 0.86
1 0.79 1

2.6 2.6 2.6

Pe
rAlgo

rith
mReg

res
sor

(Run
tim

e)

Mult
iClas

sSe
lec

tor

ISA
C*lik

e

(PA
R10

)
SA

Tzi
lla'

11
*lik

e

(Run
tim

e)

SU
NNY*l

ike

(Run
tim

e)

0.32 0.67 0.65 0.47 0.2

0.18 0.31 0.83 0.18 0.24

0.91 0.94 0.98 0.85 0.99

0.36 0.78 0.37 0.3 0.34

0.13 0.31 0.34 0.21 0.14

0.51 0.61 0.7 0.4 0.52

4 8.8 4.6 4.7 12

0.65 1.2 1 0.59 0.49

0.39 0.84 0.76 0.47 0.28

0.26 0.37 0.49 0.24 0.28

0.42 1.2 1 0.4 0.24

10 9.7 3 9 8.9

0.45 0.84 0.64 0.57 0.47

0.22 0.33 0.33 0.15 0.23

0.35 0.63 0.52 0.35 0.39

0.61 0.68 0.58 0.62 0.51

0.87 0.99 0.96 0.85 0.82

0.67 0.57 0.63 0.44 0.56

0.61 0.76 0.95 0.79 0.77

0.14 0.17 0.58 0.36 0.13

0.37 0.37 0.68 0.4 0.42

0.33 0.41 0.63 0.28 0.42

0.78 0.94 0.99 0.64 0.83

1 5.3 1.1 0.89 1.1

0.72 0.86 0.75 0.73 1

2.4 60 25 40 11
0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

d
PA

R1
0

Median 0.46 0.41 0.4 0.48 0.77 0.72 0.47 0.48

Mean 0.78 0.65 0.57 1.1 3.8 1.9 2.5 1.6

Mean Rank 3 3.1 2.7 4.3 7 6.8 4.1 5.1

Fig. 4.4: Normalized PAR10 results where for each baseline the way of dealing with cen-
sored data is selected according to the minimum median across all examined
scenarios. The best results for each scenario are printed in bold whereas an over-
line indicates beating all baselines.

and mean nPAR10 performance, and also in mean rank (Run2SurvivePoly/Log).

In detail, Run2SurvivePAR10 and Run2SurvivePoly/Log identify superior selection

criteria in 10 and 11 ASlib scenarios. However, they also degrade compared to

Run2SurviveExp in 9 respectively 7 cases.

104 Chapter 4

4.5 Related Work

To the best of our knowledge, the first and only work making direct use of survival

analysis in the context of algorithm selection is by Gagliolo and Schmidhuber [GS06]

and Gagliolo and Legrand [GL10]. Gagliolo and Schmidhuber [GS06] present an

algorithm called GambleTA computing adaptive algorithm schedules for SAT and

the Auction Winner Determination problem instances without any prior learning

phase. GambleTA is a bandit-based algorithm deciding online which algorithms

to run for how long such that it can use the obtained data to learn the runtime

distributions of the considered algorithms. These distributions are modeled using

the cumulative hazard function (CHF), which in turn are used to compute static

schedules based on different techniques, such as selecting at timestep t the algorithm

with e.g. minimal expected runtime. Using these static schedules, the authors also

show how to construct dynamic schedules. In follow-up work, Gagliolo and Legrand

[GL10] elaborate on the usefulness of survival analysis and potential pitfalls in the

context of AS. Furthermore, they analyze statistical aspects of GambleTA.

Our work distinguishes itself from theirs mainly by the following points: First, Gagli-

olo and Schmidhuber [GS06] consider the setting of dynamic algorithm scheduling

with a need for online learning, whereas we consider the standard setting of algo-

rithm selection, whence other recommendations are required. Second, while the

authors only consider two algorithmic problems and algorithm sets of size two, we

consider the complete ASlib with over 25 scenarios from different problem domains

featuring between 2 and 31 algorithms, making our experimental study much more

extensive. Third, the authors consider nearest-neighbor motivated survival analysis

models for modeling the CHF of the algorithms, while we make use of random

survival forests due to their excellent empirical performance. Finally, and perhaps

most importantly, we mainly focus on designing a risk-averse algorithm selection

strategy, leveraging special decision-theoretic loss functions to better tailor selections

towards the structure of loss functions similar to the PAR10 score.

Similar to our discussion in Section 4.1, Xu et al. [Xu+08] also remark the problems

and implications of censored data in the context of algorithm runtime prediction.

Instead of directly applying a method tailored towards such data, they apply the

method by Schmee and Hahn [SH79] discussed in Section 4.1. Furthermore, similar

to us, they perform a case study on how treating censored data during the training

of runtime models impacts these models’ performance. They find that (1) both

ignoring and imputing censored data with the cutoff time does indeed yield overly

4.5 Related Work 105

optimistic models (as we also note), and (2) that the method proposed by Schmee

and Hahn [SH79] yields best performance in terms of the RMSE Ð a claim that we

cannot verify.

Another interesting work featuring dealing with censored data in the context of AS

was conducted by Hanselle et al. [Han+21]2, who suggest to treat such datapoints

as interval-valued observations and to apply regression techniques based on the

concept of superset learning [HC15]. However, they only slightly improve beyond

imputing censored datapoints with the cutoff time, i.e. the strategy denoted with

ºRuntimeº in Figure 4.3 such that we abstain from a direct empirical comparison.

In the context of AC, Hutter et al. [HHL11; Hut+14] also note problems arising

from censored data when not treating these datapoints appropriately and describe

a generalization of the method by Schmee and Hahn [SH79] to random forests

making these better suited for censored data. Similarly, Biedenkapp et al. [Bie+17]

and Eggensperger et al. [Egg+18] shortly mention the problem of censored data

arising from terminating all running algorithm configurations when one out of

many parallel runs finishes, and suggest to impute such censored data by previously

discussed means. Eggensperger et al. [Egg+20] present a neural network based

approach for AC, which specifically integrates censored information by optimizing

the Tobit loss [Ame84].

4.6 Conclusion and Future Work

In this chapter, we proposed the use of survival analysis techniques combined with a

decision-theoretic approach for the problem of algorithm selection. Taking advan-

tage of the rich information provided by generative models of algorithm runtimes,

together with the use of a risk-averse decision strategy to select the most promising

algorithm for an unseen instance, we achieved a robust overall performance across

different problem domains, such as SAT, CSP, and CPMP. Applying our method

to a suite of 26 benchmark scenarios for algorithm selection from the standard

benchmark library ASlib, we find it to be highly competitive and in many cases even

superior to state-of-the-art methods. Moreover, considering several statistics across

the considered benchmark datasets, our approach performs best in terms of average

2We note that we were involved in this work as well, but not as the main contributor.

106 Chapter 4

rank as well as median/mean normalized PAR10 score across all scenarios, while

achieving the best performances in up to 13 out of 26 scenarios.

There are various paths how to improve the ideas presented in this chapter in future

work. Firstly, we deem it promising to find a means to learn a joint survival model

across all algorithms as done in Chapter 3 instead of learning one model per algo-

rithm as this would allow exploiting similarities between algorithms which almost

certainly exist. Secondly, more work could be invested into testing other survival

approaches such as survival SVMs [PNK15] in order to generate the algorithm

runtime distributions on the basis of which the selection is performed. Lastly, one

could investigate how Run2Survive behaves under less drastically penalized versions

of the PARK, e.g. PAR3, and how the different decision-theoretic function classes we

present have to be configured in such scenarios.

4.6 Conclusion and Future Work 107

Online Algorithm Selection

Under Censored Feedback

5

While in the last chapter we discussed the problem of censored data in the context of

standard offline algorithm selection (AS) and how to tackle it using means of survival

analysis (SA) and decision theory, this chapter considers the same problem in the

online setting, i.e. online algorithm selection (OAS) (cf. Section 2.1.2). Recall that

in the online setting, we assume that no training data is available and that instances

arrive one by one in an iterative fashion raising the need for online learning.

Although the last chapter demonstrates that classical parameter-free survival analysis

methods can perform very well in the offline AS setting, these methods cannot be

easily transformed into online variants. For example, the well-known Cox propor-

tional hazard model [Cox72] relies on estimating the baseline survival function

through algorithms like the Breslow estimator (in its parameter-free version), which

inherently requires the storage of all data in the form of so-called risk-sets [Bre72].

In principle, approximation techniques from the field of learning on data streams are

conceivable [SH14]. Yet, in this chapter, we will focus on veritable online algorithms

that do not require any approximation. To this end, we revisit the OAS problem

from a bandit perspective (Section 5.1) and discuss related work from this new

perspective (Section 5.6). Furthermore, we recap and detail how to model runtimes

using linear models (Section 5.2). These models are then leveraged in Section 5.3,

where we elaborate on how to use standard bandit algorithms to solve the OAS

problem and on their disadvantages. Based on these observations, we propose

theoretically grounded adaptations of those bandit approaches, which are built

with the problem of censored data in mind (Section 5.4). Lastly, in our extensive

experimental evaluation (Section 5.5), we find that these adapted approaches can

be applied in order to successfully solve the OAS problem while featuring a time-

and space-complexity independent of the time horizon.

Once again, in this chapter, we will assume that the loss function of interest is

algorithm runtime or a penalized version thereof. Moreover, as already noted above,

we assume the setting of OAS.

109

The content presented in this chapter of the thesis has been partly published in the

form of a conference paper [TBH22].

5.1 The OAS Problem From a Bandit Perspective

Since this chapter will mostly feature algorithms from the multi-armed bandit

literature, we will reformulate some important concepts and the OAS problem in

the notion of the corresponding literature for better understandability and also as

a means to see that the OAS problem can indeed be cast as a multi-armed bandits

(MAB) problem. As a first step towards this, we reformulate the PARK score in the

following.

5.1.1 Reformulation of the PARK

For ease of notation in this chapter, we reformulate the PARK (cf. Equation 2.39 in

Section 2.4.1) as follows:

lpi, aq “ mpi, aqJmpi, aq ď CK ` PpCqJmpi, aq ą CK, (5.1)

where J¨K is the indicator function 1 and m : I ˆA ÝÑ R returns the true (stochastic)

runtime of an algorithm a on an instance i. Moreover, P : R ÝÑ R is a penalty

function accounting for unsolved instances.

When selecting algorithm a, either the runtime mpi, aq is observed, if mpi, aq ď C,

or a penalty PpCq due to a right-censored sample, i.e. mpi, aq ą C, while the true

runtime mpi, aq remains unknown. With PpCq “ 10C, Equation 5.1 yields the

well-known PAR10 score. Note that we particularly choose the PAR10 score as a loss

function instead of runtime here and therefore denote runtime by m instead of l to

avoid a clash of notation.

1It evaluates to 1, if the expression in the brackets evaluates to true and to 0 otherwise.

110 Chapter 5

5.1.2 OAS as a Bandit Problem

OAS can be cast as a contextual MAB problem comprising a set of arms/algorithms

A to choose from. In each round t, the learner is presented a context, i.e. an instance

it P I and its features f it
P R

d, and is requested to select one of the algorithms for

this instance, i.e. pull one of the arms, which will be denoted by at. As a result, the

learner suffers a loss as defined in Equation 5.1.

In the stochastic variant of the contextual MAB problem, the losses are generated at

random according to underlying distributions, one for each arm, which are unknown

to the learner. Thus, the expected loss E
“
lpit, atq|f it

‰
suffered at time step t is

taken with respect to the unknown distribution of the chosen algorithm’s runtime

mpit, atq and depends on the instance (features) f it
. Ideally, in each time step t,

the learner should pick one of the arms having the smallest expected loss for the

current problem instance. Formally, the optimal strategy, called online oracle, is then

defined as

s˚
onlinepht, itq “ a˚

t P arg min
aPA

E
“
lpit, aq|f it

‰
, (5.2)

where, as the reader might recall, ht “ tpik, ak, lkqut´1
k“1 P H denotes the history of

the selection process up to (but excluding) timestep t (cf. Section 2.1.2) 2. In other

words, the optimal strategy optimizes the expected PAR10. Needless to say, this

optimal strategy can only serve as a benchmark, since the runtime distributions are

unknown. Nevertheless, having an appropriate model or estimate for the expected

losses, we can mimic the choice mechanism in Equation 5.2. To this end, we can

learn a surrogate loss function plh : I ˆ A ÝÑ R giving rise to a suitable online

algorithm selector of the following form:

sonlineph, iq ..“ arg min
aPA

plhpi, aq . (5.3)

Observe that in contrast to solutions to the offline AS problem, the surrogate loss

function now depends on the history h. This is important as the surrogate loss

function can (and has to be) updated online after each received feedback, considering

that this is the main model powering the algorithm selection.

Due to the online nature of the problem, it is desirable that OAS approaches have a

time- and space-complexity independent of the time horizon. In particular, memoriz-

2Note that this definition differs slightly from the one given in Section 2.1.2, as the expected value
here explicitly depends on the instance features f i. While this is, in principle, always the case as
long as the selector leverages such features, it is often not noted in practice. Here, however, we
make this explicit as it will be important for the theoretical considerations formed in this chapter.

5.1 The OAS Problem From a Bandit Perspective 111

ing all instances (i.e. entire histories ht) and constantly retraining in batch mode

is no option. Moreover, from a practical point of view, decisions should be taken

quickly to avoid stalling an AS system.

For convenience, we shall write from now on lt,a or mi,a instead of lpit, aq or mpi, aq
for any i, it P I, a P A. Moreover, we write }x}A

..“
?

x⊺A´1x for any x P R
d and

semi-positive definite matrix A P R
dˆd, and }x} ..“

?
x⊺x.

5.2 Modeling Runtimes

As hinted at earlier, online algorithm selectors based on a bandit approach can be

reasonably designed through the estimation of the expected losses occurring in

Equation 5.2. To this end, we make the assumption that the logarithmic runtime of

an algorithm a P A on problem instance i P I with features f i P R
d depends linearly

on those features up to some noise, i.e.

mi,a “ exppf i
⊺θ˚

aq exppϵi,aq, (5.4)

where θ˚
a P R

d is some unknown weight vector for each algorithm a P A, and ϵi,a
is a stochastic noise variable with zero mean. The motivation for Equation 5.4 is

twofold. First, theoretical properties such as positivity of the runtimes and heavy-tail

properties of their distribution (by appropriate choice of the noise variables) are

ensured. Second, we obtain a convenient linear model for the logarithmic runtime

yi,a of an algorithm a on instance i, namely

yi,a “ logpmi,aq “ f i
⊺θ˚

a ` ϵi,a . (5.5)

It is important to realize the two main implications coming with those assumptions.

First, up to the stochastic noise term, the (logarithmic) runtime of an algorithm

depends linearly on the features of the corresponding instance. This is not a big

restriction, because the feature map f i may include nonlinear transformations of

ªbasicº features and play the role of a linearization [SS01] Ð we have demonstrated

the usefulness of non-linear models in the last chapter. Moreover, previous work on

AS has also considered logarithmic runtimes for model estimation [Xu+08]. Second,

the model in Equation 5.5 suggests to estimate θ˚
a separately for each algorithm,

which is common practice but excludes the possibility to exploit (certainly existing)

correlations between the performance of the algorithms. In principle, it might hence

112 Chapter 5

be advantageous to estimate joint models as we have seen in Chapter 3. However,

we abstain from doing so here in order to first develop a simple OAS approach

analogously to the offline approaches.

Additionally, we assume that (1) exppf i
⊺θ˚

aq ď C for any a P A, i P I and (2) ϵi,a is

normally distributed with zero mean and standard deviation σ ą 0. While the first

assumption is merely used for technical reasons, namely to derive theoretically valid

confidence bounds for estimates of the weight vectors, the second assumption implies

that exppϵi,aq is log-normal, which is a heavy-tail distribution yielding, in turn, a

heavy-tail distribution for the complete runtime yi,a. This strategy is consistent with

practical observations that algorithm runtimes exhibit such heavy-tail distributions

discussed earlier (cf. Section 4.1).

5.3 Stochastic Linear Bandits Approaches

As Equation 5.5 implies E rlogpmi,aq|f is “ f i
⊺θ˚

a, it is tempting to apply a straight-

forward contextualized MAB learner designed for expected loss minimization, in

which the expected losses are linear with respect to the context vector, viewing the

logarithmic runtimes as the losses of the arms. This special case of contextualized

MABs, also known as the stochastic linear bandit problem, has received much atten-

tion in the recent past [LS20]. Generally speaking, such a learner tends to choose

an arm having a low expected log-runtime for the given context (,i.e. instance

features), which in turn has a small expected loss. A prominent learner in stochastic

linear bandits is LinUCB [Chu+11], a combination of online linear regression and

the UCB [ACF02] algorithm. UCB implements the principle of optimism in the

face of uncertainty and solves the exploration-exploitation trade-off by constructing

confidence intervals around the estimated mean losses of each arm, and choosing

the most optimistic arm according to the intervals.

Under the runtime assumption of Equation 5.5, the basic LinUCB variant (which we

call BlindUCB) disregards censored observations in the OAS setting, and therefore

considers the ridge regression (RR) estimator for each algorithm a P A only on the

non-censored observations. Formally, in each time step t, the RR estimate pθt,a for

the weight parameter θ˚
a is

pθt,a “ arg min
θPRd

tÿ

τ“1

Jaτ “ a,miτ ,a ď CK
`
f
⊺

iτ
θ ´ yiτ ,a

˘2 ` λ}θ}2 , (5.6)

5.3 Stochastic Linear Bandits Approaches 113

where λ ě 0 is a regularization parameter. The resulting selection strategy for

choosing algorithm at at time t is then

at P arg min
aPA

f
⊺

it

pθt,a ´ α ¨ wt,apf it
q , (5.7)

where α ą 0 is some parameter controlling the exploration-exploitation trade-off,

and

wt,apf it
q “ }f it

}At,a (5.8)

the confidence width for the prediction of the (logarithmic) runtime of algorithm a

for problem instance it based on the estimate in Equation 5.6.

Here, At,a “ λId ` X
⊺

t,aXt,a is the (regularized) Gram matrix, with Id the d ˆ d

identity and Xt,a denoting the design matrix at time step t associated with algorithm

a, i.e. the matrix that stacks all the features row by row whenever a has been

chosen.

The great appeal of this approach is the existence of a closed-form expression of the

RR estimate, which can be updated sequentially with time- and space-complexity

depending only on the feature dimension but independent of the time horizon

[LS20] (cf. also Section A.4.3).

However, as already mentioned in Section 4.1, disregarding the right-censoring of

the data often yields a rather poor performance of a regression-based learner in

offline AS problems, so it might be advantageous to adapt this method to that end.

5.3.1 Imputation-Based Upper ConĄdence Bounds

A simple approach to include right-censored data into BlindUCB is to impute the

corresponding samples by the cut-off time C as discussed in Section 4.1, giving rise

to the RR estimate

pθt,a “ arg min
θPRd

tÿ

τ“1

Jaτ “ aK
`
f
⊺

iτ
θ ´ ryiτ ,a

˘2 ` λ}θ}2 , (5.9)

where ryiτ ,a “ minpyiτ ,a, logpCqq is the possibly imputed logarithmic runtime. Note

that we impute with logpCq instead of C since we are modeling logarithmic run-

times.

114 Chapter 5

When considering censoring, the least-squares formulation in Equation 5.9 has an

important disadvantage. Those weight vectors resulting in an estimation of the

runtime above C in case of a timeout are penalized (quadratically) for predictions

C ă py ă mpi, aq, although these predictions are actually closer to the unknown

ground truth than C. In fact, one can verify this intuition theoretically by showing

that, for λ “ 0, the RR estimate pθt,a is downward biased in the case of censored

samples as, for example, done by Greene [Gre05]. It is important to note that

this bias is caused by a censoring of the runtimes, i.e. of the signal, and not by a

truncation of the inputs or sparse (or non-representative) features as in [Dim+19].

Although the imputation strategy mentioned above has been shown to work as-

tonishingly well in practice in offline AS [Tor+20a], the bias in the RR estimates

requires a bias-correction in the confidence bounds of BlindUCB to ensure that the

estimate falls indeed into the bounds with a certain probability. The corresponding

bias-corrected confidence bound widths are

w
pbcq
t,a pf it

q “
ˆ

1 ` 2 logpCq
ˆ

1 `
b
N

pCq
a,t

˙˙
wt,apf it

q , (5.10)

where N pCq
a,t is the number of timeouts of algorithm a until t (cf. Section A.4.1 of

the appendix for a derivation of the bias-corrected bounds). The resulting LinUCB

variant, which we call BClinUCB (bias-corrected LinUCB), chooses the final algorithm

in the same way as was shown in Equation 5.7, but uses wpbcq
t,a instead of wt,a and

the runtime (RR) estimate in Equation 5.9.

Unfortunately, once again, these bias-corrected confidence bounds reveal a decisive

disadvantage in practice, namely, the confidence bound of an algorithm a P A is

usually much larger than the actually estimated (log-)runtime f
⊺

it

pθt,a for instance it.

Therefore, the UCB value of aÐ let us call it δt,a “ f
⊺

it

pθt,a ´w
pbcq
t,a pf it

q Ð is such that

δt,a is smaller for algorithms with more timeouts due to the N pCq
a,t term. This prefers

algorithms that experienced a timeout over those that did not. This, in turn, explains

the poor performance of the BClinUCB strategies in the evaluation in Section 5.5.

5.3.2 Randomization of Upper ConĄdence Bounds

One way of mitigating the problem of the bias-corrected confidence bounds is to

leverage a generalized form of UCB, called randomized UCB (RandUCB) [Vas+20],

where the idea is to multiply the bias-corrected bounds wpbcq
t,a pf it

q with a random

5.3 Stochastic Linear Bandits Approaches 115

realization of a specific distribution having positive support. RandUCB can be

thought of as a mix of the classical UCB strategy, where the exploration-exploitation

trade-off is tackled via the confidence bounds, and Thompson sampling [Tho33;

Rus+18], which leverages randomization in a clever way for the same purpose (see

next section). To this end, we define randomized confidence widths

rwt,apf it
q “ w

pbcq
t,a pf it

q ¨ r , (5.11)

where r P R is sampled from a half-normal distribution with zero mean and standard

deviation rσ2. This ensures that r ě 0 and that the confidence widths do indeed

shrink when the distribution is properly parameterized. Although this improves

the performance of LinUCB as we will see later, the improvement is not significant

enough to achieve competitive results.

All variants of LinUCB for OAS introduced so far, i.e. BlindUCB, BClinUCB and

RandUCB, can be jointly defined as in Algorithm 1. Note that theoretical details on

all pseudocodes can be found in Section A.4.3.

5.3.3 Bayesian Approach: Thompson Sampling

As the confidence bounds used by LinUCB seem to be a problem in practice, one

may think of Thompson sampling (TS) as an interesting alternative. The idea of TS

is to assume a prior loss distribution for every arm, and in each time step, select an

arm (i.e. algorithm) according to its probability of being optimal, i.e. according to

its posterior loss distribution conditioned on all of the data seen so far. In particular,

this strategy solves the exploration-exploitation trade-off through randomization

driven by the posterior loss distribution.

More specifically, let the (multivariate) Gaussian distribution with mean vector µ P
R

d and covariance matrix Σ P R
dˆd be denoted by N

`
µ,Σ

˘
. Similarly, the cumulative

distribution function of a (univariate) Gaussian distribution with mean µ P R and

variance σ2 at some point z P R is denoted by Φµ,σ2pzq. A popular instantiation

of TS for stochastic linear bandits [AG13] assumes a Gaussian prior distribution

N
`pθt,a, σA

´1
t,a

˘
for each weight vector of an algorithm a, where λ, σ ą 0 and pθt,a

denotes the RR estimate defined as in Equation 5.9. This yields N
`pθt`1,a, σA

´1
t`1,a

˘

116 Chapter 5

Algorithm 1 LinUCB variants

1: Input parameters λ ě 0, α, C ą 0 half-normal parameter rσ for RandUCB
2: Initialization

3: for all a P A do

4: At,a “ λIdˆd, bt,a “ 0dˆ1, pθt,a “ 0dˆ1, plt,a “ 0, N
pCq
t,a “ 0

5: end for

6: Main Algorithm

7: for time steps t “ 1 . . . , T do

8: Observe instance it and its features xt “ fpitq P R
d

9: if t ď |A| then

10: Take algorithm at P A and obtain yt “ minplogpmpit, atqq, logpCqq
11: else

12: for all a P A do

13: pθt,a Ð pAt,aq´1bt,a

14: plt,a Ð

$
’&
’%

x
⊺

t
pθt,a ´ α ¨ wt,apxtq, BlindUCB

x
⊺

t
pθt,a ´ α ¨ wpbcq

t,a pxtq, BClinUCB

x
⊺

t
pθt,a ´ α ¨ |r| ¨ wpbcq

t,a pxtq, r „ Np0, rσ2q RandUCB
15: end for

16: Take algorithm at P arg minaPA
plt,a and

obtain yt “ minplogpmpit, atqq, logpCqq
17: end if

18: Updates:

19: N
pCq
t,at

Ð N
pCq
t,at

` Jmpit, atq ą CK

20: At,at Ð
#
At,at ` xtx

⊺

t , (BClinUCB,RandUCB)

At,at ` Jmpit, atq ď CKxtx
⊺

t , (BlindUCB)

21: bt,at Ð
#

bt,at ` ytxt, (BClinUCB,RandUCB)

bt,at ` Jmpit, atq ď CKytxt, (BlindUCB)
22: end for

The role of each hyperparameter is as follows:

• λ ą 0 is a regularization parameter due to the considered RR.

• α ą 0 essentially controls the degree of exploration as a multiplicative term of the confidence
width (see Equation 5.7). The higher (lower) it is chosen, the more (less) exploration is
conducted.

• C ą 0 is the cutoff time and depends on the considered problem scenario (specified by the
algorithm selection library (ASlib) library).

• rσ ą 0 is (only) used for RandUCB in order to specify the random sample’s variance within
the confidence width (see Sec. 5.3.2). The higher (lower) its choice, the larger (smaller) the
effective exploration term, i.e. |r| ¨ w

pbcq
t,a pxtq.

as the posterior distribution at time step t` 1. The selected algorithm is then defined

by

at P arg min
aPA

f
⊺

it

rθa , (5.12)

5.3 Stochastic Linear Bandits Approaches 117

where rθa „ N
`pθt,a, σA

´1
t,a

˘
is sampled from the corresponding distribution for each

a P A. Note that, as before, we assume to impute censored samples with the (log)

cutoff time. Interestingly, as the experiments will show later on, this rather naïve

version of Thompson sampling in the presence of censored data works astonishingly

well in practice.

5.4 Expected PAR10 Loss Minimization

Due to the possibility of observing only a censored loss realization, i.e. PpCq, it is

reasonable to believe that a successful online algorithm selector needs to be able to

properly incorporate the probability of observing such a realization into its selection

mechanism. For this purpose, we derive the following decomposition of the expected

loss under the assumptions made in Section 5.2:

E
“
lt,a|f it

‰
“ E

“
lt,a|mit,a ď C,f it

‰
¨ Ppmit,a ď C|f it

q
` E

“
lt,a|mit,a ą C,f it

‰
¨ Ppmit,a ą C|f it

q

“
´

1 ´ Φf
⊺

it
θ˚

a ,σ2plogpCqq
¯

¨ pPpCq ´ ECq ` EC

(5.13)

where

EC “ ECpf⊺

it
θ˚

a, σq “ exppf⊺

it
θ˚

a ` σ2{2q ¨
Φ0,1pCp1q

it,aq
Φ0,1pCp2q

it,aq
(5.14)

is the conditional expectation of a log-normal distribution with parameters f
⊺

it
θ˚

a

and σ2 under cutoff C and

C
p1q
it,a “

´
logpCq´f

⊺

it
θ˚

a ´σ2
¯

σ

C
p2q
it,a “ C

p1q
it,a ` σ

. (5.15)

As such, the decomposition suggests that there are two core elements driving the

expected loss of an algorithm a conditioned on a problem instance it with features

f it
: its expected log-runtime f

⊺

it
θ˚

a and its probability of running into a timeout,

i.e.

Ppmpit, aq ą C|f it
q “

`
1 ´ Φf

⊺

it
θ˚

a ,σ2plogpCqq
˘
. (5.16)

In the interest of readability, we defer the actual derivation to Section A.4.2.

118 Chapter 5

5.4.1 LinUCB Revisited

Having the refined expected loss representation in Equation 5.13, one could simply

plug in the confidence bound estimates used by LinUCB for the log-runtime predic-

tions to obtain an online algorithm selector following the optimism in the face of

uncertainty principle, i.e. using an estimate of the target value to be minimized

(here the expected loss in Equation 5.13), which underestimates the target value

with high probability.

To this end,

ot,a “ f
⊺

it

pθt,a ´ α ¨ wt,apf it
q (5.17)

be the optimistic and

pt,a “ f
⊺

it

pθt,a ` α ¨ wt,apf it
q (5.18)

the pessimistic estimate used by LinUCB (or its variants), where wt,apf it
q is the

confidence width of the corresponding LinUCB variant conditioned on the current

instance. With this, at time t we choose the algorithm as

at P arg min
aPA

`
1 ´ Φpt,a,σplogpCqq

˘
¨
`
PpCq ´ pEp1q

C

˘
` pEp2q

C , (5.19)

where

pEp1q
C “ exp

ˆ
pt,a ` σ2

2

˙
¨

Φ0,1ppCpoq

it,aq
Φ0,1ppCppq

it,a ` σq
,

pEp2q
C “ exp

ˆ
ot,a ` σ2

2

˙
¨

Φ0,1ppCppq

it,aq
Φ0,1ppCpoq

it,a ` σq
,

pCppq
it,a “ plogpCq ´ pt,a ´ σ2q

σ
,

pCpoq
it,a “ plogpCq ´ ot,a ´ σ2q

σ
.

As ot,a underestimates and pt,a overestimates f
⊺

it
θ˚

a it is easy to see that the terms

in Equation 5.19 are underestimating the corresponding terms occurring in Equa-

tion 5.13 with high probability, respectively. The corresponding pseudocode can be

found in Algorithm 2. Once again, note that theoretical details on all pseudocodes

can be found in Section A.4.3.

5.4 Expected PAR10 Loss Minimization 119

Algorithm 2 LinUCB variants based on Equation 5.13 (_rev) versions

1: Input parameters λ ě 0, σ ą 0, α ą 0, C ą 0,P : R Ñ R, half-normal parameter
rσ for RandUCB

2: Initialization

3: for all a P A do

4: At,a “ λIdˆd, bt,a “ 0dˆ1, pθt,a “ 0dˆ1,plt,a “ 0, N
pCq
t,a “ 0

5: end for

6: Main Algorithm

7: for time steps t “ 1 . . . , T do

8: Observe instance it and its features xt “ fpitq P R
d

9: if t ď |A| then

10: Take algorithm at P A and obtain yt “ minplogpmpit, atqq, logpCqq
11: else

12: for all a P A do

13: pθt,a Ð pAt,aq´1bt,a

14: r „ Np0, rσ2q (only for RandUCB)

15: pt,a Ð

$
’&
’%

x
⊺

t
pθt,a ` α ¨ wt,apxtq, BlindUCB

x
⊺

t
pθt,a ` α ¨ wpbcq

t,a pxtq, BClinUCB

x
⊺

t
pθt,a ` α ¨ |r| ¨ wpbcq

t,a pxtq, RandUCB

16: ot,a Ð

$
’&
’%

x
⊺

t
pθt,a ´ α ¨ wt,apxtq, BlindUCB

x
⊺

t
pθt,a ´ α ¨ wpbcq

t,a pxtq, BClinUCB

x
⊺

t
pθt,a ´ α ¨ |r| ¨ wpbcq

t,a pxtq, RandUCB

17: pCp1,pq

it,a Ð logpCq´pt,a´σ2

σ

18: pCp1,oq

it,a Ð logpCq´ot,a´σ2

σ

19: pCp2,oq

it,a Ð logpCq´ot,a

σ

20: pCp2,pq

it,a Ð logpCq´pt,a

σ

21: plt,a Ð
exppot,a ` σ2{2q ¨ Φ0,1ppCp1,pq

it,a q

Φ0,1ppCp2,oq
it,a q

`
`
1 ´ Φpt,a,σplogpCqq

˘
¨
ˆ

PpCq ´ expppt,a ` σ2{2q ¨ Φ0,1ppCp1,oq
it,a q

Φ0,1ppCp2,pq
it,a q

˙

22: end for

23: Take algorithm at P arg minaPA
plt,a

24: and obtain yt “ minplogpmpit, atqq, logpCqq
25: end if

26: Updates: Same as lines 19±21 of Alg. 1
27: end for

Compared to Algorithm 1 there are two additional parameters:

• σ ą 0 which ideally should correspond to the standard deviation of the noise variables in the
model assumption defined by Equation 5.4.

• P : R Ñ R the penalty function for penalizing unsolved problem instances (we used Ppzq “ 10z

corresponding to the PAR10 score).

120 Chapter 5

As our experiments will reveal later on, the issues of the LinUCB-based algorithms

caused by the wide confidence bands are alleviated to a certain degree by incor-

porating the explicit PAR10 loss minimization. The ones caused by the biased RR

estimate remain, however.

5.4.2 Thompson Sampling Revisited

Fortunately, the refined expected loss representation in Equation 5.13 can be ex-

ploited quite elegantly by Thompson Sampling using Gaussian priors as in Sec-

tion 5.3.3. Our suggested instantiation of TS chooses algorithm at P A according

to

at P arg min
aPA

`
1 ´ Φ

f
⊺

it
rθa,rσ2

t,a
plogpCqq

˘`
PpCq ´ rEC

˘
` rEC , (5.20)

where rθa is a random sample from the posterior N
´
pθt,a, σA

´1
t,a

¯
, and the conditional

expectation of a normal distribution parameterized based on this sample is rEC “
ECpf⊺

it

rθa, rσt,aq with variance rσ2
t,a “ σ}f it

}2
At,a

. Algorithm 3 provides the pseudocode

for this revisited Thompson algorithm and a variant inspired by the Buckley-James

estimate we discuss in the following.

Although the TS approach just presented does involve consideration of the timeout

probability, it still suffers from the problem that the estimates for θ˚
a are downward-

biased as they are based on the RR estimate obtained from imputing censored

samples with the cutoff time C. In the spirit of the Kaplan-Meier estimator [KM58]

from the field of survival analysis, Buckley and James [BJ79] suggested augmenting

censored samples by their expected value according to the current model and

then solving the standard least-squares problem (for an overview of alternative

approaches, we refer to Miller and Halpern [MH82]). This idea is particularly

appealing, as it allows for easy integration into online algorithms, due to its use

of the least-squares estimator. Also, it has the potential to produce more accurate

(i.e. less biased) estimates for θ˚
a. The integration of the augmentation suggested by

Buckley and James [BJ79] is shown in lines 17±20 in Algorithm 3.

5.4 Expected PAR10 Loss Minimization 121

Algorithm 3 (bj_)Thompson_rev

1: Input parameters σ ą 0, λ ě 0,P : R Ñ R, C, BJ P tTRUE,FALSEu
2: for all a P A do

3: At,a “ λ ¨ Idˆd, bt,a “ 0dˆ1, pθt,a “ 0dˆ1, rσ2
t,a “ 0 and plt,a “ 0

4: end for

5: for time steps t “ 1 . . . , T do

6: Observe instance it and its features xt “ fpitq P R
d

7: if t ď |A| then

8: Take algorithm at P A and obtain yt “ minplogpmpit, atqq, logpCqq
9: else

10: for all a P A do

11: pθt,a Ð pAt,aq´1bt,a

12: rσ2
t,a Ð σ}xt}2

At,a

13: Sample rθa „ N
`pθt,a, σpAt,aq´1

˘

14: plt,a Ð
`
1´Φ

x
⊺

t
rθa,rσ2

t,a
plogpCqq

˘
¨
`
PpCq´ECpx⊺

t
rθa, rσt,aq

˘
`ECpx⊺

t
rθa, rσt,aq

(RHS of Equation 5.20)
15: end for

16: Take algorithm at P arg minaPA
plt,a

17: and obtain yt “ minplogpmpit, atqq, logpCqq
18: end if

19: if yt “ logpCq and BJ “ TRUE then

20: Sample qθat „ N
`pθt,at , σpAt,atq´1

˘
(if exppx⊺

t
qθatq ď C sample again)

21: yt Ð logpx⊺

t
qθatq

22: end if

23: At,at Ð At,at ` xtx
⊺

t bt,at Ð bt,at ` ytxt

24: end for

The role of each hyperparameter is as follows:

• the role of λ, P, C is the same as in Algorithm 2, respectively.

• σ ą 0 specifies the magnitude of the posterior distribution’s variance and is therefore slightly
different to σ in Algorithm 2.

• BJ specifies whether the Buckley-James inspired imputation strategy described at the end of
Sec. 5.4.2 (BJ “ TRUE) or the näive imputation strategy (BJ “ FALSE) should be deployed.

5.5 Evaluation

As usual, we base our evaluation on the standard algorithm selection benchmark

library ASlib (cf. Section 2.6) and compare to the most relevant competitor ap-

proaches. The concrete list of scenarios used can be inferred from Table 5.1. Since

ASlib was originally designed for offline AS, we do not use the train/test splits

provided by the benchmark, but rather pass each instance one by one to the cor-

responding online approaches, ask them to select an algorithm and return the

corresponding feedback. To increase evaluation robustness, we randomly shuffle the

122 Chapter 5

Tab. 5.1: Average PAR10 scores and standard deviation of Thompson sampling variants
and Degroote, where the best value for each scenario is printed in bold and the
second best is underlined.

Approach bj_thompson thompson_rev degroote_ϵ-greedy_LR

Scenario

ASP-POTASSCO 949.38 ˘ 62.38 902.64 ˘ 78.43 1047.13 ˘ 46.50
BNSL-2016 9638.04 ˘ 378.05 9467.01 ˘ 252.52 12510.26 ˘ 1291.03
CPMP-2015 8241.01 ˘ 1164.85 8158.72 ˘ 1268.83 6991.97 ˘ 501.36
CSP-2010 8295.76 ˘ 699.43 7892.67 ˘ 692.83 7593.13 ˘ 208.94
CSP-MZN-2013 8207.06 ˘ 532.70 8171.21 ˘ 594.49 8034.62 ˘ 113.78
CSP-Minizinc-Time-2016 4811.54 ˘ 409.79 4759.50 ˘ 306.03 5258.70 ˘ 406.91
GRAPHS-2015 4.1e+07 ˘ 4.4e+06 4.2e+07 ˘ 3.4e+06 3.5e+07 ˘ 1.4e+06
MAXSAT-PMS-2016 2853.44 ˘ 210.21 2808.51 ˘ 218.55 3279.54 ˘ 133.00
MAXSAT-WPMS-2016 6304.15 ˘ 166.98 6592.87 ˘ 210.25 6287.21 ˘ 541.69
MAXSAT12-PMS 5347.39 ˘ 291.87 5408.40 ˘ 482.42 5308.11 ˘ 129.30
MAXSAT15-PMS-INDU 3046.05 ˘ 128.34 3032.08 ˘ 90.71 3867.70 ˘ 255.98
MIP-2016 8081.57 ˘ 845.74 8746.73 ˘ 1159.36 10644.68 ˘ 3405.18
PROTEUS-2014 13484.34 ˘ 541.83 14115.69 ˘ 768.16 15622.29 ˘ 784.60
QBF-2011 15708.25 ˘ 784.81 15178.86 ˘ 904.72 13912.24 ˘ 356.69
QBF-2014 3629.40 ˘ 220.68 3679.96 ˘ 256.03 4116.15 ˘ 116.27
QBF-2016 5082.59 ˘ 718.71 5045.16 ˘ 848.59 5346.29 ˘ 210.05
SAT03-16_INDU 11980.15 ˘ 193.67 12154.46 ˘ 221.01 12754.50 ˘ 200.55
SAT11-HAND 30484.08 ˘ 1379.35 30085.51 ˘ 764.32 29544.70 ˘ 952.78
SAT11-INDU 17540.58 ˘ 530.82 17028.84 ˘ 479.15 17018.24 ˘ 647.90
SAT11-RAND 18061.78 ˘ 2770.70 19061.88 ˘ 2522.11 21008.77 ˘ 530.22
SAT12-ALL 4720.22 ˘ 432.14 5132.48 ˘ 395.74 5650.32 ˘ 214.36
SAT12-HAND 7443.01 ˘ 180.51 7509.02 ˘ 199.39 7634.24 ˘ 267.89
SAT12-INDU 4511.68 ˘ 76.33 4945.79 ˘ 228.37 4755.52 ˘ 206.95
SAT12-RAND 4008.79 ˘ 206.59 4523.33 ˘ 170.56 5023.73 ˘ 174.68
SAT15-INDU 7700.27 ˘ 310.65 7856.08 ˘ 522.84 8220.22 ˘ 525.13
SAT18-EXP 25201.41 ˘ 681.42 24906.56 ˘ 540.36 25272.35 ˘ 881.19
TSP-LION2015 1226.11 ˘ 309.42 1411.06 ˘ 329.16 1634.79 ˘ 112.29

avgrank 1.814815 1.888889 2.296296

instances of each scenario, repeat the evaluation ten times with different seeds, and

always report average or median aggregations across those ten repetitions. As ASlib

contains missing feature values for some instances in some scenarios, we imputed

these using the mean feature value of all instances seen until that point. Moreover,

features were scaled to unit vectors by dividing by their L2 norm. If the according

variant does not self-impute censored values, these were imputed with the cutoff

time.

All code, including detailed documentation, can be found on GitHub3. More details

regarding the experiments, including corresponding hyperparameter settings, can

be found in Section A.3.

3https://github.com/alexandertornede/online_as

5.5 Evaluation 123

https://github.com/alexandertornede/online_as

Instead of directly reporting PAR10 scores, we sometimes resort to reporting a

normalized version called rePAR10 (relative PAR10), which is comparable across

scenarios and defined with respect to the oracle. Although in standard AS one usually

uses the nPAR10 (cf. Section 2.4.1), which is defined wrt. to both the oracle and

algorithm best on average (aka. SBS), we abstain from using it as the SBS cannot be

as easily defined as in the standard setting. This is because only the performance of

the selected algorithm (and not of all) in the current time step is available to update

the underlying model instead of offline training data. The rePAR10 is simply defined

as the PAR10 score of the corresponding approach divided by the PAR10 score of

the oracle, i.e. the smaller the rePAR10, the better. Moreover, we will explicitly

analyze the ªprediction timeº, i.e. the time an approach requires for making a single

selection and updating its model with the corresponding feedback.

5.5.1 Ablation Study

First, we analyze how the different LinUCB and Thompson sampling variants perform

in terms of rePAR10 performance when some of their components are activated or

deactivated.

5.5.1.1 LinUCB

Recall that we differentiate in principle between BlindUCB and BClinUCB. Both

the randomization idea (denoted by a ’rand_’ prefix) and the expected PAR10 loss

minimization (denoted by ’_rev’ suffix) can, in principle, be incorporated into both,

yielding a total of 8 variants.

Figure 5.1 shows the median rePAR10 score over all scenarios of the corresponding

variant plotted against its prediction time in seconds. First of all, it is very clear

that all of the LinUCB variants are at least 3.1 times as worse as the oracle. A

closer look at the selections made by the corresponding models shows two things.

First, although BlindUCB heavily underestimates runtimes as it completely ignores

censored samples, its estimates yield some of the best algorithm selections among

all LinUCB variants. Second, except for the revisited versions, BClinUCB yields

worse results than the corresponding BlindUCB variant in all cases. As hinted at

earlier, BClinUCB suffers from very large confidence bounds due to the correction,

yielding suboptimal selections in many cases. Moreover, one can see that directly

124 Chapter 5

0.005 0.010 0.015 0.020 0.025 0.030 0.035
avg. prediction time in seconds

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

re
PA

R1
0

bclinucb_rev
bclinucb
blinducb_rev
blinducb
rand_bclinucb_rev
rand_bclinucb
rand_blinducb_rev
rand_blinducb

Fig. 5.1: rePAR10 score of the LinUCB variants averaged over all scenarios plotted against
their average prediction time in seconds.

minimizing the expected PAR10 loss does not prove to be very beneficial (except

for the pure BClinUCB variant) and can even worsen the performance for some

variants. From a methodological point of view, this is not surprising for BlindUCB, as

it would technically require a different treatment of the expected PAR10 loss based

on a truncated (instead of a censored) linear model (cf. Greene [Gre05]). However,

the improvement observed for the pure BClinUCB variant, is promising. In fact,

when comparing the different selector variants in terms of the number of examples

where they yield the best performance, the revisited BClinUCB variant excels (cf.

Table A.1). Unfortunately, its performance on the other scenarios is so detrimental

that it offsets the other scenarios in the median. In contrast, the randomization (i.e.

RandUCB) yields consistent improvements (except for one case), making some of the

randomized variants the best among all LinUCB variants. This also coincides with

our observation that the poor selection performance is caused by large confidence

width due to the correction, which is decreased through randomization.

5.5.1.2 Thompson

We presented both a naïve and a revisited form of Thompson incorporating expected

PAR10 loss minimization (’_rev’ suffix). Moreover, both versions can be equipped

with the Buckley-James imputation strategy discussed at the end of Section 5.4.2

(’bj_’ prefix), yielding a total of 4 variants.

5.5 Evaluation 125

0.11 0.12 0.13 0.14 0.15
avg. prediction time in seconds

2.24

2.25

2.26

2.27

2.28

re
PA

R1
0

bj_thompson_rev
bj_thompson
thompson_rev
thompson

Fig. 5.2: rePAR10 score of the Thompson sampling variants averaged over all scenarios
plotted against their average prediction time in seconds.

Figure 5.2 shows the median rePAR10 score over all scenarios of the corresponding

variant plotted against its average prediction time per instance. As expected, the

more components are active, the longer the prediction time becomes. However,

the average prediction time per instance still remains below 0.16 seconds. Both

the revisited and the Buckley-James variant yield an improvement over the plain

Thompson sampling variant. A combined variant worsens the performance, meaning

that the revisited variant achieves the best performance. However, overall, one

has to note that all variants behave rather similarly with only small differences in

performance.

5.5.2 Comparison to Competitors

In the following, we only compare two UCB and Thompson sampling variants to the

competitors to avoid overloading the evaluation. In particular, we compare to an

approach by Degroote et al. [Deg+18] (cf. Section 5.6). Their approaches essentially

employ batch machine learning models (linear regression or random forests) on

the runtime, which are fully retrained after each seen instance. The selection is

either done via a simple ϵ-greedy strategy [SB18, Chapter 2] or using a UCB strategy,

where the confidence bounds are estimated using the standard deviation extracted

from the underlying random forest by means of the Jackknife [SL09] method. In

fact, the Degroote approaches cannot be considered true online algorithms due to

their dependence on the time horizon Ð they become intractable with an increasing

number of instances. Although one can update the underlying models in principle

126 Chapter 5

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
avg. prediction time in seconds

2.2

2.4

2.6

2.8

3.0

3.2

re
PA

R1
0

bj_thompson
degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
rand_blinducb
thompson_rev

Fig. 5.3: Comparison of Degroote vs. this work in terms of rePAR10 score averaged over all
scenarios plotted against their average prediction time in seconds.

less often (e.g., every ten instances as in the original paper), we abstain here from

doing so, because our approaches also incorporate every sample immediately.

As we only consider linear models in this work, we only compare to the linear ϵ-

greedy strategy presented by Degroote et al. [Deg+18] and abstain from comparing

against the random forest versions to avoid that the model complexity becomes a

confounding factor in the evaluation.

Figure 5.3 illustrates the rePAR10 value in comparison to the prediction time in

seconds of our most successful bandit algorithms and the linear ϵ-greedy Degroote

approach. First, it is easy to see that the Thompson sampling variants largely

outperform the LinUCB variants in terms of performance at the cost of being slightly

slower in terms of prediction time. Second, the Thompson sampling variants improve

around 6% in terms of performance upon the Degroote approach. Interestingly, the

latter can compete with all online algorithms in terms of prediction time, and even

outperforms the Thompson sampling variants. This is mainly because of the limited

size of the data, and because the batch linear regression of the library used for

the implementation of the Degroote approach is extremely efficient, making batch

training affordable. Besides, the Thompson sampling variants require sampling

from a multivariate normal distribution, taking up most of the prediction time.

Nevertheless, as already said, batch learning will necessarily become impracticable

with an increasing number of observations, and sooner or later get slower than the

incremental Thompson approach.

5.5 Evaluation 127

Table 5.1 illustrates a more nuanced comparison based on true PAR10 values between

the best Thompson sampling variants and Degroote, where the best value for each

scenario is printed in bold and the second best is underlined.

Overall, one can verify that Thompson sampling is a much more successful strategy

than both ϵ-greedy and LinUCB in OAS in the median. However, the revisited BClin-

UCB does indeed perform best on many scenarios, although its median performance

is decreased by its detrimental performance on the remaining ones. Moreover, di-

rectly optimizing the expected PAR10 score (_rev variants) and thereby accounting

for the right-censoring of the data often proves beneficial, yielding one of the best

OAS approaches in this work in the form of Thompson_rev. Nevertheless, as the

large rePAR10 scores indicate, there is still room for improvement.

5.5.3 Sensitivity Analysis

In this section, we provide a sensitivity analysis of the most important hyperparame-

ters of our presented approaches. To keep the number of experiments to perform in

a reasonable dimension, we limit ourselves to the most advanced variant of both

LinUCB and Thompson sampling we presented in this work. Moreover, we selected

six scenarios from the ASlib covering a range of algorithmic problems, number

of instances, and features for this analysis. All figures described in the following

(Figure 5.4 ± Figure 5.8) display the average PAR10 score over ten seeds for dif-

ferent settings of the corresponding hyperparameter. The error bars indicate the

corresponding standard deviation.

5.5.3.1 Thompson Variants

Figure 5.4 displays the average PAR10 score over ten seeds for different settings

of σ on a selection of scenarios where λ “ 0.5 is fixed. Overall, small values of σ

tend to lead to better results indicating that sampling rθa, i.e. our belief about the

weight vector according to the posterior distribution, should be based on a rather

small variance and hence, not too much exploration. This is quite in line with our

findings regarding the amount of exploration of the LinUCB variants.

Figure 5.5 displays the average PAR10 score over 10 seeds for different settings of

λ on a selection of scenarios where σ “ 10 is fixed. Overall, a clear trend whether

128 Chapter 5

small or large values of λ lead to good results seems hard to detect indicating that

the performance is rather robust with respect to the choice of λ.

5.5.3.2 LinUCB Variants

Figure 5.6 displays the average PAR10 score over ten seeds for different settings

of σ on a selection of scenarios where λ “ 0.5 and rσ2 “ 0.25 are fixed. In contrast

to the Thompson sampling variants previously discussed, where small values of σ

tend to lead to better results, here, large values of σ tend to lead to better PAR10

scores indicating that the noise terms defined in Equation 5.4 have a large standard

deviation.

Figure 5.7 displays the average PAR10 score over ten seeds for different settings of

α on a selection of scenarios where σ “ 1 and rσ2 “ 0.25 are fixed. Overall, no clear

trend can be observed whether small or large values of α lead to better results.

Figure 5.8 displays the average PAR10 score over ten seeds for different settings

of rσ2 on a selection of scenarios where α “ 1 and λ “ 0.5 are fixed. Once again,

overall no clear trend can be observed whether small or large values of rσ lead to

good results, due to the wide error bars.

5.6 Related Work

Most related from a problem perspective is the work by Degroote et al. In a series

of papers [Deg+16; Deg17; Deg+18], they define the OAS problem in a similar

form as we do and present different context-based bandit algorithms. In contrast

to their setting, the one presented in Section 2.1.2 does not feature a prior offline

training phase, as our goal is to investigate a true online setting where learning has

to be performed from scratch. In addition, their approaches essentially rely on batch

learning algorithms, making their time- and space-complexity dependent on the

time horizon4. Moreover, they do not explicitly consider the problem of censoring,

but apply a PAR10 imputation (as is standard in ASlib). Lastly, compared to our

4As we show in this chapter, some of their batch learning algorithms can actually be replaced by
online learners.

5.6 Related Work 129

work, their approaches lack a theoretical foundation, for instance, their models on

the runtimes would in principle even allow negative runtime predictions.

The majority of other work related to OAS is situated in the fields of (online) algo-

rithm scheduling (cf. Section 2.2.1) [LBH16] and dynamic algorithm configuration

[Bie+20] (aka. algorithm control [Bie+19]), where the goal is to predict a schedule

of algorithms or dynamically control the algorithm during the solution process of

an instance instead of predicting a single algorithm as in our case. Gagliolo and

Schmidhuber [GS06], Gagliolo and Legrand [GL10], Gagliolo and Schmidhuber

[GS10], Pimpalkhare et al. [Pim+21], and Cicirello and Smith [CS05] essentially

consider an online algorithm scheduling problem, where both an ordering of algo-

rithms and their corresponding resource allocation (or simply the allocation) has to

be computed. Thus, the prediction target is not a single algorithm as in our problem,

but rather a very specific composition of algorithms, which can be updated during

the solution process. Different bandit algorithms are used to solve this problem

variant. Lagoudakis and Littman [LL00], Armstrong et al. [Arm+06], van Rijn et al.

[vDB18], Laroche and Féraud [LF17] and Lissovoi et al. [LOW20] in one way or

another consider the problem of switching (a component of) an algorithm during

the solution process of an instance by means of reinforcement learning or bandit

algorithms. They can be considered to be in the field of algorithm control and

dynamic algorithm configuration.

Another large corpus of related work can be found in the field of learning from data

streams, where the goal is to select an algorithm for the next instance assuming

that the data generating process might show a distributional shift [Gam12]. To

achieve this, Rossi et al. [RdS12] and van Rijn et al. [van+14] apply windowing

techniques and apply offline AS approaches, which are trained on the last window

of instances and used to predict for the next instance. Similarly, van Rijn et al.

[van+15] dynamically adjust the composition and weights of an ensemble of stream-

ing algorithms. In a way, the methods presented by Degroote et al. [Deg+18] can

be seen as windowing techniques where the window size is set to t ´ 1, if t is the

current time step.

Another related branch of the literature is real-time algorithm configuration [Fit+14;

FMO15; El +20], where in contrast to our setting, one seeks to find a suitable

configuration of one single target algorithm (instead of the algorithm itself) for

incoming problem instances.

130 Chapter 5

Finally, Gupta and Roughgarden [GR17] analyze several versions of the AS problem

on a more theoretical level and show for some problem classes the existence of an

OAS approach with low regret under specific assumptions.

5.7 Conclusion and Future Work

In this chapter, we revisited several well-known contextual bandit algorithms and

discussed their suitability for dealing with the OAS problem under censored feed-

back. As a result of the discussion, we adapted them towards runtime-oriented

losses, assuming partially censored data while keeping a space- and time-complexity

independent of the time horizon. We identified several problems of some of the

LinUCB variants in practice, which we solved with further adaptations to some

degree. Our extensive experimental study shows that the combination of consider-

ing right-censored data in the selection process and an appropriate choice of the

exploration strategy leads to better performance. Moreover, as often found in bandit

problems, the Thompson strategies yield much better selection performance than

the LinUCB variants, presumably because they suffer from less practical problems.

As usual, there exists a plethora of paths of future work to follow. Most importantly,

we believe that a generalization of the loss function surrogate models underlying the

presented online algorithm selectors to non-linear and potentially tree-based models

is a promising path to follow. As mentioned several times, non-linear approaches

often achieve much better performance in offline AS, which gives hope that this is

also the case in the online setting considered here. Nevertheless, providing theoreti-

cal guarantees naturally becomes more difficult for non-linear models. Secondly, a

formal regret analysis of the algorithm selectors presented in this chapter is an inter-

esting endeavor. Lastly, investigating whether advanced survival analysis strategies

from the streaming community (cf. Section 5.6) can be applied in the context of

OAS is also an option worth exploring from our point of view.

5.7 Conclusion and Future Work 131

2 4 6 8 10
800

900

1000

1100

1200

1300

1400

1500

1600
PA

R1
0

ASP-POTASSCO

2 4 6 8 10

7000

8000

9000

10000

11000

12000

13000

PA
R1

0

CPMP-2015

2 4 6 8 10

8000

9000

10000

11000

12000

13000

PA
R1

0

CSP-MZN-2013

2 4 6 8 10

5000

6000

7000

8000

9000

10000

11000

PA
R1

0
MAXSAT12-PMS

2 4 6 8 10

15000

16000

17000

18000

19000

20000

21000

22000

PA
R1

0

QBF-2011

2 4 6 8 10
14000

16000

18000

20000

22000

24000

26000

PA
R1

0

SAT11-RAND

Fig. 5.4: Sensitivity analysis for parameter σ of approach bj_thompson_rev.

132 Chapter 5

0.0 0.2 0.4 0.6 0.8 1.0
800

850

900

950

1000

1050

1100

1150

1200

PA
R1

0

ASP-POTASSCO

0.0 0.2 0.4 0.6 0.8 1.0
6000

7000

8000

9000

10000

PA
R1

0

CPMP-2015

0.0 0.2 0.4 0.6 0.8 1.0
7000

8000

9000

10000

11000

12000

13000

14000

PA
R1

0

CSP-MZN-2013

0.0 0.2 0.4 0.6 0.8 1.0

4750

5000

5250

5500

5750

6000

6250

6500

PA
R1

0

MAXSAT12-PMS

0.0 0.2 0.4 0.6 0.8 1.0
14000

15000

16000

17000

18000

PA
R1

0

QBF-2011

0.0 0.2 0.4 0.6 0.8 1.0
14000

16000

18000

20000

22000

24000

26000

28000

30000

PA
R1

0

SAT11-RAND

Fig. 5.5: Sensitivity analysis for parameter λ of approach bj_thompson_rev.

5.7 Conclusion and Future Work 133

2 4 6 8 10

1300

1325

1350

1375

1400

1425

1450

1475

1500
PA

R1
0

ASP-POTASSCO

2 4 6 8 10

10500

11000

11500

12000

PA
R1

0

CPMP-2015

2 4 6 8 10

13100

13200

13300

13400

13500

13600

13700

13800

13900

PA
R1

0

CSP-MZN-2013

2 4 6 8 10

10000

10250

10500

10750

11000

11250

11500

11750
PA

R1
0

MAXSAT12-PMS

2 4 6 8 10
20250

20500

20750

21000

21250

21500

21750

22000

22250

PA
R1

0

QBF-2011

2 4 6 8 10
23500

24000

24500

25000

25500

26000

26500

27000

PA
R1

0

SAT11-RAND

Fig. 5.6: Sensitivity analysis for parameter σ of approach rand_bclinucb_rev.

134 Chapter 5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1260

1280

1300

1320

1340

1360

1380

1400

PA
R1

0

ASP-POTASSCO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10200

10400

10600

10800

11000

11200

11400

11600

PA
R1

0

CPMP-2015

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
12900

13000

13100

13200

13300

13400

13500

13600

13700

PA
R1

0

CSP-MZN-2013

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
9400

9600

9800

10000

10200

10400

10600

10800

PA
R1

0

MAXSAT12-PMS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

20200

20400

20600

20800

21000

21200

21400

21600

21800

PA
R1

0

QBF-2011

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

23000

23500

24000

24500

25000

25500

26000

26500

PA
R1

0

SAT11-RAND

Fig. 5.7: Sensitivity analysis for parameter α of approach rand_bclinucb_rev.

5.7 Conclusion and Future Work 135

0.0 0.1 0.2 0.3 0.4 0.5 0.6
2

1260

1280

1300

1320

1340

1360

1380

1400
PA

R1
0

ASP-POTASSCO

0.0 0.1 0.2 0.3 0.4 0.5 0.6
2

10200

10400

10600

10800

11000

11200

11400

11600

PA
R1

0

CPMP-2015

0.0 0.1 0.2 0.3 0.4 0.5 0.6
2

12900

13000

13100

13200

13300

13400

13500

13600

13700

PA
R1

0

CSP-MZN-2013

0.0 0.1 0.2 0.3 0.4 0.5 0.6
2

9400

9600

9800

10000

10200

10400

10600

10800

PA
R1

0
MAXSAT12-PMS

0.0 0.1 0.2 0.3 0.4 0.5 0.6
2

20200

20400

20600

20800

21000

21200

21400

21600

21800

PA
R1

0

QBF-2011

0.0 0.1 0.2 0.3 0.4 0.5 0.6
2

23000

24000

25000

26000

PA
R1

0

SAT11-RAND

Fig. 5.8: Sensitivity analysis for parameter rσ2 of approach rand_bclinucb_rev.

136 Chapter 5

Algorithm Selection on a Meta

Level

6

In this chapter of the thesis, we consider the problem of algorithm selection (AS)

from a different perspective, i.e. a meta one, based on the observation that not only

algorithms themselves can have complementary performance, but selectors as well

(Section 6.1). This naturally leads to the meta algorithm selection problem (Sec-

tion 2.1.3), which is based on the idea of learning when to use which combination

of selectors and a corresponding aggregation in order to select a final algorithm.

To this end, we present (1) a direct way of meta learning when to select a single

selector without the need for any aggregation function (Section 6.2) and (2) a set

of approaches based on ensembled algorithm selectors and discuss corresponding

limitations. Our extensive experimental study (Section 6.4) corroborates the in-

tuition that leveraging multiple selectors, i.e. ensembling them, proves beneficial

compared to meta learning when to select which selector in practice. Furthermore, it

highlights that ensembled algorithm selectors are able to beat the already very well

performing Run2Survive models presented earlier in this thesis (cf. Chapter 4) by

quite a margin. Before concluding this chapter, we embed this chapter into related

work (Section 6.5).

In this chapter, we consider no specific loss function, although most of the exper-

iments will be based on scenarios from algorithm selection library (ASlib), which

feature runtime as a loss function. Moreover, as already mentioned, we assume the

setting of the meta algorithm selection problem defined in Section 2.1.3.

The content presented in this chapter of this thesis has been partly published in the

form of a workshop paper [TWH20b] and a journal paper [Tor+22].

137

6.1 Considering Algorithm Selection on a Meta Level

So far, we have seen that the offline AS problem (cf. Section 2.1.1) and variations

thereof can be tackled by a variety of different algorithm selection approaches with

rather different underlying principles. While, for example, regression-based AS

approaches (cf. Section 2.3.2.2) are trained to predict the concrete loss function

value for a specific instance and algorithm pair as accurately as possible and can, in

principle, work with any loss function, the Run2Survive approaches presented in

Section 4.1 are targeted at optimizing runtime as a loss function and focus on differ-

ent things depending on the specific variant. Naturally, each of these approaches has

strengths and weaknesses, which can prove beneficial on some instances, but also

potentially yield rather bad algorithm selections on other instances. Correspondingly,

as an end user, choosing the correct algorithm selector can be seen as an AS problem

on another level, namely the meta level: For a given instance, which algorithm

selector from a set of selectors should be used to select the algorithm to run on

that instance? The resulting meta-AS problem was first mentioned by Lindauer

et al. [LRK19] and Kerschke et al. [Ker+19], though, to the best of our knowledge,

without pursuing it further.

One way of answering this question would be through an algorithm selector on the

meta level, that is, by an ªalgorithm selector selectorº, which does not choose among

the algorithms (or ªbase algorithmsº, to distinguish them from the AS algorithms),

but among the algorithm selectors, which in turn are responsible for selecting an

algorithm. However, having access to a set of candidate algorithm selectors, limiting

oneself to choosing only a single one of them (which in turn chooses the final algo-

rithm) might actually be unnecessarily restrictive. In fact, leveraging a composition

of selectors, which then choose the final algorithm jointly, might be a better idea.

This naturally leads to ensemble learning [Die00], which is a common approach in

machine learning to combine several predictors into stronger compositions. Thus,

instead of using a single algorithm selector to choose an algorithm, a set of selectors

is asked to evaluate the available algorithms. Subsequently, these evaluations are

aggregated into a joint decision. Somewhat surprisingly, building ensembles of

algorithm selectors has hardly been considered in the AS literature so far (cf. Sec-

tion 6.5), although ensemble learning is well known to improve predictive accuracy

in standard machine learning problems such as classification and regression. One

reason could be that querying multiple models obviously takes more time than query-

ing only a single one, so that ensembling may appear counterintuitive in scenarios

where runtime is considered as the loss function.

138 Chapter 6

6.2 Selecting Single Algorithm Selectors Through Meta

Learning

The arguably simplest solution to the meta AS problem is achieved through meta

learning [Van18; Bra+08; VGB09], namely to learn which algorithm selector takes

the best decision for a given instance. More formally, one could seek to learn a

map

smeta : I ÝÑ S , (6.1)

such that the chosen selector returns the most suitable algorithm for a given instance

i, i.e.

psmetapiqq piq P arg min
aPA

E rlpi, aqs . (6.2)

In this case, the co-domain of the function ass in Equation 2.7 is effectively restricted

to singleton sets asspiq “ tsu P S, consisting of only a single algorithm selector s.

We shall discuss the consequences of this self-imposed restriction in Section 6.2.1.

Moreover, the aggregation agg in Equation 2.8 is the identity, or, stated differently,

there is actually no need for defining or learning an aggregation function. Lastly, the

instance features computed by the feature map f for the standard AS problem are

also used on the meta level and thus constitute what is known as meta features in

the context of meta learning. Likewise, as Equation 6.1 indicates, the set of selectors

S corresponds to the set of meta targets in the meta learning jargon.

Observe that this approach is essentially a special case of the standard AS problem

itself, with a very specific set of algorithms to choose from, namely algorithm

selectors. Hence, standard AS methods (cf. Section 2.3) can, in principle, be applied.

It is important to note that algorithm selection approaches not relying on a feature

representation of instances do not necessarily have an advantage in terms of runtime

anymore, because they may select an algorithm selector, which in turn requires the

feature representation. If the feature computation has to be performed either on the

meta or on the base level, its time has to be taken into account as well. However,

there is no need to perform the computation twice, if both the algorithm selector

and the algorithm selector selector require it, because the resulting features can be

shared.

6.2 Selecting Single Algorithm Selectors Through Meta Learning 139

6.2.1 Limits Imposed by Selecting a Single Algorithm Selector

Limiting ourselves to choosing only a single algorithm selector for a given instance,

instead of leveraging multiple ones, obviously has consequences in terms of achiev-

able algorithm selection performance. To elaborate on these consequences, let us

define an algorithm selector oracle (AS-oracle) as

ass˚piq P arg min
sPS

E rlpi, spiqqs . (6.3)

It is important to note that the AS-oracle is, in general, not identical to the oracle

on the base level, as the set of algorithms to choose from may change. For a

better understanding, consider an example with two algorithms a1 and a2 and two

algorithm selectors s1 and s2, where both always select algorithm a1. Furthermore,

assume there exists an instance for which a2 performs better than a1, and hence the

oracle would select a2. However, the AS-oracle can only select s1 or s2, which in

turn both select a1, resulting in a decrease in oracle performance.

Generally speaking, in order to preserve the original oracle, it is necessary that, for

each instance, at least one algorithm selector exists that selects the best algorithm

for that instance. Otherwise, the AS-oracle performance may degrade compared

to the oracle. In practice, there will be at least one such instance most of the time,

and hence an important question is how much the oracle performance degrades.

As we show in our experimental evaluation (cf. Section 6.4.2), the degradation

strongly depends on the scenario at hand, and ranges from less than 1% to more

than 116%1.

Similarly to the oracle, the single best solver (SBS) on the meta level changes as well,

since the single best algorithm selector (SBAS), i.e. the algorithm selector which

is best on average, is now an algorithm selector, making it a substantially stronger

baseline than the SBS. Hence, while the SBS selects the actual problem-solving

algorithm that is best on average and accordingly does not depend on instance

features, the SBAS does in fact depend on such features as long as it is not identical

to the SBS. Observe that this results in a significant disadvantage for the SBAS in

terms of achievable PAR10 scores due to the time required to compute these instance

features.

1Note that on the CPMP-2015 scenario, the degradation is even around 900%, but constitutes a clear
outlier.

140 Chapter 6

Fig. 6.1: This figure depicts the general process of predicting/selecting an algorithm for a
given instance through a trained ensemble of algorithm selectors s1, s2, s3.

Obviously, these implications also influence the performance gains that can be

achieved by algorithm selector selectors of the form shown in Equation 6.1 compared

to algorithm selectors. As the oracle performance most likely degrades, while the

SBS performance most likely improves, the gap between the two also decreases,

offering less potential for algorithm (selector) selection approaches to close this

gap.

6.3 Constructing Ensembles of Algorithm Selectors

As mentioned earlier, the restriction to choose only a single algorithm selector seems

like an unnecessary constraint and may even lead to a potential loss in achievable

algorithm selection performance as we have just seen. Accordingly, one may think

about using a composition of algorithm selectors, which can play to their strengths on

some instances while compensating for each other’s weaknesses on other instances.

This idea motivates us to construct a mapping of the form shown in Equation 2.7

through ensemble learning.

Ensemble learning [Die00] presumably constitutes the most natural technique to

combine several machine learning approaches into a joint one, with the goal to

improve in performance. In algorithm selection, an ensemble can be thought of as a

set of algorithm selectors S, called base algorithm selectors, which are either trained

independently or dependently on each other. At prediction time, each selector is

queried for the given instance i, and the algorithm choices are aggregated into a final

choice using an aggregation function as defined in Equation 2.8. The concrete strat-

egy used to make the selectors cooperate depends on the ensemble technique being

used. Figure 6.1 depicts the general process of predicting/selecting an algorithm for

a given instance through a trained ensemble of algorithm selectors.

6.3 Constructing Ensembles of Algorithm Selectors 141

As mentioned earlier, allowing for the selection of multiple algorithm selectors also

requires the definition of an aggregation function in order to finally return a single

algorithm. In principle, the aggregation functions can either depend on the instance,

i.e. are instance-specific, or can be fixed across instances. Similarly, they can either

be learned or predefined.

In general, to be successful, ensembles require a certain degree of heterogeneity

of the predictions. Therefore, the different algorithm selectors should not always

coincide in their selections. Otherwise, it can easily happen that the majority of

predictions made by the base selectors are identical. Hence, in such a situation,

the prevalent selector (maybe with slight but negligible variations) dominates the

predictions of the entire ensemble, only yielding a computationally more expensive

variant of the respective dominating selector. To avoid this problem, most ensemble

methods strive for a heterogeneous set of base selectors. This can be achieved

through a suitable choice of base selectors given to the method, like, for example,

in voting. Alternatively, in the case of methods such as bagging, which only work

with a single base selector, different variants of the same selector can be trained on

different datasets.

Intuitively, the training and querying of more than one selector might be counter-

intuitive in settings where runtime is the loss function to be optimized, as it au-

tomatically results in larger runtime. In this regard, it is important to note that

the majority of the runtime is required for training the selectors in the ensembles.

In offline AS, we assume this training to be performed offline, i.e. prior to the

actual selection of algorithms. Hence, longer training times do not constitute a real

disadvantage, as long as prediction (querying the ensemble members) remains fast,

which is the case as most selectors are known to be extremely fast such that even

compositions of them are slower, but still fast. We discuss this issue in more detail in

Section 6.4.8.2.

In the following, we first elaborate on different aggregation strategies. Although

some of these aggregation functions include learnable components, they are fixed

across instances, i.e. the aggregation of predictions does not depend on the given

instance. Then, we present several ensemble techniques for creating a pool of

algorithm selectors, in particular voting [Die00], bagging [Bre96], and boosting

[Sch90]. We continue with a discussion of stacking [Wol92], which can be seen as

a learned, instance-specific aggregation method. As such, it is somehow positioned

in-between ensemble and meta learning. Finally, we close this section with a

methodological comparison of the presented approaches.

142 Chapter 6

6.3.1 Aggregation Strategies

One of the most natural forms of aggregation in our context is (weighted) majority

aggregation. As the name suggests, it aggregates the algorithm choices by selecting

the algorithm that was selected most frequently, potentially weighting the choices

of the selectors differently. This is motivated by the idea that selectors with strong

performance should potentially be trusted more than weaker ones. More formally,

weighted majority aggregation can be defined as2

aggpwqmajpi,Sq “ arg max
aPA

ÿ

sPS

ws ¨ Jspiq “ aK , (6.4)

where ws P R
` denotes the weight associated with selector s. With ws “ 1 for all

s P S, we recover standard majority voting. To obtain proper weights, a plethora

of methods are applicable in principle. However, we simply consider the nPAR10

score of the different base algorithm selectors on the training data in order to

determine corresponding weights Ð conducting a cross-validation on the training

data for the same purpose turned out to result in similar performance while being

computationally more expensive.

Up to now, we assumed that an algorithm selector only returns a single algorithm.

While this is typically true in practice, the majority of approaches internally feature

more nuanced predictions, often constituting some kind of loss (or score) for each

algorithm in A. Accordingly, instead of using only a concrete algorithm choice as

the output of the algorithm selectors, we adapted them to return such nuanced

predictions where possible.

More formally, let us assume that each trained algorithm selector s P S cannot

only be evaluated on i P I, but that it also allows access to plspi, aq, i.e. to the

corresponding internal surrogate loss of each algorithm a P A. For those approaches

where such an estimate cannot be extracted explicitly, e.g., classification-based

algorithm selectors, we define dummy losses as

plspi, aq “

$
&
%

0 if spiq “ a

1 else
(6.5)

2J¨K denotes the indicator function evaluating to 1 if the expression is true, and to 0 otherwise.

6.3 Constructing Ensembles of Algorithm Selectors 143

for all instances i P I and algorithms a P A. Note that this is also the same approach

used in Section 2.3 in order to present the different AS approaches in a unified

framework of surrogate loss functions.

With this consideration, aggregations on this more nuanced level of scores instead

of the level of final choices can be made. The most straight-forward aggregation

function on this level is the arithmetic mean, i.e.

aggavgpi,Sq “ arg min
aPA

1

|S|
ÿ

sPS

plspi, aq . (6.6)

While conceptually simple, it requires the performance surrogates of the different

selectors to approximate the same function. Otherwise, the predictions are incom-

parable, and averaging is not a meaningful operation. For example, combining the

output of a ranking loss function optimized by one selector with the estimated aver-

age PAR10 scores of another does not make any sense. In principle, the arithmetic

mean can also be turned into a weighted version as done in Equation 6.4.

In order to be able to aggregate on this more nuanced level while overcoming

the weakness of the arithmetic mean, we propose to aggregate rankings (rank

aggregation) of algorithms constructed from the algorithm scores obtained from the

selectors. More precisely, we can assume that each selector s returns a ranking over

the algorithms in A by sorting them in increasing order w.r.t.plspi, ¨q, such that the

presumably best algorithm is put on the first position in the ranking, the second-best

on the second position, etc. Having obtained such a ranking over the algorithms

for each selector, they need to be aggregated in order to draw a conclusion and

eventually return a single algorithm as the final choice.

A very simple method for rank aggregation is called Borda count [Bor84]. Given a

ranking of n items, it assigns n points to the top item, n´1 points to the second-best,

and so forth. This is done for each ranking to be aggregated, and the consensus

ranking is obtained by sorting the items (algorithms in our case) in descending order

according to their total sum of points. As pointed out by Dwork et al. [Dwo+01],

the Borda count has a number of less appealing properties, at least from a theoret-

ical point of view. In particular, it does not satisfy the Condorcet winner criterion

[Dwo+01]. Roughly speaking, the Condorcet winner criterion states that an item,

which is more often ranked better than any other item when comparing them in a

pairwise manner, will not necessarily be ranked at the top position in the aggregated

ranking. Nevertheless, its linear time complexity makes it fast to compute. This is in

sharp contrast to other rank aggregation techniques that involve intractable optimiza-

144 Chapter 6

tion problems [Dwo+01]. Besides, Borda count comes with provable approximation

guarantees for several other aggregation techniques [CFR06]. Overall, it seems to

be a good compromise for the case of algorithm selection, where predictions are

performed under tight time constraints.

Formally, we can use Borda count as an aggregation function for our setting as

follows, where rank : I ˆ S ˆ A Ñ N returns the rank of an algorithm a in the

ranking returned by a selector s on an instance i:

aggbordapi,Sq “ arg min
aPA

ÿ

sPS

rankpi, s, aq (6.7)

Ties are handled by assigning to all tied algorithms the average of the block of

ranks they occupy [Saa00]. In practice, ties can only be caused by the dummy

scores introduced in Equation 6.5. Therefore, they always occur at the end of the

rankings. Theoretically, identical scores of plpi, ¨q could also result in ties, but this

never happened in practice.

While the aggregation techniques outlined above appear to be meaningful in the

context of the algorithm selection task, we would like to point out that other

aggregation techniques are, of course, conceivable and could be used instead.

6.3.2 Voting

Voting ensembles are presumably the easiest form of ensemble learning: Each

algorithm selector in a set S 1 Ď S is trained independently of the others on the same

training data ID. At prediction time, all algorithm selectors in S 1 are queried, and

the predictions are aggregated using one of the previously described aggregation

strategies. Figure 6.2 depicts the training process of a voting ensemble.

As we demonstrate empirically, it is important to optimize the ensemble composition,

i.e. the set of base algorithm selectors S 1 Ď S specifying the ensemble, because

the performance of a voting ensemble solely depends on this configurable param-

eter. Intuitively, a complete evaluation of each possible composition to check the

corresponding performance might seem intractable due to the exponential (in |S|)
number of compositions. However, in practice, this can be a viable option under

certain circumstances. To this end, we hold back a portion of the training data ID as

validation data I 1
D Ă ID. Then, all base algorithm selectors can be trained on the

6.3 Constructing Ensembles of Algorithm Selectors 145

Fig. 6.2: This figure depicts the training process of a voting ensemble, where each base algo-
rithm selector is trained with the same training instances. Ensemble heterogeneity
is achieved by choosing a heterogeneous set of algorithm selectors in advance.

reduced training data IDzI 1
D once, so that, in order to estimate the performance of

an ensemble composition, only the predictions of the used selectors on the validation

data I 1
D need to be obtained and aggregated3. As the training of the selectors

has to be performed only once at the beginning, and the computation of both the

predictions and the aggregation can be performed in a negligible amount of time,

the evaluation of all possible compositions is feasible as long as the set of algorithm

selectors remains moderately large. For example, computing the training perfor-

mance of each possible voting ensemble composed of up to 7 algorithm selectors

required less than 5 minutes for all scenarios presented in Section 6.4. However,

we want to stress that this approach still has an exponential complexity even if the

corresponding predictions can be obtained quite fast, as the number of ensemble

compositions to evaluate is exponential in the number of algorithm selectors. Thus,

if the amount of algorithm selectors becomes larger, more sophisticated ensemble

pruning methods as by Rokach [Rok09], Lazarevic and Obradovic [LO01], and

Hernández-Lobato et al. [HMS09] can be used to find good compositions.

6.3.3 Bagging

In contrast to voting, bagging [Bre96], short for ªbootstrap aggregatingº, only

leverages a single kind of algorithm (selector). Therefore, heterogeneity between

the ensemble members has to be achieved through other means, such as data

manipulation techniques. To this end, bagging leverages a data resampling technique

from statistics called bootstrapping, which works as follows. Given a set of training

instances ID of size N “ |ID|, it creates a new training instance set by sampling N

times from ID with replacement. The actual ensemble is constructed by sampling

k such new training instance sets ID
p1q, . . . , ID

pkq and training one instantiation of

3We note that, although theoretically sound, we do not split up validation data for the ensemble
optimization as this resulted in worse performance in practice and thus simply evaluate the
performance of a composition on the same training data. Note that despite this, the final evaluation
of an approach is still performed on separate test data.

146 Chapter 6

Fig. 6.3: This figure depicts the training process of a bagging ensemble consisting of several
instantiations of the same base algorithm selector trained on bootstrapped versions
of the original training data.

the provided algorithm selector on each of the k training sets. Thus, the ensemble

eventually consists of k algorithm selector instances. At prediction time, one of the

previously discussed aggregation functions can be used to aggregate the predictions

(selections) of the different selectors. Figure 6.3 depicts the training process of a

bagging ensemble.

We would like to point out that we bootstrap on the level of the problem instances

and not on the level of the actual training data points ((instance/algorithm)-pairs

or (instance/algorithm performance)-pairs). This is done in order to allow the

selection algorithms themselves to construct their training data points. In principle,

this may lead to differently large training data sets for the corresponding base

algorithm selectors if the number of training performance values lpi, ¨q varies across

instances. However, we assume that either lpi, aq is available or we know at least

that lpi, aq ą C for all i P ID, a P A, and hence can reasonably impute these missing

values, thereby solving the problem of differently sized training data sets.

6.3.4 Boosting

While both voting and bagging fit ensemble members independently of each other

(except for (partially) identical training data), boosting successively trains its mem-

bers, each time re-weighting the training instances [Sch90]. After each iteration,

i.e. trained selector, the error of the previous selectors is determined and more

weight is put onto those instances where a wrong algorithm selection has been

performed, while the weight on correctly judged instances is reduced. Similar to

bagging, boosting (cf. Figure 6.4) only uses a single selector as a basis of which

it trains instantiations based on differently weighted versions of the same training

instance set in order to achieve diversity w.r.t. its ensemble members. At prediction

6.3 Constructing Ensembles of Algorithm Selectors 147

Fig. 6.4: This figure depicts the training process of a boosting ensemble. Similar to bagging,
the ensemble comprises several instances of the same base algorithm selector.
These are subsequently trained on differently weighted versions of the training
data.

time, the predictions of each of the trained selectors are obtained and combined into

a joint prediction using a weighted aggregation, using the weights that have been

determined as part of the boosting algorithm during the training phase.

In boosting algorithms for multi-class classification, such as SAMME [Has+09], and

regression problems, such as AdaBoost.R2 [Dru97], one would naturally consider

multi-class classification errors and regression losses, respectively, for re-weighting

training instances. However, due to the inferior performance of AdaBoost.R2 in

preliminary experiments, we focus on SAMME for the remainder of this paper.

6.3.5 Stacking

In the previous ensemble techniques, the aggregation strategy is always fixed from

the beginning and independent of the actual instance at hand. The idea of stacking

is to learn the aggregation, i.e. how to best aggregate the predictions of the base

algorithm selectors for a given instance. Therefore, a meta-learner

hagg : I ˆ R
|S|ˆ|A| ÝÑ A (6.8)

is fitted and used to aggregate the predicted lossesplspi, aq of each algorithm selector

s P S for a given instance i P I and each algorithm a P A into a joint decision. To

avoid any bias in the training data for the meta-learner, it needs to be ensured that

this data is disjoint from the training data of the base algorithm selectors. Therefore,

the set of training instances ID is normally split into a set of base algorithm selector

training instances I 1
D Ă ID and a set of meta-learner training instances I2

D Ă ID

148 Chapter 6

Fig. 6.5: This figure depicts the general idea behind a stacking ensemble. Each ensemble
member is trained with the same subset of training instances and the remaining
instances are augmented with the corresponding predictions of the trained selec-
tors. Then, a meta-learner, i.e. an additional algorithm selector, hagg is trained on
this augmented data, which decides on the algorithm to select.

such that I 1
D X I2

D “ H.4 As all possible base algorithm selectors are used, each can

be trained independently on the same subset of training instances I 1
D as a first step

such that the training data for the meta-learner can be built. Then, the meta-learner

is trained based on the features f i P R
d of each training instance i P I2

D extended

by the predictions plspi, ¨q of all base algorithm selectors s P S on these instances.

At prediction time, each base algorithm selector s P S is queried, its predictions
plspi, ¨q are concatenated and attached to the instance features f i P R

d of instance

i, based on which the meta-learner predicts which algorithm to choose. As the

meta-learner is an algorithm selector itself, any of the base algorithm selectors can

be used. Figure 6.5 depicts the general idea of a stacking ensemble. Note that we

only consider a single stacking layer here.

Since stacking is working on an (extended) feature representation, standard feature

selection techniques can be used to reduce the number of features and help the meta-

learner achieve better prediction performance. Thus, the ensemble composition does

not require any optimization upfront. For an overview of feature selection methods,

we refer to Guyon and Elisseeff [GE03].

6.3.6 Comparison of the Approaches

To put the approaches presented so far into the broader context of meta algorithm

selection (MetaAS), we close this section by revisiting them w.r.t. their most impor-

tant properties. Figure 6.6 provides an overview and illustrates how the approaches

4Although theoretically correct, we did actually not do that split in our experimental evaluation in
Section 6.4, as this led to a worse empirical performance.

6.3 Constructing Ensembles of Algorithm Selectors 149

Mapping Mapping Type

Learned

Predefined

Aggregation

None

Learned

Predefined

Meta-Learning ASS

Voting
Boosting
Bagging

Stacking

Fig. 6.6: Illustration of the different approaches w.r.t. the kind of mapping they model, how
this mapping is constructed, and how the required aggregation is obtained.

relate to each other. It clarifies what kind of mapping these approaches model,

how this mapping is constructed, and how the required aggregation function is

constructed.

As an important observation, note that some approaches involve learning on the

meta level while others do not. The former most obviously holds for learning

an algorithm selector selector (cf. Section 6.2), where the modeled mapping is

learned directly. On the other side, most ensemble approaches (cf. Section 6.3)

do not require any learning on the meta level, because their mapping is essentially

predefined. Stacking is somehow in between these two groups: the mapping itself is

predefined, but the aggregation function is learned on the meta level.

6.4 Experimental Evaluation

In this section, we provide an empirical evaluation of the ideas presented in the

preceding sections. It is organized into four main parts. First, we introduce our

experiment setup. Second, we investigate the chance for performance improvements

when learning algorithm selector selectors and evaluate the performance of standard

algorithm selectors working as algorithm selector selectors. Third, we evaluate the

performance of the different ensemble methods presented earlier and discuss the

results. We end this section by drawing a broader conclusion from these results.

150 Chapter 6

6.4.1 Experiment Setup

All evaluations are run on a subset of the scenarios from the ASlib v4.0 benchmark

suite [Bis+16] (cf. Section 2.6) with a 10-fold cross-validation, where the folds are

provided by the benchmark. The list of used scenarios can be inferred from Table 6.1

and Table 6.2.

The performance of the approaches is measured in terms of the normalized penalized

average runtime (nPAR10) metric (cf. Section 2.4.1) if not mentioned otherwise.

Recall that a value of 0 indicates oracle performance, values below 1 an improvement

over the SBS, and values above 1 a degradation compared to the SBS. To allow

for a better visual interpretation, we sometimes illustrate results aggregated over

all scenarios. Needless to say, such aggregations have to be treated with care,

because (differences between) performance degrees are not easily comparable

across scenarios.

The set of algorithm selectors used for the evaluation consists of S “ tPerAlgo,

SATzilla’11, R2S-Exp, R2S-PAR10, SUNNY, ISAC, Multiclassu, which have been

described in Section 2.3 or used in previous evaluations shown in this thesis. In

particular, R2S-EXP and R2S-PAR10 refer to the two Run2Survive variants optimizing

the expected runtime and the expected PAR10 detailed in Section 4.4, while the

remaining ones have been detailed in Section 4.4.2. These are used both as meta

learners, but also as base algorithm selectors for the ensembles. Furthermore, we

compare all ensemble variants against the single best algorithm selector, SBAS, in

terms of median or mean PAR10 or nPAR10 performance. Lastly, we note that, in

general, we leave out instances from the test sets where all algorithms run into the

cutoff as no sensible selection is possible for those. However, we do include these

instances for the meta learning experiments in Section 6.4.2 as the set of instances

in the test sets would otherwise vary between the base level and the meta level

yielding incomparable results. This is the case, as we would potentially need to

leave out an instance on the meta level (if none of the algorithm selectors chose an

algorithm solving it before the cutoff), which we might have included on the base

level (since there exists an algorithm solving it before the cutoff time). This problem

is very much related to the degradation in oracle performance, which was previously

discussed.

6.4 Experimental Evaluation 151

AS
P-
PO

TA
SS

CO

BN
SL
-2
01

6

CP
M
P-
20

15

CS
P-
20

10

CS
P-
M
in
izi
nc
-T
im

e-
20

16

M
AX

SA
T1

2-
PM

S

M
AX

SA
T1

5-
PM

S-
IN
DU

SA
T1

2-
IN
DU

Scenario

0

2000

4000

6000

8000

10000

PA
R1

0

oracle
AS-oracle
SBS
SBAS

Fig. 6.7: This figure shows the PAR10 scores of the oracle, AS-oracle, SBS and SBAS on a
subset of the ASlib v4.0 benchmark scenarios as bar charts.

In the interest of reproducibility of our results, all code, including detailed documen-

tation of the experiments and execution instructions, is available at GitHub5 and

more experiment details can be found in Section A.5.

6.4.2 Meta Learning for Selecting an Algorithm Selector

Figure 6.7 shows the PAR10 scores of the oracle, AS-oracle, SBS and SBAS on

a subset of the ASlib v4.0 benchmark scenarios. As one can see, several of the

implications we noted in Section 6.2.1 can be validated empirically. Firstly and

most importantly, although the SBS/oracle gap is a lot larger than the SBAS/AS-

oracle gap, the SBAS/AS-oracle gaps are non-negligible, and hence constructing

an algorithm selector selector can in principle make sense. For example, consider

scenarios BNSL-2016 or CPMP-2015 with large SBAS/AS-oracle gaps.

As we noted earlier, the reason why these gaps become smaller is that the oracle

performance degrades when moving to the meta level for all scenarios, whereas the

SBS performance tends to improve, because the SBAS is essentially an algorithm

selector. While the degradation in oracle performance is moderate for the majority

of scenarios (less than 10%), the improvement of the SBAS over the SBS is non-

5https://github.com/alexandertornede/as_on_a_meta_level

152 Chapter 6

https://github.com/alexandertornede/as_on_a_meta_level

Tab. 6.1: PAR10 scores of all base- and algorithm selector selectors normalized wrt. the
standard oracle and SBS. The result of the best approach is marked in bold for
each scenario. Moreover, for the meta-algorithm selectors the values in brackets
pa{bq indicate that the approach achieves a performance better or equal to a

base-approaches and is worse than b base-approaches.

Level Algorithm selectors Algorithm selector selectors (Meta)

A
pp

ro
ac

h

R
2S

-E
xp

R
2S

-P
A

R
10

IS
A

C

M
u

lt
ic

la
ss

Pe
rA

lg
o

SA
T

zi
ll

a’
11

SU
N

N
Y

R
2S

-E
xp

R
2S

-P
A

R
10

IS
A

C

M
u

lt
ic

la
ss

Pe
rA

lg
o

SA
T

zi
ll

a’
11

SU
N

N
Y

Scenario

ASP-POTASSCO 0.30 0.32 0.60 0.64 0.34 0.47 0.17 0.24 (6/1) 0.19 (6/1) 0.24 (6/1) 0.36 (3/4) 0.32 (5/2) 0.31 (5/2) 0.26 (6/1)
BNSL-2016 0.18 0.21 0.84 0.31 0.18 0.18 0.25 0.22 (3/4) 0.21 (4/3) 0.19 (4/3) 0.28 (2/5) 0.22 (3/4) 0.28 (2/5) 0.27 (2/5)
CPMP-2015 0.76 0.69 0.90 0.85 0.78 0.70 0.94 0.78 (4/3) 0.78 (4/3) 0.89 (2/5) 0.81 (3/4) 0.77 (4/3) 0.81 (3/4) 0.89 (2/5)
CSP-2010 0.13 0.15 0.31 0.80 0.25 0.13 0.34 0.05 (7/0) 0.04 (7/0) 0.19 (4/3) 0.13 (7/0) 0.46 (1/6) 0.18 (4/3) 0.09 (7/0)
CSP-MZN-2013 0.11 0.11 0.35 0.31 0.13 0.21 0.13 0.11 (7/0) 0.10 (7/0) 0.13 (5/2) 0.15 (3/4) 0.13 (5/2) 0.19 (3/4) 0.14 (3/4)
CSP-Mini.-Time-2016 0.43 0.27 0.83 0.36 0.67 0.34 0.37 0.51 (2/5) 0.51 (2/5) 0.76 (1/6) 0.60 (2/5) 0.67 (2/5) 0.35 (5/2) 0.51 (2/5)
GLUHACK-18 0.43 0.46 0.69 0.41 0.46 0.42 0.51 0.40 (7/0) 0.45 (4/3) 0.41 (7/0) 0.49 (2/5) 0.57 (1/6) 0.47 (2/5) 0.46 (4/3)
MAXSAT-PMS-2016 0.60 0.36 0.82 1.06 0.77 0.62 0.41 0.64 (3/4) 0.65 (3/4) 0.60 (5/2) 0.71 (3/4) 0.82 (2/5) 0.98 (1/6) 0.75 (3/4)
MAXSAT-WPMS-2016 0.44 0.37 0.76 0.85 0.52 0.31 0.16 0.37 (5/2) 0.39 (4/3) 0.62 (2/5) 0.60 (2/5) 0.54 (2/5) 0.43 (4/3) 0.44 (4/3)
MAXSAT12-PMS 0.22 0.23 0.47 0.40 0.28 0.24 0.29 0.25 (4/3) 0.25 (4/3) 0.20 (7/0) 0.21 (7/0) 0.32 (2/5) 0.22 (7/0) 0.21 (7/0)
MAXSAT15-PMS-INDU 0.34 0.44 0.89 1.06 0.55 0.39 0.24 0.36 (5/2) 0.57 (2/5) 0.33 (6/1) 0.39 (5/2) 0.40 (4/3) 0.51 (3/4) 0.26 (6/1)
PROTEUS-2014 0.41 0.41 0.64 0.84 0.45 0.58 0.47 0.47 (4/3) 0.47 (4/3) 0.48 (3/4) 0.48 (3/4) 0.53 (3/4) 0.62 (2/5) 0.53 (3/4)
QBF-2011 0.21 0.20 0.37 0.35 0.18 0.15 0.22 0.20 (5/2) 0.21 (4/3) 0.22 (3/4) 0.21 (4/3) 0.29 (2/5) 0.25 (2/5) 0.26 (2/5)
QBF-2014 0.26 0.28 0.51 0.59 0.32 0.31 0.31 0.31 (5/2) 0.30 (5/2) 0.32 (3/4) 0.36 (2/5) 0.41 (2/5) 0.39 (2/5) 0.36 (2/5)
QBF-2016 0.52 0.51 0.65 0.69 0.61 0.61 0.49 0.55 (4/3) 0.55 (4/3) 0.52 (5/2) 0.53 (4/3) 0.62 (2/5) 0.57 (4/3) 0.58 (4/3)
SAT03-16-INDU 0.71 0.76 0.98 0.99 0.77 0.82 0.82 0.92 (2/5) 0.90 (2/5) 0.80 (4/3) 0.79 (4/3) 0.81 (4/3) 0.84 (2/5) 0.86 (2/5)
SAT11-HAND 0.34 0.34 0.65 0.57 0.46 0.44 0.60 0.42 (5/2) 0.47 (3/4) 0.42 (5/2) 0.44 (5/2) 0.50 (3/4) 0.45 (4/3) 0.56 (3/4)
SAT11-INDU 0.69 0.69 1.08 0.71 0.63 0.79 0.76 0.78 (2/5) 0.89 (1/6) 0.84 (1/6) 0.61 (7/0) 0.79 (2/5) 0.73 (3/4) 0.85 (1/6)
SAT11-RAND 0.13 0.06 0.59 0.17 0.09 0.39 0.12 0.15 (3/4) 0.12 (5/2) 0.17 (3/4) 0.18 (2/5) 0.18 (2/5) 0.30 (2/5) 0.20 (2/5)
SAT12-ALL 0.36 0.36 0.67 0.38 0.37 0.44 0.38 0.37 (5/2) 0.40 (2/5) 0.39 (2/5) 0.39 (2/5) 0.40 (2/5) 0.40 (2/5) 0.43 (2/5)
SAT12-HAND 0.34 0.34 0.64 0.41 0.37 0.27 0.43 0.34 (6/1) 0.34 (6/1) 0.31 (6/1) 0.38 (3/4) 0.39 (3/4) 0.39 (3/4) 0.38 (3/4)
SAT12-INDU 0.70 0.73 1.02 0.94 0.79 0.59 0.78 0.62 (6/1) 0.63 (6/1) 0.75 (4/3) 0.73 (5/2) 0.65 (6/1) 0.65 (6/1) 0.66 (6/1)
SAT12-RAND 0.96 0.86 0.91 5.20 1.17 0.93 1.14 0.92 (5/2) 1.02 (3/4) 0.94 (4/3) 1.00 (3/4) 1.25 (1/6) 1.23 (1/6) 1.05 (3/4)
SAT15-INDU 0.95 0.83 0.76 0.91 0.74 0.75 1.00 0.68 (7/0) 0.88 (3/4) 1.00 (1/6) 0.96 (1/6) 0.65 (7/0) 0.85 (3/4) 0.81 (4/3)
SAT18-EXP 0.61 0.68 0.62 0.65 0.64 0.59 0.63 0.66 (1/6) 0.67 (1/6) 0.61 (6/1) 0.58 (7/0) 0.61 (6/1) 0.54 (7/0) 0.59 (7/0)

negligible, as the more successful the algorithm selectors considered by the algorithm

selector selectors are, the larger this performance gain is.

Table 6.1 shows the nPAR10 scores of all algorithm selectors and the corresponding

algorithm selector selectors of the form shown in Equation 6.1. Moreover, for the

algorithm selector selectors, the values in brackets pa{bq indicate that the approach

achieves a performance better or equal to a, and is worse than b base approaches.

Unsurprisingly, most algorithm selector selectors are able to consistently improve

over the SBS. However, moving to the meta level proves to be beneficial for only

seven scenarios and these improvements are even distributed across different al-

gorithm selector selectors. To explain this moderate result, we speculate that the

considered AS approaches are not able to unleash their full potential on the meta

level, although considerable SBAS/AS-oracle gaps exist, as we have seen previously.

However, the win/loss scores in brackets indicate that moving to the meta level is

beneficial in the sense that a more robust performance across several scenarios can

be achieved.

6.4 Experimental Evaluation 153

maj wmaj borda
Aggregation

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
nP

AR
10

 o
ve

r a
ll

sc
en

ar
io

s

R2
S-

PA
R1

0

Voting Ensemble (Mean)

maj wmaj borda
Aggregation

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

nP
AR

10
 o

ve
r a

ll
sc

en
ar

io
s

R2
S-

PA
R1

0

Voting Ensemble (Median)

Fig. 6.8: Mean/median performance in terms of nPAR10 (over all scenarios) of all possible
voting ensemble compositions as violin plots grouped by the aggregation strategy
being used. The dashed line indicates the performance of the SBAS, the black dot
indicates the performance of the best composition w.r.t. the training performance,
whereas the red dot indicates the performance of the ensemble with all base
algorithm selectors.

6.4.3 Voting Ensembles

Figure 6.8 shows the average/median performance in terms of nPAR10 (over all

scenarios) of all possible voting ensemble compositions as violin plots grouped by

the aggregation strategy being used. The dashed line indicates the performance of

the SBAS, the black dot indicates the performance of the best composition w.r.t. the

training performance, whereas the red dot indicates the performance of the ensemble

with all base algorithm selectors.

First of all, it is important to note that voting ensembles offer a lot of optimization

potential in terms of both mean and median performance in comparison to the

SBAS. While a concrete optimization of the ensemble composition (black dots)

does not seem to be beneficial, simply using all possible base algorithm selectors as

ensemble members often comes close to the lower performance bound of the voting

ensemble strategy. Independent of the aggregation strategy, a voting ensemble with

all base algorithm selectors is always able to improve over the best single algorithm

selector, sometimes even drastically (e.g., Borda aggregation in terms of median

performance). Overall, the weighted majority and the Borda aggregation seem to be

154 Chapter 6

ISAC Multiclass SUNNY SATzilla'11 PerAlgo
Base Algorithm Selector

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

nP
AR

10
 o

ve
r a

ll
sc

en
ar

io
s

R2
S-

PA
R1

0

Bagging Ensemble (Mean)
maj
wmaj
borda
base

ISAC Multiclass SUNNY SATzilla'11 PerAlgo
Base Algorithm Selector

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

nP
AR

10
 o

ve
r a

ll
sc

en
ar

io
s

R2
S-

PA
R1

0

Bagging Ensemble (Median)
maj
wmaj
borda
base

Fig. 6.9: Average / median nPAR10 performance over all scenarios of each bagging ensemble
with 10 instantiations of the corresponding base algorithm selector and different
aggregation functions. Moreover, the performance of the corresponding base
algorithm selector is shown. Once again, the dashed line indicates the performance
of the SBAS.

on par in terms of performance when considering the mean nPAR10 score, while

Borda is superior in the median case.

It is important to understand the scope of the improvement depicted here. Although

R2S-PAR10 already offers remarkable performance and represents the state of the

art in algorithm selection, it is beaten by around 15% (mean) and 32% (median),

which constitute tremendous improvements.

6.4.4 Bagging Ensembles

Figure 6.9 shows the average/median nPAR10 performance over all scenarios of

each bagging ensemble with 10 instantiations of the corresponding base algorithm

selector and different aggregation functions. Moreover, the performance of the

corresponding base algorithm selector is shown. Once again, the dashed line

indicates the performance of the SBAS.

While both ensemble variants equipped with ISAC or Multiclass as a base algo-

rithm selector deteriorate in terms of performance compared to the SBAS, SUNNY,

SATzilla’11, and PerAlgo are able to improve both in terms of mean and median

performance if the right aggregation is chosen. Surprisingly, none of the aggregation

functions seems to be dominating the others. Furthermore, it can be seen that

6.4 Experimental Evaluation 155

bagging improves the performance of SUNNY, SATzilla’11 and PerAlgo, but mostly

worsens the performance for ISAC and offers mixed results for Multiclass.

In light of the general experience with bagging in machine learning [Bre01; CN06],

the performance deterioration of the ISAC ensemble in comparison to its base selector

may appear surprising. We conjecture that the negative effect of ensembling is due

to the specific characteristics of this method. ISAC applies a clustering technique in

order to form clusters over the training instances and computes a threshold t based

on the average distances of all instances to their corresponding cluster centroid and

the standard deviation over these values. At prediction time, ISAC finds the centroid

which is closest to the new instance and returns the algorithm performing best on

the cluster, if the distance to the centroid is below the aforementioned threshold.

If this is not the case, the SBS is returned. Thus, the threshold can be seen as a

fail-safe in case ISAC considers the closest cluster to be too different to draw any

reasonable conclusion. After careful investigation, we found that the threshold t

decreases for the ensemble members trained on bootstrapped training instance sets

as both the average distance and the standard deviation decrease. As a result, the

ensemble members mostly deteriorate to the SBS and suggest the SBS on a majority

of the instances. This explains the decrease in performance and the similar results

of the different aggregation strategies.

We note that Run2Survive was left out as a base algorithm selector for bagging as it

cannot easily be trained with bootstrapped instance training sets on scenarios with

many censored samples. In such cases, bootstrapping often leads to training data

sets consisting of censored samples only, which the approach cannot handle. This is

not a problem for the other approaches as they use the standard imputation value

for censored samples encoded in the corresponding ASlib scenario.

6.4.5 Boosting Ensembles

Figure 6.10 shows the average/median nPAR10 performance over all scenarios of

each boosting ensemble with 20 iterations and different aggregation functions.

While the performance of the PerAlgo, Multiclass and SATzilla’11 algorithm selectors

improves through boosting, the performance of SUNNY and ISAC degrades. Once

again, the degradation of ISAC can be explained by the same phenomenon as in

the case of bagging: the instance weighting required by boosting was implemented

156 Chapter 6

Fig. 6.10: Average / median nPAR10 performance over all scenarios of each boosting
ensemble with 20 iterations and different aggregation functions. Moreover, the
performance of the corresponding base algorithm selector is shown. Once again,
the dashed line indicates the performance of the SBAS.

through data sampling, whence ISAC mostly degenerates to the SBS. We chose

to do so, since not all of the base algorithm selectors inherently support instance

weights, but we wanted to investigate boosting variants powered by as many base

algorithm selectors as possible. The degradation of the performance of SUNNY can

also be explained in a similar fashion. Recall that SUNNY essentially is a similar

k-nearest neighbor algorithm, which, given a new instance, returns the algorithm

which performs best in terms of PAR10 performance on the k nearest instances in

the training data. However, this training data mostly consists of instances with a

high weight as all others have a lower chance of being sampled. As a consequence,

SUNNY will return the algorithm performing best on average on exactly these

instances, while completely ignoring all other instances. This results in degenerate

boosting learning curves as depicted in Figure 6.11. The problem is less dominant

for selectors that generalize in a more sophisticated way across the features, such

as PerAlgo or Multiclass. For instance-based approaches such as SUNNY or ISAC,

different forms of boosting specialized for k-NN approaches [GO09] or clustering

[FLS04] might be more promising and should be investigated in future work.

6.4 Experimental Evaluation 157

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.10

0.15

0.20

0.25

0.30
nP

AR
10

SUNNY CSP-MZN-2013

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.15

0.20

0.25

0.30

nP
AR

10

SUNNY QBF-2011

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.6

0.8

1.0

1.2

1.4

nP
AR

10

ISAC SAT12-INDU

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

0.4

0.6

0.8

1.0

1.2

1.4
nP

AR
10

ISAC ASP-POTASSCO

Fig. 6.11: Learning curves featuring training (orange) and testing (blue) nPAR10 scores of
the SAMME boosting algorithm with SUNNY (top two) and ISAC (bottom two)
as a base selector on two scenarios.

6.4.6 Stacking

Figure 6.12 shows the average nPAR10 performance of stacking variants, where

the meta-learner hagg is instantiated through different algorithm selectors with and

without a variance threshold feature selection approach. Each variant uses all base

algorithm selectors to generate additional features. The variance threshold method

selects all features with a variance larger than a given threshold, which was set to

0.16 for these experiments. The dotted line indicates the average performance of

the SBAS.

158 Chapter 6

PerAlgo SUNNY ISAC SATzilla'11 R2S-PAR10 Multiclass
Meta Learner

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

nP
AR

10

R2
S-

PA
R1

0

Stacking with VarianceThreshold
Stacking without feature selection
Base

Fig. 6.12: This figure shows the average nPAR10 performance of stacking variants where
hagg, i.e. the meta-learner, is instantiated through different algorithm selectors
with and without a variance threshold feature selection approaches.

Firstly, we would like to note that no general recommendation on the use of feature

selection can be made, as the effect seems to depend very much on the meta

learner. However, while all stacking ensemble variants do not improve over the

best single algorithm selector, the variants deploying SATzilla’11 and Multiclass as a

meta learner can slightly improve in performance compared to their base versions.

We find this quite disappointing because the additional features provided to the

meta-learner seem to carry valuable information as the feature importance analysis

portrayed in Figure 6.13 corroborates. It shows a ranking over the features w.r.t. their

feature importance values extracted from the multi-class classification meta learner

(instantiated with a random forest classifier) for the QBF-2011 scenario. Clearly, the

additional features in the form of the predictions of the ensemble members carry

the biggest part of the information contained in the data.

6.4.7 Overall Comparison

Table 6.2 displays nPAR10 values of a subset of all evaluated ensemble variants

and all base algorithm selectors broken down to the different scenarios. The best

result for each scenario is marked in bold, and a line above a result of an ensemble

approach indicates that it is better than the result of the best base algorithm selector

on the corresponding scenario.

6.4 Experimental Evaluation 159

0 10 20 30 40 50 60 70 80
Average feature ranking for all folds and algorithms of the scenario

0.00

0.02

0.04

0.06

0.08

0.10

0.12

fe
at

ur
e

im
po

rta
nc

e

QBF-2011: Algorithms = 5

Original Feature Data
Multiclass Predictions
R2S-PAR10 Predictions
R2S-Exp Predictions
SATzilla'11 Predictions
ISAC Predictions
SUNNY Predictions
PerAlgo Predictions

Fig. 6.13: This figure portrays a ranking over the features w.r.t. their feature importance
values extracted from the multi-class classification meta-learner (instantiated
with a one-vs-all decomposition equipped with a random forest classifier) for the
QBF-2011 scenario.

Overall, ensembles of algorithm selectors achieve a performance superior to single

algorithm selectors. There are only two scenarios (ASP-POTASSCO, MAXSAT-WPMS-

2016) for which none of the selected ensemble variants was able to improve over

the base algorithm selector, performing best on that particular scenario, and another

three scenarios where a competitive performance was achieved (MAXSAT15-PMS-

INDU, SAT11-HAND, SAT12-HAND). For all other scenarios, at least one of the

ensemble variants achieved new state-of-the-art performance. While some of these

improvements are rather small (CSP-MNZ-2013, where an improvement from 0.11

to 0.10 is recorded), there are also various scenarios with a ą 1.5 fold improvement

(e.g., CSP-Minizinc-Time-2016, SAT03_16_INDU, QBF-2011). This is especially

remarkable as only very few improvements have been made in the last two years.

In terms of median, and average rank performance across all scenarios, the Borda

voting ensemble variant achieves the best result and improves over the previous

state of the art by more than 32% (median performance). Thus, it demonstrates a

very robust performance across all scenarios. The voting ensemble with a Borda

aggregation (13), the bagging ensemble with the PerAlgo base selector and a Borda

aggregation (11), and the boosting ensemble with the PerAlgo base selector and

a weighted majority aggregation (13) all consistently outperform the best single

algorithm selector on 11 to 13 of 25 scenarios and, thus, achieve an impressive

performance.

160 Chapter 6

Tab. 6.2: nPAR10 values of the best ensemble variants and all base algorithm selectors
broken down to the different scenarios. The best result for each scenario is
marked in bold and a line above a result indicates beating all base algorithm
selectors.

Ensemble Voting Bagging Stacking Boosting

Aggregation w
m

aj

bo
rd

a

w
m

aj

bo
rd

a

R
2S

-E
xp

SA
T

zi
ll

a’
11

(V
T

)

w
m

aj

w
m

aj

Base selector al
l

al
l

SU
N

N
Y

Pe
rA

lg
o

al
l

al
l

M
u

lt
ic

la
ss

Pe
rA

lg
o

R
2S

-E
xp

R
2S

-P
A

R
10

IS
A

C

M
u

lt
ic

la
ss

Pe
rA

lg
o

SA
T

zi
ll

a’
11

SU
N

N
Y

Scenario

ASP-POTASSCO 0.26 0.24 0.21 0.29 0.31 0.31 0.44 0.44 0.3 0.34 0.64 0.67 0.34 0.45 0.17

BNSL-2016 0.16 0.17 0.25 0.15 0.16 0.18 0.32 0.3 0.2 0.22 0.84 0.31 0.2 0.18 0.25
CPMP-2015 0.81 0.87 0.83 0.82 0.88 0.76 0.51 0.47 0.97 0.81 0.98 0.94 0.9 0.81 1.05
CSP-2010 0.24 0.24 0.33 0.23 0.23 0.24 0.43 0.42 0.26 0.26 0.38 0.78 0.36 0.24 0.4
CSP-MZN-2013 0.1 0.11 0.12 0.1 0.14 0.2 0.39 0.36 0.11 0.11 0.34 0.31 0.13 0.22 0.13
CSP-Minizinc-Time-2016 0.21 0.31 0.51 0.51 0.46 0.4 0.39 0.35 0.46 0.46 0.7 0.61 0.61 0.41 0.52
GLUHACK-18 0.44 0.44 0.47 0.49 0.45 0.43 0.4 0.36 0.47 0.5 0.6 0.39 0.44 0.41 0.52
MAXSAT-PMS-2016 0.55 0.58 0.39 0.47 0.76 0.7 0.42 0.38 0.57 0.41 1.05 1.18 0.79 0.6 0.49
MAXSAT-WPMS-2016 0.34 0.28 0.26 0.33 0.43 0.45 0.41 0.38 0.46 0.38 0.76 0.84 0.49 0.37 0.24

MAXSAT12-PMS 0.27 0.27 0.17 0.21 0.28 0.33 0.38 0.36 0.27 0.29 0.55 0.37 0.33 0.24 0.28
MAXSAT15-PMS-INDU 0.36 0.24 0.31 0.4 0.34 0.3 0.37 0.36 0.39 0.46 1.0 1.24 0.58 0.43 0.24

PROTEUS-2014 0.42 0.42 0.43 0.39 0.41 0.58 0.41 0.36 0.41 0.41 0.62 0.84 0.45 0.58 0.47
QBF-2011 0.18 0.17 0.16 0.1 0.16 0.15 0.39 0.34 0.19 0.19 0.33 0.33 0.2 0.16 0.22
QBF-2014 0.28 0.26 0.36 0.25 0.28 0.36 0.4 0.32 0.3 0.31 0.51 0.63 0.31 0.36 0.4
QBF-2016 0.42 0.41 0.44 0.42 0.56 0.63 0.41 0.33 0.47 0.49 0.59 0.68 0.65 0.62 0.51
SAT03-16_INDU 0.73 0.71 0.7 0.75 0.66 0.81 0.44 0.36 0.72 0.76 0.94 0.99 0.89 0.84 0.85
SAT11-HAND 0.37 0.36 0.45 0.45 0.46 0.44 0.43 0.36 0.51 0.36 0.69 0.57 0.48 0.49 0.7
SAT11-INDU 0.66 0.65 0.97 0.66 0.71 0.69 0.45 0.38 0.66 0.74 0.98 0.76 0.62 0.83 0.85
SAT11-RAND 0.1 0.1 0.1 0.07 0.11 0.29 0.44 0.37 0.14 0.08 0.61 0.17 0.11 0.36 0.13
SAT12-ALL 0.3 0.3 0.36 0.29 0.36 0.38 0.43 0.36 0.37 0.35 0.67 0.37 0.37 0.44 0.4
SAT12-HAND 0.28 0.27 0.34 0.3 0.29 0.28 0.43 0.35 0.35 0.34 0.64 0.41 0.38 0.27 0.42
SAT12-INDU 0.61 0.58 0.71 0.73 0.73 0.61 0.45 0.35 0.73 0.75 0.97 0.94 0.81 0.61 0.81
SAT12-RAND 0.87 0.89 0.91 1.06 0.87 0.9 0.48 0.37 1.0 0.9 1.01 5.32 1.18 0.99 1.11
SAT15-INDU 0.65 0.7 0.79 0.85 0.9 0.68 0.5 0.39 1.01 0.79 0.72 0.86 0.72 0.72 1.04
SAT18-EXP 0.47 0.52 0.57 0.38 0.52 0.59 0.5 0.4 0.6 0.67 0.61 0.65 0.62 0.6 0.63

Mean 0.4 0.4 0.45 0.43 0.46 0.47 0.42 0.37 0.48 0.46 0.71 0.85 0.52 0.49 0.51
Median 0.36 0.31 0.39 0.39 0.43 0.43 0.43 0.36 0.46 0.41 0.67 0.67 0.48 0.44 0.47
Avg. Rank 4.32 4.2 6.92 5.28 6.96 7.56 7.72 5.8 8.2 7.72 13.48 12.88 10.16 8.44 10.32

6.4.8 Discussion of Results

We have seen that ensembles of algorithm selectors achieve a performance superior

to single algorithm selectors and are also superior to meta learning an algorithm

selector. Considering that the improvements beyond standard algorithm selec-

tors are very considerable, we feel the need to discuss the scope of the results

(Section 6.4.8.1), the overhead caused by ensembles of algorithm selectors (Sec-

tion 6.4.8.2) and whether learning on a meta level might be harder than on the base

level (Section 6.4.8.3).

6.4 Experimental Evaluation 161

6.4.8.1 Scope of Results

As the composition of the ASlib benchmark and existing literature show, most of

the algorithm selection research is centered around constraint satisfaction problems,

where the loss to optimize is algorithm runtime or a penalized version thereof such

as the PAR10. This has several reasons: First, constraint satisfaction problems

play a very important role in industry while, despite the large amount of research

committed to this kind of problems over the last century, they remain hard to

solve in general. Second, these problems exhibit a high amount of performance

complementarity among algorithms, which is the main motivation for the AS problem

as discussed earlier. More precisely, algorithms for solving constraint satisfaction

problems are known to exhibit heavy-tailed runtime distributions [GSC97], i.e. they

need very long to solve some instances while other algorithms might solve the same

much faster. Overall, the potential for algorithm selection is very large on this kind

of problem, while sometimes lower for other problems such as selecting machine

learning algorithms for a dataset. For that particular example, both random forests

and gradient boosting often show strong performance and, thus, constitute strong

SBS, which in principle can be improved upon as for example shown by Thornton

et al. [Tho+13], but often to a smaller degree.

Correspondingly, as is common in the AS literature, the results presented so far

focus on scenarios optimizing algorithm runtime. However, in order to at least give

an idea about the applicability of the proposed framework for other algorithmic

problem classes, we would also like to present results on two other scenarios from

ASlib, which focus on optimizing solution quality instead of algorithm runtime.

In particular, we present results on the OPENML-WEKA-2017 and the TTP-2016

scenarios. While the former is concerned with the selection of machine learning

algorithms for different datasets, the latter deals with selecting algorithms for

instances of the traveling thief problem [BMB13]. As the Run2Survive models are

specifically tailored towards AS wrt. algorithm runtime instead of performance, we

leave them out of the comparison here.

Table 6.3 shows the results for the ensemble methods and the base algorithm

selectors including both the SBS and the oracle as reference points. These reference

points are included as this table does not show nPAR10 scores, but a performance

score in the unit interval where 1 is the optimum since the scenarios are concerned

with solution quality optimization as noted earlier. While the base algorithm selectors

are able to achieve a slight improvement over the SBS on the TTP-2016 scenario,

162 Chapter 6

Tab. 6.3: Performance values (OPENML-WEKA-2017: accuracy, TTP-2016: TTP objective
function [Wag+18]) of the best ensemble variants and all base algorithm selectors
broken down to the respective scenarios. The best result for each scenario is
marked in bold and a line above a result indicates beating all base algorithm
selectors.

Ensemble Voting Bagging Stacking Boosting

Aggregation w
m

aj

bo
rd

a

w
m

aj

bo
rd

a

R
2S

-E
xp

SA
T

zi
ll

a’
11

(V
T

)

w
m

aj

w
m

aj

Base selector al
l

al
l

SU
N

N
Y

Pe
rA

lg
o

al
l

al
l

M
u

lt
ic

la
ss

Pe
rA

lg
o

Pe
rA

lg
o

SU
N

N
Y

IS
A

C

SA
T

zi
ll

a’
11

M
u

lt
ic

la
ss

sb
s

or
ac

le

Scenario

OPENML-WEKA-2017 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.85 0.84 0.85 0.86 0.85 0.86 0.88
TTP-2016 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.96 1.0

none of them can beat the SBS on the OPENML-WEKA-2017 scenario. Similarly,

none of the ensemble approaches is able to improve over a base selector on the two

scenarios. Hence, the empirical results corroborate the essence of the discussion

above: On both scenarios, the SBS is a strong baseline, which is quite close to the

oracle in terms of performance and hence, there exists hardly any potential for

algorithm selection in general, let alone at the meta level6.

Overall, algorithm selection on the meta level is only sensible in cases where (a)

a considerable gap between the performances of standard algorithm selection ap-

proaches and the oracle exists and (b) performance complementarity among the

algorithm selectors can be exploited. In contrast to the scenarios concerned with

runtime, at least the first condition is not met for the two additional scenarios here,

making an application not worthwhile for these cases.

6.4.8.2 Runtime Overhead of Algorithm Selector Ensembles

As we are mainly focused on runtime as a loss function in this chapter, one might

argue that ensembling multiple algorithm selectors yields an overhead as multiple

selectors have to be queried at runtime and thus is not a good idea. Recall, that

the PAR10 loss of an approach is mostly dominated by those instances where an

algorithm is selected, which runs into a cutoff due to the large penalty of 10¨C. While

6As the ensemble approaches performed much better than the direct meta learning approach in the
runtime experiments, we focused on the ensemble variants here.

6.4 Experimental Evaluation 163

it is true that the selection time of the ensemble approaches is larger than the time

of a single algorithm selector, it is negligible compared to the corresponding PAR10

score. For example, let us consider the first fold of the ASP-POTASCO scenario. Here,

the average time an AS approach needs to select an algorithm for a given instance

(after the features have already been computed) varies from 0.0009 (SUNNY) to 0.66

(SATzilla) seconds in the considered set of algorithm selectors. Correspondingly,

the ensemble methods will require a multiple thereof in addition to some overhead

for aggregation and possibly other operations on the meta level. For example, the

boosting approach from the evaluation with 10 SUNNY base selectors requires 0.010

seconds whereas voting requires 1.04 seconds. While this does certainly constitute a

significant increase in selection time, it is negligible compared to the PAR10 score

(which is also the penalized runtime of the selected algorithms averaged across

instances) of the fastest algorithm selector on this fold, i.e. R2S-PAR10 with a score

of 132 (if instances, for which all algorithms time out, are not considered). Even

in cases where we ensemble 10 variants of SATzilla (the selector with the longest

selection time), the ensemble requires around 6 seconds, which is less than 5% of

the PAR10 score of R2S-PAR10. Thus, the overhead incurred by the ensembles is

negligible compared to the PAR10 loss. From a methodological point of view, this

observation makes sense as it is well-known in the algorithm selection community

that the selection time of most approaches (after the instance features have been

computed) is extremely fast and thus negligible. As the time of the ensembling itself

is also negligible, the overall time of ensembled selectors remains rather negligible

as long as the ensemble does not become too large.

6.4.8.3 Is Meta Learning Harder Than Learning?

Recall our taxonomy of the approaches presented in Figure 6.6, regarding which

kind of mapping they model, how this mapping is constructed, and how the required

aggregation function is obtained. Drawing an overall conclusion from the results

presented in this work, we cautiously conclude that the presumably simpler problem

of learning a mapping as in Equation 6.1 from the instances to the set of algorithm

selectors yields worse results than solving the presumably more complicated problem

of finding both a mapping from instances to a set of selectors and a corresponding

aggregation function. While we observed remarkable performance improvements

for all ensemble approaches, the meta learning approach could essentially achieve

no improvement at all. Although ensembles are known to often yield better results

than single approaches and thus an improvement is to be expected, we believe that

164 Chapter 6

the degree of improvement in a well-researched field such as AS is truly remarkable.

Moreover, it is surprising that the meta learning essentially fails and hence, classic

AS approaches cannot exploit performance complementarity on the meta level.

As a possible reason, note that the meta learning approach heavily relies on the

instance features, which are required for learning on the meta level. On the contrary,

ensembles of algorithm selectors do not use these features on the meta level di-

rectly (except for stacking), but only aggregate the predictions of multiple selectors.

Thus, we speculate that the information contained in the features does not allow

for an improvement in performance through moving to the meta level, while the

predictions of the selectors do carry enough information to do so. This hypothesis is

corroborated by the feature analysis conducted as part of the experiments around

stacking (cf. Figure 6.13), which indicates that much more information is present

in the predictions of the base selectors than in the original instance features. We

attribute stacking’s ability to perform successful learning on the meta level (aggre-

gation) to the same reason. While stacking was able to achieve improvements, the

arguably most simple ensemble approach in the form of voting, which involves no

learning on the meta level at all, achieved by far the best results. Overall, learning

on the meta level appears to be a very hard problem.

6.4.8.4 Is There a Meta Limit?

As the empirical evaluation indicates, going to the meta level can prove beneficial

in terms of algorithm selection performance, but only if done correctly. Naturally,

one may wonder if choosing the right approach at the meta level, e.g. the right

ensemble technique, can also be automated yielding an even higher level meta meta

problem to be solved by an algorithm, which again could be selected, etc. This

leads to the problem of infinite regress, which was recently noted in the context of

automated machine learning (AutoML) by Hüllermeier et al. [Hül+21]. Considering

that solving the problem at the meta level requires resources, e.g. runtime, and thus

creates overhead, there naturally is a limit at which increasing in meta level is no

longer a reasonable option. However, further investigation of this question is out of

the scope of this chapter.

6.4 Experimental Evaluation 165

6.5 Related Work

In the following, we give an overview of the most related work regarding the use

of ensemble methods in algorithm selection. As mentioned earlier, this work is

surprisingly sparse.

In algorithm selection, it is normally assumed that the set of algorithms A to choose

from is predefined, although the composition of this set can have an influence on the

selectors. Therefore, Kordík et al. [KCF18] propose to not simply use all available

algorithms as a basis to choose from but to employ ensemble techniques in order to

construct the set of algorithms to choose from. Thus, they build ensembles on the

level of algorithms, whereas we ensemble on the level of selectors with the goal to

create a better combined algorithm selector.

Perhaps indeed most related, both Malone et al. [Mal+17] and Kotthoff [Kot12]

suggest a stacking approach: First, a regression model is learned per algorithm to

estimate the performance on a given instance, and second, the estimated perfor-

mances are used as input for a multi-class classification model that eventually selects

the algorithm. While Kotthoff [Kot12] only uses the outputs of the performance

estimators as input of the meta-learner, Malone et al. [Mal+17] use these in addition

to the original features. Moreover, Malone et al. [Mal+17] suggest also including

uncertainty information obtained from the performance estimators as input for

the meta learner. Both variants are very specific instantiations of the general idea

presented in this chapter, using stacking as an ensemble technique and a specific

selector as a base algorithm selector. While the approach presented by Malone

et al. [Mal+17] resulted in the last spot in the open algorithm selection competition

of 2017 [LRK19], Kotthoff [Kot12] showed that a performance improvement is

possible for a meta learning scenario concerning the selection of machine learning

algorithms. In particular, he elaborated that stacking a classifier on top of the

pure performance estimation does yield indeed an improvement in most cases over

choosing the algorithm based on the performance estimates only.

Lastly, note that ensembling is quite frequently used in modern AutoML tools such as

AutoGluon [Eri+20] or auto-sklearn [Feu+15]. However, this is on a conceptually

different level. While we ensemble selectors in this work, most AutoML tools

ensemble algorithms, i.e. machine learning pipelines. Nevertheless, there exist ideas

to also optimize these tools on the meta level similar to what we have in mind

with the MetaAS problem. For example, Feurer and Hutter [FH18] present ideas

166 Chapter 6

on how to further automate AutoML by automatically tuning the hyperparameters

of AutoML tools. The concept of optimizing an AutoML tool itself also found very

successful application in the latest version of auto-sklearn [Feu+22]. Similarly,

Lindauer et al. [Lin+15] present the first (and to the best of our knowledge only)

fully self-tuning AS system, called AutoFolio, comprising multiple selectors. The

idea behind AutoFolio is to automatically select the algorithm selector and configure

it based on a given set of instances, i.e. a scenario. While this appears to be very

similar to the idea of MetaAS, note that AutoFolio works on the level of scenarios, i.e.

optimizes for groups of instances, whereas we select the corresponding selector(s)

for each instance, i.e. instance-specifically.

6.6 Conclusion and Future Work

In this chapter, we revisited the problem of AS from a meta perspective. Based

on the MetaAS problem and the associated general methodological framework (cf.

Section 2.1.3), we considered several concrete learning methods as instantiations of

this framework and compared them conceptually and empirically. In an extensive ex-

perimental study, we have shown that the MetaAS problem can be solved efficiently

with our framework, and that solutions can provide remarkable improvements in

performance, often significantly better than the hitherto state of the art. In partic-

ular, we find that ensembling algorithm selectors can yield a drastic performance

improvement if done correctly while featuring a negligible overhead in terms of

selection time. Finally, we embed our results into a broader context, concluding that

learning algorithm selector selectors seems to be harder and less promising than

defining them through well-established concepts from ensemble learning.

As usual, several lines of future work are conceivable. Firstly, we deem it promising

to investigate the idea of MetaAS in the online AS setting as we believe that the

online algorithm selection (OAS) approaches presented in Chapter 5 also show a

performance complementarity on the instance level. Secondly, it might be worth-

while to investigate more advanced ensembling strategies such as greedy ensemble

selection [TPV08], which has proven to be very effective in AutoML tools [Eri+20].

Similarly, as mentioned earlier, more effort could be put into leveraging specialized

ensemble techniques for instance-based learning approaches [GO09; FLS04].

6.6 Conclusion and Future Work 167

Conclusion and Future Work 7
We close this work by concluding remarks and elaborating on opportunities for

future work in the field of algorithm selection (AS).

7.1 Conclusion

In this thesis, we elaborated on the problem of algorithm selection: Given an instance

from an instance space and a set of algorithms, we want to select the most suitable

algorithm for the given instance.

We have investigated several variations of the AS problem, starting with extreme

algorithm selection (XAS), where we assume an extremely large set of algorithms

and very sparse training data. We argued that existing approaches have trouble

coping with the large set of algorithms due to their strategy of learning separate

loss function surrogates per algorithm. As a solution, we proposed to leverage a

dyadic feature representation of both algorithms and instances, enabling us to learn

a single joint model across all algorithms. Our experimental evaluation showed that

such a model works particularly well in scenarios of very sparse training data, which

is a realistic assumption in the XAS setting.

Moreover, we examined the problem of partially right-censored training data caused

by the assumption that algorithms are executed under a timeout. We discussed exist-

ing techniques to cope with this problem and pointed out corresponding problems

caused by the fact that these methods are built on top of standard AS approaches

instead of inherently considering the problem during the design of an AS system.

Run2Survive is our attempt at the latter Ð an AS approach powered by a survival

analysis surrogate loss function model allowing one to estimate algorithm runtime

distributions learned from partially censored data. The idea to leverage models from

survival analysis together with a risk-averse approach to avoid selecting timeouting

algorithms yielded an approach substantially outperforming the hitherto state of the

art in algorithm selection.

169

Driven by our success in the offline AS problem, we also worked on the problem

of censored training data in an online setting, called the online algorithm selection

(OAS) problem Ð another variation of the AS problem. To meet the demand for

online learning in this new setting, we examined the ability of existing stochastic

multi-armed bandit approaches to cope with censored data and, similarly to the

offline case, found that they exhibit several drawbacks. In order to alleviate these

drawbacks, we adapted them in theoretically grounded ways while keeping a time-

and space-complexity independent of the time horizon Ð an unavoidable property

for any true online approach. Our evaluation revealed that these adaptations perform

slightly better than existing approaches, whose complexity does depend on the time

horizon.

Lastly, we took a step back and observed that the performance complementarity

among algorithms motivating the AS problem in the first place can also be observed

among different algorithm selectors themselves, calling for a meta algorithm se-

lection (MetaAS) problem to be tackled. Taking this observation into account, we

attempted to learn for which instance which algorithm selector should be asked to

perform a selection, i.e. we tried to learn algorithm selector selectors Ð an endeavor

which turned out to be not very successful. However, based on this failure, we devel-

oped the idea to leverage the power of multiple selectors to select an algorithm, i.e.

to compose an ensemble of selectors. If composed correctly, such ensembles turned

out to be extremely successful (meta) algorithm selectors despite the additional

overhead of querying multiple selectors, even substantially beating Run2Survive in

terms of selection performance.

7.2 Future Directions for Algorithm Selection

As the reader has seen, we have already discussed some very immediate future work

in each of the technical chapters of this thesis. In this section, we want to touch on

different topics for future work in a broader context, sometimes connecting different

chapters of this thesis. In particular, we discuss ideas for novel settings, conceptual

changes to algorithm selection and benchmarking in the following.

170 Chapter 7

7.2.1 Novel Settings

Meta Online Algorithm Selection In Chapter 6 we have seen that ensembling mul-

tiple algorithm selectors can prove beneficial in terms of selection performance in

the offline AS problem. Naturally, one may wonder if the same also holds for the

OAS problem, i.e. whether ensembling online selectors in an online fashion is a

reasonable idea. Although this might sound like a simple task at first, there are

several important aspects to consider. First, when ensembling multiple selectors in

the online setting, not only the selectors themselves have to be learned in an online

fashion, but also any component of the ensemble and the aggregation, in case it is

not predefined, has to be adapted online as well. For example, for a weighted voting

ensemble, both the ensemble composition and the weights for the aggregation need

to be adapted online, making the problem significantly harder than in the offline

case. Second, one may wonder whether all selectors or only a subset of them should

be updated every timestep. On the one hand, updating fewer ones will prove benefi-

cial if the considered loss is based on runtime, since updating the selectors requires

time. On the other hand, missing updates of some selectors could have a negative

impact on their performance, nullifying the time saved by not updating them. If

one decides to update only a subset of the selectors, the natural question of which

selectors to update arises. This can be seen as a preselection multi-armed bandits

(MAB) problem [BH19; BH20] on the meta level, essentially yielding an algorithm

selection problem at the meta meta level: Which preselection MAB algorithm should

be chosen? Asking these kinds of questions brings up the problem of infinite regress

recently also noted by Hüllermeier et al. [Hül+21], suggesting that going more

and more meta can, in principle, be done, but often introduces even higher level

problems to solve. Recall that we also shortly discussed this in Section 6.4.8.4.

Extreme Meta Algorithm Selection The approaches for the MetaAS problem pre-

sented in Chapter 6 work well, if the set of selectors is of reasonable size. However,

when the set of selectors grows very large similar to the set of algorithms in the XAS

problem (cf. Chapter 3), additional problems arise. For example, the idea of directly

meta learning a selector selector is no longer easily possible for the same reasons as

learning algorithm-wise loss function surrogates is problematic in the XAS setting.

Correspondingly, one would require features of algorithm selectors in order to learn

a selector selector, which generalizes across the selectors and instances. We believe

that designing features to characterize an algorithm selector might be even harder

than designing features for the algorithms the selector can select due to the higher

7.2 Future Directions for Algorithm Selection 171

level. In particular, selector features most likely depend on the algorithm features.

Furthermore, some of the ensembling techniques, such as voting, can no longer

work with the complete selector set as the ensemble but need to carefully choose a

small subset by special techniques such as greedy ensemble selection [TPV08] in

order to avoid increasing the overhead caused by the ensemble.

7.2.2 Conceptual Approach Changes

Hybrid Ranking and Regression Models for AS We have already discussed the idea

of combining ranking- and regression-based AS approaches into hybrid ones in

Section 2.3.2.4 and also pointed to the work performed by Hanselle et al. [Han+20]

motivated by Sculley [Scu10]. Although the results presented in the corresponding

work by Hanselle et al. [Han+20] are preliminary and far from the state of the

art in AS, we believe that further investigation of this idea is a promising path. As

noted in Section 2.3, both ranking and regression AS solutions have advantages and

disadvantages, of which most of the latter could be alleviated by a proper hybrid

approach. Yet, it is unclear how exactly such a hybrid approach should look like. The

idea of Hanselle et al. [Han+20] to learn a model based on a convex combination

of regression and ranking loss functions is certainly one possibility. However, as

noted in the paper, this possibility also comes with several disadvantages, such

as the requirement to scale the two losses into a similar range to avoid that one

dominates the other. Considering that the convexly combined hybrid loss function

surrogate can also be viewed as an instantiation of a scalarization approach from

the field of multi-objective optimization, one could, of course, also pose the problem

as a multi-objective problem in the first place. With this in mind, essentially any

multi-objective solution technique could be applied to learn a hybrid loss function

surrogate. Furthermore, one may wonder whether it is not possible to design a loss

function from scratch with both ranking and regression performance in mind. Lastly,

motivated by the promising preliminary results of Fehring et al. [FHT22], we deem

it worthwhile to further explore the usage of a hybrid loss function within tree-based

approaches to model the surrogate loss function.

Transfer Learning AS approaches are usually trained on a specific algorithmic prob-

lem, such as SAT, in order to be applied to exactly that problem. That makes the

training in general straightforward in the sense that the set of algorithms and the

instance features are identical during training and the actual application. However,

172 Chapter 7

this also limits the amount of training data to those data that are available for the

corresponding problem. To alleviate this situation, one may wonder whether it

might not be possible to leverage transfer learning [WKW16] to train algorithm

selectors across different algorithmic problems and varying sets of algorithms. To

the best of our knowledge, the only AS work suggesting something in this direction

is by Deshpande and Sharma [DS21], who propose to learn an invariant instance

feature representation based on the original feature representations across different

algorithmic problems. However, they consider the same set of algorithms to select

from. Although the work is very short and the evaluation very limited, it demon-

strates that transfer learning is, in principle, possible in the AS setting. Moreover, it

hints at what is required to perform transfer learning across algorithmic problems

and varying algorithm sets: A way to quantify similarity between both instances

independent of the algorithmic problem they are originating from and between

algorithms. One way of achieving this is to learn an invariant feature representation

as suggested by Deshpande and Sharma [DS21]. This also goes hand in hand with

our idea to represent algorithms using features presented in Chapter 3. However,

one could also think about learning a similarity function directly, which can then

help to quantify whether a previously unseen algorithm is similar to an existing one

and should thus perform similarly. Nevertheless, this idea still requires a way to

represent algorithms as input to the aforementioned similarity function. Moreover,

it is also conceivable that the feature free AS approaches summarized in Table 2.4

might be adapted in such a way that they can be trained using instances from various

algorithmic problems. This should be rather easy as most of these approaches only

require instances to be represented in a specific form as input to the neural network.

Thus, as long as one can represent the instances in that form, the actual algorithmic

problem they are originating from is not necessarily important. Whether such an

approach can actually learn something useful is an important question, though.

Grey-Box Algorithm Selection Most algorithm selection approaches consider algo-

rithms as black boxes and only represent them indirectly via their loss values on

some training data. While this might be sufficient to achieve oracle performance

under idealized conditions as shown by Malitsky and O’Sullivan [MO14], practical

cases suggest that more information about algorithms helps to make better algo-

rithm selections as, for example, seen in Chapter 3. We believe that a fundamental

shift from leveraging knowledge about how well (or badly) algorithms perform

to how they work internally to achieve that performance is a very promising path

to follow. Hence, algorithms should be treated in a grey box instead of black box

fashion, as was also recently suggested in the context of algorithm configuration

7.2 Future Directions for Algorithm Selection 173

(AC) [Ana21] and optimization, in general, [Wes16]. Algorithm features, as sug-

gested in Chapter 3, are one way of moving towards such a grey box idea, but

many other ideas are conceivable and, in parts already actively researched by the

community. Consider, for example, learning curves [Mv22], which give insight into

the learning behavior of machine learning algorithms such as inherent inductive

biases of algorithms [MRL22; Ruh+23], or exploratory landscape analysis (ELA)

[Mer+13], which helps to understand the optimization surface of an algorithmic

problem (cf. Section 2.5.2.2). For this reason, the AC community even suggested

transferring the general AC problem setting to a grey box one, called dynamic

algorithm configuration (DAC) [Bie+20], where the configuration of an algorithm

can be changed during its run based on information regarding the current solution

and algorithm state.

7.2.3 Benchmarking

Although algorithm selection library (ASlib) is the standard benchmark for AS

and is certainly a fantastic asset for the AS community, it covers only 14 different

algorithmic problems1, and many of these problems are similar to some extent (e.g.

MAXSAT and SAT). Correspondingly, many existing AS approaches are only tested

on a small set of algorithmic problems or potentially even only a single problem if

the approach was developed for a particular problem and thus not tested on ASlib.

We believe that increasing the diversity of ASlib in terms of different algorithmic

problems is an important endeavor that we, as a community, should pursue in

order to enable the construction of general AS approaches, which work well under

varying algorithmic problems. This is especially important considering the rise of

feature-free AS approaches (cf. Table 2.4) as they promise problem-independent

algorithm selection solutions under certain assumptions. As of now, there is no

large-scale evaluation of those approaches on different algorithmic problems.

7.3 Thesis Contribution and Impact in a Nutshell

In this thesis, firstly, we developed a taxonomy of algorithm selection approaches

based on loss function surrogates, which allows one to formally define those ap-

1as of April 28, 2023

174 Chapter 7

proaches in a unified framework. Secondly, we investigated the case of an extremely

large set of algorithms, including a discussion of weaknesses of existing approaches,

and suggest leveraging a dyadic feature representation to overcome these. Thirdly,

we designed Run2Survive Ð an approach allowing to inherently learn from partially

censored training data and incorporating a risk-averse selection strategy for runtime-

oriented losses. Fourthly, we considered how to handle censored data in an online

AS scenario leading to theoretically grounded bandit-based OAS approaches with a

time- and space-complexity independent of the time horizon. Lastly, we examined

the AS problem on a meta level by trying to select among or compose algorithm

selectors yielding state-of-the-art meta algorithm selection approaches based on the

idea of ensembling.

We expect that the contributions made within this thesis have the potential to

drastically improve the AS workflow from the point of view of a practitioner. First,

due to our algorithm improvements with respect to censored data (Chapter 4 and

Chapter 5), practitioners have to spend much less time collecting training data for

their AS system, which in addition positively impacts the environment, since fewer

algorithm runs have to be performed. Second, generalizing AS to extremely large

algorithm sets (Chapter 3) removes to burden from the practitioner to carefully

pre-select algorithms to choose from, such that the overall process becomes less

error-prone. Similarly, leveraging our work on meta algorithm selection (Chapter 6),

practitioners no longer need to choose from tens to hundreds of algorithm selectors

carefully comparing their advantages and disadvantages but can simply combine

their power. Since AS can be employed for virtually any computationally hard

problem, the improvement of its workflow can impact a large number of professionals

in practice.

7.3 Thesis Contribution and Impact in a Nutshell 175

Appendix A

A.1 Details on the Experimental Evaluation of Chapter 3

All code, including detailed documentation of the experiments and execution in-

structions, is available at GitHub1.

A.1.1 Hardware

All experiments were run on nodes with two Intel Xeon Gold ªSkylakeº 6148 with

20 cores each and 192 GB RAM.

A.1.2 Software

All experiments are based on Java 11 implementations and the result collection on a

previous version of the PyExperimenter [Tor+23]. A complete list of used libraries

and the corresponding version number can be found online2.

Both the DR and DFReg approach were implemented in Java, mainly using AILibs3,

WEKA4 and Deeplearning4j5 as external libraries. All other approaches were imple-

mented in Java, mainly using AILibs6 and WEKA7 as external libraries. The Alors

implementations internally leverage the original CoFiRANK implementation8, which

is written in C++.
1https://github.com/alexandertornede/extreme_algorithm_selection
2https://github.com/alexandertornede/extreme_algorithm_selection/blob/master/

ecai-2020-experiments/build.gradle
3https://github.com/starlibs/AILibs
4https://www.cs.waikato.ac.nz/ml/weka/
5https://deeplearning4j.konduit.ai/
6https://github.com/starlibs/AILibs
7https://www.cs.waikato.ac.nz/ml/weka/
8https://github.com/markusweimer/cofirank

177

https://github.com/alexandertornede/extreme_algorithm_selection
https://github.com/alexandertornede/extreme_algorithm_selection/blob/master/ecai-2020-experiments/build.gradle
https://github.com/alexandertornede/extreme_algorithm_selection/blob/master/ecai-2020-experiments/build.gradle
https://github.com/starlibs/AILibs
https://www.cs.waikato.ac.nz/ml/weka/
https://deeplearning4j.konduit.ai/
https://github.com/starlibs/AILibs
https://www.cs.waikato.ac.nz/ml/weka/
https://github.com/markusweimer/cofirank

A.1.3 Hyperparameter Settings

• DR (parameters of PLNet)

± learning rate: 0.001

± hidden nodes: 50, 50, 30, 20, 20

± activation function: sigmoid

± epochs: 0 (only stop using early stopping)

± minibatch size: 20

± early stopping: true

± early stopping interval: 1

± early stopping patience: 20

± early stopping train ratio: 0.8

• DFReg (parameters of underlying random forests)

± Default WEKA parameters

• PAReg

± regressor: random forest with WEKA standard hyperparameters

• Alors (NDCG)

± Latent feature predictor: random forest with WEKA standard hyperpa-

rameters

± CoFiRANK parameters: see 9

9https://github.com/alexandertornede/extreme_algorithm_selection/blob/master/ecai-2020-
experiments/src/main/java/de/upb/isml/tornede/ecai2020/
experiments/alors/matrix_completion/cofirank/CofiConfig.java

178 Appendix A

• Alors (REGR)

± latent feature predictor: random forest with WEKA standard hyperparam-

eters

± CoFiRANK parameters: see 9

• RandomRank

± None

• AvgPerformance

± bayesian averaging: false

• 1-NN LR

± k: 1

± bayesian averaging: false

± distance function: euclidean

• 2-NN LR

± k: 2

± bayesian averaging: false

± distance function: euclidean

A.2 Details on the Experimental Evaluation of Chapter 4

All code, including detailed documentation of the experiments and execution in-

structions, is available at GitHub10.

10https://github.com/alexandertornede/algorithm_survival_analysis

A.2 Details on the Experimental Evaluation of Chapter 4 179

https://github.com/alexandertornede/algorithm_survival_analysis

A.2.1 Hardware

All experiments were run on machines featuring Intel Xeon E5-2695v4@2.1GHz

CPUs with 16 cores and 64GB RAM.

A.2.2 Software

All experiments are based on Python 3 implementations. A complete list of used

packages and the corresponding version number can be found on Github11.

All variants of Run2Survive were implemented with scikit-survival12, scipy13 and

ax14. All other approaches were implemented with scikit-learn15 and scipy13.

A.2.3 Hyperparameter Settings

The following hyperparameters were used. We first note the hyperparameters

shared by all Run2Survive variants under Run2SurvivePAR10 and then changes and

additional hyperparameters below the corresponding variant. If a hyperparameter is

not explicitly noted, it is set to the corresponding default by the package, the code

originates from.

• Run2SurvivePAR10 and Run2SurviveExp (mostly parameters of the underlying

survival forest):

± number of estimators: 100

± min samples split: 10

± min samples leaf: 0.0

11https://github.com/alexandertornede/algorithm_survival_analysis/blob/master/

survival_tests/singularity/survival_analysis_environment.yml
12https://scikit-survival.readthedocs.io/en/stable/
13https://scipy.org/
14https://ax.dev/
15https://scikit-learn.org

180 Appendix A

https://github.com/alexandertornede/algorithm_survival_analysis/blob/master/survival_tests/singularity/survival_analysis_environment.yml
https://github.com/alexandertornede/algorithm_survival_analysis/blob/master/survival_tests/singularity/survival_analysis_environment.yml
https://scikit-survival.readthedocs.io/en/stable/
https://scipy.org/
https://ax.dev/
https://scikit-learn.org

± max features: sqrt

± bootstrap: true

± oob score: false

• Run2SurvivePoly/Log:

± min weight fraction leaf: 15

± α: determined automatically via hyperparameter optimization (HPO)

± β: determined automatically via HPO

• PerAlgorithmRegressor (RandomForestClassifier parameters)

± estimators: 100

• MultiClassSelector (RandomForestClassifier parameters)

± estimators: 100

• ISAC˚like (G-Means parameters)

± min samples: 0.001

± significance: 0.05

± initial n: 1

± final n: 5

• SATzilla’11˚like (RandomForestClassifier parameters)

± estimators: 99

± max features: log

• SUNNY˚like (KDTree parameters)

A.2 Details on the Experimental Evaluation of Chapter 4 181

± leaf size: 30

± metric: euclidean

A.3 Details on the Experimental Evaluation of Chapter 5

All code, including detailed documentation of the experiments and execution in-

structions, is available at GitHub16.

A.3.1 Hardware

All experiments were run on machines featuring Intel Xeon E5-2695v4@2.1GHz

CPUs with 16 cores and 64GB RAM, where each approach was limited to a single

core.

A.3.2 Software

All experiments are based on Python 3 implementations. A complete list of used

packages and the corresponding version number can be found on Github17.

All of our presented approaches (LinUCB and Thompson variants) were implemented

in Python by using scipy13 and numpy18. We re-implemented the Degroote approach

using scikit-learn15 in Python. In particular, the linear model is implemented using

the LinearRegression estimator from scikit-learn.

16https://github.com/alexandertornede/online_as
17https://github.com/alexandertornede/online_as/blob/main/online_as_code/anaconda/

online_as.yml
18https://numpy.org/

182 Appendix A

https://github.com/alexandertornede/online_as
https://github.com/alexandertornede/online_as/blob/main/online_as_code/anaconda/online_as.yml
https://github.com/alexandertornede/online_as/blob/main/online_as_code/anaconda/online_as.yml
https://numpy.org/

A.3.3 Hyperparameter Settings

If not stated differently at the beginning of the corresponding experiment (e.g.,

sensitivity analysis), the following hyperparameters were used:

• Thompson variants

± σ: 1.0

± λ: 0.5

• LinUCB variants

± λ: 1.0

± α: 1.0

± σ: 10.0 (for the _rev variants)

± rσ2: 0.25 (for the rand_ variants)

• Degroote Epsilon-Greedy linear regression

± ϵ: 0.05

± the hyperparameters of underlying models from scikit-learn were set

according to their default values

The values of the hyperparameters of our methods were chosen according to a

hyperparameter sensitivity analysis (cf. Sec. 5.5.3). The value of the hyperparameter

ϵ for the Degroote approach is as suggested by Degroote et al. [Deg+18].

A.3.4 Caveat

All Thompson variants rely on sampling from the multi-variate normal distribution,

which we implemented using the ’np.random.multivariate_normal’ method. Un-

fortunately, this method seems to have a bug, which is caused by the underlying

A.3 Details on the Experimental Evaluation of Chapter 5 183

BLAS implementation of the corresponding SVD, which is performed as part of

the method. Changing to various versions of numpy and BLAS did not solve the

problem for us. As a consequence, some of the repetitions of the experiments of

some scenarios did not complete for some Thompson variants. Below one can find a

table indicating how many repetitions are missing for the corresponding variant on

the corresponding scenario. However, due to the very few amount of data points

missing, we do not assume a relevant change for the results.

Scenario Approach #Missing seeds

CSP-MZN-2013 bj_thompson 2

PROTEUS-2014 bj_thompson 1

PROTEUS-2014 thompson_rev 1

PROTEUS-2014 thompson 2

SAT03-16_INDU bj_thompson_rev 2

SAT03-16_INDU bj_thompson 1

SAT03-16_INDU thompson_rev 1

SAT03-16_INDU thompson 3

SAT12-RAND bj_thompson_rev 1

TSP-LION2015 bj_thompson 1

A.3.5 Detailed Performance Data

Table A.1 shows the average PAR10 scores (averaged over 10 seeds) and the cor-

responding standard deviation of all discussed approach variants and all Degroote

variants for reference. Once again, the best value for each scenario is printed in

bold, whereas the second best is underlined. As elaborated on earlier, the Thompson

variants achieve the best performance.

In order to represent the performance of our approaches in a more detailed way

than is the case in Table A.1, we have plotted in Figure A.1 the averaged cu-

mulative PAR10 regret curves (regret wrt. the oracle) of the best Thompson,

the best LinUCB and the Degroote approach along with their standard deviation.

Here, the cumulative regret up to time T of an approach sonline is defined asřT
t“1 lpit, spht, itqq ´ řT

t“1 lpit, s˚
onlinepht, itqq, where s˚

online is the oracle and l as in

Equation 5.1 with PpCq “ 10C. It is not difficult to see that LinUCB cannot compete

with the other approaches in many cases and also features a much larger standard

184 Appendix A

deviation than the others. However, in several cases such as Figures A.1o, A.1r, or

A.1z, the differences become much more subtle. Comparing the Thompson variant

with the Degroote approach, we see that the former is at least competitive with

the latter on almost all scenarios, while being even better on some scenarios (e.g.

Figure A.1b, Figure A.1k, Figure A.1m, Figure A.1o). Of course, there are also a few

scenarios where the Degroote approach performs better (e.g. Figure A.1n).

A.4 Theoretical Additions to Chapter 5

A.4.1 Deriving the Bias-Corrected ConĄdence Bounds

In this section, we present details on the derivation of the bias-corrected confidence

bounds used in Section 5.3.1. For better readability, let xt “ f it
be the instance

feature vector at timestep t in the following. In particular, we focus on the solution

of Equation 5.9, i.e. the RR estimate of the weight vector for the linear loss function

surrogate learned with imputed data:

pθt,a “ arg min
θPRd

tÿ

j“1

Jaj “ aK
`
f
⊺

ij
θ ´ ryij ,a

˘2 ` λ}θ}2 (A.1)

The solution is given by pθt,a “ pAt,aq´1bt,a, where bt,a “ X
⊺

t,aỹt,a and ỹt,a is the

(column) vector storing all observed and possibly imputed log-runtimes until t

whenever a has been chosen. We follow the approach by Chu et al. [Chu+11]

and analyze the deviation of the estimated log-runtime x
⊺

t
pθt,a and the true log-

runtime x
⊺

t θ˚
a (according to our assumptions in Section 5.2). For this purpose, let

At,a “ λId `X
⊺

t,aXt,a be the regularized Gram matrix where Id P R
dˆd is the identity

A.4 Theoretical Additions to Chapter 5 185

matrix and Xt,a denotes the design matrix at timestep t for algorithm a. Then, we

have that

x
⊺

t
pθt,a ´ x

⊺

t θ˚
a “ x

⊺

tA
´1
t,a bt,a ´ x

⊺

tA
´1
t,aAt,aθ˚

a

“ x
⊺

tA
´1
t,aX

⊺

t,aỹt,a ´ x
⊺

tA
´1
t,a

´
λId `X

⊺

t,aXt,a

¯
θ˚

a

“ x
⊺

tA
´1
t,aX

⊺

t,a

´
ỹt,a ´Xt,aθ˚

a

¯
´ λx

⊺

tA
´1
t,a θ˚

a

“ zt,apỹt,a ´Xt,aθ˚
aq ´ λx

⊺

tA
´1
t,a θ˚

a

“: pU1q ´ pU2q,

(A.2)

where we abbreviated zt,a “ x
⊺

tA
´1
t,aX

⊺

t,a, which is a row vector with Naptq com-

ponents and Naptq is the total number of times algorithm a has been chosen until

timestep t. We can rewrite the first term pU1q as

ÿ

1ďjďt:mij ,aďC

zt,arjs
´

logpmpij , aqq ´ x
⊺

ij
θ˚

a

¯
`

ÿ

1ďjďt:mij ,aąC

zt,arjs
´

logpCq ´ x
⊺

ij
θ˚

a

¯
,

i.e. we split it into the sum over all uncensored observations and the sum of all

censored observations observed until timestep t.

This split is helpful as we will apply the Azuma-Hoeffding inequality [CL06, Lemma

A.7] in the following in order to bound the first sum, i.e. the sum over all non-

censored observations. To this end, let us define the martingale X0, . . . , Xn, where

we assume for simplicity that n “ |tj : 1 ď j ď t ^ mij ,a ď Cu|, i.e. n is the

number of summands of the left sum above. Let j1, . . . , jn be the timesteps for which

mij ,a ď C holds. Then, let Xw “ řjw

k“j1
zt,arksplogpmpik, aq ´ xJ

ik
θ˚

aq for 1 ď w ď n

and specifically X0 “ 0.

In order to see that tX0, . . . , Xnu is indeed a martingale, we show that

E rXj`1|X1, . . . , Xjs “ Xj

ô E rXj`1 ´Xj |X1, . . . , Xjs “ 0

ô E

”
zt,arj ` 1s

´
logpmpij`1, aqq ´ x

⊺

ij`1
θ˚

a

¯
|X1, . . . , Xj

ı
“ 0

(A.3)

for all 1 ď j ă n.

Due to the linearity of expectation, we get that

E

”
zt,arj ` 1s

´
logpmpij`1, aqq ´ x

⊺

ij`1
θ˚

a

¯
|X1, . . . , Xj

ı

“ zt,arj ` 1s
´
E rlogpmpij`1, aqqs ´ x

⊺

ij`1
θ˚

a

¯
.

(A.4)

186 Appendix A

Now note that E rlogpmpij , aqqs “ x
⊺

ij
θ˚

a due to our assumptions made in Section 5.2

and hence

E

”
zt,arj ` 1s

´
logpmpij`1, aqq ´ x

⊺

ij`1
θ˚

a

¯
|X1, . . . , Xj

ı

“ zt,arj ` 1s
´
E rlogpmpij`1, aqqs ´ x

⊺

ij`1
θ˚

a

¯

“ 0 .

(A.5)

Correspondingly, tX0, . . . , Xnu is indeed a martingale. In order to finally apply the

Azuma-Hoeffding inequality, we still have to bound the difference for all 1 ď j ă n

|Xj`1 ´Xj | “
ˇ̌
ˇzt,arj ` 1s

´
logpmpij`1, aqq ´ x

⊺

ij`1
θ˚

a

¯ˇ̌
ˇ

ď zt,arj ` 1s logpCq ,
(A.6)

where we assume without loss of generality for the last step that all runtimes are

rescaled such that the 1 instead of 0 is the minimum.

Then, by applying the Azuma-Hoeffding inequality we get for any α̃ ą 0 that

P

¨
˝
ˇ̌
ˇ̌
ˇ̌

ÿ

1ďjďt:mij ,aďC

zt,arjs
`

logpmpij , aqq ´ x
⊺

ij
θ˚

a

˘
ˇ̌
ˇ̌
ˇ̌ ą α̃ wt,apxtq logpCq

˛
‚

ď 2 exp

˜
´

2 α̃2w2
t,apxtq

}zt,a}2

¸
,

where wt,apxtq “ }xt}At,a as in Section 5.3.

Note that

}zt,a}2 “ x
⊺

tA
´1
t,aX

T
t,aXt,aA

´1
t,a xt

ď x
⊺

tA
´1
t,a pλId `XT

t,aXt,aqA´1
t,a xt

“ x
⊺

tA
´1
t,a xt

“ w2
t,apxtq,

(A.7)

A.4 Theoretical Additions to Chapter 5 187

since λA´1
t,aIdA

´1
t,a is semi-positive definite. Thus, by choosing α̃ appropriately the

latter probability is small. In particular, we obtain that

ˇ̌
ˇ̌
ˇ̌

ÿ

1ďjďt:mij ,aďC

zt,arjs
`

logpmpij , aqq ´ x
⊺

ij
θ˚

a

˘
ˇ̌
ˇ̌
ˇ̌ ď α̃ wt,apxtq logpCq (A.8)

holds with high probability by choosing α̃ ą 0 appropriately.

Now, it remains to bound the (absolute values of the) censored sum. Using the

Cauchy-Schwarz inequality we can infer

ˇ̌
ˇ̌
ˇ̌

ÿ

1ďjďt:mij ,aąC

zt,arjs
`

logpCq ´ x
⊺

ij
θ˚

a

˘
ˇ̌
ˇ̌
ˇ̌ ď }zt,a}

››››››

ÿ

1ďjďt:mij ,aąC

`
logpCq ´ x

⊺

ij
θ˚

a

˘
››››››

(A.7)
ď wt,apxtq

››››››

ÿ

1ďjďt:mij ,aąC

`
logpCq ´ x

⊺

ij
θ˚

a

˘
››››››

ď 2wt,apxtq
b
N

pCq
a,t logpCq,

(A.9)

where we used for the last inequality that x
⊺

ij
θ˚

a “ f
⊺

ij
θ˚

a ď logpCq holds by our

assumptions made in Section 5.2. Finally, the absolute value of the term pU2q can

be bounded as follows

|pU2q| “
ˇ̌
λθ˚

ax
⊺

tA
´1
t,a

ˇ̌

ď λ}θ˚
a}}x

⊺

tA
´1
t,a }

(A.7)
ď λ}θ˚

a}wt,apxtq.

(A.10)

Combining (A.2)±(A.10), we have with high probability (depending on the choice

of α̃) that

|x⊺

t
pθt,a ´ x

⊺

t θ˚
a| ď |pU1q| ` |pU2q|

ď
ˆ
α̃wt,apxtq logpCq ` 2wt,apxtq

b
N

pCq
a,t logpCq

˙
` pλ}θ˚

a}wt,apxtqq

“ wt,apxtq
ˆ
λ}θ˚

a} ` logpCq
ˆ
α̃ ` 2

b
N

pCq
a,t

˙˙
.

Thus, with

w
pbcq
t,a pxtq “

ˆ
1 ` 2 logpCq

ˆ
1 `

b
N

pCq
a,t

˙˙
wt,apxtq , (A.11)

188 Appendix A

and for some appropriate α ą 0 (which essentially hides the regularization term, i.e.

λ}θ˚
a}), we have with high probability

|x⊺

t
pθt,a ´ x

⊺

t θ˚
a| ď αw

pbcq
t,a pxtq.

Bias issue. Note that from the definition of wpbcq
t,a pxtq we can see the bias issue

of pθt,a due to the imputation employed. As well-known in the bandit community,

the term wt,apxtq is asymptotically tending against zero with the rate «
a

1{Naptq
[LS20, Chapter 19]. However, wpbcq

t,a pxtq does not tend to zero asymptotically for

t Ñ 8, if
b
N

pCq
a,t {Naptq Ñ C 1 for some constant C 1 ą 0. The latter condition, in

turn, seems to be satisfied if for any t it holds that Ppmit,a ą Cq ą ϵ ą 0, i.e. the

probability of observing a censored runtime does not vanish in the course of time.

In that case both N pCq
a,t and Naptq will continuously grow and thus wpbcq

t,a pxtq cannot

tend to 0.

A.4.2 Deriving the ReĄned Expected Loss Representation

In this section, we provide the details for showing Equation 5.13. For this purpose, we

need the following lemma showing the explicit form of the conditional expectation

of a log-normal distribution under a certain cutoff.

Lemma 1. Let Y „ LNpµ, σ2q, i.e. a log-normally distributed random variable with

parameters µ P R and σ ą 0. Then, for any C ą 0 it holds that

E rY |Y ď Cs “ exppµ` σ2{2q ¨
Φ0,1

´
logpCq´µ´σ2

σ

¯

Φ0,1

´
logpCq´µ

σ

¯ , (A.12)

where Φ0,1p¨q is the cumulative distribution function of a standard normal distribution.

Proof. The density function of Y is given by

fpxq “
exp

´
´plogpxq´µq2

2σ2

¯

xσ
?

2π
, x ą 0.

Thus, fpxq “ φµ,σplogpxqq
x

, where ϕµ,σp¨q is the density function of a normal distribu-

tion with mean µ and standard deviation σ. Next, note that the density function

A.4 Theoretical Additions to Chapter 5 189

of Y conditioned on Y ď C is fpx|x ď Cq “ fpxq
F pCq , where F p¨q is the cumulative

distribution function of Y and given by F pxq “ Φ0,1

´
logpxq´µ

σ

¯
for any x P R. With

this,

E rY |Y ď Cs “
ż C

0

xfpx|x ď Cq dx

“ 1

Φ0,1

´
logpCq´µ

σ

¯
ż C

0

ϕµ,σplogpxqq dx

“ exppµ` σ2{2q
Φ0,1

´
logpCq´µ

σ

¯
ż logpCq´µ

σ

´8
ϕ0,1pz ´ σq dz

“ exppµ` σ2{2q
Φ0,1

´
logpCq´µ´σ2

σ

¯

Φ0,1

´
logpCq´µ

σ

¯ .

Here, we used for the third equality the substitution z “ logpxq´µ
σ

, so that exppσz `
µqσ dz “ dx and

exp

ˆ
´pz ´ σq2

2

˙
exp

ˆ
σ2

2

˙
“ exp

ˆ
´z2

2

˙
exppσzq.

Recalling the modeling assumption on the runtimes made in Equation 5.4 as well

as the assumption that the error term is log-normally distributed, we obtain that

mit,a „ LNpf⊺

it
θ˚

a, σ
2q as multiplying a log-normal by a constant results in obtaining

190 Appendix A

a log-normal again. Using Lemma 1 and that Cp1q
it,a “ plogpCq´f

⊺

it
θ˚

a ´σ2q{σ, C
p2q
it,a “

plogpCq´f
⊺

it
θ˚

a q{σ, we can derive Equation 5.13 as follows:

E
“
lt,a|f it

‰
“ E

“
lt,a|mit,a ď C,f it

‰
¨ Ppmit,a ď C|f it

q
` E

“
lt,a|mit,a ą C,f it

‰
¨ Ppmit,a ą C|f it

q

(A.12)“ exp

ˆ
f
⊺

it
θ˚

a ` σ2

2

˙
¨
˜

Φ0,1pCp1q
it,aq

Φ0,1pCp2q
it,aq

¸
¨ Ppmit,a ď C|f it

q

` PpCq ¨ Ppmit,a ą C|f it
q

“ exp

ˆ
f
⊺

it
θ˚

a ` σ2

2

˙
¨
˜

Φ0,1pCp1q
it,aq

Φ0,1pCp2q
it,aq

¸

` Ppmit,a ą C|f it
q ¨

˜
PpCq ´ exp

ˆ
f
⊺

it
θ˚

a ` σ2

2

˙
¨

Φ0,1pCp1q
it,aq

Φ0,1pCp2q
it,aq

¸

“ ECpf⊺

it
θ˚

a, σq `
`
1 ´ Φf

⊺

it
θ˚

a ,σplogpCqq
˘

¨
`
PpCq ´ ECpf⊺

it
θ˚

a, σq
˘
,

where ECpf⊺

it
θ˚

a, σq “ exppf⊺

it
θ˚

a ` σ2{2q ¨ Φ0,1pC
p1q
it,a

q

Φ0,1pC
p2q
it,a

q
.

A.4.3 Pseudocode and Space-Complexity Details

In this section, we provide details on the pseudocodes in Section 5.3 and Section 5.4

and some of the solutions to equations used there.

Note that it is straightforward to see that the solution of Equation 5.6 (a standard

ridge regression problem) is pθt,a “ pAt,aq´1bt,a, where bt,a “ X
⊺

t,ayt,a and yt,a is the

(column) vector storing all observed non-censored log-runtimes until t whenever a

has been chosen.

Similarly, the solution of Equation 5.9 is pθt,a “ pAt,aq´1bt,a, where bt,a “ X
⊺

t,aỹt,a

and ỹt,a is the (column) vector storing all observed and possibly imputed log-

runtimes until t whenever a has been chosen.

Further, both At,a and bt,a can be updated in an iterative fashion without actually

storing all seen samples: If algorithm a is chosen at timestep t, then

At`1,a “

$
&
%
At,a ` f it

f
⊺

it
, for (5.9),

At,a ` Jmpit, atq ď CKf it
f
⊺

it
, for (5.6).

(A.13)

A.4 Theoretical Additions to Chapter 5 191

bt`1,a “

$
&
%

bt,a ` ỹit,af it
, for (5.9),

bt,a ` Jmpit, atq ď CKyit,af it
, for (5.6).

(A.14)

Correspondingly, our algorithms feature indeed a space-complexity independent of

the time horizon.

As the updates of the matrices At`1,a are via a rank-one update, one can use the

well-known Sherman-Morrison formula to compute their inverse in a sequential

manner as well (similarly for At`1,a based on (5.6)):

pAt`1,aq´1 “ pAt,a ` f it
f
⊺

it
q´1 “ A´1

t,a ´
A´1

t,a f it
f
⊺

it
A´1

t,a

1 ` f
⊺

it
A´1

t,a f it

. (A.15)

A.5 Details on the Experimental Evaluation of Chapter 6

All code, including detailed documentation of the experiments and execution in-

structions, is available at GitHub19.

A.5.1 Hardware

All experiments were run on machines featuring Intel Xeon E5-2695v4@2.1GHz

CPUs with 16 cores and 64GB RAM.

A.5.2 Software

All experiments were implemented in Python 3, although some of the code for

generating result tables was written in Java. A full list of used Python packages can

be found at 20 and 21.

19https://github.com/alexandertornede/as_on_a_meta_level
20https://github.com/alexandertornede/as_on_a_meta_level/blob/main/meta_learning/

python/anaconda/meta_as.yml
21https://github.com/alexandertornede/as_on_a_meta_level/blob/main/ensemble_

learning/anaconda/ensemble_environment.yml

192 Appendix A

https://github.com/alexandertornede/as_on_a_meta_level
https://github.com/alexandertornede/as_on_a_meta_level/blob/main/meta_learning/python/anaconda/meta_as.yml
https://github.com/alexandertornede/as_on_a_meta_level/blob/main/meta_learning/python/anaconda/meta_as.yml
https://github.com/alexandertornede/as_on_a_meta_level/blob/main/ensemble_learning/anaconda/ensemble_environment.yml
https://github.com/alexandertornede/as_on_a_meta_level/blob/main/ensemble_learning/anaconda/ensemble_environment.yml

The most important packages used are scikit-learn15, scikit-survival12 and scipy13.

A.5.3 Hyperparameter Settings

• all base algorithm selectors

± settings as in Section A.2

• Voting

± None

• Bagging

± num base learners: 10

• Stacking

± threshold (variance threshold feature selection variant): 0.16

± k (select k best feature selection variant): number of algorithms of

scenario

• Boosting

± num iterations: 20

A.5 Details on the Experimental Evaluation of Chapter 6 193

Tab. A.1: Average PAR10 scores (averaged over 10 seeds) and the corresponding standard
deviation of all discussed approach variants and the Degroote approach.

Approach

bj_thompson_rev

bj_thompson

thompson_rev

thompson

bclinucb_rev

bclinucb

blinducb_rev

blinducb

rand_bclinucb_rev

rand_bclinucb

rand_blinducb_rev

rand_blinducb

degroote_EpsilonGreedy_LinearRegression

Scen
ario

A
SP-PO

TA
SSC

O
929.45

˘
86.72

949.38
˘

62.38
9
0
2
.6

4
˘

78.43
916.28

˘
72.73

1318.15
˘

2.11
1473.45

˘
234.12

1471.79
˘

43.06
1204.20

˘
161.11

1337.57
˘

41.27
1220.15

˘
58.60

1280.76
˘

24.99
1198.79

˘
135.63

1047.13
˘

46.50
B

N
SL-2016

9656.86
˘

318.43
9638.04

˘
378.05

9467.01
˘

252.52
9
3
6
1
.4

1
˘

262.75
11211.34

˘
4566.34

40601.32
˘

1015.89
30500.86

˘
852.64

17369.40
˘

1553.72
30858.52

˘
1294.03

22164.52
˘

835.62
23563.48

˘
907.10

18531.72
˘

2259.16
12510.26

˘
1291.03

C
PM

P-2015
7818.47

˘
1187.55

8241.01
˘

1164.85
8158.72

˘
1268.83

8499.38
˘

2059.18
7945.31

˘
41.97

12656.36
˘

489.88
11667.65

˘
369.54

11518.55
˘

1316.62
10809.31

˘
381.66

10195.18
˘

570.98
10439.34

˘
308.03

11350.81
˘

1338.76
6
9
9
1
.9

7
˘

501.36
C

SP-2010
8138.63

˘
820.90

8295.76
˘

699.43
7892.67

˘
692.83

8103.96
˘

887.50
7
2
0
8
.9

0
˘

11.16
9507.53

˘
2509.18

10348.84
˘

197.67
9563.85

˘
1821.74

10539.88
˘

261.24
9485.35

˘
262.55

9847.48
˘

316.70
8796.21

˘
1534.82

7593.13
˘

208.94
C

SP-M
Z

N
-2013

8291.83
˘

589.63
8207.06

˘
532.70

8171.21
˘

594.49
8472.17

˘
760.25

12588.22
˘

2.44
14920.51

˘
660.01

14646.81
˘

64.27
12113.14

˘
593.67

13269.14
˘

94.42
12556.67

˘
75.59

13551.04
˘

95.32
11595.72

˘
914.74

8
0
3
4
.6

2
˘

113.78
C

SP-M
in

izin
c-T

im
e-2016

4
7
4
1
.9

9
˘

505.13
4811.54

˘
409.79

4759.50
˘

306.03
4942.91

˘
326.89

6544.69
˘

3.01
7346.72

˘
461.05

7138.65
˘

283.28
5944.38

˘
481.06

6719.46
˘

529.02
6274.06

˘
308.19

6291.28
˘

431.44
5353.62

˘
364.20

5258.70
˘

406.91
G

R
A

PH
S-2015

4.11e+
07

˘
3.71e+

06
4.13e+

07
˘

4.39e+
06

4.21e+
07

˘
3.37e+

06
3.97e+

07
˘

4.76e+
06

2.69e+
08

˘
85095.74

2.64e+
08

˘
5.58e+

06
1.11e+

08
˘

1.64e+
07

6.91e+
07

˘
4.15e+

07
1.79e+

08
˘

7.28e+
06

1.06e+
08

˘
1.41e+

06
7.85e+

07
˘

1.71e+
07

6.72e+
07

˘
4.00e+

07
3
.4

5
e
+

0
7

˘
1.42e+

06
M

A
X

SAT-PM
S-2016

2774.15
˘

218.67
2853.44

˘
210.21

2808.51
˘

218.55
2763.58

˘
134.14

2
5
7
0
.2

4
˘

13.60
15016.71

˘
311.64

15087.51
˘

399.80
5785.25

˘
1369.27

13591.52
˘

241.68
7546.35

˘
350.79

11887.90
˘

403.61
5405.64

˘
495.98

3279.54
˘

133.00
M

A
X

SAT-W
PM

S-2016
6548.69

˘
183.77

6304.15
˘

166.98
6592.87

˘
210.25

6527.34
˘

213.44
5
9
2
5
.9

3
˘

11.42
15946.25

˘
217.82

15948.34
˘

203.76
12940.70

˘
727.41

13704.32
˘

520.48
10765.11

˘
255.39

13492.59
˘

174.10
12518.20

˘
585.24

6287.21
˘

541.69
M

A
X

SAT
12-PM

S
5373.99

˘
348.92

5347.39
˘

291.87
5408.40

˘
482.42

5324.88
˘

208.49
4
9
0
0
.5

1
˘

15.28
11106.24

˘
301.39

11918.42
˘

279.90
9829.22

˘
2477.59

10174.11
˘

229.65
8159.01

˘
180.27

9661.09
˘

254.48
9580.82

˘
2684.49

5308.11
˘

129.30
M

A
X

SAT
15-PM

S-IN
D

U
3040.87

˘
196.70

3046.05
˘

128.34
3
0
3
2
.0

8
˘

90.71
3080.24

˘
130.48

14308.04
˘

8.74
14874.85

˘
219.37

15482.08
˘

299.25
12020.48

˘
1801.39

14631.09
˘

265.77
9411.16

˘
246.88

12936.66
˘

495.89
10416.87

˘
930.70

3867.70
˘

255.98
M

IP-2016
7961.45

˘
765.53

8081.57
˘

845.74
8746.73

˘
1159.36

8776.59
˘

823.11
7
7
8
0
.3

3
˘

191.05
25635.03

˘
7904.63

20305.81
˘

1787.80
10280.18

˘
646.54

22681.31
˘

2433.54
19274.82

˘
2372.50

16238.36
˘

1625.48
10102.14

˘
783.52

10644.68
˘

3405.18
PR

O
T

E
U

S-2014
14223.14

˘
766.02

1
3
4
8
4
.3

4
˘

541.83
14115.69

˘
768.16

13550.56
˘

426.67
23353.59

˘
5.61

23445.04
˘

249.12
23330.42

˘
206.84

23496.49
˘

957.96
22057.74

˘
460.76

21813.84
˘

547.78
22380.67

˘
173.49

23508.44
˘

1081.76
15622.29

˘
784.60

Q
B

F-2011
15253.81

˘
839.93

15708.25
˘

784.81
15178.86

˘
904.72

14902.82
˘

834.91
17510.56

˘
11.72

25687.33
˘

89.05
24467.88

˘
266.89

24105.19
˘

2408.37
20894.53

˘
210.99

19522.13
˘

357.25
21819.49

˘
613.82

24190.56
˘

1452.98
1
3
9
1
2
.2

4
˘

356.69
Q

B
F-2014

3
5
5
2
.3

0
˘

192.75
3629.40

˘
220.68

3679.96
˘

256.03
3599.79

˘
193.80

4266.31
˘

4.51
6172.04

˘
238.02

5669.88
˘

58.89
4951.40

˘
630.45

5292.36
˘

127.24
5003.91

˘
99.27

5213.18
˘

81.48
4836.72

˘
617.95

4116.15
˘

116.27
Q

B
F-2016

4770.36
˘

595.50
5082.59

˘
718.71

5045.16
˘

848.59
4937.47

˘
710.69

4
6
9
4
.9

7
˘

137.14
8019.58

˘
1461.05

7631.75
˘

323.55
6080.61

˘
828.17

7640.48
˘

455.05
6373.15

˘
177.29

6811.82
˘

209.17
6234.42

˘
943.66

5346.29
˘

210.05
SAT

03-16_IN
D

U
12128.48

˘
477.79

1
1
9
8
0
.1

5
˘

193.67
12154.46

˘
221.01

12225.57
˘

501.47
15989.74

˘
0.28

15461.82
˘

677.27
13682.55

˘
263.59

12836.59
˘

385.99
13421.09

˘
304.61

13330.58
˘

142.67
13421.35

˘
251.79

12671.99
˘

458.24
12754.50

˘
200.55

SAT
11-H

A
N

D
30436.08

˘
1196.65

30484.08
˘

1379.35
30085.51

˘
764.32

29547.31
˘

871.64
32054.23

˘
101.09

31976.16
˘

851.07
30670.46

˘
525.38

33755.48
˘

470.48
30818.45

˘
1000.82

30840.36
˘

863.06
30519.78

˘
633.95

33151.03
˘

689.91
2
9
5
4
4
.7

0
˘

952.78
SAT

11-IN
D

U
17083.58

˘
490.45

17540.58
˘

530.82
17028.84

˘
479.15

17360.28
˘

1064.28
19830.34

˘
106.64

17922.09
˘

993.15
17488.94

˘
420.92

17407.75
˘

887.53
17874.06

˘
897.49

17659.81
˘

909.60
17404.10

˘
671.54

17792.97
˘

645.24
1
7
0
1
8
.2

4
˘

647.90
SAT

11-R
A

N
D

19656.39
˘

3747.94
18061.78

˘
2770.70

19061.88
˘

2522.11
1
6
5
3
5
.7

7
˘

2649.93
19934.84

˘
0.01

23859.51
˘

902.77
32256.56

˘
333.93

32812.38
˘

484.62
24421.64

˘
748.42

23194.11
˘

342.96
28780.03

˘
577.18

32382.10
˘

453.97
21008.77

˘
530.22

SAT
12-A

LL
5110.38

˘
221.26

4
7
2
0
.2

2
˘

432.14
5132.48

˘
395.74

4812.94
˘

387.46
7932.67

˘
4.88

8362.10
˘

196.28
8548.46

˘
145.06

8235.03
˘

393.14
7058.96

˘
104.20

6813.39
˘

72.52
7417.48

˘
76.56

8231.51
˘

319.87
5650.32

˘
214.36

SAT
12-H

A
N

D
7707.60

˘
219.43

7443.01
˘

180.51
7509.02

˘
199.39

7
3
0
9
.7

4
˘

138.02
9346.81

˘
7.74

9655.25
˘

335.09
8395.15

˘
289.83

9944.53
˘

702.20
8397.26

˘
177.31

8106.83
˘

130.61
8164.12

˘
126.91

9560.68
˘

629.12
7634.24

˘
267.89

SAT
12-IN

D
U

6227.99
˘

714.29
4511.68

˘
76.33

4945.79
˘

228.37
4
4
2
8
.4

9
˘

142.91
11592.25

˘
3.04

11234.57
˘

265.75
10586.81

˘
417.60

11709.07
˘

47.37
9655.50

˘
675.98

7799.19
˘

1271.96
9159.07

˘
827.64

11568.96
˘

45.53
4755.52

˘
206.95

SAT
12-R

A
N

D
5489.81

˘
649.90

4008.79
˘

206.59
4523.33

˘
170.56

4157.19
˘

277.10
3
9
2
1
.3

8
˘

4.31
11060.69

˘
158.63

11118.21
˘

91.24
8270.41

˘
249.25

10392.11
˘

68.33
8885.34

˘
132.17

10432.59
˘

97.18
8109.35

˘
140.40

5023.73
˘

174.68
SAT

15-IN
D

U
7885.50

˘
583.23

7
7
0
0
.2

7
˘

310.65
7856.08

˘
522.84

7879.61
˘

546.81
16513.64

˘
53.52

21473.55
˘

841.13
9691.58

˘
716.04

11203.29
˘

3070.49
9552.26

˘
907.94

9716.33
˘

706.23
9599.63

˘
676.35

10656.72
˘

3172.70
8220.22

˘
525.13

SAT
18-E

X
P

24942.85
˘

847.88
25201.41

˘
681.42

2
4
9
0
6
.5

6
˘

540.36
25015.28

˘
1031.38

25294.33
˘

62.04
31202.35

˘
2815.63

26762.26
˘

760.54
29573.37

˘
2210.54

26212.93
˘

719.32
26124.45

˘
837.33

26361.79
˘

1018.39
30237.60

˘
1497.64

25272.35
˘

881.19
T

SP-LIO
N

2015
1
1
6
0
.5

0
˘

396.73
1226.11

˘
309.42

1411.06
˘

329.16
1213.43

˘
370.00

11309.59
˘

159.51
11406.27

˘
55.62

4810.21
˘

212.49
9991.79

˘
294.01

8147.81
˘

256.02
5686.03

˘
197.03

4588.53
˘

191.98
9422.52

˘
655.46

1634.79
˘

112.29

avgran
k

3.296296
3.37037

3.222222
2
.8

5
1
8
5
2

7.111111
12.0

10.814815
9.333333

9.814815
7.814815

8.740741
8.666667

3.962963

194 Appendix A

0 200 400 600 800 1000 1200
Timestep / #Instances

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 ASP-POTASSCO

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(a)

0 200 400 600 800 1000 1200
Timestep / #Instances

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e7 BNSL-2016

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(b)

0 100 200 300 400 500
Timestep / #Instances

0

1

2

3

4

5

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 CPMP-2015

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(c)

0 250 500 750 1000 1250 1500 1750 2000
Timestep / #Instances

0

1

2

3

4

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 CSP-2010

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(d)

0 1000 2000 3000 4000
Timestep / #Instances

0

1

2

3

4

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e7 CSP-MZN-2013

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(e)

0 20 40 60 80 100
Timestep / #Instances

0

100000

200000

300000

400000

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

CSP-Minizinc-Time-2016

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(f)

0 1000 2000 3000 4000 5000 6000
Timestep / #Instances

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e12 GRAPHS-2015

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(g)

0 100 200 300 400 500 600
Timestep / #Instances

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 MAXSAT-PMS-2016

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(h)

0 100 200 300 400 500 600
Timestep / #Instances

0.0

0.5

1.0

1.5

2.0

2.5

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 MAXSAT-WPMS-2016

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(i)

0 200 400 600 800
Timestep / #Instances

0.0

0.5

1.0

1.5

2.0

2.5

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 MAXSAT12-PMS

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(j)

0 100 200 300 400 500 600
Timestep / #Instances

0

1

2

3

4

5

6

7

8

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 MAXSAT15-PMS-INDU

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(k)

0 50 100 150 200
Timestep / #Instances

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 MIP-2016

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(l)

0 500 1000 1500 2000 2500 3000 3500 4000
Timestep / #Instances

0

1

2

3

4

5

6

7

8

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e7 PROTEUS-2014

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(m)

0 200 400 600 800 1000 1200 1400
Timestep / #Instances

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e7 QBF-2011

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(n)

0 200 400 600 800 1000 1200
Timestep / #Instances

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 QBF-2014

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(o)

Fig. A.1: Cumulative PAR10 regret wrt. oracle.

A.5 Details on the Experimental Evaluation of Chapter 6 195

0 200 400 600 800
Timestep / #Instances

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 QBF-2016

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(p)

0 250 500 750 1000 1250 1500 1750 2000
Timestep / #Instances

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e7 SAT03-16_INDU

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(q)

0 50 100 150 200 250 300
Timestep / #Instances

0

1

2

3

4

5

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 SAT11-HAND

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(r)

0 50 100 150 200 250 300
Timestep / #Instances

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 SAT11-INDU

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(s)

0 100 200 300 400 500 600
Timestep / #Instances

0

1

2

3

4

5

6

7

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 SAT11-RAND

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(t)

0 200 400 600 800 1000 1200 1400 1600
Timestep / #Instances

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e7 SAT12-ALL

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(u)

0 100 200 300 400 500 600 700 800
Timestep / #Instances

0

1

2

3

4

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 SAT12-HAND

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(v)

0 200 400 600 800 1000 1200
Timestep / #Instances

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e7 SAT12-INDU

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(w)

0 200 400 600 800 1000 1200 1400
Timestep / #Instances

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 SAT12-RAND

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(x)

0 50 100 150 200 250 300
Timestep / #Instances

0

1

2

3

4

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 SAT15-INDU

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(y)

0 50 100 150 200 250 300 350
Timestep / #Instances

0

1

2

3

4

5

6

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e6 SAT18-EXP

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(z)

0 500 1000 1500 2000 2500 3000
Timestep / #Instances

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
um

ul
at

iv
e

P
A

R
10

 re
gr

et
 w

rt.
 o

ra
cl

e

1e7 TSP-LION2015

degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
thompson_rev

(aa)

Fig. A.1: (Cont.) Cumulative PAR10 regret wrt. oracle.

196 Appendix A

Full List of my Publications

During my time working on this thesis, I was fortunate enough to publish more than

just the papers, on which this thesis is actively based. In the following, a complete

list of my 21 papers can be found:

F. Mohr, M. Wever, A. Tornede, and E. Hüllermeier. ªFrom Automated to On-The-Fly

Machine Learningº. In: Proceedings of the INFORMATIK. 2019.

A. Tornede, M. Wever, and E. Hüllermeier. ªAlgorithm Selection as Recommendation:

From Collaborative Filtering to Dyad Rankingº. In: 29th Workshop Computational

Intelligence. Young Author Award, 2019.

M. Wever, F. Mohr, A. Tornede, and E. Hüllermeier. ªAutomating Multi-Label Classi-

fication Extending ML-Planº. In: ICML: Workshop on Automated Machine Learning.

2019.

J. Hanselle, A. Tornede, M. Wever, and E. Hüllermeier. ªHybrid Ranking and Regres-

sion for Algorithm Selectionº. In: Proceedings of the 43rd German Conference on

Artificial Intelligence (KI’2020). 2020.

A. Tornede, M. Wever, and E. Hüllermeier. ªExtreme Algorithm Selection with

Dyadic Feature Representationº. In: Proceedings of the International Conference on

Discovery Science (DS’20). 2020.

A. Tornede, M. Wever, and E. Hüllermeier. ªTowards Meta-Algorithm Selectionº. In:

NeurIPS: Workshop on Meta-Learning (MetaLearn’20). 2020.

A. Tornede, M. Wever, S. Werner, F. Mohr, and E. Hüllermeier. ªRun2Survive: A

Decision-theoretic Approach to Algorithm Selection based on Survival Analysisº.

In: Proceedings of the 12th Asian Conference on Machine Learning (ACML’20). 2020.

T. Tornede, A. Tornede, M. Wever, F. Mohr, and E. Hüllermeier. ªAutoML for Predic-

tive Maintenance: One Tool to RUL them Allº. In: ECML/PKDD: Workshop on IoT

Streams for Data-Driven Predictive Maintenance. 2020.

M. Wever, A. Tornede, F. Mohr, and E. Hüllermeier. ªLiBRe: Label-Wise Selection of

Base Learners in Binary Relevance for Multi-Label Classificationº. In: Proceedings

of the 19th International Symposium on Intelligent Data Analysis (IDA’20). Frontier

Prize, 2020.

197

J. Hanselle, A. Tornede, M. Wever, and E. Hüllermeier. ªAlgorithm Selection as

Superset Learning: Constructing Algorithm Selectors from Imprecise Performance

Dataº. In: Proceedings of the 25th Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD’21). 2021.

E. Hüllermeier, F. Mohr, A. Tornede, and M. Wever. ªAutomated Machine Learning,

Bounded Rationality, and Rational Metareasoningº. In: ECML/PKDD: Workshop on

Automating Data Science (ADS’21). 2021.

F. Mohr, M. Wever, A. Tornede, and E. Hüllermeier. ªPredicting Machine Learning

Pipeline Runtimes in the Context of Automated Machine Learningº. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (2021).

T. Tornede, A. Tornede, J. Hanselle, M. Wever, F. Mohr, and E. Hüllermeier. ªTowards

Green Automated Machine Learning: Status Quo and Future Directionsº. In:

arXiv:2111.05850 (2021).

T. Tornede, A. Tornede, M. Wever, and E. Hüllermeier. ªCoevolution of Remaining

Useful Lifetime Estimation Pipelines for Automated Predictive Maintenanceº. In:

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’21).

2021.

M. Wever, A. Tornede, F. Mohr, and E. Hüllermeier. ªAutoML for Multi-Label Clas-

sification: Overview and Empirical Evaluationº. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence (2021).

L. Fehring, J. Hanselle, and A. Tornede. ªHARRIS: Hybrid Ranking and Regres-

sion Forests for Algorithm Selectionº. In: NeurIPS: Workshop on Meta-Learning

(MetaLearn’22). 2022.

K. Gevers, A. Tornede, M. Wever, V. Schöppner, and E. Hüllermeier. ªA Comparison

of Heuristic, Statistical, and Machine Learning Methods for Heated Tool Butt

Welding of Two Different Materialsº. In: Welding in the World (2022).

E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier, and K. Tierney.

ªA Survey of Methods for Automated Algorithm Configurationº. In: Journal of

Artificial Intelligence Research (2022).

A. Tornede, V. Bengs, and E. Hüllermeier. ªMachine Learning for Online Algorithm

Selection under Censored Feedbackº. In: Proceedings of the Thirty-Sixth Conference

on Artificial Intelligence (AAAI’22). 2022.

A. Tornede, L. Gehring, T. Tornede, M. Wever, and E. Hüllermeier. ªAlgorithm

Selection on a Meta Levelº. In: Machine Learning (2022).

198 Appendix A

T. Tornede, A. Tornede, L. Fehring, L. Gehring, H. Graf, J. Hanselle, F. Mohr, and

M. Wever. ªPyExperimenter: Easily Distribute Experiments and Track Resultsº. In:

Journal of Open Source Software (2023).

199

Bibliography

[Aal78] O. Aalen. ªNonparametric Inference For a Family of Counting Processesº.
In: The Annals of Statistics (1978) (cit. on p. 95).

[AG13] S. Agrawal and N. Goyal. ªThompson Sampling for Contextual Bandits
with Linear Payoffsº. In: Proceedings of the 30th International Conference on

Machine Learning (ICML’13). 2013 (cit. on p. 116).

[Ali10] A. Alin. ªMulticollinearityº. In: Wiley Interdisciplinary Reviews: Computa-

tional Statistics (2010) (cit. on p. 51).

[ASH19] M. Alissa, K. Sim, and E. Hart. ªAlgorithm Selection Using Deep Learning
Without Feature Extractionº. In: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO’19). 2019 (cit. on p. 56).

[ASH22] M. Alissa, K. Sim, and E. Hart. ªAutomated Algorithm Selection: From
Feature-Based to Feature-Free Approachesº. In: arXiv:2203.13392 (2022)
(cit. on p. 56).

[Ama+15] R. Amadini, F. Biselli, M. Gabbrielli, T. Liu, and J. Mauro. ªFeature Selection
for SUNNY: A Study on the Algorithm Selection Libraryº. In: Proceedings of

the 27th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI’15). 2015 (cit. on p. 57).

[AGM14] R. Amadini, M. Gabbrielli, and J. Mauro. ªSUNNY: a Lazy Portfolio Approach
for Constraint Solvingº. In: Theory and Practice of Logic Programming (2014)
(cit. on pp. 36, 101).

[Ame84] T. Amemiya. ªTobit Models: A Surveyº. In: Journal of Econometrics (1984)
(cit. on p. 106).

[Ana21] M. Anastacio. ªGreybox Automated Algorithm Configurationº. In: Proceed-

ings of the Thirtieth International Joint Conference on Artificial Intelligence

(IJCAI’21) Doctoral Consortium Track. 2021 (cit. on p. 174).

[Ans+15] C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and K. Tierney.
ªModel-Based Genetic Algorithms for Algorithm Configurationº. In: Pro-

ceedings of the 24th International Joint Conference on Artificial Intelligence

(IJCAI’15). 2015 (cit. on p. 86).

[Arm+06] W. Armstrong, P. Christen, E. McCreath, and A. P. Rendell. ªDynamic Algo-
rithm Selection Using Reinforcement Learningº. In: International Workshop

on Integrating AI and Data Mining. 2006 (cit. on p. 130).

[ACF02] P. Auer, N. Cesa-Bianchi, and P. Fischer. ªFinite-Time Analysis of the Multi-
armed Bandit Problemº. In: Machine Learning (2002) (cit. on p. 113).

201

[AutoML-FS] AutoML Fall School. https://sites.google.com/view/automl-fall-

school-2022/home. Accessed: 2023-04-22 (cit. on p. 2).

[AutoML-Conf] AutoML-Conf. https://automl.cc/. Accessed: 2023-04-22 (cit. on p. 2).

[Bac17] F. Bach. ªBreaking the Curse of Dimensionality With Convex Neural Net-
worksº. In: Journal of Machine Learning Research (2017) (cit. on p. 50).

[Ben+18] S. Bengio, K. Dembczynski, T. Joachims, M. Kloft, and M. Varma. ªExtreme
Classification (Dagstuhl Seminar 18291)º. In: Dagstuhl Reports (2018) (cit.
on pp. 61, 62, 65).

[Ben12] Y. Bengio. ªDeep Learning of Representations for Unsupervised and Transfer
Learningº. In: ICML: Workshop on Unsupervised and Transfer Learning. 2012
(cit. on p. 54).

[BH20] V. Bengs and E. Hüllermeier. ªPreselection banditsº. In: Proceedings of the

37th International Conference on Machine Learning (ICML’20). 2020 (cit. on
p. 171).

[BH19] V. Bengs and E. Hüllermeier. ªPreselection Bandits Under the Plackett-Luce
Modelº. In: arXiv:1907.06123 (2019) (cit. on p. 171).

[Bie+22] T. De Bie, L. De Raedt, J. Hernández-Orallo, H. H. Hoos, P. Smyth, and
C. K. I. Williams. ªAutomating Data Scienceº. In: Communications of the

ACM (2022) (cit. on p. 24).

[Bie+20] A. Biedenkapp, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer. ªDy-
namic Algorithm Configuration: Foundation of a New Meta-Algorithmic
Frameworkº. In: Proceedings of the Twenty-fourth European Conference on

Artificial Intelligence (ECAI’20). 2020 (cit. on pp. 130, 174).

[Bie+19] A. Biedenkapp, H. F. Bozkurt, F. Hutter, and M. Lindauer. ªTowards White-
box Benchmarks for Algorithm Controlº. In: arXiv:1906.07644 (2019) (cit.
on p. 130).

[Bie+17] A. Biedenkapp, M. Lindauer, K. Eggensperger, F. Hutter, C. Fawcett, and
H. H. Hoos. ªEfficient Parameter Importance Analysis via Ablation with
Surrogatesº. In: Proceedings of the Thirty-First Conference on Artificial Intel-

ligence (AAAI’17). 2017 (cit. on pp. 98, 106).

[Bis+23] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas,
T. Ullmann, M. Becker, A. Boulesteix, D. Deng, and M. Lindauer. ªHyperpa-
rameter Optimization: Foundations, Algorithms, Best Practices, and Open
Challengesº. In: WIREs Data Mining and Knowledge Discovery (2023) (cit. on
p. 23).

[Bis+16] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette,
H. H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and J. Vanschoren.
ªASlib: A Benchmark Library for Algorithm Selectionº. In: Artificial Intelli-

gence (2016) (cit. on pp. 13, 47, 53, 57, 90, 151).

202 Bibliography

https://sites.google.com/view/automl-fall-school-2022/home
https://sites.google.com/view/automl-fall-school-2022/home
https://automl.cc/

[Bis+11] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuû. ªAlgorithm Selection
Based on Exploratory Landscape Analysis and Cost-Sensitive Learningº.
In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary

Computation (GECCO’12). 2011 (cit. on p. 53).

[BMB13] M. R. Bonyadi, Z. Michalewicz, and L. Barone. ªThe Travelling Thief Prob-
lem: The First Step in the Transition From Theoretical Problems to Realistic
Problemsº. In: Proceedings of the IEEE Congress on Evolutionary Computation

(CEC’13). 2013 (cit. on p. 162).

[Bor84] J. C. Borda. ªMémoire Sur Les élections au Scrutinº. In: Histoire de l’Academie

Royale des Sciences pour 1781 (1784) (cit. on p. 144).

[BT18] J. Bossek and H. Trautmann. ªMulti-objective Performance Measurement:
Alternatives to PAR10 and Expected Running Timeº. In: Proceedings of the

International Conference on Learning and Intelligent Optimization (LION’18).
2018 (cit. on pp. 14, 47).

[Bra+08] P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta. Metalearning: Applications

to Data Mining. Springer Science & Business Media, 2008 (cit. on p. 139).

[Bra+22] P. Brazdil, J. N. van Rijn, C. Soares, and J. Vanschoren. ªAutomating Data
Scienceº. In: Metalearning. Springer, 2022 (cit. on pp. 24, 51).

[Bre01] L. Breiman. ªRandom Forestsº. In: Machine Learning (2001) (cit. on p. 156).

[Bre+84] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and

Regression Trees. 1984 (cit. on p. 94).

[Bre96] Leo Breiman. ªBagging Predictorsº. In: Machine Learning (1996) (cit. on
pp. 142, 146).

[Bre72] N. E. Breslow. ªContribution to Discussion of Paper by D. R. Coxº. In:
Journal of the Royal Statistical Society (1972) (cit. on p. 109).

[BJ79] J. Buckley and I. James. ªLinear Regression With Censored Dataº. In:
Biometrika (1979) (cit. on p. 121).

[Cao+07] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. ªLearning to Rank: From Pairwise
Approach to Listwise Approachº. In: Proceedings of the 24th International

Conference on Machine Learning (ICML’07). 2007 (cit. on p. 69).

[CN06] R. Caruana and A. Niculescu-Mizil. ªAn Empirical Comparison of Supervised
Learning Algorithmsº. In: Proceedings of the 23rd International Conference

on Machine Learning (ICML’06). 2006 (cit. on p. 156).

[CB21] G. Casella and R. L. Berger. Statistical Inference. Cengage Learning, 2021
(cit. on p. 38).

[CL06] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006 (cit. on p. 186).

Bibliography 203

[CHH09] W. Cheng, J. Hühn, and E. Hüllermeier. ªDecision Tree and Instance-Based
Learning for Label Rankingº. In: Proceedings of the 26th International Con-

ference on Machine Learning (ICML’09). 2009 (cit. on p. 33).

[CHD10] W. Cheng, E. Hüllermeier, and K. J. Dembczynski. ªLabel Ranking Methods
Based on the Plackett-Luce Modelº. In: Proceedings of the 27th International

Conference on Machine Learning (ICML’10). 2010 (cit. on pp. 33, 68, 69).

[Chu+11] W. Chu, L. Li, L. Reyzin, and R. E. Schapire. ªContextual Bandits With
Linear Payoff Dunctionsº. In: Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics (AISTATS’11). 2011 (cit. on
pp. 113, 185).

[CS05] V. A. Cicirello and S. F. Smith. ªThe Max K-Armed Bandit: A New Model
of Exploration Applied to Search Heuristic Selectionº. In: Proceedings of

the Twentieth National Conference on Artificial Intelligence (AAAI’05). 2005
(cit. on p. 130).

[CFR06] D. Coppersmith, L. Fleischer, and A. Rudra. ªOrdering by Weighted Number
of Wins Gives a Good Ranking for Weighted Tournamentsº. In: Proceedings

of the ACM-SIAM Symposium on Discrete Algorithms (SODA’06). 2006 (cit.
on p. 145).

[COSEAL] COSEAL. https://www.coseal.net/. Accessed: 2023-04-22 (cit. on p. 2).

[Cox72] D. R. Cox. ªRegression Models and Life Tables (With Discussion)º. In:
Journal of the Royal Statistical Society (1972) (cit. on p. 109).

[CSC18] T. Cunha, C. Soares, and A. C. P. L. F. de Carvalho. ªA Label Ranking
Approach for Selecting Rankings of Collaborative Filtering Algorithmsº.
In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing

(SAC’18). 2018 (cit. on p. 33).

[dWB21] J. de Nobel, H. Wang, and T. Baeck. ªExplorative Data Analysis of Time
Series Based Algorithm Features of CMA-ES Variantsº. In: Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO’21). 2021
(cit. on pp. 86, 87).

[Deb14] K. Deb. ªMulti-Objective Optimizationº. In: Search Methodologies. Springer,
2014 (cit. on p. 47).

[Deg17] H. Degroote. ªOnline Algorithm Selectionº. In: Proceedings of the 26th

International Joint Conference on Artificial Intelligence (IJCAI’17). 2017 (cit.
on p. 129).

[Deg+16] H. Degroote, B. Bischl, L. Kotthoff, and P. De Causmaecker. ªReinforcement
Learning for Automatic Online Algorithm Selection - An Empirical Studyº.
In: Proceedings of the 16th ITAT Conference Information Technologies. 2016
(cit. on p. 129).

204 Bibliography

https://www.coseal.net/

[Deg+18] H. Degroote, P. De Causmaecker, B. Bischl, and L. Kotthoff. ªA Regression-
Based Methodology for Online Algorithm Selectionº. In: Proceedings of

the Eleventh Annual Symposium on Combinatorial Search (SOCS’18). 2018
(cit. on pp. 126, 127, 129, 130, 183).

[DS21] N. Deshpande and N. Sharma. ªAlgorithm Selection Using Transfer Learn-
ingº. In: Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO’21). 2021 (cit. on p. 173).

[Die00] T. G. Dietterich. ªEnsemble Methods in Machine Learningº. In: Proceedings

of the First International Workshop on Multiple Classifier Systems (MCS’00).
2000 (cit. on pp. 18, 138, 141, 142).

[Dim+19] M. Dimakopoulou, Z. Zhou, S. Athey, and G. Imbens. ªBalanced Linear Con-
textual Banditsº. In: Proceedings of the Thirty-Third Conference on Artificial

Intelligence (AAAI’19). 2019 (cit. on p. 115).

[DBH18] F. K. DošiloviÂc, M. BrčiÂc, and N. HlupiÂc. ªExplainable Artificial Intelligence:
A Surveyº. In: Proceedings of the 41st International Convention on Infor-

mation and Communication Technology, Electronics and Microelectronics

(MIPRO’18). 2018 (cit. on p. 51).

[Dru97] H. Drucker. ªImproving Regressors Using Boosting Techniquesº. In: Pro-

ceedings of the Fourteenth International Conference on Machine Learning

(ICML’97). 1997 (cit. on p. 148).

[DLH19] M. Du, N. Liu, and X. Hu. ªTechniques for Interpretable Machine Learningº.
In: Communications of the ACM (2019) (cit. on p. 51).

[Dwo+01] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. ªRank Aggregation
Methods for the Webº. In: Proceedings of the Tenth International World Wide

Web Conference (WWW’01). 2001 (cit. on pp. 144, 145).

[Egg+20] K. Eggensperger, K. Haase, P. Müller, M. Lindauer, and F. Hutter. ªNeural
Model-based Optimization with Right-Censored Observationsº. In: arXiv: 2009.13828

(2020) (cit. on p. 106).

[Egg+18] K. Eggensperger, M. Lindauer, H. H. Hoos, F. Hutter, and K. Leyton-Brown.
ªEfficient Benchmarking of Algorithm Configurators via Model-Based Surro-
gatesº. In: Machine Learning (2018) (cit. on pp. 91, 106).

[EVR09] B. Eksioglu, A.V. Vural, and A. Reisman. ªThe Vehicle Routing Problem: A
Taxonomic Reviewº. In: Computers & Industrial Engineering (2009) (cit. on
p. 1).

[El +20] A. El Mesaoudi-Paul, D. Weiû, V. Bengs, E. Hüllermeier, and K. Tierney.
ªPool-Based Realtime Algorithm Configuration: A Preselection Bandit Ap-
proachº. In: Proceedings of the International Conference on Learning and

Intelligent Optimization (LION’20). 2020 (cit. on p. 130).

[EMH19] T. Elsken, J. H. Metzen, and F. Hutter. ªNeural Architecture Search: A
Surveyº. In: Journal of Machine Learning Research (2019) (cit. on p. 24).

Bibliography 205

[ED18] M. T. M. Emmerich and A. H. Deutz. ªA Tutorial on Multiobjective Opti-
mization: Fundamentals and Evolutionary Methodsº. In: Natural computing

(2018) (cit. on p. 47).

[Eri+20] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola.
ªAutoGluon-Tabular: Robust and Accurate AutoML for Structured Dataº. In:
arXiv:2003.06505 (2020) (cit. on pp. 166, 167).

[Faw+14] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. H. Hoos, and K. Leyton-
Brown. ªImproved Features for Runtime Prediction of Domain-Independent
Plannersº. In: Proceedings of the Twenty-Fourth International Conference on

Automated Planning and Scheduling (ICAPS-14). 2014 (cit. on p. 57).

[FHT22] L. Fehring, J. Hanselle, and A. Tornede. ªHARRIS: Hybrid Ranking and
Regression Forests for Algorithm Selectionº. In: NeurIPS: Workshop on

Meta-Learning (MetaLearn’22). 2022 (cit. on pp. 34, 172).

[Feu+22] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. ªAuto-
Sklearn 2.0: Hands-free AutoML via Meta-Learningº. In: Journal of Machine

Learning Research (2022) (cit. on p. 167).

[FH18] M. Feurer and F. Hutter. ªTowards Further Automation in AutoMLº. In:
ICML: Workshop on Automated Machine Learning. 2018 (cit. on pp. 41,
166).

[Feu+15] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F.
Hutter. ªEfficient and Robust Automated Machine Learningº. In: Proceedings

of the 28th International Conference on Advances in Neural Information

Processing Systems (NeurIPS’15). 2015 (cit. on pp. 62, 166).

[Fis69] P. C. Fishburn. Utility-Theory for Decision Making. Wiley, 1969 (cit. on
p. 98).

[FMO15] T. Fitzgerald, Y. Malitsky, and B. O’Sullivan. ªReACTR: Realtime Algorithm
Configuration Through Tournament Rankingsº. In: Proceedings of the 24th

International Joint Conference on Artificial Intelligence (IJCAI’15). 2015 (cit.
on p. 130).

[Fit+14] T. Fitzgerald, Y. Malitsky, B. O’Sullivan, and K. Tierney. ªReACT: Real-
Time Algorithm Configuration Through Tournamentsº. In: Proceedings of

the Seventh Annual Symposium on Combinatorial Search (SOCS’14). 2014
(cit. on p. 130).

[Fra+05] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, and B. Pfahringer. ªWEKA - A
Machine Learning Workbench for Data Miningº. In: The Data Mining and

Knowledge Discovery Handbook. 2005 (cit. on p. 72).

[Fra18] P. I. Frazier. ªA Tutorial on Bayesian Optimizationº. In: arXiv:1807.02811

(2018) (cit. on p. 99).

[FLS04] D. Frossyniotis, A. Likas, and A. Stafylopatis. ªA Clustering Method Based
on Boostingº. In: Pattern Recognition Letters (2004) (cit. on pp. 157, 167).

206 Bibliography

[FSE18] N. Fusi, R. Sheth, and M. Elibol. ªProbabilistic Matrix Factorization for
Automated Machine Learningº. In: Proceedings of the 31st International Con-

ference on Advances in Neural Information Processing Systems (NeurIPS’18).
2018 (cit. on p. 86).

[GL10] M. Gagliolo and C. Legrand. ªAlgorithm Survival Analysisº. In: Experimental

Methods for the Analysis of Optimization Algorithms. Springer, 2010 (cit. on
pp. 105, 130).

[GS10] M. Gagliolo and J. Schmidhuber. ªAlgorithm Selection as a Bandit Problem
with Unbounded Lossesº. In: Proceedings of the Fourth International Con-

ference on Learning and Intelligent Optimization (LION’10). 2010 (cit. on
p. 130).

[GS06] M. Gagliolo and J. Schmidhuber. ªLearning Dynamic Algorithm Portfoliosº.
In: Annals of Mathematics and Artificial Intelligence (2006) (cit. on pp. 96,
105, 130).

[Gam12] J. Gama. ªA Survey on Learning From Data Streams: Current and Future
Trendsº. In: Progress in Artificial Intelligence (2012) (cit. on p. 130).

[GO09] N. García-Pedrajas and D. Ortiz-Boyer. ªBoosting K-Nearest Neighbor Classi-
fier by Means of Input Space Projectionº. In: Expert Systems with Applications

(2009) (cit. on pp. 157, 167).

[Gen+10] I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, N. C. A. Moore, P. Nightingale,
and K. Petrie. ªLearning When to Use Lazy Learning in Constraint Solvingº.
In: Proceedings of the Nineteenth European Conference on Artificial Intelligence

(ECAI’10). 2010 (cit. on pp. 29, 53).

[GSC97] C. P. Gomes, B. Selman, and N. Crato. ªHeavy-Tailed Distributions in Combi-
natorial Searchº. In: Proceedings of the International Conference on Principles

and Practice of Constraint Programming (CP’97). 1997 (cit. on pp. 45, 89,
91, 162).

[GLR22] D. R. Graham, K. Leyton-Brown, and T. Roughgarden. ªFormalizing Prefer-
ences Over Runtime Distributionsº. In: arXiv:2205.13028 (2022) (cit. on
p. 47).

[Gre05] W. H. Greene. ªCensored Data and Truncated Distributionsº. In: NYU Work-

ing Paper (2005) (cit. on pp. 115, 125).

[GM04] A. Guerri and M. Milano. ªLearning Techniques for Automatic Algorithm
Portfolio Selectionº. In: Proceedings of the Thirteenth European Conference

on Artificial Intelligence (ECAI’04). 2004 (cit. on p. 29).

[GR17] R. Gupta and T. Roughgarden. ªA PAC Approach to Application-Specific Al-
gorithm Selectionº. In: SIAM Journal on Computing (2017) (cit. on p. 131).

[GE03] I. Guyon and A. Elisseeff. ªAn Introduction to Variable and Feature Se-
lectionº. In: Journal of Machine Learning Research (2003) (cit. on pp. 57,
149).

Bibliography 207

[HW09] S. Haim and T. Walsh. ªRestart Strategy Selection Using Machine Learning
Techniquesº. In: Proceedings of the Twelfth International Conference on Theory

and Applications of Satisfiability Testing (SAT’09). 2009 (cit. on p. 31).

[HE03] G. Hamerly and C. Elkan. ªLearning the K in K-Meansº. In: Proceedings of the

16th International Conference on Advances in Neural Information Processing

Systems (NeurIPS’03). 2003 (cit. on p. 36).

[Han+21] J. Hanselle, A. Tornede, M. Wever, and E. Hüllermeier. ªAlgorithm Selection
as Superset Learning: Constructing Algorithm Selectors from Imprecise
Performance Dataº. In: Proceedings of the 25th Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD’21). 2021 (cit. on p. 106).

[Han+20] J. Hanselle, A. Tornede, M. Wever, and E. Hüllermeier. ªHybrid Ranking
and Regression for Algorithm Selectionº. In: Proceedings of the 43rd German

Conference on Artificial Intelligence (KI’2020). 2020 (cit. on pp. 34, 172).

[Hap+13] M. Happe, F. Meyer auf der Heide, P. Kling, M. Platzner, and C. Plessl.
ªOn-the-fly Computing: A Novel Paradigm for Individualized IT Servicesº.
In: Proceedings of the 16th IEEE International Symposium on Real-Time

Distributed Computing (ISORC’13). 2013 (cit. on p. 62).

[Has+09] T. Hastie, S. Rosset, J. Zhu, and H. Zou. ªMulti-Class Adaboostº. In: Statistics

and its Interface (2009) (cit. on p. 148).

[Hei+21] J. Heins, J. Bossek, J. Pohl, M. Seiler, H. Trautmann, and P. Kerschke. ªOn
the Potential of Normalized TSP Features for Automated Algorithm Selec-
tionº. In: Proceedings of the 16th ACM/SIGEVO Conference on Foundations of

Genetic Algorithms (FOGA’21). 2021 (cit. on p. 57).

[HMS09] D. Hernández-Lobato, G. Martínez-Muñoz, and A. Suárez. ªStatistical
Instance-Based Pruning in Ensembles of Independent Classifiersº. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence (2009) (cit. on
p. 146).

[Hil+09] M. Hilario, A. Kalousis, P. Nguyen, and A. Woznica. ªA Data Mining Ontol-
ogy for Algorithm Selection and Meta-Miningº. In: ECML/PKDD: Workshop

on 3rd generation Data Mining. 2009 (cit. on p. 86).

[Hoo+15] H. H. Hoos, R. Kaminski, M. Lindauer, and T. Schaub. ªaspeed: Solver
Scheduling via Answer Set Programmingº. In: Theory and Practice of Logic

Programming (2015) (cit. on p. 20).

[HW06] P.D. Hough and P. J. Williams. Modern Machine Learning for Automatic

Optimization Algorithm Selection. Tech. rep. Sandia National Lab.(SNL-CA),
Livermore, CA (United States), 2006 (cit. on pp. 29, 86).

[HC15] E. Hüllermeier and W. Cheng. ªSuperset Learning Based on Feneralized
Loss Minimizationº. In: Proceedings of the European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML/PKDD’15). 2015 (cit. on p. 106).

208 Bibliography

[Hül+21] E. Hüllermeier, F. Mohr, A. Tornede, and M. Wever. ªAutomated Machine
Learning, Bounded Rationality, and Rational Metareasoningº. In: ECML/P-

KDD: Workshop on Automating Data Science (ADS’21). 2021 (cit. on pp. 165,
171).

[Hut+06] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. ªPerformance Pre-
diction and Automated Tuning of Randomized and Parametric Algorithmsº.
In: Proceedings of the Twelfth International Conference on Principles and

Practice of Constraint Programming (CP’06). 2006 (cit. on p. 31).

[HHL11] F. Hutter, H. H. Hoos, and K. Leyton-Brown. ªBayesian Optimization With
Censored Response Dataº. In: NIPS: Workshop on Bayesian Optimization,

Sequential Experimental Design and Bandits. 2011 (cit. on pp. 91, 106).

[HHL13] F. Hutter, H. H. Hoos, and K. Leyton-Brown. ªIdentifying Key Algorithm Pa-
rameters and Instance Features using Forward Selectionº. In: Proceedings of

the Seventh International Conference on Learning and Intelligent Optimization

(LION’13). 2013 (cit. on p. 57).

[HHL] F. Hutter, H. H. Hoos, and K. Leyton-Brown. ªSequential Model-Based Opti-
mization for General Algorithm Configurationº. In: Proceedings of the Fifth

International Conference on Learning and Intelligent Optimization (LION’11)

(cit. on pp. 67, 86).

[HKV19] F. Hutter, L. Kotthoff, and J. Vanschoren. Automated Machine Learning:

Methods, Systems, Challenges. Springer Nature, 2019 (cit. on pp. 2, 23, 62).

[Hut+14] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. ªAlgorithm Runtime
Prediction: Methods & Evaluationº. In: Artificial Intelligence (2014) (cit. on
pp. 31, 53, 106).

[22] ICML: Workshop on Adaptive Experimental Design and Active Learning in the

Real World (ReALML’22). 2022.

[Ish+08] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. ªRandom
Survival Forestsº. In: The Annals of Applied Statistics (2008) (cit. on p. 94).

[Kad+] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann.
ªAlgorithm Selection and Schedulingº. In: Proceedings of the Seventeenth In-

ternational Conference on Principles and Practice of Constraint Programming

(CP’11) (cit. on p. 20).

[Kad+10] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ªISAC - Instance-
Specific Algorithm Configurationº. In: Proceedings of the Nineteenth Euro-

pean Conference on Artificial Intelligence (ECAI’10). 2010 (cit. on pp. 36,
101).

[KM58] E. L. Kaplan and P. Meier. ªNonparametric Estimation From Incomplete
Observationsº. In: Journal of the American Statistical Association (1958)
(cit. on p. 121).

Bibliography 209

[Ker+19] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. ªAutomated Algo-
rithm Selection: Survey and Perspectivesº. In: Evolutionary Computation

(2019) (cit. on pp. 1, 2, 14, 17, 28, 51, 53, 54, 138, 231).

[KT19] P. Kerschke and H. Trautmann. ªAutomated Algorithm Selection on Continu-
ous Black-Box Problems by Combining Exploratory Landscape Analysis and
Machine Learningº. In: Evolutionary Computation (2019) (cit. on p. 53).

[Khu+16] Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthas-
rathy. ªCognito: Automated feature engineering for supervised learningº.
In: Proceedings of Workshops of the 16th IEEE International Conference on

Data Mining (ICDM’16). 2016 (cit. on p. 24).

[KW16] T. N. Kipf and M. Welling. ªSemi-Supervised Classification with Graph
Convolutional Networksº. In: arXiv:1609.02907 (2016) (cit. on p. 86).

[KK10] D. G. Kleinbaum and M. Klein. Survival Analysis. Springer, 2010 (cit. on
pp. 90, 92).

[KCF18] P. Kordík, J. Cerný, and T. Frýda. ªDiscovering Predictive Ensembles for
Transfer Learning and Meta-Learningº. In: Machine Learning (2018) (cit. on
p. 166).

[Kor08] Y. Koren. ªFactorization Meets the Neighborhood: A Multifaceted Collabo-
rative Filtering Modelº. In: The 14th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD’08). 2008 (cit. on pp. 38,
41).

[Kot16] L. Kotthoff. ªAlgorithm Selection for Combinatorial Search Problems: A
Surveyº. In: Data Mining and Constraint Programming. Springer, 2016 (cit.
on pp. 2, 28).

[Kot12] L. Kotthoff. ªHybrid Regression-Classification Models for Algorithm Selec-
tionº. In: Proceedings of the Twentieth European Conference on Artificial

Intelligence (ECAI’12). 2012 (cit. on pp. 29, 166).

[Kot14] L. Kotthoff. ªRanking Algorithms by Performanceº. In: Proceedings of the

Eighth International Conference on Learning and Intelligent Optimization

(LION’14). 2014 (cit. on p. 33).

[Kot+15] L. Kotthoff, P. Kerschke, H. H. Hoos, and H. Trautmann. ªImproving the
State of the Art in Inexact TSP Solving Using Per-Instance Algorithm Selec-
tionº. In: Proceedings of the Nineth International Conference on Learning and

Intelligent Optimization (LION’15). 2015 (cit. on p. 57).

[KM11] C. Kroer and Y. Malitsky. ªFeature Filtering for Instance-Specific Algorithm
Configurationº. In: Proceedings of the 23th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI’11). 2011 (cit. on p. 57).

[LL00] M. G. Lagoudakis and M. L. Littman. ªAlgorithm Selection Using Reinforce-
ment Learningº. In: Proceedings of the Seventeenth International Conference

on Machine Learning (ICML’00). 2000 (cit. on p. 130).

210 Bibliography

[LF17] R. Laroche and R. Féraud. ªAlgorithm Selection of Off-Policy Reinforcement
Learning Algorithmº. In: arXiv:1701.08810 (2017) (cit. on p. 130).

[LS20] T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University
Press, 2020 (cit. on pp. 113, 114, 189).

[LO01] A. Lazarevic and Z. Obradovic. ªEffective Pruning of Neural Network Classi-
fier Ensemblesº. In: Proceedings of the IEEE International Joint Conference

on Neural Networks (IJCNN’01). 2001 (cit. on p. 146).

[LB95] Y. LeCun and Y. Bengio. Convolutional Networks for Images, Speech, and

Time Series. 1995 (cit. on p. 54).

[LNS02] K. Leyton-Brown, E. Nudelman, and Y. Shoham. ªLearning the Empirical
Hardness of Optimization Problems: The Case of Combinatorial Auctionsº.
In: Proceedings of the International Conference on Principles and Practice of

Constraint Programming (CP’02. 2002 (cit. on p. 31).

[LBH16] M. Lindauer, R. Bergdoll, and F. Hutter. ªAn Empirical Study of Per-Instance
Algorithm Schedulingº. In: Proceedings of the Tenth International Conference

on Learning and Intelligent Optimization (LION’16). 2016 (cit. on p. 130).

[Lin+22] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C.
Benjamins, T. Ruhkopf, R. Sass, and F. Hutter. ªSMAC3: A Versatile Bayesian
Optimization Package for Hyperparameter Optimizationº. In: Journal of

Machine Learning Research (2022) (cit. on pp. 67, 86).

[LH12] M. Lindauer and H. H. Hoos. ªQuantifying Homogeneity of Instance Sets
for Algorithm Configurationº. In: Proceedings of the Sixth International

Conference on Learning and Intelligent Optimization (LION’12). 2012 (cit. on
p. 84).

[Lin+15] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub. ªAutoFolio: An Automat-
ically Configured Algorithm Selectorº. In: Journal of Artificial Intelligence

Research (2015) (cit. on pp. 41, 47, 99, 167).

[LRK19] M. Lindauer, J. N. van Rijn, and L. Kotthoff. ªThe Algorithm Selection
Competitions 2015 and 2017º. In: Artificial Intelligence (2019) (cit. on
pp. 2, 17, 138, 166).

[LOW20] A. Lissovoi, P. S. Oliveto, and J. A. Warwicker. ªSimple Hyper-Heuristics
Control the Neighbourhood Size of Randomised Local Search Optimally for
LeadingOnes*º. In: Evolutionary Computation (2020) (cit. on p. 130).

[Lor+16] A. Loreggia, Y. Malitsky, H. Samulowitz, and V. Saraswat. ªDeep Learning
for Algorithm Portfoliosº. In: Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence (AAAI’16). 2016 (cit. on pp. 55, 56).

[LCG08] A. C. Lorena, A. C. P. L. F. De Carvalho, and J. Gama. ªA Review on the
Combination of Binary Classifiers in Multiclass Problemsº. In: Artificial

Intelligence Review (2008) (cit. on p. 29).

Bibliography 211

[Mah+19] M. Mahdavi, F. Neutatz, L. Visengeriyeva, and Z. Abedjan. ªTowards Au-
tomated Data Cleaning Workflowsº. In: Proceedings of the Conference on

"Lernen, Wissen, Daten, Analysen" (LWDA’19). 2019 (cit. on p. 23).

[MO14] Y. Malitsky and B. O’Sullivan. ªLatent Features for Algorithm Selectionº.
In: Proceedings of the Seventh Annual Symposium on Combinatorial Search

(SOCS’14). 2014 (cit. on pp. 40, 41, 173).

[Mal+13] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. ªAlgorithm
Portfolios Based on Cost-Sensitive Hierarchical Clusteringº. In: Proceedings

of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13).
2013 (cit. on p. 36).

[Mal+11] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. ªNon-Model-
Based Algorithm Portfolios for SATº. In: Proceedings of the Fourteenth In-

ternational Conference on Theory and Applications of Satisfiability Testing

(SAT’11). 2011 (cit. on p. 29).

[Mal57] C. L. Mallows. ªNon-Null Ranking Modelsº. In: Biometrika (1957) (cit. on
p. 68).

[Mal+17] B. Malone, K. Kangas, M. Järvisalo, M. Koivisto, and P. Myllymäki. ªas-
asl: Algorithm Selection with auto-sklearnº. In: Open Algorithm Selection

Challenge 2017. 2017 (cit. on p. 166).

[Mar08] J. Marques-Silva. ªPractical Applications of Boolean Satisfiabilityº. In: 9th

International Workshop on Discrete Event Systems. 2008 (cit. on p. 1).

[Mer+13] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph.
ªExploratory Landscape Analysisº. In: Proceedings of the Genetic and Evolu-

tionary Computation Conference (GECCO’13). 2013 (cit. on pp. 53, 174).

[MTL] Meta-Learning Workshop. https://meta-learn.github.io/. Accessed:
2023-04-22 (cit. on p. 2).

[MH82] R. Miller and J. Halpern. ªRegression with Censored Dataº. In: Biometrika

(1982) (cit. on p. 121).

[MS13] M. Misir and M. Sebag. Algorithm Selection as a Collaborative Filtering

Problem. Tech. rep. 2013 (cit. on pp. 40, 41).

[MS17] M. Misir and M. Sebag. ªALORS: An Algorithm Recommender Systemº. In:
Artificial Intelligence (2017) (cit. on pp. 40, 41, 76).

[MRL22] A. Mohan, T. Ruhkopf, and M. Lindauer. ªTowards Meta-learned Algorithm
Selection using Implicit Fidelity Informationº. In: ICML: Workshop on Adap-

tive Experimental Design and Active Learning in the Real World (ReALML’22).
2022 (cit. on p. 174).

[Mv22] F. Mohr and J. N. van Rijn. ªLearning Curves for Decision Making in
Supervised Machine Learning±A Surveyº. In: arXiv:2201.12150 (2022)
(cit. on p. 174).

212 Bibliography

https://meta-learn.github.io/

[MWH18] F. Mohr, M. Wever, and E. Hüllermeier. ªML-Plan: Automated Machine
Learning Via Hierarchical Planningº. In: Machine Learning (2018) (cit. on
p. 62).

[Moh+19] F. Mohr, M. Wever, A. Tornede, and E. Hüllermeier. ªFrom Automated to
On-The-Fly Machine Learningº. In: Proceedings of the INFORMATIK. 2019
(cit. on pp. 62, 71).

[Moo+22] J. Moosbauer, G. Casalicchio, M. Lindauer, and B. Bischl. ªEnhancing
Explainability of Hyperparameter Optimization via Bayesian Algorithm
Executionº. In: arXiv:2206.05447 (2022) (cit. on p. 24).

[Nel72] W. Nelson. ªTheory and Applications of Hazard Plotting for Censored Failure
Dataº. In: Technometrics (1972) (cit. on p. 95).

[Nud+04a] E. Nudelman, K. Leyton-Brown, A. Devkar, Y. Shoham, and H. H. Hoos.
ªSATzilla: An Algorithm Portfolio for SATº. In: SAT Competition 2004 (2004)
(cit. on p. 31).

[Nud+04b] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham.
ªUnderstanding Random SAT: Beyond the Clauses-to-Variables Ratioº. In:
Proceedings of the 10th International Conference on Principles and Practice of

Constraint Programming (CP’04). 2004 (cit. on pp. 50, 53).

[OMa+08] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan. ªUsing
Case-Based Reasoning in an Algorithm Portfolio for Constraint Solvingº. In:
Proceedings of the Nineteenth Irish Conference on Artificial Intelligence and

Cognitive Science (AICS’08). 2008 (cit. on pp. 52, 53).

[OHL15] R. J. Oentaryo, S. D. Handoko, and H. C. Lau. ªAlgorithm Selection via
Rankingº. In: Proceedings of the Twenty-ninth AAAI Conference on Artificial

Intelligence (AAAI’15). 2015 (cit. on p. 33).

[Özt+22] E. Öztürk, F. Ferreira, H. Jomaa, L. Schmidt-Thieme, J. Grabocka, and F.
Hutter. ªZero-Shot AutoML with Pretrained Modelsº. In: Proceedings of the

39th International Conference on Machine Learning (ICML’22). 2022 (cit. on
p. 75).

[Pim+21] N. Pimpalkhare, F. Mora, E. Polgreen, and S. A. Seshia. ªMedleySolver:
Online SMT algorithm selectionº. In: Proceedings of the Twenty-fourth In-

ternational Conference on Theory and Applications of Satisfiability Testing

(SAT’21). 2021 (cit. on p. 130).

[PNK15] S. Pölsterl, N. Navab, and A. Katouzian. ªFast Training of Support Vector
Machines for Survival Analysisº. In: Proceedings of the European Conference

on Machine Learning and Principles and Practice of Knowledge Discovery in

Databases (ECML/PKDD’15). 2015 (cit. on p. 107).

[Pra+21] R. P. Prager, M. V. Seiler, H. Trautmann, and P. Kerschke. ªTowards Feature-
Free Automated Algorithm Selection for Single-Objective Continuous Black-
Box Optimizationº. In: Proceedings of the IEEE Symposium Series on Compu-

tational Intelligence (SSCI’16). 2021 (cit. on pp. 54, 56).

Bibliography 213

[15a] Proceedings of the 24th International Joint Conference on Artificial Intelligence

(IJCAI’15). 2015.

[15b] Proceedings of the European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases (ECML/PKDD’15). 2015.

[21] Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’21).
2021.

[10] Proceedings of the Nineteenth European Conference on Artificial Intelligence

(ECAI’10). 2010.

[15c] Proceedings of the Nineth International Conference on Learning and Intelligent

Optimization (LION’15). 2015.

[14] Proceedings of the Seventh Annual Symposium on Combinatorial Search

(SOCS’14). 2014.

[19] Proceedings of the Thirty-Third Conference on Artificial Intelligence (AAAI’19).
2019.

[Pul+22] D. Pulatov, M. Anastacio, L. Kotthoff, and H. H. Hoos. ªOpening the Black
Box: Automated Software Analysis for Algorithm Selectionº. In: Proceed-

ings of the First International Conference on Automated Machine Learning

(AutoML-Conf ’22). 2022 (cit. on p. 86).

[PK20] D. Pulatov and L. Kotthoff. ªOpening the Black Box: Automatically Char-
acterizing Software for Algorithm Selection (Student Abstract)º. In: Pro-

ceedings of the Thirty-Fourth Conference on Artificial Intelligence (AAAI’20).
2020 (cit. on p. 86).

[PT09] L. Pulina and A. Tacchella. ªA Self-Adaptive Multi-Engine Solver for Quanti-
fied Boolean Formulasº. In: Constraints (2009) (cit. on p. 20).

[Ric76] J. R. Rice. ªThe Algorithm Selection Problemº. In: Advances in Computers

(1976) (cit. on pp. 1, 2, 13, 14).

[RH09] M. Roberts and A. Howe. ªLearning from Planner Performanceº. In: Artificial

Intelligence (2009) (cit. on p. 57).

[RHF07] M. Roberts, A. Howe, and L. Flom. ªLearned Models of Performance for
Many Plannersº. In: ICAPS: Workshop AI Planning and Learning. 2007 (cit.
on p. 31).

[Rok09] L. Rokach. ªCollective-Agreement-Based Pruning of Ensemblesº. In: Compu-

tational Statistics & Data Analysis (2009) (cit. on p. 146).

[RdS12] A. L. D. Rossi, A. C. P. L. F. de Carvalho, and C. Soares. ªMeta-learning for
Periodic Algorithm Selection in Time-Changing Dataº. In: Proceedings of the

Brazilian Symposium on Neural Networks. 2012 (cit. on p. 130).

214 Bibliography

[Ruh+23] T. Ruhkopf, A. Mohan, D. Deng., A. Tornede, F. Hutter, and M. Lindauer.
ªMASIF: Meta-learned Algorithm Selection using Implicit Fidelity Infor-
mationº. In: Transactions on Machine Learning Research (2023) (cit. on
p. 174).

[Rus+18] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen. ªA Tutorial
on Thompson Samplingº. In: Foundations and Trends in Machine Learning

(2018) (cit. on p. 116).

[Saa00] D. G. Saari. ªThe Mathematics of Voting: Democratic Symmetryº. In: Economist

(2000) (cit. on p. 145).

[Sas+22] R. Sass, E. Bergman, A. Biedenkapp, F. Hutter, and M. Lindauer. ªDeepCAVE:
An Interactive Analysis Tool for Automated Machine Learningº. In: ICML:

Workshop on Adaptive Experimental Design and Active Learning in the Real

World (ReALML’22). 2022 (cit. on p. 24).

[SH18] D. Schäfer and E. Hüllermeier. ªDyad Ranking Using Plackett-Luce Models
Based on Joint Feature Representationsº. In: Machine Learning (2018) (cit.
on pp. 68, 70).

[Sch90] R. E. Schapire. ªThe Strength of Weak Learnabilityº. In: Machine Learning

(1990) (cit. on pp. 142, 147).

[Sch+22] E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier, and
K. Tierney. ªA Survey of Methods for Automated Algorithm Configurationº.
In: Journal of Artificial Intelligence Research (2022) (cit. on pp. 2, 22, 62).

[SH79] J. Schmee and J.G. Hahn. ªA Simple Method for Regression Analysis with
Censored Dataº. In: Technometrics (1979) (cit. on pp. 91, 101±103, 105,
106, 228).

[Sch15] J. Schmidhuber. ªDeep Learning in Neural Networks: An Overviewº. In:
Neural Networks (2015) (cit. on p. 54).

[Sch82] P.J. Schoemaker. ªThe Expected Utility Model: Its Variations, Purposes,
Evidence and Limitationsº. In: Journal of Economic Literature (1982) (cit.
on p. 96).

[SS01] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, 2001 (cit. on p. 112).

[Scu10] D. Sculley. ªCombined Regression and Rankingº. In: The 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD’10).
2010 (cit. on pp. 34, 172).

[Sei+20] M. Seiler, J. Pohl, J. Bossek, P. Kerschke, and H. Trautmann. ªDeep Learning
as a Competitive Feature-free Approach for Automated Algorithm Selection
on the Traveling Salesperson Problemº. In: Proceedings of the Sixteenth

International Conference on Parallel Problem Solving from Nature (PPSN’20).
2020 (cit. on pp. 55, 56).

Bibliography 215

[SL09] J. Sexton and P. Laake. ªStandard Errors for Bagged and Random Forest
Estimatorsº. In: Computational Statistics & Data Analysis (2009) (cit. on
p. 126).

[SH14] A. Shaker and E. Hüllermeier. ªSurvival Analysis on Data Streams: Analyz-
ing Temporal Events in Dynamically Changing Environmentsº. In: Interna-

tional Journal of Applied Mathematics and Computer Science (2014) (cit. on
p. 109).

[SS06] S. Shalev-Shwartz and Y. Singer. ªEfficient Learning of Label Ranking by
Soft Projections onto Polyhedraº. In: Journal of Machine Learning Research

(2006) (cit. on p. 34).

[Sie+19] S. Sievers, M. Katz, S. Sohrabi, H. Samulowitz, and P. Ferber. ªDeep Learn-
ing for Cost-Optimal Planning: Task-Dependent Planner Selectionº. In:
Proceedings of the Thirty-Third Conference on Artificial Intelligence (AAAI’19).
2019 (cit. on p. 56).

[SB17] D. Sigurdson and V. Bulitko. ªDeep Learning for Real-Time Heuristic Search
Algorithm Selectionº. In: Proceedings of the Thirteenth Artificial Intelligence

and Interactive Digital Entertainment Conference (AIIDE’17). 2017 (cit. on
p. 56).

[Ste+10] D. Stern, H. Samulowitz, R. Herbrich, T. Graepel, L. Pulina, and A. Tacchella.
ªCollaborative Expert Portfolio Managementº. In: Proceedings of the Twenty-

fourth AAAI Conference on Artificial Intelligence (AAAI’10). AAAI Press, 2010
(cit. on p. 40).

[SK09] X. Su and T. M. Khoshgoftaar. ªA Survey of Collaborative Filtering Tech-
niquesº. In: Advances in Artificial Intelligence (2009) (cit. on pp. 37±39).

[SB18] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 2018 (cit. on p. 126).

[Tho33] W. R. Thompson. ªOn the Likelihood that one Unknown Probability Exceeds
Another in View of the Evidence of Two Samplesº. In: Biometrika (1933)
(cit. on p. 116).

[Tho+13] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. ªAuto-WEKA:
Combined selection and hyperparameter optimization of classification algo-
rithmsº. In: The 19th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’13). 2013 (cit. on pp. 23, 62, 162).

[TM15] K. Tierney and Y. Malitsky. ªAn Algorithm Selection Benchmark of the Con-
tainer Pre-Marshalling Problemº. In: Proceedings of the Nineth International

Conference on Learning and Intelligent Optimization (LION’15). 2015 (cit. on
p. 1).

[TBH22] A. Tornede, V. Bengs, and E. Hüllermeier. ªMachine Learning for Online
Algorithm Selection under Censored Feedbackº. In: Proceedings of the Thirty-

Sixth Conference on Artificial Intelligence (AAAI’22). 2022 (cit. on pp. 5, 10,
110).

216 Bibliography

[Tor+22] A. Tornede, L. Gehring, T. Tornede, M. Wever, and E. Hüllermeier. ªAlgo-
rithm Selection on a Meta Levelº. In: Machine Learning (2022) (cit. on
pp. 5, 10, 137).

[TWH19] A. Tornede, M. Wever, and E. Hüllermeier. ªAlgorithm Selection as Rec-
ommendation: From Collaborative Filtering to Dyad Rankingº. In: 29th

Workshop Computational Intelligence. Young Author Award, 2019 (cit. on
pp. 4, 9, 61).

[TWH20a] A. Tornede, M. Wever, and E. Hüllermeier. ªExtreme Algorithm Selection
with Dyadic Feature Representationº. In: Proceedings of the International

Conference on Discovery Science (DS’20). 2020 (cit. on pp. 4, 9, 61).

[TWH20b] A. Tornede, M. Wever, and E. Hüllermeier. ªTowards Meta-Algorithm Se-
lectionº. In: NeurIPS: Workshop on Meta-Learning (MetaLearn’20). 2020
(cit. on pp. 5, 10, 137).

[Tor+20a] A. Tornede, M. Wever, S. Werner, F. Mohr, and E. Hüllermeier. ªRun2Survive:
A Decision-theoretic Approach to Algorithm Selection based on Survival
Analysisº. In: Proceedings of the 12th Asian Conference on Machine Learning

(ACML’20). 2020 (cit. on pp. 4, 9, 17, 47, 89, 115).

[Tor+23] T. Tornede, A. Tornede, L. Fehring, L. Gehring, H. Graf, J. Hanselle, F. Mohr,
and M. Wever. ªPyExperimenter: Easily Distribute Experiments and Track
Resultsº. In: Journal of Open Source Software (2023) (cit. on p. 177).

[Tor+21a] T. Tornede, A. Tornede, J. Hanselle, M. Wever, F. Mohr, and E. Hüllermeier.
ªTowards Green Automated Machine Learning: Status Quo and Future
Directionsº. In: arXiv:2111.05850 (2021) (cit. on p. 6).

[Tor+21b] T. Tornede, A. Tornede, M. Wever, and E. Hüllermeier. ªCoevolution of
Remaining Useful Lifetime Estimation Pipelines for Automated Predictive
Maintenanceº. In: Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO’21). 2021 (cit. on p. 24).

[Tor+20b] T. Tornede, A. Tornede, M. Wever, F. Mohr, and E. Hüllermeier. ªAutoML
for Predictive Maintenance: One Tool to RUL them Allº. In: ECML/PKDD:

Workshop on IoT Streams for Data-Driven Predictive Maintenance. 2020
(cit. on p. 24).

[TPV08] G. Tsoumakas, I. Partalas, and I. Vlahavas. ªA Taxonomy and Short Re-
view of Ensemble Selectionº. In: Workshop on Supervised and Unsupervised

Ensemble Methods and Their Applications. 2008 (cit. on pp. 167, 172).

[van+14] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. ªAlgorithm
Selection on Data Streamsº. In: Proceedings of the International Conference

on Discovery Science (DS’14). 2014 (cit. on p. 130).

[van+15] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. ªHaving a
Blast: Meta-Learning and Heterogeneous Ensembles for Data Streamsº.
In: Proceedings of the 15th IEEE International Conference on Data Mining

(ICDM’15). 2015 (cit. on p. 130).

Bibliography 217

[vDB18] S. van Rijn, C. Doerr, and T. Bäck. ªTowards an Adaptive CMA-ES Con-
figuratorº. In: Proceedings of the 15th International Conference on Parallel

Problem Solving from Nature (PPSN’18). 2018 (cit. on p. 130).

[Van18] J. Vanschoren. ªMeta-Learning: A Surveyº. In: arXiv:1810.03548 (2018)
(cit. on pp. 22, 53, 139).

[Van+13] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. ªOpenML: Networked
Science in Machine Learningº. In: SIGKDD Explorations (2013) (cit. on
pp. 72, 73).

[Van10] Joaquin Vanschoren. ªUnderstanding Machine Learning Performance with
Experiment Databasesº. PhD thesis. 2010 (cit. on p. 86).

[Vas+20] S. Vaswani, A. Mehrabian, A. Durand, and B. Kveton. ªOld Dog Learns New
Tricks: Randomized UCB for Bandit Problemsº. In: Proceedings of the 23rd

International Conference on Artificial Intelligence and Statistics (AISTATS’20).
2020 (cit. on p. 115).

[VG10] S. Vembu and T. Gärtner. ªLabel Ranking Algorithms: A Surveyº. In: Prefer-

ence Learning. Springer, 2010 (cit. on p. 32).

[VR17] G. Verbruggen and L. De Raedt. ªTowards automated relational data wran-
glingº. In: ECML-PKDD: Workshop on Automatic Selection, Configuration

and Composition of Machine Learning Algorithms (2017) (cit. on p. 23).

[VGB09] R. Vilalta, C. Giraud-Carrier, and P. Brazdil. ªMeta-Learning-Concepts and
Techniquesº. In: Data Mining and Knowledge Discovery Handbook. Springer,
2009 (cit. on p. 139).

[Wag+18] M. Wagner, M. Lindauer, M. Misir, S. Nallaperuma, and F. Hutter. ªA Case
Study of Algorithm Selection for the Traveling Thief Problemº. In: Journal

of Heuristics (2018) (cit. on p. 163).

[Wan+19] W. Wang, V. W. Zheng, H. Yu, and C. Miao. ªA Survey of Zero-Shot Learning:
Settings, Methods, and Applicationsº. In: ACM Transactions on Intelligent

Systems and Technology (2019) (cit. on p. 63).

[Wan+13] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, and T. Liu. ªA Theoretical Analysis
of NDCG Ranking Measuresº. In: Proceedings of the 26th Annual Conference

on Learning Theory (COLT’13). 2013 (cit. on pp. 41, 76).

[Wan+20] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. ªGeneralizing From a Few
Examples: A Survey on Few-Shot Learningº. In: ACM Computing Surveys

(2020) (cit. on p. 22).

[Wei+07] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. ªCOFI RANK - Maximum
Margin Matrix Factorization for Collaborative Rankingº. In: Proceedings

of the 20th International Conference on Advances in Neural Information

Processing Systems (NeurIPS’07). 2007 (cit. on pp. 40, 76).

[WKW16] K. Weiss, T. M. Khoshgoftaar, and D. Wang. ªA Survey of Transfer Learningº.
In: Journal of Big Data (2016) (cit. on pp. 22, 173).

218 Bibliography

[Wes16] S. Wessing. ªTowards a Systematic Development Process of Optimization
Methodsº. In: arXiv:1603.00001 (2016) (cit. on p. 174).

[Wev+19] M. Wever, F. Mohr, A. Tornede, and E. Hüllermeier. ªAutomating Multi-
Label Classification Extending ML-Planº. In: ICML: Workshop on Automated

Machine Learning. 2019 (cit. on p. 24).

[Wev+21] M. Wever, A. Tornede, F. Mohr, and E. Hüllermeier. ªAutoML for Multi-Label
Classification: Overview and Empirical Evaluationº. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence (2021) (cit. on p. 24).

[Whi+21] C. White, A. Zela, R. Ru, Y. Liu, and F. Hutter. ªHow Powerful Are Perfor-
mance Predictors in Neural Architecture Search?º In: Proceedings of the

34th International Conference on Advances in Neural Information Processing

Systems (NeurIPS’21). 2021 (cit. on p. 86).

[Wol92] D. H. Wolpert. ªStacked Generalizationº. In: Neural Networks (1992) (cit.
on pp. 40, 142).

[WM97] D. H. Wolpert and W. G. Macready. ªNo Free Lunch Theorems for Optimiza-
tionº. In: Evolutionary Computation (1997) (cit. on p. 1).

[Xu+11] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. ªHydra-MIP: Automated
Algorithm Configuration and Selection for Mixed Integer Programmingº. In:
IJCAI: International Workshop on Experimental Evaluation of Algorithms for

Solving Problems with Combinatorial Explosion. 2011 (cit. on pp. 29, 102).

[Xu+08] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. ªSATzilla: Portfolio-
Based Algorithm Selection for SATº. In: Journal of Artificial Intelligence

Research (2008) (cit. on pp. 31, 53, 91, 105, 112).

[Yan+19] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell. ªOBOE: Collaborative Filter-
ing for AutoML Model Selectionº. In: Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining (KDD’19).
2019 (cit. on p. 86).

[Zha+21] K. Zhao, S. Liu, J. X. Yu, and Y. Rong. ªTowards Feature-free TSP Solver
Selection: A Deep Learning Approachº. In: Proceedings of the International

Joint Conference on Neural Networks (IJCNN’21). 2021 (cit. on p. 56).

[Zöl+22] M. Zöller, W. Titov, Thomas T. Schlegel, and M. F. Huber. ªXAutoML: A
Visual Analytics Tool for Establishing Trust in Automated Machine Learningº.
In: arXiv:2202.11954 (2022) (cit. on p. 24).

Bibliography 219

List of Symbols

A Set of candidate algorithms

a Candidate algorithm

I Problem instance space

ID Set of training instances

i Problem instance

f i Problem instance features

f Problem instance feature function

fA
a Algorithm features

fA Algorithm feature function

l Loss function
pl Loss function surrogate

s Algorithm selector

S Set of algorithm selectors

ass Algorithm selector selector

agg Aggregation function

sonline Online algorithm selector

s˚ Oracle / VBS

s˚
online Online oracle

H Selection history space

h Selection history

C Cutoff / Timeout time

Run2Survive Approach to solve the AS problem based on sur-

vival analysis.

Run2SurviveExp Variant of Run2Survive.

Run2SurvivePAR10 Variant of Run2Survive.

Run2SurvivePoly/Log Variant of Run2Survive.

BlindUCB UCB variant ignoring censored data.

BClinUCB UCB variant with a bias correction.

L Loss function mapping runtimes to real-valued loss

degrees

221

List of Abbreviations

AS algorithm selection

OAS online algorithm selection

VBS virtual best solver

SBS single best solver

MetaAS meta algorithm selection

CNN convolutional neural network

RNN recurrent neural network

ELA exploratory landscape analysis

XAS extreme algorithm selection

CASH combined algorithm selection and hyperparameter optimization

AutoML automated machine learning

ML machine learning

NAS neural architecture search

AC algorithm configuration

HPO hyperparameter optimization

CF collaborative filtering

223

PL Plackett-Luce

SA survival analysis

ASlib algorithm selection library

MAB multi-armed bandits

CPMP container premarshalling problem

VRP vehicle routing problem

DAC dynamic algorithm configuration

RR ridge regression

SAT boolean satisfiability

TSP traveling salesperson

CSP constraint satisfaction problem

ASP answer set programming

BNSL bayesian network structured learning

SGI subgraph isomorphism

MAXSAT maximum satisfibility problem

MIP mixed integer programming

QBF quantified boolean formula

TTP traveling thief problem

CHF cumulative hazard function

224 List of Abbreviations

List of Figures

1.1 Highlight of the contributions of this thesis affecting various components

of algorithm selection (AS), color-coded, such that each main chapter

has its own color. 3

2.1 The online algorithm selection (OAS) problem is conducted over several

timesteps such that at each timestep an instance it P I arrives and an

algorithm at P A has to be selected by the online algorithm selector

sonline. Based on this selection, the selector receives feedback in the form

of a loss function evaluation lpit, atq, which is added to the history ht.

The elements making this setting differ from the standard offline AS

problem are depicted in blue. 17

2.2 Illustration of the notions algorithms (A), algorithm selectors (S) and

algorithm selector selectors. Algorithms solve instances of an algorithmic

problem, whereas algorithm selectors select a single algorithm from A

given an instance. Finally, algorithm selector selectors select one or

multiple algorithm selectors, which in turn each select an algorithm. To

arrive at a single algorithm to be returned at the end, an aggregation

function (not displayed here) aggregates the choices of the different

algorithm selectors. 19

2.3 Visualization of an example with two algorithms a1, a2, which always

return a valid solution upon termination. Algorithm a1 terminates with

a probability of 25% at 0.3 seconds and else it terminates at 20 seconds

(with probability 75%). In contrast, a2 terminates at 2 seconds with a

probability of 100%. When choosing an algorithm in the standard AS

setting according to its expected runtime, a2 would be the clear choice

as its expected runtime is 2 seconds compared to roughly 15 seconds of

a1. However, in algorithm scheduling, the optimal schedule would be to

run a1 for 0.3 seconds and then switch to a2 for another 2 seconds as the

expected runtime of that schedule would be 0.25 ¨ 0.3 ` 0.75 ¨ 2.3 “ 1.8

seconds and thus 0.2 seconds faster than just selecting a2. 22

2.4 Taxonomy of different algorithm selection solutions. 28

225

2.5 Decomposition of multi-target regression AS problem formulation, where

one regressor is learned separately for each algorithm. We assume

that instances are represented only by a single feature. The training

data points are depicted in different colors corresponding to different

algorithms, the learned models are represented by lines. The feature of

a new instance inew, for which a selection should be made, is depicted as

a pink dashed vertical line. Here, a2 would be chosen according to the

learned regressors as hmrpf inew
qa2

yields the lowest loss value. 31

2.6 General idea of clustering-based AS approaches where we assume in-

stances to be represented by two features. Training instances are clus-

tered according to their features by some clustering algorithm. Then, for

each cluster, a local surrogate loss function of any kind is learned. If a

new instance (depicted in magenta) arrives, the closest cluster (c3 in this

case) is determined and the presumably best algorithm according to the

local loss function surrogate associated with that cluster is selected. . . . 36

2.7 Example of a rating matrix with one row per training instance and a

column per algorithm. Each cell Ri,a contains the loss of algorithm a

on instance i according to a given loss function l. Missing values are

depicted by a ’?’. 38

2.8 Visualization of the matrix decomposition for model-based collaborative

filtering. The performance matrix R is decomposed into two matrices

U P R
|ID|ˆk and V P R

kˆ|A|. The latent features of an instance i are

given by U i,‚ P R
k and by V ‚,a P R

k for algorithm a. 39

2.9 This figure depicts the time until a solution is found of two complete

algorithms a1, a2 and an algorithm selector s. In this example, the

algorithm selector first computes features and then selects algorithm a1.

As one can see, the time until a solution is found associated with the

algorithm selector s is larger than simply running the selected algorithm

a1 due to the feature computation time and the time the actual selection

takes. Note that the latter is mostly negligible, but for visualization

purposes, we depicted it here much larger than it would normally be. . 44

2.10 Visualization of a heavy-tail runtime distribution (blue) in comparison

to an exponential runtime distribution (red). Roughly speaking, as the

name suggests, a heavy-tail distribution has a tail, which is heavier than

the one of the exponential distribution. 45

226 List of Figures

2.11 Visualization of the working principle underlying AS approaches based

on automated instance feature generation. In order to avoid comput-

ing instance features prior to performing algorithm selection, the raw

instance is transformed into a representation ri, such as an image, which

can be fed into a neural network. Based on the input representation of

the instance, the neural network outputs an algorithm a P A to be applied. 55

3.1 Exemplary visualization of the algorithm feature vector concept. Each

algorithm’s hyperparameters are encoded in the first part of the vector

whereas the last part contains an activation bit for each of the algorithms. 74

3.2 Performance of different approaches for different fill rates in terms of

Kendall’s τ . 81

3.3 Performance of different approaches for different fill rates in terms of

NDCG@3. 82

3.4 Performance of different approaches for different fill rates in terms of

NDCG@5. 82

3.5 Performance of different approaches for different fill rates in terms of

regret@1. 83

3.6 Performance of different approaches for different fill rates in terms of

regret@3. 83

3.7 This figure shows the relative improvement of the best approach for

various fill rates in terms of the corresponding metric from Table 3.4

over the AvgPerformance baseline. 84

4.1 This figure depicts how algorithms are often run in the context of AS.

Here, algorithms a2 and a3 terminate before the cutoff C and thus feature

a corresponding runtime. Algorithm a1, however, is forcefully terminated

as it did not finish until timestep C, and thus, C is only an upper bound

on its runtime yielding a right-censored datapoint. 90

4.2 Left: Survival functions of various algorithms on a problem instance.

Right: Truncated risk score difference between the runtime of algorithm

1 (yellow on the left) and algorithm 3 (green), i.e. E rTα
1 |T1 ď ts ´

E rTα
3 |T3 ď ts. Values below the zero line for the non-truncated score

indicate that E rTα
1 s ă E rTα

3 s and hence algorithm 1 is selected over al-

gorithm 3, which is only the case with higher risk aversion. Furthermore,

indeed larger values of α emphasize the tail of the distributions as the

difference is close to zero for small values of t. 97

List of Figures 227

4.3 Normalized PAR10 results of baselines for different ways of dealing with

censored data: labeling data points as proposed by Schmee and Hahn

[SH79] (S&H), with the PAR10 score (PAR10), the cutoff C (runtime),

or the corresponding data points are ignored. The best results for each

scenario are printed in bold. 103

4.4 Normalized PAR10 results where for each baseline the way of dealing

with censored data is selected according to the minimum median across

all examined scenarios. The best results for each scenario are printed in

bold whereas an overline indicates beating all baselines. 104

5.1 rePAR10 score of the LinUCB variants averaged over all scenarios plotted

against their average prediction time in seconds. 125

5.2 rePAR10 score of the Thompson sampling variants averaged over all

scenarios plotted against their average prediction time in seconds. . . . 126

5.3 Comparison of Degroote vs. this work in terms of rePAR10 score averaged

over all scenarios plotted against their average prediction time in seconds.127

5.4 Sensitivity analysis for parameter σ of approach bj_thompson_rev. . . . 132

5.5 Sensitivity analysis for parameter λ of approach bj_thompson_rev. . . . 133

5.6 Sensitivity analysis for parameter σ of approach rand_bclinucb_rev. . . . 134

5.7 Sensitivity analysis for parameter α of approach rand_bclinucb_rev. . . . 135

5.8 Sensitivity analysis for parameter rσ2 of approach rand_bclinucb_rev. . . 136

6.1 This figure depicts the general process of predicting/selecting an al-

gorithm for a given instance through a trained ensemble of algorithm

selectors s1, s2, s3. 141

6.2 This figure depicts the training process of a voting ensemble, where

each base algorithm selector is trained with the same training instances.

Ensemble heterogeneity is achieved by choosing a heterogeneous set of

algorithm selectors in advance. 146

6.3 This figure depicts the training process of a bagging ensemble consisting

of several instantiations of the same base algorithm selector trained on

bootstrapped versions of the original training data. 147

6.4 This figure depicts the training process of a boosting ensemble. Simi-

lar to bagging, the ensemble comprises several instances of the same

base algorithm selector. These are subsequently trained on differently

weighted versions of the training data. 148

228 List of Figures

6.5 This figure depicts the general idea behind a stacking ensemble. Each

ensemble member is trained with the same subset of training instances

and the remaining instances are augmented with the corresponding pre-

dictions of the trained selectors. Then, a meta-learner, i.e. an additional

algorithm selector, hagg is trained on this augmented data, which decides

on the algorithm to select. 149

6.6 Illustration of the different approaches w.r.t. the kind of mapping they

model, how this mapping is constructed, and how the required aggrega-

tion is obtained. 150

6.7 This figure shows the PAR10 scores of the oracle, AS-oracle, SBS and

SBAS on a subset of the ASlib v4.0 benchmark scenarios as bar charts. . 152

6.8 Mean/median performance in terms of nPAR10 (over all scenarios) of

all possible voting ensemble compositions as violin plots grouped by

the aggregation strategy being used. The dashed line indicates the

performance of the SBAS, the black dot indicates the performance of

the best composition w.r.t. the training performance, whereas the red

dot indicates the performance of the ensemble with all base algorithm

selectors. 154

6.9 Average / median nPAR10 performance over all scenarios of each bagging

ensemble with 10 instantiations of the corresponding base algorithm

selector and different aggregation functions. Moreover, the performance

of the corresponding base algorithm selector is shown. Once again, the

dashed line indicates the performance of the SBAS. 155

6.10 Average / median nPAR10 performance over all scenarios of each boost-

ing ensemble with 20 iterations and different aggregation functions.

Moreover, the performance of the corresponding base algorithm selector

is shown. Once again, the dashed line indicates the performance of the

SBAS. 157

6.11 Learning curves featuring training (orange) and testing (blue) nPAR10

scores of the SAMME boosting algorithm with SUNNY (top two) and

ISAC (bottom two) as a base selector on two scenarios. 158

6.12 This figure shows the average nPAR10 performance of stacking variants

where hagg, i.e. the meta-learner, is instantiated through different algo-

rithm selectors with and without a variance threshold feature selection

approaches. 159

6.13 This figure portrays a ranking over the features w.r.t. their feature impor-

tance values extracted from the multi-class classification meta-learner

(instantiated with a one-vs-all decomposition equipped with a random

forest classifier) for the QBF-2011 scenario. 160

List of Figures 229

A.1 Cumulative PAR10 regret wrt. oracle. 195

A.1 (Cont.) Cumulative PAR10 regret wrt. oracle. 196

230 List of Figures

List of Tables

2.1 Visual representation of some of the differences between automated

algorithm design problems in terms of the prediction target and the

algorithmic problem domain. 21

2.2 Tabular comparison of the requirements imposed upon good instance

features by this work and by Kerschke et al. [Ker+19]. 51

2.3 Overview of the requirements fulfilled by different kinds of instance

features. A ✓ symbol indicates that the requirement is well fulfilled, a

⃝ symbol indicates that it is somewhat fulfilled, whereas a ✗ symbol

indicates that the requirement is not fulfilled. We intentionally left the

assessment blank (?) for some requirements as this depends on the actual

approach configuration. 52

2.4 Overview and categorization of literature focusing on deep-learning-based

automated instance feature generation. 56

2.5 Scenarios and corresponding statistics contained in algorithm selection

library (ASlib). 59

3.1 Overview of the characteristics of the problem settings we distinguish. . . 63

3.2 The table shows the types of classifiers used to derive the set A. Addi-

tionally, the number of numerical hyperparameters (#num.P), categorical

hyperparameters (#cat.P), and instantiations (n) is shown. 73

3.3 Overview of the data provided to the approaches and their applicability to

the considered scenarios. Recall that f computes instance feature function

and fA computes algorithm features. An l in the label column indicates

that the approach is trained on the loss function evaluations, whereas a π

indicates that it is trained on rankings. 79

3.4 Results for the performance metrics Kendall’s tau (τ), NDCG@k (N@3,

N@5), and regret@k (R@1, R@3) for a varying number of performance

value pairs used for training. The best performing approach is highlighted

in bold, the second best is underlined, and significant improvements of

the best approach over others are denoted by ‚. 85

231

5.1 Average PAR10 scores and standard deviation of Thompson sampling

variants and Degroote, where the best value for each scenario is printed

in bold and the second best is underlined. 123

6.1 PAR10 scores of all base- and algorithm selector selectors normalized wrt.

the standard oracle and SBS. The result of the best approach is marked

in bold for each scenario. Moreover, for the meta-algorithm selectors the

values in brackets pa{bq indicate that the approach achieves a performance

better or equal to a base-approaches and is worse than b base-approaches. 153

6.2 nPAR10 values of the best ensemble variants and all base algorithm

selectors broken down to the different scenarios. The best result for each

scenario is marked in bold and a line above a result indicates beating all

base algorithm selectors. 161

6.3 Performance values (OPENML-WEKA-2017: accuracy, TTP-2016: TTP

objective function [Wag+18]) of the best ensemble variants and all base

algorithm selectors broken down to the respective scenarios. The best

result for each scenario is marked in bold and a line above a result

indicates beating all base algorithm selectors. 163

A.1 Average PAR10 scores (averaged over 10 seeds) and the corresponding

standard deviation of all discussed approach variants and the Degroote

approach. 194

232 List of Tables

List of Tables 233

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by

Ricardo Langner. The design of the Clean Thesis style is inspired by user guide

documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Cover
	Titlepage
	Abstract
	Acknowledgement
	Contents
	1 Introduction
	1.1 Content, Contributions and Preceding Publications
	1.2 Potential Impact of This Thesis
	1.2.1 Practicability of Algorithm Selection
	1.2.2 Research on Related Meta Algorithmic Problems

	1.3 Scope of This Thesis
	1.4 How to Read This Thesis
	1.5 Co-Author Contribution Statement
	1.6 Additional Publications

	2 Background
	2.1 Algorithm Selection Problem Variants
	2.1.1 The Instance-Specific Offline Algorithm Selection Problem
	2.1.2 The Online Instance-Specific Algorithm Selection Problem
	2.1.3 The Offline Instance-Specific Meta Algorithm Selection Problem
	2.1.4 Connection Between Problem Variants

	2.2 Distinction From Related Problems
	2.2.1 Algorithm Scheduling
	2.2.2 Meta Learning
	2.2.3 Algorithm Configuration
	2.2.4 Hyperparameter Optimization
	2.2.5 Automated Machine Learning

	2.3 Common Algorithm Selection Solutions
	2.3.1 Desired Properties of Surrogate Loss Functions
	2.3.2 Learning Surrogate Loss Functions

	2.4 Algorithm Selection Loss Functions for Common Algorithmic Problem Classes
	2.4.1 Algorithm Selection Loss Functions for Constraint Satisfaction Problems
	2.4.2 Algorithm Selection Loss Functions for Optimization Problems

	2.5 Instance Features
	2.5.1 Requirements for Instance Features
	2.5.2 Different Kinds of Instance Features
	2.5.3 Feature Preprocessing

	2.6 ASlib: The Algorithm Selection Library

	3 Extreme Algorithm Selection: Generalizing Across Algorithms
	3.1 From Standard to Extreme Algorithm Selection
	3.1.1 Differences to Existing Problem Settings

	3.2 Standard Algorithm Selection Solutions in the Context of XAS
	3.2.1 Ranking and Regression Solutions
	3.2.2 Classification Solutions
	3.2.3 Collaborative Filtering Solutions
	3.2.4 Clustering Solutions

	3.3 Exploiting a Dyadic Feature Representation
	3.3.1 Regression
	3.3.2 Ranking
	3.3.3 Advantages and Disadvantages of Dyadic Approaches

	3.4 Experimental Evaluation: A Case Study
	3.4.1 Benchmark Scenario
	3.4.2 Baselines
	3.4.3 Performance Metrics
	3.4.4 Experimental Setup
	3.4.5 Results

	3.5 Related Work
	3.6 Conclusion and Future Work

	4 Offline Algorithm Selection Under Censored Feedback
	4.1 The Problem of Censored Training Data
	4.1.1 Existing Solutions

	4.2 Survival Analysis and Random Survival Forests
	4.2.1 Basic Concepts of Survival Analysis
	4.2.2 Random Survival Forests

	4.3 Survival Analysis for Algorithm Selection
	4.3.1 Decision-Theoretic Algorithm Selection
	4.3.2 Risk-Averse Algorithm Selection

	4.4 Experimental Evaluation
	4.4.1 Experimental Setup
	4.4.2 Baselines
	4.4.3 Results

	4.5 Related Work
	4.6 Conclusion and Future Work

	5 Online Algorithm Selection Under Censored Feedback
	5.1 The OAS Problem From a Bandit Perspective
	5.1.1 Reformulation of the PARK
	5.1.2 OAS as a Bandit Problem

	5.2 Modeling Runtimes
	5.3 Stochastic Linear Bandits Approaches
	5.3.1 Imputation-Based Upper Confidence Bounds
	5.3.2 Randomization of Upper Confidence Bounds
	5.3.3 Bayesian Approach: Thompson Sampling

	5.4 Expected PAR10 Loss Minimization
	5.4.1 LinUCB Revisited
	5.4.2 Thompson Sampling Revisited

	5.5 Evaluation
	5.5.1 Ablation Study
	5.5.2 Comparison to Competitors
	5.5.3 Sensitivity Analysis

	5.6 Related Work
	5.7 Conclusion and Future Work

	6 Algorithm Selection on a Meta Level
	6.1 Considering Algorithm Selection on a Meta Level
	6.2 Selecting Single Algorithm Selectors Through Meta Learning
	6.2.1 Limits Imposed by Selecting a Single Algorithm Selector

	6.3 Constructing Ensembles of Algorithm Selectors
	6.3.1 Aggregation Strategies
	6.3.2 Voting
	6.3.3 Bagging
	6.3.4 Boosting
	6.3.5 Stacking
	6.3.6 Comparison of the Approaches

	6.4 Experimental Evaluation
	6.4.1 Experiment Setup
	6.4.2 Meta Learning for Selecting an Algorithm Selector
	6.4.3 Voting Ensembles
	6.4.4 Bagging Ensembles
	6.4.5 Boosting Ensembles
	6.4.6 Stacking
	6.4.7 Overall Comparison
	6.4.8 Discussion of Results

	6.5 Related Work
	6.6 Conclusion and Future Work

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Directions for Algorithm Selection
	7.2.1 Novel Settings
	7.2.2 Conceptual Approach Changes
	7.2.3 Benchmarking

	7.3 Thesis Contribution and Impact in a Nutshell

	A Appendix
	A.1 Details on the Experimental Evaluation of Chapter 3
	A.1.1 Hardware
	A.1.2 Software
	A.1.3 Hyperparameter Settings

	A.2 Details on the Experimental Evaluation of Chapter 4
	A.2.1 Hardware
	A.2.2 Software
	A.2.3 Hyperparameter Settings

	A.3 Details on the Experimental Evaluation of Chapter 5
	A.3.1 Hardware
	A.3.2 Software
	A.3.3 Hyperparameter Settings
	A.3.4 Caveat
	A.3.5 Detailed Performance Data

	A.4 Theoretical Additions to Chapter 5
	A.4.1 Deriving the Bias-Corrected Confidence Bounds
	A.4.2 Deriving the Refined Expected Loss Representation
	A.4.3 Pseudocode and Space-Complexity Details

	A.5 Details on the Experimental Evaluation of Chapter 6
	A.5.1 Hardware
	A.5.2 Software
	A.5.3 Hyperparameter Settings

	Full List of my Publications
	Bibliography
	List of Symbols
	List of Abbreviations
	List of Figures
	List of Tables
	Colophon

