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Abstract

Taxi-ridesharing systems are considered an important means for sustainable ur-

ban transport. Previous literature shows that introducing meeting points in

ridesharing, where customers are picked up and dropped off, increases its per-

formance. We consider an on-demand taxi-ridesharing system, where the focus

lies on the anticipatory assignment of customers to meeting points. We model

the problem as a sequential decision process with the objective to maximize the

distance saved through sharing. We suggest an anticipatory solution method for

the planning of trips which assigns passengers to meeting points. We evaluate

the suggested method on instances arising from real-world data and show that

it leads to a significant increase in saved distance, and consequently CO2 emis-

sions when compared to a benchmark. We analyze the problem’s and method’s

parameters and show that anticipatory methods further leverage the economical

and ecological advantages of ridesharing.
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1. Introduction

The share of the urban population is projected to grow from 50% in 2018

to 68% in 2050 which equals an estimated growth of 2.5 billion urban dwellers

(UN, 2019). This development is coupled with a growing demand for urban

mobility services (Miskolczi et al., 2021). Most traditional urban mobility solu-5

tions center around two extreme paradigms: mass public transport (e.g., buses,

trams, metro) and private transport (e.g. privately owned cars). Mass public

transport is considered to result in low costs for the customer and low carbon

emissions. However, the flexibility and comfort of these systems are rather low.

Private transport, on the other hand, is costly for customers but offers great10

flexibility and high comfort.

Taxi-ridesharing systems are designed to combine the advantages of both

these paradigms, i.e., high flexibility at low costs by consolidating multiple re-

quests into one shared taxi trip, for all passengers. Next to cost advantages

for individual customers, taxi-ridesharing systems significantly improve the effi-15

ciency of transportation systems, reducing traffic congestion, fuel consumption,

and air pollution (Hosni et al., 2014; Agatz et al., 2012; Santi et al., 2014). For

instance, in a case study in Shanghai, Yan et al. (2020) show that fuel consump-

tion can be reduced by 22.8% when taxi rides are consolidated into shared trips.

Furthermore, previous research has shown that the use of predefined meeting20

points, where customers are picked up and dropped off, can further decrease

the environmental impact of taxi-ridesharing systems (Stiglic et al., 2015), by

enabling more direct vehicle routes. Also, predefined meeting points increase

the sharing potential by leveraging customers’ spatial flexibility.

One of the main challenges to fully leveraging the benefits of taxi-ridesharing25

systems is dealing with their inherent dynamic nature. Since crucial informa-

tion, such as customer requests, is not predetermined but revealed over time, the

system needs to be able to react in real-time to incorporate new requests. How-

ever, previously developed methods in literature that account for this dynamism

often lack anticipatory methods. We contribute to the literature by introducing30
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an on-demand taxi-ridesharing problem with meeting points and presenting an

effective anticipatory policy that assigns passengers to meeting points using a

heuristic approach, as classical exact optimization methods cannot effectively

address the considered sequential decision processes for realistically sized in-

stances. The aim of our work is to investigate to what extent the anticipation35

of future customer requests further increases the effectiveness of taxi-ridesharing

systems. Furthermore, we quantify the impact of the proposed system in terms

of kilometers and CO2 saved, and derive suggestions that enable practitioners

to design more sustainable on-demand ridesharing systems.

Motivated by the practical example of Uber Express Pool (Stock, 2018), in40

our study, we consider an on-demand taxi-ridesharing system where customer

requests are assigned to a pair of meeting points (i.e., a pick-up and drop-off

point) with the aim of grouping multiple requests to one single shared trip.

Customers are required to walk to/from these meeting points to profit from

higher sharing potential which is coupled with lower costs for both customers45

and taxi providers as well as a lower environmental footprint. The proposed

system can be classified as on-demand as there are no fixed schedules involved

but a trip is only performed upon customer request. Furthermore, intermediate

stops during a taxi trip are not considered as they can lead to significant delays

for individual customers (due to detours and time to park) and consequently50

might lead to inconveniences for the customer (Barann et al., 2017) as well as for

the driver (Stiglic et al., 2015). A case study on Uber Express Pool has shown

that the cancellation rate of customers increases significantly when the time

between request and matching increases (Farronato et al., 2018). Therefore, we

propose an event-driven system where decisions need to be made immediately55

when a customer request enters the system, and consequently, customers are

responded to immediately.

Orchestrating the grouping of requests to trips between meeting points while

considering the spatial and temporal restrictions of the individual customers is

already a challenging task (Stiglic et al., 2015). The likelihood that two requests60

share the exact same origin and destination is very small. Thus, requesting
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customers have to be assigned to a convenient mutual pick-up point where the

shared trip starts as well as to a drop-off point where the trip ends. Pick-up

and drop-off points, both summarized under meeting points, connect multiple

riders with one driver, as all customers of a shared trip are assigned to the same65

meeting point pair. Customers are required to walk to/from those meeting

points, which should be in the close vicinity of the origin and destination for

each customer. In practice, this task is further complicated by the fact that

requests arrive dynamically over time and are unknown beforehand. Thus, when

deciding about a customer’s pair of meeting points, the other customers may not70

be known yet, but request a short time later. Thus, an anticipatory assignment

of requesting customers to meeting points is required considering the stochastic

arrivals of future requests. To the best of our knowledge and according to the

review of Wang et al. (2022), the idea and evaluation of anticipatory meeting

point assignments has not been studied in the literature yet.75

When assigning requests to meeting points, two aspects play a significant

role. Ideally, a customer should be sent to a “popular” meeting point where the

likelihood of shared trips with future requests is high. At the same time, the

system benefits from a flexible distribution of customers over meeting points

to increase the probability that a future request can be matched. This can80

be achieved by a broad coverage of meeting points, i.e., by reducing the re-

dundant overlap in the system. In this paper, we show how both aspects can

be considered in a joint manner and how anticipatory deciding about meeting

points can reduce taxi traffic significantly. To this end, we model the problem

as a sequential decision process where over time requests occur and are assigned85

to pairs of pick-up and drop-off points. We present a policy that combines a

lookahead on expected future demand to identify popular meeting points with a

policy-function approximation (Powell, 2011) minimizing redundant overlap in

the state to increase coverage. We test our policy on real-world taxi data from

New York City and derive the following insights:90

• Both parts, exploiting popularity and ensuring coverage perform very well
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by themselves, but work best when combined.

• In cases, where customers are rather flexible in their meeting points, en-

suring coverage becomes significantly more valuable.

• Meeting points and trip sharing work particularly well in areas with high95

request density. In low-density areas, anticipatory meeting point design

becomes crucial.

• Anticipatory assignments to meeting points and the resulting cost savings

come at the expense of an increase in required customer walking, at least,

in case a new trip is planned.100

The paper is outlined as follows. In Section 2, the related literature is

discussed. In Section 3, the problem is introduced and modeled. Our method

is presented in Section 4. In Section 5, the design of experiments is defined

followed by an evaluation of the policy in Section 6. The paper concludes with

a summary and an outlook in Section 7.105

2. Related work

Our work investigates the value of anticipatory policies for on-demand ride-

sharing with meeting points. In this paper, ridesharing means that multiple

passengers share the same ride (in some literature also referred to as ridepool-

ing). Work on this combination is rather limited, but there is work on the110

individual topics. In the following, we discuss the directly related work and

give summaries about the individual components: meeting points, on-demand

ridesharing and anticipatory methods in this context.

2.1. Meeting points in ridesharing

For a comprehensive review of literature on the optimization and categoriza-115

tion of ridesharing systems with walking paths and meeting points, we refer to

Wang et al. (2022). Incorporating meeting points in ridesharing has its origins
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in carpooling, a form of ridesharing characterized by recurring trips of com-

muters who typically meet at park-and-ride locations and office buildings to

form carpools (Kaan and Olinick, 2013). Stiglic et al. (2015) first apply the idea120

of meeting points to a system that provides automated matching between spon-

taneous drivers and passengers in an urban area. In their study, the authors

consider a pre-defined set of meeting points and show that such alternative

pick-up and drop-off points improve the performance of a ridesharing system

in terms of matching rate and saved driving distance. Several similar studies125

further prove the benefits of meeting points for different types of ridesharing

systems, such as peer-to-peer ridesharing, where private drivers with their own

itineraries pick up and drop off passengers in between (e.g., Li et al., 2018; Zhao

et al., 2018; Smet, 2021; Zuo et al., 2021), semi-flexible transit services, where

schedules and stops of buses are flexibly adjusted to demand (e.g. Tong et al.,130

2017; Zheng et al., 2019) and taxi-ridesharing, where multiple customer requests

are combined into one shared trip operated by drivers coordinated by a central

organization (Ham, 2021; Aliari and Haghani, 2022). In the latter systems, the

decision space consists of an assignment problem, in which groups of passengers

are matched and assigned to a vehicle, and a balancing problem, which decides135

how to move idle vehicles (Tafreshian et al., 2020).

Similarly to our approach, locations for meeting points are determined a

priori in the above mentioned papers (e.g. equidistantly distributed or at in-

tersections of the underlying road network), and the presented algorithms focus

on the assignment of requests to these meeting points. Other approaches use140

customer locations as meeting points and require all customers of a shared trip

to have the same pick-up and drop-off point (Barann et al., 2017; Qian et al.,

2017). The latter ensures a particularly high service level for customers, due to

the avoidance of detours (Barann et al., 2017) and consequently, we adopt this

feature to our approach and do not allow any intermediate stops and detours.145

The aforementioned literature exclusively considers static settings, i.e., all

requests are known in advance. Only a few approaches account for dynamically

arriving requests in a ridesharing system with meeting points, either through
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agent-based simulation models (like Engelhardt and Bogenberger, 2021; Lotze

et al., 2022) or centralized algorithms (like Lyu et al., 2019; Fielbaum et al.,150

2021; Tafreshian et al., 2020). The only one of these studies that anticipates

future customer requests is Tafreshian et al. (2021).

2.2. Dynamism in ridesharing

Since, as shown in the previous section, only a few studies on meeting points

pay attention to the dynamics typical for on-demand ridesharing, in this section,155

we explicitly address studies that focus on this key characteristic. The dynamic

nature, i.e., continuously arriving transportation requests over time, necessitates

algorithms capable of dealing with incomplete information, implying (i) short

run times for real-size instances to enable regular re-optimization and/or (ii)

anticipation of future requests that are not known beforehand but affect the160

overall solution quality. While the literature on the matching of customers

and assignment to vehicles focuses on the scalability of algorithms, anticipatory

methods are prominent in the literature on rebalancing of idle vehicles, which is

reflected in the current and the following section. For a more extensive review

of optimization for dynamic ridesharing and the need for agile algorithms, we165

refer to Agatz et al. (2012) and Martins et al. (2021).

Traditionally, researchers focus on a rolling horizon approach (also referred

to as batch mode) when it comes to dynamic planning problems. Here, a static

problem consisting of all known information within a planning horizon (batch)

is resolved at certain time intervals. This is done to gather as much information170

as possible before a decision is made. As one of the first, Agatz et al. (2011)

apply this approach to the bilateral matching of private drivers and passengers.

Prominent examples of matching algorithms for ridesharing of multiple passen-

gers are the approaches of Alonso-Mora et al. (2017), Wang et al. (2018) and

Simonetto et al. (2019). Fielbaum et al. (2021) modify the method proposed in175

Alonso-Mora et al. (2017) by introducing meeting points and some heuristics to

optimize the pick-up and drop-off points of each passenger.

Event-driven approaches are other means of dealing with constantly arriving
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information, for example, by performing a planning operation each time a new

customer request is received. Such algorithms have the advantage of providing180

customers with an immediate response. For example, the assignment of passen-

gers and vehicles is accelerated by algorithms based on a spatio-temporal index

of taxis (Ma et al., 2013), a smart data structure (Schreieck et al., 2016), or a

customer’s time-expanded feasible network (Masoud and Jayakrishnan, 2017).

Moreover, agent-based simulations are a popular means to investigate the per-185

formance of ridesharing systems Fagnant and Kockelman (2018); Lokhandwala

and Cai (2018); Vosooghi et al. (2019). Engelhardt and Bogenberger (2021)

and Lotze et al. (2022) use agent-based simulation models to study the merits

of meeting points in particular.

2.3. Anticipatory methods in ridesharing190

The anticipation of future events is considered in only a few studies on

ridesharing systems, where information on future demand is incorporated into

rolling-horizon approaches (e.g. Riley et al., 2020; Fielbaum et al., 2022) or

event-driven approaches (e.g. Van Engelen et al., 2018; Wang et al., 2020). Some

studies exclusively address either the assignment problem or the rebalancing195

problem. On the one hand, Qin et al. (2020) use reinforcement learning to

adaptively adjust the time interval of a rolling horizon approach for matching

participants in peer-to-peer ridesharing, which can be extended to a setting with

a ride-pooling component. Matching of multiple passenger requests and vehicles

through an integrated decomposition and approximate dynamic programming200

approach is presented by Yu and Shen (2019). On the other hand, Huang and

Peng (2018) and Lin et al. (2018) propose methods for the rebalancing of idle

vehicles based on demand predictions or reinforcement learning, respectively.

Vehicle dispatching is another popular application of anticipatory methods in

ridesharing, as shown by insertion algorithms based on lookaheads (Wei et al.,205

2017) or prediction of future demands Van Engelen et al. (2018); Wang et al.

(2020). Another example is the approach of Riley et al. (2020) that integrates a

machine-learning model to predict zone-to-zone demand over time, and a model
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predictive control optimization to relocate idle vehicles. Moreover, Haliem et al.

(2021) use a deep reinforcement learning approach for joint matching, pricing,210

and dispatching. Fielbaum et al. (2022) build on the approach of Alonso-Mora

et al. (2017) and develop anticipatory routing methods, which are characterized

by the fact that no historical data is required. These works show that the

incorporation of mechanisms for anticipatory decision-making is necessary to

realize the greater potential of ridesharing approaches.215

Our approach shares most features with the one by Tafreshian et al. (2021)

as, to the best of our knowledge, their study is the only one dealing with meeting

points in a dynamic ridesharing system anticipating future developments. Using

forecasts of future trips based on historical data the authors construct multiple

routes in an offline phase and choose among these routes in an online phase.220

Thus, their focus lies on shuttle dispatching, i.e., determining the order of served

meeting points. The assignment of requests to meeting points is assumed to

be given and is therefore not part of their decision. In contrast, the problem

we consider centers around the matching of multiple requests to shared trips as

well as their assignment to meeting points. In a sequential setting, our approach225

precedes that of Tafreshian et al. (2021) and complements it by an anticipatory

assignment of requests to meeting points.

2.4. Research gap

We put an emphasis on two specific characteristics of the body of literature:

Firstly, only a few studies have considered the incorporation of meeting points230

in stochastic dynamic ridesharing problems. Secondly, from a methodological

perspective, there is still a lack of anticipatory policies for request grouping in

on-demand ridesharing systems. Drawing on both observations, we contribute

to the literature by introducing an on-demand taxi-ridesharing problem with

meeting points which we formalize as a sequential decision process. Further-235

more, we present an effective anticipatory policy and analyze its behavior and

performance on scenarios deriving from real-world data.
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3. Model

In this section, we first introduce the reader to the problem. We then for-

malize the problem as a sequential decision process and present an illustrative240

example.

3.1. Problem description

We deal with a system where customer requests for a taxi are entering the

system dynamically. A request is characterized by the time it enters the system,

the desired starting time of the trip, origin/destination of the customer, and245

the number of passengers. Decisions are made about assigning a new request to

an existing trip (if possible) or planning a new trip. Furthermore, decisions are

made online, i.e., all incoming requests need to be responded to immediately, and

once a decision is implemented, it cannot be reversed. As an incoming request

marks a new decision epoch, we deal with an event-driven system. We consider250

a static set of meeting points that serve as pick-up and drop-off points to/from

which customers walk to their origins/destinations. We denote the combination

of pick-up and drop-off points as a meeting point pair, representing a complete

trip, since no intermediate stops are allowed. The objective is to maximize the

distance saved by sharing requests to previously planned trips, i.e., saving the255

distance which would have been traveled by vehicles in a traditional taxi system

where no sharing occurs, which is a common objective in literature (Barann

et al., 2017; Stiglic et al., 2015). Therefore, the objective represents a system

provider view, and customer-related factors, such as the distance customers walk

to the meeting points, are accounted for in hard constraints. Requests are only260

suitable to be shared with an existing trip if the following matching conditions

are fulfilled: Firstly, a certain level of temporal compatibility must be assured,

i.e., the departure of the existing trip may only differ up to δt minutes from

the planned departure time of the request. Secondly, spatial compatibility at

the origin and destination must be assured, i.e., there is a maximum accepted265

walking distance (further referred to as δd) from the origin to the pick-up point
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and from the drop-off point to the destination. Thirdly, the ratio of walking

time to/from the meeting points and the time it would take to walk directly

from origin to destination must be below limit ϕ, as otherwise, the customer will

likely walk directly. Lastly, enough vehicle capacity must be available. Assuming270

that all customers know that the taxi-ridesharing provider offers shared trips

at a lower cost than traditional taxi trips, which may involve walking to and

from the pick-up and drop-off points, we presume a sharing-willingness of 100%

of all customers. No special preferences of customers are taken into account

(e.g., regarding the preferred gender of fellow passengers, smokers, etc.) and275

a uniform average walking speed of all customers is assumed to calculate the

duration of walking distances from and to meeting points. Requests can be made

at any time of day via an online platform and the desired departure time is not

restricted. We assume an unlimited, homogeneous taxi fleet (with uniform seat

capacity). Taxi locations are neglected, and it is assumed that a taxi is always280

on time at the pick-up point. After all, the focus of our work lies not on routing,

but on matching customer requests with similar spatiotemporal characteristics

and their anticipatory assignment to meeting points through a central system.

3.2. Sequential decision process

In this subsection, we model the problem as a sequential decision process.285

Table 1 summarizes introduced tuples, parameters, and decision variables.

Decision Epochs. A decision epoch (also referred to as epoch), denoted by k =

1, . . . ,K, arises when the kth request enters the system. Thus, the number of

epochs K is a random variable.

States. The state of the system at decision epoch k is defined by the tuple290

Sk = (Ck, Jk) where Ck contains information about customer request k and Jk

is a set of planned trips which are not yet departed at epoch k:

• Variable Ck is a tuple containing (tk, sk, ak, bk, nk), where tk is the time

the request enters the system, sk is the time the customer wants to start
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Table 1: Sets, Parameters and Decision Variables

Notation Definition

State

Sk state at decision epoch k

Ck tuple containing information about the kth customer request

tk request time of kth request

sk time at which the kth request wants to start his/her trip

ak origin of the kth request

bk destination of the kth request

nk number of passengers of the kth request

Jk tuple of planned trips at decision epoch k

mk
j number of available seats of trip j at decision epoch k

Decisions

t′j time trip j departs

pj meeting point where trip j starts

dj meeting point where trip j ends

ykj binary decision variable indicating if the kth request is shared to trip j

xk decision tuple defined as (ykj , J
x
k )

Post-decision state

Sx
k post-decision State k

Jx
k updated tuple of not yet started planned trips after decision k

Reward

R(Sk, ykj) reward arising from implementing decision ykj in state Sk

Transition

ωk+1 stochastic exogenous information at decision epoch k + 1

Parameters

δd maximal walking distance to/from a meeting point

δt maximal time difference between desired departure time and

planned departure time

ϕ maximal allowed ratio between walking time to/from meeting

points and the time walking directly from origin to destination

κ initial capacity of a taxi
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the (in-vehicle) trip, ak is the origin of the travel, bk is the destination of295

the travel, and nk is the number of passengers of the kth customer request.

A travel of a customer is the process of walking to a pick-up point, the

taxi trip, and walking from a drop-off point to the final destination.

• The planned trips at epoch k that have not yet started are denoted by set

Jk. A trip j ∈ Jk is the taxi trip from a pick-up point to a drop-off point.300

A trip j ∈ Jk is defined by the tuple (t′j , pj , dj ,m
k
j ), where t′j is the time

the trip departs, pj is the pick-up point, dj is the drop-off point, and mk
j

is the number of available seats at trip j at decision epoch k. When the

first request C1 arrives in S1, J1 is an empty set.

Actions. The action in decision epoch k is denoted by xk and can take two305

forms: The planning of a new trip or sharing a request to a previously planned

trip. Therefore, the decision is described by the tuple xk = (ykj , J
x
k ), where ykj

indicates potential sharing and Jx
k is the updated set of planned trips. More

precisely, the decision variable ykj is described as follows:

ykj =

1, if kth request is shared with trip j

0, otherwise

Constraint (1) assures that a request is grouped to at most one trip.∑
j∈Jk

ykj ≤ 1 (1)

ykj ∈ {0, 1} ∀j ∈ Jk (2)
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Furthermore, if ykj = 1 the following constraints need to be fulfilled:

nk ≤ mk
j (3)

|sk − t′j | ≤ δt (4)

θ(ak, pj) ≤ δd (5)

θ(dj , bk) ≤ δd (6)

tk + θ(ak, pj) ≤ t′j (7)

θ(ak, pj) + θ(dj , bk)

θ(ak, bk)
≤ ϕ (8)

Constraint (3) assures enough car capacity. Constraint (4) assures that the310

time the travel of request in decision epoch k starts corresponds with the time

the trip j departs, where δt is the maximal allowed time difference between

desired departure time and planned departure time. Constraints (5) and (6)

limit the walking time from the travel origin to a pick-up point and from a

drop-off point to the travel destination to be at most δd respectively, where θ is315

a function which measures the walking time between two locations. Constraint

(7) assures that the customer has enough time to walk to the pick-up point (with

the request time tk as the earliest possible start of walking). Constraint (8) limits

the ratio between walking time to/from the meeting points and the time it would

take to walk from the origin to the destination directly, where ϕ is the maximal320

allowed ratio. This ratio should be in the range between 0 and 1 as a ratio

above 1 would mean that walking directly from the origin to the destination

would be shorter than walking required by using the taxi service. We note that

the ratio would remain unchanged if we would apply walking distances rather

than walking time.325

If the request in decision epoch k is not shared with any trip, i.e.,
∑

j∈Jk
ykj =

0, a new trip |Jk|+1 is planned and a corresponding new trip needs to be added

to Jk, leading to the post-decision tuple of planned trips Jx
k . Therefore, we need

to decide upon a pick-up point, p|Jk|+1 ∈ M and drop-off point, d|Jk|+1 ∈ M ,

where M is a set of predefined meeting points. Additionally, we need to decide330

upon a time the trip departs t′|Jk|+1. The decisions need to fulfill the following
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constraints:

|sk − t′|Jk|+1| ≤ δt (9)

θ(ak, p|Jk|+1) ≤ δd (10)

θ(d|Jk|+1, bk) ≤ δd (11)

tk + θ(ak, p|Jk|+1) ≤ t′|Jk|+1 (12)

θ(ak, p|Jk|+1) + θ(d|Jk|+1, bk)

θ(ak, bk)
≤ ϕ (13)

t′|Jk|+1 ∈ N (14)

p|Jk|+1, d|Jk|+1 ∈M (15)

Corresponding to Constraints (4)-(8) in the sharing decision, in case a new

trip is planned, Constraints (9)-(13) limit the time differences, maximal walking

time and ratio between walking to meeting points and walking directly from the335

origin to the destination. Constraint 14 states that the departure time of the trip

is a natural number (e.g., measured in seconds or minutes), and constraint (15)

states that our chosen pick-up and drop-off points must be in the set of pre-

defined meeting points M .

Rewards. The reward that arises from taking action xk in state Sk consists of340

the distance between the origin and destination of the request arising in decision

epoch k which is saved by sharing. It is the distance we save compared to a

traditional taxi system where no sharing is performed. Therefore, the following

reward function is defined:

R(Sk, ykj) =
∑
j∈Jk

θd(ak, bk) · ykj , (16)

where θd is the driving distance between two locations. The walking distance345

of customers is not included in the reward function but is only included as a

hard constraint i.e., we focus on the system from an operator’s perspective.
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This is done as our study has the intent to inform operators on the choice of the

system’s design and present solution methods for this purpose. We note that

other objectives (including the customer’s perspective) could be investigated in350

the future.

Transition. We deal with two types of transitions. Firstly, a deterministic en-

dogenous transition occurs when an action has been taken, leading to post-

decision state Sx
k = (Ck, J

x
k ). In case a new trip is planned, we extend the

tuple of planned trips at epoch k that have not yet started, i.e., Jk, by the355

tuple (t′|Jk|+1, p|Jk|+1, d|Jk|+1, κ − nk) where κ is the vehicle capacity (we as-

sume a homogeneous fleet of vehicles). Therefore, Jx
k is defined as the fol-

lowing: Jk ∪ (t′|Jk|+1, p|Jk|+1, d|Jk|+1, κ − nk). In case request k is shared with

another trip j, the remaining capacity of this trip is updated accordingly, i.e.,

mk,x
j = mk

j −nk. Secondly, a stochastic exogenous transition occurs when a new360

customer request k + 1 emerges. This transition is denoted by ωk+1 and leads

to a new state Sk+1 = (Ck+1, Jk+1) at time tk+1. Variable Ck+1 contains the

information of the new request. Variable Jk+1 is the (undeparted) subset of Jx
k

with t′j ≥ tk+1.

Objective. A solution for our problem is a decision policy π from the overall

set of policies Π. A policy π assigns an action Xπ
k (Sk) to each state Sk. The

optimal solution is a policy π∗ that maximizes the total expected reward over

all epochs:

π∗ = argmax
π∈Π

E
[ K∑
k=0

R(Sk, X
π
k (Sk))|S0

]
, (17)

when starting in initial state S0.365

3.3. Illustrative example

The problem at hand is illustrated in Figure 1. It shows the system in a state

Sk. Assuming a grid where the walking time per segment is 5 minutes, which is

equal to the maximal allowed walking time from the origin to the pick-up point

as well as from the drop-off point to the destination. Intersections represent370
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Figure 1: Illustrative example of the problem at hand

meeting points. At decision epoch k, a request for one passenger at 11:00 enters

the system and there are no planned trips in the system. We, therefore, need

to plan a new trip j for this request. There are multiple possibilities to assign

a pick-up and drop-off point to trip j. A simple policy would be to choose the

pick-up and drop-off point closest to the origin and destination of the request,375

respectively. Following this policy leads us to post-decision state Sx
k in which

the system solely contains the previously planned trip. In decision epoch k+1,

a request for two passengers who want to start the trip at 11:05 enters the

system. As the origin/destination are within walking distance to pick-up/drop-

off point of the trip planned in epoch k and the temporal difference is only380

5 minutes, we have the possibility to either share or plan a new trip for the

request. In case we share the request emerging in decision epoch k + 1 to trip

j, we save the distance from the origin (triangle) to destination (circle) of the

request emerging in k + 1, i.e., the distance which would have been traveled by

a vehicle in a traditional taxi system where no sharing occurs. Therefore, our385

objective value would increase by the respective saved distance.
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4. Solution method

In this section, we present the developed solution method for the problem

at hand. We first give a general motivation and overview and then describe the

components of our policy in detail.390

4.1. Overview

The problem has two different types of decisions. First, if sharing is possible

with more than one trip, which trip should the new request be shared with,

recalling that the reward of the decision is the same for all trips? Second,

if the request cannot be shared and a new trip needs to be generated, how395

to determine the meeting points the trip starts and ends? Since this second

question is significantly more complex, it is the focus of this work and we will

give an overview of our approach in the next paragraph. Furthermore, pretests

have shown that the sharing decision has a marginal impact on the objective

value compared to the new trip decision. Therefore, for the first question, we400

rely on a straightforward rule. In case sharing is possible with more than one

trip, the trip with the earliest departure time is selected. The idea behind this

rule is that the sharing potential of a trip decreases the closer the departure

time gets.

When determining meeting points for new trips, two aspects should be con-405

sidered, popularity and coverage. First, decisions should anticipate the expected

future demand, thus, the sharing potential for a meeting point pair. Popular

pairs that have a high number of expected “shareable” future requests, should

be preferred. For a request to be shareable, both meeting points need to be

eligible for this request. Even if the pick-up point might fit, a request cannot be410

shared if the drop-off point is too far away. This leads to another aspect to con-

sider, flexibility via a broader coverage of the service area. Assigning meeting

points whose walking reachability partially overlaps with the meeting points of

previously planned trips might reduce coverage and sharing potential. Avoiding

overlap may lead to a more flexible setup to accommodate future requests.415
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Both aspects play an important role when determining meeting points. Thus,

we propose a combined approach considering both popularity of meeting point

pairs and the avoidance of overlap. Furthermore, the importance of an indi-

vidual aspect might depend on the demand distribution. A focus on popularity

might be valuable if overall sharing opportunities are limited, e.g., if the demand420

is low or customers do not want to walk that far. In such cases, assigning the

most-popular pairs might increase the small probability of sharing. In other

cases, maintaining coverage by avoiding overlap may play a more important

role, e.g., if customers are more flexible or if the demand is high. To account for

the different importance of the two aspects, we present a weighted combination425

of both as our policy and the weight is shifting the focus between them. In the

following, we present the specific details of our method with examples. We start

with an overview of the general decision-making process in a decision state.

4.2. General decision making process

The general decision-making process is similar in all solution methods devel-430

oped and is described in Algorithm 1. In epoch k = 1, we start with an empty

set of planned trips J1 and initialize the reward to 0. In each epoch, we first

check if sharing a request is possible (GetSharingPartners). We denote the set

of possible sharing partners by Js
k , which is a subset of all trips planned before

epoch k, i.e., Jk. If Js
k is an empty set, i.e., no sharing is possible, a new trip435

needs to be planned with the NewTripPolicy which we further describe in the

next section. As our work focuses on the assignment of requests to meeting

points, in all policies, we set the time the new trip starts (t′|Jk|+1) to either the

desired departure time or the time needed to reach the chosen pick-up point,

i.e., max(sk, tk + θ(ak, p|Jk|+1)). We note that further research could investi-440

gate policies that optimize the departure time. We then add the new trip to the

set of planned trips Jk. If at least one sharing partner is found, we apply the

SharingPolicy which assigns the kth request to a trip j ∈ Js
k . Consequently, we

update the reward by adding the distance which the kth customer requested to

travel to the previous reward. Furthermore, we update the capacity of the cho-445
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sen trip by subtracting the requested passenger counter of the kth request, nk,

from the previous capacity. We continue with suggesting the NewTripPolicy.

Algorithm 1 General Procedure

Input: Empty set of PlannedTrips = J1, Initial decision epoch k = 1, Number

of decision epochs K, Reward = 0

1: while k ≤ K do

2: Js
k ← GetSharingPartners(Sk)

3: if Js
k is empty then

4: NewTrip← NewTripPolicy(Sk)

5: Jk+1 ← Jk ∪NewTrip

6: else

7: ChosenSharingTrip← SharingPolicy(Sk)

8: Reward← Reward+GetDistance(ak, bk)

9: UpdateCapacity(ChosenSharingTrip, nk)

10: end if

11: k ← k + 1

12: end while

4.3. Proposed policy

In this subsection, we will present the proposed new trip policy. The policy

combines a lookahead on expected future demand to identify popular meeting450

points with a policy-function approximation minimizing redundant overlap in

the state to increase coverage. We will first elaborate on each individual com-

ponent of the policy, which we denote as popularity and overlap components.

We then propose a way to combine these two individual components.

Popularity component. In this component of the policy, we first determine the455

time-dependent popularity of each meeting point pair M ×M , by looking at

historical data. For each hour of a day, all requests demanding a trip in that

hour, which would have been assignable (in terms of walking distance) to a
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meeting point pair, contribute to the popularity of the pair. Consequently, a

request can contribute to the popularity of multiple meeting point pairs. The460

meeting point pair with the highest popularity is chosen. The component is

visualized in Figure 2, where the system is in state Sk. There exists one pre-

viously planned trip but assuming that the maximal allowed walking distance

δd is equal to a segment length, we cannot assign the request to the trip due

to spatial incompatibility at the drop-off point. Thus, a new trip needs to be465

planned. Moreover, suppose that the thickness of the arrows is proportional

to the popularity of the meeting point pair. Therefore, we would choose the

leftmost meeting point pair (x1), as pick-up and drop-off point for the new trip.

Note that for reasons of clarity, not all possible new trips are visualized.

Figure 2: Popularity component. The dashed arrows represent feasible meeting point pairs,

with their thickness being proportional to the popularity of the pair.

Overlap component. The previously described component is not considering al-470

ready planned trips (Jk), when a new trip is being planned. This can lead to

inefficient plannings due to redundancies. Let us extend the example of Fig-

ure 2 with Figure 3. Taking action x1 would follow the popularity strategy but

leads to a high redundancy at the drop-off area because the walking reachability

overlaps, i.e., there is an area which is served by both points. Taking action475

x2 would increase the coverage and potentially lead to a higher future sharing

potential.

To account for this redundancy, we introduce theminimal overlap component
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Figure 3: Overlap component. The light blue circles represent the area from where the meeting

points of a trip are within walking distance. The dark blue area marks the overlap of covered

areas by different trips. The dashed arrows represent feasible meeting point pairs, with their

thickness being proportional to the popularity of the pair.

in which we do the following: In the first step, the component identifies all

meeting points within walking distance of both the desired departure and arrival480

locations of a new request to determine all feasible meeting point pairs. For

each of these pairs, it then checks if similar trips have already been planned. A

planned trip is considered similar if it satisfies all of the following conditions:

a) an overlap exists at the pick-up points,

b) an overlap exists at the drop-off points, and485

c) the trip starts in the time window [sk − δt, sk + δt].

In the second step, the overlap area between the meeting point pair and the

trips already planned is calculated. The meeting point pair leading to the lowest

overlap is chosen. Looking at Figure 3, the planned trip in action x1 leads to
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high redundancy, especially at the pick-up point. This redundancy is lower for490

the trip we plan in action x2. We would therefore prefer x2 over x1.

Weighted popularity & minimal overlap policy. As both previously described

components should be considered, we combine the popularity component with

the minimal overlap component. Let Ω be a vector that contains the overlap

area, and P a vector which contains the popularity score of each meeting point495

pair. We then first normalize both vectors. Max-min normalization is applied

to normalize P , which scales every entry in the range of [0, 1]:

Pnorm
i =

Pi −min(P )

max(P )−min(P )
∀i ∈ {1, . . . , |P |}. (18)

We adjust the max-min normalization for Ω to account for the fact that a

high overlap is undesirable. The following adjustment transforms high values

to low values and vice versa:500

Ωnorm
i =

max(Ω)− Ωi

max(Ω)−min(Ω)
∀i ∈ {1, . . . , |Ω|} (19)

The property of normalized values being in the range of [0, 1] is maintained.

We then calculate the fitness Fi for each meeting point pair i where α ∈ [0, 1]

is a weighting parameter between the two components:

Fi = α · Ωnorm
i + (1− α) · Pnorm

i ∀i ∈ {1, . . . , |Ω| = |P |}. (20)

When α = 0, only the popularity component is applied. When α = 1, only

the minimal overlap components is applied. The meeting point pair with the505

highest fitness is chosen. In case of a tie, the meeting point pair with higher

popularity is chosen. In the rare case that this comparison also leads to a tie, the

meeting point pair which leads to the lowest walking distance for the customer

is chosen. A visual summary of the two components and the weighted policy

is given in Figure 4. As previously, the thickness of the arrows is proportional510

to the popularity of their meeting point pair. The proposed policy therefore

chooses the meeting point pair which leads to an intermediate level of overlap
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and has an intermediate level of popularity (x3). This keeps the high likelihood

of a popular matching, but leads to a broader coverage of the service area.

Figure 4: Policy combining popularity and overlap components. The light blue circles repre-

sent the area from where the meeting points of a trip are within walking distance. The dark

blue area marks the overlap of covered areas by different trips. The dashed arrows represent

feasible meeting point pairs, with their thickness being proportional to the popularity of the

pair.

5. Experimental design515

In this section, we present the data and system settings which are used to

create several scenarios to analyze the performance of our policies presented in

Section 4. To do so, we apply the nearest-meeting point policy, i.e., a policy

without anticipation, which serves as a benchmark policy (see Engelhardt and

Bogenberger, 2021).520

5.1. System settings & scenarios

We draw on taxi data collected in New-York city (NYC City Taxi & Limou-

sine Commission: TLC, 2017). The dataset is widely used in studies on taxi

systems (see e.g. Barann et al., 2017) and represents a traditional taxi sys-

tem where no sharing occurs. The data includes, among other things, the ori-525

gin/destination and the number of passengers of taxi trips as well as the time
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the trips started. We extend the data by adding a request time to each trip.

The period between the request time and the time the customer wished to start

his/her trip is called the lead time. To generate the lead time, we draw from

a uniform distribution. We vary the upper limit of the lead time distribution.530

The chosen values are presented at the end of this subsection.

For the popularity policy, we determine the popularity of meeting point pairs

with data from the first two weeks of September 2015 and test the policies on

the last two weeks of September and the first week of October, resulting in 21

test instances. The walking speed is set to 5.1 km/h, which is (roughly) the535

average normal walking speed of people (Bohannon and Andrews, 2011). As a

distance measure, we apply the Haversine distance. Furthermore, we consider a

base scenario plus an analysis, where we have parameters that we vary to study

the system’s sensitivity: Firstly, the meeting point density, i.e., the distance be-

tween meeting points. We automatically create an equidistant grid of meeting540

points with an interval of 600 meters in longitudinal as well as latitudinal di-

rections. We exclude meeting points that are located in major parks, industrial

areas, or water areas. Even though this might lead to meeting points located

in inaccessible areas, such as buildings, the automatic creation is done as the

manual identification of thousands of meeting points is beyond the scope of this545

study (with an interval of 600 meters, 2306 meeting points have been created).

Secondly, we vary the maximum walking time from the customer’s origin to

a pick-up point and from a drop-off point to the destination of the customer.

Thirdly, the geographical area of customer requests is varied. Fourthly, we vary

the volume of requests by filtering out customer requests at random. Further,550

we vary the vehicle capacity κ, the maximal allowed ratio between walking to

meeting points and walking directly from origin to destination (ϕ), and the

difference between requested trip starting times and the actual trip departure

times, i.e., δt. In the last scenario, we slightly adjust the problem presented

in Section 3, by combining the walking time from/to meeting points instead of555

regarding them separately. I.e., we replace Constraints (5) and (6) as well as

(10) and (11), by single constraints that sum up the walking times to and from
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meeting points (with 2 · δd on the right-hand side instead of δd).

In the base scenario, the following values are applied: The meeting point

density is set to 600 meters (as visualized in Figure 5), the maximum walking560

time is set to 450 seconds and we do not restrict the geographical area. Further-

more, we set the volume to 75% to simulate a lower demand volume for such a

taxi-ridesharing system compared to traditional taxi-ridesharing systems where

no sharing occurs and consider a homogeneous vehicle fleet with a capacity of

4 seats. Moreover, ϕ and δt are set to 0.25 and 300 seconds, respectively.565

Figure 5: Created meeting points with a distance of 600 meters

For our analysis, we vary the parameters as follows. In the high and low

meeting point (MP) density scenarios, a meeting point distance of 400 and 800

meters is applied, respectively. In the low walking and high walking scenarios,

the maximal allowed walking time is set to 300 and 600 seconds. The low volume

scenario considers a volume of 50% and the high volume scenario a volume of570

100%. In the low car capacity and high car capacity scenario, a vehicle capacity

of 2 and 8 is assumed. The lower lead time limit is set to 300 seconds, and

we vary the upper lead time (recall that we draw from a uniform distribution).
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In the low lead time scenario, the upper limit is set to 900 seconds and in the

high lead time scenario the upper limit is set to 3600 seconds. Moreover, we575

consider a scenario solely with requests from and to Manhattan and one where

only requests are considered which are neither starting nor ending in Manhattan.

This is done to perform analyses on cases with different spatiotemporal densities

of customer requests, as around 80% of requests do start or end in Manhattan,

while Manhattan only makes up for around 7.5% of the total New-York city580

land area. Further, in the low ratio and high ratio phi is set to 0.125 and 0.5.

In the low time difference and high time difference scenarios, δt is set to 150

and 450 seconds, respectively. Lastly, in the walking combined scenario, walking

to/from meeting points is combined and not regarded individually, as explained

above. A summary of the scenario settings is to be found in Table 2.585
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5.2. Benchmark policies

The main focus of this paper is to describe how anticipatory meeting point

assignments can be achieved and how it changes decision making and the per-

formance of the system. To allow this analysis, we compare our method with

a non-anticipatory, practically-inspired benchmark policy, the nearest-meeting590

point policy, which is also used as benchmark in other studies (Engelhardt and

Bogenberger, 2021). We assume that the sharing part of the policy remains the

same, i.e., we always share when possible and we choose the trip which possesses

the earliest departure time. However, when a request enters a system that can-

not be shared, the nearest meeting points from the origin and destination serve595

as pick-up and drop-off point, respectively. In contrast to our proposed method,

the nearest-meeting point policy is non-anticipatory, as it neglects customer re-

quests that might arrive in the future and further, it also does not make use of

information on trips that have already been planned but have not yet started.

Besides this policy, we also test the two components of the policy on their own600

by setting α = 0 and α = 1, respectively.

6. Policy evaluation and analysis

In this section, we evaluate and analyze the policy proposed in Section 4.

Firstly, we compare the objective values and decisions made when we apply the

popularity and overlap components individually, i.e., when α = 0 and α = 1.605

Secondly, we determine the optimal value of α of the policy and interpret this

value for each scenario. Thirdly, with the optimal value of α in the previous

step, we compare customers’ walking distances for different scenarios.

6.1. Method analysis

In this section, we investigate the performance of our method and its indi-610

vidual components for the base case and the scenarios.
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Figure 6: Role of α in base scenario

Objective value. Figure 6 shows the objective value for the base scenario, i.e.,

the relative saved distance compared to the benchmark policy (nearest meeting

point policy) in percentage for all tested values of α.

We observe that our policy outperforms the non-anticipatory benchmark re-615

gardless of the value of α. Solely considering popularity leads to an improvement

of 15.75% compared to the benchmark policy while solely focusing on overlap

leads to an improvement of 9.52%. The best value of α lies at 0.3 and results

in an improvement of 16.68%. The plots for other scenarios are to be found in

Appendix A. These results let us infer the following: Firstly, anticipating future620

customer requests and ensuring sufficient coverage leads to significantly higher

savings compared to the non-anticipatory benchmark policy. Secondly, at least

for our setting, in combination, selecting popular meeting points should receive

a higher weight than avoidance of overlap.

Decision making. Next, we compare the decisions made when we only apply the625

popularity and overlap components individually. This is visualized for chosen

meeting points in Figure 7 where we consider the base scenario of one exemplary
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day. Each circle represents a meeting point where the meeting point is grey

if it was chosen more often when solely considering popularity (α = 0) and

black when it was chosen more often when solely considering overlap (α =630

1). For visual reasons, if a meeting point is chosen equally often, it is not

shown. We see that the number of selected customer origins is lower compared

to the number of selected customer destinations. Moreover, we can see that

when only considering popularity, more meeting points are chosen in busy areas

while more meeting points on the border of busy areas are chosen when solely635

applying the overlap component. This can be observed in lower and middle

Manhattan (encircled areas in Figure 7), whose areas at the riverbank are less

busy than the areas further away from the riverbank. Further, the focus on the

overlap component leads to more used meeting points, i.e., 657 and 1493 pick-

up and drop-off points used compared to 648 and 1480 when only focusing on640

popularity. These findings show that the developed policies work as expected:

A high focus on popularity leads to choosing meeting points in areas with high

request volumes more often while a high importance on reducing overlap leads to

a higher geographical coverage by a) more often selecting meeting points which

cover the border of busy areas and b) selecting more meeting points overall. In645

terms of algorithm efficiency, for a single request, the proposed policy returns

an action in milliseconds.

Scenario analysis. We now take a closer look at the individual scenarios. Table 3

shows the improvements of the extreme cases (α = 0 and α = 1) as well as the

best α value for every scenario. A table with the improvements for all values of650

α is to be found in Appendix A (Table 6).

First of all, we observe that our policy outperforms the benchmark for all

scenarios by a large margin. Thus, anticipatory meeting point assignments are

superior to non-anticipatory methods regardless of the instances tested. When

analyzing the weighting between the two components, we can see that the best655

value of α is consistently between 0.2 and 0.4. The overlap component plays a

more important role (α = 0.4) when the density of meeting points is high or
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(a) Pick-up points (b) Drop-off points

Figure 7: Selection frequency of meeting points depending on policy. Each meeting point’s

color indicates the policy under which it’s more frequently chosen: black for overlap-based

(α = 1) and grey for popularity-based policy (α = 0). The encircled area marks lower and

middle Manhattan.
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Table 3: Influence of α on improvement to benchmark policy

Scenario α = 0 α = 1 Best value Best α

Base Scenario 15.75 9.52 16.68 0.3

High MP density 18.16 10.54 19.45 0.4

Low MP density 7.10 1.89 7.18 0.2

High walking 12.80 8.98 14.01 0.4

Low walking 8.79 3.13 8.83 0.2

Manhattan 9.27 2.59 10.22 0.4

Not Manhattan 51.31 48.32 52.00 0.2

High volume 13.31 7.46 14.21 0.4

Low volume 19.41 12.64 20.45 0.3

High car capacity 14.95 8.81 15.89 0.3

Low car capacity 16.68 10.24 17.61 0.3

High lead time 15.77 9.79 16.69 0.3

Low lead time 16.03 5.93 16.84 0.3

Low ratio 19.54 12.85 20.27 0.3

High ratio 13.27 7.75 14.14 0.3

Low time difference 22.21 5.42 22.85 0.3

High time difference 13.03 8.71 13.94 0.4

Walking combined 8.99 7.73 10.87 0.4

Average 16.47 10.13 17.34 0.32
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when customers are allowed to walk more compared to the scenarios in which

the meeting point density is low or when the maximal walking distance is more

restricted (α = 0.2). A possible explanation might be the following: Choosing660

the meeting point pair with the highest popularity is the “safest” decision as

we expect most requests for the chosen meeting point pair. On the contrary,

choosing a meeting point pair with low overlap might increase coverage but

also result in more “risky” decisions as we do not consider popularity directly.

Increased spatial flexibility allows customers to reach a larger number of meeting665

points, and by doing so, reduces the risk of the decision made when focusing on

overlap. Furthermore, we can see from Table 3 that the overall improvement

is very high when we do not consider requests from or to highly-populated

Manhattan (more than 48% for all values of α). It is therefore even more

crucial to anticipate future customer requests when operating such a system in670

regions with a lower volume of customer requests, likely because a lot of sharing

happens automatically in highly popular areas. This hypothesis is supported by

the finding that the relative improvement of our policies is higher in scenarios

where the volume is low. Combining the two insights of coverage and expected

demand, it might be valuable for a provider to consider heterogeneous services675

for different areas of the city, e.g., by expecting higher walking flexibility in areas

with less demand. Besides, the improvement compared to the benchmark policy

is higher when the car capacity is low, likely, because, similar to low demand, the

sharing potential is relatively small, and smart decision-making becomes more

important. Furthermore, we can see that the best α is invariant throughout680

different upper lead time limits (= 0.2). However, solely applying the overlap

component leads to a bigger drop in the low lead time scenario. This is likely due

to more required customer walking which cannot always be satisfied when the

lead time is too low, i.e., customers do not have enough time to reach a meeting

point on time. Anticipatory meeting point assignment becomes increasingly685

important when the maximally allowed ratio between walking to/from meeting

points and walking directly and the time difference is low. An explanation

for this observation is that many requests cannot be satisfied which leads to
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a lower trip density and consequently, a smart allocation of requests to these

trips becomes more important. Lastly, when walking to/from meeting points is690

combined, a balance between the two extreme policies outperforms the α = 0

policy by a larger margin than for example in the base scenario (8.99% to 10.87%

compared with 15.75% to 16.68%). This can be explained by a larger spatial

flexibility of customers (similar to the high walking scenario).

6.2. Analysis of proposed policy695

In this section, we further analyze the value of our policy for different scenar-

ios. We split this analysis into two parts: Firstly, we present key performance

indicators (KPIs) that show the sharing potential of the proposed system. Sec-

ondly, we analyze the walking distance of customers. In most scenarios, in-

cluding the base scenario, 287,716 requests arrived per day on average. This700

number differs for the Manhattan (237,609), not Manhattan (15,078), low vol-

ume (192,094), and high volume (383,737) scenarios.

KPIs from operator and society perspective. Table 4 shows KPIs from the op-

erator’s perspective, i.e., savings that our proposed system attains when being

compared to a traditional taxi operation, where no sharing occurs. The respec-705

tive standard deviations of these values are presented in Appendix A (Table 7).

We can see that the proposed policy saves around 204,917 km of traveled dis-

tance per day in the base scenario compared to a traditional taxi operation and

26% of all requests can be shared with a previously planned trip. The amount of

saved CO2 can be evaluated by multiplying the average carbon emissions by the710

distance saved. Applying this formula, the proposed system saves about 35,000

kg of CO2 per day in the baseline scenario assuming average carbon emissions of

0.17 kg/km (Bruck et al., 2017). A higher meeting point density leads to more

distance that can be saved but also to a decrease in the share of saved requests.

This seems contradictory but can be explained by the fact that the system is715

adopted by more customers if the meeting points are close by (due to less walk-

ing and consequently satisfying the ratio Constraints 8/13). This is reflected
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by the percentage of requests that were served, i.e., requests that satisfied all

respective constraints, which is shown in the last column. In the high meeting

point density scenario, 69% of requests were served compared to 42% in the low720

meeting point density scenario. Looking at the low/high walking scenarios, we

can see that higher spatial flexibility of customers leads to an increase in saved

distance requests, i.e., about 4.5 km per request (109,236 km/24,479 requests)

are saved in the low walking scenario compared to 5.9 km per request (258,222

km/44,083 requests) saved in the high walking scenario. Another interesting725

observation is that not only the absolute saved distance and number of requests

are lower in the not Manhattan scenario, but also the relative numbers. Only

6% (5%) of total requested distance (requests) is saved in areas outside of Man-

hattan compared to 29% (26%) in Manhattan. This observation might suggest

that the economic benefits of using meeting points in a taxi-ridesharing system730

are higher in areas where the request density is high. This finding is supported

when looking at the low/high volume scenarios, as the relative share of saved

distance and requests is notably lower in the low-volume scenario. Furthermore,

a high car capacity saves more distance compared to the scenario with a low

car capacity (236,929 km vs. 182,866 km). Thus, when considering the imple-735

mentation of meeting points, providers may also consider using (some) vehicles

with higher capacities. Furthermore, we can see that the savings do not differ

much between the base scenario and the high lead time scenario. Nevertheless,

savings are lower when the lead time is low. Therefore, when the mean lead

time is above a certain limit, its effect diminishes. The service provider should740

therefore incentivize people to make requests not at the last minute. Moreover,

we can see that the chosen maximal ratio between walking to/from meeting

points and walking directly plays a major role in the share of requests that can

be served (26% vs. 81%) and the share of requests that can be saved (14%

vs. 39%). Consequently, a careful determination of this ratio is advised which745

could also be based on a customer’s individual preference. When walking to

and from meeting points is combined, a substantially higher distance is saved

(252,522 km) compared to the base scenario. This highlights the importance of

36



exploiting customers’ flexibility and the approach should be considered a viable

option for our proposed system. From Table 7 we can see that the results are750

quite robust, as the standard deviations for e.g., the presented ratios of Table 4

are small and do not exceed 0.02.

KPIs from customers’ perspective. From Table 4 we can see that customers

benefit from walking, leading to higher sharing probabilities and consequently,

lower fares could be charged. In the high walking scenario, 28% of all requests755

are being saved, which is notably more than in the low walking scenario, where

only 16% of all requests are being saved. Table 5 shows the average walking

distance per request for the benchmark policy and for our policy, respectively.

The standard deviations of these numbers are shown in Table 8 (Appendix A).

We note that in all our experiments, the distances to the pickup point and from760

the drop-off point were nearly identical.

In the table, two types of requests are distinguished. Columns new trip

represents requests that cannot be shared the moment they appear and thus

cause the scheduling of a new taxi trip. Columns saved trip are those requests

that are assigned to a previously scheduled trip. For the benchmark policy, a765

difference in walking distance between new trips and saved trips can be noticed.

New trip-customers need to walk only about 225 (451/2) meters to the pick-up

points and from drop-off to their destination in almost all scenarios. The walking

distance for saved trip-customers is in most cases between 1.25 and 1.75 times

higher than the walking distance for new trips for both pickup and drop-off. This770

difference can be expected since the new trips are assigned to the nearest meeting

points. Exceptions are scenarios in which either the density of the meeting points

or the walking distance of the customers is varied. For example, a higher density

of meeting points leads to a lower average walking distance, while a decrease in

meeting point density leads to an increase in walking distance. These effects are775

higher for new trip-customers than for saved trip-customers. This is as expected

as the benchmark policy assigns customers to the nearest meeting points in case

the request cannot be shared.
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Table 4: KPIs of our policy

Saved

distance (km)

Share of total

requested

distance

Saved

requests

Share of

saved

requests

Share of

served

requests

Base Scenario 204,917 0.26 38,457 0.25 0.54

High MP density 226,648 0.27 46,161 0.23 0.69

Low MP density 171,103 0.24 30,736 0.25 0.42

Low walking 109,236 0.14 24,479 0.16 0.53

High walking 258,222 0.33 44,083 0.28 0.54

Manhattan 116,994 0.29 30,993 0.26 0.49

Not Manhattan 4,231 0.06 361 0.05 0.49

Low volume 110,435 0.21 20,519 0.20 0.54

High volume 313,793 0.30 59,215 0.29 0.54

Low car capacity 182,866 0.25 34,319 0.24 0.50

High car capacity 236,929 0.27 44,430 0.26 0.59

Low lead time 186,630 0.24 35,690 0.23 0.54

High lead time 206,547 0.26 38,680 0.25 0.54

Low ratio 106,813 0.18 10,799 0.14 0.26

High ratio 312,191 0.35 91,170 0.39 0.81

Low time difference 140,940 0.18 26,071 0.17 0.54

High time difference 241,410 0.31 45,780 0.30 0.54

Walking combined 252,522 0.32 43,981 0.28 0.54

Average 187,913 0.25 36,996 0.24 0.53
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Table 5: Average walking distances (in meter)

benchmark policy proposed policy

new trip saved trip new trip saved trip

Base Scenario 451 662 632 670

High MP density 303 614 586 632

Low MP density 589 693 656 675

Low walking 446 509 477 496

High walking 452 776 727 779

Manhattan 444 650 589 628

Not Manhattan 457 696 684 811

Low volume 450 665 634 675

High volume 451 659 630 666

Low car capacity 451 664 632 670

High car capacity 451 661 631 669

Low lead time 451 652 635 654

High lead time 451 667 631 672

Low ratio 426 618 559 691

High ratio 482 689 754 727

Low time difference 451 636 637 678

High time difference 451 626 630 663

Walking combined 451 728 701 750

Average 450 659 635 678
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For our policy, overall walking distances are at a higher level compared to

those for the benchmark policy, at least for the new trip-customers. Looking780

at new trip-customers in the base scenario, the walking distance for our policy

is on average around 317 meters to the pickup point and 315 meters from the

drop off point. Therefore, customers are walking 181 meters longer to meeting

points when our policy is applied compared to the benchmark policy. This

can be expected as the nearest meeting point policy achieves minimum walking785

distances by definition in case a new trip is determined. At the same time,

the table shows that for saved trip-customers our policy leads to an increase in

walking distance of only 8 meters.

While the difference in trip distance between the two request types is less

for our policy than for the benchmark policy, the variation across scenarios is790

larger compared to the benchmark policy. The highest walking distances appear

in the high walking and high ratio as well as in the not Manhattan and walking

combined scenario. This shows, on the one hand, that spatial flexibility of

customers is largely exploited and, on the other hand, that a low spatial density

of requests also requires long walking distances. In comparison, the meeting795

point density has less influence on walking distances. The volume of requests as

well as car capacity, the maximally allowed time difference and lead time only

minimally affect the walking distance compared to the base scenario.

In essence, our policy achieves savings in trip sharing by increasing the walk-

ing distance for new trip-customers. While the increase in walking may come800

with slight inconvenience, it also increases the likelihood of sharing a trip, thus,

may reduce the cost of travel. This tradeoff should be carefully considered when

designing the meeting point system.

7. Conclusions

In this paper, we have shown how the anticipatory assignment of meeting805

points can reduce travel costs in taxi-ridesharing significantly. Furthermore,

we can conclude that such an anticipatory assignment is crucial to design more
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sustainable on-demand ridesharing systems. Based on real-world taxi data from

New York City, we showed that on average 204,917 km and 35,000 kg of CO2

can be saved per day in a base scenario, compared to a traditional taxi system810

with no sharing.

We considered a simplified version of the taxi-ridesharing problem in order

to analyze the meeting point assignment in adequate detail. This results in a

variety of future research directions. In our problem, no intermediate stops be-

tween the pick-up and the drop-off point of a shared trip are allowed in oder to815

maintain high service quality. However, future models could suspend this con-

straint to analyze the trade-off between less direct routes and reduced walking

times. Moreover, we assume that a sufficiently large fleet of taxis was available.

While this applies to a metropolitan area such as New York, in other cases, the

routing of the fleet may become an important optimization question. Future820

work may therefore combine our work with dynamic vehicle routing to ensure

the availability of vehicles throughout the city, incorporating real-time traffic

information and enabling changes in previous decisions in response to conges-

tion or new demands. In our experiments, we have also seen that the capacity of

vehicles plays a major role in the potential of taxi-ridesharing. However, since825

high-capacity vehicles are likely to be more expensive, future research may also

focus on the setup and dynamic allocation of the fleet, i.e., anticipatory posi-

tioning of empty vehicles, ideally having high-capacity vehicles available in areas

of higher sharing potential.

We have further shown that the distribution of meeting points and the ac-830

ceptable walking distance play an important role when sharing trips via meeting

points. This leads to two potential extensions. First, while we assume meeting

points are equidistantly distributed over the area, the planning of their location

may be another interesting avenue of research. Besides achieving good cover-

age of the service areas, aspects such as accessibility, visibility, or security may835

be considered. At the same time, decisions could be made about area-specific

services (and their prices), e.g., short walking distances in high-density areas

and longer walking distances in rather rural areas. Furthermore, walking could
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be compensated via (dynamic) pricing where customers might be nudged to-

wards longer walking when it can reduce travel costs significantly. Moreover,840

it is necessary to consider the personal compatibility of ridesharing passengers,

which may also be included in the pricing, for example. In our experiments,

we see that a substantially higher distance is saved when walking to and from

meeting points is combined rather than restricted individually. This highlights

the importance of exploiting customers’ flexibility and this approach should be845

considered a viable option for the proposed system.

Besides the potential problem extensions, there might also be potential in

extending the proposed methodology and transferring it to related problems.

We have shown that the components of our policy, exploiting popularity and

ensuring coverage, perform well by themselves and best when combined. While850

in our policy the weighting of both components is static, future work could

investigate a dynamic state-dependent weighting of the two components, e.g.,

based on the time of the day or the trips in the system. For example, it might be

beneficial to focus on popularity in the morning when demand is low and focus

on coverage in times when demand is high. Finally, anticipatory decision-making855

to allow consolidation is not limited to the problem of taxi-ridesharing but also

applies to other urban on-demand services such as instant or restaurant-meal

delivery where the careful balance between exploiting popularity and ensuring

coverage of the service area also applies. Thus, future research may transfer our

concepts to related types of on-demand transportation problems.860
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Appendices

A. Alpha in scenarios 1-8

In this section, we present graphs visualizing the influence of α on the objec-

tive value, compared to the benchmark policy for each scenario, i.e. scenarios

where we vary the meeting point density (Figure 8 and 9), walking distance1030

(Figure 10 and 11), geographical area (Figure 12 and 13), volume (Figure 14

and 15), car capacity (Figure 16 and 17), upper lead time (Figure 18, and 19),

the ratio between walking to/from meeting points and walking directly (Figure

20 and 21), the time difference (Figure 22 and 23) and the scenario in which

the walking distance from and to meeting points is combined (Figure 24). The1035

exact numbers corresponding to the above-mentioned figures are given in Table

6. Tables 7 and 8 give the standard deviations corresponding to Tables 4 and 5

in the main manuscript.

Figure 8: Role of alpha with grid density of 400 meters
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Figure 9: Role of alpha with grid density of 800 meters

Figure 10: Role of alpha with a maximal walking time of 5 minutes
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Figure 11: Role of alpha with a maximal walking time of 10 minutes

Figure 12: Role of alpha for requests in Manhattan
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Figure 13: Role of alpha for requests not in Manhattan

Figure 14: Role of alpha for a volume of 0.5
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Figure 15: Role of alpha for a volume of 1

Figure 16: Role of alpha for car capacity of 2
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Figure 17: Role of alpha for car capacity of 8

Figure 18: Role of alpha for an upper lead time of 900 seconds
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Figure 19: Role of alpha for an upper lead time of 3600 seconds

Figure 20: Role of alpha for a maximally allowed ratio of 0.125
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Figure 21: Role of alpha for a maximally allowed ratio of 0.5

Figure 22: Role of alpha for a maximally allowed time difference of 150 seconds
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Figure 23: Role of alpha for a maximally allowed time difference of 450 seconds

Figure 24: Role of alpha for if pick-up and drop-off walking are combined
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Table 7: Standard deviations of KPIs of our policy

Saved

distance (km)

Share of total

requested

distance

Saved

requests

Share of

saved

requests

Share of

served

requests

Base Scenario 20854.27 0.01 4863.99 0.01 0.02

High MP density 22410.31 0.01 5815.09 0.01 0.01

Low MP density 18654.80 0.02 4065.24 0.02 0.02

Low walking 12406.80 0.01 3417.69 0.01 0.02

High walking 25099.14 0.02 5309.16 0.01 0.02

Manhattan 20175.60 0.02 5101.38 0.02 0.02

Not Manhattan 1066.09 0.01 91.82 0.01 0.02

Low volume 11745.36 0.01 2704.18 0.01 0.02

High volume 30758.68 0.02 7313.11 0.01 0.02

Low car capacity 19064.74 0.02 4238.00 0.01 0.01

High car capacity 24329.34 0.02 5660.22 0.01 0.02

Low lead time 19348.06 0.01 4623.12 0.01 0.02

High lead time 20763.26 0.01 4844.81 0.01 0.02

Low ratio 15413.65 0.02 1349.33 0.02 0.02

High ratio 29367.90 0.02 10431.70 0.02 0.01

Low time difference 15729.16 0.01 3511.48 0.01 0.02

High time difference 23920.01 0.02 5625.60 0.02 0.02

Walking combined 24691.97 0.02 5358.48 0.01 0.02
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Table 8: Standard deviations of average walking distances (in meter)

benchmark policy proposed policy

new trip saved trip new trip saved trip

Base Scenario 2.5 7.5 5.9 10.6

High MP density 1.0 8.5 8.4 11.1

Low MP density 2.3 6.4 3.4 6.1

Low walking 2.1 4.4 2.7 4.3

High walking 2.6 12.9 9.6 14.8

Manhattan 3.1 8.7 6.7 8.5

Not Manhattan 3.4 23.7 17.7 29.5

Low volume 2.5 7.8 6.0 11.4

High volume 2.5 7.6 6.0 10.1

Low car capacity 2.5 7.9 6.1 10.8

High car capacity 2.4 7.6 5.8 10.6

Low lead time 2.5 7.4 6.2 9.8

High lead time 2.5 7.9 6.1 11.0

Low ratio 2.8 21.3 9.0 33.7

High ratio 1.0 9.0 4.0 7.9

Low time difference 2.6 7.4 6.3 11.2

High time difference 2.5 7.8 6.0 10.5

Combined 2.7 13.5 9.1 13.1
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