

Claus-Jochen Haake

Friedhelm Meyer auf der Heide

Marco Platzner

Henning Wachsmuth

Heike Wehrheim (Eds.)

On-The-Fly Computing

Individualized IT-services
in dynamic markets

Collaborative Research Centre 901
(2011 – 2023)

under the project number 160364472.

Band 412 der Verlagsschriftenreihe des Heinz Nixdorf Instituts

© Heinz Nixdorf Institut, Universität Paderborn – Paderborn – 2023

ISSN (Print): 2195-5239
ISSN (Online): 2365-4422
ISBN: 978-3-947647-31-6

Das Werk einschließlich seiner Teile ist urheberrechtlich geschützt. Jede Verwertung
außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung der
Herausgeber und des Verfassers unzulässig und strafbar. Das gilt insbesondere für Ver-
vielfältigung, Übersetzungen, Mikroverfilmungen, sowie die Einspeicherung und Verar-
beitung in elektronischen Systemen.

Als elektronische Version frei verfügbar über die Digitalen Sammlungen der Universi-
tätsbibliothek Paderborn.

Satz und Gestaltung: Till Knollmann

Hersteller: Hans Gieselmann Druck und Medienhaus GmbH & Co. KG
Bielefeld

Printed in Germany

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen National-
bibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de
abrufbar.

I

Preface

The provision of complex IT services is a challenging task that needs expertise from a
variety of areas. Today, a lot of support is provided, for example by architectural concepts
such as microservices, by novel implementation concepts such as container virtualization
for the separation, scaling, orchestration and management of resources, or by providers of
frameworks, pre-fabricated components or Cloud services. Nevertheless, combining such
supporting basic services to a desired IT service constitutes a challenge that goes beyond
the capabilities of even a very experienced, ambitious expert. Instead, a team of experts is
necessary in order to develop and deploy a complex IT service that comprises a multitude
of different components running on different platforms. One way out could be to (at least
partially) automate the process of configuring the IT service out of given basic services.
Examining this approach and demonstrating its feasibility is the topic of the Collaborative
Research Centre (CRC) 901 “On-The-Fly Computing”.

This monograph presents overviews and highlights of our research over the entire funding
period (July 2011 – June 2023) of the CRC 901. It consists of reports from the subprojects
as well as from our transfer projects. Note that we only report about projects that still run
during the third funding period. That is why Subprojects A2 (research is continued in C4)
and C3 (key researcher is retired) are not listed. Two transfer projects, T3 and T4, have
just started. Therefore, they are described just with short abstracts in this monograph, not
in great detail.

In our proposal for this CRC 901, written in 2011, we formulated a vision that describes
such an approach to the provision of IT services:

"Our vision of On-The-Fly Computing is that of IT services that are individually and
automatically configured and brought to execution from flexibly combinable services
traded on markets. At the same time, we aim to organize markets whose participants
maintain a vibrant market of services through appropriate entrepreneurial action."

Our research is based on the following structure of On-The-Fly Computing markets
(OTF markets henceforth) (see Figure 1): Customers (users) formulate their desired IT
services and send them to OTF providers who have expertise in the domain from which
the requested service originates. These providers compete for a contract with the customer
and create a configuration using the software and execution services offered in the market
by various types of service providers (supplier). Software services are offered by OTF
software providers and execution services – i.e., the timely execution of the configured
software – are offered by OTF compute centers. In this context, customers, OTF providers,
OTF software providers and OTF compute centers act as entrepreneurs in the OTF market.
Consequently, the realization of our vision necessitates developing methods for service
quality assurance and the protection of participating clients and providers, methods for the
target-oriented further development of markets, and methods to analyze the participants’
incentives and to support their interaction in dynamically changing markets.

The research agenda requires expertise from various areas of computer science and eco-
nomics. The CRC combines research foci such as computer networks and distributed
algorithms, security and cryptography, software engineering and verification, configuration

CRC 901 On-The-Fly Computing Preface

Figure 1: Structure of the OTF markets.

and machine learning, computer engineering and HPC, microeconomics and game theory,
and business computing and management.

Our CRC is divided into four project areas. Project Area A examines Algorithmic and
Economic Foundations for organizing large dynamic markets. Project Area B investigates
processes for Modeling, Composition and Quality Analysis of services and service con-
figurations, aiming at on-the-fly development of high-quality IT services. Project Area
C develops Reliable Execution Environments and Application Scenarios for On-The-Fly
Computing and is concerned with questions of the stability and security of markets, the
organization of highly heterogeneous OTF compute centers, and the provision of con-
figured services by those centers. In addition, it develops a framework for OTF market
platform architectures as well as their software-technical realization. Project Area T
bundles the transfer projects of our CRC, which provide a framework for joint research
by our CRC researchers and external partners and facilitate the exchange of results from
applied research back into our fundamental research.

Project Area A: Algorithmic and Economic Foundations for the Organization of
Large, Dynamic Markets.

The task of this project area is to support the interaction of the participants in the OTF
market from the technical side and to organize it from the economic side in such a way
that inefficiencies are avoided. To this end, we have a close look at characteristics of OTF
markets and take account of the dynamics and heterogeneity of the market participants,
possibilities for regulating their interaction, and the dis-/satisfaction collected through
valuation systems.

In Subproject A1: Possibilities and Limits of Local Strategies in Dynamic Networks,
we view the actors of our OTF markets as peers in a peer-to-peer system, where an

III

overlay network supports the interaction. We explore how local methods can be used to
adapt the overlay network to changes caused, for example, by a changing membership or
changing requirements of the applications. In order to address different types of changes,
we focus on self-stabilizing overlays, i.e., overlays that can recover from any state, scalable
distributed data structures, and hybrid networks, which are networks supporting different
communication modes. In such dynamic environments, we also study variants of resource
allocation problems such as resource leasing or heterogeneity of resources.

In Subproject A3: The Market for Services: Incentives, Algorithms, Implementation,
we analyze the OTF market for composite services from a microeconomic perspective
providing flexible ways to organize the interaction in a dynamic environment. In particular,
we use models and techniques from cooperative, non-cooperative and algorithmic game
theory. We mainly address the different forms of interaction including: a) bargaining
problems, when only few participants are involved, b) matching models as a form to design
the rules of interaction, and c) models of competition, which cover the interaction of
whole groups in the OTF market and allows an evaluation of the market outcome from the
perspective of social welfare.

In Subproject A4: Empirical Analysis in Markets for OTF Services, we analyze how
quality signals of customer reviews and certifications can reduce information asymmetries
and contribute to a well-functioning online market. We use data from existing electronic
markets and conduct laboratory or online experiments to identify factors that impact the
generation, provision or attributes of customer reviews, analyze the economic impact
of customer reviews, and examine design decisions for online review systems. We also
evaluate the effectiveness of certification beyond customer ratings to reveal true service
quality.

Project Area B: Modeling, Composition and Quality Analysis

This project area investigates description, composition, and analysis techniques for single
services and service compositions. The goal is to achieve a precise yet simple description
of services and requirements, which then allow an automatic configuration of service
compositions. The quality of the service composition in terms of functional as well as
non-functional requirements is achieved through innovative verification and certification
methods as well as machine learning techniques.

Subproject B1: Parameterized Service Specification aims to facilitate end-user participa-
tion in the configuration process by supporting natural language requirements specifications
without limiting expressiveness. This presented a number of challenges, such as the am-
biguity of natural language statements or the need for a successful interaction between
the customer and the software component during specification. For this reason, a chatbot
with extensive compensation and interaction capabilities was developed. New computa-
tional methods were brought up that encode requirement-specific information into natural
language explanations while adjusting the style to the customer’s proficiency.

Subproject B2: Configuration and Evaluation develops methods and algorithms for the
configuration and evaluation of software services in the OTF computing scenario. Starting
with formal specifications of functional requirements and the use of techniques from
automated planning for service composition, the focus continuously shifted toward the use
of machine learning (ML) methods for adapting and improving the service composition

CRC 901 On-The-Fly Computing Preface

process in a data-driven way. At the same time, machine learning served as an important
use case: Motivated by recent work on automated machine learning (AutoML), OTF
machine learning considers the provision of ML functionality, an important and practically
relevant type of service in the context of OTF markets.

Subproject B3: Composition Analysis in Uncertain Contexts researches analysis methods
for service compositions that evaluate the fulfilments of functional and non-functional
requirements. Throughout the lifetime of the CRC, Subproject B3 has investigated var-
ious requirements, ranging from functional requirements described by logical pre- and
postconditions or protocol specifications to non-functional requirements such as memory
consumption. As Subproject B3 has studied service compositions assembled by Subproject
B2, a specific focus in later periods has been on the analysis of compositions of machine
learning services.

In Subproject B4: Proof-Carrying Services, we investigate techniques for ensuring the
quality of services that are procured on the market and assembled on-the-fly, without
trusting the service provider. We aim at developing methods and concepts that allow
the consumer of a service to automatically, formally and quickly check if the service
possesses the desired properties, i.e., if it adheres to a given specification. To this end, we
developed various forms of analysis (for both hardware and software services) that provide
information about the validity of properties and that can help customers to check properties.
In the end, such analysis can be augmented to become full proof-carrying software or
hardware methods.

Project Area C: Reliable Execution Environments and Application Scenarios

This project area develops reliable execution environments for the On-The-Fly Computing
and is concerned with questions of the robustness and security of markets, the organization
of high-grade heterogeneous OTF Compute Centers and the execution of configured
services by such centers. In addition, we aim at developing an architecture framework for
OTF markets.

Subproject C1: Robustness and Security develops methods and techniques that ensure
high robustness and security in OTF markets. Concerning robustness, we consider informa-
tion systems as well as overlay networks. We are interested in methods that protect against
denial-of-service (DoS) attacks, even against insiders, and that mitigate the effects of such
attacks, i.e., information systems that remain available in the presence of DoS attacks. Con-
cerning security, we focus on techniques that guarantee strong authentication of data and
entities while also preserving user privacy. To achieve this we construct enhanced signature
schemes and anonymous credentials. Finally, we study secure and anonymous reputation
systems. Such systems help actors in OTF markets to find appropriate services.

In Subproject C2: On-The-Fly Compute Centers I: Heterogeneous Execution Environ-
ments, we investigate the execution of configured IT services in OTF compute centers with
heterogeneous compute nodes, which use CPUs, GPUs and FPGAs as compute resources.
Since each service can exist in multiple variants that differ in their non-functional properties
(e.g., latency, throughput, energy consumption) depending on the used computing and
communication resources, the operation of OTF compute centers needs to be considered
as a multi-objective optimization problem with constraints. We have developed models for

V

characterizing composed services and execution architectures and validated them with sim-
ulation but also with empirical evaluation in prototypical testbeds to quantify the benefits
of heterogeneous computing resources and networks.

In Subproject C4: On-The-Fly Compute Centers II: Execution of Composed Services
in Configurable Compute Centers, we are concerned with efficiently utilizing resources
within highly configurable compute centers. We consider services at different levels of
abstraction, from network services to data-parallel applications. In addition, we focus
on properties of composed services that are typical for OTF computing. This subproject
emphasizes the collaboration between theoretical and practical computer science on closely
related issues. We examine these issues by using various methods (theoretical analysis,
simulation, emulation, prototyping) on different levels of abstraction.

In Subproject C5: Architectural Management of OTF Computing Markets, we investigate
structural decisions and dynamic business behavior to design commercially successful
OTF computing markets. Based on empirical and conceptual research methods, we obtain
the following three major outcomes: First, we study literature and comparative markets
to derive an architectural framework for OTF computing markets. Second, we analyze
business model development methods, modeling languages, and software tools and develop
our own artifacts for creating ecosystem-oriented business models. Third, we conduct an
exploratory interview study with potential stakeholders to derive success factors of a future
OTF market.

Project Area T: Transfer Projects

Transfer projects serve to verify the results of the fundamental research carried out in
our CRC under practical conditions or to enable the development of prototypes. They
also provide a framework for joint research by our CRC researchers and external partners
and facilitate the exchange of results from applied research back into our fundamental
research.

In Transfer Project T1: Flexible Industrial Analytics on Reconfigurable Systems-on-Chip,
we deal with mapping industrial analytics functions to embedded heterogeneous compute
platforms. Industrial analytics is a current trend in automation and denotes capturing
and analyzing a multitude of measurements from machines and production processes to
create added value for future operation. Together with the application partner Weidmüller
Interface GmbH & Co. KG we work on reconfigurable System-on-Chip (rSoC) technology
with the goal to optimize implementations by assigning functions to software and hardware
at both design time and runtime. The challenges in using rSoC for industrial analytics
are to provide the required flexibility for system design while mastering the increasing
heterogeneity of rSoC platforms. The developed technology is demonstrated in case studies
such as condition monitoring for wind turbines and welding machines.

In Transfer Project T2: Practicable Cryptographic Techniques for Secure and Data-
efficient Customer Loyalty Systems, a new privacy-preserving customer loyalty system for
the retail sector is being developed and evaluated. In a customer loyalty system, customers
are rewarded for retail purchases. Often these systems award a certain number of points
for each euro spent. Currently implemented systems typically require customers to reveal
lots of private data such as their purchase history. Together with Diebold Nixdorf – a
service provider for the retail sector – and building upon research done in Subproject C1,

CRC 901 On-The-Fly Computing Preface

the transfer project realizes a prototype system to prove that privacy-preserving loyalty
systems can be built, to showcase the power of the cryptographic techniques, and to
evaluate whether such a system is suited for real-world use.

Transfer Project T3: Automated Risk Analysis with Respect to Open-source Dependencies
(Hektor) aims to research, develop and assess novel techniques to efficiently and precisely
detect and mitigate the inclusion of known-to-be-vulnerable third-party dependencies
within software compositions. The project seeks to build an open-source toolchain called
HEKTOR, which will support the secure development of applications and services at
a massive scale. In collaboration with SAP – a world leader for the development and
provision of cloud services for business-to-business applications – we aim to implement
and evaluate HEKTOR such that it is ready to be applied on a large scale and to a large
and diverse set of real-world software development projects. The focus of HEKTOR
lies especially on the detection of modified software dependencies that have been re-
compiled or re-bundled. In addition to the detection capabilities, HEKTOR will perform a
reachability analysis and determine whether the vulnerable code is executable at all. Based
on the results of the reachability analysis HEKTOR, can remove unreachable code and
therefore minimize the possible attack surface of the application.

Transfer Project T4: Online Reviews on B2B Platforms for Software Products builds
primarily on the results of fundamental research carried out under Subproject A4. We
aim to identify the underlying motives for writing online reviews in B2B markets. Unlike
online reviews in B2C markets, these motives are little understood and largely unexplored
for B2B markets. Given the systematic differences between B2C and B2B markets, and
based on the literature and anecdotal evidence, we posit that these motives are not the same.
We expect some motives known from B2C to be less significant or even non-existent in a
B2B context, and, above all, to uncover B2B-specific motives, too. In this transfer project,
we will characterize and distinguish between online reviews in these two types of markets,
and we use a multi-method approach to identify and validate the underlying motives for
writing B2B online reviews in software markets, specifically. For this reason, we have
teamed up with CELONIS, a global business software that acts as a service company. The
insights from this transfer project will enable B2B companies to elicit and exploit B2B
online reviews in a more targeted manner.

We thank the Deutsche Forschungsgemeinschaft (DFG) for generously funding our research
within the Collaborative Research Centre 901 “On-The-Fly Computing“ under the project
number 160364472 during the last 12 years.

June 2023
Claus-Jochen Haake

Friedhelm Meyer auf der Heide
Marco Platzner

Henning Wachsmuth
Heike Wehrheim

VII

Contents

Subproject A1: Capabilities and Limitations of Local Strategies in Dynamic
Networks . 1

Subproject A3: The Market for Services: Incentives, Algorithms, Implemen-
tation . 21

Subproject A4: Empirical Analysis in Markets for OTF Services 45

Subproject B1: Dialogue-Based Requirement Compensation and Style-
Adjusted Data-To-Text Generation . 65

Subproject B2: Configuration and Evaluation 85

Subproject B3: Composition Analysis in Unknown Contexts 105

Subproject B4: Verifying Software and Reconfigurable Hardware Services 125

Subproject C1: Robustness and Security . 145

Subproject C2: On-The-Fly Compute Centers I: Heterogeneous Execution
Environments . 165

Subproject C4: On-The-Fly Compute Centers II: Execution of Composed
Services in Configurable Compute Centers 183

Subproject C5: Architectural Management of OTF Computing Markets . . . 203

Transfer Project T1: Flexible Industrial Analytics on Reconfigurable Systems-
On-Chip . 225

Transfer Project T2: Practical Cryptographic Techniques for Secure and
Privacy-Preserving Customer Loyalty Systems 237

1

Subproject A1:

Capabilities and Limitations of Local Strategies in Dynamic Networks

Thorsten Götte1, Till Knollmann2, Friedhelm Meyer auf der Heide2,
Christian Scheideler1, Julian Werthmann1

1 Department of Computer Science, Paderborn University,
Paderborn, Germany

2 Heinz Nixdorf Institute and Department of Computer
Science, Paderborn University, Paderborn, Germany

1 Introduction

The On-The-Fly (OTF) market communication infrastructure plays a central role in our
envisioned OTF ecosystem. At its core, it must ensure that the participants can communi-
cate efficiently and reliably. During our efforts, we are facing many fundamental problems
and challenges: in particular because the size and the dynamics of these systems makes
it unrealistic to control and optimize them using classical centralized strategies executed
by an entity that has full information about the current state of the system. Therefore, we
explored the capabilities and limitations of local algorithms. An algorithm is local if each
node in a distributed system only needs to interact with its neighbors in order to solve a
given task. In large distributed systems, these neighborhoods continuously change, which
will also affect the communication.

An especially challenging aspect is that of external dynamics, i.e., the network changes
due to events that are outside of its control. External dynamics can happen for a variety of
reasons. Most notably, they can be caused by attacks, faults, or changes in the membership.
However, since the participants operate under ever changing economic or legal conditions,
they might re-evaluate their communication interests and therefore change their interaction
patterns.

Once the market reaches a certain size, centralized management approaches do not work
anymore for handling external dynamics efficiently. For instance, a centralized controller
that serves as an entry point to the market can quickly become a bottleneck or even a single
point of failure if many actors try to join at once. Further, a malicious controller could even
influence the market in its favor by denying certain providers from entering the market.
Hence, distributed and ideally local strategies are needed. The goal of these strategies
should not just be to maintain a fixed topology but to also adapt the topology to the needs
of the market participants.

One of the topics that we focused on was self-stabilizing overlay networks, i.e., networks
that can recover their topology from any weakly connected state. Many overlay networks

thgoette@mail.upb.de (Thorsten Götte), tillk@mail.upb.de (Till Knollmann), fmadh@upb.de (Friedhelm
Meyer auf der Heide), scheideler@upb.de (Christian Scheideler), jwerth@mail.upb.de (Julian Werthmann)

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

have been proposed before, among them pioneering works such as Chord, CAN, Pastry, and
Tapestry. However, these were not self-stabilizing. Later, various self-stabilizing overlay
networks have been proposed, including self-stabilizing lists, skip graphs, de Bruijn graphs
and Delaunay graphs (see, e.g., [FSS21] for an overview of stabilizing and non-stabilizing
networks). However, they do not necessarily ensure monotonic self-stabilization in a sense
that all parts of the network that are already in a desired state will remain in a desired
state during self-stabilization. Since this property is critical for a high availability, we
particularly focused on monotonically self-stabilizing overlay networks. An overview
of our solutions in given in Section 2.1. Monotone Searchability: A New Paradigm for
Self-stabilizing Algorithms.

Developing scalable solutions for distributed data structures was another topic of our
research. Many solutions have already been proposed for distributed hash tables before our
research, but no solutions were known before that scale well for inherently sequential data
structures such as stacks, queues, and heaps. We did not just come up with highly scalable
solutions that work under the very general asynchronous message passing model. We also
devised ones that ensure strict consistency requirements such as sequential consistency.
We describe our contributions in Section 2.2. Distributed Data Structures: Scalability
Meets Consistency.

During the last years we initiated the study of hybrid communication networks. These are
networks that support two different communication modes: a local mode that only allows
the nodes to exchange information with some fixed, predetermined neighborhood, and a
global mode where the nodes are able to change the network topology over time arbitrarily.
Hybrid networks have already been used in various contexts such as data centers in which
servers exchange information via some wired infrastructure as well as wireless or optical
communication. Another prominent example is that of hybrid multi-point VPNs, where
connections between their participants are established via leased lines as well as best-effort
connections via TCP/IP. Despite their importance in practice, theoretical research on hybrid
networks did not exist before our work. We particularly focused on solving graph problems
via hybrid networks, such as finding a minimum spanning tree or shortest paths in the
local network. We present more details of this research in Section 2.3. Hybrid Networks:
Exploiting the Heterogeneity of Modern Communication Infrastructures.

Besides our research about models of networks and their dynamics, we have investigated
resource allocation problems: Where should resources in a network be placed so that both
the cost for placement and access are minimized? A prominent example is the facility
location problem. In this problem, we are given a space with locations and distances
between them, a function defining the cost of opening a facility at each location, and
a sequence of requests at locations. Every request of the sequence must be served by
a facility open when the request arrives for a price of the distance between the request
and the respective facility. The goal is to open up facilities so as to minimize the total
opening cost plus the total cost for serving all requests. Our contributions extend previous
work in several directions: We developed efficient approximation algorithms in a dynamic
settings by distributed algorithms. Further, we considered the online case where requests
are not known in advance but instead arrive over time. An algorithm here needs to serve
arriving requests immediately while not knowing future ones. Among others, we have
analyzed leasing approaches, where resources are not bought and then exist “forever” but
can be leased for different time periods and for different prices. We have investigated

2. Main Contributions 3

the potential of allowing resources to be moved in the network (mobile resources), and
we have generalized facility location and other resource allocation problems to take the
heterogeneity of the resources into account. We describe our contribution to resource
allocation in Section 2.4. Online Allocation of Resources: Providing Services Without
Knowledge on Future Demands.

2 Main Contributions

In the following, we summarize the main contributions of our subproject.

2.1 Monotone Searchability: A New Paradigm for Self-Stabilizing Algorithms

Like any large-scale distributed system, our OTF market infrastructure will undergo
frequent changes during its operation. The exact nature of these changes can be manifold.
On the one hand, there are benign changes of the membership, e.g., participants joining or
leaving the market in a coordinated way, or changes in the communication structure. On
the other hand, there might also be actively harmful changes caused by malicious attackers.
These attacks could even be aided by insiders in the market that benefit from failures
of their competitors. For example, ill-intentioned service providers could try to exclude
their competitors from the composition algorithm. They can achieve this by attacking the
network in a way such that the corresponding composition requests do not reach other
providers anymore and their services are not considered. Therefore, a key requirement
for a robust OTF market infrastructure is resilience against these attacks as long as this
is possible and fast recovery once the attack is over. In this subproject, we focused on
solutions for fast recovery. As the global state of the system after a failure or attack might
be arbitrarily corrupted, our protocols must potentially be able to recover the infrastructure
from scratch. In particular, we want our system to reach a desired configuration from any
initial configuration in a finite number of steps. This paradigm is commonly referred to
as self-stabilization and has sparked a vast amount of research in the last 50 years. In his
seminal paper, Esger W. Dijkstra defined self-stabilization as follows:

Definition 1 (Self-stabilization (cf. [Dij74])) Let C be the set of all possible states of a
system. Then, a protocol is self-stabilizing w.r.t. to a set of legitimate states L ⊆ C if it
satisfies the following two properties.

• Convergence: starting from an arbitrary system state S 0 ∈ C, the protocol is
guaranteed to arrive at a state S t ∈ L in a finite number of steps.

• Closure: starting from a legitimate state the protocol remains in legitimate states
thereafter.

A self-stabilizing protocol is thus able to recover from transient faults regardless of their
nature. Moreover, a self-stabilizing protocol does not have to be initialized as it eventually
starts to behave correctly regardless of its initial state.

For our particular case, we model the system as dynamic graph, more precisely, as an
overlay network. Each node in the graph represents a market participant and each edge

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

represents a TCP/IP connection between the participants. We assume that nodes can
delegate their edges by sending the corresponding IP addresses. Thus, a state might be
modeled by a set of nodes V , their internal variables, and the messages in transit to each
node. A legitimate state might then include a particular graph topology or a family of
graph topologies. For each state S t, we can define a graph G(S t) := Gt := (V, Ee

t ∪ Ei
t) with

two kinds of edges. First, there are explicit edges Ee
t with (u, v) ∈ Ee

t if and only if u stores
a reference to v in its local memory in step t. Second, we call an edge (u, v) ∈ Ei

t implicit
if and only if there is a reference to v in the channel of u in step t (and will eventually be
received). Arguably, the most important operation in this model is the so-called delegation.
Here, a node sends of its stored references to another node and thereby creates a new
implicit edge.

It is well understood how one can build a plethora of useful network topologies in this
model by delegating the edges. This research area is commonly referred to topological self-
stabilization and it has seen a large number of impactful results in the last two decades. The
investigated topologies range from simple line graphs, over sophisticated topologies of low
degree and diameter, to spanners for a given metric space. A recent survey paper provides
a comprehensive overview of the state-of-the-art [FSS21] of the techniques and algorithms
for topological self-stabilization. Many of these protocols were developed during the first
funding period of the CRC and/or by key researchers of this subproject. However, the
specifics of these protocols are not the focus here. Instead, we consider a more structural
problem shared by all these protocols: None of them provide any guarantees about the
stabilization process (other than its eventual convergence). In particular, some desired
functionalities or properties that hold in some configuration S τ < L may be violated in
later state S τ′ with τ′ > τ that can be reached be the protocol. We argue that in many cases
this is not the desired behavior of a resilient protocol. Intuitively, we want a stabilization
protocol to improve in every time step, i.e., once parts of the system are operational, they
should remain operational to ensure the best possible service.

One example of such functionality is searching, i.e., the ability to route a message to a
specific node in the system. This is arguably one of the most frequently used functionality
of any distributed system and — in the context of the CRC — crucial for the composition
process. If we can find a node v ∈ V from another node w ∈ V in some configuration
S t, we want to be able to do so in all subsequent configurations. In this case, we say the
protocol satisfies monotone searchability

Seeking a formal definition of the problem, let us first clarify what we mean by searching.
We consider search requests, i.e. , search (v, destID) messages that are routed according
to a given routing protocol R, where v is the sender of the message and destID is the
identifier of a node we are looking for. Note that destID does not necessarily belong
to an existing node w but rather represents a virtual address that may or may not be
occupied by a node. A search request can either succeed or fail. We say it succeeds if
a search (v, destID) message reaches a node w with id(w) = destID. Otherwise, if the
message reaches some node u with id(u) , destID and cannot be forwarded anymore
according to R, the search request fails. We assume that nodes themselves initiate search ()
requests at will. Given these preliminary thoughts and definitions, we formally define
monotone searchability as follows:

Definition 2 (Monotone Searchability (cf. [SSS15])) We say a (self-stabilizing) proto-

2. Main Contributions 5

col P with legitimate states L satisfies monotonic searchability according to some routing
protocol R if it holds for any pair of nodes v,w that once a search (v, id(w)) request
(that is routed according to R) initiated at time t succeeds, any search (v, id(w)) request
initiated at a time t′ > t will succeed.

In the following, we will slightly abuse notation and refer to a tuple (P,L,R) of a self-
stabilizing protocol P, its set of legitimate states L, and a routing algorithm R simply as a
protocol. The research on monotone searchability went in two directions. First, the goal
was to find efficient protocols that satisfy monotone searchability given a concrete set of
legitimate states L and a concrete routing algorithm R. In this area, our researchers could
develop protocols for constructing a sorted list, a skip list, and quadtrees embedded in
the Euclidean plane. For more details on these protocols, we again refer to the aforemen-
tioned survey [FSS21]. The second (and arguably more interesting) direction considered
the question of which properties must be fulfilled by a protocol to support monotone
searchability, or, on a related note, which classes of protocols can be transformed into
protocols that satisfy monotone searchability. Surprisingly, in [SSS16] Setzer, Scheideler,
and Strothmann could show that a broad class of existing self-stabilizing protocols contain-
ing virtually all protocols developed in the CRC can be transformed to satisfy monotonic
searchability. In the remainder of this section, we will quickly outline their approach. We
begin by considering the two preconditions a protocol must fulfill to be suitable for the
transformation, a generic distance metric dist (·, ·) and the so-called mdl property.

Distance oracle dist (·, ·) : First, all nodes need to have access to a distance oracle
dist : V × V → R that takes two identifiers as input and output their distance in some
shortest path metric. Further, the nodes must be able to evaluate the oracle locally. While
this might sound like a hard and unhandy assumption at first, a closer look into existing
protocols reveals this is indeed fulfilled by almost all of them. For example, many
topologies contain a sorted list of its nodes. Assuming that identifiers are integers in
[1, n], one can simply define dist ((v,w)) := |v − w| and obtain an oracle with all desired
properties.

mdl property: The next property (or rather set of properties) is dubbed mdl property in
[SSS16]. It encapsulates four basic features that ensure that a protocol gets monotonically
closer to the legitimate states. More precisely, a deterministic protocol (P,L,R) fulfills the
mdl property if for any action a of the protocol it holds that:

1. An edge (u, v) ∈ EL will never be delegated by u ∈ V .

2. If an edge (u, v) < EL is delegated in step τ, it will be delegated in all steps τ′ > τ (if
u receives another reference of v).

3. Any stable edge that may be traversed by the search protocol (and any implicit edge
that results from it delegation) is only delegated to a node whose distance (in the
underlying distance metric) is closer to the target than the current node.

Informally speaking, the first two properties imply that the protocol monotonically con-
verges to its desired topology, since edges of the topology are always kept and edges
that are not part of the topology are obviated over time. The last property states that the
delegation of edges can only improve the routing. Further, if the legitimate states contain
implicit edges, we additionally require the following:

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

4. In every legitimate state, for any implicit edge (u, v), there are fixed cycle-free paths
(u = u1, u2, . . . , uk) such that ui sends the reference of v to ui+1, and uk has an explicit
edge (uk, v), i.e., the reference of v is forwarded along fixed paths until it finally fuses
with an existing reference.

This property implies that all implicit edges will eventually merge with explicit ones in
legitimate states. Note that the mdl property is generally not a severe restriction as almost
all topological self-stabilization algorithm fulfill it naturally.

Given all these two preconditions and constructions, the main result was the following:

Theorem 1 (Main Result of [SSS16]) Any self-stabilizing protocol (P,L,R) that satis-
fies the mdl property can be turned into a protocol (P′,L,R′) that satisfies monotone
searchability.

The actual construction of Setzer, Scheideler, and Strothmann has two building blocks.
First, they adapt the mechanisms how edges are delegated by the protocol. Second, they
introduce a generic routing protocol that exploits the distance metric and the mdl property.
Again, we give a brief overview over both approaches.

Safe delegations: Recall that our model does not assume FIFO delivery, so messages may
be received out of sequence. This creates problems if a node v forwards a reference to
another node and a search (·, ·) message that needs to be sent to that reference. With non-
FIFO delivery, the search (·, ·) message could overtake the reference and the search fails
although it worked when v still stored the reference. Thus, our protocols need to cope with
the non-FIFO message delivery. To address this issue, Setzer, Scheideler, and Strothmann
developed a set of extensions for the standard topology manipulation primitives. On a high
level, these extended primitives ensure that edges delegated away by some node v ∈ V
are not integral to the routing. Their key technique to achieve this is to warn neighboring
nodes that there will be a delegation and then wait for their acknowledgment that this
delegation is indeed safe. This, however, requires the use of sequence numbers to match
warnings and their acknowledgments. Thus, the system only stabilizes if the initial state
does not contain corrupted sequence numbers. Although this goes against the main idea
of self-stabilization, it is (in some sense) unavoidable. The authors proved that under
non-FIFO message delivery, no protocol could maintain monotone searchability from
arbitrary initial states. Therefore, either the initial set of states must be restricted or one
needs to assume FIFO delivery.

Generic routing: Finally, the authors need to account for the fact that the routing R
takes paths that are not guaranteed to persist. To cope with this problem, they introduce a
generic search protocol R′ that exploits the distance oracle dist (·, ·) and the mdl property.
Informally speaking, the message always takes the smallest possible step towards the target
with respect to dist (v,w) that it has seen so far. To this end, all identifiers seen along the
path are also stored in the message. If the search gets stuck in some node, it can use these
to backtrack and try another path.

2.2 Distributed Data Structures: Scalability Meets Consistency

Like in the sequential world, efficient distributed data structures are important in order
to realize efficient distributed applications. The most prominent type of distributed data

2. Main Contributions 7

structure is the distributed hash table (DHT). Many distributed data stores employ some
form of DHT for lookup. Important applications include file sharing (e.g., BitTorrent),
distributed file systems (e.g., PAST), publish-subscribe systems (e.g., SCRIBE), and
distributed databases (e.g., Apache Cassandra). However, other distributed forms of well-
known data structures, such as queues, stacks, and heaps, have received much less attention
although queues, for example, have a number of interesting applications as well. The main
challenge of coming up with scalable distributed solutions of queues, stacks, and heaps
is that they are inherently sequential, i.e., the challenge is to execute the operations in a
distributed fashion so that the outcome of the execution is consistent with a sequential
execution. We considered the following forms of consistency.

Definition 3 LetDS be a distributed data structure on a node set V and let OP be set of
requests issued to the data structure. Further, each request op(u, i) ∈ OP is associated
with a node u ∈ V and sequence number i ∈ N. Then, we say

1. DS is serializable if and only if there exists an ordering ≺ on the set OP so that the
distributed execution of all requests in OP on the data structure is equivalent to the
serial execution w.r.t. ≺.

2. DS is locally consistent if and only if there exists an ordering ≺ on the set S so that
for all u and i it holds that op(u, i) ≺ op(u, i + 1).

3. DS is sequentially consistent if and only if it is serializable and locally consistent
w.r.t. the same ordering.

Intuitively, local consistency means that for each node v, the requests issued by v have to
come up in ≺ in the order they were issued by that node. Thus, it is somewhat independent
of the data structure’s semantics and may always be achieved by a trivial lexicographic
order. The same cannot be said of serializability, which is greatly affected by the data
structure’s semantics and, moreover, is highly non-trivial to be achieved efficiently in a
distributed system.

For example, consider the classical (sequential) stack data structure where Push(i) adds
a data item i and Pop() returns the data item that was added last. In the distributed setting,
each node is able to invoke Push(i) and Pop(). The order relation ≺ must ensure that
the request can mapped to a sequential execution. In particular, this means that any Pop()
operation that returns i is preceded by a Push(i) operation (by some node). Moreover,
there must be no Push(j) operation with i , j ordered in between the operation (unless
there is another Pop() that removes j). A straw-man distributed solution could simply
see one node responsible for the stack and let it handle all Push(i) and Pop() requests.
However, this would hardly be scalable as a single node needs to process the entire system’s
traffic. Thus, an efficient solutions must carefully distribute the responsibilities for each
requests while still ensuring serializability. The feasibility greatly depends on the data
structure’s concrete semantics. Besides the stack, we were able to develop solutions for
several different well-known and established data structures, which at first glance might
seem inherently sequential. These are presented in the remainder of this chapter.

Distributed queue: A distributed queue can be used to come up with a unique ordering of
messages, transactions or jobs, and it can be used to realize fair work stealing since tasks
available in the system would be fetched in FIFO order. Other applications are distributed

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

mutual exclusion, distributed counting, or distributed implementations of synchronization
primitives. Server-based approaches of realizing a queue in a distributed system already
exist, such as Apache ActiveMQ, IBM MQ, or JMS queues. Many other implementations
of message and job queues can be found at http://queues.io/. However, none of these
implementations provides a queue that allows massively parallel accesses without requiring
powerful servers. The major problem of coming up with a fully distributed version of a
queue is that its semantics are inherently sequential. Nevertheless, we were able to come up
with a distributed protocol for a queue ensuring sequential consistency that fairly distributes
the communication and storage load among all members of the distributed system and
that can efficiently process even massive amounts of Enqueue() and Dequeue() requests.
Our protocol works in the asynchronous message passing model and can also handle
massive amounts of join and leave requests efficiently.

A distributed queue has to implement four operations: Enqueue(), Dequeue(), Join()
and Leave(). Enqueue() adds an element to the queue and Dequeue() removes an
element from the queue so that the FIFO requirement is satisfied. Join() allows a process
to enter the system while Leave() allows a process to leave the system.

We presented a distributed queue ensuring sequential consistency under the asynchronous
message passing model, which also ensures a high scalability. More precisely, when
assuming synchronous message passing, our Enqueue() and Dequeue() operations are
processed in O(log n) communication rounds w.h.p., where n is the number of nodes.
Furthermore, we show that we can process n Join() or n/2 Leave() operations in
O(log n) rounds, w.h.p. Through the use of a distributed hash table, our distributed queue
allocates its elements equally among all processes such that no process stores significantly
more elements than the rest [FSS18a]. In the arXiv version of our paper, we also showed
how to use the techniques for our distributed queue to come up with a highly scalable
distributed stack ensuring sequential consistency [FSS18b].

Distributed priority queue: We also presented a highly scalable distributed priority queue
(or heap). A distributed heap might be useful in scheduling, for example, where one
might insert jobs that have been assigned priorities and workers might pull these jobs from
the heap based on their priority. Another application for a distributed heap is distributed
sorting. A distributed heap supports the following operations:

• Insert(e,p(e)): Inserts the element e with priority p(e) into the heap.

• DeleteMin(): Retrieves the element with minimum priority from the heap or
returns ⊥ if the heap is empty.

• Join(): The node v issuing the operation wants to join the system.

• Leave(): The node v issuing the operation wants to leave the system.

We distinguished between settings that only allow a constant amount of priorities and
settings for arbitrary amounts and presented two novel distributed protocols for these
scenarios – Skeap and Seap. Both protocols support insertions and deletions of elements
in time O(log n) w.h.p., where n is the number of processes participating in the heap.
Furthermore, we provided some guarantees on the semantics, by having Skeap guarantee
sequential consistency and Seap guarantee serializability. For part of Seap, we obtained
a novel protocol KSelect for distributed k-selection that runs in O(log n) rounds w.h.p.
Both Skeap and Seap work in the asynchronous message passing model. To provide an

2. Main Contributions 9

additional feature we can handle join and leave requests of processes in time O(log n)
w.h.p. without violating the heap semantics or losing important data. Even though Seap
comes with slightly weaker semantics than Skeap, it only uses O(log n) bit messages for
its operations, while the message size in Skeap partially depends on the rate with which
processes generate new operations [FS19].

2.3 Hybrid Networks: Exploiting the Heterogeneity of Modern Communication
Infrastructures

In our study of hybrid networks, we consider systems with multiple modes of commu-
nication. Specifically, we allow our nodes to employ local communication with a fixed
set of neighbors and global communication with any node in the network. We find many
examples of such networks in the context of the CRC. Consider, for example, an execution
of a composed service. Since the composition consists of multiple services from multiple
providers that possibly have restrictions on where and how their services are initiated, it is
unlikely to be executed by single compute node at a single location. Rather, it involves
several servers at multiple compute centers at different geographical locations. Such a
setup may be seen as a hybrid network. A single server can easily access data stored by
servers in the same compute center as are they equipped with capable networking hardware.
These would be the local connections, which can be used for large data transfers. On the
other hand, large-scale data transmissions between different compute centers are possible
in principle, but much slower. Therefore, a connection with a server in another center can
be seen as a global connection. Due to their limitations, these global connections should
rather be used for metadata, control messages, or intermediate results. Moreover, there
are several avenues for hybrid networks beyond the scope of the CRC. For example, they
can also be motivated by the ability of modern smart phones to employ device-to-device
communication (local) as well as their internet connection (global). As the latter is usually
connected to a cost, we tend to impose harsher limits on the number of messages each
device is allowed to send via this connection in a given amount of time.

In our research, we focused on efficient algorithms for these hybrid networks that cleverly
exploit these different communication capabilities. In the remainder of this section, we
will present a more formal treatment of the model and give an overview of our and related
results.

The Hybrid communication model (cf. [AHK+20]): In the HYBRID communication
model, we consider a fixed set of nodes V with identifiers of length O(log n). Time is
synchronous, i.e., divided into rounds. At the beginning of a round, each node receives
messages sent to it in the last round. Afterwards it may perform an arbitrary amount of
local computation and then send messages to other nodes that will be delivered in the next
round. Specifically, these nodes can communicate in two modes and we parameterize the
model by the messaging capacities allowed in each of them. For the so-called local mode,
we are given a fixed set of edges and each node may send λ messages of size O(log n) to
each of its neighbors in every round of communication. For the so-called global mode, we
assume the nodes to be connected as a clique. However, each node may only send and
receive γ messages of size O(log n) in total in every round of communication.

Special non-hybrid cases of the HYBRID model are the LOCAL model (λ = ∞, γ = 0),

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

the CONGEST model (λ = O(1), γ = 0) and the node-capacitated clique (NCC, λ = 0,
γ = O(log n)). In some cases, a more restricted version of the model is studied, where
initially no global edges exist. In this case, each node may send any identifier of a node it
knows via a message to have the target node learn about the node in the message, thereby
establishing a global edge between them. This model of global communication is called
NCC0 for γ = O(log n). Sometimes λ and γ denote the amount of bits that are allowed to
be sent over local or global edges, respectively. Finally, we allow the edges of the HYBRID
model to be weighted by a weight function w assigning a natural numbered weight to each
of the local edges.

Hybrid shortest paths algorithms: An interesting branch of our research on hybrid
networks focused on the investigation of shortest paths algorithms. We initiated this
research with the paper Shortest Paths in a Hybrid Network model by Augustine et al.
([AHK+20]), where we studied how the addition of global edges affects the runtime of
SSSP and APSP compared to classical model. To this end, the very powerful LOCAL
model was picked for the local edges and the rather restrictive NCC was picked for the
global edges, i.e., λ = ∞ (though λ = n suffices for our algorithms) and γ = O(1).
The main contributions are presented in Table 1 for APSP and Table 2 for SSSP. We
want to specifically mention the APSP lower bound of Ω̃(

√
n) for Õ(

√
n)-approximations.

Additionally, we stress that the runtimes beat the non-hybrid lower bound of Ω(D) for
many graphs.

APSP Approx Weights Complexity Local Capacity
Exact X Õ(n2/3) O(n)
(1 + ε) - Õ(

√
n/ε) O(n)

3 X Õ(
√

n) O(n)
Õ(
√

n) - Ω̃(
√

n) ∞

Table 1: Overview of the APSP contributions of [AHK+20].

SSSP Approx Weights Complexity Local Capacity
Exact X Õ(

√
SPD) Õ(n2)

(1 + ε) X Õ(n1/3/ε6) Õ(n2/3ε6)
(1/ε)O(1/ε) X Õ(nε) O(1)

2O
(√

log n log log n
)

X 2O
(√

log n log log n
)

O(1)

Table 2: Overview of the SSSP contributions of [AHK+20].

In the paper Fast Hybrid Network Algorithms for Shortest Paths in Sparse Graphs by
Feldmann et al. ([FHS20]), we further study the SSSP problem in graphs with only a few
edges. Here, we parameterize the hybrid model with λ = O(1) and γ = O(log n), restricting
the local edges to the CONGEST model. Hence, both local and global is limited, resulting
in a more realistic setting. We present deterministic O(log n) time SSSP algorithms for
path graphs, cycle graphs, trees and pseudotrees (i.e., graphs with exactly one cycle).
Additionally, we present a randomized O(log n) time SSSP algorithm for cactus graphs
(i.e., graphs where any two cycles share at most one node) and a randomized O(log2 n)
time algorithm for any graph with at most n + O(n1/3) edges and arboricity O(log n) (cf.

2. Main Contributions 11

Table 3). As the lower bound for the CONGEST model is Ω(D), the logarithmic runtimes
correspond to an exponential speedup caused by the addition of global edges. In addition
to this, the paper presents many useful techniques for HYBRID algorithms such as multiple
aggregation techniques and a technique allowing the simulation of algorithms for the
well-established PRAM model.

SSSP Class Approx Weights Complexity
Path Graphs Exact X O(log n)
Cycle Graphs Exact X O(log n)
Trees Exact X O(log n)
Pseudotrees Exact X O(log n)
Cactus Graphs Exact X O(log n) w.h.p.
∗ 3 X O(log2 n) w.h.p.
∗: n + O(n1/3) edges and arboricity O(log n)

Table 3: Overview of the contributions of [FHS20].

In the paper Near-Shortest Path Routing in Hybrid Communication Networks by Coy et
al ([CCF+22]) and its successor paper [CCS+23], we shift our attention from SSSP to
routing. Specifically, we consider how we can construct routing tables and node labels of
size O(log n) that allow us to forward packets from a source to a target such that the path
taken is worse than the shortest path by a constant factor only. We restrict our research
on unit disk graphs (UDGs) that have nodes embedded in R2 and an edge between two
nodes iff their Euclidean distance is at most 1. To this end, we show how to transform any
routing scheme for grid graphs, i.e., graphs with nodes embedded in Z2 and edges between
nodes that have distance of 1, to a routing scheme for UDGs in constant time while only
losing a constant factor in the distances traveled. This allows us to present an exact routing
scheme for grid graphs and obtain the desired routing scheme for UDGs.

Resulting related work: Our research on shortest paths in the HYBRID model sparked
interesting research by other authors that has been published at established and competitive
conferences. In their paper Distance Computations in the Hybrid Network Model via
Oracle Simulations Censor-Hillel, Leitersdorf, and Polosukhin provide an exact weighted
shortest path algorithm that runs in Õ(n1/3) rounds, w.h.p. [CLP21]. To achieve this, they
exploit the ability of nodes with many local connections to distribute data much quicker
than nodes that are not as well connected. Specifically, their goal is to simulate oracles that
are able to receive deg(v) messages from each node v per simulated round. Note that this
would enable them to learn the entire graph, which is known to be difficult in HYBRID and
would therefore require a large overhead in runtime. Hence, they restrict the simulation
to a skeleton graph roughly representing the entire graph. This allows the simulation of
one round of oracle communication in Õ(n1/3) rounds, w.h.p. Further, the paper Routing
Schemes and Distance Oracles in the Hybrid Model by Schneider and Kuhn [KS22]
investigated the lower bounds in the HYBRID model. The authors show that constant
factor approximations of APSP require a runtime polynomial in n on general graphs. More
precisely, they present a worst-case graph where computing an α-approximation of all
shortest paths takes Ω(nO(1/α)) time. This shows that our results on general graphs cannot
fundamentally be improved to, say, polylogarithmic runtimes (unless α ∈ Ω(log(n))).
Further, the lower bound of [KS22] is accompanied by algorithms that (almost) match this

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

bound.

Outlook: Although [CLP21] and [KS22] provide strong results, this does not mean that
the topic of (approximate) APSP is exhausted. Recall that the lower bound from [KS22]
only holds for general graphs as the worst-case instance has a quite unique and pathological
topology. As a consequence, we will focus our attention on restricted graph classes that
often appear in practice. We have already made some progress here, as evidenced by
[FHS20] and [CCF+22], but strive to extend this with even more practically motivated
graphs classes such as planar graphs or graphs embedded in the Euclidean plane.

2.4 Online Allocation of Resources: Providing Services without Knowledge on
Future Demands

Within the scenario of our CRC not only are the clients interested in an automatic com-
position of software services, they also desire to use the created services. To this end,
services are executed in a distributed system and the system itself should manage how and
where the services are deployed while the clients access them. Nowadays, deployment of
software in distributed systems is done virtually such that the services can be managed
widely independent of the physical infrastructure. One common approach is to run services
in virtual machines that simulate a physical machine by software. The main advantage of
such virtual machines for our system is that they allow us to manage the deployed services
dynamically. For example, they can be migrated (moved to another participant) if one
participant receives too many requests, or re-configured if the specifications of services or
requirements of clients change. Our system benefits from these properties a lot as it further
allows us to design algorithms that optimize the placement of the services.

Resource allocation problems: On the one hand, clients are interested in having their
desired services at network participants that are close, as this reduces the delay while
utilizing the services. On the other hand, the deployment of services itself requires time,
energy, and available local resources (computation time, memory), so we should, for
example, avoid deploying too many copies of services to ensure that our system scales.
Such a setting can be modeled by the well-established field of research around resource
allocation problems. Here, a set of resources (virtual machines containing services) is
managed by an algorithm to serve a sequence of requests. The goal is to minimize a
cost function. Costs are given by the actions of the algorithm such as deployment cost or
migration cost and also by the cost to serve requests (for example, given by the distance of
a request to the nearest resource).

Within the broad area, there are several models for resource allocation that consider
different possible scenarios. The facility location problem, for example, considers the
setting where the algorithm is only allowed to deploy new resources and serves requests
by connecting them to the nearest one. Deploying and connecting incurs the cost here.
Other instances of resource allocation problems are the file migration problem, the k-server
problem, and the set cover problem. In file migration, the algorithm cannot deploy a
new resource but it can migrate the existing one. Similarly, the algorithm cannot deploy
new resources but migrate existing ones in the k-server problem. In comparison to file
migration, the algorithm must place one copy (of k existing ones) on the location of each
arriving request to serve it (it cannot serve a request by connecting it). In the set cover

2. Main Contributions 13

problem, each request asks for an element of a given ground set. The algorithm serves a
request by offering the requested element, which can be accomplished by buying subsets
of the ground set. These subsets are also fixed and given as part of the input.

Approximation algorithms: Many resource allocation problems are difficult to compute.
The facility location problem, for example, is known to be NP-hard and motivates the
research on approximation algorithms. Here, the aim is to compute an approximate solution
having at most p times the cost of the optimal solution, where p is the approximation factor.
In turn, the computation time of such an approximate solution is polynomial in the input.
For example, one of the early approximation algorithms for the facility location problem
achieves an approximation factor of 3.16 [STA97]. In our research, we concentrated on
distributed approximation algorithms for resource allocation problems. On top of the
distributed setting, we considered a network that is under external dynamics, i.e., that
changes over time uncontrollably. In [ACD+11], we presented two local approximation
algorithms for the metric facility location problem. Both have a poly-logarithmic runtime
in the number of peers and a constant approximation factor (one of the two algorithms is
slightly faster than the other but may provide a slightly worse solution). It is especially
interesting that both algorithms can deal very well with the aforementioned external
dynamics.

Online algorithms: Besides the difficulty to compute solutions even when all requests are
known, resource allocation offers the following additional challenge. On top of the task
to manage services optimally, the requests of clients are usually not known beforehand
in our system. In contrast, they arrive over time and future requests are usually unknown.
Therefore, the main difficulty that our system has to deal with is maintaining a good
placement of the services while adapting the placement for future unknown requests. This
motivates us to consider resource allocation problems in a setting where requests arrive
over time while the algorithm has to take irrevocable actions to guarantee that each request
gets served before the next arrives. Such problems are denoted as online problems. The
criterion of actions being irrevocable captures a natural rule: When the algorithm decides
to execute an action, the cost of it is paid immediately. The decision cannot later be taken
back to reduce the cost when knowledge about future requests is obtained. Of course, an
algorithm following such a strong restriction might not be able to perform as well as one
that knows all requests beforehand. To measure the loss in performance due to considering
a problem online, the competitive ratio was introduced and evolved into a standard measure
(as amortized efficiency in [ST85]):

Definition 4 (Competitive Ratio) Let P be a problem with a set of instances I. Let Alg

be an online algorithm and Opt be an optimal offline algorithm for P. Denote by Cost(A, i)
the total cost of an algorithm A on an instance i ∈ I. Then Alg is called c-competitive if
for all instances i ∈ I for some constant a independent of i it holds that

Cost(Alg, i) ≤ c · Cost(Opt, i) + a.

The competitive ratio allows us to measure how well an algorithm (Alg) performs in
terms of the best way it could perform had it known all requests beforehand (Opt). Note
that the ratio is a worst-case ratio, i.e., it expresses a guarantee of the performance of an
online algorithm regarding every possible valid input sequence for the respective problem.

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

As an example, consider the facility location problem mentioned already above. Here,
the lower bound on the competitive ratio is Ω(log n

log log n) where n is the number of arriving
requests [Fot08]. On the other hand, there are several algorithms with a competitive
ratio close to this bound, e.g., a randomized algorithm by Meyerson with an expected
competitive ratio of O(log n

log log n) [Mey01; Fot08]. Regarding online resource allocation, we
considered three directions; leasing of resources, mobility, and heterogeneity.

Leasing problems: In leasing, the classical problems are extended by assuming that each
resource that is otherwise bought is now leased for a fixed time only. The possible lease
lengths and their costs are given as part of the input. When the lease for a resource runs
out, it has to be leased again if needed. Leasing captures the intuition that a deployment of
a service should not remain forever but is only required as long as clients using the service
arrive. The leasing model above became famous as the parking permit problem considered
by Meyerson [Mey05], which itself generalizes the ski rental problem. Regarding the
parking permit problem, Meyerson showed a deterministic lower bound of Ω(k) and a
randomized lower bound of Ω(log k) where k is the number of available leases. For both
cases — randomized and deterministic — asymptotically optimal algorithms are known.
The parking permit problem grasps the difficulty of leasing very precisely and has been
applied to other resource allocation problems to extend them. For example, Nagarajan
and Williamson used it to extend the aforementioned online facility location problem by
leasing in [NW13]. Here, requests can only be served by resources available at the point
in time the request arrives. They presented an algorithm achieving a competitive ratio of
O(k log n), i.e., with an additional factor of k in the competitive ratio due to the leasing in
comparison to the classic facility location problem.

Leasing introduces the additional difficulty of not only deciding on where and when
resources are deployed, but also how long they are leased. In [KMP12; AKM+16], we
presented the first algorithm for online facility leasing that is independent of the length of
the request sequence n. In general, the algorithm has a competitive ratio of O(`max log `max)
where `max represents the length of the longest lease. Additionally, for many natural input
sequences where the number of arriving requests per time step does not vary too much in
consecutive steps, the algorithm achieves a better competitive ratio of O(log2 `max). Leasing
can also be applied to other resource allocation problems such as the set cover problem.
The leasing variant of the set cover problem has previously been studied exclusively
as an offline problem (cf. [AG07]). Here, the model extension is similar to the online
facility location problem, i.e., sets are no longer bought but have to be leased following
the given available leases. We have presented the first online algorithms for set cover
leasing in [AMM14]. Our randomized algorithms also work for the variant of set cover
with repetitions presented by Alon et al. [AAG09], where elements appear multiple times
and must be served by a different set each time. Our results improve their competitive ratio
of O(log2(m · n)) to O(log m log(m · n)), where n is the size of the ground set and m is the
number of available sets that can be leased.

Mobile resource augmentation: Regarding mobility, we have addressed the question of
whether and, if so, to what extent we can improve resource allocation through resource
mobility. This involves a model that allows moving resources in Euclidean space to
make them more usable. Our models capture the intuition that a slight adaption of the
location a service is deployed at has a negligible cost, while it might significantly improve
the overall cost. As a basis, we have considered a simple model [FM19] similar to the

2. Main Contributions 15

file migration problem, in which a single resource can be moved over a finite distance
at each time step to better serve future requests. Recapitulate that in the file migration
problem [BS89], the movement of the algorithm is unlimited although the cost increases
with the moved distance. If both the optimal solution and the online algorithm are allowed
to move resources, the competitive ratio is immediately dependent on the length of the
request sequence. Therefore, we consider mobility as a resource augmentation. Resource
augmentation gives additional actions to the online algorithm while still comparing its
performance to an optimal solution that does not have these actions.

For mobility, this means that the online algorithm is allowed to move its resources in a very
limited way while the optimal solution cannot move its resources. For the base problem
mentioned above, we have shown that a simple algorithm is sufficient to achieve an optimal
competitive factor. In [FKMM21], we extended the model to deal with k mobile resources.
Here, the additional decision an algorithm has to make is which resource to move. In
general, no online algorithm can even have a bounded competitive ratio in our model. To
achieve a bounded competitive ratio, one has to restrict the power of the adversary by
enforcing locality of requests, i.e., consecutive requests are only allowed to arrive at a
bounded distance to the previous request. We present a general algorithm with a bounded
competitive ratio in this setting in [FKMM21].

Further, we applied mobility to the facility location problem [FKM22]. More in detail,
we allow an online algorithm to move opened facilities between serving requests at an
appropriate cost. We compare the cost of such an algorithm with an optimal solution that
knows all requests in advance but generates a static solution in which the facilities are
not shifted. In [FKM22], we showed that the lower bound for the classical online facility
location problem of Ω(log n

log log n) [Fot08] can be beaten in this model. The lower bound
for the classical model implies a dependence on the competitive factor on the number of
requests. We were able to remove this dependence completely, leaving the competitive
factor to depend only on the parameters of the cost function. Our results are asymptotically
optimal.

Heterogeneous requests and resources: Our most recent focus lies on heterogeneity, i.e.,
systems in which the offered resources are not all the same but offer different commodities.
Requests in such a system can specify which commodities they are interested in as well.
Our extensions capture that the set of services (commodities) managed in our system is
heterogeneous, while a joint management often implies lower costs compared to managing
each kind of service on its own. For example, deploying multiple different services
(commodities) at the same location is usually cheaper than deploying them all on their
own, as the common deployment overhead is only paid once. One problem we generalized
by commodities is the online facility location problem in [CFK+20]. Formerly, the multi-
commodity facility location problem has only been researched in the offline case [RS04].
Here, whenever the algorithm deploys a resource, it has to decide on which commodities
to offer at the resource. The offered commodities influence the deployment cost such that
offering a combination of commodities in one facility is cheaper than offering the same set
of commodities by multiple facilities. Here, the additional difficulty for an online algorithm
is to decide on which set of commodities to offer when constructing a facility. In general,
our model extension increases the competitive ratio in the lower bound by an additive

√
|S |,

where S is the set of commodities. Intuitively, the bound comes from the observation that
no online algorithm can efficiently guess the correct set of commodities that is required

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

by future requests even at a single point. On the algorithmic side, we presented online
algorithms, a deterministic and a randomized one, that gain at most an additional factor of
√
|S | in the competitive ratio for many cost functions. The increase in the competitive ratio

however heavily depends on the function describing the cost of the algorithm.

Heterogeneous k-server problems: Another perspective on heterogeneity in resource
allocation can be seen in [CFK+22], where we extended the k-server problem. Next,
we would like to go into more technical details regarding this publication. The k-server
problem was first introduced in 1988 [MMS88], where a lower bound of k for deterministic
algorithms on uniform metrics was shown. In uniform metrics, the k-server problem
reduces to the paging problem. It was famously conjectured (and not proven up to today)
that there is a deterministic algorithm achieving a competitive ratio of k for any metric.
In our work in [CFK+22], we assume that the servers are all distinct and any arriving
request can either demand to be served by any server (general requests) or a specified one
(specific requests). This extension yields some interesting effects. One might be tempted
to assume that the competitive ratio decreases when specific requests appear because a
request leaving no choice on which server has to move can be trivially served. Especially,
when all requests are specific, a competitive ratio of 1 is easy to achieve by simply moving
the servers as dictated by the input. Perhaps surprisingly, instances in which both general
and specific requests arrive yield a higher lower bound of 2k − 1.

The Lower bound: To see this, consider the following instance on a uniform metric with
k + 1 many locations v1, . . . , vk+1 and any deterministic online algorithm. Let s1, . . . , sk be
the algorithm’s servers and o1, . . . , ok be the optimal ones. Initially, assume that si = oi = vi

for all 1 ≤ i ≤ k, i.e., the algorithm’s servers are exactly at the same position as the optimal
ones. Since the algorithm acts deterministic, we can assume that in the following sequence
the algorithm moves its servers in the order of the indices. Our input sequence uses general
requests at the location that is not covered by the algorithm until the algorithm covers the
locations v1, . . . , vk−1, vk+1. Since the algorithm moves its servers in order, this looks as
follows: The first request appears at vk+1 and the algorithm moves s1 there. Then, the next
request appears at v1, and the algorithm either moves s1 back or it moves s2 there. Due to
the deterministic behavior of the algorithm, there is an ordering of the servers such that
it moves them in the order of the indices and hence has k movements until it covers all
positions except for vk. Essentially, the optimal solution only needs to move ok to vk+1

and is done. If we stop the sequence here, we have the original lower bound of k for the
classical k-server problem. However, due to specific requests, we can increase the cost
of the algorithm even further. Note how the optimal solution has all servers oi at vi for
1 ≤ i ≤ k − 1. Therefore, the optimal solution does not have to move if we simply add
specific requests for all these servers at their initial positions. The algorithm however
moves all these servers. Either it already moved a server i twice, or it has to move i due
to the specific request back to its initial position. Therefore, for all servers except sk, the
algorithm has a movement cost of at least 2. In total, this yields a cost of the algorithm of
2k − 1 while the optimal solution only needs one movement.

Intuitively, the lower bound shows that by heterogeneity it is no longer sufficient to cover
the same positions as the optimal solution. Further, an online algorithm must converge the
location of each of its servers to the matching server in the optimal solution.

A Trade-off: The lower bound we just described uses 2k − 1 requests in total, k of
them being general requests and k − 1 of them being specific ones. Consider the ratio of

2. Main Contributions 17

specific requests requiring a movement vs. all requests requiring a movement. We only
consider requests requiring a movement of the algorithm, as all others do not influence the
competitive ratio. For the lower bound above, the ratio is k−1

2k−1 ≈
1
2 . When there are only

general requests, the ratio is 0 and the lower bound is only k. On the other hand, when
there are only specific requests, the ratio is 1 and the lower bound is simply 1. In our work,
we noticed that the ratio plays an important role in the competitive ratio. Therefore, we
established a more general lower bound parameterized in the aforementioned ratio. To
see a plot of it, consider Figure 2 below, where s expresses the ratio. As we can see, the
starting from k at s = 0, the lower bound increases up to roughly 1

2 . Thereafter it very
quickly decreases to 1 for s = 1.

0 1/2 1
s

1

k

2k−1
CR

(0,k)

(1,1)

(k−1
2k−1 ,2k−1

) Worst-case lower bounds

Adaptive lower bound

Figure 2: A plot of our adaptive lower bound of [CFK+22]. CR is the competitive ratio
and s is the ratio between the number of specific requests requiring a movement
and the total number of requests requiring a movement.

This hints at the following: The adversary in our model only has significant power just until
specific requests start to dominate the input sequence. To complement this, we showed
algorithms for the uniform metric space that have a tight competitive ratio for s > 1

2 . So,
the interesting part in the competitive ratio happens for s < k−1

2k−1 . Here, the question arises
if we can find an algorithm with a tight competitive ratio. We show that no such algorithm
can exist. More specifically, no algorithm can have a competitive ratio of k for s = 0 and
2k − 1 for s ≈ 1

2 . This is because to achieve a good worst-case competitive ratio close to
2k − 1, an algorithm has to follow a specific behavioral rule that we establish in [CFK+22].
If an algorithm does so, we can show a lower bound in the case of s = 0, raising the
competitive ratio by one for each server following the rule. If one does not follow the
rule, a competitive ratio of k can be achieved for s = 0. However, each server not acting
according to the rule raises the competitive ratio by one in the worst case.

What we see here is a trade-off that would remain hidden if we did not parameterize in s.
In advance, we have to choose if we would like to have a good performance on classical
k-server instances, or in the worst case, when specific requests appear. The good news is
that we presented two algorithms following this trade-off. The one is optimal for s = 0 and
achieves a worst-case competitive ratio of 3k − 2, while the other is close to optimal in
the worst-case with a competitive ratio of 2k + 14 but has at least a competitive ratio of
2k − 1 if s = 0. Both algorithms can be mixed to derive an algorithm that has a fine-tuned
competitive ratio dependent on s.

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

Our research on online resource allocation explored different aspects of the field. We
focused on leasing approaches, where resources are leased for a limited time instead of
being bought permanently. We then enhanced online algorithms by incorporating limited
mobility to test the boundaries when minor adjustments are permitted. Lastly, we expanded
classical problems to accommodate heterogeneity, enabling requests and resources to
handle multiple commodities.

3 Concluding Remarks

Our research of Subproject A1 of our CRC has significantly extended the state-of-the-
art in the area of overlay networks, hybrid networks, and resource allocation problems.
We envision hybrid approaches to be an important direction for future research. One
particularly interesting direction seems to be hybrid wireless networks. In a hybrid wireless
network, the participants can establish local connections via Wi-Fi connections and can
also establish arbitrary global connections via some given infrastructure, such as a cellular
environment or a satellite. One of the goals we are currently investigating is how to
quickly set up routing tables in the nodes with the help of these two communication
modes so that messages can be sent along the near-shortest paths in the local network.
Solutions to this problem could be used in modern smartphones in order to significantly
improve the efficiency of direct interactions between these. Another interesting direction is
cloud-assisted overlay networks. The cloud offers a highly scalable solution to classical
client-server-based approaches. However, the cloud is not for free. Thus, it would be
desirable to use the cloud only to assist an overlay network, instead of taking over its role.
Finding the right balance between using the cloud and an overlay network in order to
come up with highly scalable and robust solutions for certain applications appears to be a
challenging problem.

In our research on heterogeneous resource allocation problems, we explored various
extensions. For example, we presented results on uniform metrics for the heterogeneous
k-server problem, but further study is needed for more complex metrics. Additionally,
considering more complex request types, such as subsets of servers, can significantly
increase the problem’s difficulty. Similar extensions can be applied to other resource
allocation problems like multi-commodity facility location. Our research aims to connect
the influence of heterogeneity with classical resource allocation through parameterized
competitive ratios. As an example of general ways to step away from a worst-case measure,
recently, models became popular where the online algorithm can utilize the advice of a
machine learning algorithm to make better choices. Here, the difficulty lies in obtaining
improvements when the advice is good while keeping the worst-case guarantees of classical
online analysis when the advice is bad. Such techniques allow the research on online
algorithms in general to approach the often far better performance observed in practice.

Bibliography

[AAG09] Alon, N.; Azar, Y.; Gutner, S.: Admission control to minimize rejections and online set
cover with repetitions. In: ACM Transactions on Algorithms 6 (2009), no. 1, 11:1–11:13

3. Concluding Remarks 19

[ACD+11] Abshoff, S.; Cord-Landwehr, A.; Degener, B.; Kempkes, B.; Pietrzyk, P.: Local Approx-
imation Algorithms for the Uncapacitated Metric Facility Location Problem in Power-
Aware Sensor Networks. In: Algorithms for Sensor Systems - Proceedings of the 7th
International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks
and Autonomous Mobile Entities (ALGOSENSORS). Vol. 7111. 2011, pp. 13–27

[AG07] Anthony, B. M.; Gupta, A.: Infrastructure Leasing Problems. In: Proceedings of the
12th International Conference on Integer Programming and Combinatorial Optimization
(IPCO). Vol. 4513. 2007, pp. 424–438

[AHK+20] Augustine, J.; Hinnenthal, K.; Kuhn, F.; Scheideler, C.; Schneider, P.: Shortest Paths in a
Hybrid Network Model. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2020, pp. 1280–1299

[AKM+16] Abshoff, S.; Kling, P.; Markarian, C.; Meyer auf der Heide, F.; Pietrzyk, P.: Towards
the price of leasing online. In: Journal of Combinatorial Optimization 32 (2016), no. 4,
pp. 1197–1216

[AMM14] Abshoff, S.; Markarian, C.; Meyer auf der Heide, F.: Randomized Online Algorithms
for Set Cover Leasing Problems. In: Proceedings of the 8th International Conference on
Combinatorial Optimization and Applications (COCOA). Vol. 8881. 2014, pp. 25–34

[BS89] Black, D.; Sleator, D.: Competitive Algorithms for Replication and Migration Problems.
Technical Report CMU-CS-89-201. Department of Computer Science, Carnegie-Mellon
University, Jan. 1989

[CCF+22] Coy, S.; Czumaj, A.; Feldmann, M.; Hinnenthal, K.; Kuhn, F.; Scheideler, C.; Schneider,
P.; Struijs, M.: Near-Shortest Path Routing in Hybrid Communication Networks. In: 217
(2022), 11:1–11:23

[CCS+23] Coy, S.; Czumaj, A.; Scheideler, C.; Schneider, P.; Werthmann, J.: Routing Schemes for
Hybrid Communication Networks. 2023

[CFK+20] Castenow, J.; Feldkord, B.; Knollmann, T.; Malatyali, M.; Meyer auf der Heide, F.:
The Online Multi-Commodity Facility Location Problem. In: Proceedings of the 32nd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). July 2020,
pp. 129–139

[CFK+22] Castenow, J.; Feldkord, B.; Knollmann, T.; Malatyali, M.; Meyer auf der Heide, F.:
The K-Server with Preferences Problem. In: Proceedings of the 34th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). July 2022, pp. 345–356

[CLP21] Censor-Hillel, K.; Leitersdorf, D.; Polosukhin, V.: Distance Computations in the Hy-
brid Network Model via Oracle Simulations. In: Proceedings of the 38th International
Symposium on Theoretical Aspects of Computer Science (STACS). Vol. 187. 2021, 21:1–
21:19

[Dij74] Dijkstra, E. W.: Self-Stabilizing Systems in Spite of Distributed Control. In: Communica-
tions of the ACM 17 (Nov. 1974), no. 11, pp. 643–644

[FHS20] Feldmann, M.; Hinnenthal, K.; Scheideler, C.: Fast Hybrid Network Algorithms for
Shortest Paths in Sparse Graphs. In: Proceedings of the 24th International Conference on
Principles of Distributed Systems (OPODIS). Vol. 184. 2020, 31:1–31:16

[FKM22] Feldkord, B.; Knollmann, T.; Meyer auf der Heide, F.: Online facility location with
mobile facilities. In: Theory of Computer Science 907 (2022), pp. 45–61

[FKMM21] Feldkord, B.; Knollmann, T.; Malatyali, M.; Meyer auf der Heide, F.: Managing Multiple
Mobile Resources. In: Theory of Computing Systems 65 (2021), no. 6, pp. 943–984

[FM19] Feldkord, B.; Meyer auf der Heide, F.: The Mobile Server Problem. In: ACM Transactions
on Parallel Computing 6 (2019), no. 3, 14:1–14:17

[Fot08] Fotakis, D.: On the Competitive Ratio for Online Facility Location. In: Algorithmica 50
(2008), no. 1, pp. 1–57

Götte, Knollmann, Meyer auf der Heide, Scheideler, Werthmann Subproject A1

[FS19] Feldmann, M.; Scheideler, C.: Skeap & Seap: Scalable Distributed Priority Queues for
Constant and Arbitrary Priorities. In: Proceedings of the 31st ACM on Symposium on
Parallelism in Algorithms and Architectures (SPAA). 2019, pp. 287–296

[FSS18a] Feldmann, M.; Scheideler, C.; Setzer, A.: Skueue: A Scalable and Sequentially Con-
sistent Distributed Queue. In: Proceedings of the 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 2018, pp. 1040–1049

[FSS18b] Feldmann, M.; Scheideler, C.; Setzer, A.: Skueue: A Scalable and Sequentially Consistent
Distributed Queue. In: CoRR abs/1802.07504 (2018). arXiv: 1802.07504.

[FSS21] Feldmann, M.; Scheideler, C.; Schmid, S.: Survey on Algorithms for Self-stabilizing
Overlay Networks. In: ACM Computing Surveys 53 (2021), no. 4, 74:1–74:24

[KMP12] Kling, P.; Meyer auf der Heide, F.; Pietrzyk, P.: An Algorithm for Online Facility
Leasing. In: Proceedings of the 19th International Colloquium on Structural Information
and Communication Complexity (SIROCCO). Vol. 7355. 2012, pp. 61–72

[KS22] Kuhn, F.; Schneider, P.: Routing Schemes and Distance Oracles in the Hybrid Model.
In: Proceedings of the 36th International Symposium on Distributed Computing (DISC).
Vol. 246. 2022, 28:1–28:22

[Mey01] Meyerson, A.: Online Facility Location. In: Proceedings of the 42nd Annual Symposium
on Foundations of Computer Science (FOCS). 2001, pp. 426–431

[Mey05] Meyerson, A.: The Parking Permit Problem. In: Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2005, pp. 274–284

[MMS88] Manasse, M. S.; McGeoch, L. A.; Sleator, D. D.: Competitive Algorithms for On-line
Problems. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC). 1988, pp. 322–333

[NW13] Nagarajan, C.; Williamson, D. P.: Offline and online facility leasing. In: Discrete Opti-
mization 10 (2013), no. 4, pp. 361–370

[RS04] Ravi, R.; Sinha, A.: Multicommodity facility location. In: Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 2004, pp. 342–349.

[SSS15] Scheideler, C.; Setzer, A.; Strothmann, T.: Towards Establishing Monotonic Search-
ability in Self-Stabilizing Data Structures. In: Proceedings of the 19th International
Conference on Principles of Distributed Systems (OPODIS). Vol. 46. 2015, 24:1–24:17

[SSS16] Scheideler, C.; Setzer, A.; Strothmann, T.: Towards a Universal Approach for Mono-
tonic Searchability in Self-stabilizing Overlay Networks. In: Proceedings of the 30th
International Symposium on Distributed Computing (DISC). Vol. 9888. 2016, pp. 71–84

[ST85] Sleator, D. D.; Tarjan, R. E.: Amortized Efficiency of List Update and Paging Rules. In:
Communications of the ACM 28 (1985), no. 2, pp. 202–208

[STA97] Shmoys, D. B.; Tardos, É.; Aardal, K.: Approximation Algorithms for Facility Location
Problems (Extended Abstract). In: Proceedings of the 29th Annual ACM Symposium on
the Theory of Computing (STOC). 1997, pp. 265–274

https://arxiv.org/abs/1802.07504

21

Subproject A3:

The Market for Services: Incentives, Algorithms, Implementation

Claus-Jochen Haake1, Burkhard Hehenkamp1, Gleb Polevoy2

1 Department of Economics, Paderborn University,
Paderborn, Germany

2 Heinz Nixdorf Institute and Department of Computer
Science, Paderborn University, Paderborn, Germany

1 Introduction

The arguably widest definition of a market is the organization of interaction across
several agents. The term interaction can thereby be filled in different ways, meaning
that the market participants face various strategic possibilities to take action. The goal
of Subproject A3 “The Market for Services: Incentives, Algorithms, Implementation” is
to take a close look at interactions within and between the different groups of agents in
an OTF market with the aim to elicit incentive structures, to evaluate the outcomes, or to
design rules according to which the agents are supposed to act. Analyzing given interaction
forms either means identifying equilibria, which enables us to predict the behavior of the
market participants and thus gives us a tool to assess the consequences on individual and
social welfare.

Figure 3: Layout of an OTF market.

The general layout of an OTF market is illustrated in Figure 3, which shows a number
of specific characteristics. First, we may (ideally) view it as a two-sided market with
consumers (customers, end users) one one side and service providers on the other side. OTF
(service) providers act as mediators between consumers and service providers. However,
unlike in traditional models for two-sided markets, OTF service providers do more than
just mediate. Based on a customer’s request, they actively form service compositions for
which they act as a demander of services themselves. In relation to the customer, an OTF
service provider takes the role of a seller to satisfy th customer’s demand. As a result,

cjhaake@wiwi.upb.de (Claus-Jochen Haake), burkhard.hehenkamp@upb.de (Burkhard Hehenkamp),
gpolevoy@mail.upb.de (Gleb Polevoy)

Haake, Hehenkamp, Polevoy Subproject A3

contracts are not only signed between the customer and the OTF provider, but also between
the OTF service provider and possibly several service providers.

Within this market structure we investigate several different forms of interaction using
methods from microeconomics as well as from non-cooperative, cooperative, and algo-
rithmic game theory. Interaction takes place on different levels, i.e., involving smaller or
larger groups. Identifying the agents’ incentives and the design of institutions that lead
them in the right direction is at the heart of Subproject A3.

As an example, we consider the contracting problem between a single OTF service provider
and a service provider. On this micro-level, the question is how to find a fair and efficient
way to settle negotiations on the terms of trade. The models we use here stem from
cooperative game theory or, more specially, from bargaining theory. It turns out that
there is a tradeoff between fairness and efficiency of the outcome. While the former is
attractive to market participants, the latter property is, given an appropriate business model,
interesting to the OTF market provider.

Taking a slightly broader perspective, an antecedent problem occurs: namely, who contracts
with whom in the market. Such problems are central in matching theory, which designs and
studies mechanisms that match agents from two different sides (in a market) in a preferably
efficient and stable manner. Especially when capacity constraints (of OTF providers) play
a role, the answer to the question of which end users should be matched to which OTF
service providers could have a crucial impact on market performance. Further, matching
mechanisms themselves provide incentives to act strategically and thus have to be analyzed
and controlled in this direction.

From an overall view, competition naturally is a vital issue and raises a couple of questions
such as how prices are formed or how the structure of offered services evolves. Concerning
the latter, there may arise incentives to offer particular services only in combination with
other services (bundling). From a mechanism design point of view, welfare analyses are
inevitable to find directions in which the market should be regulated.

Finally, the success of an OTF market is ultimately linked to information on services that is
as clean as possible. While from the outset, incomplete information on service qualities is
a typical characteristic of an OTF market, the design of information systems that are based
on user ratings help to reduce the lack of information, reduce incentives for misbehavior
and hence increase efficiency of the market outcome. Again, on the one hand it is our task
to investigate the participants’ incentives to react to a well-functioning rating system that
aims at distinguishing high and low quality services. On the other hand, the challenge is to
elicit and process information on observed product qualities so that unwanted behavior can
readily be detected.

In the next section, we highlight contributions from Subproject A3 concentrating on
economic issues of the market. Abstracting from technical aspects of service composition,
service execution, the organization of the infrastructure, or security issues, our task is to
analyze the behavior of market participants from a mostly theoretical perspective, including
the provision oof methods for efficient computation of solutions.

2. Highlights and Lessons Learned 23

2 Highlights and Lessons Learned

This section is structured in three subsections highlighting our results. Subsection 2.1
focuses on specific scenarios in which (OTF) providers compete with each other and
investigates the effects on welfare and market structure. In Subsection 2.2 we are concerned
with a more individual level of interaction and implementation of outcomes. Further, we
take a closer look at how quality standards can be maintained through reputation systems.
Finally, Subsection 2.3 highlights our results on algorithms developed to calculate and
hence predict market outcomes such as equilibria.

2.1 Competition

We take four different perspectives in our analysis of competition in OTF markets. First,
we investigate the incentives to combine elementary products to compositions of products
rather than to sell them as separate entities.1 Second, we study experimentally to what
extent implementing competition can help improve the quality of services in (OTF) markets
that are characterized by fixed or regulated prices. Third, we explore whether opening a
monopolistic (OTF) market for competition improves market performance by increasing
the quality of products when the market entrant has the option to differentiate its product
away from the already existing one. Fourth and finally, we examine how competition for
innovation is affected when firms struggle for their survival in the market.

Bundling
In our first highlight, we explore a question that lies at the heart of any OTF market
[EHH22]. Under which conditions is the composition of products, i.e., bundling, optimal
to an OTF provider at all? To what extent does the incentive to sell products in bundles
rather than in separate entities depend on the nature of the original elementary products
such as their degree of product differentiation. Does the incentive depend on whether
the elementary products represent substitutes or complements? Does it depend on their
respective degrees of substitutability or complementarity?

To investigate these issues we use a rather specific asymmetric market setup, which we
describe in detail further below. Additionally, we show that this specific market setup may
arise endogenously in a richer setup, where service providers are enabled to choose their
distribution channels optimally. Finally, we also take a social perspective and examine the
welfare consequences of bundling in our framework.

Figure 4 below illustrates our market setup. We consider two retailers RA and RB and two
monopolistic service providers M1 and M2, the latter of which each produce a differentiated
elementary product. The retailers compete in prices. Service provider M2 sells its product
to both retailers, while M1 only supplies retailer RA. Retailer RA hence receives both
elementary products and considers whether or not to sell them as a bundle or as separate
entities.

Accordingly, retailer RA can be viewed as a firm deciding whether or not to adopt the role
of an OTF provider. To examine retailer RA’s incentive for bundling, we determine how
1While market participants may compete in products or services (or both) in most of our projects, we shall
henceforth write either ’products’ or ’services’ implicitly including the other meaning(s) as well.

Haake, Hehenkamp, Polevoy Subproject A3

Final customers

RA

RB

M1

M2

Competition

good 1

good 2

good 2

good 1

good 2

good 2

Figure 4: The market setup.

the degree of product differentiation of the elementary products affects the equilibrium
prices, quantities and profits for each of the two selling alternatives: separate selling and
bundling.

Our main result is the following: Retailer RA will only find it optimal to bundle the ele-
mentary products when they represent close substitutes. This might sound counterintuitive
at first, but we can frequently observe this form of bundling in the real world. For instance,
grocery stores sell packs of peppers in bundles, either as almost perfect substitutes of iden-
tical color or as close substitutes in different colors. Similarly, clothing shops commonly
offer bundles of socks or pants that only vary in patterns or colors from each other.

The intuition of our first result runs as follows. When the elementary products are differ-
entiated, bundling alleviates competition in two ways. On the one hand, it eliminates the
perfect substitutability of the elementary product 2, which is available from both retailers.
On the other hand, bundling also creates a complementarity between the elementary prod-
ucts 1 and 2. Competition between differentiated products is the stronger the lower their
degree of differentiation. Consequently, the anticompetitive effect of bundling is strongest
when the elementary products constitute close substitutes, since then competition is intense.
Only in this case, is the competition-reducing effect of bundling so strong that it outweighs
the aggravation of the double marginalization problem that occurs along the vertical supply
chain. Therefore, bundling by retailer RA in our market setup is only profitable when the
elementary products represent close substitutes. Only then might retailer RA actually adopt
the role of an OTF provider.

With regard to social welfare, the picture is blurred. Product bundling reduces the consumer
surplus because of the higher downstream prices, while it increases the producer surplus,
since all firms earn a higher profit, both in the downstream and the upstream market. Social
welfare, however, only increases through bundling if the elementary products constitute
close to perfect substitutes.2 Thus, the emergence of OTF providers must be viewed quite
critically from a social perspective.

Finally, we extend our framework to incorporate the service providers’ choice of their
distribution channels. As it turns out, our asymmetric market setup indeed represents an
equilibrium outcome of this extended model when the elementary products represent close
but not too close substitutes. Moreover, in this case, bundling reduces social welfare and
should be prohibited.

2Recall that social welfare is defined as the sum of consumer surplus and producer surplus.

2. Highlights and Lessons Learned 25

To sum up, our first highlight stresses the importance of product differentiation for bundling
elementary products when the associated vertical market structure is prone to double
marginalization. At least within our market framework, product bundling, and hence OTF
providers, should raise serious antitrust concerns.

Introducing Competition I
Many healthcare markets can be viewed as instances of two-sided OTF markets with
indirect network externalities. For example, hospitals match patients with various types of
diseases with doctors from various fields of specialization. The more fields of specialization
a hospital covers, the more likely it is that a patient will find the appropriate treatment. The
more patients there are, the more likely it is that a doctor of a certain specialization will
find patients.3 Similarly, patients attending a general practitioner (GP) benefit from the
experience the GP has gained from treating other patients. The more other patients there
are, the better the experience of the GP.

This second highlight and the third one further below both examine monopolistic provider
markets that are opened for competition. The aim is to evaluate whether opening the market
for competition improves the market outcome in terms of quality, customer benefit or social
welfare. Furthermore, we study the consequences of the providers’ customer orientation
(such as physician altruism) for the market outcome. In this second highlight, our focus
is on the quality of the service, while the type of service is taken as given. Moreover,
we deploy an experimental approach to study the effect of introducing competition. In
contrast, the third highlight further below scrutinizes a theoretical model, where the new
provider chooses its quality of service but may also adjust the type of service offered in
order to soften competition.

Previous research has shown that, without competition, providers deviate from the cus-
tomer-optimal provision under payment systems such as capitation and fee-for-service.
While capitation corresponds to a fixed payment per treatment, the total payment under
fee-for-service depends on the number of services executed within a given treatment. Corre-
spondingly, a profit-maximizing provider would execute no services at all under capitation,
while it would perform the maximum number of feasible services under fee-for-service.
While competition is expected to mitigate these distortions, providers usually interact with
each other repeatedly over time and only a fraction of customers switches providers at all.
Both features might prevent the desired effect from introducing competition.

We consider two setups ([BHK17], [BHK23]). In both setups, we experimentally study
the effect of introducing competition among providers when there is a trade-off between
the choice of maximizing customer utility and the choice of maximizing a provider’s
profit. While in [BHK17] providers face homogenous customers that all face a problem
of identical severity, [BHK23] scrutinizes the effects that originate from a heterogenous
customer population. For both setups, we develop a theoretical model that serves as our
benchmark, which we then test in a controlled laboratory experiment.

In [BHK17], our experimental conditions vary the physician payment scheme (capitation
vs. fee-for-service) and the severity of the patient’s problem (high vs. low). Real patients
benefit from the provider decisions made in the experiment. We find that, in line with

3Notice that there might be also indirect network externalities, which are negative. For instance, the number
of nurses per patient is decreasing in the number of patients treated.

Haake, Hehenkamp, Polevoy Subproject A3

the theoretical prediction, introducing competition can reduce underprovision (under
capitation) and overprovision (under fee-for-service). The strength of the observed effects,
however, depends on the severity of the problem and the payment scheme. We also find
providers to collude tacitly, in particular under fee-for-service payment. Collusion appears
less often than in related experiments on price competition though.

In [BHK23], providers face heterogenous customers that differ in the severity of their
problem and in their mobility. Mobile customers choose their provider on the basis of
the (expected) benefit from treatment, while immobile patients always visit the same
provider. While we also examine the effect of introducing competition, the analysis of
the second setup centers on the effects of customer heterogeneity on the market outcome.
In line with the theoretical prediction, we find that introducing competition significantly
increases patient benefit for mobile patients. In contrast, for immobile patients, competition
worsens the outcome compared to a situation without competition. This latter observation
does not match with our theoretical prediction, which would predict no difference. With
repetition of the interaction both effects become more pronounced. Our results imply
that introducing competition does not entail unique positive effects, but rather ambiguous
effects that differ across customer groups. In particular, customer mobility is decisive for
the market outcome.

Introducing Competition II
In the second highlight, we evaluate whether opening a formerly public (or private) price-
regulated monopoly market for competition represents a viable option for improving
quality and choice for customers. To this end, the welfare effects from opening the market
are determined.

In price-regulated monopoly markets we typically observe low product quality. In principle,
opening the market for competition could be a good idea if the entrant(s) offered the same
or a similar product. Then, quality competition would be intensified and firms would offer
higher levels of quality to attract demand. On the other hand, entrants face an incentive to
avoid or at least soften competition by offering a product that differs sufficiently from the
original one. As a consequence, quality might not increase to the extent expected in the
first place.

To explore our research question, we consider a three-stage duopoly model of location
choice and quality competition with price regulation and costly relocation. There are three
active players: a budget-constrained regulator, the incumbent monopolist, and the entrant.
At stage 1, the regulator sets the price. At stage 2, the entrant chooses a location, while
the incumbent monopolist is already located at the center of the market and it is too costly
for him to relocate. At stage 3, the two firms compete in quality for customers’ demand.
Observe that the location choice of the entrant at stage 2 exhibits the trade-off between
moving away from the incumbent to soften competition (the so-called competition effect)
and moving closer to steal demand (the demand effect).

We consider two setups, both of which are relevant in markets such as public health care,
education and schooling, or postal services ([HK20], [HK23]). In [HK20], the incumbent
monopolist represents a public provider, e.g., a hospital, with some degree of customer-
orientation, for example, since the hospital’s physicians show some degree of altruism
towards their patients. In addition, the public provider faces a profit constraint that prohibits

2. Highlights and Lessons Learned 27

losses. The entrant, in contrast, maximizes pure profit. In [HK23], both the incumbent
monopolist and the entrant are for-profit providers, each one maximizing its own profit.

Our main results are as follows: In [HK20], opening a public hospital market typically
raises quality. The private provider strategically locates towards the corner of the market
to avoid (too) costly quality competition. The consequences for social welfare depend on
the size of the regulator’s budget and on the degree of customer orientation of the public
provider. If the regulator’s budget is large, high quality is implemented and welfare is
highest in a duopoly whenever entry is optimal. However, when the budget is small, quality
levels in the duopoly correspond to the monopoly level. In particular, it turns out that for
intermediate budgets it can be optimal for the regulator to not use the entire budget.

In [HK23], the entrant strategically locates towards the corner of the market, keeping the
incumbent at the monopoly quality level when the regulated price is low or intermediate.
In this case, quality is only raised for the entrant’s customers. When the price is high, the
entrant locates at the corner of the market and both providers implement a higher quality
compared to the monopoly level. Moreover, the entrant always implements a higher quality
than the incumbent provider. Social welfare is always higher in a duopoly if the cost of
quality is low. For higher levels of quality cost, welfare is non-monotonic in the price.
Therefore, the regulator will optimaly withhold part of its budget for certain budget sizes.
Finally, the welfare effect from opening the market for competition depends on the price
and the size of the entry cost and the decision to allow entry should be conditioned on an
assessment of the entry cost.

Firm survival and innovation
Taking a dynamic perspective on competition, not only the existing products matter for the
outcomes of competition in a market but also the incentives to come up with new products,
new services or new technologies. This is where our last highlight departs [GHL19]. We
want to explore the outcomes of competition in innovation contests where a finite number
of firms potentially compete with each other for an innovation. In particular, we want to
investigate the case in which the number of firms actually competing for the innovation is
uncertain and in which the behavior of a firm is governed by the strive for survival of the
firms.

Competition for innovation can assume different forms. For instance, there are prizes
announced for certain ideas or solutions, e.g., for algorithms that manage to accomplish
a certain task, or there always is the option to register an innovation as a patent. The
monopoly right that comes with a patent can then subsequently be exploited by marketing
the innovation as a new product or service.

Competition for innovation is characterized by three unique features, the combination of
which distinguishes it from competition in product markets. First and foremost, competition
for innovation is dynamic, which makes it necessary to incorporate a time dimension in the
analysis. Second, the success of investments in innovation is highly uncertain and depends
on the investments made and the outcomes realized by a firm’s competitors. Moreover, not
always the firm with the highest investment will succeed in winning the patent. Third and
finally, the investments of all competitors are sunk, also those made by the unsuccessful
firms. Accordingly, a dynamic contest model with imperfect discrimination represents the
appropriate model to study our questions at hand.

Haake, Hehenkamp, Polevoy Subproject A3

To model uncertainty about the number of competitors, we investigate two setups. In the
first, we consider stochastic participation, that is, a single firm does not know the number
of competitors that also participate in the same contest. From the perspective of the firm, it
appears as if other firms participate in the contest with a certain probability. In addition, the
number of potential competitors in the contest is exogenously given. In the second setup,
we depart from the latter assumption to determine the number of potential competitors
endogenously. To this end, we introduce a fixed cost of entry.

Markets with a high innovation intensity tend to be very dynamic and subject to high fluctu-
ations. The entry and exit of firms are the rule rather than the exception. Correspondingly,
the behavior of a firm is better described as governed by the firm’s striving for survival than
by profit maximization. To account for this, we deploy the so-called economic evolutionary
approach.

Under the economic evolutionary approach, the biological evolutionary forces of selection,
mutation, and heredity correspond to economic evolutionary forces such as imitation,
innovation, and bankruptcy to name but a few. (Economic) evolutionary equilibrium then
serves as the short-cut to the evolutionary outcome of a dynamic evolutionary process of
imitation and innovation. Finally, we consider finite (firm) populations as the economically
relevant case and solve our model for the corresponding equilibrium of a finite-population
evolutionarily stable strategy.

Apart from solving for the economic evolutionary equilibrium, our focus is on the issue
of (over-)dissipation. This issue is closely related to Posner’s (1975) famous full dissipa-
tion hypothesis, according to which competition for a monopoly (in our case: a patent
monopoly) would eat up the entire monopoly rent that the firms compete for. In our
paper, we re-evaluate Posner’s hypothesis. In our setup of a finite population, the strive for
survival leads to more aggressive investment behavior, so the issue might be particularly
pronounced.

Our main findings are as follows. Firstly, when the probabilities of participation are exoge-
nously given, competitors choose higher levels of investment in the economic evolutionary
equilibrium than in the Nash equilibrium. Moreover, there is ex-ante overdissipation in
the economic evolutionary equilibrium for sufficiently large probabilities of participation
if, and only if, the impact function is convex.4 These results generalize earlier findings in
[HLP04] from contests with a given, i.e. deterministic number of firms to contests with
stochastic participation, where the number of actual competitors is a priori uncertain.

Secondly, with costly endogenous entry, firms enter the contest with a higher probability
and choose higher levels of investment in the economic evolutionary equilibrium than in
the Nash equilibrium. Importantly, under endogenous entry, overdissipation can occur for
all types of contest technologies, in particular those with concave impact functions.

Our findings point to potentially high welfare losses stemming from innovation contests
when they are open to anyone.

4An impact function can be understood as a lottery production function, which governs the transformation
of investments into probabilities of winning. A convex / linear / concave impact function then exhibits
increasing / constant / decreasing returns to investments.

2. Highlights and Lessons Learned 29

2.2 Allocation and Incentives

In the OTF market interaction takes place in various environments. Especially when there
are few participants, competition may not be a plausible form of modeling market organiza-
tion. Therefore, we analyze alternative models of interaction such as bargaining, matching
or, more generally, mechanism design. Because there is naturally no complete information
on service qualities, we need to keep track of the agents’ incentives to misbehave and
exploit a superior information position at the cost of efficiency. In this subsection we
review some of our results in the above fields.

Bargaining
The term bargaining generally refers to a situation, in which two or more persons can
sign an agreement on the distribution of joint gains. A bargaining solution is supposed
to propose such an agreement for any possible bargaining problem (from a specific set of
problems), i.e., not focusing on a particular problem. The main challenge is to define or
design bargaining solutions that capture the context of interaction and in which agreements
are to be considered as fair. In this section, we briefly review two works that argue for the
selection of particular bargaining solutions in bargaining problems occurring on an OTF
market.

Some particular interactions in the OTF market involve two participants only. For instance,
consider the situation, in which an OTF provider and a service provider negotiate over the
terms of trade, including the price. Since we consider highly specialized services, there is
typically no market, in which a price can be settled by an equilibrium mechanism, which
means it is subject to bilateral negotiations. To aggravate the problem, both parties may
have private information on either production costs or expected revenues from sales to the
customer. In a simplified version, the OTF provider and the OTF service provider negotiate
over a service level (e.g., quantity, quality degree, etc.) and a total payment. The presence
of incomplete information requires the two parties bargain over contracts that are type
dependent, i.e., those that depend on the realization of costs and revenues that have to be
reported by the parties. Because the final agreement (payment, quantity, etc.) relies on the
report of unobservable private information, it is naturally open to cheating. As a result, a
“good” contract should satisfy a number of properties such as (i) ex post Pareto efficiency
(EPE), (ii) individual rationality (IR), and (iii) incentive compatibility (IC). While EPE
ensures that there is no room for renegotiations after the contract has been agreed upon, IR
provides incentives to enter negotiations at all. Finally, IC requires that truthful reporting
be a Nash equilibrium in the reporting game.

A closer inspection of the structure of the negotiation problem reveals that it exhibits the
features of an intra-firm transfer pricing problem. A transfer pricing problem as it is studied
in the literature involves two divisions of the same company and is displayed in Figure 5.
The aim is to settle an agreement on how much and at what price an intermediary good is
internally sold from the producing division to the buying division. While the producing
division has better information on production costs, the sales division knows the external
market on which the product is finally sold to customers. Besides the goals of the divisions
that act as profit centers, the central management prefers a company-optimal outcome.
Returning to our negotiation in the OTF market, the additional quantity parameter may be
interpreted as such if a hardware service is under concern. Alternative interpretations may

Haake, Hehenkamp, Polevoy Subproject A3

include the duration of service provision. The role of the company could be played by an
OTF market maker who is interested in an efficient market outcome.

?

�� ��
buys resources on an external
market or from other divisions

?
�� ��

sells the final product on an external
market or to other divisions

Division 1 (seller)

?

6 delivers an
intermediate product

pays the
transfer payment

Division 2 (buyer)

� -

�

�

�

�

Other products
or projects
of division 1

� -

�

�

�

�

Other products
or projects
of division 2

Figure 5: Intra-firm Transfer Pricing Problem. The two divisions bargain over a payment
from division 2 to division 1 in return for a quantity of the product. (Source:
[HR18]).

In [HR18] we propose a fair solution to the transfer pricing problem that rests on a solid
foundation in bargaining theory and which is new to the transfer pricing literature. We
mainly use the transfer pricing scenario as we compare the solution to other well-known
solutions from this field. To be more precise, for a transfer pricing game under incomplete
information we determine the generalized Nash bargaining solution. Requiring agreements
to be incentive compatible and/or efficient, we further highlight the relation between
these two desirable properties. For a necessary intermediate result for the applicability
of the generalized Nash bargaining solution, we show that the transfer pricing game is
regular, meaning that it is possible to guarantee each division a strictly positive expected
profit, regardless of their specific private information. From a managerial perspective,
the appealing feature of the generalized Nash bargaining solution is that it provides each
division with a strictly positive expected profit. Further, we derive necessary conditions for
a mechanism that implements the generalized Nash bargaining solution (Propositions 4, 5,
and 6) and shed light on the trade-off between efficiency and fairness (Proposition 7). As
illustrated in examples, the Nash solution tends to keep differences in divisional profits
smaller in comparison to other solutions. Two examples illustrate differences between the
generalized Nash bargaining solution and well-established alternatives from [Wag94].

In sum, we find that if parties are interested in a fair outcome, our analysis provides good
arguments to use the generalized Nash bargaining solution. For the bargaining problem
on an OTF market, we may think of bargaining problems as being automatically resolved
in a way that takes fairness and efficiency into account. While the former increases the
attractiveness of an OTF platform, the latter increases the incentives of a market maker to

2. Highlights and Lessons Learned 31

provide the platform itself.

The nature of a (cooperative) bargaining problem is to distribute common gains in a fair
way. Apart from bargaining particular bargaining situations in which parties bargain once,
we also investigated problems of repeated interaction from a structural point of view.
[Hoo20] analyzes a model in which the bargaining problem is shaped by the possible
payoffs from strategies in a differential game, i.e., a non-cooperative game that is played
in continuous time. Thus, in this scenario the participants may share common gains over
time. In terms of fairness, this requires that solutions be individually rational over time and
consistent with time preferences, which can be thought of as discount factors for future
payoffs. The main result is that for a class of underlying differential games, both properties
are already fulfilled when the bargaining solution satisfies an overall individual rationality.
One advantage of the latter property is that it is intuitive, as it guarantees participation in
the interaction and in accordance with the main result, it triggers consistency over time.
From a theoretical point of view, this has an impact on which bargaining solution should
or should not be selected by a market designer.

Matching
The problem of finding a good market allocation is directly connected to the question,
who serves whom in the market. There is a still growing literature on two-sided matching
markets that discusses algorithms for matching agents from one group to agents of another
group. The assessment whether an algorithm is “good” or “bad” is ultimately linked to the
properties of the final outcome. Besides the efficiency, stability of the matching plays the
most important role. It guarantees that no agent or group of agents would want to alter
the matching and have the possibilities to do so. Examples for classical matching markets
are the marriage market and college admissions [GS62], school choice [AS03] and the
housing market [SS74].

In an OTF market, specific allocation problems can be viewed as a matching market – end
users have to be matched to OTF service providers, while service providers are matched to
OTF service providers. The ingredients of a matching market are the participants’ prefer-
ences over participants on the other side. For example, differences in the characteristics
of an OTF provider or the heterogeneity of traded composed services form a consumer’s
preferences over providers, while the users’ different demands or their willingness to pay
shape an OTF service provider’s preferences over users. Regarding an OTF market as
being organized on a (central) platform operated by an OTF market provider, the matching
problems can be described as a many-to-one matching market, which in the literature is
commonly termed the college admission problem (CAP) or school choice problem.

We address three main problems connected to desirable matchings in the OTF market: (1)
How can matching algorithms be adjusted to cope with users’ heterogeneous demands? (2)
Since the market is large, a participant may not know all options on the other side, but still
has to form preferences. Therefore, how can incomplete information on the participants be
dealt with? (3) Finally, how is the functioning of matching mechanisms affected, when the
formation of preferences follows an (automatic) pattern?

Question 1 addresses a problem that is widely ignored in classical matching models. In a
CAP, students are matched to exactly one seat at a college, so that all have the same weight
or need of capacity. The total number of available seats, or total capacity, belongs to a

Haake, Hehenkamp, Polevoy Subproject A3

college’s characteristics ([GS62; AS03]). For this scenario, the Boston Mechanism (BM),
the Deferred Acceptance Algorithm (DA), and the Top Trading Cycle Algorithm (TTC)
are the most used mechanisms in practice. But if the homogeneous demand assumption
that each student requires exactly one seat is dropped, only little is known. In weighted
matching markets or matching markets with sizes [BM14], stability can no longer be
assured [MM10].

In [HS20b] we start from the fact that stability is no longer assured and investigate how
we can find a stable outcome, if possible, and how to enable it otherwise. For this, we
introduce a new algorithm, the deferred acceptance algorithm with gaps, which either
results in a stable matching, if one exists, or leads to a cycle. If all students have the same
weight, meaning that they all need the same amount of capacity, the algorithm operates
exactly as the deferred acceptance algorithm [GS62]. However, if the algorithm leads to
a cycle, because there is no stable matching, we can arrive at stability by increasing or
decreasing the colleges’ capacities.

As stability is no longer guaranteed unless we modify capacities, it is also possible to have
a look at Pareto efficient outcomes of weighted matching problems or, more precisely,
weighted school choice problems. [Str20] proposes a variant of the TTC algorithm: namely,
the weighted TTC (WTTC), which is strategy-proof and yields a Pareto efficient outcome.
But although the main results carry over compared to the TTC, the usage of the WTTC
introduces a trade-off between weights and preferences or priorities. Thus, the introduction
of weights comes with some costs as it is more complex to guarantee each student a seat at
a college.

Addressing the second question, one source of incomplete information over the other
participants’ preferences comes from the bare size of the OTF market. Incomplete infor-
mation was introduced by [Rot89]. Given a strategy-proof matching algorithm, he shows
that truth-telling is still a dominant strategy if agents only have limited information about
the other agents’ preferences. While there is already some experimental research on the
functioning of algorithms that are not strategy-proof in a setting of incomplete information
[CS06; CLS16], no empirical evidence exists on the behavior of students in a school
choice problem with incomplete information when a variant of the Boston school choice
mechanism is used. The BM does not yield a stable or Pareto efficient outcome and, most
importantly, is not strategy-proof [AS03].

[HS20a] fills this lack and further introduces heterogeneity in the market by taking into
account different weights of students. Our research uses two different data sources, the
data derived from the clearinghouse that implements the matching algorithm itself and
data from a voluntary survey among the students who participated in the clearinghouse.
We find that over 74% of students misrepresent at least one of their ranks in the preference
list, which is not surprising given that the algorithm is not strategy-proof. But although
students are trying to exploit incentives, they do not necessarily succeed in improving
their outcomes through manipulation. This is mainly due to the fact that students have
incomplete information on the other students’ preferences. Additionally, some students do
better in misrepresenting than others. We call these students sophisticated, whereas another
group of students is not able to act in a consistent manner and is thus naive. This notion of
sophistication is based on the theoretical definition by [PS08]. We see that sophisticated
students actually reach significantly better outcomes than naive students.

2. Highlights and Lessons Learned 33

Another source of incomplete information may arise on the other market side, which
brings us to the third question. In school choice it is assumed that schools are not able
to rank all the students individually but with the help of some objective criteria [AS03].
But if these criteria are based on the students’ preferences this might actually undermine
the functioning of any matching mechanism. More precisely, [HS18] analyzes what
happens if the schools’ priorities are formed in a reciprocal way, i.e., based on the students’
preferences in a “first-preference-first” manner. We show that in this case the deferred
acceptance algorithm, the TTC, and the Boston school choice mechanism all yield the
same outcome and are thus manipulable. This means that even in otherwise strategy-proof
mechanisms, it is no longer a dominant strategy to state the true preferences.

To sum up, our works provide insights on how matching processes shall be set organized
in an OTF market. There, heterogeneity of agents and incomplete information on the
matching problems. The results show that special care has to be taken on the design strategy
proof algorithms and on the formation of preferences to exclude unwanted behavior or the
emergence of misdirected incentives.

Quality assurance: Customer evaluations
Addressing the question of how a good or poor service quality can be identified, we review
two papers on how customer feedback can be of assistance. One of the characteristics of
almost any market and in particular of OTF markets is that information on service qualities
is asymmetrically distributed. One reason for this is that services are typically experience
goods. Such goods do not reveal their true qualities to the consumer prior to purchase and
consumption. In that spirit, whether a particular service from a service provider or the
service composition sold by the OTF service provider actually delivers the desired result
to the end user can only be verified after the transaction between user and OTF service
provider has taken place.

A particular consequence of the observability of service quality after purchase is that it
opens the door for strategic interaction on the provider’s side. Because lower service
quality typically comes at lower costs, an optimal decision would be not to produce high
quality services. To make the problem even more demanding, service compositions may
fail to work well if there is only one single “bad” service used. A non-perfect but arguably
useful instrument to inform about experienced service quality is to use consumer evaluation
systems such as those introduced by online retailers. Resting on an intrinsic motivation
of customers to rate products, such systems may give a valuable tool for deciding which
service to request or to integrate into a composition.

Taking a theoretical perspective, we addressed two questions: First, how do providers
react to rating systems in the sense that they may exploit a good reputation? Second,
given information on ratings for composed services, can we use it to derive a rating of the
component services?

In [MFHR18] we modify the model from [Del05] and model the situation of a service
provider who strategically decides to repeatedly sell its service to customers in either high or
low quality. The delivered service is rated as good or bad by the customer, who is, however,
not fully able to identify the true quality. We therefore model a customer’s feedback as a
random variable, whose distribution depends on the delivered quality. Phrased differently,
from the provider’s perspective, there is a higher chance to receive a good rating when

Haake, Hehenkamp, Polevoy Subproject A3

the quality is good, compared to the case in which the quality is bad. Still, even with bad
quality, the provider may receive a positive rating. The collection of the three most recent
ratings is taken as a proxy for the provider’s reputation. The service price is modeled
to be directly dependent on the reputation, more precisely, on the number of positive
ratings among the three most recent ratings. When making a strategic decision, the service
provider has to compare the benefits from maintaining (or building) a good reputation with
a higher sales price and higher revenues with the temptation of milking a good reputation
by delivering bad quality and running the risk that prices will fall in response to a decline
in reputation.

We address this trade-off by analyzing the theoretical model as well and testing the result
in an experiment. Theoretically, we analyze the corresponding Markov Decision Problem
and demonstrate that keeping the service quality constant is an optimal strategy for the
service provider. In essence, whether supplying high or low quality is optimal depends on
the difference of probabilities for receiving a positive rating. The larger the difference, the
more accurate the consumer’s rating is. This is intuitive because increasing the probability
for a good rating when the quality is actually low increases the incentives to produce low
quality.

Milking behavior means that the provider delivers bad quality whenever enough positive
ratings appear in the rating history in order to keep the price high. When too many negative
ratings appear, a good reputation is built up by delivering good quality which comes with
a higher probability for good ratings. In the theoretical model the optimal strategy is
either to constantly sell good or bad quality, so that milking one’s own reputation does not
take place. In the experiment, however, milking behavior can be observed, meaning that
subjects with a high reputation tend to produce low quality for a couple of rounds, instead
of maintaining the good reputation (which would have been the optimal solution). The
striking lesson that we learn from this work impacts the design of reputation systems: The
better the accuracy of the system, the higher the incentives to serve the market with good
quality.

The second question focuses on how much we can say about the quality of single services.
In [FHSS18] we discuss how to disentangle the ratings for service compositions from
m services by n consumers as follows. Starting with the collection of user ratings over
compositions, there has to be an aggregation step A and a disaggregation step D to arrive
a rating over services, which leaves two options: a) either we first aggregate the ratings
across users, which gives us an overall rating of compositions and we can then elicit (or
disaggregate) information on single service ratings, or b) we first disaggregate individual
ratings to individual ratings over single services, which should then be aggregated to
an overall rating of single services. Figure 6 illustrates the aggregation/disaggregation
problem. The starting point (see upper left corner) is a n × 2m − 1 matrix, in which each
row corresponds to a user’s evaluation of the 2m − 1 possible service compositions. The
final result is supposed to be a 1 × m matrix (lower right corner) that contains ratings for
the m single services.

The task is to design informative aggregation operators A1 and A2 as well as disaggregation
operators D1 and D2. While from the outset it is not evident which operators fit best,
one essential property we impose is that the two routes sketched above yield the same
result, making the diagram in Figure 6 commutative. Moreover, anonymity requirements
guarantee that no single service and no two users are treated differently. Further, it should

2. Highlights and Lessons Learned 35

M(n × 2m − 1) M(n ×m)
D1

M(1 × 2m − 1) M(1 ×m)
D2

A1 A2

1

Figure 6: Aggregation and disaggregation (from [FHSS18]).

not be possible for a single user to significantly manipulate the rating of a single service by
changing its own valuations.

For the disaggregation step, we reinterpret a rating over compositions as a cooperative
game with transferable utility (TU game) and use the Shapley value as a solution concept
to attribute a rating to each single service/player. For an aggregation device (across
users), we use the averaging operator. This combination turns out to be commutative in
the sense above. It is anonymous and no single user has a strong influence on the final
valuations. Other (intuitive) methods such as taking minimal or maximal composition
values particularly fail to satisfy this non-manipulability property.

For the OTF market, this means that a smartly designed system that processes end user
valuations over composed services can help to identify those (component) services that
fail to work well in compositions. This information in turn can be used by OTF service
providers when composing services to satisfy a user request. Therefore, the demand for
and pricing of services are influenced by the analysis of customer feedback.

Mechanism Design
Designing a market means designing the rules for interaction according to which the
market participants react to and choose their strategies. The combination of strategies
determine allocations, payoffs, or welfare, hence the market outcome. The design of rules
such that strategic behavior finally leads to a desired (market) outcome is at the heart of
implementation theory or mechanism design. At a fundamental level, the question arises
which outcomes can be implemented through strategic interaction at all and what is an
appropriate equilibrium concept. In [HT21] we analyze this problem in a very general
model. The notion of a mechanism (describing the rules of interaction) is expanded to one
of a socio-legal system, which allows to cope with two types of obstacles that have been
widely ignored in the mechanism design literature.

First, unlike in traditional mechanism design, a player’s set of feasible strategies may
depend on the other players’ choices of strategy. As a consequence, specific strategy
profiles might not be feasible. For a simple illustrative example, consider a number of OTF
service providers who choose how much capacity of a hardware resource they want to use.
Because the total capacity is limited, each strategy profile of the other providers sets an
upper bound for the choice of a particular provider. Phrased differently, it might occur
that the total capacity chosen by all providers exceeds the maximally possible capacity of
the resource. However, one of the providers could be blamed for choosing the “wrong”
strategy, because feasibility is a property of the chosen profile of strategies. Second, the
mechanism designer (e.g., the OTF market maker) might want to avoid “illegal” behavior
in the sense that particular outcomes should not occur. As a simple example one can think

Haake, Hehenkamp, Polevoy Subproject A3

of OTF service providers who can choose to either serve or not serve a particular customer.
The designer can declare that all profiles in which at least one provider serves the customer
are “legal” ones, because he is interested in an outcome guaranteeing that the customer is
served.

The extension from mechanisms to socio-legal systems requires an adaption of the equi-
librium concept. We define the notion of a Debreu-Hurwicz equilibrium that combines
the Nash equilibrium concept with features from Hrwicz’ work on legality and Debreu’s
social equilibrium concept (see [Hur94], [Deb52], [KY18]). The choice or design of the
equilibrium concept is ultimately linked to the question which social choice rules, i.e.,
which desirable outcomes, are implementable.

We address this question by investigating implementability of the cooperative Nash bar-
gaining solution, which marks the desired outcome for a population of players. We find that
by gradually expanding the equilibrium notion from Nash to Debreu-Hurwicz, undesired
equilibria (i.e., those that do not trigger the Nash bargaining solution as an outcome) can be
removed so that we have ultimately been able to show a new uniqueness result. Although
our paper does not directly construct or analyze a specific interaction in the OTF market,
it aims at opening a new route in implementation theory allowing to explicitly cope with
unwanted behavior by the players. This is important for the functionality of interaction.

2.3 Algorithmic Game Theory

We now review the primary works in subproject A3 that employ the algorithmic game
theory approach. Game theory complements the mechanism design approach, where one
designs interaction, by rather analyzing, e.g., existence and properties of equilibria in
specific interactions. Algorithmic game theory studies both interactions of algorithms,
such as the competition of trading or negotiation algorithms, and also algorithms executed
on models of interactions, such as computing Nash equilibria or bargaining outcomes.

We start off by presenting general models of strategic sharing of resources under the
umbrella of budget games, which model a market of products, and of various congestion
games, which model sharing situations. We then continue with the less general but more
network-specific progressive filling games, where the choice of routes determines the
allocated bandwidth in a natural utility max-min fairness manner. Finally, we present a
practically relevant online algorithm generalizing bin packing.

Sharing of resources
Our works contribute to the literature on sharing resources. [DRS14] study a market
situation via introducing budget games, in which players choose tasks (products), that in
turn have demands for resources. Consequently, choices have an influence on the sharing
of necessary resources between chosen tasks. The budgets of resources are either shared
proportionally between the tasks or dependent on the decision order. The authors studied
the optimal solution, as well as the existence, complexity and efficiency of equilibria.

This model, for instance, describes resource sharing that occurs in cloud computing where
the clients compete on the products of the cloud. In the strategic variant of the game, in
which market entrance is simultaneous, the utility of a resource is shared proportionally. In

2. Highlights and Lessons Learned 37

contrast, in an ordered budget game that models the market entrance order the resources are
allocated in the entrance order, and a deviator moves to the last position. Since the strategic
budget game is a basic utility game, its price of anarchy is at most 2, as proven in [Vet02].
[DRS14] prove that this bound also holds for ordered budget games. First, [DRS14]
prove that finding the optimal allocation is NP-hard and can be approximated within 1˘1/e,
provided the players’ strategies form a matroid. Concerning the Nash equilibrium, it may
not exist in the strategic budget game and deciding whether it does or not is NP-hard. In the
ordered budget games, even strong Nash equilibria exist and are polynomially computable.
The strong price of stability is 1, while the strong price of anarchy is 2. The authors
demonstrate that improvement moves converge to a Nash equilibrium, but it may take
exponentially many steps.

A related model, which also studies sharing resources, albeit differently, is the one of
congestion games and their variations, which capture many important interactions: in
particular, network interactions where bandwidth, CPU or another resource is used by
several parties. In the face of the need imposed by their ubiquity, computing the equilibria
of congestion games is appallingly PLS-complete ([FPT04; AS08; ARV08]). Moreover,
weighted congestion games may possess no potential function or even no pure Nash
equilibria at all ([GMV05; FKS05]), and it is NP-hard to decide whether Nash equilibria
exist ([DS08]). The only classes where a potential always exists are classes with linear or
exponential cost functions ([FKS05; HK12; PS07]). But even for linear costs, computing
and equilibrium is PLS-complete ([ARV08]). Since mixed equilibria are generally harder to
interpret, the lack of pure ones indeed poses a problem. In order to ameliorate the existence
and computation problem, [CFGS15] studies existence and structure of approximate Nash
equilibria in weighted congestion games. They also proposed several algorithms to find
approximate Nash equilibria. An earlier algorithm by the same authors in [CFGS11]
computes a constant-approximate Nash equilibrium in unweighted congestion games with
cost functions all being constant-degree polynomials. Another known result is that for
symmetric unweighted congestion games, any 1 + ε-improvement dynamics converges to a
1 + ε-approximate Nash equilibrium in a polynomial number of steps ([CS11]). Moreover,
[AAE+08] shows rapid convergence to socially efficient states, but those states need not be
approximate equilibria.

[CFGS15] approximates a given weighted potential game with a special potential game
termed Ψ-game. They approximate a weighted congestion game with cost functions
of degrees at most d ≥ 2 with a Ψ-game of degree d, and prove that a ρ-approximate
equilibrium of such a Ψ-game of degree d constitutes a d!ρ-approximate equilibrium of
the original weighted congestion game. Since the Ψ-games have potential and thus a Nash
equilibrium, this implies that the original game possesses a d!-approximate equilibrium.
They also provide polynomial approximation algorithm for constant d and bound the
length of a best-response sequence from any initial state to a dO(d2)-approximate pure Nash
equilibrium.

Following up on [CFGS15], [HKS14] sets out to improve the approximation factors of
approximate pure Nash equilibria. Since the existence of an α-approximate potential
function implies the existence of an α-approximate Nash equilibrium and the convergence
to such an equilibrium of steps improving by the factor of at least α, they concentrate on
α-approximate potential functions with smallest possible αs. For several cost functions,
such as the polynomial ones or the concave ones, they prove the existence of α-approximate

Haake, Hehenkamp, Polevoy Subproject A3

potential functions with smaller values of α than was previously known. Concretely, they
provide the upper bounds of 3/2 for concave cost functions and bounds of 4/3, 1.785 and
2.326 for polynomials of degrees 2, 3 and 4, respectively. In general, for polynomials of
degree l, their bound is l + 1. For two players, their results are provably tight.

Progressive filling games
Congestion games constitute very important general models, but they assume a player’s
bandwidth is the sum of what she gets allocated on each edge, rather than the maximum
thereof. This is ameliorated by the bottleneck congestion games ([CDR06]) where the
bandwidth of a player is the maximum allocated bandwidth. However, the computation of
an equilibrium there is NP-hard. Moreover, the main modeling disadvantage of bottleneck
congestion games is the lack of flexibility in bandwidth allocation, contrary to the flexible
Max-Min Fairness (MMF) from [BG21], which we present next. Therefore, [HHSS14]
defines and analyzes Progressive Filling Games (PFG), which model players choosing
routes and receiving fair bandwidth according to the MMF algorithm. That work gener-
alizes [YXF+10; YXF+13] to strong NE and a broader class of water-filling algorithms.
They also provide a picture of the complexity of computing SNE and present the prices
of anarchy and stability, as we now describe. MMF is a known fairness standard, where
nobody’s allocation can be increased without hurting a worse-off party. Some known gener-
alizations include weighted MMF and utility MMF. This paper implements utility MMF by
a polynomial water-filling algorithm. They define routing games with progressing filling,
where each player picks a set of resources, aiming to optimize her allocated bandwidth.
They assume that the flow control instantly converges to the corresponding generalization
of MMF after each route update, an assumption justified, for example, by [WLLD05].

[WLLD05] studies the existence, the computation and the efficiency of the pure and of
strong NE in these games. They first prove the existence of strong NE for any generalization
of the water-filling algorithm. As long as certain conditions on the rate functions hold,
conditions that cannot be dropped. The authors also suggest an algorithm to compute a
strong NE, employing a packing oracle. They then present hardness results for computing
strong NE. Next, the authors provide tight bounds on the prices of anarchy and stability,
assuming the utilitarian social welfare, providing bounds that hold even if an arbitrary
capacity-respecting allocation is allowed, not necessarily an MMF one. In general, the
prices of anarchy and stability are n, and this is tight for both pure and strong equilibria. For
routing a single commodity using MMF, the price of stability is 2 − (1/n) for both normal
and strong NE, and the price of anarchy is n for NE and 4 for strong NE, all the bounds
besides the latter being tight. If the allocation rules are fixed, the 2 − (1/n) bound cannot
be overcome. However, if we can adjust the weights in the weighted MMF water-filling
algorithm, then we can make the game have an optimum SNE. This is NP-hard to compute,
but can be approximated.

Bin packing
Since execution of composed services is an integral part of the OTF market, an important
algorithmic topic addressed in subproject A3 is cloud-server storage, balancing the server
limitations and minimizing the cloud costs, including reducing the wear and tear of the
server, energy costs, and the communication and the execution time. This is modeled
in [FFG+18], who design an online algorithm for dynamic bin packing that balances

3. Conclusion and Outlook 39

competitiveness ratio with minimizing the number of repacks, called recourse. Offline
bin packing is approximable with additive O(log OPT), where OPT is the optimum value,
but online bin packing has a 1.540 multiplicative gap, even when the optimum value
approaches infinity. This work now considers fully dynamic bin packing with bounded
recourse, namely allowing arrival and departures of items and their repacking. They define
worst-case and amortized recourse, measuring the movement costs at each time or in total,
respectively.

This work characterizes the recourse to asymptotic competitive ratio trade-off in the
following cases. For unit movement costs, they provide tight upper and lower bounds.
The asymptotic competitive ratio here is better than that for online bin packing without
repacking! That technique uses LPs and Myopic packing from [Ivk95]. For general
movement costs, [Sei02] suggests a super harmonic algorithm with constant recourse,
implying a competitive ratio of 1.589, which is close to the best known bin packing result
of 1.578 [BBD+18]. Moreover, the authors conjecture that fully dynamic algorithms can
be reduced to online ones, which would imply equal asymptotic competitive ratios, while
maintaining a constant recourse. Finally, if the costs are just equal to the sizes, the authors
provide a tight bound.

3 Conclusion and Outlook

The lessons we learned from our analyses of the OTF market and the interactions within
raise new questions that are not exclusively interesting for the functioning of OTF markets.
In what follows, we briefly comment on these more general implications of our findings
for economic modeling and future works.

Bundling
The theory of bundling and tying is highly developed. Our paper is unique in that it
specifically takes and analyzes an asymmetric exogenous market and distribution structure
as a starting point. What is more, we show that under certain conditions this asymmetric
distribution structure emerges as an equilibrium outcome in a richer model where the
participating service providers also decide on their distribution channels.

Our question, under which conditions bundling occurs, does not only represent one of
the core questions in the analysis of OTF markets, but also has important bearings for
the analysis of bundling and tying in general markets. In particular, our findings point
to negative welfare effects of product bundling and raise serious antitrust concerns. An
empirical analysis to quantify the welfare effects would be desirable.

Opening markets for competition
Politicians and economists alike quite generally believe in the benefits of competition.
Accordingly, they often advocate the opening of markets for competitors. This issue
has been thoroughly analyzed for ’normal’ markets, but not so much for public provider
monopolies that are opened for competition to private providers. Here, the contribution of
our paper sets in.

Our experimental analysis points both to beneficial effects that are caused by introducing
competition, but also to negative effects that result from collusion and from the immobility

Haake, Hehenkamp, Polevoy Subproject A3

(or non-responsiveness) of customers. Importantly, introducing competition amplifies
treatment inequalities across customer groups.

Our theoretical analysis shows that introducing competition in a price-regulated market
does not necessarily bring about higher quality. In particular, if the regulator’s budget is
small, opening a formerly monopolistic market for competition will entail that an entrant
differentiates its product away from the existing product in order to soften competition. As
a consequence quality may not be raised at all. For larger budgets, quality will eventually
be raised by both the incumbent public provider and the private entrant. However, these
budgets also need to be financed, the cost of which is substantial.

Our findings raise a number of interesting questions. As to our experimental analysis, it
would be instrumental to identify ways that would allow to avoid the unequal treatment of
customers, in particular the low quality treatment of disadvantaged ones. Our theoretical
model could be extended to allow for multiple dimensions of quality (contractible vs.
non-contractible) or to include horizontal dimensions other than location.

Firm survival and innovation
Our economic evolutionary approaches to the analysis of behavior in innovation contest
represent the first theoretical approaches that are capable of explaining overdissipation,
a phenomenon that has also been observed empirically in experiments. It would be
interesting to engage in an empirical analysis that covers real markets for innovation. Here,
a structural econometric approach would be appropriate.

Bargaining
The interaction among few players requires an alternative to models of competition. In-
stead, bargaining models are the more appropriate choice. While fairness and efficiency
are compatible in the case in which players are completely informed about each other’s
preferences, we have identified a trade-off between these properties in the case of incom-
plete information. Still, in the literature on bargaining theory there are few works that
actually work out this trade-off by rigorously defining and analyzing solution concepts that
are adapted to the information scenario. Especially asymmetric solutions deserve a more
detailed investigation, because not only in the OTF context do the players bring different
skills or power to the bargaining table.

To better understand differences between the various solution concepts that are discussed
in the literature, it would be worthwhile to find a common ground in the sense of a unified
approach. This could be done either on a descriptive basis, so that solutions appear as
special cases of a more “universal” solution, or on a normative ground, meaning that
characterizing axioms are comparable. Either way, results may help to judge which
bargaining solution is most appropriate for a given problem.

Matching
Matching theory is a vital and growing research field that has branched out into many
diverse applications and questions. From our works on matching mechanisms we have
learned that large markets, in which agents are naturally not able to know all other agents
and their preferences, require a careful design of matching mechanisms that provide the
right incentives.

3. Conclusion and Outlook 41

When encountering the largeness of a market by (partly) generating preferences, particular
patterns may occur that cause unwanted incentives for strategic behavior. Thus, we see
a tradeoff between facilitation and prevailing incentives, which has not yet been well
explored in the literature.

The treatment of primary data on preferences marks another challenge for future research.
Since matching mechanisms are typically conducted by a central clearinghouse, all relevant
information has to be collected at one place. A distributed version of a mechanism that
collects information at different places contributes to the protection of private data and
thus enhances the acceptability of the procedure. Here, cryptographic methods may help
to reach decentralized versions with a minimum exchange of information.

Reputation systems
We have seen that implementing a rating system for services that is as accurate as possible
reduces the incentives for providers to milk one’s own reputation and deliver poor quality
services at a high price. Further, a smart processing of user evaluations can identify poor
quality. Both results are promising, not only in the light of OTF markets. The study of
aggregation and disaggregation of user information can still be refined in a positive as well
as a normative direction. From a positive viewpoint, for example, the investigation would
look into how an inherent asymmetry among users (experts vs. ordinary end users) can be
reflected in the aggregation process. From a normative viewpoint, a characterization of
data processing through axioms is still missing with which ideally different mechanisms
can be assessed by their defining properties.

Apart from theoretical work, it will be interesting to investigate how real agents react to
different designs of a reputation system. As a result, experimental evidence gives (further)
advice which elements of a system are important. This includes anonymity of raters, the
rating scale, or (possibly aggregated) information that is displayed.

Mechanism design
Here, our research is meant to be of a more general nature. The aim was to describe a
framework in which unwanted strategic behavior can be captured. In the language of
OTF markets, one could say that the market provider (the mechanism designer) may use
mechanisms that, e.g., rule out the use of an illegal strategy. At a conceptual level, this
means that the responsibility for adhering to the rules is shifted from the players to the
designer. However, this immediately renews an old question about the responsibility of
the designer or, as cited in [Hur94], “but who will guard the guardians.” Fitting the idea
that OTF markets are self-organizing systems, one way could be to equip a mechanism
with a control device that allows the players themselves to regulate the designer’s choice
of mechanism.

Bibliography

[AAE+08] Awerbuch, B.; Azar, Y.; Epstein, A.; Mirrokni, V. S.; Skopalik, A.: Fast Convergence
to Nearly Optimal Solutions in Potential Games. In: Proceedings of the 9th ACM Con-
ference on Electronic Commerce. EC ’08. Chicago, Il, USA: Association for Computing
Machinery, 2008, pp. 264–273.

Haake, Hehenkamp, Polevoy Subproject A3

[ARV08] Ackermann, H.; Röglin, H.; Vöcking, B.: On the Impact of Combinatorial Structure on
Congestion Games. In: J. ACM 55 (Dec. 2008), no. 6.

[AS03] Abdulkadiroğlu, A.; Sönmez, T.: School choice: A mechanism design approach. In: The
American Economic Review 93 (2003), no. 3, pp. 729–747

[AS08] Ackermann, H.; Skopalik, A.: Complexity of Pure Nash Equilibria in Player-Specific
Network Congestion Games. In: Internet Mathematics 5 (2008), no. 4, pp. 323–342

[BBD+18] Balogh, J.; Békési, J.; Dósa, G.; Epstein, L.; Levin, A.: A New and Improved Algorithm
for Online Bin Packing. In: 26th Annual European Symposium on Algorithms (ESA 2018).
Ed. by Azar, Y.; Bast, H.; Herman, G. Vol. 112. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018, 5:1–5:14.

[BG21] Bertsekas, D.; Gallager, R.: Data Networks: Second Edition. Athena Scientific, 2021.

[BHK17] Brosig-Koch, J.; Hehenkamp, B.; Kokot, J.: The effects of competition on medical service
provision. In: Health Economics 26 (2017), no. 53, pp. 6–20

[BHK23] Brosig-Koch, J.; Hehenkamp, B.; Kokot, J.: Who benefits from quality competition in
health care? A theory and a laboratory experiment on the relevance of patient characteris-
tics. In: Health Economics (2023)

[BM14] Biró, P.; McDermid, E.: Matching with sizes (or scheduling with processing set restric-
tions). In: Discrete Applied Mathematics 164 (2014), pp. 61–67

[CDR06] Cole, R.; Dodis, Y.; Rough2006garden, T.: Bottleneck Links, Variable Demand, and the
Tragedy of the Commons. In: vol. 60. Jan. 2006, pp. 668–677

[CFGS11] Caragiannis, I.; Fanelli, A.; Gravin, N.; Skopalik, A.: Efficient Computation of Ap-
proximate Pure Nash Equilibria in Congestion Games. In: CoRR abs/1104.2690 (Apr.
2011)

[CFGS15] Caragiannis, I.; Fanelli, A.; Gravin, N.; Skopalik, A.: Approximate Pure Nash Equilibria
in Weighted Congestion Games: Existence, Efficient Computation, and Structure. In:
Transactions on Economics and Computation 3 (2015), no. 1

[CLS16] Chen, Y.; Liang, Y.; Sönmez, T.: School choice under complete information: An exper-
imental study. In: The Journal of Mechanism and Institution Design 1 (2016), no. 1,
pp. 45–82

[CS06] Chen, Y.; Sönmez, T.: School Choice: an experimental study. In: Journal of Economic
theory 127 (2006), no. 1, pp. 202–231

[CS11] Chien, S.; Sinclair, A.: Convergence to approximate Nash equilibria in congestion games.
In: Games and Economic Behavior 71 (2011), no. 2, pp. 315–327.

[Deb52] Debreu, G.: A social equilibrium existence theorem. In: Proceedings of the National
Academy of Sciences 38 (1952), no. 10, pp. 886–893

[Del05] Dellarocas, C.: Reputation Mechanism Design in Online Trading Environments with
Pure Moral Hazard. In: Information Systems Research 16 (2005), no. 2, pp. 209–230

[DRS14] Drees, M.; Riechers, S.; Skopalik, A.: Budget-Restricted Utility Games with Ordered
Strategic Decisions. In: Algorithmic Game Theory - 7th International Symposium, SAGT
2014, Haifa, Israel, September 30 - October 2, 2014. Proceedings. Ed. by Lavi, R.
Vol. 8768. Lecture Notes in Computer Science. Springer, 2014, pp. 110–121.

[DS08] Dunkel, J.; Schulz, A. S.: On the Complexity of Pure-Strategy Nash Equilibria in Conges-
tion and Local-Effect Games. In: Mathematics of Operations Research 33 (2008), no. 4,
pp. 851–868.

[EHH22] Endres, A. E.; Hehenkamp, B.; Heinzel, J.: The Impact of Product Differentiation on Retail
Bundling in a Vertical Market. Tech. rep. Paderborn University, 2022

3. Conclusion and Outlook 43

[FFG+18] Feldkord, B.; Feldotto, M.; Gupta, A.; Guruganesh, G.; Kumar, A.; Riechers, S.; Wajc,
D.: Fully-Dynamic Bin Packing with Little Repacking. In: 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018). Ed. by Chatzigiannakis, I.;
Kaklamanis, C.; Marx, D.; Sannella, D. Vol. 107. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018, 51:1–51:24.

[FHSS18] Feldotto, M.; Haake, C.-J.; Skopalik, A.; Stroh-Maraun, N.: Disaggregating User Eval-
uations Using the Shapley Value. In: Proceedings of the 13th Workshop on Economics
of Networks, Systems and Computation (NetEcon 2018). Irvine, California, USA, 2018,
5:1–5:6

[FKS05] Fotakis, D.; Kontogiannis, S.; Spirakis, P.: Selfish unsplittable flows. In: Theoretical
Computer Science 348 (2005), no. 2. Automata, Languages and Programming: Algorithms
and Complexity (ICALP-A 2004), pp. 226–239.

[FPT04] Fabrikant, A.; Papadimitriou, C.; Talwar, K.: The Complexity of Pure Nash Equilibria.
In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing.
STOC ’04. Chicago, IL, USA: Association for Computing Machinery, 2004, pp. 604–612.

[GHL19] Gu, Y.; Hehenkamp, B.; Leininger, W.: Evolutionary equilibrium in contests with stochastic
participation: Entry, effort and overdissipation. In: Journal of Economic Behavior and
Organization (2019), pp. 469–485

[GMV05] Goemans, M.; Mirrokni, V.; Vetta, A.: Sink equilibria and convergence. In: 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’05). 2005, pp. 142–151

[GS62] Gale, D.; Shapley, L. S.: College admissions and the stability of marriage. In: The
American Mathematical Monthly 69 (1962), no. 1, pp. 9–15

[HHSS14] Harks, T.; Höfer, M.; Schewior, K.; Skopalik, A.: Routing Games with Progressive
Filling. In: Proceedings of the 33rd Annual IEEE International Conference on Computer
Communications (INFOCOM’14). 2014, pp. 352–360

[HK12] Harks, T.; Klimm, M.: On the Existence of Pure Nash Equilibria in Weighted Congestion
Games. In: Mathematics of Operations Research 37 (2012), no. 3, pp. 419–436.

[HK20] Hehenkamp, B.; Kaarbøe, O. M.: Location Choice and Quality Competition in Mixed Hos-
pital Markets. In: Journal of Economic Behavior and Organization 177 (2020), pp. 641–
660

[HK23] Hehenkamp, B.; Kaarbøe, O. M.: Price Regulation, Quality Competition and Location
Choice with Costly Relocation. Tech. rep. Paderborn University, 2023

[HKS14] Hansknecht, C.; Klimm, M.; Skopalik, A.: Approximate pure Nash equilibria in weighted
congestion games. In: Proceedings of the 17th. International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX). 2014, pp. 242–257

[HLP04] Hehenkamp, B.; Leininger, W.; Possajennikov, A.: Evolutionary equilibrium in Tullock
contests: spite and overdissipation. In: European Journal of Political Economy 20 (2004),
no. 4, pp. 1045–1057.

[Hoo20] Hoof, S.: On a class of linear-state differential games with subgame individually rational
and time consistent bargaining solutions. In: Journal of Mechanism and Institution Design
5 (2020), p. 1

[HR18] Haake, C.-J.; Recker, S.: The Generalized Nash Bargaining Solution for Transfer Price
Negotiations under Incomplete Information. In: Group Decision and Negotiation 27
(2018), no. 6, pp. 905–932

[HS18] Haake, C.-J.; Stroh-Maraun, N.: Outcome equivalence in school choice with reciprocal
preferences. In: Economics Letters 170 (2018), pp. 39–41

[HS20a] Hoyer, B.; Stroh-Maraun, N.: Matching strategies of heterogeneous agents under incom-
plete information in a university clearinghouse. Tech. rep. 2020, pp. 453–481

Haake, Hehenkamp, Polevoy Subproject A3

[HS20b] Hoyer, B.; Stroh-Maraun, N.: Stability in Weighted College Admissions Problems. Work-
ing Papers Dissertations 63. Paderborn University, Faculty of Business Administration
and Economics, May 2020.

[HT21] Haake, C.-J.; Trockel, W.: Socio-legal systems and implementation of the Nash solution
in Debreu–Hurwicz equilibrium. In: Review of Economic Design (2021)

[Hur94] Hurwicz, L.: Economic design, adjustment processes, mechanisms, and institutions. In:
Economic Design 1 (1994), no. 1, pp. 1–14

[Ivk95] Ivković, Z.: Fully dynamic approximation algorithms. University of Delaware, 1995

[KY18] Koray, S.; Yildiz, K.: Implementation via rights structures. In: Journal of Economic
Theory 176 (2018), pp. 479–502

[MFHR18] Mir Djawadi, B.; Fahr, R.; Haake, C.-J.; Recker, S.: Maintaining vs. Milking Good
Reputation when Customer Feedback is Inaccurate. In: PLoS ONE 13 (2018), no. 11

[MM10] McDermid, E. J.; Manlove, D. F.: Keeping partners together: algorithmic results for the
hospitals/residents problem with couples. In: Journal of Combinatorial Optimization 19
(2010), no. 3, pp. 279–303

[PS07] Panagopoulou, P. N.; Spirakis, P. G.: Algorithms for Pure Nash Equilibria in Weighted
Congestion Games. In: ACM J. Exp. Algorithmics 11 (Feb. 2007), 2.7–es.

[PS08] Pathak, P. A.; Sönmez, T.: Leveling the playing field: Sincere and sophisticated players in
the Boston mechanism. In: The American Economic Review 98 (2008), no. 4, pp. 1636–
1652

[Rot89] Roth, A. E.: Two-sided matching with incomplete information about others’ preferences.
In: Games and Economic Behavior 1 (1989), no. 2, pp. 191–209

[Sei02] Seiden, S. S.: On the Online Bin Packing Problem. In: J. ACM 49 (Sept. 2002), no. 5,
pp. 640–671.

[SS74] Shapley, L.; Scarf, H.: On cores and indivisibility. In: Journal of Mathematical Economics
1 (1974), no. 1, pp. 23–37

[Str20] Stroh-Maraun, N.: Pareto Efficiency in Weighted School Choice Problems. Working
Papers Dissertations 64. Paderborn University, Faculty of Business Administration and
Economics, May 2020.

[Vet02] Vetta, A.: Nash equilibria in competitive societies, with applications to facility location,
traffic routing and auctions. In: The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002. Proceedings. 2002, pp. 416–425

[Wag94] Wagenhofer, A.: Transfer pricing under asymmetric information: An evaluation of alter-
native methods. In: European Accounting Review 3 (1994), no. 1, pp. 71–103

[WLLD05] Wang, J.; Li, L.; Low, S.; Doyle, J.: Cross-layer optimization in TCP/IP networks. In:
IEEE/ACM Transactions on Networking 13 (2005), no. 3, pp. 582–595

[YXF+10] Yang, D.; Xue, G.; Fang, X.; Misra, S.; Zhang, J.: Routing in max-min fair networks: A
game theoretic approach. In: Oct. 2010, pp. 1–10

[YXF+13] Yang, D.; Xue, G.; Fang, X.; Misra, S.; Zhang, J.: A Game-Theoretic Approach to Stable
Routing in Max-Min Fair Networks. In: IEEE/ACM Transactions on Networking 21 (2013),
no. 6, pp. 1947–1959

45

Subproject A4:

Empirical Analysis in Markets for OTF Services

Behnud Mir Djawadi1, Alina Elrich1, René Fahr1, Bernd Frick1, Daniel
Kaimann1, Dennis Kundisch1, Michelle Müller1, Martin Poniatowski1,

Sabrina Schäfers1

1 Faculty of Business Administration and Economics,
Paderborn University, Paderborn, Germany

1 Introduction

In OTF markets, sophisticated combined services in mainly small quantities with predom-
inantly experience attributes are traded. These attributes, which can hardly be known
before using the service, and the many actors involved in creating these services result in
unavoidable information asymmetries with corresponding adverse effects on the market
outcome, including the risk of market failure [ake78]. Due to these characteristics of
the OTF market, online reviews and certificates are significant in reducing information
asymmetries between the service provider and the customer about the quality of the traded
services. While a substantial body of literature emerged that examines to what extent
online reviews are an effective measure to mitigate this problem, several research gaps are
identified for the study of online reviews in OTF markets.

A) Influence of service and market characteristics on online reviews and economic
outcomes

Understanding the influence of service and market characteristics on online reviews and
economic outcomes is crucial for developing a successful OTF market in which all partic-
ipants can generate (economic) benefits. Prior research has revealed that an increase in
the average rating, as well as the total number of reviews from consumers, have a positive
effect on the demand of a product or service and the price offered by a firm (e.g.,[LH08]).
Moreover, several studies have estimated the to what extent reviews by professional critics
impact the sales performance [HMM12]. However, a significant limitation of many of these
studies is that they tend to control either only for consumer reviews or only for professional
critics, even though Chintagunta et al. [CGV10] have highlighted the potentially significant
differences between reviews from professional critics and users. Therefore, as a part of
the CRC, Cox and Kaimann [CK15] analyze the relationship between economic outcomes
and two signals of product quality: reviews from professional critics and reviews from

behnud.djawadi@wiwi.uni-paderborn.de (Behnud Mir Djawadi), alina.elrich@uni-paderborn.de (Alina
Elrich), rene.fahr@wiwi.uni-paderborn.de (René Fahr), bernd.frick@wiwi.upb.de (Bernd Frick),
daniel.kaimann@uni-paderborn.de (Daniel Kaimann), dennis.kundisch@wiwi.uni-paderborn.de (Dennis
Kundisch), michelle.mueller@wiwi.uni-paderborn.de (Michelle Müller), martin.poniatowski@wiwi.uni-
paderborn.de (Martin Poniatowski), sabrina.schaefers@uni-paderborn.de (Sabrina Schäfers)

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

consumers. Additionally, as the current literature has only partially examined the influence
of ratings and ad expenditures separately and jointly on a product’s or service’s demand in
online markets, Frick and Kaimann [FK17] shed light on this relationship. Moreover, what
is less well understood in the online review literature are the effects of the variance of the
online reviews (i.e., the distribution of the online ratings) on economic outcomes on the
level of firms. To address this gap, Zimmermann et al. [ZHKN18] developed an analytical
model that decomposes the variance of online ratings into two sources: taste differences
in search and experience attributes of a product or service and quality differences among
instances of this product or service in the form of product failure. In addition, on the more
aggregated market level, it has remained unclear what impact the local market competi-
tion has on the heterogeneity of available businesses in a market. Gutt et al. [GHR19]
contributed to the answer to this question by empirically investigating the relationship
between the range and average of the mean rating distribution in the market and market
competition.

B) Opportunistic behavior of service providers

Complex services are combined in OTF markets. Customers may not have the expertise to
judge the service or product quality correctly. In OTF markets, there is the potential that
customers may make mistakes in evaluating the true quality of the provided service. This
inaccurate customer feedback, however, may impact the service provider’s decisions about
the quality. For example, the service provider might be tempted to charge a high price
but deliver low quality, as the customer erroneously may rate the service as high quality.
While the current literature has addressed the effect of inaccurate customer feedback on
the functioning of reputation systems (e.g., [MDC14]), it only focused on intentional
customer behavior. For example, customers intentionally fake transactions and provide
dishonest feedback to damage the seller’s or service provider’s reputation. The study by
Mir Djawadi et al. [MFHR18] closes this research gap by examining how inaccurate
customer feedback based on unintentional mistakes influences the strategic quality choices
of a service provider. As a result of this, the focus lies on the behavior of the service
providers, whether they seek to maintain a good reputation by providing high-quality
services, even if it is tempting that the customer might not detect low quality, or whether
they milk a good reputation and exploit the customers.

C) Design of online review systems in OTF markets

For some design elements, literature already shows how design decisions influence the
effect of drivers of writing a review (e.g. self-expression, altruism, or a sense of belonging)
on online ratings. For example, the number of evaluation dimensions is related to the
evaluation level. However, there are significant research gaps in the impact and potential of
design decisions in OTF-like markets. Such design decisions include metrics, the degree
of anonymity, or social proximity between trading partners. Metrics (i.e., aggregated
measurements of customer feedback) enable the evaluation of product quality and the
comparability of products on marketplaces. Since cognitive biases identified by psychology
and behavioral economics affect people’s perception and way of thinking, it is unclear
whether the technically implemented aggregation functions correspond to customers’ ac-
tual aggregation behavior. To address this, van Straaten et al. [SMH+21] elicit customers’
aggregation heuristics and contrast these with reference functions.

2. Main Contributions 47

Anonymous reputation systems can be implemented to avoid concerns about sharing
private information by providing a customer review. However, this anonymity can poten-
tially crowd out reviews motivated by customers’ self-expression (one of the main motives
for writing reviews). It is unclear how anonymity and its driving forces (such as blunting
self-presentation) affect customers’ propensity to write reviews [RS12]. Therefore, Hoyer
and van Straaten [HS22] investigate whether anonymous reputation systems have the
disadvantage of blunting self-presentation and whether altruistic attitudes moderate this
effect.

A growing body of research looks at mutual evaluations and demonstrates that such
situations typically result in valuations that are biased upward in magnitude. This, in turn,
reduces market efficiency and, in the worst case, leads to market failures. Mir Djawadi and
Wester (2022) [MW22] examine to what extent social proximity between trading partners
leads to upward-biased ratings.

D) Certification to reveal service quality in OTF markets

Another essential instrument for reducing information asymmetries in markets for complex
(combined) physical and digital services is a certification (such as certified consulting
services or information security certification in online shopping). Certification by an
external agent allows providers to signal (minimum) standards for the certified product or
service characteristics, thus reducing information asymmetries.

While the effects of certifications are clear from a theoretical point of view, their empirical
relevance has not been convincingly documented. Accordingly, the study by Fanasch and
Frick [FF20] compares the effects of self-declaration and certification on product prices
by distinguishing between certified products and service characteristics. The results of
this study shed light on the unique relationship of certifications to reduce information
asymmetries in OTF markets.

The composition of individual services causes additional complexity when analyzing
service quality certification. In particular, it is unclear whether certification of all individ-
ual services or combined services is necessary. Consequently, Fanasch and Frick [FF20]
provide evidence on whether and to what extent collective reputation for combined services
impacts market prices.

2 Main Contributions

In the following, the main contributions are described in greater detail, which are meant
to address the research gaps regarding the mitigation of information asymmetries in OTF
markets introduced before.

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

2.1 Influence of Service and Market Characteristics on Online Reviews and
Economic Outcomes

Interaction and impact of reviews from professional critics and customer reviews on the
market performance of experience goods
Due to the digitalization of retail, customers can express their product experiences via
user-generated reviews in various discussion forums, assessment portals, or on retailer
websites. We contend that independent information expressed in product reviews has three
plausible ways in which it can influence consumer behavior. First, more positive evalua-
tions lower uncertainty over product quality among prospective consumers. Secondly, if
evaluations reach near unanimity in opinion, then customers’ certainty in their purchase
decision will increase. Thirdly, the more reviews submitted, the lower the evaluation
insecurity among future buyers. We focus on the relationship between the different facets
of customer reviews: namely, valence, volume, and variance.

Valence represents the average weighted review score from customers. The use of weighted
online average scores is consistent with prior studies of experience goods, e.g., movies,
books, and magazines [CGV10]. Volume measures the total number of reviews posted. We
expect that more significant numbers of ratings reduce the information asymmetry and thus
positively affect consumer choices. Our measure of variance is the sum of squares of the
proportion of positive, negative, and mixed opinions among the total number of reviews.
It is thus analogous to the Hirschman-Herfindahl index, which captures the degree of
homogeneity or heterogeneity of any variable of interest. Our variance variable is therefore
bounded between an upper value of 1 (perfect homogeneity) and a lower value of 0.33
(perfect heterogeneity; equal proportions of reviews in each of the three opinion categories).

Cox and Kaimann [CK15] have focused on the relationship between commercial per-
formance and two signals of product quality: reviews from professional critics and online
word-of-mouth. By analyzing the consumer behavior and sales performance in the digital
platform industry of video games, we shed light on the literature by comparing the relative
influences of consumer word-of-mouth with reviews from professional critics. To empiri-
cally estimate and separate the effects of the two signals, we analyze a sample of 1,480
video games and their sales figures between 2004 and 2010. Such a comparison is poten-
tially valuable given the prevailing view that word-of-mouth and other content generated
by users is becoming increasingly influential in consumer decision-making, possibly even
to the exclusion of traditional reliance on the opinions of experts or professional critics.
Our analysis considers the possibility that these signals affect consumer behavior jointly
and separately through a more detailed examination of interactions between signals and
the subsequent effect on sales performance.

The findings of this study reinforce the hypothesis that the reviews of professional critics
associate strongly with commercial success. After taking steps to control for endogeneity
using a generalized method of moments (GMM) estimator, we find evidence that reviews
from professional critics influence sales instead of merely predicting them, suggesting that
their independence and reputation serve as a credible signal that helps consumers support
the decision-making process by minimizing uncertainty. We also find only limited evi-
dence to suggest that the valence of consumer word-of-mouth affects product sales once we

2. Main Contributions 49

control reviews from professional critics and interaction terms. Consequently, our results
are contradictory to a commonly held belief in the value of consumer word-of-mouth and
emphasize the greater importance of reviews from professional critics in the digital market
context.

Regarding placing the study and findings within the context of the existing literature,
the results reinforce some well-established findings while presenting alternative and some-
times contradictory evidence on others. We arrive at contradictory results in comparison
with Chintagunta et al. [CGV10], given that they highlight the importance of the valence of
word-of-mouth and find neither evidence for the significant explanatory power of reviews
from professional critics nor the volume and valence of user reviews. We essentially arrive
at the opposite conclusion, potentially due to our aggregation to the national level versus
their regional-level analysis, an acknowledgment the authors make in their paper. Instead,
our findings highlight the importance of simultaneously controlling for reviews from critics
and consumer word-of-mouth.

Consequently, consumers likely assess the credibility and reliability of the interaction of
distinct types and similar types of signals jointly. Although there is a shortage of studies
in marketing on the interaction of signals, the economics literature has produced several
studies on the value of multiple signals of product quality, most notably concerning the
moral hazard associated with agency theory [Hol79] and most often considered concerning
issues of corporate governance and performance-related pay [FS11]. However, the effect
of additional signals may diminish at the margin as the total number of available signals
increases. Basuroy et al. [BDT06] are among the first to empirically study the interaction
between quality signals. Other authors, such as Kirmani and Rao [KR00], also account for
the interaction between a limited number of independent types of signals in their theoreti-
cal framework. Following the studies and principles of signaling theory, we consider the
importance of additional signals and their interactions.

Frick and Kaimann [FK17] have used real-world data to study the impact of customer
reviews on market demand in electronic markets for mobile applications. Using data
from the Apple App Store, we analyzed a sample of 32 applications with 5,792 daily
observations and their number of installations during the first six months of 2015. The
applications were randomly selected from each category in the App Store. The findings
extend the current literature, which has only partially examined the influence of ratings
and ad expenditures separately and jointly on downloads. The results show a positive
interaction between valence and variance. In addition, the interaction between valence
and variance has a more significant positive effect on quality perceptions and, thus, a more
considerable impact on application downloads.

Furthermore, the empirical findings also support that customer reviews and marketing
efforts boost installations. However, if they co-occur, the influence of both effects will be
diminished. Thus, our findings advance reputation analyses by explicitly considering the
possibility that these signals affect consumer behavior jointly and separately by conducting
a more detailed analysis of interactions in electronic markets.

Effect of different sources of online review variance on product prices and demand at the

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

level of firms
Consumer ratings enable prospective consumers to learn from other consumers’ experi-
ences. This means that the reporting of experiences within an online rating enables new
consumers to assess experience attributes of a product or service (i.e., those attributes that
can hardly be observed prior to purchase but only after the purchase) better than before the
emergence of consumer ratings. Thus, consumer ratings transform the product or service’s
experience attributes into attributes that can be searched within the reviews of this product
or service. For instance, by reading online reviews, potential customers can learn about
past customers’ experiences concerning the ease of navigating over an application’s menu.
Some customers might like a simple menu, whereas others might prefer a more complex
menu with highly adjustable settings. Customers’ disagreements resulting from opposing
opinions are thus caused by taste differences and might not necessarily imply a bad product
or service for all consumers. However, potential customers are able to learn not only about
the different taste-related experience attributes associated with an application but also
about (potential) service failures, i.e., quality differences. For instance, if an application
fails to work on a specific data set, consumers are also likely to report this failure within
their online review. Both types of experience attributes (taste-related and quality-related)
are likely to induce additional variance of a product. The key difference between both
sources of variance is that all potential customers would agree about their dislike of variance
caused by quality differences but not necessarily by the variance caused by taste differences.

To examine the relationship between the variance caused by taste or quality differences
and a product’s or service’s prices and demand, the authors develop a two-period analytical
model featuring a monopoly retailer and consumers that differ in taste and risk aversion.
The first period explains the review-generation process, whereas, in the second period,
the effects of how new consumers use the generated reviews from the first period in their
decision-making process are examined. In the first period, where the product or service
has no online reviews yet, a set of innovators enter the market. The retailer sets a profit-
maximizing price based on its expectations about the product’s or service’s characteristics
as well as the expected utility for the consumer. Afterward, the innovators decide whether
to purchase the product or service based on the price and their expectations about the
characteristics of the product or service. Then, the purchasing innovators (or at least those
with extreme experiences) publish honest ratings about the product. In the second period,
where online reviews for the product or service are present from the first period, a set of
imitators enter the market. The retailer observes the consumer ratings of innovators and
sets a profit-maximizing price for the product based on the observed consumer ratings.
Afterward, imitators observe the consumer ratings and derive the product’s or service’s
characteristics through these reviews. This means that imitators have no remaining uncer-
tainty about the experience attributes of the product or service. Next, they decide whether
or not to purchase the product or service based on the price and the observed consumer
ratings. The authors analyze two types of goods: (1) consistent quality goods, where the
variance of consumer ratings is solely caused by taste differences (model based on Sun
[Sun12] to connect with prior literature), and (2) inconsistent quality goods, where the
variance of consumer ratings is caused by taste differences and quality differences in the
form of product failure.

Concerning the case of consistent quality goods, the theoretical model predicts that price

2. Main Contributions 51

and demand both increase with the average rating, as a higher average rating is a credible
signal of high product quality. This result represents a theoretical confirmation of prior
empirical findings [LH08]. With an increasing variance of ratings (which is solely caused
by taste differences), the price increases while the demand for the good or service decreases.
The intuition behind this relationship is as follows: An imitator with a taste that closely
matches the product or service enjoys this product or service more than a product with
a low variance of ratings. The retailer charges a higher price to all imitators to skim
the higher willingness to pay of imitators with tastes that closely match the product or
service. This higher price deters imitators with tastes that do not closely match the product
or service, resulting in lower demand. Figure 6 illustrates the relationship between the
products or services online rating variance and the price and demand of the product’s or
service’s, respectively.

Figure 7: Optimal price and demand for consistent quality goods. (Source: Own illustra-
tion)

Note: For reasons of simplicity, the price and demand are plotted on the same axis. p∗2
represents the optimal price for the product or service in the second period, and D∗2
represents the optimal demand in the second period.

Regarding the analysis of a product or service that can be characterized as an inconsistent
quality good (i.e., a product or service that can fail), the model differs in two major ways.
First, the model now also takes the consumer’s individual risk aversion (i.e., the negative
utility caused by the risk that the product or service fails) into account, which in turn is
associated with the consumer’s purchase intentions. Second, if a consumer in the first
period buys a product or service that failed, the consumer will publish the lowest rating
possible. In contrast to consistent quality goods, the expected enjoyment of inconsistent
quality goods depends not only on two but on three product characteristics: the average
rating, the variance caused by taste differences, and the variance caused by quality dif-
ferences. Similar to the case of consistent quality goods, the model predicts that price
and demand will both increase with the average rating of an inconsistent quality good, as
a higher rating acts as a credible signal of high product quality. Further, if the variance
caused by taste differences increases, the price increases, and the demand decreases for an
inconsistent quality good. The intuition behind this result is the same as in the consistent
quality goods case. However, for inconsistent quality goods, if the variance caused by
quality differences increases, the price of the product or service will decrease. This is

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

because a higher variance caused by quality differences indicates a high failure rate of the
product or service, which represents a signal for low quality and will thus reduce the price.

To examine the effects on the demand for the product or service, there are two distinct
effects that need to be taken into consideration: (1) the price effect, which states that
a reduced price will increase the demand, and (2) the failure effect, which models the
relationship that a higher probability of product failure will decrease the demand. If the
variance caused by quality differences is sufficiently low and the variance caused by quality
differences increases, then the model predicts that the demand effect will be smaller than
the failure effect, resulting in a decreased demand. A somewhat counterintuitive case
occurs if the variance caused by quality differences is sufficiently high and the variance
caused by taste differences is sufficiently low. Then, the price effect will be greater than the
failure effect, meaning that the demand will increase with an increasing variance caused by
quality differences.

Bearing these results in mind, if the total variance is constant and the decomposition
of the source of variances changes to a higher relative share of variance caused by taste
differences, then the price will increase. This is because the probability of failure due to
quality differences will become smaller, and the retailer will have more power to raise the
product’s or service’s prices. If the total variance is sufficiently low, then demand increases
with an increasing share of variance caused by taste differences (see Figure 7, left side).
On the contrary, if the total variance is sufficiently high, the demand will decrease with an
increasing share of variance caused by taste differences (see Figure 7, right side).

Figure 8: Optimal price and demand for inconsistent quality goods—Changes in the com-
position of the variance. (Source: Own illustration)

Note: For reasons of simplicity, the price and demand are plotted on the same axis. The left
graph depicts the case where the total variance is sufficiently low, whereas the right graph
depicts the case where the total variance is sufficiently high. p∗2 represents the optimal price
for the product or service in the second period, and D∗2 represents the optimal demand in
the second period.

The results of the paper have important managerial implications for the development of an
OTF market. If service providers on OTF markets were to consider the composition of the

2. Main Contributions 53

variance of consumer ratings, then they could improve their sales forecasts and increase
profits by adjusting their inventories accordingly to satisfy demand or by charging higher
prices for those products or services for which a relatively larger share of the variance
is caused by taste differences. Additionally, service providers on OTF markets could
implement mechanisms to explicitly communicate information about the decomposition of
the variance to allow more consumers to use this important information in their decision-
making.

Selected propositions from the analytical model of this research were also empirically
confirmed within Subproject A4 [Gut+18]. Within this study, the author employs a machine
learning approach to decompose the variance caused by quality differences (i.e., product
failure) and taste differences for digital cameras on Amazon.com and estimates its impact
on the product’s price and demand. In line with the predictions of the theoretical model, the
author finds that variance caused by quality differences is negatively associated with price
and demand and that the variance caused by taste differences positively affects the product’s
price and demand. Moreover, the theoretical insights by Zimmermann et al. [ZHKN18]
have also informed and inspired marketing research [LBS22] to further extend the theo-
retical model developed within this paper and establish cumulative knowledge on this topic.

Impact of local market competition on the heterogeneity of available businesses on the
market level
However, an unresolved question on the more aggregated market level remained. For
instance, it has remains unclear what impact the local market competition has on the
heterogeneity of available businesses in a market. Even though prior work has investigated
the formation of mean ratings for businesses or the nature of particular reviews [LH08],
these studies do not inform about the relationship between competition in a local market
and the properties of a market’s mean rating distribution. When mean rating distributions
change with competition, this means that a business’s mean value has to be evaluated
differently in markets with the different competition. The relative position in the market of
a 3.5-star business will be different in a market of low competition compared to a market
with high competition. Therefore, it is crucial to better understand that ratings must be
considered within a bigger picture, i.e., taking into consideration boundary conditions in
the process of decision-making. The article by Gutt et al. [GHR19] contributes to this
notion and provides empirical evidence for this presumption.

While the theoretical literature in industrial organizations has analyzed equilibrium market
outcomes for vertically differentiated industries where quality provisioning is primarily
tied to marginal costs (e.g., restaurants), the empirical evidence was still scant. Theory
suggests that larger markets can support a greater number of firms that cover a larger
quality spectrum than smaller markets, such that both tails of the distribution of available
qualities grow. So far, the empirical evidence was limited to the growth in the higher end
of the quality distribution [BW10]. By studying how local market competition affects the
dispersion in both tails of a market’s mean rating distribution, Gutt et al. [GHR19] were
able to also investigate the dynamics in the lower end of the service quality distribution
and evaluate the impact on the average of the distribution.

What we see as an important lesson learned from this work is that the range and av-

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

erage of a market’s mean rating distribution may vary depending on the competition level
in the particular markets. Here, the difference between the very best and very worst of
individual mean ratings in a particular market is described by the range, and the average
consists of all individual mean rating valences within that market. To compare different
markets, Gutt et al. [GHR19] identified markets (i.e., cities) that do not overlap (i.e.,
markets which are isolated). The competition level within a market is determined by the
total number of businesses. Based on a comprehensive data analysis on a combined data set
from Yelp.com and city-data.com, the authors found that the range of markets’ mean rating
distributions increases with competition (i.e., number of businesses) but that the average of
the markets’ mean distributions decreases (see Figure 8). This means a 4.5-star business
competes with more 4.5-star businesses in a small market than in a larger market (arrow
(a)), whereas a 2.5-star business competes with relatively fewer comparable businesses—in
terms of mean ratings-in a small market than in a large one (arrows (b)). With regard to the
range of the mean rating distribution, a 4.5-star rating business might be among the upper
businesses in a small market but might be considered less elite, being in a larger market
due to the wider range on large markets (arrow (c)). While a 2.5-star business might be
among the worst businesses in a small market, the worst choices in larger markets have
even lower mean ratings (arrow (d)).

Figure 9: Competition faced by 2.5- and 4.5-star businesses in two different markets.

By conducting multiple regression estimations (e.g., cross-sectional estimation, ordinary
least squares, and two-stage least square, including instrumental variables, fixed and ran-
dom effects) on the combined data set from Yelp.com and city-data.com, it was possible
to show that local market competition is a driver of the heterogeneity of available mean
ratings in a market [GHR19].

One conclusion from these results is that a larger market has proportionately more lower-
rated businesses. In contrast, higher-rated businesses have relatively fewer comparable
businesses and face less competition in such a market. As market size increases, firms
proliferate such that many different quality levels become available, assuming that ratings
reflect the quality levels approximately. In these markets, firms compete on the quality of
the service they sell through a combination of fixed and variable costs. A larger market
can thus support more low-quality firms and firms that offer higher qualities than the

2. Main Contributions 55

highest-quality firm in a small market.

Consequently, as competition increases, so does the range of different qualities avail-
able in the market. The change in the average quality of the market level depends on the
ratio of low- and high-quality firms entering the market. In other words, it decreases if the
increase in competition is mainly driven by low-quality rather than by high-quality firms.
Previous empirical studies from industrial organizations have documented that increasing
competition leads to an increase in the dispersion in the higher end of the service quality
distribution [BW10]. Yet, the effect on the dispersion in the lower end of the distribution
has been neglected. Gutt et al. [GHR19] extend this result by finding that the dispersion in
the lower end of the service quality distribution exceeds that of the higher end. Moreover,
literature on business intelligence and analytics (as suggested by Chen et al. [CCS12]) can
build on this evidence—in particular, Yelp’s mean ratings form an internally consistent
data source for conducting competitive intelligence activities.

Furthermore, the insights of this work lead to the implication for requesters interested in
assessing applications with the same functionality (e.g., navigation via online maps) based
on electronic word-of-mouth, such as ratings. This means that applications across OTF
markets with similar mean ratings should be assessed differently by considering the compe-
tition level. Different actors such as requesters (i.e., an entity requesting the creation of an
application consisting of components), component providers (i.e., an entity offering access
to a component), or infrastructure providers (i.e., an entity offering access to infrastructure
for the execution of services) participate in OTF markets. These entities might only have
access to a particular set of OTF markets due to restrictions or strategic decisions (e.g.,
internet censorship or ensuring independence). Moreover, the market provider (i.e., an
entity operating and providing access to an OTF market) might decide to restrict access
for certain actors. For example, Apple or Google can be seen as a market provider in
the case of the App Store and Google Play, where they can decide who is allowed to
provide apps and install them. Thus, OTF markets can be seen as isolated markets, for
example, geographically or concerning an application domain that is specifically separated.
Thus, some entities might exist that act across different OTF markets. Therefore, OTF
markets can have different sizes regarding the number of component or infrastructure
providers. Requesters might compare applications (i.e., compositions of components)
providing this functionality across different OTF markets [KKMW20]. In these cases, the
rating distributions for the applications might change with competition within individual
OTF markets due to the competition between component providers. Thus, requesters
might want to evaluate the mean values of applications differently between OTF markets
with different levels of competition. In general, requesters who prefer applications with
very high mean ratings will find more suitable matches in larger OTF markets. However,
requesters should not randomly choose an application because larger markets are home to
disproportionally more applications with low mean ratings than smaller markets. In other
words, the broader range of available mean ratings comes at the expense of lower averages
of the mean rating distributions in larger markets. This result emphasizes the importance
of online review systems and other mechanisms to prescreen applications in large OTF
markets to serve requester preferences better.

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

2.2 Opportunistic Behavior of Service Providers

Strategic decisions of service providers when customer feedback is inaccurate
Mir Djawadi, Fahr, Haake, and Recker [MFHR18] have focused on reputation systems
with inaccurate customer feedback. Since customers may not have the expertise to judge
the respective service quality correctly, customer feedback in reputation systems is not
always accurate. Consequently, sellers may engage in strategic behavior in quality choices,
i.e., they may deliver low quality after having achieved a high sales price due to sufficiently
many positive ratings.

The research strategy involves a theoretical model and a laboratory experiment. Both
components are the result of a collaboration between the Subprojects A3 and A4. In the
theoretical analysis, a service provider repeatedly sells a service to short-lived customers,
i.e., customers interact only once with the service provider). The rating behavior of the
customer is modeled as a random variable, and the service provider’s strategic quality
choice is modeled as a stochastic optimization problem using a discounted Markovian
decision process. The service provider chooses to produce either high- or low-quality
service (at high and low costs, respectively) and receives a sales price depending on the
current reputation profile. Profit changes are modeled based on reputation profiles by
keeping the demand constant for all service providers and changing the price a single
service provider may charge. After purchase, a customer either positively or negatively
evaluates the service according to predefined error probabilities, reflecting the customer’s
limited ability to judge the provided service quality correctly.

The objective of the laboratory experiment is to investigate how subjects in the role
of service providers make their quality choices and compare observed with optimal be-
havior derived from the theoretical model. In the experiment, all student subjects play
the service provider role and choose between producing a high- or low-quality service
(associated with high and low costs, respectively). Four treatments are implemented with
exogenous variation in the customers’ evaluation abilities to rate the service quality accu-
rately. All other parameters of the theoretical model are held constant. The consideration
of exogenous rating behavior depending on different evaluation abilities of the customer
and a sales price resulting directly from the reputation profile allows for identifying the
reputation system’s causal effects on the service provider’s quality choice.

Theoretically, a profit-maximizing service provider should always produce high-quality
or low-quality services, irrespective of the current quality profile. This means that a good
reputation is maintained optimally, or any reputation-building process is wholly neglected.
However, according to the results of the experiment, not all subjects follow the optimal
strategy in the treatment. Instead, the higher the propensity to choose high quality, the more
accurately customers can rate the quality. Moreover, the chosen qualities are conditional
on the current reputation profile. More precisely, many subjects use milking strategies and
exploit a good reputation. Thus, low quality is delivered if the sales price is high until the
price drops below a certain threshold due to negative ratings. High quality is chosen until
the price has significantly increased.

2. Main Contributions 57

2.3 Design of Online Review Systems in OTF Markets

How customers aggregate information to assess product quality
Van Straaten, Melnikov, Hüllermeier, Mir Djawadi, and Fahr [SMH+21] have focused on
aggregation patterns of customers on selling platforms. Selling platforms usually provide
aggregated measurements of customer feedback in which the numerical part of customer
reviews is processed to single index values representing the valence of the product, most
often implemented by the arithmetic mean. However, literature in psychology and behav-
ioral economics has identified behavioral biases driven, e.g., by bounded rationality or
heuristics (e.g., [TK74]). Therefore, it is unclear whether the technically implemented ag-
gregation functions represent the actual aggregation behavior of customers. Van Straaten et
al. [SMH+21] conduct a laboratory experiment to elicit subjects’ aggregation patterns and
compare these to reference aggregation functions. Thus, they investigate to which degree
inherent heuristics of customers affect the aggregation of customer rating distributions
and whether they result in systematic biases that should be addressed in the implemented
aggregation metrics in reputation systems.

In the experiment, student subjects rank various customer rating distributions to infer
the subjects’ aggregation heuristics. This allows for finding the optimal aggregation func-
tion and comparing it with different alternative aggregation functions. More precisely,
subjects receive customer ratings of three products and are asked to rank them according to
their preferences. These customer ratings differ concerning their relative frequencies and
their arithmetic means. Subjects only see the products’ aggregated customer ratings and
know that they are from the same product category and have similar prices and specifica-
tions, but not the products’ names or detailed specifications. Aggregated ratings that allow
separating rankings based on different decision heuristics are used, such as minimization of
negative ratings or maximization of positive ratings from rankings that favor the arithmetic
mean. Subjects choose rankings for a total of 12 categories, whereby distributions are
partly artificial and partly based on aggregated customer ratings from the Amazon mar-
ketplace. To elicit actual preferences, the entire ranking decision is incentivized: subjects
receive a USB flash drive that they rank first or second as payment and have the chance
to win another product they choose from one of two other product categories (a tablet
computer or tablet holder). They have a higher chance to win the products when they rank
a product better and do not know which decision determines their payoff. We implement
two treatments investigating the impact of additional numerical information on aggregation
heuristics. Subjects are only given the aggregated customer ratings in the control treatment
without additional information. In contrast, in the information treatment, subjects also see
the relative frequency of each rating category and the arithmetic mean value associated with
the distribution. To analyze subjects’ rankings, the authors employ a Maximum-Likelihood
approach and a Placket-Luce model, which is a model of rank data that is parametrized by
quantitative preference degrees for individual choice alternatives.

The results of the experiment show that the arithmetic mean is an appropriate aggre-
gation function as it best explains subjects’ average behavior. However, the findings also
reveal a tendency to overweight moderate ratings and underweight extreme one, thus
indicating a binary bias that is not sufficiently considered in practice. Moreover, minor
subject clusters focus on customer rating distributions with the least 1-star ratings or the

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

least negative (i.e., 1- and 2-star) ratings. Contrary to predictions, individual character-
istics, risk attitudes, online shopping experience, and additional numerical information
do not affect the employed aggregation heuristics. As the findings indicate heterogeneity
in aggregation behavior, marketplaces could enhance reputation systems by calculating
personalized valence values.

Influence of anonymity and self-expression on the propensity of writing online reviews
Hoyer and van Straaten [HS22] have dealt with anonymity and self-expression in online
rating systems. Since providing a customer review costs time and effort without an ob-
vious benefit for the reviewer, drivers of writing a review have been analyzed frequently
in the literature. Studies show that the main motives for writing customer reviews are
self-expression, altruism, a sense of belonging, and economic incentives (e.g., [CL12]). On
the other hand, sharing experiences about products and services might be accompanied by
concerns about sharing private information and the threat of being involuntarily analyzed
and clustered by third parties. To avoid this privacy issue, anonymous reputation systems
can be implemented. However, this anonymity can potentially crowd out reviews that
are motivated by the self-expression motive of the customers. To date, the impact of
anonymity and its driving forces (such as the blunting of self-expression) on the propensity
of customers to write reviews is unclear [RS12]. Therefore, Hoyer and van Straaten [HS22]
conduct an experimental study to answer the following research question: Do anonymous
reputation systems have a drawback of blunting self-expression as a motive of customer
reviews and do altruistic attitudes moderate this effect?

The laboratory experiment consists of a stylized marketplace in which all participants are
customers facing computerized sellers. The participants must decide which seller to buy a
product from in 10 separate periods. After choosing a seller and learning how satisfied they
are with the product, they are given the choice of whether they want to publish their satis-
faction with the product, which will be visible to all participants. The two treatments enable
to vary the degree of anonymity–from pseudonymity (chosen pseudonym, published when
satisfaction is revealed) to anonymity (assigned buyer ID, not published when satisfaction
is revealed)–and analyze whether this treatment influences the self-expression motive and
hence the propensity of customers to leave reviews. Addressing the self-expression motive,
in the pseudonymity treatment, a ranking of the participants’ number of published ratings
is shown at the end of each period, enabling them to build up a reputation as frequent
reviewers. This is not the case in the anonymity treatment, as ratings are anonymous.
After the market experiment, a dictator game analyzes participants’ attitudes toward al-
truism. Conducting an economic experiment allows drawing inferences about the effect
of anonymity on self-expression with high internal validity as it is controlled for other
elements such as prices, product groups, visualization effects, etc.

The results indicate that self-expression is indeed blunted by anonymity. This result
is driven by less-altruistic subjects, as more-altruistic subjects are not affected by the blunt-
ing of self-expression. In line with the literature on signaling theory, in the experimental
setup with a focus on intrinsic motivation and self-expression, excluding the self-expression
motive indeed decreases welfare in terms of monetary payoffs. The study thus carries sub-
stantial implications, as it identifies the necessity to consider the drawbacks of anonymous
reputation systems that must be considered and balanced with the advantages of anonymity

2. Main Contributions 59

(i.e., reduced privacy issues), which might depend on the actual market environment and
the products traded on these markets

Connection between social proximity among trading partners and upward-biased rat-
ings
Mir Djawadi and Wester (2022) [MW22] have examined to what extent social proximity
between trading partners leads to upward-biased ratings. Peer-to-peer platforms placed
under the ’sharing economy’, such as Airbnb or Couchsurfing, Uber, or BlaBlaCar, have
recently stirred the electronic commerce landscape. Thereby, social interaction between
customers and service providers is not only an inherent part, but many people participate
for this reason. Due to the intimate nature of the arrangements offered (e.g., homestay or
car share), sharing-economy markets depend on trust. Where considerable heterogeneity
in service quality and information asymmetries among geographically dispersed and infor-
mally connected users exist, credible reputation-based feedback systems become essential
to support the emergence of trust. However, many reputation systems have given rise to
implausible rating distributions in such a way that ratings cannot be assumed to reflect the
actual quality, calling the functionality and effectiveness of reputation systems based on
user-generated feedback into question. An examination of the literature suggests diverse
reasons for overwhelmingly skewed ratings, among them being non- or under-reporting
of negative experiences due to fear of retaliation or social interactions between market
participants (e.g., [DW08]). While there are already several suggestions for the design
of reputation systems to counteract upward-biased reviews due to fear of retaliation, ex-
amining the influence of social interaction on feedback giving has only recently gained
momentum.

Through the exchange of personal information, familiarity and liking between individuals
are established, uncertainty about others’ intents can be reduced, and generalized positive
beliefs or impressions may be evoked. Knowledge about one another is found to be linked
to a multitude of pro-social behaviors. A well-documented and robust finding is that
interpersonal similarity has a reinforcing effect. People perceived to be like themselves
are more likely to be regarded as more familiar and socially proximate. Along this line,
recent research consistently finds that people are more willing to help, more lenient toward
misbehavior, and trust in and feel morally obliged to interact with partners who are socially
proximate (e.g., [BWD14]). Common explanations suggest that people derive greater
personal satisfaction or utility from helping socially proximate individuals and/or have
generalized expectations that those being similar are also more likely to be well-disposed
toward them. Hence, Mir Djawadi and Wester (2022) [MW22] propose that feedback
giving differs depending on the availability of personal information and social proximity
between transaction partners. It is expected that disclosing personal information per se
leads to better feedback than having no information at hand. Second, it is hypothesized
that socially proximate interaction partners receive better feedback than socially distant
interaction partners.

Given the lack of either directly observing social interaction (frequency and intensity)
or assessing the degree of social proximity between transaction partners, laboratory ex-
periments can help complement observational data derived from peer-to-peer platforms.
Experiments allow the comparison of individuals’ feedback-giving behavior with varying

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

degrees of social proximity between transaction partners potentially arising from personal
interactions. Therefore, the experiment simulates a sharing economy market framework
where a provider offers service and is remunerated and evaluated by a customer taking
up the offered service. Since a crucial feature of the sharing economy is the potential for
collective action taken by both sides to enhance the experience, the quality of the service
is modeled as a function of the joint effort exerted by providers and customers. Whereas
these elements are static across treatments, the extent of personal information presented to
transaction partners varies.

2.4 Certification to Reveal Service Quality in OTF Markets

The impact of self-declaration and certification on price premiums for experience goods
Fanasch and Frick [FF20] have used the wine industry as an example, as many producers
have adopted organic or biodynamic certifications to reveal their production quality. In
principle, certifications can be granted for organic and biodynamic practices. However,
the few available studies either concentrate on organic practices or consider organic and
biodynamic production jointly [AGG17]. However, it is essential to investigate the effect of
each practice separately, as organic production is usually considered "serious." In contrast,
biodynamic production is often considered "bizarre" or "somewhat strange," partly due to
the methods used.

While some of these wineries have successfully applied for third-party certification, others
follow strict guidelines without being certified and self-declare themselves to be eco-
friendly. Using a large sample of 55,500 wines produced by 1,514 German wineries
between 2010 and 2017, this study estimates a series of hedonic price models across
different price quantiles. The results indicate a statistically significant price premium for
organic and biodynamic certified experience goods, the magnitude of which is, however,
far smaller than the effects usually identified in surveys and laboratory experiments. While
self-declaration is only a credible signal for organic practices generating a price premium
of 8.6 percent, biodynamic practices require certification for a price premium of 4.1 per-
cent. The results also suggest that the interaction of collective reputation and biodynamic
practices positively impacts prices.

Overall, this study contributes to current research by closing several research gaps. First,
this study compares the effects of self-declaration and certification on product prices by
distinguishing between organic and biodynamic practices. Second, this study conjectures
that the impact of self-declaration and certification is likely to differ across bottle price
distribution, as Abraben et al. [AGG17] suggested. This provides a more detailed under-
standing of the relationship between prices and self-declared and certified sustainability
practices. Third, this paper provides new evidence on whether and to what extent collective
reputation impacts the prices that organic and biodynamic wineries can charge. Given the
recent changes in consumer preferences, this study uses the latest data available to identify
customers’ willingness to pay for organic and biodynamic wines.

Thus, this study contributes to information asymmetry and signaling theory by show-
ing that certification costs can be avoided since, in some instances, self-declaration is

3. Concluding Remarks 61

sufficient to enable a price premium. As a result, certifications are essential for decreasing
information asymmetries in markets for composed services. By receiving an external certi-
fication, providers can reliably indicate that they meet particular (minimum) standards.

3 Concluding Remarks

The empirical research of Subproject A4 has significantly contributed to the area of online
reviews and certification in reducing information asymmetries in OTF markets.

By using econometric analysis of existing markets with comparable characteristics of
the OTF market, various solution concepts to signal true service or product quality have
been thoroughly investigated. Beyond the benefits of regular customer ratings, research
by Cox and Kaimann [CK15] has shown that ratings from professionals or experts can
even enhance the customer’s confidence in the quality of a service/product which, in
turn, can increase demand and reduce market inefficiencies. OTF market providers might
therefore consider allowing different types of signals in the reputation system to help
customers make the best selection among the offered services. Further research addressed
the question whether the seemingly strongest solution concept of certification should be
part of a reputation system as well. As Fanasch and Frick [FF20] have shown, there are
costless substitutes for certification. Especially if service providers already built a high
reputation, certifying their services or processes might only incur unnecessary costs. As
costless self-declaration can lead to comparable levels of trust, services can be offered at
a lower price which, would not only benefit current customers but may also attract new
customers on the respective OTF market.

With regard to online reviews and economic outcomes, Zimmermann et al. [ZHKN18]
were able to investigate analytically how different sources of variance of online reviews
affect product prices and demand on the level of firms. It led to further research, such as
Gutt [Gut+18], who empirically confirmed selected propositions from the analytical model
provided by Zimmermann et al. [ZHKN18], or Lee et al. [LBS22], who extended the
model and thereby introduced it into marketing research. An implication of Zimmermann
et al. [ZHKN18] for service providers on OTF markets is that if they consider the composi-
tion of the variance of consumer ratings, then these providers could improve their sales
forecasts and increase profits by adjusting their inventories accordingly to satisfy demand
or by charging higher prices for those products or services for which a relatively larger
share of the variance is caused by taste differences. Additionally, service providers on OTF
markets could implement mechanisms to explicitly communicate information about the
decomposition of the variance to allow more consumers to use this important information
in their decision-making.

The interplay between the design of the market infrastructure (regarding the possibil-
ities of quality assurance) and individual decisions (supply, demand, price, and quality
of the traded service) has been systematically investigated. In this context, Gutt et al.
[GHR19] were able to investigate empirically what impact the local market competition
has on the heterogeneity of available businesses on a market level. Gutt et al. [GHR19]
also provided input for further research in highly reputable journals such as the Information

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

Systems Research (e.g., [AR22]). In the OTF context, an implication of the findings made
by Gutt et al. [GHR19] is that OTF market providers might want to consider the compe-
tition level within the review system for requesters interested in assessing applications
with the same functionality across OTF markets. As those applications with similar mean
ratings should be assessed differently by considering the competition level, the market
providers might want to add an overview similar to Figure 8, where the mean ratings
and their distribution for different OTF markets can be observed or corrected directly
by providing adjusted measures depending on the competition levels when comparing
between markets.

With the help of economic experiments that have been created in studies like Mir Djawadi
et al. [MFHR18], causal for example, analysis of designs of reputation systems or mea-
sures (certificates, contract structures, etc.) was systematically conducted that would be
otherwise difficult to achieve with field data–especially when features that do not yet exist
and have no comparable counterpart in existing markets have to be considered. The results
from these experiments have been valuable for revealing behavioral patterns that partly
deviate from traditional economic theory and the assumption of rational actors who are
only interested in maximizing individual payoffs. For example, the research revealed that a
substantial share of service providers milk their good reputation, which represents a non-
rational oscillating strategy, an economically irrelevant factor of social proximity seems
to influence the rating behavior of market participants, and customers tend to overweight
moderate and underweight extreme ratings. This excerpt of empirical findings suggest
that theories of Behavioral Economics that relax the assumptions of perfect rationality and
selfishness should be considered as alternatives for explaining behavior on OTF markets
and designing interventions that prevent market failure. Further, the results of experiments
on the acceptance of anonymous online rating systems can be used to develop rating
systems that holistically reflect product or service quality and can thus serve to reduce
information asymmetries. For example, research on the metrics of online valuations can
be used to embed the aggregated valuations intentionally. These suitable rating systems
ensure the necessary security and acceptance and, thus, the use of the rating systems. These
results can be used in the conceptual development of rating systems as an element of the
business model of a market provider in OTF markets.

Bibliography

[AGG17] Abraben, L. A.; Grogan, K. A.; Gao, Z.: Organic price premium or penalty? A comparative
market analysis of organic wines from Tuscany. In: Food policy 69 (2017), pp. 154–165

[ake78] akerlof, G. A.: The market for “lemons”: Quality uncertainty and the market mechanism.
In: Uncertainty in economics. Elsevier, 1978, pp. 235–251

[AR22] Alyakoob, M.; Rahman, M. S.: Shared prosperity (or lack thereof) in the sharing economy.
In: Information Systems Research (2022)

[BDT06] Basuroy, S.; Desai, K. K.; Talukdar, D.: An empirical investigation of signaling in the
motion picture industry. In: Journal of marketing research 43 (2006), no. 2, pp. 287–295

[BW10] Berry, S.; Waldfogel, J.: Product quality and market size. In: The Journal of Industrial
Economics 58 (2010), no. 1, pp. 1–31

[BWD14] Balliet, D.; Wu, J.; De Dreu, C. K.: Ingroup favoritism in cooperation: a meta-analysis.
In: Psychological bulletin 140 (2014), no. 6, p. 1556

3. Concluding Remarks 63

[CCS12] Chen, H.; Chiang, R. H.; Storey, V. C.: Business intelligence and analytics: From big data
to big impact. In: MIS quarterly (2012), pp. 1165–1188

[CGV10] Chintagunta, P. K.; Gopinath, S.; Venkataraman, S.: The effects of online user reviews on
movie box office performance: Accounting for sequential rollout and aggregation across
local markets. In: Marketing science 29 (2010), no. 5, pp. 944–957

[CK15] Cox, J.; Kaimann, D.: How do reviews from professional critics interact with other signals
of product quality? Evidence from the video game industry. In: Journal of Consumer
Behaviour 14 (2015), no. 6, pp. 366–377

[CL12] Cheung, C. M.; Lee, M. K.: What drives consumers to spread electronic word of mouth
in online consumer-opinion platforms. In: Decision support systems 53 (2012), no. 1,
pp. 218–225

[DW08] Dellarocas, C.; Wood, C. A.: The sound of silence in online feedback: Estimating trading
risks in the presence of reporting bias. In: Management science 54 (2008), no. 3, pp. 460–
476

[FF20] Fanasch, P.; Frick, B.: The value of signals: Do self-declaration and certification generate
price premiums for organic and biodynamic wines? In: Journal of cleaner production 249
(2020), p. 119415

[FK17] Frick, B.; Kaimann, D.: The impact of customer reviews and advertisement efforts on the
performance of experience goods in electronic markets. In: Applied Economics Letters 24
(2017), no. 17, pp. 1237–1240

[FS11] Fahlenbrach, R.; Stulz, R. M.: Bank CEO incentives and the credit crisis. In: Journal of
financial economics 99 (2011), no. 1, pp. 11–26

[GHR19] Gutt, D.; Herrmann, P.; Rahman, M. S.: Crowd-driven competitive intelligence: Under-
standing the relationship between local market competition and online rating distributions.
In: Information Systems Research 30 (2019), no. 3, pp. 980–994

[Gut+18] Gutt, D. et al.: In the Eye of the Beholder? Empirically Decomposing Different Economic
Implications of the Online Rating Variance. Tech. rep. Paderborn University, Faculty of
Business Administration and Economics, 2018

[HMM12] Hennig-Thurau, T.; Marchand, A.; Marx, P.: Can automated group recommender systems
help consumers make better choices? In: Journal of Marketing 76 (2012), no. 5, pp. 89–
109

[Hol79] Holmström, B.: Moral hazard and observability. In: The Bell journal of economics (1979),
pp. 74–91

[HS22] Hoyer, B.; Straaten, D. van: Anonymity and self-expression in online rating systems—An
experimental analysis. In: Journal of Behavioral and Experimental Economics 98 (2022),
p. 101869

[KKMW20] Karl, H.; Kundisch, D.; Meyer auf der Heide, F.; Wehrheim, H.: A case for a new IT
ecosystem: On-The-Fly computing. In: Business & Information Systems Engineering 62
(2020), no. 6, pp. 467–481

[KR00] Kirmani, A.; Rao, A. R.: No pain, no gain: A critical review of the literature on signaling
unobservable product quality. In: Journal of marketing 64 (2000), no. 2, pp. 66–79

[LBS22] Lee, N.; Bollinger, B.; Staelin, R.: Vertical Versus Horizontal Variance in Online Reviews
and Their Impact on Demand. In: Journal of Marketing Research (JMR) (2022)

[LH08] Li, X.; Hitt, L. M.: Self-selection and information role of online product reviews. In:
Information Systems Research 19 (2008), no. 4, pp. 456–474

[MDC14] Mayzlin, D.; Dover, Y.; Chevalier, J.: Promotional reviews: An empirical investigation of
online review manipulation. In: American Economic Review 104 (2014), no. 8, pp. 2421–
55

[MFHR18] Mir Djawadi, B.; Fahr, R.; Haake, C.-J.; Recker, S.: Maintaining vs. milking good
reputation when customer feedback is inaccurate. In: Plos one 13 (2018), no. 11, e0207172

Elrich, Kaimann, Fahr, Frick, Kundisch, Mir Djawadi, Müller, Poniatowski, Schäfers Subproject A4

[MW22] Mir Djawadi, B.; Wester, L.: Social Proximity and Feedback-Giving Behavior - A study
on how social interaction influences feedback-giving behavior on peer-to-peer platforms.
In: Mimeo (2022)

[RS12] Rockenbach, B.; Sadrieh, A.: Sharing information. In: Journal of Economic Behavior &

Organization 81 (2012), no. 2, pp. 689–698

[SMH+21] Straaten, D. van; Melnikov, V.; Hüllermeier, E.; Djawadi, B. M.; Fahr, R., et al.: Account-
ing for heuristics in reputation systems: An interdisciplinary approach on aggregation
processes. Tech. rep. Paderborn University, Faculty of Business Administration and Eco-
nomics, 2021

[Sun12] Sun, M.: How does the variance of product ratings matter? In: Management Science 58
(2012), no. 4, pp. 696–707

[TK74] Tversky, A.; Kahneman, D.: Judgment under Uncertainty: Heuristics and Biases: Biases
in judgments reveal some heuristics of thinking under uncertainty. In: science 185 (1974),
no. 4157, pp. 1124–1131

[ZHKN18] Zimmermann, S.; Herrmann, P.; Kundisch, D.; Nault, B. R.: Decomposing the variance of
consumer ratings and the impact on price and demand. In: Information Systems Research
29 (2018), no. 4, pp. 984–1002

65

Subproject B1:

Dialogue-Based Requirement Compensation and Style-Adjusted

Data-To-Text Generation

Frederik S. Bäumer1, Wei-Fan Chen2, Michaela Geierhos3, Joschka
Kersting2, Henning Wachsmuth4

1 Applied AI Group, Bielefeld University of Applied
Sciences, Bielefeld, Germany

2 Department of Computer Science, Paderborn University,
Paderborn, Germany

3 Research Institute CODE, University of the Bundeswehr
Munich, Neubiberg, Germany

4 Institute of Artificial Intelligence, Leibniz University
Hannover, Hannover, Germany

1 Introduction

OTF computing is exploring ways to provide people with more customized, on-demand
software services that meet their needs. Similar to using a search engine, users should be
able to express their needs in natural language without any special technical background.
For this reason, processing and interpreting natural language requirements is an essential
part of the OTF vision. Since formal specifications are not very intuitive, natural language
tends to be the only format for service descriptions that most users will consider.

Subproject B1 deals with different types of service requirement specifications that enable
a successful search, composition, and analysis of services. In the sense of agile, collab-
orative software development, the idea is to involve users in an interactive composition
process of software services to be created on-the-fly. This setting implies a dialogical
situation between users and systems, suggesting the use of a domain-specific chatbot for a
specific query on the one hand, and the resolution of ambiguities on the other. For such
a composition process to be successful, it should be transparent to users. In particular, it
must be clear which initial requirements were taken into account in the creation and which
had to be dropped.

Service descriptions can be considered a less formal form of requirement specifications be-
cause they describe a service in natural language. Moreover, the accuracy of a description
depends on a number of factors, such as the proficiency of the requirement’s author. For
this reason, service descriptions are sometimes referred to as user-generated informal doc-
uments [MLC14]. Formal and semi-formal description languages are one way to avoid the
shortcomings of natural language in OTF computing. The software specification language

frederik.baeumer@fh-bielefeld.de (Frederik S. Bäumer), cwf@mail.upb.de (Wei-Fan Chen),
michaela.geierhos@unibw.de (Michaela Geierhos), jkers@mail.upb.de (Joschka Kersting),
h.wachsmuth@ai.uni-hannover.de (Henning Wachsmuth)

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

is an example of providing comprehensive service specifications and is applicable to both
non-functional and functional software requirements [PJR+16]. But even in a simplified
form, users cannot apply it as they lack the necessary technical expertise [FdSG14; GSB15].
Therefore, developers must accept free-form, natural language requirement descriptions
from users. In doing so, they have to deal with difficulties that are typical for free-form
text. These include, for example, a lack of structure and correctness, grammatical and
spelling errors, and ambiguity in syntax and semantics. In addition, there will be missing
information that is essential for development, but that a user does not have in mind. Thus,
callbacks are unavoidable.

Initially, this subproject focused on the development of a parameterized core language for
services [Pla13; BBP15] to process requirements automatically, accurately, and efficiently.
Due to a lack of acceptance by the target group, user-friendly requirement specifications
were proposed as an alternative [Bäu17; BG18]. These specifications are intuitively
understandable and mainly used by customers in the OTF market (i.e., end users or domain
experts). To improve transparency and human-machine collaboration, dialogue-based
requirements compensation was later introduced [KAG22], which provides explanations of
services in natural language [CASW21]. Comprehensible explanations are needed because
the deficiencies in requirement specifications cannot always be automatically compensated
and because users do not know which of their requirements have been fulfilled or not,
why this is the case, and what other services need to be included. Figure 10 illustrates the
outlined evolution of the process over three funding periods.

Struktur
Nicht-

funkt onale
Eigenschaf en

Verhalten
Teilsprache

RSDL

End User
Customer

Domain Expert

Text
Synthesis

Text
Analysis

Back Transformation of
(Fuzzy) Matching Results

Requirement Specification 2:
Core Language

Requirement Specification 1:
Core Language

Instance ofInstance of

Parameterized Core Language
Fuzzy

Matching

{Dialogue-based
Requirement Compensation

Natural Language
Service Explanation

XML XML

07
/2

01
9-

06
/2

02
3

07
/2

01
5-

06
/2

01
9

07
/2

01
1-

06
/2

01
5

Figure 10: Overview of the development phases of subproject B1 (bottom to top).

In the following, we present and discuss four highlights of Subproject B1, the first two
of which are related to the automated optimization of specifications, the others to the
generation of explanations of services.

1. Compensation of linguistic deficiencies: The automatic selection of techniques
that fit the user’s description (cf. Sec. 2.1).

2. Highlights and Lessons Learned 67

2. Chatbot-enhanced deficiencies resolution: The interactive resolution of remaining
deficiencies in a dialogical manner (cf. Sec. 2.1).

3. Data-to-text explanation generation: The computational generation of a text
explaining the main features of a created service (cf. Sec. 2.2).

4. Style adjustment of explanations: The computational transfer of the text’s style to
the language of a specific user group (cf. Sec. 2.2).

2 Highlights and Lessons Learned

The research highlights presented in the following contribute to the broad field of natural
language processing (NLP). They include novel fundamental computational methods as
well as new applications of NLP in real-world technologies for the given scenarios.

2.1 Automated Optimization of Natural Language Specifications

There have been few attempts to address the variety and deficiencies of natural language
software specifications as they arise in the software specification process by users without
excessive back-checking. On the one hand, we have shown that it is possible to involve the
non-specialist requirement creators in the software specification process without limiting
their ability to express themselves and to support the software developers by automatically
clarifying software specifications. The latter can avoid minor callbacks and thus reach the
implementation faster. On the other hand, we addressed the detection of inaccuracies and
incompleteness in requirements descriptions that still leave too much room for interpreta-
tion for a concrete software implementation. For this purpose, we developed a procedure
that compensates ambiguous and partially incomplete statements of the requirement creator
by using intelligent (request-driven) knowledge queries.

Compensation of Linguistic Deficiencies in Service Descriptions

Our goal was to develop a parameterized model that automatically chooses the right strategy
to compensate for human shortcomings in natural language specification [Bäu17].

Since software descriptions are sensitive to linguistic deficiencies such as ambiguities and
elisions, which can delay and thus hinder the specification process, a workaround had to
be found. However, there are numerous software programs that can detect and partially
correct deficiencies in requirement descriptions. Unfortunately, however, they are often
difficult to use and not suitable for end users. In addition, they usually do not cover the
full range of flaws and inaccuracies that can occur in natural language [BG18]. Examples
include methods that can detect and correct multiple deficiencies in natural language
requirements and tools that can be classified as expert solutions. These focus on a single
phenomenon of linguistic imprecision, such as lexical ambiguity. However, there are also
solutions that can detect ambiguity and incompleteness together or that can find different
forms of ambiguity [TB13; Kör14]. Some studies [HB15; SJ15; Bäu17] show that many
software solutions focus only on finding deficiencies. Therefore, users are still in charge of

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

compensation. Furthermore, these methods have not been combined to compensate for
service descriptions. End users expect their software requirements to be fully implemented,
but are unable to identify and correct linguistic deficiencies in requirements themselves. In
addition, there is no guarantee that end users will notice ambiguities or incompleteness,
although this can be very frustrating. These problems can be solved by implementing an
interactive, computer-aided compensation process [BG18].

With our approach, users do not have to select the necessary techniques to compensate for
the deficiencies in their service descriptions; this is done automatically. This minimizes the
number of callbacks and thus streamlines the process. As a result, outputs are improved
and users are freed from persistent, manual tasks. Finally, our approach improves the
state of the art in OTF computing [BG18]. Our research methodology, while following
the principles of design science, results in a software tool called CORDULA [Bäu17].
Figure 11 shows the modules used in our text analysis pipeline and their interaction.

Preprocessing Information
extraction

Lex. Disambiguation?

Syn. Disambiguation?

Incompleteness
compensation?

Ref. Disambiguation?

Result
structuring

Figure 11: Indicator-based text analysis pipeline for deficiency compensation [BG18].

As can be seen in Figure 11, we process the user input step by step, starting at the top.
After preprocessing, we extract information. We can deal with syntactic, lexical, and
referential ambiguity, as well as incompleteness. The configuration and execution, as well
as the monitoring of the processing pipeline, are then performed by an indicator-based
compensation strategy [BG18]. The strategy allows to exploit the synergies between
the techniques used. However, the most important question here is whether the input is
a software description. This pre-step is called on-off-topic classification, and the tool
developed for this purpose is called REaCT [DG16]. It finds process words, i.e., semantic
information such as the role or the action in a service description. This is done to ensure
that the input is indeed a software requirement description. Every other module, including
referential disambiguation, is triggered by the corresponding requirement quality indicator
[BG18]. Finally, the improved software description is then presented to the user.

2. Highlights and Lessons Learned 69

Figure 12: Lexical disambiguation results as presented by CORDULA [Bäu17].

Looking more closely at the individual modules of the pipeline, lexical disambiguation,
for example, aims to find the correct meaning of a word. After contextualizing a word, the
application finds several possible readings. It is triggered when more than one reading is
possible. The process involves the REaCT tool to semantically classify the tokens (i.e., to
recognize actions, objects, etc.). In this way, readings can be eliminated, and finally, only
the disambiguation candidates remain (see Figure 12).

(5) Action Object Refinement

(4) VB NNS PRP$ NN

(3) I want to send emails to my family

(2) Role Priority Action Object Refinement Refinement

(1) I want to send emails to my family

Figure 13: Natural language processing with semantic role labeling [BG18].

In addition, incompleteness compensation addresses service descriptions that lack informa-
tion. REaCT’s semantic role labeling (see Figure 13) is used to detect incomplete sentence
constructs and to identify the missing information. Another ambiguity in language is
referential ambiguity, i.e., which pronouns refer to which nouns. This is critical for the
system to understand the query as a whole. We used part-of-speech tagging in combination
with discourse analysis to solve this problem [BG18].

Based on this concept, we developed a system that uses automatic compensation strategies
to assist end users in creating clear and comprehensive natural language requirements. For
this purpose, linguistic indicators were developed to identify the need for each compensa-
tion method in the descriptions. Based on these indicators, the entire text analysis pipeline
we have built is configured ad-hoc and then tailored to the unique details of a service
description [BG18]. The technical implementation was done using CORDULA, a tool
for the Compensation of Requirements Descriptions Using Linguistic Analysis [Bäu17],
whose original frontend can be seen in Figure 14.

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

Figure 14: Frontend for tracing the processing steps of the text analysis pipeline [Bäu17].

CORDULA allows users to express their software requirements in natural language. It
checks the descriptions for weaknesses such as incompleteness and ambiguity, but also
for flaws, based on the pipeline shown in Figure 11. The tool compensates for these
deficiencies in an understandable way via a web interface. Figure 14 shows that the output
is in a simple language so that users can easily understand the information provided and
check its consistency. CORDULA is based on two views: the end-user (and administrator)
view and the system view. The frontend shown here is the (simplified) user view. For
special information, e.g., disambiguation, additional interfaces are available to help debug
the output. After compensation, the prototype transforms functional requirements into
structured output for further use in the OTF computing scenario. Thus, others can build
on our output, for example, by configuring software services ad-hoc and providing the
software requested by the end user [FBG18].

In this highlight, we showed that inaccuracies in software descriptions can be automatically
detected and compensated without user interaction. Our processing pipeline is optimized
by linguistic indicators, minimizing runtime and user interaction. We also demonstrated
that rule-based indicators accurately handle most linguistic deficiencies [BG18].

Chatbot-Enhanced Requirement Deficiencies Resolution

In order to eliminate requirement deficiencies that cannot be compensated by existing
methods, dialogues are required that help to specify and complete derived requirement
specifications. Existing extraction and compensation methods generate preliminary service
templates from which software services can be selected and composed. The goal of
dialogue control is to iteratively revise deficient templates in a guided manner in order to
provide as much information as possible for service composition. To achieve this, we have
divided the dialogue control into a requirement interpretation and a chat interpretation.
While the latter is responsible for the dialogue control and the interpretation of all user
input, the requirement interpretation is responsible for the classification, interpretation, and

2. Highlights and Lessons Learned 71

validation of detected requirements. This separation makes it possible to integrate existing
chatbot techniques, while the extraction and compensation components developed in
previous work can be used for processing software requirements. Especially for end users
with little prior technical knowledge, it is necessary to perform the iterative clarification
processes not only in dialogue but also with the help of explanations and examples. For
example, when compensating for incompleteness, this may mean not only pointing out the
missing information and asking for it to be filled in, but also providing a similar example
that fits the context [BKG19].

In [FBG18], CORDULA has been further developed to take requirements deficiency
resolution to a new level. The goal here is to maximize the automation of the process. It
has been shown that domain-specific resources are needed to produce high-quality results.
In addition, we have found that it is necessary to involve users in the process instead of
presenting them with the results and having them go through the process again if they are
not satisfied [BKG19]. Consequently, we developed a new approach for CORDULA that
includes a chatbot and a knowledge base. Both support the given process by clarifying
the possibilities and limitations of the software configuration process to the user, and the
chatbot asks if the information is incomplete or ambiguous [Ahm22; KAG22].

r

r ...

3

2

1

Knowledge Base

Routing & Controlling
Dialogue Builder & Controller

User Input Interpretation
On-Topic & App-Family Classi-

fication, Requirements Manager

Natural Language Processing
Requirements Analysis &

Compensation
 …

Dialogues, Examples &
Explanations

Requirements

I want a reporting system to do
cashflow analyses. It should
provide asset information.

Thank you. Did I get that right:
A financial app is required

that helps with planning and
management? Do you need a
visualization, e.g., dashboard?

 Yes, that’s correct. Can you
 make that app fast?

 Structured Output

Figure 15: Bidirectional information flow in the enhanced CORDULA version.

Figure 15 shows our evolved solution, which, unlike its predecessor [Bäu17] (cf. Figure 11),
is bidirectional. As you can see on the left side, we have a dialogue flow where the user
interacts with an automated chatbot system. In the middle are the relevant elements of the
processing pipeline. On the right is the knowledge base. The natural language processing
pipeline shown in Figure 11 has been further developed and integrated into our solution,
which includes on-off topic classification and incompleteness detection, but also new
features.

Based on the use of domain knowledge, we also created a deep learning model that
recognizes app families, which are stored in the knowledge base [Ahm22]. Figure 16
shows a snippet of the structure of this knowledge base. There is a hierarchical order
describing app families, corresponding apps, services, functions, and templates. By using
the knowledge base, the chatbot knows exactly what information it needs from the user to
fill out a service template. In addition, the chatbot uses the app family to decide which
path options are possible, which templates, and which service descriptions are possible.

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

Apps

Services Features (non-functional
req)Template

Parameters Arguments

App Family

Apps

Services Features (non-
functional req)

Arguments

Services

Apps

Features
(non-functional
requirements)

Functions

Figure 16: Graph representation of a substructure of the knowledge base [Ahm22].

For the dialogue management of the chatbot, we used Rasa5 after testing different solutions
such as DialoGPT [ZSG+20] or ChatterBot6 (see Table 1).

Models Effectiveness Efficiency Satisfaction User Approval
Rasa & knowledge base 0.84 0.78 0.73 0.73
ChatterBot 0.26 0.21 0.31 0.36
DialoGPT 0.47 0.79 0.52 0.63

Table 1: Performance ratings for tested chatbot systems [Ahm22].

Table 1 presents the effectiveness results in terms of the conversational intelligence and
performance shown by the chatbot with respect to the user’s goal. Efficiency refers to
whether the chatbot seemed human-like. Satisfaction captures whether the user is satisfied
with the chatbot’s responses and behavior (e.g., politeness). User approval deals with the
overall satisfaction of the user. DialoGPT cannot be directly combined with a knowledge
base; the knowledge should be incorporated into the parameters of the chatbot. The chatbot
achieves partially convincing results. However, ChatterBot is not convincing at all. We
conclude that Rasa is the best solution based on an evaluation of user interactions. The
intent classification works well, while the dialogue management allows us to add features
from CORDULA and integrate the chatbot into our knowledge base. When users tested all
three implementations, Rasa was by far the best in terms of overall performance, but also
in terms of fine-grained evaluation results [Ahm22; KAG22].

Figure 17 shows an example of a user-chatbot interaction. Here, the resolution of the
requirement description is done in a bidirectional manner. The chatbot greets the user
and asks for the user’s requirement descriptions. Each time the response is successfully
processed by the system, the chatbot provides this as feedback (“Your requirements were
successfully processed.”). Some of the responses follow a rule-based approach to ensure
that the requested information is always provided to each user. After the chatbot receives
and processes the initial user input, it asks for more information. In the backend, the system
queries the knowledge base and performs matching tasks using deep learning models to
5https://rasa.com/, last accessed 2023-02-06.
6https://chatterbot.readthedocs.io/en/stable/, last accessed 2023-02-06.

https://rasa.com/
https://chatterbot.readthedocs.io/en/stable/

2. Highlights and Lessons Learned 73

Figure 17: Example of a conversation with the enhanced CORDULA version [Ahm22].

look for relevant service configurations or features that already exist in the OTF computing
market. The user is free to decide what features to include or not include in the app. When
there is enough information about the app that the chatbot has collected together with a
user, the chatbot gives the user a summary of the requirements that have been met and
those that have not. This way, the user knows what to expect from the configured app
provided by the OTF system [Ahm22; KAG22].

In addition, the chatbot deals with parameters that are initially unknown to the user. This
means that software configurations sometimes have requirement templates, for example,
because some services cannot be combined with others, or because some apps require
certain services. End users cannot know this, but they also do not have to: The system
tries to fill in the templates in the background during the conversation and controls the
chat accordingly, e.g. by asking appropriate questions and suggesting certain services.
The aforementioned summary, which is communicated before the app is deployed, also
includes services that have been added based on a template.

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

In summary, our research has solved the following three main problems: (1) Deficiencies in
requirement descriptions cannot always be automatically fixed, which we address through
our bidirectional chatbot solution with a knowledge base. (2) Configuring parameters that
are initially unknown to users leads to errors in the service templates. We integrated this
into the conversation, and we provided explanatory summaries. (3) Previously, users did
not know which of their requirements were met (and which were not) in a created service,
they had to start from scratch. This is also solved by our summary and explanation at
the end of the chat. The user sees a list of all requirements, whether they were met, and
where they came from (from the user, from a template, or from an app/service suggestion
accepted by the user).

2.2 Natural Language Explanation Generation

One of our key goals was to make the service configuration process more comprehensible
for end users. In this way, users should not have to find out by trial and error whether
their service configuration expectations were met. Instead, they should get an early insight
into the feasibility of their requirements. For this purpose, we investigated the extent to
which typical user formulations based on the requirement descriptions are suitable for
training a text generation approach and which techniques can be used for text generation
in a dialogical question-answer setting.

To improve user understanding and service transparency, we provide explanations in natural
language that describe the created service while being adjusted to the user’s language.
Human-like explanations are still understudied in natural language processing (NLP)
research [WA22], particularly their generation. To obtain correct but understandable
explanations, we combine the results of two complementary efforts: On the one hand,
we developed a data-to-text generator for natural language explanations and evaluated its
performance on a data set of explanations. On the other hand, we investigated how to adapt
the linguistic style of the generated explanations to the user’s proficiency. For the latter, we
developed novel text style transfer methods and evaluated them on a corresponding data
set. Both are described in detail below.

Data-To-Text Stylized Generation of Service Explanations

In the following, we summarize the contributions that we have made to data-to-text
explanation generation with a touch on style adjustment [Bül21; ACGW21]. Specifically,
we have attempted to generate natural language sentences from the output of the services.
Here, the output is given as a set of tuples of the < name, value >. For example, <
F1, 0.89 > declares the F1-score of a computational model used in the service to be 0.89.
In NLP, the underlying task is known as a data-to-text generation problem.

Since we did not have a sufficient number of service outputs with the target sentence data,
we decided to study the given problem on data from another domain that shares similar
properties with service explanations at an abstract level. In particular, we make use of
transcriptions of politicians’ speeches. These speeches naturally contain explanations
of policies, actions, and the like. From OTF computing perspectives, such explanations
provide the data we are interested in by using a distant-supervision manner.

2. Highlights and Lessons Learned 75

A specific aspect of interest within the given task is the consideration of different linguistic
styles. In our study, we collected speeches from various politicians and conducted exper-
iments on them. For a controlled setting, we focused on the styles of two former U.S.
presidents, Barack Obama and Donald Trump. Both have clearly recognizable speaking
styles. Learning to generate texts that match the styles of the two presidents is challenging.
Specifically, it involves at least the following types of style adjustment:

1. Formality: The complexity of the words used by the two presidents also differs sig-
nificantly. In line with expectations, we observed that Obama uses more professional
and educated words, while Trump prefers simple language. Analogous to our service
explanation task, formality also serves as the generated explanations’ formality.

2. Political bias and subjectivity: The two presidents are from various parties. As a
result, they support or oppose different policies and have opposing views on several
issues. For example, Obama is seen as being open to immigrants, unlike Trump. Our
analysis also revealed that the subjectivity of the two presidents’ language plays a
role in distinguishing their styles. For example, Trump uses many emotional words
in his speeches, while Obama avoids them. These two style features are specific to
political speeches. In our service explanation task, it helps to specify word usage
preferences in the explanation, such as preferring F-score instead of F-measure.

In our research, we investigated how different models learn and adapt these different
aspects. For this purpose, we built a data set with a total of 962 transcribed public speeches,
press conferences, and interviews of the two presidents, 434 of Obama and 528 of Trump.
Since the two presidents’ speeches have limited overlap in time, the data set is naturally
non-parallel, meaning that we had to learn style adjustment without having training pairs
from which to infer style correspondences directly.

Given the data set, we focused on sentence-level style adaptation as a first substantial step
towards full document generation. First, we analyzed the training set to understand the
style of each politician. In line with our previous work [CWAS18], we calculated the
most discriminative words of each style to analyze each former president’s word usage
preference, and we determined the proportion of emotional words in the speeches. The
results highlighted that Trump frequently used emotional words (e.g., disgrace or lied),
while Obama did not (e.g., resolved or urgency). This informed us about what to look
for when developing and evaluating style transfer approaches. For example, after a style
transfer, the text should have a similar distribution of word usage as in the desired style. We
also found that not all sentences in the speeches had significant style indicators. Therefore,
we used only those sentences that contained at least one discriminative word (words used
twice more often in one style) found by the analysis.

On this basis, we evaluated two approaches to the explanation generation task:

1. NER + Data-to-text: This is the approach we developed. It first extracts named
entities in a sentence before applying one of two (one for Obama and one for Trump)
fine-tuned neural language models (BART) to generate a sentence from the given
named entities. The NER step is designed to capture the main content of the sentence,
while the data-to-text part is designed to generate a sentence about the named entities
using a specific speaker style.

2. Cross-aligned autoencoder: For comparison, we used a cross-aligned autoencoder
for this task [SLBJ17] as a baseline. This model learns to optimize two neural

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

Style Adaptation Explainability

Automatic Manual Automatic Manual

Cross-aligned autoencoder 68% 2.75 44% 2.24
Data-to-text generation (our approach) 86% 3.55 13% 1.62

Table 2: Evaluation of data-to-text generation in terms of style adaptation and explainabil-
ity: automatically computed percentage of success and manually assigned scores
from 1 (worst) to 5 (best) for the cross-aligned autoencoder and for our approach.

autoencoders to separate content and style in a latent space. An important feature of
the model is that it can preserve the text structure and change the style of the text.
The cross-aligned autoencoder shows how we can generate the explanations and
adapt the style using a model.

The approach we developed for the explanation generation task first extracts named entities
from the political speeches as the targets of the explanation. These named entities include
the names of policies, organizations, and politicians. After extracting the named entities,
the second step is to train a data-to-text model to generate texts from the extracted named
entities, as shown in Figure 18.

Figure 18: The data-to-text explanation generator by [Bül21]. The approach is a combina-
tion of named entity recognition (NER) and a data-to-text generator (D2T).

The idea of our approach is to express the content of a sentence in political speaker transfer
only on the basis of the named entities. All other words are considered as style words by
the speaker. The three key elements of our approach are as follows.

First, the encoding is the reduction of a sentence to its textual keywords. This is done using
a widely used information extraction algorithm, namely the NER system of the popular
Python library spaCy. Second, instead of a latent representation, the input is textual. It
consists of a number of instances, each composed of the named entities of a proposition
and their respective types. This has the advantage of being explicable, which is often not
the case with neural network models. And third, decoding is the process of transforming
the named entities into an explanation using natural language, relying on the outlined
data-to-text transformer model. The model, trained on a corpus of either political speaker,
should implicitly learn to generate an explanation that expresses the speaker’s style and
thus resembles the language usage.

We automatically and manually evaluated our approach and the baseline. Both evaluations
were aimed at the effectiveness of style adaptation and explainability. The results are
shown in Table 2. The automatic results are given as a percentage of success, while the

2. Highlights and Lessons Learned 77

manual results are scores ranging from 1 to 5, with 5 being the best. Table 2 suggests that
both approaches have pros and cons, namely that the cross-aligned autoencoder has better
explainability, while our approach succeeds in style adaptation.

The following sentences are examples generated by our approach to describe how the two
politicians talk about Europe and China:

Trump style: They’ll compare us to Europe and we did very well.
Obama style: That’s the spirit that binds us to Europe.
Trump style: If Biden is elected, China will own America.
Obama style: China is firmly committed to the path of peaceful development.

In these two examples, the Trump-style sentences convey negative opinions about Europe
and China. The Obama-style sentences describe the two entities from a more neutral
point of view. This phenomenon suggests that our approach learns the language use of
the two politicians in terms of the usual way they describe other countries, where Trump
typically emphasizes the competition while Obama focuses on the cooperation between
the countries.

Our qualitative results suggest that the cross-aligned autoencoder often successfully adapts
the style by using stylized words, but fails to preserve the explanation sufficiently. In
contrast, our proposed approach often successfully reformulates the content in different
words. We also observe that after applying this approach, a pre-trained style classifier
predicts that the generated text has the desired style.

In conclusion, this section has summarized our contributions based on our experiments
on political speeches as a distance-supervision data to study service explanations: (1) We
have studied approximately how to generate natural language explanations of services by
considering the problem as a data-to-text task. (2) We demonstrated that our approach can
generate explanations for the desired language style.

Text Professionalization as an Example of Style-Adjusted Generation

After generating the explanations, the next goal is to adjust the language style of a given
explanation, which is called the text style transfer task in NLP. Unlike the previous task,
where the input was a tuple of < name, value >, here the input is a natural language
sentence ready to be style adjusted.

In text-style transfer, the goal is to rewrite a text in a defined style while keeping the content
of the text similar. Text-style transfer tasks have become increasingly popular in the era of
deep learning. Depending on the goal of the task, the term “style” can refer to different
attributes of a text, such as media bias [CWAS18] or the speaking style of politicians as
mentioned above.

In the following, we summarize our main findings from two text-style transfer studies on a
specific task that exemplifies the adjustment of a text to a specific proficiency level [Mis21;
Pal22; CASW20]:

Text professionalization: Given a text, rewrite it so that its style becomes more
formal while preserving as much of its original content as possible.

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

The following two sentences show an example of how a text in “normal style” can be
rewritten in a more professional way while still conveying the same information:

Normal: Oktoberfest happens every year in Munich and many people take
part in it, where they drink beer at the Theresienwiese square.
Professional: The Oktoberfest occurs annually in the German city of Munich
and is celebrated by a large crowd, where participants gather in beer-drinking
festivities in the Theresienwiese square.

The professional sentence in the example above uses synonyms for “happens” and “every
year” that reflect a more sophisticated style (“occurs” and ”annually”). It also provides
more context by adding the country in which the city is located (“the German city of
Munich”). Finally, the professional sentence uses other phrases, such as “is celebrated
by a large crowd” and “participants gather in beer-drinking festivities,” which enrich the
sentence with elaborate details compared to the standard phrases “many people take part
in it” and “they drink beer.”

For our research, we used SSCORPUS [KK16]. This corpus has 493,000 aligned sentences
extracted by pairing simple English Wikipedia7 with standard English Wikipedia8. It
contains sentences from Wikipedia articles on various topics, which fits our research goal
of text professionalization. Each instance in the corpus is composed of a sentence from
standard Wikipedia, the corresponding sentence from simple Wikipedia, and a similarity
score between them. The sentence from standard Wikipedia uses formal and professional
language that fits the characteristics of how professional language should be. It is followed
by a simpler version of the same sentence extracted from the simple Wikipedia, which
uses simple and regular words that are easier to understand. Finally, the similarity score,
ranging from 0 to 1, describes the similarity in meaning of the two sentences: A score of 1
means that the two sentences are identical, while a score of 0 means no similarity at all.

Levenshtein Distance

in

st
an

ce

Figure 19: The Levenshtein distance distribution in SSCORPUS. The red line marks the
threshold we used for filtering.

The first step was to filter the given data set. In particular, the original use of SSCORPUS
7https://simple.wikipedia.org, last accessed 2023-02-06.
8https://en.wikipedia.org, last accessed 2023-02-06.

https://simple.wikipedia.org
https://en.wikipedia.org

2. Highlights and Lessons Learned 79

Automatic Evaluation Manual Evaluation

BLEU ROUGE Factuality Fluency Professionality

Simple - - 4.07 3.94 3.95
Professional - - 4.16 4.03 4.01
Generated 0.59 0.64 4.21 4.07 4.07

Table 3: Evaluation of style-adjusted generation: automatic scores (BLEU, ROUGE) and
manually assigned scores from 1 (worst) to 5 (best) in terms of factuality, fluency
and professionality for the simple sentence, the professional sentence, and the
generated sentence.

is to transfer the text from its simple version to its professional version. However, we
could not simply switch the inputs and outputs of SSCORPUS, because the professional
versions of the text not only use more professional words but also add more details. In other
words, transferring to simple texts results in removing these details, while transferring to
professional texts means adding these details. In practice, it is easier to remove information
than to add it. Sometimes it is almost impossible to add extra information out of nothing.
As a measure, we used the Levenshtein distance between the simple and professional
versions and discarded those pairs that added too much new information (having a too-high
Levenshtein distance). Figure 19 shows the distribution of the Levenshtein distance in
SSCORPUS and the threshold (25) for selecting the better instances. In order to obtain a
professionalized text, we used the context of the text as an additional input in our approach.
Specifically, we used entity information to model the context, where the entity information
was extracted using the NER tool spaCy. Figure 20 shows the architecture of the model
within our approach.

Embedding
Layer

Encoder Encoder

Embedding
Layer

Encoder

Embedding
Layer

Encoder

Embedding
Layer

<sos> x1 x2 <eos>

h1 h2 h3 h4

h0

Embedding
Layer

Embedding
Layer

Embedding
Layer

<sos> y1 y2

Decoder Decoder Decoder

Encoder vector

Z

Linear
Layer

Linear
Layer

Linear
Layer

y1 y2 <eos>

e e

Figure 20: The architecture of our model adapted from Mishra [Mis21]: xn and yn denote
the n-th input and output tokens, ht is the hidden state in the step t, <sos> and
<eos> are the start and end of sentence tokens, z is the representation of the
input, and e is the entity information as an additional input to the model.

The final step was to select a base model for fine-tuning on our data set. We chose BART
from Facebook AI, which was pre-trained on the CNN/DailyMail data set. At the time of
developing our approach, BART showed state-of-the-art performance on many NLP tasks,
such as machine translation, question answering, and text simplification.

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

We re-evaluated our approach using both automatic and manual measures. In the automatic
evaluation, we considered BLEU (Bilingual Evaluation Understudy) and ROUGE (Recall-
Oriented Understudy for Gisting Evaluation). For manual evaluation, we used Amazon
Mechanical Turk to evaluate the text in terms of fluency, factuality, and professionality.
The evaluation results are shown in Table 3. The BLEU and ROUGE scores indicate that
the generated sentences are close to professional sentences. In terms of manual evaluation,
the judges gave very high scores to the generated sentences in all three aspects, indicating
that our approach successfully transforms simple sentences into professional sentences.

The following is an example of a professional sentence generated by our approach:

Simple: During pregnancy, the endometrium develops a lot of glands and
blood vessels.
Professional: During pregnancy, the glands and blood vessels in the en-
dometrium further increase in size and number.
Generated: During pregnancy, the endometrium develops a large number of
glands and blood vessels, known as endometrial granules.

Here, the professional sentence changes the part “develops a lot of” into a more precise
description that the endometrium “increase in size and number.” The generated sentence
also professionalizes the simple text in a similar manner by changing it to “develops a large
number.” Furthermore, the generated sentence adds a new concept “endometrial granules.”
The model appears to learn such word usage from the pre-trained weights of the BART
model. In addition, a judge from Amazon Mechanical Turk commented that “all sentences
are good, but the generated one is the clearest and most descriptive.”

In summary, this research investigates one of the core topics of Subproject B1: adjusting a
text to the user’s language. Depending on the professionality of the users, our approach can
transfer the style of the text to a more professional version. In principle, it could also be
easily adapted to transfer the texts to a less professional version. From the OTF computing
perspective, we study how to generate explanations for different user groups. For example,
machine learning beginners would be simple explanations with few technical terms. On
the other hand, experts would expect explanations with algorithm details.

3 Impact and Outlook

Our work is embedded in the context of OTF computing where our goal was to allow end
users to participate in the specification process by supporting natural language requirements
without limiting expressiveness. The richness and ambiguity of natural language, as well
as its imprecision, may cause deficient service descriptions and hence posed a challenge
for processing, which had to be mastered. By incorporating natural language generation
and style transfer techniques, we enabled communication with users in a language they
can understand.

3.1 Optimization of Service Specifications

Until now, most of the existing work has focused on the use and development of semi-
formal or formal specification languages, which means that there have been few approaches

3. Impact and Outlook 81

in the area of requirements extraction. In particular, there has been a lack of linguistic
resources. To be able to process natural language requirements, we developed our own
knowledge-based resources (e.g., requirements corpora and compensation graphs [GB16])
and an approach (REaCT, Requirements Extraction and Classification Tool) that detects
on-topic statements in service descriptions. Based on this, the insufficiently specified
end-user requirements could be analyzed (i.e., identified, extracted, and formalized) to
compensate for ambiguity, vagueness, and incompleteness.

In order to efficiently and reliably compensate for deficient service descriptions, strategies
have been developed to select appropriate algorithms [GB17]. The goal was to obtain
concrete natural language service specifications depending on certain linguistic inaccu-
racies (e.g., ambiguity and incompleteness) in order to best specify the user’s original
requirements. For this purpose, a parameterized model has been developed [BG18] that au-
tomatically chooses the most appropriate strategy to compensate for linguistic deficiencies
in service descriptions. On the one hand, strategies were developed for demand-oriented
and performant control of appropriate compensation procedures. On the other hand, it was
shown that the strategy configuration itself can be performed in a data-driven manner in
real-time, depending on the situation, and can lead to better results than predefined rule
sets. Also, the proven learning effects of the prototype CORDULA (Compensation of
Requirements Descriptions Using Linguistic Analysis) [FBG18] through caching during
(domain-specific) lexical disambiguation could be achieved in practice. Furthermore, in
line with our earlier research [WSE11], we questioned the predefined order of text analysis
steps that has been established in natural language processing for years and achieved good
results by deviating from the classical NLP pipeline. In this way, the respective input text
itself reveals which inaccuracies are present, and the necessary compensation steps as well
as their order are determined in a data-driven manner, taking into account the interactions
between ambiguous and incomplete linguistic expressions.

Based on this work, we moved to bidirectional requirement compensation, since uni-
directional and analytic approaches do not produce fully actionable requirements. There-
fore, we used the previously constructed processing pipeline and enriched it with a chat
functionality that can access an underlying knowledge graph created specifically for the
domain. The chatbot ensures that user requests are processed end-to-end. With access
to the knowledge graph, the chatbot suggests application features to the user, fills out
templates in the background, and asks questions that help the chatbot determine the type
of application being requested. After evaluating this approach with real users, we will be
able to generate software requests based on natural language [KAG22].

3.2 Generation of Service Explanations

Learning to explain sophisticated concepts is never an easy task, even for humans. In our
research, we faced two major challenges: First, we needed data sets to analyze human
explanations and to train explanation generation methods. Second, we wanted to adapt the
style of the explanations to the language of the users.

We decided to use data sets from other task domains because no service-related explanation
data were available. In the first highlight we presented in Section 2.2, we outlined how we
adapted the transcriptions of politicians’ speeches into a data set for explanations. In this

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

way, we were able to collect the explanations remotely, rather than having to ask experts
to write the explanations for our study. In the second highlight, we wanted to provide
users with different professional levels of explanations. Again, no perfectly matched data
were available. To solve this problem, we used the existing SSCORPUS from another task
and further filtered it to meet our needs for text professionalization. In both highlights,
we described how to solve the problem of data sparseness and also demonstrated that we
can use the data sets created in the two highlights to properly study the desired research
topics.

The second challenge was to adjust the style of the explanations. In the two highlights, we
have shown that such text style transfer can be done in two different ways: On the one hand,
we trained multiple data-to-text explanation generators, one for each style; in the example
of politicians’ explanations, we had two generators, one for each politician. On the other
hand, we trained a neural style transfer model and applied it to the explanation results. In
the task studied, the professionality of the texts was successfully changed after the texts
were generated. Both approaches have their advantages and disadvantages. In the first
solution, we trained the model to perform explanation generation and style adjustment in
one approach, i.e., as an end-to-end model. In the second solution, we treated the two tasks
separately, suggesting a cascading architecture. In general, an end-to-end approach may
achieve better performance, while a cascade approach may suffer from error propagation.
However, the cascade approach may be easier to interpret, and one can optimize each
component individually.

In summary, in the two highlights we have discussed how we approached the task of
style-adjusted explanation generation. With our approaches, we contribute to Subproject
B1 and fulfill one of its main goals: user-adjusted explanation generation.

3.3 Outlook on Explainable Results

Since there are different ways of elaborating software requirements, the question of
explainability arises when many improvements have been made. That is, the reasons for
correcting certain parts of the requirements and the reasons for the improvements must
be clear to the users. Thus, end users should be informed so that they understand the
composition of the service and are satisfied with its features. To date, corrections are
sometimes highlighted or compared to the input, but there is no explanatory information
about the changes. In the OTF context, there are several challenges: Natural language
input from end users primarily shapes the software composition, although the nature of
the composition (the actual software service selection step) also has an impact. The result
is a transparent composition process that includes natural language inaccuracy detection
and compensation methods to improve comprehension. To what extent ChatGPT 9 can be
useful and adapted for this domain-specific task remains to be investigated.

9https://openai.com/blog/chatgpt/, last accessed 2023-02-05.

https://openai.com/blog/chatgpt/

3. Impact and Outlook 83

Bibliography

[ACGW21] Alshomary, M.; Chen, W.-F.; Gurcke, T.; Wachsmuth, H.: Belief-based Generation of
Argumentative Claims. In: Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume. 2021, pp. 224–233

[Ahm22] Ahmed, M.: Knowledge Base Enhanced & User-centric Dialogue Design for OTF Com-
puting. MA thesis. Paderborn University, Germany, 2022

[Bäu17] Bäumer, F. S.: Indikatorbasierte Erkennung und Kompensation von ungenauen und un-
vollständig beschriebenen Softwareanforderungen. PhD thesis. Paderborn University,
Germany, 2017

[BBP15] Börding, P.; Bruns, M.; Platenius, M. C.: Comprehensive Service Matching with Match-
Box. In: Proceedings of 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 974–977

[BG18] Bäumer, F. S.; Geierhos, M.: Flexible Ambiguity Resolution and Incompleteness Detection
in Requirements Descriptions via an Indicator-based Configuration of Text Analysis
Pipelines. In: Proceedings of the 51st Hawaii International Conference on System Sciences.
2018, pp. 5746–5755

[BKG19] Bäumer, F. S.; Kersting, J.; Geierhos, M.: Natural Language Processing in OTF Comput-
ing: Challenges and the Need for Interactive Approaches. In: Computers 8 (2019), no. 1,
pp. 1–14

[Bül21] Bülling, J.: Political Speaker Transfer–Learning to Generate Text in the Styles of Barack
Obama and Donald Trump. MA thesis. Paderborn University, Germany, 2021

[CASW20] Chen, W.-F.; Al Khatib, K.; Stein, B.; Wachsmuth, H.: Detecting Media Bias in News Arti-
cles using Gaussian Bias Distributions. In: Findings of the Association for Computational
Linguistics: EMNLP 2020. 2020, pp. 4290–4300

[CASW21] Chen, W.-F.; Al Khatib, K.; Stein, B.; Wachsmuth, H.: Controlled Neural Sentence-Level
Reframing of News Articles. In: Findings of the Association for Computational Linguistics:
EMNLP 2021. ACL, Nov. 2021, pp. 2683–2693

[CWAS18] Chen, W.-F.; Wachsmuth, H.; Al-Khatib, K.; Stein, B.: Learning to Flip the Bias of News
Headlines. In: Proceedings of the 11th International Conference on Natural Language
Generation. ACL, Nov. 2018, pp. 79–88

[DG16] Dollmann, M.; Geierhos, M.: On- and Off-Topic Classification and Semantic Annotation
of User-Generated Software Requirements. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. ACL, Nov. 2016, pp. 1807–1816.

[FBG18] Friesen, E.; Bäumer, F. S.; Geierhos, M.: CORDULA: Software Requirements Extraction
Utilizing Chatbot as Communication Interface. In: Joint Proceedings of REFSQ-2018
Workshops, Doctoral Symposium, Live Studies Track, and Poster Track co-located with
the 23rd International Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2018). Vol. 2075. CEUR-WS.org, 2018

[FdSG14] Ferrari, A.; dell’Orletta, F.; Spagnolo, G. O.; Gnesi, S.: Measuring and Improving
the Completeness of Natural Language Requirements. In: Requirements Engineering:
Foundation for Software Quality. Ed. by Salinesi, C.; Weerd, I. van de. Springer, 2014,
pp. 23–38

[GB16] Geierhos, M.; Bäumer, F. S.: How to Complete Customer Requirements: Using Concept
Expansion for Requirement Refinement. In: Proceedings of the 21st Int. Conf. on Applica-
tions of NL to Information Systems (NLDB). Ed. by Métais, E.; Meziane, F.; Saraee, M.;
Sugumaran, V.; Vadera, S. E. Vol. 9612. LNCS. Springer, 2016, pp. 37–47

[GB17] Geierhos, M.; Bäumer, F. S.: Guesswork? Resolving Vagueness in User-Generated Soft-
ware Requirements. In: Partiality and Underspecification in Information, Languages, and
Knowledge. Ed. by Christiansen, H.; Jiménez-López, M. D.; Loukanova, R.; Moss, L. S.
Partiality and Underspecification in Information, Languages, and Knowledge. Cambridge
Scholars Publishing, 2017. Chap. 3, pp. 65–108

Bäumer, Chen, Geierhos, Kersting, Wachsmuth Subproject B1

[GSB15] Geierhos, M.; Schulze, S.; Bäumer, F. S.: What did you mean? Facing the Challenges
of User-generated Software Requirements. In: Proceedings of the 7th ICAART. Ed. by
Loiseau, S.; Filipe, J.; Duval, B.; Herik, J. van den. Special Session on PUaNLP 2015.
SCITEPRESS, 2015, pp. 277–283

[HB15] Husain, S.; Beg, R.: Advances in Ambiguity less NL SRS: A review. In: Proceedings of
ICETECH 2015. Mar. 2015, pp. 221–225

[KAG22] Kersting, J.; Ahmed, M.; Geierhos, M.: Chatbot-Enhanced Requirements Resolution for
Automated Service Compositions. In: HCI International 2022 Posters. Ed. by Stephanidis,
C.; Antona, M.; Ntoa, S. Vol. 1580. CCIS. Springer, 2022, pp. 419–426

[KK16] Kajiwara, T.; Komachi, M.: Building a monolingual parallel corpus for text simplification
using sentence similarity based on alignment between word embeddings. In: Proceedings
of COLING 2016. 2016, pp. 1147–1158

[Kör14] Körner, S. J.: RECAA - Werkzeugunterstützung in der Anforderungserhebung. PhD thesis.
KIT, Feb. 2014

[Mis21] Mishra, A.: Computational Text Professionalization using Neural Sequence-to-Sequence
Models. MA thesis. Paderborn University, Germany, 2021

[MLC14] Moens, M.-F.; Li, J.; Chua, T.-S., eds.: Mining User Generated Content. CRC Press, 2014

[Pal22] Palushi, J.: Domain-aware Text Professionalization using Sequence-to-Sequence Neural
Networks. BA thesis. Paderborn University, Germany, 2022

[PJR+16] Platenius, M. C.; Josifovska, K.; Rooijen, L. van; Arifulina, S.; Becker, M.; Engels, G.;
Schäfer, W.: An Overview of Service Specification Language and Matching in On-The-Fly
Computing (v0.3). Technical Report. HNI, Paderborn University, Germany, 2016

[Pla13] Platenius, M. C.: Fuzzy Service Matching in On-the-fly Computing. In: Proceedings of
the 2013 9th Joint Meeting on FSE. ESEC/FSE’13. ACM, 2013, pp. 715–718

[SJ15] Shah, U. S.; Jinwala, D. C.: Resolving Ambiguities in Natural Language Software Re-
quirements: A Comprehensive Survey. In: SIGSOFT Software Engineering Notes 40 (Sept.
2015), no. 5, pp. 1–7

[SLBJ17] Shen, T.; Lei, T.; Barzilay, R.; Jaakkola, T.: Style transfer from non-parallel text by cross-
alignment. In: Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2017, pp. 6833–6844

[TB13] Tjong, S. F.; Berry, D. M.: The Design of SREE – A Prototype Potential Ambiguity
Finder for Requirements Specifications and Lessons Learned. English. In: Requirements
Engineering: Foundation for Software Quality. Ed. by Doerr, J.; Opdahl, A. L. Vol. 7830.
LNCS. Springer, 2013, pp. 80–95

[WA22] Wachsmuth, H.; Alshomary, M.: “Mama Always Had a Way of Explaining Things
So I Could Understand”: A Dialogue Corpus for Learning to Construct Explanations.
In: Proceedings of the 29th International Conference on Computational Linguistics.
International Committee on Computational Linguistics, Oct. 2022, pp. 344–354

[WSE11] Wachsmuth, H.; Stein, B.; Engels, G.: Constructing Efficient Information Extraction
Pipelines. In: 20th ACM International Conference on Information and Knowledge Man-
agement. Ed. by Berendt, B.; Vries, A. de; Fan, W.; Macdonald, C.; Ounis, I.; Ruthven, I.
ACM, Oct. 2011, pp. 2237–2240

[ZSG+20] Zhang, Y.; Sun, S.; Galley, M.; Chen, Y.-C.; Brockett, C.; Gao, X.; Gao, J.; Liu, J.;
Dolan, B.: DialoGPT: Large-Scale Generative Pre-training for Conversational Response
Generation. In: Proceedings of the 58th Annual Meeting of the ACL. Ed. by Jurafsky, D.;
Chai, J.; Schluter, N.; Tetreault, J. ACL. 2020, pp. 270–278

85

Subproject B2:

Configuration and Evaluation

Jonas Hanselle1, Eyke Hüllermeier2, Felix Mohr3, Axel Ngonga1,
Mohamed Ahmed Sherif1, Alexander Tornede4, Marcel Wever2

1 Department of Computer Science, Paderborn University,
Germany

2 Institute of Informatics, LMU Munich, Munich,
Germany

3 Universidad de La Sabana, Chía, Colombia
4 Institute of Artificial Intelligence, Leibniz Unversity

Hannover, Germany

Subproject B2 “Configuration and Evaluation” deals with methods and algorithms for the
configuration and evaluation of software services in the OTF Computing scenario. During
the three funding periods, various techniques have been developed and implemented for
this purpose. Moreover, these techniques have been instantiated and evaluated on case
studies from different domains: image processing, automated machine learning (AutoML),
and question answering (QA) systems.

1 Introduction

Subproject B2 plays a central role within the CRC as a whole. Its task is to develop methods
for the configuration of software services according to the requirement specifications
provided by the user (cf. subproject B1). For this purpose, services traded on OTF markets
are collected and assembled in an appropriate way. Before a service composition is
executed, it will be analyzed for functional correctness (cf. subproject B3).

In the first period of the CRC, the focus of the subproject has been on

• the construction of a basic service configurator,

• the matching of services as an important part of the configuration process,

• the use of machine learning (ML) methods for the adptation of evaluation functions
(in agreement with the users’ preferences),

• the investigation of theoretical limits of the (automation of the) configuration process.

In the second period, subproject B2 concentrated on

• the extension of the configuration approach from a sequential to a sequential-
hierarchical, template-based process,

jonas.hanselle@uni-paderborn.de (Jonas Hanselle), eyke@lmu.de (Eyke Hüllermeier), fe-
lix.mohr@unisabana.edu.co (Felix Mohr), axel.ngonga@upb.de (Axel Ngonga), mohamed.sherif@uni-
paderborn.de (Mohamed Sherif), a.tornede@ai.uni-hannover.de (Alexander Tornede), mar-
cel.wever@ifi.lmu.de (Marcel Wever)

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

• the improvement of ML-based adaptation techniques by new methods from the field
of preference learning,

• the adaptation of the configuration to market changes (e.g., the offering of new
services or changing user preferences),

• a better interlinking of the configuration and the execution phase.

The third period was dedicated to

• the integration of the user in the configuration process, and the realization of this
process in an online manner,

• the increase of the efficiency of automatic service configuration by exchanging
information between different but related configuration processes,

• the use of quality criteria of services as part of the objective function,

• the broadening of the evaluation by means of a complementary case study in the
field of question answering systems.

While the focus of the subproject was mainly on conceptual and methodological contri-
butions, the development of methods and algorithms has been accompanied by concrete
implementations from the very beginning. Moreover, conceptual solutions have been
instantiated and evaluated on case studies from different domains, starting with image
processing in the first funding period. Later on, the instantiation of service configuration
has been realized for the practically relevant case of machine learning functionality, with
the vision to establish “OTF Machine Learning” as an extension of what is currently
known as “Automated Machine Learning” (AutoML) [HKV19]. In the last funding period,
question answering systems have been added as a third application domain.

2 Highlights and Lessons Learned

In the following, we give an overview of the most important achievements of the subproject
and summarize the key results that have been accomplished during the three funding
periods of the CRC.

2.1 Domain-Independent Service Composition

During the first phase of the project, the main focus was on the functional aspect of
automated service composition without a commitment to a specific domain. In this
scenario, the user provides a formal specification of the functional requirements in terms
of inputs, outputs, preconditions, and effects (IOPE) of the desired service. It is assumed
that there is a set of existing services with the same type of descriptions that can be used to
create the new desired service. The preconditions define types of and potential relationships
between inputs. The effects describe conditions that the service guarantees to hold on the
inputs or outputs after execution. The language used to describe preconditions and effects
is a decidable subset of first-order logic. In particular, they serve to describe the meaning of
outputs with respect to inputs. A simple example is a currency converter service that takes

2. Highlights and Lessons Learned 87

a value x in EUR and returns its equivalent y in USD, and the effect could be described by
EUR2USD(x,y).

This task is an extended version of the classical planning problem. The services correspond
to planning operators, instances of which can be connected into a chain of service calls,
which correspond to actions in the classical planing setup. From this viewpoint, a service
composition is a plan, and the initial state is the preconditions specified in the query, and
the goal state is the effect specified in the query. The first crucial aspect that differentiates
automated service composition from classical planning is that the operators can create new
objects (the outputs), which is not supported in classical planning. A second difference
is that the quality of a solution is not a scalar but a vector. In classical planning, the cost
of a plan is the sum of the (scalar) costs of actions. However, in a service composition,
several qualities of service (QoS) such as throughput, availability, privacy, etc. have to be
considered in addition to the price.

Importantly, this type of problem is much more challenging than the much more commonly
studied problem of pure QoS optimization over a pre-defined service workflow, where it
is assumed that the general controller of the desired service is already implemented and
connects to yet unspecified components through fixed interfaces. For each interface, a
finite set of candidates is assumed to be available and can be plugged into the solution.
The goal is then to pick the best combination of such candidates that, when put together,
optimize the overall QoS of the configuration. This is a configuration of a controller, and
the decisions the agent need to make to set up a solution are a strict subset of the decisions
the agent has to make in the case of automated service composition.

Within this phase, we were the first to propose a planning algorithm that is capable of
automatically creating service compositions based on functional descriptions in which the
effects relate outputs to inputs while optimizing QoS. The approach is based on backward
planning [MJB15] and is the first algorithm of its kind that is able to compose services
not only based on the types of the inputs and outputs (monadic preconditions and effects),
but can work with preconditions and effects of any arity. Starting from the goal definition
with an empty composition, it tries to prepend service calls to the current composition that
resolve at least one open requirement. Such a prepended service call typically comes with
its own preconditions, which are added to the agenda unless they are provided in the initial
state (preconditions warranted by the client in the query).

Another highlight of the approach is that it is able to prune nodes from the search space,
if they are redundant in some way to make the search more efficient. First, it cuts nodes
that encode compositions containing a service twice with the same inputs. Second, the
algorithm prunes nodes of compositions that have a precondition that includes the pre-
condition of one of its own subcompositions. That is, a node is pruned if it is associated
with a composition whose preconditions are a superset of the preconditions of another
composition.

In spite of its innovative aspects, the background search still suffered from a number of
inefficiencies, which could be overcome by the development of a partial order planning
algorithm [Moh]. The main advantage of a partial order planning (POP) compared to
forward or backward planning is that it takes into account that the only constraint on the
order of the planning operators is the flow of data. This specific property of the automated
service composition problem implies that a huge number of serialized compositions are

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

equivalent from both the functional and the QoS viewpoint. This implies that the search
space in forward or backward composition contains a huge number of mirrors, which are
avoided in POP. In POP, orders in the plan are only partially fixed as far as necessary,
based on the preconditions and effects of the operators used.

A further limitation of these compositions is that they cannot contain conditional paths let
alone loops. To overcome this limitation, we proposed a template approach for loops in
which a general structure with generic preconditions and effects is defined [MW15]. A
replacement of service placeholders leads to a concrete service instantiation with concrete
preconditions and effects. During a regular composition process, this mechanism can be
invoked as a subroutine to create services with non-linear control flows on the fly.

All of the above composition approaches are based on orchestration. That means that it is
assumed that there is a central instance that controls the service invocations and the data
flow between them. In contrast to this, a choreography approach does not have a central
controller, but all the participants of a composition are told about where, i.e., to which
other services, they should send their output for a specific composition. This decentralized
execution of service compositions can lead to enormous performance improvements,
because the data has to travel very short distances (maybe even within the same compute
center) compared to a centralized approach.

Based on the previous work, a choreography-based approach was developed in [JK16].
The main challenge in this approach is to trigger the execution of a service decentrally as
soon as all the data of a service has arrived. In this work, the logic of service composition
execution is modeled through Petri nets, in which data is seen as a resource and services as
transitions that consume and produce data. Needless to say, the service does not actually
consume the data, but the semantics of Petri nets are used to model the behavior of such a
service.

In an alternative research thread in this phase, we investigated the issue that purely formal
service descriptions are usually not suffecient to capture the user expectations. A common
example for this is image processing. At the symbolic level, it is virtually impossible
for the user to specify the desired transformation of an image. Instead, it can be sensible
to show different proposals to the user and ask him for feedback. Such feedback can be
binary, i.e., the user is rather satisfied than not with a result, or one provides several options
and lets the user rank the alternatives. From this feedback, it is then in principle possible
to learn which services (and their configurations) the user prefers over others. The main
challenge is here to identify to which of the services within a composition to attribute a
good or bad ranking.

To address this problem and to learn the relevance of a specific service (for a particular user
in a concrete context), temporal difference (TD) learning was used [JM15]. We recognize
that every service is, in a specific context, associated with a latent reward that is neither
known before nor cannot be observed directly. However, if one interprets the set of partial
compositions as the state space of an MDP, it is possible to learn the appropriateness of
the components through TD learning. This is because TD learning propagates back the
final evaluations to the state over time and, in this way, indirectly assigns ratings to partial
compositions.

In this last approach, the composition technique deviates from the other techniques in
that a forward search is adopted based on rules or tasks. The original problem is still to

2. Highlights and Lessons Learned 89

convert an initial condition into a goal condition, but the services are no longer explicitly
equipped with specific preconditions and effects, except maybe the types of the inputs and
outputs. To decide whether a service is suitable for a specific task, the approach uses the
concept of rules, which can be seen as possible ways of solving tasks. This view is closely
related to hierarchical planning, which is also the basis of the ML-Plan approach developed
in the second phase. The composition problem is then described through a context-free
grammar in which the initial state is the start symbol, non-terminal symbols encode tasks,
and production rules encode how tasks can be resolved. Such a rule maps a task to a series
(usually of length 1) of services and possibly a new non-terminal. It can hence be seen as a
task composition.

In summary, the first phase of the project focused on automated composition of services
into a new service that satisfies the functional requirements specified by the user. To this
end, classical planing was extended to support the generation of new planning objects and
to support vector-valued QoS optimization. Based on the observation that fully ordered
planning leads to significant inefficiencies, an alternative approach based on partial order
planning was developed, that significantly outperforms the previously developed backward
search. These orchestration-based approaches have been modified and extended in order to
support choreography-based compositions, the latter of which were achieved by the means
of Petri nets. Orthogonal to these efforts, we investigated the potential of composition
approaches that take into account the fact that many important aspects of even the functional
behavior of services cannot be captured in symbolic encodings. This makes it necessary to
propose to the user a set of potentially satisfying solutions, all of which comply with the
formal requirements posed by the user, and to ask the user for feedback.

The insights and experiences gained during this first phase were crucial for the definition
of the goals in the following phases. One of the most important insights was indeed the
limitation of formal service specifications. One very prominent example of automated
service composition, where formal specifications are of no use is, automated machine
learning. At the formal level, the goal here is simply to find a machine learning pipeline.
The challenge is, however, that such pipelines work differently well on different datasets,
and a pipeline that works well on one dataset may not work well on another one. Among
hundreds of possible pipelines and billions of their configurations, the goal is to find the
best suited one suited according to a performance measure such as accuracy.

2.2 ML-Plan: Configuring Machine Learning Pipelines

As mentioned in the previous section, a particularly interesting and practically relevant
domain is machine learning. In this domain, services can process and model data in a wide
variety of ways for different tasks. While there are many different functionally equivalent
services for a task, the real interest is in finding services that satisfy certain non-functional
properties, such as high accuracy and/or low prediction time. Since the non-functional
properties can vary widely for different datasets and thus which service is best suited, it
is important to determine the most appropriate service for each data set, which in turn
requires expertise in the field of machine learning.

The need for applications with machine learning techniques has increased rapidly, espe-
cially in recent years, and cannot be satisfied by the available experts in this field. This

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

situation gave rise to the vision of automated machine learning (AutoML), which deals,
among other things, with the automated selection and parameterization of machine learning
algorithms. These algorithms are often arranged in a so-called pipeline where first the
data is pre-processed and transformed in a certain way and eventually passed to a learning
algorithm. Choosing the right algorithms also in the right order is of high importance to
obtain the best possible results with respect to the non-functional requirements. In other
words, AutoML deals with the automated and personalized delivery of machine learning
applications.

Considering machine learning algorithms as services, the search for suitable machine
learning algorithms or services fits seamlessly into the setting of OTF Computing, where a
machine learning service or a composition of machine learning services on the requirements
should be provided according to the user. While existing AutoML tools rely on techniques
such as Bayesian optimization [THHL13; FKE+15], genetic programming [OBUM16;
GV19] or reinforcement learning, we have continued our work with planning algorithms
from the previous funding phase. More specifically, we have developed an AutoML system
based on the paradigm of HTN-planning and using a best-first search for the search, which
borrows concepts from the Monte Carlo tree search for the node evaluation.

Another problem is that with the ongoing search for suitable machine learning services,
these adapt too much to the training data provided and do not generalize as well, which
results in lower accuracy on new, unseen data. To avoid this effect, we propose a two-step
AutoML process with ML-Plan [MWH18b], in which part of the training data is retained
for a later final candidate selection. In a first phase, a pool of promising candidates can be
put together with the reduced training data set and a final candidate can later be selected
from this pool with the data that has not yet been used. In this way, the previously described
effect, which is also referred to as overfitting in the literature, can be largely avoided.

In [MLHW18], we first developed an extension of HTN-planning to programmatic task
network planning (PTN-planning), which can be used to combine the static search space
model with dynamically determined ones. Information can be entangled to make the
search space dependent on certain dynamic state properties. In addition, we compared
ML-Plan with the state-of-the-art approaches and were able to determine a competitive
performance for ML-Plan. A key component for the success of ML-Plan is the search
space modeling based on HTN-planning, more specifically PTN-planning. The search
space naturally exhibits hierarchical structures, e.g., learning algorithms that wrap other
learning algorithms, for example, to tackle subproblem of the original problem. Further-
more, machine learning algorithms typically expose so-called hyperparameters which are
parameters of the learning algorithm that may impact the learning behavior. Depending
on which machine learning algorithm is chosen, different hyperparameters need to be
optimized, introducing additional hierarchical structures and constraints. A schematic
illustration of these hierarchical structures is shown in Figure 21 as well as in the following
section (cf. Figure 23).

As already pointed out before, HTN-planning allows to capture those hierarchical structures
and dependencies in a very natural way. In Figure 22 a search tree induced by HTN-
planning and fast forward decomposition is shown, where an initial complex task is
iteratively refined by other complex tasks or primitive task via so-called methods until
only primitive tasks are left. The search space model follows a divide-and-conquer
approach so that complex tasks are step-by-step broken down to (hopefully) simpler

2. Highlights and Lessons Learned 91

AdaBoost

DecisionTree

Figure 21: A schematic illustration of a machine learning pipeline consisting of a prepro-
cessing step and a learning algorithm.

Figure 22: Derivation of pipelines via hierarchical planning. Complex tasks are colored in
red and primitive tasks in green. Arcs indicate methods.

tasks until all complex tasks have been refined by primitive tasks eventually. Intuitively
speaking, ML-Plan tries to imitate a human developer faced with a complex task of
providing a machine learning pipeline for a given problem. Then, this abstract task is
decomposed step-by-step to smaller abstract tasks such as choosing a learning algorithm
and preprocessing algorithms until all decisions regarding machine learning algorithms
and their hyperparameter values have been made.

ML-Plan has served as a starting point for several subsequent works. In a first sequel, we
extended the search space of ML-Plan from the commonly configured two-step pipelines,
involving a single pre-processing algorithm and a learning algorithm, to pipelines compris-
ing a potentially unlimited number of pre-processing algorithms arranged in a tree-shaped
structure and again a learning algorithm. In this way, ML-Plan is capable of building more
sophisticated data transformations to pre-process the given data. Furthermore, while ML-
Plan was originally developed for binary and multinomial classification tasks, it has been
extended to regression, multi-label classification [WMH18; WMTH19], and more recently,
remaining useful lifetime estimation in the realm of predictive maintenance [TTW+20].

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

Even in these settings, which are sometimes quite different from the original classification
setting, it has shown strong performance, rendering ML-PLan a relatively flexible AutoML
framework. To prepare ML-Plan for its deployment in an OTF market, where machine
learning algorithms are provided in the form of cloud services which are computed in
a distributed system, ML-Plan was also extended to work with services in a distributed
environment [MWHF18; MWH18a].

Beyond scientific successes and academic publications, ML-Plan was a key component in
the proof-of-concept project, a demonstrator joining various subprojects of the collaborative
research center. More specifically, ML-Plan was used in the implementation of the on-the-
fly provider for the configuration of the machine learning services. Therefore, ML-Plan
represents the beating heart of one of the considered on-the-fly scenarios, i.e., on-the-fly
machine learning [MWTH19].

2.3 Automated Configuration of Multi-Label Classifiers

Another relevant learning problem, which is also extremely interesting from an AutoML
point of view, is the so-called multi-label classification. Here, in contrast to conventional,
single label, classification problems (SLC), instances can be associated not only with one
class, but with several classes at the same time. Consequently, instead of mapping from
X to L, where X is the instance space and L is the set of class labels, models map to the
power set of L, i.e., all possible label combinations. While single-label classification tries
to learn primarily dependencies between X and L, much of the MLC literature also tries to
exploit dependencies between labels, i.e., between elements in L, in order to increase the
generalization goodness.

Based on methods for SLC, a diverse repertoire of MLC methods has been developed over
time. One strain of the literature adapts SLC models and/or learning algorithms for the
MLC setting, so-called algorithm adaptation approaches. Alternatively, MLC problems
are transformed into one or multiple SLC problem(s) such that in turn already well-studied
SLC methods can be applied to the induced problems.

An exemplary selection of algorithms constituting a multi-label classifier is illustrated in
Figure 23.

From an AutoML perspective, problem transformation methods need to be configured
with an SLC method as a base learner, and the choice of both the problem transformation
method as well as the baselearner depends on the task in question, i.e., the dataset and loss
function. Hence, the search space for automatically selecting algorithms and optimizing
their hyperparameters is a multiple of the search space of SLC, which is reported already
huge, since the search space for SLC is included for each MLC problem transformation
method. Also in this direction of extending AutoML methods it is questionable to what
extent the already proposed methods can be applied to the MLC setting. More precisely,
questions of scalability arise.

Another question is how to design a fair and meaninigful comparison. In the literature,
oftentimes complete AutoML systems are proposed that combine an optimization method
with a custom search space definition and a module for evaluating solution candidates.
However, we are interested in how well optimization methods scale with the increasing

2. Highlights and Lessons Learned 93

ExpectationMaximization

hyper-parameters

RandomSubspaceML

hyper-parameters

Monte Carlo Classifier Chains

hyper-parameters

Bagging

hyper-parameters

SMO

hyper-parameters

NormalizedPolyKernel

hyper-parameters

B
as

ic
 S

in
gl

e-
La

be
l C

la
ss

ifi
er

M
et

a
Si

ng
le

-L
ab

el
 C

la
ss

ifi
er

B
as

ic
 M

ul
ti-

La
be

l C
la

ss
ifi

er

M
et

a
M

ul
ti-

La
be

l C
la

ss
ifi

er
s

Figure 23: A schematic illustration of the structure of a multi-label classifier following a
problem transformation strategy. Such a multi-label classifier may comprise
multiple "layers" of algorithms where for each layer one can in principle choose
between different algorithms of that type.

search space size, and how well they can handle the AutoML for MLC problem. To
be clear, we are not interested in an AutoML system as such, but to investigate which
optimization method is best suited for this particular setting. This requires to unify certain
design decisions as for instance the search space and the evaluation module, as well as
other more technical design decisions: parallelization, degree of parallelization, memory
constraints, etc. Moreover, AutoML systems often work with different ML libraries as
a backend, i.e., some systems may work with scikit-learn [PVG+11], some with WEKA
[HFH+09], and again others may work with mlr3 [LBR+19]. However, implementations
of the same methods may differ significantly and oftentimes some methods are not even
available in all libraries. Thus, for a fair comparison of optimization methods they should
be benchmarked in a unified environment such that all the optimization methods use
exactly the same implementations of the solution candidate evaluation and operate on the
same search space. We interpret the latter in a way that all optimization methods may
potentially encounter every candidate another optimization method may be able to find. Of
course, the precise specification of the search space may differ from optimization method
to optimization method.

In [WTMH21] we present answers to both questions: How to benchmark different op-
timization methods proposed for AutoML in the SLC setting and to what extent those
methods appear to scale well with the specifics of the MLC setting. To this end, we first
propose a benchmarking framework which, in principle, can be used to benchmark any
type of combined algorithm selection and hyperparameter optimization problem setting.

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

Meaning the benchmark is not limited to MLC problems but can be used for SLC problems
as well. The implementation of the benchmark framework is cross-platform and can be
used to integrate, for example, implementations in Python and Java. This allows optimiza-
tion methods implemented for different platforms to work with the same evaluation module
without the need for re-implementing the optimization method for another platform. Beside
the software, the benchmark also comes with constraints on the hardware to use and a limit
on the time budget. Regarding the time budget the proposed benchmark restricts both the
total runtime and the runtime for evaluating a solution candidate. The latter is an important
aspect since the time allowed for evaluating a single solution candidate implicitly prunes
slower candidates from the search space and thus different approaches would again operate
on different search spaces.

Based on this benchmark framework, an extensive empirical study was conducted com-
paring 6 optimization methods for a total of 24 datasets with 10 different train-test splits
each. Furthermore, we considered a total of 3 performance measures for optimization,
which generalize the F1 measure in three different ways from the SLC to the MLC setting.
Generally speaking, we found that all the six optimization methods are struggling with the
MLC setting, taking quite some time to return reasonable solutions. In fact, on average,
only after 4 hours the optimization methods reach a level which is at least close to the
best result that can be obtained after 24h. Most interestingly, we find that rather greedy
approaches such as the optimization method employed in our AutoML system ML-Plan
and Hyperband, an optimization method based on the successive halving paradigm, appear
to perform overall best. We hypothesize that this is due to the fact that the choice of the al-
gorithm is more important than tuning the hyperparameters. Furthermore, the evaluation of
solution candidates is typically more costly so that multi-fidelity optimization appears to be
indeed a crucial characteristic for an optimization method aiming to automate multi-label
classification.

2.4 Censored Data in Algorithm Selection

Algorithm selection (AS) [Ric76; KHNT19] is the task of finding the most suitable
algorithm for a given problem instance of an algorithmic problem domain, such as the
Boolean satisfiability problem (SAT) or classification (machine learning). Typically,
suitability is measured in terms of a performance measure, which characterizes some
sort of solution quality which shall be maximized or some kind of cost which shall be
minimized. One of the most prominent performance measures is the runtime an algorithm
needs in order to return a valid solution, which is of special interest in the domain of
hard combinatorial problems such as SAT or integer optimization. A common approach
towards per-instance algorithm selection is the use of machine learning, in which runtime
measurements of algorithms from previous runs are used in order to estimate the algorithms’
runtimes on new, previously unseen problem instances.

AS is of particular interest for the CRC, as it is a subproblem of AutoML that can be
solved with conceptually simpler approaches making it easier to study certain properties
associated with it. In particular, in this section, we elaborate on the problem of so-called
right-censored training data [KK10], which can be found quite frequently in AS, algorithm
configuration (AC) [SBT+22], hyperparameter optimization (HPO) [FH19; BBL+21] and
AutoML problems.

2. Highlights and Lessons Learned 95

In order to deduce estimators for the algorithms’ runtimes, one generally assumes that
problem instances can be represented in terms of characteristics, so called features or
meta-features in the context of meta-learning [Van18], that should be correlated with the
performance measure, in this case runtime. Correspondingly, the training data needed to
learn such estimators consists of feature descriptions of problem instances and the runtimes
achieved by various algorithms on this particular problem instance. Since algorithms for
such hard problems may exhibit extremely long runtimes, they are generally not run for
an indefinite amount of time until they eventually terminate, but are rather terminated
externally once the time exceeds a certain threshold T , called cutoff. Thus, the training
data contains right-censored datapoints, i.e. observations of which we do not know the
exact runtime, but only a lower bound T .

Naturally, such a right-censored datapoint is not a scalar value, but rather a right-open
interval and thus cannot be used as a standard regression training datapoint, but has to be
treated differently. The community has suggested a variety of approaches in the literature
of how to handle such datapoints in the context of AS, AC, HPO and AutoML [XHHL07;
HTWH20; HTWH21; HHL11; ELH+18; EHM+20].

The simplest approach for dealing with such censored samples is to ignore them all together,
which, however, comes with a loss of information. Although the censored data cannot be
used directly as training points, they do contain information, which should be incorporated.
Another simple strategy is imputation. For example, in the case when algorithm selectors
are evaluated based on the so-called PAR10 score [KHNT19] - a penalized version of
runtime - censored samples are commonly replaced by the cutoff time T or a multiple
thereof, such as 10 T . Obviously, such imputations can easily result in a strong bias
of the model learned on such data [Gre05]. A more sophisticated approach to impute
right-censored data developed by [SH79] samples from a truncated normal distribution
and is leveraged by many AS and AC approaches (e.g. [XHHL07; ELH+18]). However,
as we show in [TWW+20b], these approaches do not necessarily improve upon the naive
imputation schemes discussed above.

All of the approaches presented above share the problem that they are rather indirect
solutions for dealing with censored data and as such, come with the disadvantages noted
above. In contrast to that, methods from the field of survival analysis [KK10] (SA) can
inherently deal censored datapoints and are thus much more suited for the kind training data
often found in AS, AC, HPO and AutoML problems. Correspondingly, in [TWW+20a] we
adapt rigorous statistical SA methods for constructing algorithm selectors using partially
right-censored runtime data. In particular, using random survival forests [IKBL08], we
learn algorithm runtime distributions, which we then leverage to obtain an estimated
algorithm runtime.

In order to derive a point estimate of the runtime of an algorithm from the runtime
distribution, a first natural choice is the expectation of the distribution, i.e., the expected
algorithm runtime. While this does indeed yield reasonably good algorithm selections in
many practical cases, the expected value can be overly optimistic for the selection of an
algorithm, if the performance measure penalizes timeouts of algorithms excessively as is
the case for the PAR10 score.

To mitigate overly optimistic selections in such cases, we advocate for a decision-theoretic
selection approach that incorporates the concept of risk aversion, which coincides with

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

Figure 24: General process of the online algorithm selection setting. In each round, the
selector is asked to select an algorithm, which is then evaluated using the
performance measure resulting in an evaluation result fed back to the learner.
Based on this result, the learner can update its internal model.

timeout aversion in our case. To this end, we compute the expectation of a risk-averse loss
function applied to the random variable modeling the runtime of an algorithm instead of
directly computing the expectation of that random variable.

Combining the concepts of SA and decision-theoretic risk aversion allows us to achieve
state-of-the-art algorithm selection performance on the de-facto standard AS benchmark,
called ASLib [BKK+16], beating the hitherto state of the art by roughly 15%.

Standard AS considers an offline problem in the sense that one usually assumes a phase
prior to the actual application of the selector, where any form of data generation and
learning can take place. In contrast, online AS (OAS) weakens this assumptions and
instead aims at selectors, which are learned and updated online in a round-wise manner
without any prior learning phase. For this purpose, in each round, the selector is asked to
select an algorithm, which is then evaluated using the performance measure, resulting in
an evaluation result fed back to the learner. Based on this result, the learner can update its
internal model. The process is depicted in Figure 24.

The problems associated with censored data are even more prominent in the online case, as
one only obtains a single datapoint each round, which might even be censored. If censored
datapoints are, for example, dropped in such cases instead of incorporated into the learning
process, the model cannot be updated and no learning takes place for that round.

Unfortunately, the SA methods we previously discussed cannot be used in the online
setting, as the vast majority of such methods are inherently designed as offline approaches.
For example, Cox’ proportional hazards model [Cox72] leverages the Breslow estimator
to estimate the baseline survival function, which has to store all data previously seen in
the form of risk-sets [Bre72]. Naturally, storing all previously seen data is not a viable
approach in an online setting as the storage complexity grows with the time horizon in
such a case.

2. Highlights and Lessons Learned 97

As an alternative solution, in [TBH22] we suggest to adapt well-known bandit algorithms to
OAS and runtime-oriented loss functions. In particular, we investigate the bias incurred by
directly applying a UCB strategy [ACF02], when censored samples are dropped completely
or imputed with the cutoff T . The corresponding bias-correction terms result in extremely
large confidence bounds that do no longer yield reasonable algorithm selections in practice.
To alleviate these problems, we propose a Thompson sampling approach [Tho33; RRK+18]
that is adapted to losses strongly penalizing algorithm timeouts and imputes censored
samples by an online variant of the Schmee&Hahn approach [BJ79].

With this approach we can improve upon existing OAS approaches in terms of selection
performance while featuring a runtime and space complexity independent of the time
horizon - a property that other existing approaches do not offer.

2.5 Adagio - Automated Data Augmentation of Knowledge Graphs Using
Multi-Expression Learning

The creation of an RDF knowledge graph for a particular application commonly involves
a pipeline of tools that transform a set of input data sources into an RDF knowledge
graph in a process called dataset augmentation. The components of such augmentation
pipelines often require extensive configuration to lead to satisfactory results. Thus, non-
experts are often unable to use them. In this section, we present the basic idea behind
Adagio [DSN22], an efficient supervised algorithm based on genetic programming for
learning knowledge graph augmentation pipelines of arbitrary length. Our approach uses
multi-expression learning to learn augmentation pipelines able to achieve a high F-measure
on the training data. Our evaluation suggests that our approach can efficiently learn a
larger class of RDF dataset augmentation tasks than the state of the art while using only a
single training example. Even on the most complex augmentation problem we posed, our
approach consistently achieves an average F1-measure of 99% in under 500 iterations with
an average runtime of 16 seconds.

RDF Dataset. An RDF dataset D is a set of triples {(s, p, o) ∈ (R∪B)×R× (R∪B∪L)},
where R is the set of all RDF IRI resources, B is the set of all RDF blank nodes and L is
the set of all RDF literals. We denote the set of all RDF datasets asD.

Dataset Operators. A function O(n,m) : Dn+1 → Dm is called a dataset operator. Intuitively,
a dataset operator O(n,m) processes n input datasets using another dataset C as configuration
to produce m output datasets. We call n the in-degree and m the out-degree of O(n,m)

and will resort to writing just O when the lack of their specification will incur no loss of
generality. Given integers i ∈ [1, n], j ∈ [1,m], we call the ith argument of O(n,m) and the
jth component in the output of O(n,m) the in-port i and out-port j, respectively. The set of
all dataset operators is denoted as O.

Augmentation Graphs. An augmentation graph G = (O,E,L,M) is a directed acyclic
labeled multigraph where O is a set of dataset operators, which act as vertices; E is the
set of edges, which represent flow of data; L is the edge labeling function, which defines
mappings between dataset operator out-ports and in-ports for a given edge; and M is a
mapping from vertices to configuration datasets. We call the subsets of vertices with 0
in-degree root vertices. leaf vertices are the and subsets of vertices with 0 out-degree.

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

Figure 25: Running example augmentation graph.

All other vertices are inner vertices. Note that, per definition all root vertices of an
augmentation graph must be dataset emitters, all leaf vertices must be dataset acceptors and
all inner vertices must be augmentation operators. In our running example augmentation
graph in Figure 25, we coloured all root vertices blue and all leaf vertices red. The intuition
behind L is that, given e = (O1,O2), we need to define which of O1’s out-ports map to
which of O2’s in-ports. For instance, in our running example in Figure 25, the label set on
the edge between O4 and O5 indicates that O4’s first output dataset is the second argument
to O5. To evaluate an augmentation graph, we first obtain the RDF datasets as output of
the root vertices in Or. These datasets then flow through the graph as specified by the
semantics we associated with the edge set E and the label multiset L. Whenever a dataset
operator O(n,m) ∈ Oi has received all its n input datasets, it is evaluated using M(O(n,m))
as its last argument. The flow through the graph continues until eventually all vertices
have been evaluated. We call an augmentation graph G linear if there exists at most a
single path between O1 and O2; semi-linear if there is a pair of vertices u, v ∈ O, u , v for
which there exist multiple paths from u to v; confluent if it has multiple root vertices and
exactly one leaf vertex; inherently confluent if it is confluent and it only contains confluent
augmentation operators, general otherwise.

Augmentation Tables. An augmentation table T is a condensed linear representation for
inherently confluent augmentation graphs based on column tables [KP98]. The idea behind
this representation is that each row represents one dataset operator. We can go through this
table from top to bottom and evaluate the dataset operators which correspond to a row i
using only the results of rows 1 to i − 1. Since dataset acceptors produce no output, they
are omitted in this representation for the sake of simplicity.

Let G = (O,E,L,M) be an inherently confluent augmentation graph. Moreover, let
N(O) B max

{
n | O(n,m) ∈ O

}
denote the maximum in-degree in O. An augmentation table

is a table with 3 + N(O) columns and |O| rows, where the first column contains dataset
operators, the second column contains configuration datasets and the third column contains
the in-degrees of the dataset operators in the first column. The last N(O) columns contain
the indices of the rows used as input to the corresponding dataset operator. Given an
augmentation table T, we write Ti and Ti, j to refer to the ith row and the jth column
in the ith row of T, respectively. Applying this representation to our running example
augmentation graph in Figure 25 gives the augmentation table depicted in Table 1. The
algorithm for the computation of an augmentation table from a given inherently confluent
augmentation graph is given in [KP98].

2. Highlights and Lessons Learned 99

Table 1: Running example augmentation table.
T1: O1 C1 0 0 0 0
T2: O2 C2 1 1 0 0
T3: O3 C3 2 1 2 0
T4: O4 C4 1 3 0 0
T5: O5 C5 3 2 4 3

We call a row within an augmentation table an output row, if it is not used as input to a
subsequent row. Note that output rows always correspond to dataset acceptors and that
our previous definition of augmentation tables allows for only a single output row, as our
augmentation tables must be isomorphic to inherently confluent augmentation graphs.

Multi-Expressive Augmentation Tables. A multi-expressive augmentation table is a
generalized augmentation table that has more than one output row. Note that, any row in
a multi-expressive augmentation table can be seen as an output row by just disregarding
all rows below it. Given such a reference output row in a multi-expressive augmentation
table, we can derive a normal augmentation table by following the procedure introduced
in [DSN22].

Problem Definition. The problem under study is to find an adequate enrichment graph
for a given training example. We restrict ourselves to learning the subclass of inherently
confluent enrichment graphs. We will furthermore restrict our study to enrichment graphs
where the maximum in-degree of the involved enrichment operators and the number of
involved dataset emitters are at most two.

Learning Algorithm. The core of our learning approach is a population-based (µ + λ)
multi-expression learning (MEP) algorithm10 that is able to learn the subclass of inherently
confluent augmentation graphs. Our population consists of a fixed number µ + λ of
multi-expressive augmentation tables that we also call genotypes. All genotypes have
a fixed number r of rows. Tournament selection [MG95] with a tournament size of 3
and a selection probability of 0.75 is applied for determining the mating pool and for
selecting the survivors. We use 1-elitist selection [Mit98] to avoid a decrease in fitness.
Both the offspring and the survivors are subject to mutation. The offspring fraction α =

µ

λ
,

mutation probability σ and mutation rate ρ are hyperparameters that need to be determined
experimentally. Therefore, we ran a series of grid searches on augmentation tasks with
increasing difficulty and used our insights from previous runs to fine-tune the next. We
report the final grid search results in Figure 26. These results suggest that the best set of
hyperparameters are the offspring fraction α = 1, the mutation probability σ = 0.5 and the
mutation rate ρ = 0.5.

The algorithm will stop when either a perfect solution is found, a maximum number g of
generations is exceeded or our convergence detection terminates it. As the results of RDF
dataset augmentation are commonly expected to have a regular structure, we can expect
the output dataset to be decomposable into a number of subgraphs that are isomorphic up
to a certain error w.r.t. some structural graph similarity measure. We therefore regard the
training examples as a list of source concise bounded descriptions (CBDs) and a single
target CBD of sufficient depth to representatively capture the desired augmentation. This is
10µ is the population size and λ is the recombination pool size.

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

0.10.30.50.70.9
0.1 0.3 0.5 0.7 0.9

22

24

26

28

α = 0.0
α = 0.2

α = 0.4
α = 0.6
α = 0.8
α = 1.0

ρσ

M
ea

n
#

G
en

er
at

io
ns

21

22

23

24

25

26

27

28

St
an

da
rd

D
ev

ia
tio

n

0.1 0.3 0.5 0.7 0.9
0.1

0.3

0.5

0.7

0.9

ρ

σ

20

21

22

23

24

25

M
ea

n
#

G
en

er
at

io
ns

Figure 26: Hyperparameter Optimization Results.

in accordance with the observation that a single pair of CBD often suffices for the training
of augmentation pipelines [SNL15]. Note our choice to restrict the number of involved
dataset emitters to at most two.

3 Conclusion and Outlook

Subproject B2 plays a central role within the overall architecture of the CRC, since the
automatic configuration of software services is at the core of the OTF Computing paradigm.
As such, it is closely connected to other subprojects, which either build on the service
configurations provided by B2 (such as B3, which is responsible for the formal verification
of configurations), or provide important input (most notably the service specifications
produced by B1).

Starting with a relatively abstract, logic-based approach using formal specifications of
functional requirements and techniques from automated planning for service composition,
the focus of this subproject has shifted toward more concrete applications, such as auto-
mated machine learning (AutoML) and query answering (QA), and the use of data-driven
methods for service composition. Interestingly, this has led to attributing a double role to
machine learning, which served as a key methodology for automated service composition
and, simultaneously, as an important use case.

Tackling the problem of automated service configuration for more concrete applications
was mainly motivated by the observation that developing methods for this task, including
the formal specification of requirements with preconditions and effects, the formalization of
underlying domain knowledge, etc., is very difficult and hardly practicable on a completely
generic level. Moreover, many criteria influencing the quality of a service, and hence being
essential for the optimization of a composition, cannot be assessed in a purely formal way.
Instead, a service composition must be realized and executed — for example, the quality of
a machine learning pipeline can only be judged on an implementation level, by running it
and applying it to a real data set.

The research conducted in the course of this subproject has not only contributed to the OTF
framework of the CRC, but also created impact in other fields and scientific disciplines.
A notable example is our work on AutoML, most visibly manifested in the AutoML

3. Conclusion and Outlook 101

tool ML-Plan, which has been well received by the research community. In spite of this
success, the vision we have for this field has not yet been realized: Going beyond the use of
individual tools for AutoML, we envision “OTF Machine Learning” as a natural next step
in the evolution of AI technology, and an important contribution to the democratization
of AI. What we mean by OTF-ML is the realization of the OTF computing paradigm
for the specific case of machine learning (or, more generally, data science) functionality,
not restricted to individual software tools but including the entire compute and market
infrastructure. We are convinced that this vision will become reality in the not too distant
future, also thanks to the foundations that have been laid by this CRC.

Bibliography

[ACF02] Auer, P.; Cesa-Bianchi, N.; Fischer, P.: Finite-time analysis of the multiarmed bandit
problem. In: Machine Learning 47 (2002), no. 2-3, pp. 235–256.

[BBL+21] Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann,
T.; Becker, M.; Boulesteix, A.-L., et al.: Hyperparameter optimization: Foundations,
algorithms, best practices and open challenges. In: arXiv preprint arXiv:2107.05847
(2021)

[BJ79] Buckley, J.; James, I.: Linear regression with censored data. In: Biometrika 66 (1979),
no. 3, pp. 429–436

[BKK+16] Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Malitsky, Y.; Fréchette, A.; Hoos,
H. H.; Hutter, F.; Leyton-Brown, K.; Tierney, K.; Vanschoren, J.: ASlib: A benchmark
library for algorithm selection. In: Artif. Intell. 237 (2016)

[Bre72] Breslow, N. E.: Contribution to discussion of paper by DR Cox. In: Journal of the Royal
Statistical Society 34 (1972), pp. 216–217

[Cox72] Cox, D. R.: Regression models and life tables (with discussion). In: Journal of the Royal
Statistical Society 34 (1972), no. 2, pp. 187–220

[DSN22] Dressler, K.; Sherif, M. A.; Ngomo, A.-C. N.: ADAGIO - Automated Data Augmentation
of Knowledge Graphs Using Multi-expression Learning. In: Proceedings of the 33rd ACM
Conference on Hypertext and Hypermedia. 2022.

[EHM+20] Eggensperger, K.; Haase, K.; Müller, P.; Lindauer, M.; Hutter, F.: Neural model-based
optimization with right-censored observations. In: CoRR abs/2009.13828 (2020). arXiv:
2009.13828.

[ELH+18] Eggensperger, K.; Lindauer, M.; Hoos, H. H.; Hutter, F.; Leyton-Brown, K.: Efficient
benchmarking of algorithm configurators via model-based surrogates. In: Machine Learn-
ing 107 (2018), no. 1, pp. 15–41.

[FH19] Feurer, M.; Hutter, F.: Hyperparameter optimization. In: Automated machine learning.
Springer, Cham, 2019, pp. 3–33

[FKE+15] Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J. T.; Blum, M.; Hutter, F.:
Efficient and Robust Automated Machine Learning. In: Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada. Ed. by Cortes, C.; Lawrence,
N. D.; Lee, D. D.; Sugiyama, M.; Garnett, R. 2015, pp. 2962–2970.

[Gre05] Greene, W. H.: Censored data and truncated distributions. In: NYU Working Paper (2005)

[GV19] Gijsbers, P.; Vanschoren, J.: GAMA: Genetic Automated Machine learning Assistant. In:
J. Open Source Softw. 4 (2019), no. 33, p. 1132.

[HFH+09] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H.: The
WEKA data mining software: an update. In: ACM SIGKDD explorations newsletter 11
(2009), no. 1, pp. 10–18

https://arxiv.org/abs/2009.13828

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

[HHL11] Hutter, F.; Holger H. Hoos; Leyton-Brown, K.: Bayesian optimization with censored
response data. In: NIPS workshop on Bayesian Optimization, Sequential Experimental
Design and Bandits. Dec. 2011

[HKV19] Hutter, F.; Kotthoff, L.; Vanschoren, J., eds.: Automated Machine Learning - Methods,
Systems, Challenges. The Springer Series on Challenges in Machine Learning. Springer,
2019.

[HTWH20] Hanselle, J.; Tornede, A.; Wever, M.; Hüllermeier, E.: Hybrid ranking and regression
for algorithm selection. In: KI 2020: Advances in Artificial Intelligence - 43rd German
Conference on AI. 2020, pp. 59–72.

[HTWH21] Hanselle, J.; Tornede, A.; Wever, M.; Hüllermeier, E.: Algorithm selection as superset
learning: Constructing algorithm selectors from imprecise performance data. In: Advances
in Knowledge Discovery and Data Mining - 25th Pacific-Asia Conference, PAKDD 2021.
2021, pp. 152–163.

[IKBL08] Ishwaran, H.; Kogalur, U. B.; Blackstone, E. H.; Lauer, M. S.: Random survival forests.
In: The annals of applied statistics 2 (2008), no. 3, pp. 841–860

[JK16] Jungmann, A.; Kleinjohann, B.: Automatic Composition of Service-Based Image Process-
ing Applications. In: 2016 IEEE International Conference on Services Computing (SCC).
2016, pp. 106–113

[JM15] Jungmann, A.; Mohr, F.: An approach towards adaptive service composition in markets
of composed services. In: Journal of Internet Services and Applications 6 (2015), no. 1,
pp. 1–18

[KHNT19] Kerschke, P.; Hoos, H. H.; Neumann, F.; Trautmann, H.: Automated algorithm selection:
Survey and perspectives. In: Evolutionary Computation 27 (2019), no. 1, pp. 3–45.

[KK10] Kleinbaum, D. G.; Klein, M.: Survival Analysis. Vol. 3. Springer, 2010

[KP98] Kvasnièka, V.; Pospíchal, J.: Simple Implementation of Genetic Programming by Column
Tables. In: Soft Computing in Engineering Design and Manufacturing. Ed. by Chawdhry,
P. K.; Roy, R.; Pant, R. K. London: Springer London, 1998, pp. 48–56.

[LBR+19] Lang, M.; Binder, M.; Richter, J.; Schratz, P.; Pfisterer, F.; Coors, S.; Au, Q.; Casal-
icchio, G.; Kotthoff, L.; Bischl, B.: mlr3: A modern object-oriented machine learning
framework in R. In: J. Open Source Softw. 4 (2019), no. 44, p. 1903.

[MG95] Miller, B. L.; Goldberg, D. E.: Genetic Algorithms, Tournament Selection, and the
Effects of Noise. In: Complex Systems 9 (1995), no. 3.

[Mit98] Mitchell, M.: An introduction to genetic algorithms. MIT Press, 1998.

[MJB15] Mohr, F.; Jungmann, A.; Büning, H. K.: Automated Online Service Composition. In: 2015
IEEE International Conference on Services Computing. 2015, pp. 57–64

[MLHW18] Mohr, F.; Lettmann, T.; Hüllermeier, E.; Wever, M.: Programmatic task network plan-
ning. In: Proceedings of the 1st ICAPS Workshop on Hierarchical Planning. 2018, pp. 31–
39

[Moh] Mohr, F.: Towards automated service composition under quality constraints. PhD thesis.
Dissertation, Paderborn, Universität Paderborn, 2016

[MW15] Mohr, F.; Walther, S.: Template-based generation of semantic services. In: International
Conference on Software Reuse. Springer. 2015, pp. 188–203

[MWH18a] Mohr, F.; Wever, M.; Hüllermeier, E.: Automated Machine Learning Service Composi-
tion. In: CoRR abs/1809.00486 (2018). arXiv: 1809.00486.

[MWH18b] Mohr, F.; Wever, M.; Hüllermeier, E.: ML-Plan: Automated machine learning via
hierarchical planning. In: Mach. Learn. 107 (2018), no. 8-10, pp. 1495–1515

[MWHF18] Mohr, F.; Wever, M.; Hüllermeier, E.; Faez, A.: (WIP) Towards the Automated Compo-
sition of Machine Learning Services. In: 2018 IEEE International Conference on Services
Computing, SCC 2018, San Francisco, CA, USA, July 2-7, 2018. IEEE, 2018, pp. 241–244

https://arxiv.org/abs/1809.00486

3. Conclusion and Outlook 103

[MWTH19] Mohr, F.; Wever, M.; Tornede, A.; Hüllermeier, E.: From Automated to On-The-Fly
Machine Learning. In: LNI P-294 (2019), pp. 273–274

[OBUM16] Olson, R. S.; Bartley, N.; Urbanowicz, R. J.; Moore, J. H.: Evaluation of a Tree-based
Pipeline Optimization Tool for Automating Data Science. In: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24, 2016.
Ed. by Friedrich, T.; Neumann, F.; Sutton, A. M. ACM, 2016, pp. 485–492.

[PVG+11] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel,
M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., et al.: Scikit-learn: Machine learning in
Python. In: the Journal of machine Learning research 12 (2011), pp. 2825–2830

[Ric76] Rice, J. R.: The Algorithm Selection Problem. In: Adv. Comput. 15 (1976), pp. 65–118.

[RRK+18] Russo, D.; Roy, B. V.; Kazerouni, A.; Osband, I.; Wen, Z.: A tutorial on Thompson
sampling. In: Foundations and Trends in Machine Learning 11 (2018), no. 1, pp. 1–96.

[SBT+22] Schede, E.; Brandt, J.; Tornede, A.; Wever, M.; Bengs, V.; Hüllermeier, E.; Tierney, K.:
A Survey of Methods for Automated Algorithm Configuration. In: Journal of Artificial
Intelligence (2022)

[SH79] Schmee, J.; Hahn, G. J.: A simple method for regression analysis with censored data. In:
Technometrics 21 (1979), no. 4

[SNL15] Sherif, M. A.; Ngomo, A.-C. N.; Lehmann, J.: Automating RDF Dataset Transformation
and Enrichment. In: The Semantic Web. Latest Advances and New Domains. Ed. by
Gandon, F.; Sabou, M.; Sack, H.; d’Amato, C.; Cudré-Mauroux, P.; Zimmermann, A.
Cham: Springer International Publishing, 2015, pp. 371–387

[TBH22] Tornede, A.; Bengs, V.; Hüllermeier, E.: Machine Learning for Online Algorithm Selec-
tion under Censored Feedback. en. In: Proceedings of the AAAI Conference on Artificial
Intelligence 36 (June 2022), no. 9. Number: 9, pp. 10370–10380.

[THHL13] Thornton, C.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: The 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013. Ed. by Dhillon, I. S.; Koren, Y.; Ghani, R.;
Senator, T. E.; Bradley, P.; Parekh, R.; He, J.; Grossman, R. L.; Uthurusamy, R. ACM,
2013, pp. 847–855.

[Tho33] Thompson, W. R.: On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. In: Biometrika 25 (1933), no. 3/4, pp. 285–294

[TTW+20] Tornede, T.; Tornede, A.; Wever, M.; Mohr, F.; Hüllermeier, E.: AutoML for Predictive
Maintenance: One Tool to RUL Them All. In: IoT Streams for Data-Driven Predictive
Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning - Second
International Workshop, IoT Streams 2020, and First International Workshop, ITEM 2020,
Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Revised
Selected Papers. Ed. by Gama, J.; Pashami, S.; Bifet, A.; Mouchaweh, M. S.; Fröning,
H.; Pernkopf, F.; Schiele, G.; Blott, M. Vol. 1325. Communications in Computer and
Information Science. Springer, 2020, pp. 106–118.

[TWW+20a] Tornede, A.; Wever, M.; Werner, S.; Mohr, F.; Hüllermeier, E.: Run2Survive: A
Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. en. In:
Proceedings of The 12th Asian Conference on Machine Learning. ISSN: 2640-3498.
PMLR, Sept. 2020, pp. 737–752.

[TWW+20b] Tornede, A.; Wever, M.; Werner, S.; Mohr, F.; Hüllermeier, E.: Run2Survive: A
Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. In:
Proceedings of The 12th Asian Conference on Machine Learning, ACML 2020, 18-20
November 2020, Bangkok, Thailand. Vol. 129. Proceedings of Machine Learning Research.
PMLR, 2020, pp. 737–752.

[Van18] Vanschoren, J.: Meta-learning: A survey. In: arXiv preprint arXiv:1810.03548 (2018)

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

[WMH18] Wever, M. D.; Mohr, F.; Hüllermeier, E.: ML-Plan for unlimited-length machine learning
pipelines. In: ICML 2018 AutoML Workshop. 2018.

[WMTH19] Wever, M. D.; Mohr, F.; Tornede, A.; Hüllermeier, E.: Automating multi-label classifi-
cation extending ml-plan. In: ICML 2019 AutoML Workshop. 2019.

[WTMH21] Wever, M.; Tornede, A.; Mohr, F.; Hüllermeier, E.: AutoML for Multi-Label Classifica-
tion: Overview and Empirical Evaluation. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 43 (2021), no. 9, pp. 3037–3054

[XHHL07] Xu, L.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K.: SATzilla-07: The design and analysis
of an algorithm portfolio for SAT. In: International Conference on Principles and Practice
of Constraint Programming. Springer. 2007, pp. 712–727

105

Subproject B3:

Composition Analysis in Unknown Contexts

Matthias Becker1, Steffen Becker2, Eyke Hüllermeier3, Cedric Richter4,
Arnab Sharma5, Heike Wehrheim4

1 Department of Computer Science, Fraunhofer IEM,
Paderborn, Germany

2 Department of Computer Science, University of
Stuttgart, Stuttgart, Germany

3 Institute of Informatics, LMU Munich, Munich,
Germany

4 Department of Computer Science, Oldenburg University,
Oldenburg, Germany

5 Department of Computer Science, Paderborn University,
Paderborn, Germany

Subproject B3 "Composition Analysis in Uncertain Contexts" deals with the quality
assurance of service compositions as assembled by Subproject B2. Over the three funding
periods, the objectives varied in the type of service composition, type of requirements and
the type of analysis considered.

1 Introduction

Within the CRC, the task of Subproject B3 is to develop techniques for quality assurance
of service compositions. Subproject B2 assembles service compositions from services
traded on markets based on a requirements specification given by a user. For the interface
between Subprojects B2 and B3, a common modeling language has been developed in the
first period of the CRC. The task of B3 then consisted of analyzing the service composition
before its execution.

In the first period of the CRC, the focus of the subproject has been on

• the development of a common modeling language for describing service composi-
tions as used by Subprojects B1, B2 and B3,

• the analysis of non-functional properties (performance, scalability, and elasticity) of
service compositions via simulations, and

• the analysis of functional properties as specified by pre- and postconditions for
service compositions via logical encodings and SMT solving.

In the second period, Subproject B3 concentrated on

matthias.becker@iem.fraunhofer.de (Matthias Becker), steffen.becker@informatik.uni-stuttgart.de (Stef-
fen Becker), eyke@lmu.de (Eyke Hüllermeier), cedric.richter@uni-oldenburg.de (Cedric Richter),
arnab.sharma@uni-paderborn.de (Arnab Sharma), heike.wehrheim@uni-oldenburg.de (Heike Wehrheim)

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

• the use of templates for service compositions and analysis with the objective of
speeding up quality assurance in an on-the-fly context,

• the localization of errors in service compositions when requirements are not met
(again employing logical encodings and SMT solving), and

• the analysis of non-functional properties via machine learning techniques.

For the third period of the CRC, the focus shifted to considering service compositions
with components generated by data-driven techniques. This was motivated by the type of
compositions generated by Subproject B2 that started to concentrate on the generation of
machine learning (ML) pipelines. Research in B3 then studied

• the analysis of data-driven systems with respect to specific (hyper-)properties,

• machine learning methods for the prediction of non-functional properties of service
compositions that can be trained on-the-fly in an online (rather than batch) mode, as
well as

• the increase of the robustness of such methods (e.g., against uncertainty or missing
information about the context).

Throughout the entire funding period, all conceptual developments were complemented by
tool implementations and extensive empirical evaluations. The research results have been
published in international conferences and journals. In the following, we highlight some
selected results of Subproject B3.

2 Main Contributions

2.1 Performance Prediction via Simulation

In on-the-fly computing scenarios, service compositions were assumed to happen at run-
time and on demand. However, those compositions not only need to compose the right
services horizontally (i.e., select a complete set of components which together fulfil all
domain requirements) but also vertically. The latter means allocating the services on the
right amount of resources, i.e., computing, storage and networking capacity.

Nevertheless, in contrast to classical static compositions, the environment of the service
composition is unknown and can vary significantly over time. Hence, the allocation needs
to adapt to the current environment based on quality requirements expressed via goals and
formalized in service level objectives (SLOs).

In our research, we modeled not only these goals, SLOs, but also the composition and the
self-adaptations, which always keep adjusting the allocation to the current environment.
For these models we have developed a simulator that enables developers to judge the effec-
tiveness of the composition and its self-adaptations upfront. We focused on performance
and elasticity in our research and included adaptation strategies in our models and analyses
that deal with elasticity.

As introduced above, performance and, more specifically, scalability and elasticity were
the quality properties that we aimed to predict based on models of this service composition.
For this purpose, a service composition model has to be enriched with performance-relevant

2. Main Contributions 107

annotation. The contributions within Subproject B3 for this are described in the following
paragraphs.

Performance Modeling

In order to predict the performance of a service composition, we introduced a performance
modeling approach in [BBM13; BLB13] and further refined it with viewpoints and roles in
[Bec17]. With our performance modeling approach, we provide the necessary precondition
for the assessment of performance properties of service compositions: the extended
service composition model contains performance-relevant information, such as the resource
consumption of a service, as well as available resources of the service composition’s
execution environment. Additionally, with service level objectives (SLOs), performance
demands for the execution of a service composition can be specified. A concrete workload
scenario and its evolution can be specified in order to simulate a service composition
execution and thus predict its scalability and elasticity.

Metrics for Scalability and Elasticity

We formally defined a service composition as a self-adaptive system that can be scalable
and elastic by adapting its architecture to its performance demands, specified as SLOs,
on-the-fly. The formalization is based on the Fuzzy Branching Temporal Logic [MLL04],
which allowed us to define a notion of graded SLO achievement, i.e., performance demands
of a service can be gradually fulfilled.

We defined scalability as the ability of a service composition to eventually adapt its capacity
to different workload scenarios without missing defined service level objectives. Elasticity
is the degree to which is service composition is able to self-adapt to workload scenarios,
such that it achieves all of its service level objectives to a certain grade. To quantify the
elasticity grade, we defined the two elasticity metric as time to SLO achievment (TTSA)
and accumulated SLO achievement grade (ASAG).

TTSA is the metric that reflects the duration a service composition requires to achieve its
SLOs in a certain workload scenario. The duration is calculated as the difference from
the point in time when the service composition is in a specified state, e.g., its initial state,
until the point in time when the service composition is in a state in which its SLOs are
achieved. The base unit of the time to SLO achievement is defined as the base unit of time,
i.e., seconds (s).

ASAG is the metric that reflects the normalized, accumulated SLO achievement grade of a
service composition in a certain workload scenario. The ASAG value is calculated as the
(normalized) integral of the SLO achievement of a service composition over time from the
point in time when the service composition is in a specified state, e.g., its initial state, until
the point in time when the service composition is in a state in which its SLOs are achieved.
The metric has no unit, but the values are normalized and are in the interval between 0 and
1, i.e., interval [0; 1].

Prediction of Scalability and Elasticity

Based on our formalization and on our metric definitions, we provided prediction methods
for our scalability and elasticity metrics based on a performance simulation of the service

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

composition. Figure 27 illustrates the states of a scalable service composition. The starting
state of the simulation Σ0 is given by the service composition model, see step (1). The
state transitions αi are also defined in the model as model transformations. In order to
predict scalability of the service composition, each state that is reachable via a model
transformation is simulated, see steps (2) and (3) in Figure 27. In each simulation it is
checked whether all defined SLOs are achieved eventually, i.e., in a stable performance
state. This is repeated until a state is reached that fulfills all SLOs or no more states can be
explored, see step (4) in Figure 27. The elasticity is predicted by starting a performance
simulation in the initial state Σ0 and applying model transformations during this simulation
whenever a precondition of a state transition is met. In this way, the elasticity metrics
described above can be determined.

Σ0

Σa

Σb

Σc

Σd

Σe

αa

αb

αc

αd

αe

(1) Check whether SLOs are achieved in the
current state.

Σ0

Σa

Σb

Σc

Σd

Σe

αa

αb

αc

αd

αe

(2) Execute an architecture reconfiguration and
check if SLOs are achieved.

Σ0

Σa

Σb

Σc

Σd

Σe

αa

αb

αc

αd

αe

(3) Execute next architecture reconfiguration
and check whether SLOs are achieved.

Σ0

Σa

Σb

Σc

Σd

Σe

αa

αb

αc

αd

αe

(4) Continue with next unexplored state at step
(1).

Legend

analyzed, unexplored stateanalyzed, unexplored state analyzed, explored stateanalyzed, explored stateunexplored stateunexplored state

Figure 27: Exploration of scalability.

2.2 Algorithm Selection for Software Verification

During the second phase of the CRC, Subproject B3 investigated machine learning tech-
niques for selecting analysis techniques. More specifically, we looked at various techniques
for software verification and studied the question of algorithm selection, i.e., how to select
an appropriate technique for a verification task at hand [CHJW17; RHJW20; RW19]. Even
though software verification is a mature field and a lot of software verification algorithms

2. Main Contributions 109

Figure 28: Overview of the PeSCo framework.

have been developed over the past decades [BDW15; BF16; BKW10; HCD+13; CJS+16],
this is an important question as there is no single algorithm that dominates all other verifi-
cation algorithms on all possible verification problems. Therefore, we (often manually)
have to pick the right algorithm for a given verification task.

To automate the selection process, we developed an approach for predicting the task-specific
performance of software verification algorithms [RHJW20]. An accurate prediction can
then help us to automatically identify and select the best performing algorithm for a given
task. In the following, we describe the approach and its instantiations in more detail.

Learning to Select Verifiers

We assume that a verification task consists of a program P and a specification ϕ. The
software verification algorithm, or software verifier for short, then has to verify whether
the program satisfies the specification or not. Note that in reality the verification process is
limited by system resources and the verifier can only be successful if it verifies a given
task within a certain amount of time or memory.

Now, given a set of verifiers A = {A1, A2, . . . , An}, our goal is to identify the verifier
that verifies the given verification task within the given resource constraints. For this,
we employed a machine learning model that learns to “guess” the performance of the
individual algorithms and then rank them accordingly. We then select the highest ranked
verification algorithm.

However, to design such a learning based model that can predict the performance of
verifiers, we had to overcome two key challenges:

1. How to represent programs and specifications such that we can infer the performance
of verifiers?

2. How to integrate our representation into classical machine learning pipelines?

In contrast to previous work [TKK+14; DPVZ17], we decided against representing the
verification tasks as feature vectors directly and choose a representation that is closer to
the internal representations used inside verifiers. In fact, our approach transforms a given
verification task into a combination of an abstract syntax tree, control flow graph and

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

program dependency graph [HR92]. In our case, the specification is encoded inside the
program and therefore indirectly represented through the graph structure.

To integrate our program representation into the learning process, we employed a kernel
based method [SS02] that enabled us to directly learn on graph representations without
an extra feature extraction process. In other words, by employing kernel-based methods,
our model learns which graph structures are important for predicting the performance of
verifiers. For this, we introduced a custom kernel and utilized kernelized support vector
machines [SS02] for the learning process.

During training, our learner learns to rank verification algorithms via the ranking by a
pairwise comparison (RPC) framework [FH10]. Here, the learning task is decomposed
into multiple binary classification problems. Each resulting classifier then predicts whether
a verifier Ai performs better on the given task than another verifier A j. We define that a
verifier Ai is better than a verifier A j on a given task (and therefore ranked higher) if Ai is
more likely to solve the task within the given resource constraints or both verifiers solve
the task equally likely but Ai is likely faster.

Finally, we employ the learned model to predict the most likely best performing verifier for
a given task. An overview of the prediction process is shown in the upper part of Figure 28.
For a new verification task, we first parse the given program and specification into the
graph representation. The graph representation is then provided to the learned Kernel RPC
model which predicts a ranking of verifiers.

Predicting Sequential Compositions of Verifiers

We implemented our selection approach inside the verification tool CPAchecker [BK11],
which ultimately resulted in a new verification tool called PeSCo [RW19]. PeSCo ranks
up to six base verification algorithms and then executes them in order. As a result, PeSCo
is able to select from over 15 different sequential verifier compositions based on the
characteristics of the given verification task.

In addition, we found that performance modeling for ranking verification algorithms is also
effective in practice. With its selection approach, PeSCo won the second place in the overall
category of the 8th international software verification competition (SVComp) [Bey19] and
since then remains highly successful in the competition.

As part of a DFG-funded project on “Cooperative Verification” we continue the work of
algorithm selection for software verification, now with a focus on selecting components
for a cooperative approach.

2.3 Functional Analysis of Service Compositions

In the first two phases of Subproject B3, we considered the analysis of service compositions
specified in the common modeling language, jointly developed between Subprojects B1,
B2 and B3 [AWBP14]. The focus was on the analysis of functional properties specified
via pre- and postconditions for service compositions. The compositions are assembled
out of single services traded on the market. Each such service has a specification written

2. Main Contributions 111

SMT

solver

domain
knowledge

consists

of

verification
conditions

uses

uses

Service
specification

Service
composition

Composition
requirements

Ontology

+ rules

Figure 29: Overview of the ontology-based approach

in the modeling language as well. The vocabulary of the modeling language is based on
a domain-specific ontology. This accounts to types used in service signatures, but also
to predicates occurring in preconditions and effects of services. Ontologies, in particular
those enhanced with rules, capture the knowledge of domain experts on properties of and
relations between domain concepts.

Our verification technique for service compositions [WW13] makes use of this domain
knowledge. We consider a service composition to be an assembly of services of which
we just know signatures, preconditions, and effects. Compositions are written in a simple
workflow language, such as specifiable via activity diagrams. We aim at proving that
a composition satisfies a (user-defined) requirement, specified in terms of guaranteed
preconditions and required postconditions. For an underlying verification engine we use
an SMT solver. More specifically, we translate single service specifications, the service
composition and the ontology rules to first order predicate logic to be fed into an SMT
solver (see Figure 29). Similarly, we translate the user requirement into a logical formula.
To take advantage of the domain knowledge (and often, to enable verification at all),
the knowledge is fed into the solver in the form of sorts, uninterpreted functions and, in
particular, assertions as to enhance the solver’s reasoning capabilities. Thereby, we allow
for deductions within a domain previously unknown to the solver. In the CRC, we have
applied our technique on a case study from the area of water network optimization software
(as studied by Subproject C3 on "Modeling of Optimization Problems" in the first phase).
In the following, we describe the technique in more detail.

Verification Approach

We assume a given composition of services, each with an ontology-based interface spec-
ification. Apart from interfaces, nothing is known about the services (black-box view).
In the context of service-oriented architectures (SOA), this is a quite likely scenario:
Providers sell their services but not the code itself. In fact, a service might not even run
on the consumer side, but could either completely stay on the provider machine or run
in the cloud. Furthermore, the requirements on an assembled service composition are
specific to the domain; instead of proving general safety or reachability properties alone
(as state-of-the-art software verification tools do), consumers expect the verification to
prove domain-specific requirements. We leverage this by grounding service specifications
on ontologies.

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

WNOptimizer

Controller Aggregate

Formalize

Solve

Apply

Figure 30: Service composition of the WaterNet Optimizer.

We exemplify this with the case study “water supply network optimization” (see Figure 30
for a service composition in this domain). Software services in this domain handle
different tasks of analyzing and optimizing existing municipal water supply networks.
Single services designed for different subtasks can be assembled into a composition. This
concerns services such as (a) compacting the size (and layout) of network models, (b)
generating mathematical optimization problems from networks, (c) solving optimization
problems, and (d) applying optimal solutions to networks. As the behavior of these services
is specified in terms of interfaces only, this is a black-box view and for the analysis we can
therefore only assume that services adhere to their specification.

Every water network has specific hydraulic characteristics, as well as other properties such
as the cost of operation. A typical domain specific requirement on a composition of some
optimization services is that an optimized network (produced by the composition) has the
same hydraulic characteristics as the original input network, but a better (e.g., lower) cost
of operation. The verification technique has to derive this property from the given service
specifications, the way of assembling the services and the additional domain knowledge
stored in the ontology.

Our approach to the verification of such a service composition is based on the use of an
SMT solver (satisfiability modulo theories solver) as reasoning engine. Basically, our
technique feeds three types of inputs (domain knowledge, service interface specifications,
and assembly) into the SMT solver in different forms (see Figure 29). These inputs,
combined with the user’s requirements specification, are encoded as first-order logic
formulae. In this encoding, the user requirement is negated. The resulting formula is
then checked for satisfiability: If unsatisfiable, the requirement is fulfilled; if satisfiable, a
counterexample is found.

More specifically, we start with an ontology of the domain which – besides the standard
concepts and their relations – models additional rules about the domain by first-order
logic. The predicates therein are the relations in the ontology. Providers of services use the
ontology to specify a service’s signature and its preconditions and effects. Consumers use
the ontology to specify requirements of a service composition. For verification, we use the
concepts of the ontology as types for the solver, relations as uninterpreted functions, and
rules as constraints on the interpretation of these functions. The rules are thus being used
for deduction together with the decidable theories of the solver (e.g., linear arithmetic).
The creation of verification conditions for a given service composition and requirements
follows ideas of Hoare-style proofs. It turns out that the verification typically requires
the additional domain knowledge for a successful reasoning: The knowledge of human
domain experts (e.g. about hydraulic properties of different forms of networks) needs to be

2. Main Contributions 113

provided to the solver.

Templates

In cooperation with Subproject B2 [MW15], the basic verification approach was comple-
mented with the idea of templates [WW14; WW16]. This was motivated by the on-the-fly
principle, because pre-verified templates upon instantiation only require checks of the
soundness of the instantiation, not of the entire composition. Templates can capture known
composition patterns, and thus allow for the application of the general principle of pattern
usage in software engineering.

More specifically, following our approach for the verification of service compositions,
templates are workflow descriptions with service placeholders. Service placeholders
are replaced by concrete services during instantiation. If a template is shown to be
correct, then all of its (valid) instantiations will be correct by construction. Every template
specification contains functional properties given in terms of pre- and postconditions (again
with associated meaning “if precondition fulfilled, then postcondition guaranteed”), and a
correct template provably adheres to this specification. To verify correctness of templates,
we employ the Hoare-style proof calculus as of above.

The definition of “correctness” as well as giving a proof calculus for templates, however,
poses a non-trivial task on verification. Since templates should be usable in a wide range
of contexts and the instantiations of service placeholders are unknown at template design
time, we cannot give a fixed semantics to templates. Rather, the template semantics needs
to be parameterized in usage context and service instantiation. A template is only correct
if it is correct for all (allowed) usage contexts. Similarly, a useful proof calculus has to
be applicable in all possible contexts and service instantiations. We guarantee this by
defining a proof calculus that is parameterized in usage contexts and template-specific
constraints.

Technically, we capture the usage contexts by ontologies, and the interpretation of concepts
and predicates occurring therein by logical structures. A template ontology defines the
concepts and predicates of a template. Furthermore, a template specification contains
constraints defining additional conditions on instantiations. These constraints allow us to
verify the correctness of the template despite unknown usage and unknown fixed semantics.
A template instantiation replaces the template ontology with a homomorphous domain
ontology, and the service placeholders with concrete services of this domain. Verification
of the instantiation then amounts to checking whether the (instantiated) template constraints
are valid within the domain ontology, and thus can be carried out on-the-fly.

2.4 Performance Prediction via Machine Learning

As an alternative to the use of simulation techniques (cf. Section 2.1), the potential of
machine learning (ML) methods for non-functional analysis and performance prediction
has been investigated in the second and third funding period. The idea here is to induce
models that predict a property of a service composition, given the specification of the
service as input. What makes this problem challenging from an ML perspective is the

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

specific structure of service compositions: Services are recursively structured objects of
variable size. Representing them in terms of feature vectors of fixed length, the format
commonly assumed by most ML methods, is difficult and will necessarily cause a loss of
information.

To cope with these challenges, we introduced a new ML setting that we call “learning
to aggregate” (LTA). Roughly, learning-to-aggregate problems are supervised machine
learning problems in which data objects are represented in the form of a composition of a
(variable) number on constituents; such compositions are associated with an evaluation,
score, or label, which is the target of the prediction task, and which can presumably be
modeled in the form of a suitable aggregation of the properties of its constituents. Thus,
our LTA framework establishes a close connection between machine learning and a branch
of mathematics devoted to the systematic study of aggregation functions [GMMP09].

A bit more formally, we proceed from a set of training dataD =
{
(c1, y1), . . . , (cN , yN)

}
⊂

C × Y, where C is the space of compositions and Y a set of possible (output) values
associated with a composition. Since aggregation is often used for the purpose of evaluating
a composition, we also refer to the values yi as scores. A composition ci ∈ C is a multiset
(bag) of constituents ci = {ci,1, . . . , ci,ni}, where ni = |ci| is the size of the composition;
scores yi are typically scalar values (e.g., representing a specific non-functional property of
a service). Constituents ci, j can be of different type, and the description of a constituent
may or may not contain the following information:

• A label specifying the role of the constituent in the composition. For example,
suppose a composition is a service in the form a machine learning pipeline (cf.
Subproject B2) consisting of an algorithm for data preprocessing, a method for
inducing a classifier, and an algorithm for postprocessing predictions. By assigning
labels to these constituents, such as pre, induce, and post, additional information
is provided about the part of the composition they belongs to (thereby adding
additional structure to the composition).

• A description of properties of the constituent, for example, memory requirements
of an algorithm. Formally, we assume properties to be given in the form of a
feature vector vi, j ∈ V, whereV is a corresponding feature space. However, more
complex descriptions are conceivable. For example, the description could itself be a
composition.

• A local evaluation in the form of a score yi, j ∈ R+.

Finally, a composition can also be equipped with an additional structure in the form of a
(binary) relation on its constituents. In this case, a composition is not simply an unordered
set (or bag) of constituents but a more structured object, such as a sequence (like in the
above example of an ML pipeline) or a graph.

Like in standard supervised learning, the goal in learning-to-aggregate is to induce a model
h : C −→ Y that predicts scores for compositions. More specifically, given a hypothesis
spaceH and a loss function L : Y2 −→ R+, the goal is to find a hypothesis h∗ ∈ H that
provides optimal predictions in the sense of minimal L in expectation.

2. Main Contributions 115

Figure 31: Illustration of a basic version of the learning-to-aggregate framework.

Learning Aggregation Functions

One of the key problems in learning to aggregate is to combine a variable number of scores
yi, j, pertaining to evaluations of the constituents ci, j in a composition c, into a single score
yi. In Figure 31, which provides an overview of the LTA setting, this step corresponds to
the part marked by the dashed rectangle.

Now, suppose that we know or can at least reasonably assume that yi is obtained from
yi,1, . . . , yi,ni through an aggregation process defined by a binary aggregation function
A : Y2 −→ Y:

yi = A
(
. . . A

(
A(yi,1, yi,2), yi,3

)
, . . . , yi,ni

)
.

In the simplest case, where the constituents do not have labels and hence cannot be
distinguished, the aggregation should be invariant against permutation of the constituents
in the bag. Thus, it is reasonable to assume A to be associative and symmetric. Besides,
one may of course restrict an underlying class of candidate functions A by additional
assumptions, such as monotonicity.

Starting from a class A of aggregation functions, instead from a hypothesis space H
directly, has at least two important advantages. First, as just said, it allows for incorporating
prior knowledge about the aggregation, which may serve as a suitable inductive bias of
the learning process. Second, it naturally solves the problem that hypotheses h ∈ H must
accept inputs of any size. Indeed, under the assumption of associativity and symmetry, a
binary aggregation function A is naturally extended to any arity, and can hence be used as
a “generator” of a hypothesis h = hA:

h(y1, . . . , yn) = A(n)(y1, . . . , yn) = A
(
A(n−1)(y1, . . . , yn−1), yn

)
for all n ≥ 1, where h(y1) = A(1)(y1) = y1 by definition. For these reasons, we consider the
learning of (binary) aggregation functions, and related to this the specification of a suitable
classA of candidates, as an integral part of learning to aggregate.

Disaggregation

The aggregation we have been speaking about so far is an aggregation on the level of scores.
Thus, we actually assume that local scores yi, j of the constituents ci, j are already given

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

and that we are interested in aggregating them into an overall score yi of the composition
ci. This is indeed the genuine purpose of aggregation functions, which typically assume
that all scores are elements of the same scale Y. Now, suppose that local scores yi, j are
not part of the training data. Instead, the constituents ci, j are only described in terms of
properties in the form of feature vectors vi, j ∈ V. A natural way to tackle the learning
problem, then, is to consider the local scores as latent variables, and to induce them as
functions f : V −→ Y of the properties.

More specifically, we assume these functions to be parameterized by a parameter vector θ,
and the aggregation function A by a parameter λ. The model is then of the form

yi = Aλ(yi,1, . . . , yi,ni) = Aλ

(
fθ(vi,1), . . . , fθ(vi,ni)

)
,

and the problem consists of learning both the aggregation function A, i.e., the parameter λ,
and the mapping from features to local scores, i.e., the parameter θ, simultaneously. Here,
supervision only takes place on the level of the entire composition, namely in the form of
scores yi, whereas the “explanation” of these scores via induction of local scores is part of
the learning problem.

The decomposition of global scores into several local scores is sometimes referred to as
disaggregation (because it inverts the direction of aggregation, which is from local scores
to global ones). One could then try to learn how the constituents are rated (via fθ) and,
simultaneously, how the corresponding local scores are aggregated into a global rating (via
Aλ). Obviously, there is a strong interaction between local rating and aggregation on a
global level. An important question, therefore, concerns the identifiability of the model,
i.e., the question whether different parameterizations imply different models (or, more
formally, whether (λ, θ) , (λ′, θ′) implies that the corresponding models assign different
scores yi , y′i for at least one composition).

Instantiations

The LTA framework as outlined above has been instantiated in different ways and evaluated
on practical learning tasks. A first instantiation based on a class of aggregation functions
called uninorms has been proposed in [MH16]. Learning algorithms for another type
of aggregation function, so-called ordered weighted averaging operators, have been
developed and tested in [MH19].

2.5 Testing of Data-Driven Software Systems

In the third phase of the CRC, the service compositions to be analyzed by Subproject B3
were pipelines of machine learning components, such as data generation, preprocessing,
learning etc. generated by Subproject B2. Essentially, through the pipeline of such services,
B2 generates data-driven software systems (DSS).

Unlike traditional software systems, where intended behavior of the software is pro-
grammed by the developer, data-driven software learns its intended functionality from
lots of examples. The analysis of such a system faces two fundamental challenges: (1)
identification of the requirements to be checked and (2) development of an analysis method.

2. Main Contributions 117

The first challenge arises out of the fact that the actual intended behavior of the learned
component is unclear as otherwise learning would not be required at all. The second
challenge arises because learning algorithms generate a diverse set of different classifiers
(or regressors).

More precisely, given a set of data instances (also called a training data set), a machine
learning algorithm generalizes from the data set thereby generating a machine learning
(ML) model (or DSS11). Formally, this model is a mapping from inputs to an output, i.e.,

M : X1 × . . . × Xn → Y .

The Xi denotes the value set of the input element (also called the feature) i and Y denotes
the set of output values. However, it is essentially unclear what the correct outcome of
this process is, i.e., what is considered to be an expected model M. Moreover, even if we
can identify some requirements to check, there can be different types of ML models as
the outcome of the learning process, depending on the learning algorithm used, such as
decision tree, neural network, random forest, support vector machine or others.

In recent years, with the increased usage of such data-driven software, there have been
a number of works focusing on ensuring the quality of such data-driven systems (see
e.g., [ZHML22; Alb21]). To this end, two approaches are currently followed: a) developing
an ML algorithm guaranteeing a requirement per design or b) validating the requirement on
a given DSS. There are shortcomings for both of these approaches. Firstly, the requirement-
per-design algorithms are only available for a small number of requirements. Moreover,
it has been found out that in some cases these algorithms were unable to guarantee the
desired requirements [GBM17]). Secondly, validation techniques are either restricted to a
specific model or to a specific requirement to check, such as checking fairness for deep
neural network model [ZWS+20].

Within Subproject B3, we have proposed a validation technique called property-driven
testing with the intention of overcoming the shortcomings of existing techniques. Our
method is a validation technique in that we aim at the falsification of requirements,
i.e., finding counterexamples to properties like standard testing techniques do. Contrary
to standard testing often using random generation of test inputs, we however have a
systematic, verification-based technique for generating potential counterexamples. Our
technique is "property-based” as it allows the checking of user-supplied properties, writ-
ten in a pre- and postcondition format. We have implemented this testing approach in
a tool named mlcheck and have evaluated it to check a number of properties on sev-
eral types of ML models. All the code and data of this work is publicly available at
https://github.com/arnabsharma91/MlCheck. Next, we briefly describe the steps involved
in our property-driven testing framework.

Property-Driven Testing

We have developed a testing mechanism that allows the user to specify the property using
a standard specification language that would then be used for test case generation. To this
end, we have the following two contributions: a) a domain-specific property specification
language and b) a targeted test case generation method.
11We use the term ML model and data-driven software (DSS) interchangeably in this section.

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

MUT

Prop

White-Box Model
(Re)Training

Formula
Generation

SMT Solving
& Augmentation

Test
Suite

Figure 32: Workflow of test data generation

Property specification. We give an assume/assert style specification language where an
assume statement specifies a condition on the input and assert statement specifies the
condition to be satisfied by the output of an ML model. We develop this considering
Python as a base programming language because of its high use in developing data-driven
software. Essentially, assume/assert statements are defined as calls to the functions Assume
and Assert respectively and take the following form [SDNW21].

Assume(‘<condition>‘,<arg1>, ...)
Assert(‘<condition>‘,<arg1>, ...)

The first parameter is a string defining a logical condition on the input data instance (for
Assume) or the output (for Assert) of the model under test (MUT), combining any other
variables in the code. The rest of the arguments give the values of these variables respecting
the order of their occurrences in the condition. Later, this condition, along with the values
of the variables, is translated to a logical formulae. Further details about our specification
language and its grammar can be found here [SMHW22].

Test case generation. We perform this step employing a technique called verification-based
testing, which we propose in [SW20]. To this end, first of all, we generate a set of data
instances randomly and for each of these instances we get the corresponding predictions
(i.e., outputs) from the MUT. The set of instances, along with their predictions form the
training data set for a white-box model (see Figure 32). The newly generated white-box
model in our framework can be either a decision tree or a neural network model. It
approximates the MUT. Next, we convert white-box model W and the negation of the
property specification to a logical formula (in SMT-LIB format12) φW and φ¬P respectively
and we conjunct them to get φW ∧ φ¬P. This translation to logical formula guarantees to
give a satisfiable formula if and only if the white-box model does not satisfy the property.
The conjuncted formula then is given to the satisfiability modulo theory (SMT) solver
Z3 [MB08]. If the Z3 finds the formula to be satisfiable, it will return a counterexample to
the property, i.e., an input to W that shows the violation of the given property.

Now, this counterexample serves as a test case and, using a method called pruning, we
generate more of these. However, as we find the counterexamples on W, not on the MUT,
we must check the validity of the counterexamples on the MUT. In case they are not valid,
we add the input instances from the counterexamples, along with its real predictions from
MUT to the training data set and retrain the model W to get a better approximation of the
MUT. Otherwise, we store the counterexamples and return them as counterexamples for
the MUT M. These steps are repeated until a user defined timeout occurs.

12http://smtlib.cs.uiowa.edu/

3. Impact and Outlook 119

Results

We have implemented the property-driven testing approach in a tool called mlcheck

and applied it to check for several types of properties. For example, in [SW20], we
applied our approach to test monotonicity requirements of ML models. Our evaluation
shows that our approach outperforms adaptive random testing [CLM04] and property-
based testing [CH00] approaches in finding out monotonicity violations. Furthermore,
our approach can find out the violations even for ML models that are by designed to
be monotonic. We also checked for several types of fairness criteria in [SW20] and
found our approach to be effective in finding out more number of fairness violations
than the existing fairness testing approaches [ALN+19; UAC18]. Our approach shows
that existing learning algorithms that are by design meant to be fair can generate unfair
models, leading to fairness violation. In a later work, we furthermore checked security
and concept relationship requirements (developed in cooperation with Subproject B2) of
data-driven software [SDNW21]. Finally, in a recent work we used mlcheck to evaluate
a number of mathematical properties on a specific type of ML models (i.e., regression
models) [SMHW22]. In this case, the requirements reflect properties of aggregation
functions as studied within B3 in the context of "learning to aggregate” [MH16; MH19].
Thus, we can apply our tool in testing diverse properties for several types of data-driven
software systems.

3 Impact and Outlook

The research conducted in this Subproject over the last decade, and notably the contribu-
tions highlighted in this chapter, has been impactful and has triggered follow-up work by
ourselves and other scholars.

For example, based on our research on the prediction of scalability and elasticity (which
ended after the first period due to the leave of PI Becker), several follow-up projects pushed
these ideas further. The EU FP7 project CloudScale extended the presented simulation
approach to analyze SLO achievement by architectural templates (ATs), which makes it
much easier for end users to model typical elasticity patterns in cloud computing allocations.
Becker and his colleagues also contributed a pattern catalogue containing patterns for
horizontal and vertical scale-up/-down and scale-out/-in including the corresponding load
balancing strategies.

When using the approach in practice, it was realized that it can be rather difficult to analyze
the simulator’s results and to improve the self-adaptation rules based on these results
alone. Hence, in a current ongoing DFG project, we aim at explainability of the simulator’s
results. The vision is that, based on the simulator’s results, the system should explain which
self-adaptations have been taken when and why. Ideally, it might even make suggestions
on how to change the self-adaptation rules to achieve improved results.

Another example of impactful research is our work on algorithm selection for software
verification. In particular, the development of the tool PeSCo has inspired the development
of other algorithm selectors. We ourselves have shown that approaches based on neural
networks can be used to learn transferable feature representation, applicable to many
verifier selection scenarios [RW20]. Apart from us, Beyer et al. [BKR22] have found

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

that combinations of complete verification tools chosen via algorithm selection signifi-
cantly outperform the performance of single tools. Finally, a new verification tool called
GraVeS [LD22] has been developed based on the PeSCo architecture, and has already been
evaluated successfully in the software verification competition [Bey22].

Our work on machine learning for predictive modeling of service properties has triggered
follow-up work, too. In particular, the “learning-to-aggregate” setting that we introduced
has inspired other researchers. Obviously, this setting is not restricted to the prediction of
properties of service compositions, but can also be applied to other learning tasks, where
global scores are naturally modeled as an aggregation of local evaluations. In [PTF+21],
for example, the LTA framework has been picked up and extended by the introduction of
so-called learnable aggregation functions (LAF) for sets of any cardinality. This class of
functions is shown to be very versatile and able to approximate many important aggregators
in a flexible way. In experimental studies, the approach has been compared to other methods
for learning from sets, and was found to outperform state-of-the-art approaches from the
field of deep neural networks.

On a broader scale, the importance of the research topics addressed in this subproject is
even likely to increase in the near future, especially due to the rapid development in the
field of artificial intelligence. With the quick expansion of practical AI applications, along
with the increasing trend toward the data-driven construction of AI tools based on neural
network technology, the verification of these tools is becoming more and more crucial. We
initialized work in this direction in the third funding period, but of course, this can mark
just the start of a bigger research program. Currently, for example, there is a lot of work on
formal verification of neural networks, motivated by the need to provide formal guarantees
on the correctness, safety, robustness, or fairness of such networks. In a sense, verification
goes hand in hand with other approaches aimed at increasing the trustworthiness of AI
systems, such as explainability. We believe that the methods and tools developed in this
subproject provide a suitable basis for further developments in this field.

Bibliography

[Alb21] Albarghouthi, A.: Introduction to Neural Network Verification. In: Found. Trends Pro-
gram. Lang. 7 (2021), no. 1-2, pp. 1–157.

[ALN+19] Aggarwal, A.; Lohia, P.; Nagar, S.; Dey, K.; Saha, D.: Black box fairness testing of
machine learning models. In: Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE. Ed. by Dumas, M.; Pfahl, D.; Apel, S.; Russo, A. ACM, 2019,
pp. 625–635.

[AWBP14] Arifulina, S.; Walther, S.; Becker, M.; Platenius, M. C.: SeSAME: modeling and
analyzing high-quality service compositions. In: ASE. Ed. by Crnkovic, I.; Chechik, M.;
Grünbacher, P. ACM, 2014, pp. 839–842.

[BBM13] Becker, M.; Becker, S.; Meyer, J.: SimuLizar: Design-Time modeling and Performance
Analysis of Self-Adaptive Systems. In: Proceedings of the Software Engineering Confer-
ence (SE). Lecture Notes in Informatics (LNI). 2013, pp. 71–84

[BDW15] Beyer, D.; Dangl, M.; Wendler, P.: Boosting k-Induction with Continuously-Refined
Invariants. In: Computer Aided Verification - 27th International Conference, CAV. Ed. by
Kroening, D.; Pasareanu, C. S. Vol. 9206. Lecture Notes in Computer Science. Springer,
2015, pp. 622–640.

3. Impact and Outlook 121

[Bec17] Becker, M.: Engineering Self-Adaptive Systems with Simulation-Based Performance
Prediction. PhD thesis. Universität Paderborn, Softwaretechnik, 2017

[Bey19] Beyer, D.: Automatic Verification of C and Java Programs: SV-COMP 2019. In: Tools and
Algorithms for the Construction and Analysis of Systems TACAS TOOLympics, Held as
Part of ETAPS Part III. Ed. by Beyer, D.; Huisman, M.; Kordon, F.; Steffen, B. Vol. 11429.
Lecture Notes in Computer Science. Springer, 2019, pp. 133–155.

[Bey22] Beyer, D.: Progress on Software Verification: SV-COMP 2022. In: Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II. Ed. by Fisman, D.;
Rosu, G. Vol. 13244. Lecture Notes in Computer Science. Springer, 2022, pp. 375–402.

[BF16] Beyer, D.; Friedberger, K.: A Light-Weight Approach for Verifying Multi-Threaded
Programs with CPAchecker. In: Proceedings 11th Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science, MEMICS. Ed. by Bouda, J.; Holík, L.;
Kofron, J.; Strejcek, J.; Rambousek, A. Vol. 233. EPTCS. 2016, pp. 61–71.

[BK11] Beyer, D.; Keremoglu, M. E.: CPAchecker: A Tool for Configurable Software Verification.
In: CAV. Ed. by Gopalakrishnan, G.; Qadeer, S. Vol. 6806. Lecture Notes in Computer
Science. Springer, 2011, pp. 184–190.

[BKR22] Beyer, D.; Kanav, S.; Richter, C.: Construction of Verifier Combinations Based on Off-
the-Shelf Verifiers. In: Fundamental Approaches to Software Engineering -FASE 2022,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS. Ed. by Johnsen, E. B.; Wimmer, M. Vol. 13241. Lecture Notes in Computer
Science. Springer, 2022, pp. 49–70.

[BKW10] Beyer, D.; Keremoglu, M. E.; Wendler, P.: Predicate abstraction with adjustable-block en-
coding. In: Proceedings of 10th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23. Ed. by Bloem, R.;
Sharygina, N. IEEE, 2010, pp. 189–197.

[BLB13] Becker, M.; Luckey, M.; Becker, S.: Performance Analysis of Self-Adaptive Systems
for Requirements Validation at Design-Time. In: Proceedings of the 9th ACM SigSoft
International Conference on Quality of Software Architectures (QoSA’13). 2013, pp. 43–52

[CH00] Claessen, K.; Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell
programs. In: Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’00). Ed. by Odersky, M.; Wadler, P. ACM, 2000,
pp. 268–279.

[CHJW17] Czech, M.; Hüllermeier, E.; Jakobs, M.; Wehrheim, H.: Predicting rankings of software
verification tools. In: Proceedings of the 3rd ACM SIGSOFT International Workshop on
Software Analytics, SWAN@ESEC/SIGSOFT FSE. Ed. by Baysal, O.; Menzies, T. ACM,
2017, pp. 23–26.

[CJS+16] Chalupa, M.; Jonás, M.; Slaby, J.; Strejcek, J.; Vitovská, M.: Symbiotic 3: New Slicer and
Error-Witness Generation - (Competition Contribution). In: Tools and Algorithms for the
Construction and Analysis of Systems - 22nd International Conference, TACAS 2016, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
nProceedings. Ed. by Chechik, M.; Raskin, J. Vol. 9636. Lecture Notes in Computer
Science. Springer, 2016, pp. 946–949.

[CLM04] Chen, T. Y.; Leung, H.; Mak, I. K.: Adaptive Random Testing. In: Advances in Computer
Science - ASIAN 2004, Higher-Level Decision Making, 9th Asian Computing Science
Conference, Proceedings. Ed. by Maher, M. J. Vol. 3321. Lecture Notes in Computer
Science. Springer, 2004, pp. 320–329.

[DPVZ17] Demyanova, Y.; Pani, T.; Veith, H.; Zuleger, F.: Empirical software metrics for bench-
marking of verification tools. In: Formal Methods Syst. Des. 50 (2017), no. 2-3, pp. 289–
316.

Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

[FH10] Fürnkranz, J.; Hüllermeier, E.: Preference Learning and Ranking by Pairwise Compar-
ison. In: Preference Learning. Ed. by Fürnkranz, J.; Hüllermeier, E. Springer, 2010,
pp. 65–82.

[GBM17] Galhotra, S.; Brun, Y.; Meliou, A.: Fairness testing: testing software for discrimination.
In: Proceedings of the 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE. Ed. by Bodden, E.; Schäfer, W.; Deursen, A. van; Zisman, A. ACM, 2017,
pp. 498–510.

[GMMP09] Grabisch, M.; Marichal, J.; Mesiar, R.; Pap, E.: Aggregation Functions. Cambridge
University Press, 2009

[HCD+13] Heizmann, M.; Christ, J.; Dietsch, D.; Ermis, E.; Hoenicke, J.; Lindenmann, M.; Nutz,
A.; Schilling, C.; Podelski, A.: Ultimate Automizer with SMTInterpol - (Competition
Contribution). In: Tools and Algorithms for the Construction and Analysis of Systems - 19th
International Conference, TACAS 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS. Ed. by Piterman, N.; Smolka, S. A. Vol. 7795.
Lecture Notes in Computer Science. Springer, 2013, pp. 641–643.

[HR92] Horwitz, S.; Reps, T. W.: The Use of Program Dependence Graphs in Software Engineer-
ing. In: Proceedings of the 14th International Conference on Software Engineering. Ed. by
Montgomery, T.; Clarke, L. A.; Ghezzi, C. ACM Press, 1992, pp. 392–411.

[LD22] Leeson, W.; Dwyer, M. B.: Graves-CPA: A Graph-Attention Verifier Selector (Com-
petition Contribution). In: Tools and Algorithms for the Construction and Analysis of
SystemsTACAS, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS, Part II. Ed. by Fisman, D.; Rosu, G. Vol. 13244. Lecture Notes in
Computer Science. Springer, 2022, pp. 440–445.

[MB08] Moura, L. M. de; Bjørner, N. S.: Z3: An Efficient SMT Solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS Proceedings. Ed. by Ramakrishnan, C. R.; Rehof, J. Vol. 4963. Lecture Notes in
Computer Science. Springer, 2008, pp. 337–340.

[MH16] Melnikov, V.; Hüllermeier, E.: Learning to Aggregate Using Uninorms. In: Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD,
Proceedings, Part II. Ed. by Frasconi, P.; Landwehr, N.; Manco, G.; Vreeken, J. Vol. 9852.
Lecture Notes in Computer Science. Springer, 2016, pp. 756–771.

[MH19] Melnikov, V.; Hüllermeier, E.: Learning to Aggregate: Tackling the Aggregation/Disag-
gregation Problem for OWA. In: Proceedings of The 11th Asian Conference on Machine
Learning, ACML. Ed. by Lee, W. S.; Suzuki, T. Vol. 101. Proceedings of Machine Learning
Research. PMLR, 2019, pp. 1110–1125.

[MLL04] Moon, S.-i.; Lee, K. H.; Lee, D.: Fuzzy branching temporal logic: Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics 34 (2004), no. 2, pp. 1045–1055

[MW15] Mohr, F.; Walther, S.: Template-Based Generation of Semantic Services. In: ICSR. Ed. by
Schaefer, I.; Stamelos, I. Vol. 8919. Lecture Notes in Computer Science. Springer, 2015,
pp. 188–203.

[PTF+21] Pellegrini, G.; Tibo, A.; Frasconi, P.; Passerini, A.; Jaeger, M.: Learning Aggregation
Functions. In: Proc. IJCAI, Thirtieth International Joint Conference on Artificial Intelli-
gence. 2021

[RHJW20] Richter, C.; Hüllermeier, E.; Jakobs, M.; Wehrheim, H.: Algorithm selection for software
validation based on graph kernels. In: Autom. Softw. Eng. 27 (2020), no. 1, pp. 153–186.

[RW19] Richter, C.; Wehrheim, H.: PeSCo: Predicting Sequential Combinations of Verifiers -
(Competition Contribution). In: Tools and Algorithms for the Construction and Analysis
of Systems TACAS: TOOLympics, Part III. Ed. by Beyer, D.; Huisman, M.; Kordon, F.;
Steffen, B. Vol. 11429. Lecture Notes in Computer Science. Springer, 2019, pp. 229–233.

3. Impact and Outlook 123

[RW20] Richter, C.; Wehrheim, H.: Attend and Represent: A Novel View on Algorithm Selection
for Software Verification. In: 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE. IEEE, 2020, pp. 1016–1028.

[SDNW21] Sharma, A.; Demir, C.; Ngomo, A. N.; Wehrheim, H.: MLCHECK- Property-Driven
Testing of Machine Learning Classifiers. In: 20th IEEE International Conference on
Machine Learning and Applications, ICMLA. Ed. by Wani, M. A.; Sethi, I. K.; Shi, W.;
Qu, G.; Raicu, D. S.; Jin, R. IEEE, 2021, pp. 738–745.

[SMHW22] Sharma, A.; Melnikov, V.; Hüllermeier, E.; Wehrheim, H.: Property-Driven Testing of
Black-Box Functions. In: 10th IEEE/ACM International Conference on Formal Methods
in Software Engineering, FormaliSE@ICSE. ACM, 2022, pp. 113–123.

[SS02] Schölkopf, B.; Smola, A. J.: Learning with Kernels: support vector machines, regulariza-
tion, optimization, and beyond. Adaptive computation and machine learning series. MIT
Press, 2002.

[SW20] Sharma, A.; Wehrheim, H.: Higher income, larger loan? monotonicity testing of machine
learning models. In: ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. Ed. by Khurshid, S.; Pasareanu, C. S. ACM, 2020, pp. 200–210.

[TKK+14] Tulsian, V.; Kanade, A.; Kumar, R.; Lal, A.; Nori, A. V.: MUX: algorithm selection for
software model checkers. In: 11th Working Conference on Mining Software Repositories,
MSR Proceedings. Ed. by Devanbu, P. T.; Kim, S.; Pinzger, M. ACM, 2014, pp. 132–141.

[UAC18] Udeshi, S.; Arora, P.; Chattopadhyay, S.: Automated directed fairness testing. In: Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE. Ed. by Huchard, M.; Kästner, C.; Fraser, G. ACM, 2018, pp. 98–108.

[WW13] Walther, S.; Wehrheim, H.: Knowledge-Based Verification of Service Compositions -
An SMT Approach. In: 2013 18th International Conference on Engineering of Complex
Computer Systems. IEEE Computer Society, 2013, pp. 24–32.

[WW14] Walther, S.; Wehrheim, H.: Verified Service Compositions by Template-Based Construc-
tion. In: FACS. Ed. by Lanese, I.; Madelaine, E. Vol. 8997. Lecture Notes in Computer
Science. Springer, 2014, pp. 31–48.

[WW16] Walther, S.; Wehrheim, H.: On-the-fly construction of provably correct service composi-
tions - templates and proofs. In: Sci. Comput. Program. 127 (2016), pp. 2–23.

[ZHML22] Zhang, J. M.; Harman, M.; Ma, L.; Liu, Y.: Machine Learning Testing: Survey, Landscapes
and Horizons. In: IEEE Trans. Software Eng. 48 (2022), no. 2, pp. 1–36.

[ZWS+20] Zhang, P.; Wang, J.; Sun, J.; Dong, G.; Wang, X.; Wang, X.; Dong, J. S.; Dai, T.: White-box
fairness testing through adversarial sampling. In: ICSE ’20: 42nd International Conference
on Software Engineering. Ed. by Rothermel, G.; Bae, D. ACM, 2020, pp. 949–960.

125

Subproject B4:

Verifying Software and Reconfigurable Hardware Services

Eric Bodden1, Marie-Christine Jakobs3, Felix Pauck1, Marco Platzner1,
Philipp Schubert1, Heike Wehrheim2

1 Department of Computer Science, Paderborn University,
Paderborn, Germany

2 Department of Computer Science, Oldenburg University,
Oldenburg, Germany

3 Department of Computer Science, TU Darmstadt,
Darmstadt, Germany

1 Introduction

Subproject B4 focuses on designing quality assurance measures for single services that
are (i) purchased, (ii) composed into service compositions, and (iii) directly employed at
runtime in an on-the-fly manner. These measures must allow one to check if an acquired IT
service actually fulfills the properties as promised by the service provider. The techniques
for ensuring the quality of services must further enable their users to quickly check whether
the desired properties hold without forcing them to expensively analyze the service and
verify the properties themselves. In this subproject, we consider service providers that
assemble compositions and compute centers that execute services as users. The target
of the quality assurance measures are individual IT services that are offered in an OTF
market. Since services might be implemented in software or synthesized in reconfigurable
hardware components, measures to check both must be created.

For example, a service composition used for image recognition may rely on a software or
hardware service implementing a filter that is used as an image preprocessor. Hence, it
must be ensured that this preprocessing service is safe to use. To this regard, safety stands
for the property that no error location can be reached.

To reach these goals, Subproject B4 has proposed proof-carrying services. Proof-carrying
services come with a proof in form of a certificate that allows its users to efficiently check
whether the certificate and therefore the properties that the service claims to hold are valid
or not, instead of requiring them to extensively analyze and compute the proof for the
target service. The idea is to shift the computational expense of verifying the desired
properties of an IT service to its respective provider. With respect to software services,
the technique implemented for creating and checking certificates is called proof-carrying
code (PCC) or, in case of reconfigurable hardware components, proof-carrying hardware

eric.bodden@uni-paderborn.de (Eric Bodden), jakobs@cs.tu-darmstadt.de (Marie-Christine Jakobs),
felix.pauck@uni-paderborn.de (Felix Pauck), platzner@uni-paderborn.de (Marco Platzner),
philipp.schubert@uni-paderborn.de (Philipp Schubert), heike.wehrheim@uni-oldenburg.de (Heike
Wehrheim)

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

(PCH). Besides PCC, the Programs-from-Proofs (PfP) technique has been proposed, which
follows the same goal. However, in contrast to PCC, PfP does not attach certificates or
proofs to a service, but instead uses the proof to transform the program (service) into an
equivalent program for which the properties of interest can be verified more easily—the
service provider thus still verifies the original program whereas the user only has to verify
the transformed program. PfP is in depth described as one of the subproject’s selected
topics in Section 2.1.

In the area of PCH, we have proposed techniques to verify functional and non-functional
properties. As an example, in Section 2.2 we elaborate on certifying memory access
monitors for reconfigurable hardware systems. In such systems, different modules need to
access shared memory, and predefined static or dynamic memory access patterns describe
legal access sequences. A memory access monitor is a runtime module that captures these
patterns and blocks illegal accesses. Certifying such monitors instead of the complete
modules greatly reduces the required computational effort.

Under the term hardware/software-co-verification (HW/SW-co-verification) Subproject
B4 has developed techniques that pair PCC and PCH. These techniques target services
or programs that use so-called custom instructions to trigger reconfigurable hardware
components. In order to pair PCC with PCH, pre- and postconditions are computed during
software verification, such that the hardware verification must assure that these conditions
hold. These conditions become part of the certificate and, hence, must only be computed
by the service provider, which further unburdens the user. The selected topic presented
in Section 2.3 provides more information about HW/SW-co-verification.

In both areas, software (PCC) and hardware (PCH), only safety properties were initially
considered. Later on in the project, the focus shifted to the more challenging—with
respect to verification/analysis complexity—security properties. This shift required the
design of novel techniques as well as the implementation of new frameworks and tools.
In Section 2.4, we present the novel Phasar framework that we developed as part of
Subproject B4. Phasar allows one to statically analyze software written in languages from
the C family. We use it to design and prototype new analysis algorithms and strategies
to effectively compute safety and security properties (and their proofs) for the target
services.

Existing mature static analysis tools were also used to create certificates for security
properties. These tools usually provide no proof; hence, the quality of the certificate relies
on the quality or accuracy of the analysis. Therefore, instruments to determine the accuracy
of analyses become indispensable. Consequently, in Section 2.5 we take a closer look at
benchmarking software analyses.

2 Selected Research Topics

2.1 Programs-from-Proofs

The goal of Subproject B4 is to provide approaches that let consumers (users) of software
or hardware services efficiently and automatically check whether a service ensures the
desired properties. One means to achieve this goal is to apply the principle of proof-
carrying code (PCC). To achieve efficient checking, PCC relocates the major workload of

2. Selected Research Topics 127

Service P

Property ϕ

Complex
Verification

Proof P |= ϕX
Service

Transformation

Transformed
Service PT

(P ≡ PT)

Producer

Property ϕSimple
Verification

PT |= ϕX

PT |= ϕ×

run PT

discard PT

Consumer

Figure 33: Generic workflow of the Programs-from-Proofs approach.

checking: namely, performing the proof that the service ensures the desired properties, to
the service producer. The producer then attaches the generated proof in form of a certificate
to the service. Hence, the consumer only needs to check whether the certificate attests
that the service ensures the desired properties, which is typically assumed to be more
efficient than proof generation. Several PCC instances for various properties and analysis
techniques have been suggested, some relying on mathematical proofs and others on more
general concepts of proofs, such as abstract state spaces. However, often these approaches
suffer from large certificates. Furthermore, consumers are bound to specific validation
approaches often tailored to the type of certificate and cannot apply existing verification
technology. In addition, proof generation is not automatic for all PCC instances.

To overcome these issues, Subproject B4 has proposed an alternative principle, named
Programs-from-Proofs (PfP). Like PCC, PfP is a generic principle that still forces the
service producer to perform the work-intensive part of proof generation. However, it
goes without certificates and lets the consumer employ existing, but relatively efficient
verification techniques, such as dataflow analyses instead of specific validation techniques,
for example. To achieve this, PfP uses the insights that the structure of a software service
(i.e., program) can heavily influence the complexity of verification but that many proofs, in
particular proofs that model the (abstract) state space of a (software) service, restructure
the service such that its verification becomes simpler. More concretely, PfP employs the
proof to transform the (software) service into a different, but behaviorally equivalent and
property preserving (software) service that is easier to verify.

Figure 33 shows the generic workflow of the PfP approach, which we explain in more
detail in the following.

1. Initially, the producer verifies (software) service P with respect to property ϕ, apply-
ing a potentially complex and costly verification. During the complex verification,
many PfP instances use a combination of a computational expensive, incremental
analysis and a cheap analysis. The cheap analysis is responsible for checking the
property while the main purpose of the expensive analysis is to restructure the (ab-
stract) state space, i.e., to restructure the paths of the analyzed (software) services by

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

unfolding loops, avoiding reintegration of branches, excluding infeasible execution
paths, etc., such that the cheap analysis succeeds in property checking. To achieve
the necessary restructuring, the expensive analysis often performs the restructuring
incrementally based on the failed proof attempts of the cheap analysis.

2. After the producer’s verification attempt succeedes, the producer uses the proof to
automatically transfer the restructuring that was done for proving the property to
the service. Thereby, it is important that the transformation (1) does not change the
service’s (functional) behavior, (2) keeps the validity of the property, and (3) ensures
simple verification of the property on the transformed (software) service PT . All
PfP instances Subproject B4 has developed focus on proofs in form of abstract
reachability graphs (ARGs). An ARG is a representation of the abstract state
space of a (software) service. Important for the PfP instances is that all ARG
paths correspond to syntactic paths in the analyzed (software) service and that
all syntactic paths that are also semantically feasible (i.e., the executable paths)
are represented in the ARG. However, an ARG and the (software) service likely
structure paths differently and the ARG may contain less infeasible syntactic paths.
All those differences allowed the cheap analysis component to prove the validity of
the property. The ARG characteristics mentioned above are the reasons why the PfP
instances, which Subproject B4 has developed, all translate the ARG, in particular its
paths with their structure, into a (software) service, which becomes the transformed
service PT delivered to the consumer. Furthermore, these characteristics allow one
to verify the desired behavioral equivalence of the (software) service before and after
transformation.

3. Once the consumer has received the transformed service PT , he or she performs a
simple verification of the transformed service PT to efficiently and automatically
check whether a service ensures the desired property ϕ. If the complex verification
consisted of a combination of cheap and expensive analysis as described above,
the simple verification typically applies (a variant of) the cheap analysis technique,
although the consumer might use a different implementation of the cheap analysis.
Our PfP instances even allow the cheap analysis to become path-insensitive. Typi-
cally, our instances each use a variant of the respective cheap analysis that performs
an efficient, flow-sensitive dataflow analysis. The reason is that any path sensitivity
that the cheap analysis contributed during complex verification is also incorporated
in the ARG structure and, thus, in the transformed (software) service. To prevent
the consumer from harm, the simple verification must be tamper-proof, i.e., it must
detect any tampering of the process that invalidates the desired property on the
received service, e.g., deviations in properties, invalid producer proofs, incorrect
transformation, or changes to the transformed service during delivery. Hence, the
simple verification must be sound, i.e., it must ensure that only services that fulfill the
desired property are verified successfully. Since soundness is typically guaranteed by
the simple verification technique itself, we focused on showing successful consumer
verification in a tamper-free PfP workflow. More concretely, for the PfP instances
Subproject B4 has developed, we have proven that the simple verification will suc-
ceed if the complex and simple verification consider the same property, the complex
verification has succeeded, and the simple verification verifies the services computed
by the transformation based on the proof generated by the complex verification.

2. Selected Research Topics 129

4. Depending on the outcome of the simple verification, the consumer lastly either runs
the transformed service in case of a successful verification or otherwise discards the
service.

Our proof-of-concept instance for PfP [WSW13] has addressed typestate properties, proto-
col-like properties enhancing types with information about their state, and has introduced
the idea to transform ARGs into services (programs). Its complex verification combines
predicate model checking and a typestate analysis, while the simple verification performs
a pure typestate dataflow analysis. A typestate analysis allows to decide whether certain
operations are possible with respect to the typestate of a variable. For example, an integer
variable may be in the typestate uninitialized, demanding that it is initialized before it
is used. Subsequent PfP instances [JW15; JW17] have extended the supported types of
analyses and properties, but reuse the idea of ARG to service (program) transformation.
Furthermore, we have used the software analysis framework CPAchecker [BK11], a tool
that supports configurable program analysis, to implement our PfP instances. While we
have reused CPAchecker’s existing analyses and its possibility to combine analyses to
realize the complex and simple verification, we have integrated the ARG to service (pro-
gram) transformation into CPAchecker. Practical evaluations of our PfP instances with
CPAchecker have shown that the consumer’s simple verification is indeed significantly
more efficient in terms of runtime and memory usage than the producer’s complex ver-
ification. Also, PfP is often more efficient than existing PCC approaches applicable to
configurable program analyses.

The PfP approach here makes a first essential contribution in the range of the proof
procedures. As described before, PfP addresses the problem that proofs stored in the
proof-carrying code method are usually very large and therefore inefficient to handle. It
could be shown that this can succeed by means of PfP to embed the proof quasi partially
directly into the structure of the program which can be analyzed. Thereby, the size of the
proof is reduced and nevertheless the possibility of the efficient proof examination by the
user remains. As a result, PfP thus allows for an often more efficient examination of the
necessary evidence and a more efficient transfer of this evidence to the user. However,
another advantage of PfP over PCC is also the reduction in trusted base: In PCC, the user
must trust the verification procedure, which itself is often relatively complex (albeit runtime
efficient). In PfP, however, this checking procedure corresponds to a relatively simple data
flow analysis, which should increase confidence that this procedure is error-free. PfP thus
increases confidence in the overall security of the corresponding services.

2.2 Proof-Carrying Hardware

Proof-carrying hardware (PCH) was first proposed by Drzevitzky et al. [DKP09; DKP10]
as the reconfigurable hardware equivalent of PCC. The PCH concept distinguishes a
circuit producer (e.g., a design center) and a consumer, e.g., a data center operating a
reconfigurable computer or an embedded system based on a reconfigurable system-on-chip.
The consumer loads and executes reconfigurable hardware modules that were created by
the producer. Additionally, the consumer specifies a security property that the modules
need to fulfill and, before loading, requires formal proofs of the properties. It is the task
of the producer to generate not only the modules but also the proofs and transmit both to

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

the consumer. The consumer will verify that the proofs are correct and actually belong to
the modules. In PCH, the compound of module implementation and the proof have been
denoted as a proof-carrying bitstream.

An important security property for reconfigurable hardware systems pertains to memory
access policies. The density of today’s reconfigurable hardware devices allows for imple-
menting reconfigurable systems with a large number of modules or cores, respectively.
Through dynamic or even partial reconfiguration, modules can be loaded on demand,
increasing flexibility. Several modules that access the same physical memory need to
adhere to a specified policy governing their access patterns. A simple static policy, for
example, is to enforce that each core can only access its own segment of the memory.
There are, however, more involved policies in use when it comes to intended sharing of
data between cores, the handling of conflict-of-interest classes, or different security levels.
Huffmire et al. [HSKL08] introduced a monitoring-based approach to ensure memory
access security. They presented a formal language and a compilation tool flow that allows
a designer to specify a memory access policy and generate a circuit for a so-called memory
access monitor. All modules’ memory accesses have to be routed through the monitor,
enabling the monitor to block any memory access that violates the policy at runtime.

We guarantee memory access security in the strength of formal verification by bringing
together the monitoring approach of Huffmire et al. with the proof-carrying hardware
concept. The consumer operates a reconfigurable resource where several cores access
shared memory and memory accesses are routed through a memory access monitor that
implements a predefined memory access policy. The policy can change during runtime
to reflect different applications and security requirements. The consumer receives a new
monitor together with a proof of its functional correctness, verifies the proof and, in case
of success, partially reconfigures the monitor.

Our tool flow starts with the consumer that uses behavioral Verilog to specify the memory
access policy. The producer receives the design specification and synthesizes it into an
FPGA bitstream, using the tools of Huffmire et al. and, subsequently, VTR for Verilog
synthesis and place & route. After that, the producer re-extracts the logic function from the
bitstream and, together with the original design specification, computes the miter function.
The miter function is shown in Figure 34 and is constructed such that the output of the
miter, i.e., the error flag, can only be 1 if the specification and implementation differ for at
least one input vector. For proving functional equivalence for combinational circuits, it is
thus sufficient to prove unsatisfiability of the miter. We use ABC to construct a miter in
conjunctive normal form and the SAT solver PicoSAT to prove unsatisfiability. PicoSAT
also generates a proof trace that, together with the bitstream, forms the proof-carrying
bitstream.

Dynamic memory access policies lead to sequential monitor circuits. Thus, we extended
the concept and tool flow to also work with sequential miters using bounded sequential
equivalence checking [WDP14]. A sequential miter circuit is unrolled for a specified
number n of time frames, resulting in n copies of the circuit that are connected at their
flip flops. Every time frame represents one clock cycle, and we can change the primary
inputs and observe the primary outputs at every individual cycle. The miter construction
then compares all outputs in each time frame and the flip flop signals of the last frame, and
raises the error flag if there is a deviation somewhere. As we have to choose a specific
amount of unrolling time frames, we observe that the compiled monitors are essentially

2. Selected Research Topics 131

Monitor implementation
out=I(in)

in out

n

n m

error

Monitor specification
out'=S(in)

=1

≥1

=1

out m

Figure 34: Miter M(S (x), I(x)) for proving the functional equivalence of specification S
and implementation I, (taken from [WDP14]).

state machines, and their internal transitions only depend on their current state and the new
input. Suppose there is an input sequence i that satisfies the miter function, i.e., it leads to
different outputs for the implemented circuit and the specification, and the corresponding
state transition path of the state machine contains cycles. Then the input sequence i′, which
leaves out all state cycles of i, is also a valid input sequence and it also satisfies the miter.
If the miter is thus provably unsatisfiable for all maximum length-cycle free state transition
paths, it is unsatisfiable for all input sequences of all lengths. Hence, we can simply use a
number n of unrolling frames larger than the number s of automaton states to ensure that
every cycle-free sequence has been considered.

The consumer receives the bitstream for the monitor circuit together with the proof trace
for unsatisfiability. In a first step, the consumer also extracts the monitor’s logic function
from the bitstream and forms a miter in conjunctive normal form in the same way as the
producer, but with the original specification. The so-created miter is compared to the miter
sent by the producer, which is part of the proof trace. If the miters do not match, then the
proof is not based on the desired functionality and the monitor is refused. If the miters
match, the consumer verifies the proof by checking each reduction step in the proof trace
until an empty clause results. Only then, is the implementation shown to adhere to the
security property and the monitor accepted.

To demonstrate the capability of our proposed approach for ensuring memory security,
we built a prototypical system. As platform we chose a ZedBoard containing a Xilinx
Zynq-7000 system-on-a-chip with a dual ARM Cortex-A9, and 512 MB RAM. Our proto-
type architecture embeds a virtual FPGA overlay into a reconfigurable system as shown in
Figure 35. We use a virtual FPGA since we need to be able to interpret the transmitted
configuration bitstream for the memory access monitor. FPGA vendors typically do not
share the necessary information, and reverse engineering the bitstream or additionally
transmitting and interpreting low-level circuit descriptions such as Xilinx XDL are ex-
tremely tedious processes. Virtual FPGAs or FPGA overlay architectures have become
increasingly popular in the last years for a number of reasons. They provide a means to
implement portable circuits, bring partial reconfiguration capabilities to FPGAs that have
no native support of this feature, achieve fast configuration rates, prototype coarse grained
arrays, or be able to implement circuits created with open source tool flows such as VTR
on real FPGAs.

We leverage the virtual FPGA overlay ZUMA and embed it into ReconOS [LP09]. Re-

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

Processing System / Application Processor Unit

Programmable Logic

SWT 0 SWT n

Operating System
ReconOS driver

... DT 0 DT m...

HWT 0 HWT m...

General Purpose Bus (AXI)

FIFO to AXI bridge

Arbiter
MMU

Memory
Controller

Memory Bus (AXI)

ACP / High Performance General Purpose

virtual FPGA

Monitor

Figure 35: Xilinx Zynq version of ReconOS, with n + 1 software threads (SWT), m + 1
hardware threads (HWT), their m + 1 delegate threads (DT), and an arbiter
including a memory monitor in the memory access path of the HWTs (taken
from [WDP14]).

2. Selected Research Topics 133

Program P

(Configurable)

Analysis

+

Certificate C(P,U)

Program P

(Configurable)

Certificate

Validator

Program P’

+

Certificate C’

safe

Property U

ConsumerProducer

C’=C(P’,U)

yes

P=P’

Figure 36: Certification generation and validation.

conOS is an execution environment for hybrid hardware/software systems featuring a
multithreaded programming model that allows for regular software threads as well as
hardware threads. The use of ReconOS enables us to use a mature, Linux-based infras-
tructure for implementing hardware/software systems, including a CPU core, memory
controller, peripherals and a standard software operating system. As shown in Figure 35,
we have modified the ReconOS arbiter in the memory access path of the hardware threads
to include the memory access monitor. The access monitor itself is implemented in our
ZUMA virtual FPGA overlay. For the inputs, the arbiter provides the monitor the virtual
memory address, the type of the request (read or write) and its source, the hardware thread
identifier.

We further presented a series of experiments to investigate different aspects of our approach
and prototype. The experiments showed that the approach is feasible and can secure static
and dynamic memory access policies of different complexities. With 61.84% to 90.53%
of the overall workload, depending on the memory access policy, the producer clearly
bears the computational burden of establishing the consumer’s trust in the module. As
expected, the overlay comes with rather high area and delay overheads. The reduction of
these overheads was also addressed.

2.3 Proof-Carrying Code and Its Relation to Proof-Carrying Hardware

The core principle underlying the work of Subproject B4 was to enable on-the-fly checking
of service correctness by attaching proofs as witnesses to the correctness of both software
and hardware. Here, we briefly explain our technique of proof-carrying code (software
verification) and its integration with hardware verification.

For proof-carrying code we employ analysis and verification techniques that can formally
prove the validity of properties in software programs. Hence, we can employ the proofs
as a form of certificate to a service’s correctness. The basic principle of proof-carrying
code is the idea that the generation of certificates (on the side of the service producer)
can be time-consuming while its validation (on the side of the consumer) should be easy.
Figure 36 depicts this basic scheme. The producer develops a program (service) P, which

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

should adhere to property (requirement) U. The producer is supposed to carry out the
costly analysis (proving the holding of property U on P). The outcome of the analysis,
more specifically the correctness proof, is then attached to the program in the form of a
certificate. When a consumer wants to use this service, it retrieves program and certificate
from some repository. Our assumption here is, however, that neither producer nor storage
in repositories can be fully trusted. Thus, the consumer might actually receive a slightly
different program P′ or a slightly modified certificate C′. Our technique enables the
consumer to quickly validate whether the certificate still fits to the program and thereby
whether the received program P′ meets the intended requirement U.

Instead of developing a certification technique per property or per class of properties,
we have investigated the generation of certificates for arbitrary properties [JW14] via a
configurable certification process. Our generic approach builds on an existing framework
for configurable program analysis with tool support in the form of CPAchecker [BK11].
CPAchecker executes an analysis meta algorithm generating a (structured) abstract reach-
ability set of a given program. The meta algorithm can be steered by a number of user-
supplied inputs (e.g., telling CPAchecker when to stop the analysis and when to merge
states). This presents a way of uniting different program analysis techniques, ranging from
data-flow analyses, to computing abstract information for control flow graphs, to model
checking, computing a tree-like abstract structure. The generated reach set is then subject
to property checking.

For the certification process, we use the—anyway generated—reach set as certificate.
Similar to the analysis, we develop a generic configurable certificate validation framework
with a corresponding meta algorithm for certificate checking. In addition, we provide a way
of (in a large number of cases automatically) generating the configuration of the certificate
validation from a given configuration of the analysis. Our approach is tamper-proof in that
the certificate validator only outputs “yes” if the program P remains unchanged (P = P′)
and the obtained (and possibly corrupted) certificate C′ is a valid certificate for the program
P with respect to a desired property U. We have implemented our technique within the
CPAchecker framework, and evaluated it on a number of different analysis techniques. For
all of these, certificate validation is faster than analysis. We proved soundness of all of
our techniques, i.e., we have shown them to be tamper-free.

To connect to the certification on the hardware level, we have studied how software certifi-
cates relate to the underlying hardware used for execution. Software analyses typically
rely on the correctness of the processor hardware executing the program. More specifi-
cally, the strongest postcondition computation used to determine the successor state of a
given state for a program statement assumes that the processor correctly implements the
statement’s semantics. Certificate validation heavily employs the strongest postcondition
computations. This assumption of correct hardware is certainly valid for standard proces-
sors, since they undergo extensive simulation, testing, and partly also formal verification
processes. However, during the last years processors with so-called custom instruction (CI)
set extensions became popular, which challenge this correctness assumption. Customized
instructions map a part of an application’s data flow graph to specialized functional units
in the processor pipeline in order to improve performance and/or energy efficiency.

In [JPWW14], we have presented a novel formal approach for software/hardware co-
verification, in particular for processors with custom instruction set extensions. It (partially)
employs the certificate computed by the software analysis to derive requirements on the

2. Selected Research Topics 135

Program Property

Requirements

CI
Implementation

Software
Analysis

1

Hardware Analysis

Functional
Equivalence

Properties
derived by the

Software Analysis

2

ci.c

ci.blif

P 𝜑

CI
Specification

Approach #1 Approach #2

✓/

✓/

✓[if]

OR

Figure 37: Overview of hardware-software co-certification.

hardware. These requirements then need to be validated in order for the software analysis
to produce trustworthy results. Figure 37 gives an overview of our approach.

We have studied two different approaches for integrating software and hardware analyses
that differ in what needs to be verified on the hardware side. Our first approach proves
functional equivalence between the specification and the implementation of a custom
instruction, e.g., that an integer adder is actually adding integer values. While proving
equivalence is potentially the most runtime-consuming approach, it is also the most
powerful, as it inherently covers all behavioral properties of the custom instruction on
which software analyses could rely. Our second approach ties together software and
hardware analyses more closely by exploiting the abstract state space of the program
generated during verification to identify the specific properties of the individual program
statements the software analysis has actually used during verification. These properties
become requirements on the hardware. We thereby tailor the hardware verification exactly
to the needs of the software analysis, hoping to avoid unnecessarily complex and runtime-
consuming hardware verification.

We have built a toolchain automating all the steps of our approach, which are (1) the
software analysis computing requirements on the hardware via the use of a verification
tool plus information about the custom instructions, (2) the hardware analysis synthesizing
property checkers from requirement and custom instruction specification, and (3) a SAT
solver for checking satisfiability of the custom instruction implementation together with
the property checker. We have evaluated our technique on different custom instructions
occurring in programs using several software analyses for requirements extraction. As a
main result from our experimentation, we can conclude that while tailoring the hardware
verification more to the concrete needs of the software analysis indeed generally results in
lower computational effort, neither approach is superior for all cases.

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

2.4 Static Analysis with Phasar

Another selected topic of Subproject B4 is embodied in the genesis and development of
the meanwhile well-known Phasar [SHB19] project for static program analysis. Phasar

is a modular static analysis framework targeting the C and C++ programming languages
and has been built on top of LLVMto account for the lack of general infrastructure for the
analysis of such programs. Phasar’s infrastructure allows one to quickly draft prototypes
for new program analyzers, novel algorithms and analysis strategies, and also allows for
their evaluation.

We have built several novel analysis approaches on top of Phasar, which we present in the
following paragraphs.

C/C++ languages are often used for projects that require a direct interface with operating
systems or hardware components. They offer control to programmers for creating efficient
programs, but also require correct usage to avoid bugs or security issues. Compilers such
as GCC and Clang and additional tools, such as Cppcheck and Clang Static Analyzer, aid
in creating secure software. However, they often provide only simple checks or have a
large number of false or missed warnings due to imprecise analysis. For Java programs,
program-analysis frameworks such as Soot, WALA, and Doop provide more precise
dataflow analysis. This type of implementation was not available for C/C++. This is where
Phasar came in, a novel program-analysis framework designed for LLVM infrastructure.
It can be used for dataflow problems, call-graph construction, and points-to information.
Phasar is intended for static analysis and complements LLVM toolchain features. Some
parts may be used as a compiler pass.

C/C++ programs can represent an entire software product line using static conditionals
called features. Traditional static analysis techniques cannot be applied to software product
lines directly, because the process of generating and analyzing all software products
becomes prohibitively expensive due to the possibly exponential number of software
products. To solve this problem, VarAlyzer, a family-based approach was developed,
which analyzes a software product line as a whole. VarAlyzer transforms preprocessor
directives into ordinary C code using a configuration-aware type checker. It supports
not just analyses encoded in IFDS but also those encoded in interprocedural distributive
environments (IDE). VarAlyzer outputs the fully context- and flow-sensitive dataflow facts
along with a feature constraint describing the product configurations for which they hold.
This allows developers to find bugs and vulnerabilities much earlier in the development
process, when a preprocessor has not yet even been applied, for instance, in a version-
control system. The effectiveness of VarAlyzer has been evaluated using a typestate
analysis that checks for the correct usages of OpenSSL’s Envelope (EVP) APIs on 95
compilation units. Challenges related to evaluating VarAlyzer on full SPLs are detailed
in [SGP+22].

ModAlyzer [SHB21] is a novel approach that enables the scaling of static analyses on
large software projects. The approach involves the pre-computation of summaries for
parts of code that do not frequently change, which can be integrated into larger analysis
scopes. The summaries can be seen as proofs of the property the client analysis attempts to
demonstrate. Whole-program analysis (WPA), which can be memory-intensive and cause
runtime problems, can be substituted with intra-procedural analyses that are simple enough
to scale, as demonstrated by tools such as Clang-tidy and Cppcheck. However, semantic

2. Selected Research Topics 137

program analyses such as shape, typestate, and dataflow analyses require detailed program
representations that include the effects of procedure calls, which are impossible to scale if
calculated for the entire program.

ModAlyzer provides a compositional approach to program analysis that is capable of
scaling static context-sensitive, field-sensitive, and flow-sensitive inter-procedural program
analysis. This is achieved through the compositional computation of analysis information.
The success of the compositional analysis depends on the number of reusable parts of the
application, for example, libraries, or parts that do not change from one analysis run to
the next. Black Duck’s recent study shows that 96% of the applications they scan contain
open-source components, and those components now account for, on average, 57% of the
code. The application of compositional analysis can accelerate the analysis of applications
by reusing analysis results from previous runs, especially as open-source dependencies are
updated much less frequently than application code.

Although previous work on compositional program analysis has been limited to certain
types of dataflow analysis, ModAlyzer provides a mechanism for analysis dependency
management for a fully compositional analysis that automates updates whenever new
information becomes available that affects existing information. The approach also involves
an efficient summary format that is able to persist general data. ModAlyzer can potentially
scale the analysis of applications by reusing analysis results from previous runs.

Last but not least, IncAlyzer was developed to support summarization and reuse of static
analysis information for frequently changing parts of a program. It assumes that the target
project is developed using a version control system and aims at maximizing the reuse of
static analysis information computed on a previous revision of the target project that is
still valid. Summarization techniques can be used to pre-compute summaries that can be
reused while analyzing the actual application code and may decrease the analysis time
by a large factor. Tree-adjoining languages and Dyck context-free language reachability
can help to increase the number of useful summaries. Incremental analysis can improve
scalability for frequently changing code, as changes made to a program are usually small
and thus should only cause invalidation of a small amount of the analysis results. Existing
incremental static analysis techniques ignore the information provided by version control
systems (VCS) and are only concerned with dataflow information.

Contrary to the Reviser approach, which only considers the dataflow parts of a client
analysis for its incremental analysis and computes the code delta based on the inter-
procedural control-flow graphs, IncAlyzer makes the complete client analysis stack (con-
trol-flow, callgraph, points-to, type-hierarchy and dataflow information) incremental and
uses VCS information to obtain the code delta directly. If IncAlyzer recognizes that a code
change has no impact on the semantics of the program while producing commit-annotated
IR, no reanalysis is performed on the IR. IncAlyzer has great potential to allow developers
to check-in persisted static analysis results directly to the VCS managed code repository
for each commit of a project which are then both kept in sync throughout the continuous
integration development of the project. This has the advantage that each revision only
needs to be analyzed once. Any developer can check out a code revision accompanied
by its respective up-to-date analysis results, allowing them to check and reuse them for
incremental analysis locally. This allows static analysis information for each commit to
be viewed as “certificate” which can be checked instantaneously for each given commit,
according to the precision and capabilities of the underlying client analysis, of course. One

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

may even bind those “certificates” to the code, e.g., using cryptographic hashing, to avoid
accidental or intentional manipulation.

2.5 Benchmarking with ReproDroid

The number of research communities fostering open science is steadily increasing. For
instance, the software engineering community has turned artifact evaluations from a rarity
into a standard. Funding agencies nowadays join this effort by rewarding the availability
of open science artifacts. For these reasons, instruments to drive reproducible evaluations
have become more important and needed than ever before. Building such instruments, in
particular in the context of on-the-fly computing, proves to be challenging, since the market
and its ecosystem must be available and accessible. With ReproDroid [PBW18], a frame-
work that allows to create or adapt benchmarks so that these can be executed and evaluated
automatically, we have proposed such an evaluation instrument for Android taint analysis.
We have used ReproDroid to evaluate whether six “Android taint analysis tools keep their
promises” [PBW18], to create, execute and evaluate a real-world benchmark [LPP+22]
and to evaluate cooperative analyses [PW19].

Android taint analyses track the flow of sensitive data throughout one or multiple apps.
Whenever sensitive information is accessed via a private source, it is marked as tainted
and tracked through the app’s data (and control) flow. If tainted data reaches a public
sink, a data leak is reported in form of a taint flow that stretches from source to sink. We
differentiate intra-app taint flows inside a single app from inter-app taint flows between
apps.

To evaluate taint analysis tools, benchmarks are usually employed. A benchmark, in this
context, consists of two parts: a set of apps and its ground truth, which is a complete list of
all taint flows occurring in these apps. Since it is often difficult to determine whether a
ground truth is correct or complete, micro benchmarks are often used. Micro benchmarks
consist of tiny apps that were only implemented for benchmarking purposes. Each micro
benchmark app usually implements only a single taint flow that uses or exploits a specific
Android or programming language feature. Hence, the ground truth can be defined by
documenting this specific taint flow only.

In the past, a benchmark’s ground truth was often described in natural language, which
allowed different interpretations and ultimately led to irreproducible results. ReproDroid

uses the Android app analysis query language (AQL) [PBW18; PW19] to precisely specify
a benchmark’s ground truth and to interact with arbitrary Android taint analysis tools. Fig-
ure 38 provides an overview of ReproDroid’s toolchain. First, the benchmark refinement
and execution wizard (BREW) takes a set of apps as input. During Step 1, the sources
and sinks that occur in these apps are identified. BREW allows to automate this process
by automatically selecting sources and sinks which are specified in a configurable list.
Such lists are typically used by taint analysis tools to identify the respective statements.
Furthermore, for each pair of source and sink that belongs to the same benchmark case, it is
specified whether it describes an expected or a not-expected taint flow. While an expected
taint flow should be found by an analysis, a not-expected taint flow should explicitly not
be found—finding it is considered to be a false positive result. Once the ground truth
is fully described in BREW, the benchmark is ready to be executed. To do so, BREW

2. Selected Research Topics 139

Benchmarks

1.

3.

BREW

2.

AQL-System

Config

Tools

Results

Query
(AQL-Query)

Result
(AQL-Answer)

Figure 38: Sketch of the ReproDroid toolchain.

forwards one AQL query per benchmark case to the next component: namely, the AQL
System, which performs Step 2 (see Figure 38). As the name suggests, the AQL System is
the default system for using the AQL. In case of a query asking for taint flows, the AQL
System looks up a taint analysis tool in its configuration and runs it in order to answer the
query. If required, the taint analysis tool’s output is converted into the AQL answer format.
This answer is replied to BREW, which then compares the answer against the ground truth
to finally compute the accuracy metrics precision, recall and F-measure (Step 3). These
metrics summarize the benchmark’s outcome and allow us to compare the performance of
different tools.

In a first study [PBW18], we have used ReproDroid to check the feature and accuracy
promises given for six taint analysis tools. For example, it is claimed that FlowDroid, the
most-cited tool, is context-, flow-, field-, object-sensitive and lifecycle-aware and that it
achieves certain precision, recall and F-measure scores for the DroidBench benchmark.
Additionally, it is claimed that these tools are able to analyze real-world apps—a promise
that we have also attempted to validate. In conclusion, we have found that most promises
were kept by most tools. However, all of them seemed to struggle in case of real-world
scenarios.

Initially, we have used ReproDroid to adapt the most-used (with respect to citations) micro
benchmarks for Android taint analyses (DroidBench and ICC-Bench) such that they can
automatically be executed and evaluated to guarantee reproducibility and comparability.
Later, the real-world benchmark TaintBench [LPP+22] was created with and for Repro-
Droid. TaintBench comprises 39 malware apps that have been shipped via various app
markets. For these 39 apps, 203 expected and 46 not-expected taint flows have been
determined manually and specified in ReproDroid. Even though this ground truth is most
likely incomplete, through the definition of expected and not-expected taint flows we
are still able to evaluate taint analysis tools on this baseline. In the end, TaintBench has
allowed us to gain novel and measurable insights that reveal capabilities and inabilities
of analyses especially while handling real-world scenarios. Most surprisingly, it has also
allowed us to detect regressions between two versions of two state-of-the-art analysis tools
(Amandroid and FlowDroid) that were not visible using micro benchmarks only.

Combinations of analyses (cooperative analyses) can also be evaluated by means of
ReproDroid [PW19]. In this case, the AQL is not only used to interact with arbitrary
analysis tools but also to steer the cooperation between analysis tools, e.g., how to combine
their results. To efficiently execute cooperative analyses, the AQL System allows to
distribute the execution of different tools onto distinct and distributed AQL Systems. We
have composed four cooperative strategies that overall employed 12 analysis tools in order

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

to deal with four analysis challenges. One of these strategies, for instance, deals with
inter-app communication. This strategy allows to detect taint flows that start in one app
and end in another. To do so, a taint analysis tool is queried to find intra-app taint flows
and a combination of two additional tools to find inter-app flows. By means of the AQL,
these intra- and inter-app flows are stitched together which has ultimately allowed us to
detect taint flows across app boundaries. In case of all four challenges (reflection, native
code, inter-component, and inter-app communication) significant improvements were able
to be achieved through cooperation and measured via ReproDroid.

In the context of on-the-fly computing, cooperative analyses can be interpreted as service
compositions themselves, i.e., each analysis tool represents a service, an AQL query de-
scribes the service composition, and the AQL System stands for a service provider, whereas
another AQL System may take the role of a compute center. In this scope, ReproDroid can
be used to determine the quality of services and service compositions. Due to the repro-
ducible nature of benchmarks executed via ReproDroid anyone (consumer or producer) is
able to check whether certain properties (e.g., accuracy metrics) are accomplished by a
service (composition). Trustworthy and demonstrably accurate (cooperative) analyses can
then be used for the “certification” of other services or service compositions.

3 Impact and Outlook

Subproject B4 has worked on various proof-carrying service techniques throughout all
three periods of the CRC 901. In the beginning, the fundamentals of proof-carrying code
(PCC) and proof-carrying hardware (PCH) have been examined closely, extended, and
implemented in first prototypes. The evaluations conducted along the way have already
proven the potential of these techniques in the context of on-the-fly computing, i.e., safety
properties of services, to be used in service compositions, they could be certified by service
providers (producers), and they were less expensively checked by their users (consumers,
e.g., compute centers). Next, mainly during the second period, (1) PCC and PCH have
been brought together such that software and hardware services interacting with each other
can be certified collectively, (2) mature implementations have been developed to extend
the field of application, such that more versatile (software and hardware) services and
properties, in particular security-related properties, can be analyzed and certified, and
(3) techniques to assess the quality of analyses have been researched and implemented.
For example, the Phasar analysis and the ReproDroid benchmarking framework were
constructed. While approaching the end of the CRC, the benefits of the effort spent so
far became measurable not only in terms of more than 100 publications contributed by
Subproject B4 but also in terms of available and usable artifacts, which have and will cause
impact beyond research.13 In the following, we present and discuss these benefits in the
context of the five selected topics detailed above.

Based on the core scheme of proof-carrying code, we have investigated a number of
optimizations and extensions (e.g., Programs-from-Proofs). The goal, for instance, was to
provide more compact certificates. We have furthermore studied certification techniques
for hyperproperties, more specifically for information flow properties [TW18]. Information
flow analysis investigates the flow of data in applications, checking in particular for flows
13https://ris.uni-paderborn.de/project/12 (19.04.2023)

https://ris.uni-paderborn.de/project/12

3. Impact and Outlook 141

from private sources to public sinks. Flow- and path-sensitive analyses are, however,
often too costly to be performed every time a security-critical application is run. We
have proposed a variant of proof-carrying code for information flow security. To this
end, we have developed information flow certificates that get attached to programs as
well as a method for information flow certificate validation. The technique has also been
implemented within the program analysis tool CPAchecker [BK11]. Furthermore, we
have studied different security policies for information flow and their integration in a
certification context [TW18].

Programs-from-Proofs (PfP) represents one of these proof-carrying code (PCC) opti-
mizations for which we have in turn proposed several extensions. The first PfP extension
supports reachability properties and any kind of dataflow analysis as cheap analysis. Hence,
complex verification becomes a combination of predicate model checking and an arbitrary
dataflow analysis, named predicated dataflow analysis, while the simple analysis uses the
dataflow analysis alone. Later, a generic PfP framework [JW17] has added support for
arbitrary properties expressible as property automaton (including typestate and reachability
properties). In addition, the framework allows to combine arbitrary expensive and cheap
analyses in the complex verification as long as the cheap analysis solely checks the property,
it is at least flow-sensitive, and both analyses are expressible in the framework of config-
urable program analysis [BK11], which allows to describe arbitrary abstract-interpretation
based analyses. The simple analysis then uses the cheap analysis reconfigured as a dataflow
analysis. Not only the generic PfP framework but all our PfP instances rely on the existing
concept of configurable program analysis to describe the analyses: in particular, complex
and simple verification as well as the combination of expensive and cheap analyses. As a
last extension we have also adopted the idea of PfP to perform runtime verification with
no overhead. These extensions and in particular the generic framework, show that the
Programs-from-Proofs technique is highly applicable with respect to various properties
and services. In conclusion, due to our research and implementations, the PfP approach
has become a usable approach instead of a mostly theoretical concept.

Besides developing proof-carrying hardware (PCH) frameworks for certifying functional
equivalence for combinational and sequential circuits, we presented PCH approaches for
certifying non-functional security properties such as the worst-case execution time of
hardware modules and keeping predefined error bounds for approximated circuits. For
the demonstration of the PCH concept, we relied first on abstract FPGAs that could only
be simulated, and later on virtual FPGA overlays that allowed us to show the feasibility
of PCH on real FPGA hardware. In more recent work, we studied PCH as a tool for
detecting hardware trojans in reconfigurable modules and showcased these methods on
Lattice FPGAs with their known bitstream formats. Lastly, we want to mention that the
proof-carrying hardware term that was introduced in the context of this subproject has
been taken up by others [LJM12]. This silently demonstrates the impact of our research
conducted in this area.

The concepts of PCC (software) and PCH (hardware) are built on the notion of a certificate
certifying the correctness of software or hardware with respect to specified requirements.
For the software, this is (in our project) a compact version of the abstract reachability graph
(ARG) constructed during software verification. On the consumer side, the ARG is checked
for two properties: (1) its fit to the program, i.e., whether it is an abstract reachability graph
for the program, and (2) its consistency with the requirement, i.e., whether it actually proves

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

program correctness. While we used these certificates to realize the collaborative analysis
of software and hardware services, such certificates have also recently been employed in
software verification competitions such as SV-COMP [Bey22]. SV-COMP is an annual
competition for software verification mainly targeting C programs. The tools participating
in the competition have to determine whether a specified requirement is met or not. In
the first case, tools are required to provide correctness witnesses, in the latter, violation
witnesses. The correctness witnesses serve the same purpose as our certificates (and almost
take the same form). Witnesses are then also checked for their soundness using so-called
witness validators. This usage of certificates in competitions indicates and exemplifies that
the concepts also proposed by Subproject B4 are adopted and used by others.

We started the Phasar project in 2016 and made the first version publicly available in 2018
in a full-day workshop at the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) conference. As of today, the Phasar github repository
has achieved 773 stars, was forked 123 times, and has grown far beyond the scope of
Subproject B4 as 41 developers from around the globe contributed to the framework.14

Moreover, each of the mentioned extension of Phasar (ModAlyzer, IncAlyzer, Var-
Alyzer—see Section 2.4) is accompanied by a research paper that includes extensive
evaluations of the respective approach. Each paper, in turn, comes with an evaluated
artifact that provides the option to reproduce the presented results. In summary, Phasar

has become a mature analysis framework that is evaluated, recognized and adopted by
research and industry.

With ReproDroid we contributed an open source framework that allows anyone to evaluate
analyses automatically and in a reproducible fashion on given benchmarks. Consequently,
ReproDroid simplifies the benchmarking process, which was often performed manually
before. Therefore and since evaluations such as benchmark executions are indispensable
to show the effectiveness and efficiency of analyses, ReproDroid was not only used by us
in our five subsequent publications to drive the associated evaluations but also by others.
This versatile usage of ReproDroid best shows its impact in the community. In future, it
could even become more important as a driver for competitions in the area of Android taint
analysis, for example. Please note that each of our publications involving ReproDroid

comes with an evaluated artifact and/or an open source repository. The related repositories
in sum acquired 65 stars. All frameworks, tools and benchmarks released are also available
on the respective website of the CRC.15

In summary, Subproject B4 has left its mark in the area of proof-carrying services or, in
general, on soft- and hardware verification and analysis. Due to the publications made
as well as the implementations and artifacts contributed, this mark has become persistent
such that future researchers and practitioners can take our ideas, understand our results,
use our tools and frameworks, and continue what has been started.

Bibliography

[Bey22] Beyer, D.: Progress on Software Verification: SV-COMP 2022. In: Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS

14Github repository: https://github.com/secure-software-engineering/phasar (04/24/2023)
15https://sfb901.uni-paderborn.de/projects/tools-and-demonstration-systems

https://github.com/secure-software-engineering/phasar
https://sfb901.uni-paderborn.de/projects/tools-and-demonstration-systems

3. Impact and Outlook 143

2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II. Ed. by Fisman, D.;
Rosu, G. Vol. 13244. Lecture Notes in Computer Science. Springer, 2022, pp. 375–402.

[BK11] Beyer, D.; Keremoglu, M. E.: CPAchecker: A Tool for Configurable Software Verification.
In: CAV. Ed. by Gopalakrishnan, G.; Qadeer, S. Vol. 6806. Lecture Notes in Computer
Science. Springer, 2011, pp. 184–190.

[DKP09] Drzevitzky, S.; Kastens, U.; Platzner, M.: Proof-carrying Hardware: Towards Runtime
Verification of Reconfigurable Modules. In: Proceedings of the International Conference
on ReConFigurable Computing and FPGAs (ReConFig). IEEE, 2009

[DKP10] Drzevitzky, S.; Kastens, U.; Platzner, M.: Proof-Carrying Hardware: Concept and
Prototype Tool Flow for Online Verification. In: International Journal of Reconfigurable
Computing 2010 (2010)

[HSKL08] Huffmire, T.; Sherwood, T.; Kastner, R.; Levin, T.: Enforcing memory policy specifica-
tions in reconfigurable hardware. In: Computers & Security 27 (2008), no. 5–6, pp. 197–
215.

[JPWW14] Jakobs, M.; Platzner, M.; Wehrheim, H.; Wiersema, T.: Integrating Software and Hard-
ware Verification. In: IFM. Ed. by Albert, E.; Sekerinski, E. Vol. 8739. Lecture Notes in
Computer Science. Springer, 2014, pp. 307–322.

[JW14] Jakobs, M.; Wehrheim, H.: Certification for configurable program analysis. In: SPIN.
Ed. by Rungta, N.; Tkachuk, O. ACM, 2014, pp. 30–39.

[JW15] Jakobs, M.; Wehrheim, H.: Programs from proofs of predicated dataflow analyses. In:
Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca,
Spain, April 13-17, 2015. Ed. by Wainwright, R. L.; Corchado, J. M.; Bechini, A.; Hong,
J. ACM, 2015, pp. 1729–1736.

[JW17] Jakobs, M.; Wehrheim, H.: Programs from Proofs: A Framework for the Safe Execution
of Untrusted Software. In: ACM Trans. Program. Lang. Syst. 39 (2017), no. 2, 7:1–7:56.

[LJM12] Love, E.; Jin, Y.; Makris, Y.: Proof-Carrying Hardware Intellectual Property: A Pathway
to Trusted Module Acquisition. In: IEEE Transactions on Information Forensics and
Security 7 (1 Feb. 2012), no. 1, pp. 25–40

[LP09] Lübbers, E.; Platzner, M.: ReconOS: Multithreaded Programming for Reconfigurable
Computers. In: ACM Transactions on Embedded Computing Systems (TECS) 9 (1 Oct.
2009), 8:1–8:33

[LPP+22] Luo, L.; Pauck, F.; Piskachev, G.; Benz, M.; Pashchenko, I.; Mory, M.; Bodden, E.;
Hermann, B.; Massacci, F.: TaintBench: Automatic real-world malware benchmarking of
Android taint analyses. In: Empir. Softw. Eng. 27 (2022), no. 1, p. 16.

[PBW18] Pauck, F.; Bodden, E.; Wehrheim, H.: Do Android taint analysis tools keep their promises?
In: Proceedings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. Ed. by Leavens, G. T.;
Garcia, A.; Pasareanu, C. S. ACM, 2018, pp. 331–341.

[PW19] Pauck, F.; Wehrheim, H.: Together strong: cooperative Android app analysis. In: Pro-
ceedings of the ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019. Ed. by Dumas, M.; Pfahl, D.; Apel, S.; Russo, A.
ACM, 2019, pp. 374–384.

[SGP+22] Schubert, P. D.; Gazzillo, P.; Patterson, Z.; Braha, J.; Schiebel, F.; Hermann, B.; Wei,
S.; Bodden, E.: Static data-flow analysis for software product lines in C. In: Automated
Software Engineering 29 (Mar. 2022), no. 1, p. 35.

Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

[SHB19] Schubert, P. D.; Hermann, B.; Bodden, E.: PhASAR: An Inter-procedural Static Analysis
Framework for C/C++. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Vojnar, T.; Zhang, L. Cham: Springer International Publishing, 2019,
pp. 393–410

[SHB21] Schubert, P. D.; Hermann, B.; Bodden, E.: Lossless, Persisted Summarization of Static
Callgraph, Points-To and Data-Flow Analysis. In: 35th European Conference on Object-
Oriented Programming (ECOOP 2021). Ed. by Møller, A.; Sridharan, M. Vol. 194.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 2:1–2:31.

[TW18] Töws, M.; Wehrheim, H.: Information Flow Certificates. In: ICTAC. Ed. by Fischer, B.;
Uustalu, T. Vol. 11187. Lecture Notes in Computer Science. Springer, 2018, pp. 435–454.

[WDP14] Wiersema, T.; Drzevitzky, S.; Platzner, M.: Memory Security in Reconfigurable Comput-
ers: Combining Formal Verification with Monitoring. In: Proceedings of the International
Conference on Field-Programmable Technology (FPT). 2014, pp. 167–174

[WSW13] Wonisch, D.; Schremmer, A.; Wehrheim, H.: Programs from Proofs - A PCC Alternative.
In: Computer Aided Verification - 25th International Conference, CAV 2013, Saint Peters-
burg, Russia, July 13-19, 2013. Proceedings. Ed. by Sharygina, N.; Veith, H. Vol. 8044.
Lecture Notes in Computer Science. Springer, 2013, pp. 912–927.

145

Subproject C1:

Robustness and Security

Johannes Blömer1, Fabian Eidens1, Tibor Jager2, David Niehues2,
Christian Scheideler1

1 Department of Computer Science, Paderborn University,
Paderborn, Germany

2 School of Electrical, Information and Media
Engineering, University of Wuppertal, Wuppertal,
Germany

1 Introduction

In Subproject C1 of the CRC, we developed methods and techniques that ensure high
robustness and security in OTF markets, taking into account the specific characteristics
and demands of such a market. Although robustness and security share the high level
objectives of availability and acceptance, in practice, they require quite different techniques.
Robustness usually (but not exclusively, think about denial-of-service attacks) deals with
unforeseen but not necessarily malicious behavior of participants, whereas malicious
attacks are at the very core of security. For a service to be secure, it needs to satisfy
several key properties. First, there need to be mechanisms that guarantee the integrity
of the communication and the authenticity of communication partners. Second, in many
cases communication needs to be confidential. Third, privacy-preserving mechanisms are
required to protect the identity of communication parties, i.e., to guarantee the anonymity
of parties, and to protect sensitive data like business secrets or customer data. While
these are the standard requirements and properties from security and privacy, and several
techniques exist to realize these goals, even simultaneously, online markets such as the OTF
market have special characteristics that necessitate specialized and enhanced methods. For
example, the decentralized nature of OTF markets mostly prohibits the use of centralized
techniques for access control. Furthermore, in some applications, e.g., machine learning
based applications, the quality of services offered by service and software providers may
depend heavily on the quality of (sensitive) data provided by customers, such as learning
data. Hence there is a need to make sensitive data available for learning algorithms while
still preserving their confidentiality and privacy.

For a service to be robust, it should be available 24/7 and withstand faults as well as
Byzantine behavior as much as this is possible. This is particularly important for an open
OTF market, where many different stakeholders need to interact without any prior trust
relationships and customers are only willing to use it if its services are highly available. A

bloemer@upb.de (Johannes Blömer), fabian.eidens@uni-paderborn.de (Fabian Eidens), tibor.jager@uni-
wuppertal.de (Tibor Jager), niehues@uni-wuppertal.de (David Niehues), scheideler@upb.de (Christian
Scheideler)

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

critical aspect of such a market is, for example, any kind of information needed for the
composition of software solutions, such as reputation data. Ideally, a solution for such
information systems should even withstand insider attacks since the code used for the
organization of the OTF market might be freely available to everyone. Another important
aspect is an appropriate infrastructure interconnecting the market participants that has
a low maintenance overhead and that can handle even large churn (i.e., a high arrival
and departure rate of market participants) without seriously affecting the exchange of
information.

In the area of robustness, we first focused on robust information systems. A huge problem
for robust information systems are denial-of-service (DoS) attacks. There are basically two
approaches to counter DoS attacks: stopping DoS attacks, for example, by filtering them,
or setting up a system that remains available despite a DoS attack. Stopping DoS attacks is
usually a hard problem as it requires interactions with Internet service providers or security
agencies, so we focused on systems that remain available despite DoS attacks. Various
such systems have already been proposed when DoS attacks are initiated by outsiders, i.e.,
attackers that do not know the setup of the system. We, instead, considered attacks by
insiders, i.e., attackers that know everything about the system and can use that information
in order to start DoS attacks on a limited number of its servers in order to make certain
parts of the information unavailable to legitimate requests. Our findings are summarized
in Section 2.4. Later, we also focused on the problem of protecting an overlay network
against DoS attacks. For an overlay network to be scalable, its degree should be at most
polylogarithmic in the number of nodes, since a high degree also means a high maintenance
overhead. However, the lower the degree, the easier it is to start so-called Eclipse attacks,
i.e., attacks that isolate parts of the network from the rest. These Eclipse attacks can, for
example, be performed by starting a DoS attack on the neighborhood of a targeted node
so that it cannot interact anymore with the rest of the network. Our approach to defend
against such kinds of attacks is to continuously change the topology of the network, and
to do this so quickly that an attacker cannot keep up with the changes. Our findings are
summarized in Section 2.5.

In security, we focused on techniques that guarantee strong authentication of data and
entities while also preserving user privacy. To achieve this we construct enhanced sig-
nature schemes and anonymous credentials. Finally, to help actors in OTF markets find
appropriate services we study secure and anonymous reputation systems. We begin by
briefly discussing reputation systems and their use in the context of OTF. In OTF markets,
reputation systems can complement certificates and provide important information about
the quality and trustworthiness of service or software providers. However, reputation
systems as currently used in many online markets face several security and privacy issues.
In particular, to avoid retribution for negative ratings, anonymity of ratings seems to be a
desirable property. Anonymity itself, on the other hand, creates problems, such as skewing
the reputation score of a service by a flood a negative ratings. To overcome these problems,
we have identified key properties of secure and privacy-preserving reputation systems.
These properties have been summarized into precise definitions of cryptographic reputation
systems that did not exist prior to our work. We also provide efficient constructions of
reputation systems. These results are described in more detail in Section 2.1. To authen-
ticate data and users, one can use signatures and credentials, respectively. However, in
the OTF market we often need enhanced versions of signatures or credentials to meet

2. Main Contributions 147

the requirements of the markets. To meet these demands, we defined and constructed
several novel cryptographic principles. These are described in more details in Section 2.2
(updatable anonymous credentials) and Section 2.3 (verifiable random functions). Whereas
digital signatures authenticate data, credentials authenticate entities, usually based on at-
tributes of entities. If credentials are used across many applications, they allow for tracking
and may reveal private information of entities, e.g., in the OTF markets, entities may be
users that contact many service providers and, given a composed service, have to use
different compute centers. Hence anonymity is a concern. This is provided by anonymous
credentials, a cryptographic technique developed in the last 20 years. In our research
we realized efficient constructions for anonymous credentials with additional features,
e.g., updatability. As an application of the credentials, in transfer project T2 of the CRC
901 we design privacy-preserving incentive systems (see page 237). Verifiable random
functions are enhanced digital signatures whose additional properties make them attractive
and useful for applications in the OTF market like consensus systems and public-key
distribution systems. Usually, constructions of verifiable random functions rely on the
so-called random oracle model. However, it is well-known that random oracles cannot
be realized and need to be replaced by standard hash functions, leading to constructions
whose security is only heuristic. We developed new verifiable random functions that do
not rely on the random oracle model and are more efficient then previous constructions.
The techniques introduced in this work also have applications beyond verifiable random
functions.

2 Main Contributions

In this section, we review following five highlights from the research in Subproject C1:

• cryptographic reputation systems (Section 2.1)

• updatable anonymous credentials (Section 2.2)

• efficient verifiable random functions without random oracles (Section 2.3)

• insider-resistant distributed storage systems (Section 2.4)

• construction and maintenance of robust overlays (Section 2.5).

2.1 Cryptographic Reputation Systems

In an OTF market, users will contact OTF providers who, in turn, will contact service
and/or software providers. In some cases, these contacts will not be based on substantial
prior direct experience. In particular, OTF service providers rely on software providers that
they use only occasionally. In these cases, as in others, it is valuable to have information
about service and software providers that helps customers (users or service providers)
to assess the quality and trustworthiness of other providers. For software and service
providers, certificates may play an important role. However, the dynamics of an OTF
market reduces the availability of trustworthy certificates compared to more traditional
markets. Moreover, certificates may not say anything about the quality of (recent) products

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

and services offered by certified providers. As an alternative, reputation systems become
more important, as witnessed for decades in online consumer markets.

Reputation systems provide valuable information about previous transactions and are
popular tools to measure the trustworthiness of interacting parties. This measurement
relies on the existence of a large number of ratings for one specific service or product.
However, in most practical applications the process of rating reveals much information
about the rater, besides the actual rating. Providers of reputation systems may use this
information in many different ways that are not necessarily desired by the users, such as
profiling users. Moreover, users can feel compelled to rate “dishonestly/benevolently”
when they fear negative consequences from negative ratings. Therefore, it is important that
raters at least have the choice to not reveal more information than the actual rating. Besides
that, reputation systems need to be protected against various attacks to provide trustworthy,
reliable, and honest ratings. These attacks include self-rating attacks (also known as
self-promoting attacks), Sybil attacks, whitewashing attacks, bad mouthing attacks, ballot
stuffing attacks, and value imbalance attacks. Both the privacy concerns and the prevention
of attacks are discussed frequently in the literature, e.g., [BPS+17; ZWC+16], albeit
they were often not considered simultaneously. Further important security properties for
reputation systems are anonymity, (public) linkability, traceability, and non-frameability,
as discussed in e.g., [BJK15; ZWC+16]. Anonymity means that ratings of honest users
are indistinguishable, whereas public linkability requires that anyone can decide whether
or not two ratings for the same product were created by the same user. Also, ratings
need to be traceable: The identity of any rater can be determined by a designated system
manager. In the course of this, non-frameability guarantees that honest parties are not
blamed of having rated some product, when they did not. The combination of traceability
and non-frameability enables penalizing dishonest behavior.

Two different approaches to define and prove the security of cryptographic primitives
are used in the literature: experiment based and simulation-based. In experiment-based
security, so-called security experiments and games are defined mathematically, in which
an adversary plays against a challenger running a cryptographic primitive. In a security
proof for a cryptographic primitive one then shows that no efficient algorithm or adversary
can win this game, except with tiny probability of success. Simulation-based security defi-
nitions define security properties by describing ideal scenarios that make use of, practically
not realizable, trusted parties. A security proof for a cryptographic primitive shows that an
adversary trying to attack the primitive does not have a significantly better chance of suc-
ceeding than an adversary in the idealized scenario. Experiment-based security definitions
and proofs tend to be more efficient and easier to understand. In comparison, simulation-
based security usually offers better security guarantees, in particular if cryptographic
primitives are combined or composed with each other. The important simulation-based
framework for proving the security of composed cryptographic primitives is Ran Cannetti’s
universal composability (UC) framework [Can01]. In our research we considered both,
experiment-based and simulation-based, definitions and constructions.

Experiment-Based Security of Reputation Systems

In [BJK15] we gave a first definition of a cryptographically secure and anonymous reputa-
tion systems. We also provided a construction of such a system based on group signature
schemes. Group signatures are one of the most important primitives for privacy-preserving

2. Main Contributions 149

cryptography. A group signature allows a group of users to sign documents on behalf of
the group without revealing the identity of the specific member. In our system, we establish
a separate group for each product or service, consisting of all users that bought the product,
and hence have the right to rate the product. The reputation system provides anonymity,
traceability, strong-exculpability, verifier-local revocation, and public linkability. Except
for revocation, these properties have already been discussed above. Revocation mech-
anisms are a security check against the misuse of anonymity (or better pseudonymity),
since it allows a system manager to revoke the rights of users, i.e., in group signatures the
right to sign messages and in reputation systems the right to publish the rating. A system
has verifier-local revocation, if revocation messages only have to be sent to signature or
rating verifiers but not to individual signers or raters. It is well known how to realize
anonymity, traceability, non-frameability, and revocation in the context of group signatures,
although not necessarily simultaneously and for many groups in parallel. Our construc-
tion of a reputation system achieves this, and adds some properties specific to reputation
systems. The construction is based on a group signature scheme by Boneh, Boyen, and
Shacham [BBS04] and the dynamic version of the scheme presented by Delerablée and
Pointcheval [PS16]. These schemes already give us anonymity, traceability, and strong-
exculpability. To achieve verifier-local revocation we modify a technique by Nakanishi
and Funabiki [NF06]. With the same technique we achieve public linkability. Note that
anonymity of group signatures does not imply anonymity in our reputation system. This is
due to the fact that providers control the groups corresponding to several products. Hence,
they may combine information for different groups to violate anonymity. To prevent this,
in our construction we employ a system manager that contributes a trustworthy component
to each group public key.

UC-Secure Reputation Systems

Typically, reputation systems are used in combination with other applications. Common
experiment-based security definitions, such as the ones defined and used in [BJK15],
provide next to no security in such circumstances. With the universal composability
framework (UC) of R. Canetti [Can01] there exists a methodology that guarantees security
even in composed applications. Informally, in UC the execution of a real-life protocol
is compared to the execution of an ideal protocol. If the real-life and ideal protocol
executions are indistinguishable, then the real-life protocol is UC-secure. Based on this
security definition, Canetti formulates a composition theorem that states that any UC-secure
protocol is also secure when it is composed with other protocols.

In [BEJ18], first we present an ideal functionality for reputation systems in the UC
framework. Our ideal functionality prevents all previously mentioned attacks and provides
anonymity, public linkability, traceability, and non-frameability. Based on this, and
extending the construction in [BJK15], we construct a reputation system where (a) users
can rate each other’s products, (b) there is no separation of customers and providers, (c)
security is preserved under composition, i.e., we present an efficient protocol for reputation
systems that realizes the ideal functionality for reputation systems. All three properties
are highly relevant for the use of reputation systems in an OTF market. Here, reputation
systems are embedded into a larger (security) system. Hence, universal composability
is required. Moreover, participants in OTF markets may simultaneously or at different
times play the roles of a user and of a service or software provider. Hence, it is mandatory,

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

that reputation systems satisfy properties (a) and (b), as well. On a technical level, our
reputation system is influenced by techniques known from Σ-protocols and (dynamic)
group signatures, similarly to the scheme in [BJK15]. However, to achieve UC-security
we need to employ numerous advanced techniques known from other constructions of
UC-secure cryptographic primitives. Somewhat surprisingly, the resulting system, in
addition to being UC-secure, is also more efficient and more flexible than the scheme in
[BJK15].

2.2 Updatable Anonymous Credentials

In current systems, classical authentication of a user at a provider usually involves that a
user provides identifying information (e.g., name, email) combined with some user specific
secret (e.g., passport, password). Presented with this, the provider grants the user access
to its service. Furthermore, while the user is interacting with the provided service, the
provider stores additional data of the user in a database. For example, profile information
such as address, day of birth, and user’s preferences. Already this simple example, is a
threat to users’ privacy, since they have no sovereignty over their data and data becomes
stores and associated with their identity with no or limited benefit for the user. This
becomes even more serious if we consider several providers that pool their databases (for
example, after an acquisition), which allows them to link users across services.

Anonymous credentials employed in such a scenario enables anonymous authentication of
users at providers such that no identifying information is revealed. For this, an anonymous
credential encodes information about the user in certified attributes and providers can
define (access) policies over attributes. Therefore, an authentication via an anonymous
credential only proves that the user in question has a credential on certified attributes that
satisfy the policy. For example, the policy checks if the user has a valid subscription for the
service of the provider. With anonymous credentials, the provider then only learns that the
end date of the subscription is before or after the current date. In general, a policy can be
interpreted as a statement and through authentication a provider only learns the truthfulness
of the statement based on the attributes of a user. Hence, authentication via anonymous
credentials is more expressive than classical authentication and leaks minimal information.
In the literature, this extension to anonymous credentials [CL01; CL04; PS16] is referred
to as attribute-based anonymous credentials and many more extensions are given in the
literature, e.g., delegation of credentials [BCC+09; BB18; CL19; CDD17; MSBM22],
revocation [CL01; CL02; CKS10], auditing [CLNR14], and expressive policies [CG08;
BBB+18].

Beyond that, anonymous credentials solve the problem that providers operate databases
that includes user data that, from a privacy-preserving perspective, are better suited to
be stored on the user side. Intuitively, instead of storing user information in a database
row, one can employ an anonymous credential system. Then, the row is encoded as
an attribute vector and certified by an anonymous credential which is then stored on a
user’s device. In this setting, users get their attributes certified by a provider acting as an
issuer of anonymous credentials. However, the question arises, how providers and users
can update their attributes as it is a common process in a system that uses a database.
There, the provider would just update some entries in a row associated to a user. For this,

2. Main Contributions 151

we introduced updatable anonymous credentials (UAC) in [BBDE19] allowing privacy-
preserving updates of attributes certified a credential. To do this, the user has to contact
the original issuer of the credential and both agree on an update that they want to execute.
The result of this is a new credential on update attributes, where the update process does
not leak the attributes or the credential to the issuer. The issuer only learns which update
was performed, i.e., if the update was a “+7” on a point counter attribute the issuer only
learns that it updated some point counter with “+7”. With this short example in place,
let us describe the roles and processes of an UAC system before we show how we can
instantiate an UAC system.

Roles and Protocols

In an UAC system there are users, issuers, and verifiers. Users can get their attributes certi-
fied in a credential by an issuer. Hence, issuers are responsible for generating credentials
on attributes and verifiers check the validity of credentials with respect to a policy.

To describe the protocols that the different parties (roles) execute, let us expand our
subscription example. Here, a user wants to get a credential from an issuer certifying that
the user has a valid subscription. For this first issuance of a credential the user shows
a recipe of the subscription to validate his assertion of a valid subscription. This can
also be realized with an anonymous payment. However, this is outside of the system
and for the example we just assume that the issuer can be sure that the user has a valid
subscription. Following this, the user and issuer execute a so-called issue protocol. Here,
the issuer generates a credential on the subscription end date by encoding it in an attribute
called sub_end. Additionally, the issuer adds a second attribute to the credential, called
actions, which is initialized to be 0. The attribute actions = 0 is given to any user
that joins the system. Next, using the issued credential, the user can authenticate to a
verifier via a show protocol to get access to the subscribed service as described above. If
the user now performs some predefined actions, e.g., by using a specific feature of the
service, the issuer offers the user to update its credentials, i.e., it increments the actions
attribute by 1. For this, the user and issuer agree on the update (in the form of an update
function) and execute an update protocol. The result is a new credential for the user on
attributes sub_end (unchanged) and actions = 1. Furthermore, a verifier can give a
discount on other services or features of the service if the user has a valid subscription
and has performed more than 50 actions. For this, the user and verifier execute a show
protocol in which the user proves that it has a valid subscription and now also proves that
its actions attribute is greater than 50. This show protocol does not leak any information
about the actual actions count or the end date of the subscription. In general, the practical
features of UAC combined with privacy-preserving protocols seem as though they require
heavy cryptographic techniques that are inefficient in real-world applications. The contrary
is the case and was shown by a formal analysis of the UAC system and a prototype
implementation in [BBDE19; BEHF21].

Efficient Instantiation

In the following, we present how UAC can be efficiently instantiated with modern crypto-
graphic building blocks in which efficient implementations are available. Up to now, we
referred to the attributes as certified by a credential. Concretely, in UAC a credential is a

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

digital signature on a message vector that represents an attribute vector. That means an
issuer generates its own public-secret key pair of a digital signature scheme under which it
issues credentials. Furthermore, the proofs that the user has to generate, e.g., in a show
protocol, are done via a proof system called (non-interactive) zero-knowledge arguments
of knowledge. Zero-knowledge arguments of knowledge are systems that generate an
efficiently verifiable proof string with two security properties: zero-knowledge and argu-
ment of knowledge. Zero-knowledge means that the proof does not leak any information
about the secrets of the proof (also called witness), such as the attributes. Argument of
knowledge guarantees that no adversarial user can convince a verifier, i.e., generate a valid
proof, without having a valid witness. This means if the UAC policy to be proven cannot
be satisfied by user’s attributes, no adversarial user can generate a valid proof. Hence, the
security properties of the proof system protects the privacy of the user and the interests of
the verifier.

With these building blocks, in place we can start describing the technical details of issue
and update protocols. Since an issue protocol is just a special case of an update protocol
we just describe the latter. To get a credential on updated attributes, suppose a user with an
existing credential on attribute vector containing sub_end and actions attributes agreed
on an update function that updates the actions attribute by “+7”. The user prepares
this update by sending the issuer a commitment on the updated attribute vector. This
commitment does not leak any information about its content and guarantees that the user
cannot change the committed values later in the protocol. In case of an issue protocol, the
update function just sets the attributes to be issued to its starting values. Next, the user
computes a proof that shows that the commitment is correctly formed. This means that it
contains attributes of a valid credential and the update was correctly prepared. Then, the
issuer checks the proof and, if it is valid, it digitally signs the commitment and sends the
result back to the user as his credentials.

2.3 Efficient Verifiable Random Functions without Random Oracles

We developed more efficient constructions of so-called variable random functions (VRFs),
which can be seen as enhanced digital signature schemes with additional properties.
Verifiable random functions play an important role in several applications relevant to
Subproject C1 of the CRC-901. Specifically, VRFs are a core building block of the
family modern consensus mechanisms called proof-of-stake, which are part of AP 1
of Subproject C1. Moreover, VRFs are used in constructions of verifiable distributed
public-key distribution systems, such as CONIKS [MBB+15]. Such verifiable distributed
public-key distributions systems are relevant to the decentralization of the components for
On-the-Fly Computing described in AP 3.2.

The Random Oracle Model

In practical modern cryptography, the so-called random oracle model (ROM) introduced
by Bellare and Rogaway is often used. In this model, one or several hash functions are
modeled as so-called random oracles (ROs). A RO can be queried on specific inputs
from the domain of the hash functions by all parties that are active in the context of the
cryptographic scheme. Each random oracle maintains an initial list that maps hash function

2. Main Contributions 153

inputs to outputs. Every time the RO is queried on an input x, it checks whether its list
contains an entry for x. If this is not the case, it draws an element y from the range of hash
functions uniformly at random and stores the mapping x 7→ y in its list and returns y. If
such a mapping x 7→ y already exists in the list, y is retrieved and returned. Moreover, it
is common to allow programming the RO in the proof of the security of a cryptographic
scheme. That is, inside the proof specific mappings of inputs and outputs may be chosen
as long as the distribution of the outputs remains provably indistinguishable from the
distribution of a non-programmed oracle. Note that this is a very strong idealization of
a cryptographic hash function, which provides not only all standard security properties
such as collision resistance or (second) preimage resistance but also many further very
strong properties beyond this, such as programmability in a security proof, which is not
possible for a fixed concrete function such as SHA-3. Unfortunately, it is known that
random oracles can not be instantiated in general [CGH04]. Therefore, a concrete practical
instantiation of a construction that is only proven secure in the ROM only achieves heuristic
security. As a result, from a practical perspective, it would be preferable to have efficient
cryptographic schemes that can be proven secure outside the ROM. Similarly, from a
theoretical perspective, constructing such cryptographic schemes helps advancing our
understanding of what can be achieved outside the ROM and when the ROM is inherently
necessary.

New Techniques for Verifiable Random Functions and Further Applications

VRFs are a public-key primitive, where a public verification key vk identifies a function
Fvk : X → Y for some domain X and some range Y . However, vk does not allow
to efficiently evaluate Fvk. The respective secret key sk then allows the following two
functionalities:

1. Evaluating Fvk on any input x ∈ X and thus obtaining y = Fvk(x) in an efficient way.

2. Generating a proof of correct evaluation π that can be efficiently verified with the
help of vk. That is, vk and π together allow to verify that y = Fvk(x) holds without
the need to know sk.

Finally, we require that even for an adversarially chosen input x ∈ X it remains impossible
for any efficient algorithm to distinguish y = Fvk(x) from a y′ ∈ Y that is chosen uniformly
at random if π is not known.

We developed new verifiable random functions that do not rely on the ROM and are
significantly more efficient than previously known constructions in terms of the size of
vk, sk and π [JN19; JKN21]. The techniques also turned out to have further applications
beyond VRFs. Identity-Based Encryption (IBE) is a type of public-key encryption where,
there is only a single master public-key mpk known to all parties and a respective master
secret-key msk only known to a trusted third party. Using msk, the trusted third party can
then issue user secret keys sk for arbitrary identities, e.g., email addresses, and provide the
respective users with them. It then suffices to know mpk and a user’s identity to encrypt a
message for the user such that only that user can decrypt the ciphertext efficiently. Based
on the same techniques that we applied in the context of VRFs, we also developed more
efficient IBE schemes. In [JKN21], we describe new more efficient IBE schemes with
security under assumptions related to the hardness of the discrete logarithm problem in
elliptic curve groups and under the learning with errors (LWE) problem, which provides

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

post-quantum security. Moreover, in [Nie21a] more efficient constructions of IBEs are
described.

Verifiable Random Functions with Optimal Tightness

Another aspect of efficiency of cryptographic schemes is called tightness. Security in
modern cryptography is often proven by reducing the security of the cryptographic scheme
to the intractability of some computational problem, such as the discrete logarithm problem,
the factorization problem, or the learning with errors problem. However, the quality of such
reductions can vary in the tightness with which they relate the security of the cryptographic
scheme to the intractability of the respective computational problem. That is, applying the
reduction to an algorithmA running in time tA that breaks the security of a cryptographic
scheme with probability εA yields an algorithm Bthat solves the computational problem
in time tB ≥ tA with probability εB ≤ εB. In order to achieve efficient cryptographic
schemes, we want to construct reductions that have a so-called loss ` := (tB/εB)/(tA/εA)
that is as small as possible and ideally a small constant. Reductions with a small loss
have the advantage that strong security guarantees can be achieved while relying on
smaller instances of the computational problem. For example, a tight reduction could
allow us to use groups of smaller size when relying on the intractability of the discrete
logarithm problem, which would yield smaller keys and make algorithms more efficient.
This approach is also known as concrete security and thoroughly discussed in [BR09].
This raises the natural question of how tight reductions for cryptographic schemes can be.
We advanced the state of the art in the research area by providing the first lower bound for
the loss of reductions from the security of VRFs to non-interactive hardness assumptions
and providing the first construction of a VRF with an accompanying security proof that
meets this bound [Nie21b].

2.4 Insider-Resistant Distributed Storage Systems

In recent years, the use of online services has increased significantly. For instance, commu-
nicating with friends via social media platforms, sharing videos via YouTube, or shopping
online via Amazon. This induces the necessity to store large amounts of data online in
such a way that they can be managed and accessed efficiently. Distributed storage systems
constitute one of the most natural approaches for the implementation of such a storage.
Popular examples include storage solutions offered by Google, Apple, and Amazon. We
considered distributed storage systems that are defined as a network consisting of several
servers that provide a lookup and update operation. If only a lookup operation but no
update operation is provided, we call the system a distributed information system.

Since availability and retrievability of the stored data is a key aspect of distributed storage
systems, these systems should have various mechanisms in place to protect them against
adversarial attacks. One of the biggest threats distributed storage systems are exposed
to are crash failures. A server that experiences a crash failure is not available anymore,
meaning that it neither responds to any requests nor performs any further operations. Crash
failures can be temporary or permanent and can have many causes, such as maintenance
work, hardware or software failures, or DoS attacks. Especially crash failures caused by
DoS attacks can pose a serious threat, since they usually are unpredictable, hard to prevent,

2. Main Contributions 155

and can cause the unavailability of a server for some time. Besides crash failures, storage
failures also constitute a big threat to distributed storage systems. A server that experiences
a storage failure may hold arbitrarily corrupted data in its storage without being aware of
that.

While a crash failure can easily be detected using crash failure detectors, this does not hold
for massive storage failures. Instead, the distributed storage system needs to implement
techniques and methods in order to work correctly despite the existence of servers with
storage failures. Storage failures may not only be caused by malicious adversaries, they
may also occur due to technical errors, such as disk faults or physical interconnect failures.
For instance, in 2008 Amazon’s S3 storage service experienced a multi-hour downtime
due to a single bit corruption resulting in monetary loss for Amazon and the unavailability
of data stored at the S3 storage service.

The predominant approach in distributed storage systems to deal with the threat of failures
is to use redundancy and information hiding: The idea behind this is that information that
is not only stored at a single server but also replicated on multiple servers is more likely
to remain accessible during an attack, in particular if the adversary does not know the
storage locations of the redundant data items. For example, if a logarithmic number of
copies of each data item is distributed among the servers in the system, and the adversary
is not aware of these locations, then it is easy to see that with high probability a copy
of each data item is still accessible if the adversary crashes less than half of the servers.
However, the situation is completely different when considering an insider adversary, i.e.,
someone who has complete knowledge of the system and may use this knowledge to crash
a large fraction of the servers. Since information cannot be hidden anymore in this case, it
seems unavoidable to replicate each data item across more than t servers in order to remain
accessible if the system is under an attack that crashes t servers. Unfortunately, in this case
the storage overhead becomes very large when considering adversaries that may crash a
large fraction of the servers. However, it turns out that this dilemma can be circumvented
when using coding, which is one of the key ideas we used in the development of robust
storage systems.

Concretely, our goal was to develop distributed information and storage systems that
provide efficient lookup and write protocols that work provably correctly despite the
existence of an insider adversary that may attack a large fraction of the servers by causing
crash failures or a special type of storage failure. In this context, by efficient we mean at
most polylogarithmic in the number of servers, and by a large fraction of attacked servers
we mean asymptotically much larger than polylogarithmic, such as O(n1/ log log n), with n
being the number of servers, or even up to a constant fraction of all servers. At the same
time, we ensure the additional amount of storage required by each server to be limited by
at most a logarithmic factor.

Basic IRIS

Our first result was IRIS, a distributed information system that is provably robust against
an insider adversary that crashes up to O(n1/ log log n) servers while requiring only a constant
storage redundancy. The main innovation in this system is the development of a technique
for the efficient encoding of the data items stored in the system with each other using a
hierarchical coding strategy that is based on the structure of a k-ary butterfly (k = Θ(log n))

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

and a simple parity-based code. This technique allows to specify a lookup protocol that
guarantees to correctly serve each lookup request for any data item with polylogarithmic
work at each server and polylogarithmic time, although the adversary may crash up to
O(n1/ log log n) servers.

Enhanced IRIS

We then extended IRIS to Enhanced IRIS, which is able to tolerate even up to a constant
fraction of all servers to be crashed. Except for the storage redundancy, which increases
to a logarithmic factor, Enhanced IRIS still guarantees the same properties as Basic IRIS.
The main idea behind this extension of Basic IRIS is to not only use a k-ary butterfly as
the underlying topology for the encoding, but to additionally make use of permutations
that fulfill certain expansion properties in order to spread the encoding information even
further among the servers. IRIS and Enhanced IRIS were presented in [ES15].

RoBuSt

While Basic IRIS and Enhanced IRIS are distributed information systems that provide
only a lookup functionality, we later developed RoBuSt, a distributed storage system that
provides both lookup and update functionality [ESS14]. More precisely, RoBuSt is a dis-
tributed storage system that correctly handles lookup and write requests in polylogarithmic
time and with polylogarithmic work despite the existence of an insider adversary that
crashes up to O(n1/ log log n) servers. On top of that, RoBuSt requires only a logarithmic
storage redundancy. RoBuSt reuses the k-ary butterfly encoding approach introduced with
Basic IRIS with the additional ingredient of a clever arrangement of the data items stored
in the system into so-called buckets and an appropriate strategy for traversing the buckets
efficiently.

OSIRIS

We further strengthened the adversary considered in such a way that it now may not only
crash servers, but instead even corrupt the storage of up to O(n1/loglogn) servers. Here, we
confined ourselves to the corruption of the data stored at the servers while assuming the
protocols and main memory of the servers to be reliable. This kind of attack can also be
interpreted as a DNS spoofing attack. The main challenge in this setting is that, in contrast
to crashed servers, there is no way to efficiently detect corrupted servers. Hence, we
needed to add techniques for verifying the validity of data. By appropriately interweaving
techniques from the field of authenticated data structures, namely Merkle trees, with
techniques developed for IRIS and RoBuSt, we developed OSIRIS, a distributed storage
system that is provably robust against an insider adversary that may corrupt the storage of
up to O(n1/ log log n) servers. At the same time, OSIRIS correctly answers any set of lookup
and update requests in polylogarithmic time and with polylogarithmic work per server
while requiring a logarithmic redundancy only [Eik16].

2. Main Contributions 157

2.5 Construction and Maintenance of Robust Overlays

A key design goal for our OTF market infrastructure is to be open and permissionless. We
desire this for two reasons. On the one hand, we want to put little to no boundaries on
new parties entering the market to keep it competitive. In particular, established market
participants should not be able to prevent new competitors from entering. On the other hand,
any participant should be able to leave the market without affecting the functionality, i.e.,
the network should not be constructed around one powerful party that handles a significant
amount of market transactions. Therefore, the OTF market infrastructure lends itself to
be implemented in a peer-to-peer (P2P) fashion. The P2P approach has proven to be a
useful technique for constructing resilient, decentralized systems. In a P2P architecture,
the participants (which we will call nodes in the remainder) are connected via the Internet
and form a logical network topology, also known as an overlay network or simply overlay.
Within the overlay, each node has a logical address and logical links that allow it to search
and store information in the network. Ideally, the topology has no single point of failure,
so nodes can leave the network without disrupting the functionality. Furthermore, it is
designed to scale with any number of nodes.

A fundamental requirement for all applications built on P2P networks is reliable commu-
nication between the nodes, i.e., each node should be able to send a message to another
node at all times. Of course, this also holds for our OTF market infrastructure. Ensuring
reliable communication is complicated by the fact that in every large-scale system, errors
and attacks are the rule rather than the exception. Together with the fact that nodes may
frequently leave or enter the system on their own accord, this implies a massive amount
of so-called churn, i.e., changes in the set of nodes. Therefore, we investigated robust
distributed protocols that maintain connected overlays despite heavy churn.

Throughout our work, we used the de-facto standard model for P2P algorithms. We
assume that time proceeds in synchronous16 rounds and observe a dynamic set of nodes
V :=

(
V0,V1, . . .

)
such that Vt is the set of nodes in round t. Each node is identified by a

unique and immutable identifier denoted by ID. A node u ∈ Vt can send a message to a
node v ∈ Vt only if it knows the ID of node v. In a real-world network, these IDs could,
e.g., be the nodes’ IP addresses. This results in series of graphs G :=

(
G0,G1, . . .

)
with

Gi = (Vi, Ei) and Et := {(u, v) | u knows the ID of v in round t}. We assume that a node
can create edges to O(log n) different nodes in each round and can send O(polylog n) bits
via each edge.

Our research went in two directions that complement each other. First, we asked ourselves
how to efficiently construct a robust overlay from any initial topology. Given any connected
graph of n nodes representing our overlay, transform it into a low-diameter and high-
expansion network. This protocol can be executed periodically to let the overlay recover
from heavy but uncoordinated churn. Second, we assumed that the network already
has a suitable topology but is attacked by a powerful adversary. This adversary tries to
strategically disable nodes with crucial positions within the overlay. In this situation,
the adversary’s knowledge of the system and the system’s reaction time, i.e., whether
or not the nodes can detect if they get attacked, are crucial to the success probability of
our defenses. We developed a nuanced model to study several types of adversaries and
presented competitive protocols that are safe against powerful adversaries.
16Synchronicity is a standard assumption as nodes need to react to the adversary’s changes promptly.

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

Result Runtime Init. Topology Communicationa

[AAC+05] O(db+ log2 n) w.h.p Any O(log n)

[GHSS17]* O(log2 n) Any O(d log n)
[GHS19]* O(log3/2 n) w.h.p Any O(d log n)
[GHSW21]* O(log n) w.h.p Any O(d log n)

a Number of messages per node and round.
b d denotes the initial graph’s degree.
* Supported by the CRC 901.

Table 1: An overview of the overlay construction algorithms.

Fast Construction of Overlays

To the best of our knowledge, the first overlay construction algorithm with polylogarithmic
time and communication complexity that can handle (almost) arbitrary initial states has
been proposed by Angluin et al. [AAC+05]. Here, the authors assume a weakly connected
initial graph of degree d. If in each round, each node can send and receive at most d
messages, and new edges can be established by sending node identifiers, their algorithm
transforms the graph into a binary search tree of depth O(log n) in O(d + log2 n) time, w.h.p.
A low-depth tree can easily be transformed into many other topologies, and fundamental
problems such as sorting or routing can be easily solved from such a structure. This idea
has sparked a line of research investigating how quickly such overlays can be constructed.
In the context of the CRC, we contributed three results. First, Gmyr et al. presented a
deterministic O(log2 n) time algorithm [GHSS17]. The algorithm’s key idea is to maintain
a series of so-called supernodes, which are groups of nodes that act in coordination. The
algorithm operates in phases of O(log(n)) rounds where each supernode merges with at
least one of its neighboring supernodes in each phase. Thus, the size of each supernode,
i.e., the number of nodes it contains, grows by a constant factor in each phase. This
results in a deterministic runtime of O(log2(n)). Using randomization, we further improved
this procedure to time O(log3/2 n), w.h.p. [GHS19]. Our main idea was to merge several
clusters of supernodes to increase the growth in each phase. Finally, we further optimized
the runtime to the optimal value of O(log(n)) in [GHSW21]. This approach is different
from all previous algorithms in that it does not use any form of clustering to contract large
portions of the graph into supernodes. On a high level, our algorithm progresses through
O(log n) iterations, where the next graph is obtained by establishing random edges on the
current graph. These random edges are simply sampled by constant-length random walks,
resulting in an extremely simple yet fast algorithm. Table 1 provides an overview of all
contributions.

Efficient Maintenance of Overlays

Drees et. al developed our first approach to handling high churn in [DGS16]. The core
idea was to use random walks to reorganize the network continuously. However, instead of
just using random walks in a standard fashion, which would take Ω(log n) communication
rounds in graphs of polylogarithmic degree to sample nodes uniformly at random, they

3. Impact and Outlook 159

combine random walks with pointer jumping. Pointer jumping, i.e., letting a node introduce
its neighbors to its neighbors, is a well-known technique in the area of parallel computing,
but to great surprise, it seems that it has never been combined with random walks so far.
This rather simple trick exponentially improves the running time needed to sample nodes
uniformly at random via random walks. We refer to the technique of combining random
walks with pointer jumping to sample nodes from a network as rapid node sampling.

Based on rapid node sampling, Drees et al. developed algorithms that maintain the
connectivity of a network under heavy churn and DoS attacks. Their algorithm organizes
the nodes of a network into an expander and maintains connectivity under adversarial
churn by an omniscient adversary with a constant churn rate. An important assumption
underlying this result is that a node that is prescribed to leave the network by the adversary
does not have to leave immediately but can remain in the network for another O(log log n)
rounds.

On the flip side, rapid node sampling cannot be used if one wants to grant the adversary
access to even more recent information than O(log log n) rounds. To overcome this re-
striction, Götte et al. proposed a trade-off in[GVS19]. This trade-off comes in the form
of a (a, b)-late omniscient adversary that has almost up-to-date information about the
network topology, but it is more outdated concerning all other aspects. In particular, it
has full knowledge of the topology after a rounds and complete knowledge of messages,
internal states, etc., after b rounds. In the real world, an adversary with similar properties
could, e.g., be an agency eavesdropping on Internet exchange points. They can see who
communicates based on the involved IP addresses but cannot decrypt the messages (or take
longer to decrypt them).

The main contribution is a distributed overlay maintenance algorithm that completely
rearranges the network every 2 rounds and can handle a (2,O(log n))-late adversary. Fur-
thermore, the algorithm allows routing a message to a logical address p ∈ [0, 1) within
O(log n) rounds. The algorithms are randomized and the results hold w.h.p. Instead of
a regular expander, they use a structured overlay topology, namely, an extension of the
Linearized DeBruijn Graph presented in Richa et al. [RSS11]. Götte et al. present a robust
algorithm that minimizes the number of messages sent in every step. The approach uses
several structural properties of the overlay as well as a careful analysis of non-independent
events to ensure fast reconfiguration of the network.

Table 2 provides an overview of our results and compares them to previous and concurrent
works. As one can see, our results compare favorably with regard of the churn rate and
adversarial knowledge they tolerate.

3 Impact and Outlook

With our research on reputation systems and anonymous credentials we contributed signifi-
cantly to the rapidly increasing research on cryptographic privacy-preserving techniques.
Given the dramatic growth of online services, web shops, social media apps, and other
data demanding tools these techniques will become ever more important in the future.
Our research certainly had significant impact on basic scientific research. But the more
important contribution of our research is probably in reducing the gap between theory and
practice. Although many advanced cryptographic privacy-preserving techniques exist, they

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

Paper Latenessa Churn Rateb Immediate
[AS18]

(
O(log log n),O(log log n)

)
(αn,O(log log n)) Yes

[AMM+13] (O(log n),O(log n))
(
O

(
n

log n

)
,O(log n)

)
Yes

[DGS16]* (
O(log log n),O(log log n)

)
(n − n

log n ,O(log log n)) Noc

[GVS19]* (2,O(log n)) (αn,O(log n)) Yes
a An adversary is (a, b)-late if it has full knowledge of the topology after a

rounds and complete knowledge of all messages after b rounds.
b The churn rate is (C,T) if the adversary can perform C join/leaves in T

rounds.
c Nodes remain in the network for additional O(log log n) rounds.
* Supported by the CRC 901.

Table 2: Overview of different models in the literature

are rarely implemented in prototypes or even used in commercial applications. This is
mainly due to two factors: advanced cryptographic techniques are often believed to be too
inefficient and cumbersome, and cryptographic techniques are difficult to implement from
scratch. To overcome these misconceptions and impediments we complemented our basic
research by two more applied approaches:

1. Based on our research on updatable credentials we designed a so-called incentive
systems and implemented it from scratch.

2. We built a cryptographic open-source Java library, called cryptimeleon, providing
basic cryptographic primitives that are the backbone of many privacy-preserving
techniques.

Since the incentive system is discussed in detail in the section on transfer project T2,
we concentrate on cryptimeleon. The library allows users to build complex privacy-
preserving primitives in the so-called bilinear group setting, currently the most powerful
and efficient setting for cryptography (although not post-quantum secure, see below). It
provides a general framework for the construction of primitives and a number of important
basic primitives such as hash functions, pseudorandom functions and Schnorr-type zero-
knowledge proofs. A detailed description of the library can be found in [BEHF21].
Although cryptimeleon is mainly targeted towards researchers in cryptography (which
already use it in increasing numbers) we believe that it can also form the foundation for a
library targeted at more general users.

Our research on reputation systems raises many questions for future research, e.g., how to
realize such systems in a decentralized form. But from our perspective, the most pressing
problem is to bring many more privacy-preserving techniques to the post-quantum world.
Ever since the seminal algorithm of Peter Shor, we know that currently used cryptographic
techniques are susceptible to quantum attacks. The development of quantum computers
has seen tremendous progress in the last years. Although it is still unclear if and when
quantum computers will be built on which Shor’s algorithm can be implemented, we
have to prepare our security infrastructure for this event: hence the standardization efforts
for post-quantum secure cryptography by the NIST and other organizations worldwide.

https://cryptimeleon.org

3. Impact and Outlook 161

For basic cryptographic primitives such as encryption schemes and digital signatures, we
know many (hopefully) post-quantum secure constructions. For more advanced privacy-
preserving techniques, such as reputation systems and anonymous credentials, the situation
is quite different. Additionally, post-quantum cryptography tends to be technically much
more challenging than classical cryptography. Therefore, it is even more urgent for
cryptographers to provide users with easy to use post-quantum secure cryptographic
libraries. In the context of verifiable random functions, our work has answered fundamental
open questions, but also raised some further questions that are still open. While our
constructions of VRFs are already much more efficient than previous constructions, they
are still much less efficient than constructions in the ROM. Hence, an important open
question is whether there are VRFs that are secure (under standard assumptions) in the
standard model and that are as efficient as VRFs whose security proof requires the ROM.
Since our techniques used to construct VRFs were also applicable to IBE, one can similarly
ask the question whether standard model IBEs can be as efficient as IBEs that are proven
secure in the ROM. One can also ask whether there exist IBEs that are secure in the
standard model and as efficient as schemes that are proven secure in the ROM. With respect
to tightness of security reductions for VRFs, our construction is proven secure under a
so-called q-type assumption. These types of assumption have the negative aspect that they
get stronger the larger q becomes [Che10]. For these reasons q-type assumptions are not
considered standard assumptions. Thus, it would be preferable to achieve tightness with
a security proof that relies on a standard assumption. Whether there are VRFs that can
be proven secure under a standard assumption and achieve optimal tightness is another
fundamental research question in this domain.

Our results on overlays and data storage are (asymptotically) optimal or at least very close
to their optimal solution, i.e., within polylogarithmic factors, concerning time and message
complexity. Further, our random walk-based algorithms are heavily inspired by those used
in practice in big P2P networks such as the one of Bitcoin, giving them a sound theoretical
foundation. However, throughout all our contributions, we only considered benign failures
of nodes. The nodes may unexpectedly crash but generally behave correctly and follow the
protocol. For example, they do not intentionally alter any data item they store or introduce
invalid identifiers to the system. So, a natural follow-up question is how our algorithms
could also be extended to tolerate nodes exhibiting this and other malicious behavior. More
precisely, we want to consider so-called byzantine nodes that deviate from the protocol and
behave arbitrarily. Such nodes are not a niche phenomenon but are a very common threat
in internet-scale applications: First, not everyone connected to the internet is trustworthy
and may be controlled by an adversarial party with their own malicious goals. Second,
even honest and well-protected nodes may be hacked by an attacker if the stakes are high
enough.

A typical way to deal with byzantine nodes is to use so-called quorums. These are
(randomly selected) subsets of nodes that act in coordination. In particular, the honest
nodes outnumber the byzantine nodes in each quorum, so potentially malicious actions
can be overruled. However, these quorums introduce a massive overhead because data
must be replicated and passed to all members. Further, for all messages between quorums,
the members of each quorum need to agree on the content. Reaching an agreement in the
presence of byzantine nodes is notorious for being time and/or bandwidth-consuming as
it typically requires all-to-all communication. To add insult to injury, using quorums is

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

a proactive approach. This means that we pay the high cost of maintaining the quorums
even if there is no byzantine behavior (and we could have used our original algorithms).
With our current models and assumptions, there seems to be no way around using quorums
if one looks for proactive approaches. Because of this, we want to shift our attention to
reactive approaches and design algorithms that are at least resource competitive. This
means that the cost of executing the algorithm, e.g., the latency and message complexity, is
directly related to the severity of the byzantine attack. The caveat of this approach is that
the system needs some mechanism to recover from an attack, e.g., to retrieve dropped data
items or reconnect parts of the overlay. This mechanism could be implemented through a
trusted third party, e.g., a cloud provider, that offers these services for a price. Whenever
the honest nodes notice byzantine behavior, they query the third party to repair the system.
For example, this third party could store data items. If an honest node detects that data
items have been dropped or tampered with in the P2P network, it retrieves a fresh copy
from the trusted party. Ideally, the number of queries is linear in the number of tampered
data items. However, there are many open questions about this approach that require
nuanced answers: for instance, how the cost of queries is measured and what the exact
capabilities of the trusted party are. In particular, the trusted party must be implementable
in practice and not be too powerful to keep the problem interesting. We plan to investigate
all these questions in the future.

Bibliography

[AAC+05] Angluin, D.; Aspnes, J.; Chen, J.; Wu, Y.; Yin, Y.: Fast Construction of Overlay Net-
works. In: Proc. of the 17th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 2005, pp. 145–154

[AMM+13] Augustine, J.; Molla, A. R.; Morsy, E.; Pandurangan, G.; Robinson, P.; Upfal, E.: Storage
and search in dynamic peer-to-peer networks. In: Proc. of SPAA. 2013, pp. 53–62

[AS18] Augustine, J.; Sivasubramaniam, S.: Spartan: A Framework For Sparse Robust Addressable
Networks. In: Proc. of IPDPS. 2018, pp. 1060–1069

[BB18] Blömer, J.; Bobolz, J.: Delegatable Attribute-Based Anonymous Credentials from Dy-
namically Malleable Signatures. In: ACNS 18: 16th International Conference on Applied
Cryptography and Network Security. Vol. 10892. Lecture Notes in Computer Science.
Springer, 2018, pp. 221–239

[BBB+18] Bemmann, K.; Blömer, J.; Bobolz, J.; Bröcher, H.; Diemert, D.; Eidens, F.; Eilers,
L.; Haltermann, J.; Juhnke, J.; Otour, B.; Porzenheim, L.; Pukrop, S.; Schilling, E.;
Schlichtig, M.; Stienemeier, M.: Fully-Featured Anonymous Credentials with Reputation
System. In: Proceedings of the 13th International Conference on Availability, Reliability
and Security, ARES. ACM, 2018, 42:1–42:10

[BBDE19] Blömer, J.; Bobolz, J.; Diemert, D.; Eidens, F.: Updatable Anonymous Credentials and
Applications to Incentive Systems. In: ACM CCS 2019: 26th Conference on Computer
and Communications Security. ACM Press, 2019, pp. 1671–1685

[BBS04] Boneh, D.; Boyen, X.; Shacham, H.: Short Group Signatures. In: Advances in Cryptology –
CRYPTO 2004. Vol. 3152. Lecture Notes in Computer Science. Springer, 2004, pp. 41–55

[BCC+09] Belenkiy, M.; Camenisch, J.; Chase, M.; Kohlweiss, M.; Lysyanskaya, A.; Shacham,
H.: Randomizable Proofs and Delegatable Anonymous Credentials. In: Advances in
Cryptology – CRYPTO 2009. Vol. 5677. Lecture Notes in Computer Science. Springer,
2009, pp. 108–125

3. Impact and Outlook 163

[BEHF21] Bobolz, J.; Eidens, F.; Heitjohann, R.; Fell, J.: Cryptimeleon: A Library for Fast Proto-
typing of Privacy-Preserving Cryptographic Schemes. Cryptology ePrint Archive, Report
2021/961. https://eprint.iacr.org/2021/961. 2021

[BEJ18] Blömer, J.; Eidens, F.; Juhnke, J.: Practical, anonymous, and publicly linkable universally-
composable reputation systems. In: Cryptographers’ Track at the RSA Conference. Springer.
2018, pp. 470–490

[BJK15] Blömer, J.; Juhnke, J.; Kolb, C.: Anonymous and Publicly Linkable Reputation Systems.
In: FC 2015: 19th International Conference on Financial Cryptography and Data Security.
Vol. 8975. Lecture Notes in Computer Science. Springer, 2015, pp. 478–488

[BPS+17] Busom, N.; Petrlic, R.; Sebé, F.; Sorge, C.; Valls, M.: A privacy-preserving reputation
system with user rewards. In: Journal of Network and Computer Applications 80 (2017)

[BR09] Bellare, M.; Ristenpart, T.: Simulation without the Artificial Abort: Simplified Proof
and Improved Concrete Security for Waters’ IBE Scheme. In: Advances in Cryptology
- EUROCRYPT 2009. Vol. 5479. Lecture Notes in Computer Science. Springer, 2009,
pp. 407–424.

[Can01] Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: 42nd Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, 2001, pp. 136–145

[CDD17] Camenisch, J.; Drijvers, M.; Dubovitskaya, M.: Practical UC-Secure Delegatable Cre-
dentials with Attributes and Their Application to Blockchain. In: ACM CCS 2017: 24th
Conference on Computer and Communications Security. ACM Press, 2017, pp. 683–699

[CG08] Camenisch, J.; Gross, T.: Efficient attributes for anonymous credentials. In: ACM CCS
2008: 15th Conference on Computer and Communications Security. ACM Press, 2008,
pp. 345–356

[CGH04] Canetti, R.; Goldreich, O.; Halevi, S.: The random oracle methodology, revisited. In: J.
ACM 51 (2004), no. 4, pp. 557–594.

[Che10] Cheon, J. H.: Discrete Logarithm Problems with Auxiliary Inputs. In: J. Cryptol. 23 (2010),
no. 3, pp. 457–476.

[CKS10] Camenisch, J.; Kohlweiss, M.; Soriente, C.: Solving Revocation with Efficient Update
of Anonymous Credentials. In: SCN 10: 7th International Conference on Security in
Communication Networks. Vol. 6280. Lecture Notes in Computer Science. Springer, 2010,
pp. 454–471

[CL01] Camenisch, J.; Lysyanskaya, A.: An Efficient System for Non-transferable Anonymous
Credentials with Optional Anonymity Revocation. In: Advances in Cryptology – EURO-
CRYPT 2001. Vol. 2045. Lecture Notes in Computer Science. Springer, 2001, pp. 93–
118

[CL02] Camenisch, J.; Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient
Revocation of Anonymous Credentials. In: Advances in Cryptology – CRYPTO 2002.
Vol. 2442. Lecture Notes in Computer Science. Springer, 2002, pp. 61–76

[CL04] Camenisch, J.; Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from
Bilinear Maps. In: Advances in Cryptology – CRYPTO 2004. Vol. 3152. Lecture Notes in
Computer Science. Springer, 2004, pp. 56–72

[CL19] Crites, E. C.; Lysyanskaya, A.: Delegatable Anonymous Credentials from Mercurial Sig-
natures. In: Topics in Cryptology – CT-RSA 2019. Vol. 11405. Lecture Notes in Computer
Science. Springer, 2019, pp. 535–555

[CLNR14] Camenisch, J.; Lehmann, A.; Neven, G.; Rial, A.: Privacy-Preserving Auditing for Attribute-
Based Credentials. In: ESORICS 2014: 19th European Symposium on Research in Com-
puter Security, Part II. Lecture Notes in Computer Science. Springer, 2014, pp. 109–
127

[DGS16] Drees, M.; Gmyr, R.; Scheideler, C.: Churn- and DoS-resistant Overlay Networks Based
on Network Reconfiguration. In: Proc. of SPAA. 2016, pp. 417–427

https://eprint.iacr.org/2021/961

Blömer, Eidens, Jager, Niehues, Scheideler Subproject C1

[Eik16] Eikel, M.: Insider-resistant distributed storage systems. PhD thesis. University of Pader-
born, 2016.

[ES15] Eikel, M.; Scheideler, C.: IRIS: A Robust Information System Against Insider DoS
Attacks. In: ACM Trans. Parallel Comput. 2 (2015), no. 3, 18:1–18:33

[ESS14] Eikel, M.; Scheideler, C.; Setzer, A.: RoBuSt: A Crash-Failure-Resistant Distributed
Storage System. In: Principles of Distributed Systems - 18th International Conference,
(OPODIS). 2014, pp. 107–122

[GHS19] Götte, T.; Hinnenthal, K.; Scheideler, C.: Faster Construction of Overlay Networks.
In: International Colloquium on Structural Information and Communication Complexity
(SIROCCO). Springer. 2019, pp. 262–276

[GHSS17] Gmyr, R.; Hinnenthal, K.; Scheideler, C.; Sohler, C.: Distributed Monitoring of Network
Properties: The Power of Hybrid Networks. In: Proc. of the 44th International Colloquium
on Automata, Languages, and Programming (ICALP). 2017, 137:1–137:15

[GHSW21] Götte, T.; Hinnenthal, K.; Scheideler, C.; Werthmann, J.: Time-Optimal Construction
of Overlay Networks. In: PODC ’21: ACM Symposium on Principles of Distributed
Computing. ACM, 2021, pp. 457–468.

[GVS19] Götte, T.; Vijayalakshmi, V. R.; Scheideler, C.: Always be Two Steps Ahead of Your
Enemy. In: 2019 IEEE International Parallel and Distributed Processing Symposium,
IPDPS. IEEE, 2019, pp. 1073–1082.

[JKN21] Jager, T.; Kurek, R.; Niehues, D.: Efficient Adaptively-Secure IB-KEMs and VRFs
via Near-Collision Resistance. In: Public-Key Cryptography - PKC 2021 - 24th IACR.
Vol. 12710. Lecture Notes in Computer Science. Springer, 2021, pp. 596–626.

[JN19] Jager, T.; Niehues, D.: On the Real-World Instantiability of Admissible Hash Functions
and Efficient Verifiable Random Functions. In: Selected Areas in Cryptography - SAC
2019. Vol. 11959. Lecture Notes in Computer Science. Springer, 2019, pp. 303–332.

[MBB+15] Melara, M. S.; Blankstein, A.; Bonneau, J.; Felten, E. W.; Freedman, M. J.: CONIKS:
Bringing Key Transparency to End Users. In: 24th USENIX Security Symposium, USENIX
Security 15. USENIX Association, 2015, pp. 383–398.

[MSBM22] Mir, O.; Slamanig, D.; Bauer, B.; Mayrhofer, R.: Practical Delegatable Anonymous Cre-
dentials From Equivalence Class Signatures. Cryptology ePrint Archive, Report 2022/680.
https://eprint.iacr.org/2022/680. 2022

[NF06] Nakanishi, T.; Funabiki, N.: A Short Verifier-Local Revocation Group Signature Scheme
with Backward Unlinkability. In: Advances in Information and Computer Security. Vol. 4266.
LNCS. Springer, 2006, pp. 17–32

[Nie21a] Niehues, D.: More Efficient Techniques for Adaptively-Secure Cryptography. PhD thesis.
University of Wuppertal, Germany, 2021.

[Nie21b] Niehues, D.: Verifiable Random Functions with Optimal Tightness. In: Public-Key Cryp-
tography - PKC 2021 - 24th IACR. Vol. 12711. Lecture Notes in Computer Science.
Springer, 2021, pp. 61–91.

[PS16] Pointcheval, D.; Sanders, O.: Short Randomizable Signatures. In: Topics in Cryptology –
CT-RSA 2016. Vol. 9610. Lecture Notes in Computer Science. Springer, 2016, pp. 111–126

[RSS11] Richa, A. W.; Scheideler, C.; Stevens, P.: Self-Stabilizing De Bruijn Networks. In: Proc.
of SSS. 2011, pp. 416–430

[ZWC+16] Zhai, E.; Wolinsky, D. I.; Chen, R.; Syta, E.; Teng, C.; Ford, B.: AnonRep: Towards
Tracking-Resistant Anonymous Reputation. In: NSDI. 2016, pp. 583–596

https://eprint.iacr.org/2022/680

165

Subproject C2:

On-The-Fly Compute Centers I: Heterogeneous Execution

Environments

Tim Hansmeier1, Tobias Kenter2, Marius Meyer2, Heinrich Riebler2,
Marco Platzner1, Christian Plessl2

1 Department of Computer Science, Paderborn University,
Paderborn, Germany

2 Paderborn Center for Parallel Computing and
Department of Computer Science, Paderborn University,
Paderborn, Germany

1 Introduction

Subproject C2 investigated the execution of configured IT services in OTF Compute
Centers with heterogeneous computing nodes combining CPUs, GPUs, and FPGAs. The
key idea in the subproject is that a service can exist in multiple variants that are specifically
tailored for different processor or accelerator architectures. While the execution of these
variants leads to the same functional behavior, the non-functional properties, such as energy
consumption or latency, may differ considerably. We can exploit this fact by creating
variants of services for different hardware architectures at compile time and chosing the
optimal variant at runtime according to resource availability to improve performance or
efficiency, for example.

In Subproject C2, we have developed methods for this purpose. Specifically, we have
studied, how we can create programming models that enable and exploit dynamic dispatch-
ing of services (which are themselves part of composed services) to different execution
resources; how we can model, optimize, and empirically validate the benefits of dynamic
dispatching of services; and how we can develop novel hardware architectures and runtime
systems for increasing the effectiveness of this approach.

Over the three funding periods for CRC 901, we have studied the aforementioned idea of
dynamic dispatching of services to heterogeneous resources, putting a different emphasis
in each of the funding periods, which is summarized in the following.

In the first funding period, fundamental architectures and basic mechanisms for hetero-
geneous migration of services between different computing resources were developed.
Heterogeneous migration includes transmodal migration between software and hardware
as a special case. We have implemented a system based on POSIX threads with a scheduler
for heterogeneous systems and a programming model tuned to it. The approach supports

tim.hansmeier@uni-paderborn.de (Tim Hansmeier), kenter@uni-paderborn.de (Tobias Kenter),
marius.meyer@uni-paderborn.de (Marius Meyer), heinrich.riebler@uni-paderborn.de (Heinrich Riebler),
platzner@ubp.de (Marco Platzner), christian.plessl@uni-paderborn.de (Christian Plessl)

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

the implementation and execution of OTF services on different target architectures by a
checkpointing mechanism. This makes it possible to interrupt a running service, save its
state, and migrate it.

Furthermore, basic concepts for an on-the-fly hardware acceleration approach have been
developed. Here, implementations for the different architectures do not have to be created
manually but are generated automatically for a limited set of application classes. These
methods open up fundamentally new possibilities for dynamically allocating services to
the available computing resources and migrating between resources as needed such that
application- and system-level goals can be optimized, e.g., throughput, energy consumption,
etc. The necessary adaptation of the application to the given programming model and
the requirement for architecture-independent checkpoints, however limit the usability and
productivity of the approach.

For the second funding period, we have therefore chosen programmability and efficiency
as the focus topics. By aligning our programming model with OpenCL as a standardized
programming interface for heterogeneous computing, the effort required to program hetero-
geneously migratable services was significantly reduced. Building on this programming
model, scheduling algorithms were developed to optimize runtime and energy consumption.
Programming for heterogeneous migration is elaborated in Section 2, and a new runtime
system able to automatically generate OpenCL accelerator code from sequential CPU code
is discussed in Section 5. For scheduling and migration decisions, it is useful to have as
precise information as possible about how well individual services are suited for execution
on different target architectures. For the necessary off-line characterization of services, we
have developed the Ampehre framework, which allows precise measurements of many
system parameters of the heterogeneous computing node. The Ampehre measurement
framework has been employed to create a highly accurate energy model for task execution
on heterogeneous compute nodes [LP18] and was instrumental in developing schedulers
utilizing heterogeneous task migration to minimize runtime and energy [LP17], [LP20]. A
more detailed description of Ampehre is given in Section 4.

To improve the efficiency of on-the-fly acceleration with FPGAs, overlay architectures
were developed that trade off between maximum specialization and full programmability
but can be configured much faster. This allows FPGAs to largely avoid the long synthesis
and implementation times associated with full specialization. To investigate this approach,
hand-designed overlays have been studied and methods for automatically configuring
overlays have been developed. This approach is presented in Section 3.

Finally, the focus of the third funding period was on mastering the complexity of modern
architectures and runtime systems in heterogeneous OTF compute center architectures,
where compute nodes must run composed services with varying requirements and optimiza-
tion goals. The development of increasingly complex runtime systems with centralized
scheduling no longer seems promising for such systems. The heterogeneity in the OTF
compute centers leads to large amounts of diverse information and optimization goals,
which makes designing a centralized scheduler an infeasibly complex task. Instead, we
studied concepts of self-aware computing to provide runtime systems with an increased
degree of autonomy and learning capability. We experimented with learning classifier
systems, in particular XCS, as algorithmic methods for achieving the required learning
capability for heterogeneous compute nodes [Han21]. We extended XCS to allow them to
adapt their parameters at runtime [HKP20a], which is highly effective in dynamic environ-

2. Programming for Heterogeneous Migration 167

ments [HKP20b]. Furthermore, we empirically evaluated different strategies for switching
between exploration and exploitation [HP21] and presented an approach for providing
safety guarantees [HP22] for XCS. We also came up with an embedded implementation of
XCS [HBP22] to evaluate its resource consumption.

We extended our consideration from a single heterogeneous compute node, each with one
FPGA, to an entire cluster of such compute nodes. To exploit this kind of infrastructure,
models and procedures to partition the composed services onto a multi-FPGA cluster
in a meaningful way are required. Therefore, we developed an OpenCL benchmark
suite [MKP20] to determine and capture the relevant performance characteristics for the
execution of services on such a system, which can serve as a basis for more accurate models
for dynamic composition of services in the spirit of the OTF concept. Major aspects
were the configurability of the benchmarks [MKP22] and the utilization of direct and
highly efficient FPGA-to-FPGA interconnect options in addition to a classical architectural
approach in which FPGAs communicate only via CPUs [MKP23]. The benchmarks in
the suite are designed to support these various communication approaches and produce
comparable performance results for all considered communication infrastructures.

2 Programming for Heterogeneous Migration

Computing nodes are increasingly heterogeneous and augment CPUs with accelerator
technologies such as GPUs and FPGAs. To benefit from such a computing environment,
developers must identify hotspots or tasks in their applications, port those to the available
accelerators, and finally optimize them to achieve high performance. Additionally, schedul-
ing techniques are needed that distribute the workload of one or several applications to
the heterogeneous resources, subject to an optimization objective such as minimization of
runtime or energy consumption.

The introduction of OpenCL as a programming language greatly simplified the use of
accelerator technologies. With OpenCL compilers available for CPUs, GPUs, and even FP-
GAs, application code is basically executable on all these resources without any additional
porting effort. However, since OpenCL is not performance-portable, developers must
still optimize their task implementations to achieve good performance for the different
resources.

Current accelerators rely on a run-to-completion execution model, where a task assigned
to an accelerator computes there until termination. This is in strong contrast to CPU-based
computing, where operating systems provide preemptive multitasking, and might severely
impact system performance since a running task cannot be migrated to a better-suited
resource in a later execution phase.

In this section, we give an overview of our novel OpenCL-based programming framework
that overcomes the limitations of the run-to-completion approach. We introduce a pro-
gramming pattern and execution model for tasks that allow us to migrate them between
the resources of a heterogeneous compute node at predefined states without losing their
computational progress. While we focus on OpenCL, the approach is more general and sup-
ports programming languages with host-centric execution models, also including OpenMP,
OpenACC, CUDA, and the Maxeler MaxJ hardware description language. Developers only
need to provide functionally identical task implementations for the resources. Furthermore,

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

our work includes an interface for inter-process communication between the tasks and a
scheduler framework. Using this interface, schedulers can decide and execute task-resource
assignment, including heterogeneous migration.

Applications following a host-centric programming style are bipartite: The host code is
responsible for resource management, which includes allocating local memory on the
accelerator, transferring data to and from the accelerator, and triggering computations. The
computations on the accelerator are denoted as kernel code. The CPU plays a special role
since it is the host and can at the same time also execute kernel code.

In our approach, we store relevant task state information in memory and transfer this
information between the host memory and an accelerator’s local memory. Through such
state transfers, migration can be implemented even between very diverse resources such
as FPGAs and GPUs. This technique is often referred to as checkpointing and poses
two challenges: First, task developers or automated tools need to identify checkpoints
in application tasks that can be mapped to other resources in order to continue the task
computation without loss in their computational progress. Moreover, minimal task states
are favorable since state transfers are expensive and constitute overhead. Second, the
checkpointing frequency must be carefully selected to balance between the overhead
incurred by checkpointing and the ability of being able to quickly migrate when needed.

A possible method to enable task migration by checkpointing is adapting the loop strip
mining transformation to a task’s kernel code. The loop of a data-parallel kernel is split
into an outer and an inner loop, which is vectorizable. The outer loop is then run as host
code, and the adjusted kernel comprising the inner loop is called from the host. This way,
the adjusted kernel works on blocks of data successively and after each kernel execution,
i.e., an iteration of the outer loop, the checkpoint can be transferred. Since the inner loop is
kept in vectorized form, a checkpointed task implementation can provide high performance
for data-parallel tasks if the checkpoint distance is sufficiently large.

Our programming pattern for heterogeneous task migration supports checkpointing and
comprises five stages:

1. The bookkeeping stage is the task preparation stage, where we allocate memory
space in the host memory and read input data from the hard disk or the network
interface. This stage is resource-independent and therefore involves only activities
handled by the CPU.

2. The init stage allocates memory space in the local memory of the accelerator and
transfers the checkpoint to this memory.

3. The compute stage executes the kernel code. Each time the compute stage is
called, the kernel processes the next block of data and stores its progress as updated
checkpoint. Furthermore, the kernel must be able to report its computational progress
to enable the host to keep track of the overall task computation.

4. The fini stage is the counterpart of the init stage and transfers the checkpoint back
into host memory before releasing the accelerator device.

5. The cleaning stage is the final one and the counterpart of the bookkeeping stage, as
it writes the computation results to the hard disk or the network interface. This stage
is resource-independent and thus exclusively executed on the host processor.

2. Programming for Heterogeneous Migration 169

Based on this pattern, a task is migrated from resource A to resource B by calling the
fini stage for the task implementation running on resource A followed by executing the
init stage of the task implementation for resource B. The resulting migration overhead
comprises two parts: The first and frequently dominating part is the time to transfer the
checkpoints during the fini and init stages. The second part includes additional steps for
preparing the target resource, such as the reconfiguration of an FPGA device.

We explain the lifecycle of a migratable task using the example shown in Figure 39, which
lists the pseudo code for the four major software components involved. main.cpp instan-
tiates ExampleOCL configured for CPU usage and resource-specific implementations for
GPU and FPGA. ExampleOCL itself loads the checkpointed OpenCL kernel example and
compiles it for execution on the CPU. The kernel illustrates checkpointing by iterating
over successive sections of a strip-mined loop, with iters_per_checkpoint specifying
the size of data processes per kernel execution. The task’s progress can be determined
by comparing the progress counter with the num_of_checkpoints. Note the three
resource-specific stages implemented in ExampleOCL. The init and fini stages are transfer-
ring the checkpoint between the host memory and the local memory of the device. Since
host memory and CPU-related memory are identical, the checkpoint is not copied. The
compute method is then working on the checkpoint by only reading and writing data
in the local memory. After adding all resource-specific implementations of the task in
main.cpp, the task executor TaskExec is called. The pseudo code in Figure 39 also
illustrates the execution of execute_online(), interacting with a scheduler connected
via Inter-Process Communication (IPC).

The code listed in Figure 39 correlates to the task lifecycle depicted as a flowchart in
Figure 40. The dotted shapes clarify the mapping between the pseudo code and the
flowchart. The first activity is calling the bookkeeping method, which is executed by
the host processor and prepares the task for execution. Then, the task enters an execution
loop where it remains until the entire data is processed, i.e., the task execution state is
FINISHED. The first step in the execution loop is to wait for resource assignment, which
is implemented as a blocking IPC receive call that returns the assigned resource from the
scheduler. Next, the init method of the chosen task implementation is called and the
current checkpoint is copied into the target local memory. The following do-while loop
iteratively calls compute and informs the scheduler about the task execution progress.
While compute actually executes resource-specific kernels on the CPU or accelerators,
denoted by dark blue, red, and green colored box fillings, the init and fini box fillings
are kept in light colors to depict that the devices are active by copying checkpoint data or
reconfiguring the FPGA.

After the task execution progress has been sent to the scheduler, the task execution state is
checked. In case the task execution has finished, we exit the do-while loop and call fini
for the current task implementation, release the resource, and finally execute cleaning. If
the task execution has not been finished yet, we communicate with the scheduler to figure
out whether a task must be migrated. If so, the fini stage is called, the resource is released,
and a new resource assignment is requested in the next iteration of the execution loop.
After a new resource has been assigned, the task again calls the init method for the new
resource.

The programming framework has been implemented in C++ and allows an easy integration
of new computing resources by overriding corresponding class methods. Based on the

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

void TaskExec::execute_online() {

 taskImpl = taskImpls[CPU];

 taskImpl->bookkeeping();

 state = CONTINUE;

 while (state != FINISHED) {

 resource = comm->recvResource();

 taskImpl = taskImpls[resource];

 taskImpl->init();

 do {

 state = taskImpl->compute();

 comm->sendProgress(progress);

 if (state == FINISHED ||

 comm->recvMigration()) {

 break;

 }

 } while (true);

 taskImpl->fini();

 comm->sendRelease();

 }

 taskImpl = taskImpls[CPU];

 taskImpl->cleaning();

}

ExampleOCL::ExampleOCL(resource) : Example(resource) {

 platform = cl::Platform::get();

 device = platform.getDevices(resource);

 context = cl::Context(device);

 program = cl::Program(context, "example.cl");

 program.build();

 kernel = cl::Kernel(program, "example");

}

void ExampleOCL::init() {

 context.enqueueWriteBuffer(device, checkpoint_data);

}

state ExampleOCL::compute() {

 context.enqueueWriteBuffer(device, progress);

 kernel.setKernelArg(0, progress);

 kernel.setKernelArg(1, iters_per_checkpoint);

 kernel.setKernelArg(2, checkpoint_data);

 context.enqueueNDRangeKernel(device, kernel);

 context.enqueueReadBuffer(device, progress);

 return (progress < num_checkpoints) ?

 CONTINUE : FINISHED;

}

void ExampleOCL::fini() {

 context.enqueueReadBuffer(device, checkpoint_data);

}

int main() {

 TaskImpl *ex_cpu = new ExampleOCL(CPU);

 TaskImpl *ex_gpu = new ExampleGPU();

 TaskImpl *ex_fpga = new ExampleFPGA();

 TaskExec *executor = new TaskExec();

 executor->add(ex_cpu);

 executor->add(ex_gpu);

 executor->add(ex_fpga);

 executor->execute_online();

 return EXIT_SUCCESS;

}

__kernel void example(

 __global int *progress,

 int iters_per_checkpoint,

 __global DATA *checkpoint_data) {

 for (int i = (*progress) * iters_per_checkpoint;

 i < (*progress+1) * iters_per_checkpoint;

 i++) {

 // execute to next checkpoint

 }

 (*progress)++;

}

i
n
i
t
(
)

c
o
m
p
u
t
e
(
)

ExampleOCL.cpp

example.cl
e
x
e
c
u
t
e
_
o
n
l
i
n
e
(
)

TaskExec.cpp

main.cpp

Example::

Example::

O
nl

y
if

re
so

ur
ce

 =
=

 C
PU

Figure 39: Major software components for a migratable task.

programming framework, two schedulers for heterogeneous compute nodes have been
realized that demonstrate the potential of heterogeneous migration in terms of runtime and
energy minimization. In [LP17], the reMinMin scheduler has been presented based on a
static list scheduling approach for energy minimization. In [LP20], MigHEFT focused on
scheduling migratable task graphs to heterogeneous resources.

3 Analyzing FPGA Overlays as Target for OTF Hardware Accelerator
Generation

Overlays are configurations for FPGAs that are not fixed to a specific task, but instead
provide a limited form of programmability, more abstract than that of the underlying
FPGA fabric. Compared to highly optimized application-specific libraries, overlays enable
significantly more applications as candidates for FPGA acceleration in an OTF context,
because overlays can be more broadly applied. They thus provide a purchasing argument
for FPGAs for OTF compute centers that need to aim for good utilization of their hardware
over time. Also, in comparison to the synthesis of FPGA designs from high-level language
code, where OpenCL and recently SYCL are particularly promising as a description
language, overlays can help to avoid the extremely long synthesis runtimes of several hours

3. Analyzing FPGA Overlays as Target for OTF Hardware Accelerator Generation 171

Initialize
service

Wait for
resource

assignment

Copy in
checkpoint &

allocate memory

Copy in
checkpoint &

allocate memory
Ø

Resource

Execute to
next checkpoint

Execute to
next checkpoint

Execute to
next checkpoint

Finished?

Scheduling
framework

 Yield /
migrate?

no

C
o

m
m

Copy out
checkpoint &
free memory

Copy out
checkpoint &
free memory

Ø

yes

no

yes

Release resource

Complete
service

execution

Finished?

yes

no

C
o

m
m

Resource

C
P

U

G
P

U

FP
G

A

bookkeeping()

cleaning()

execute_online()

Host code target Kernel code target CPU GPU FPGADevice busy

Figure 40: Lifecycle of a migratable task.

up to days, which are typical for FPGAs. Paired with suitable compilation approaches,
they can also reduce the demand for manual development or optimization ahead of OTF
deployment.

FPGAs

GPUs

custom
 hardware

 accel-
erators

Efficiency

more operations per
 instruction, simpler pipeline

no instruction overheads, customized datapath, data
forwarding, memory accesses

GPPs

programmable
 LUTs and fabricOverlays ?

Figure 41: Qualitative illustration on the impact of architecture features of accelerators
on efficiency. Quantifying the performance overheads of FPGA overlays was
the central research question of this contribution.

We distinguish between processor-like instruction-programmable overlays and structurally
programmable or configurable overlays. For both approaches, diverse architectures have
been presented that gain their efficiency from various combinations of parallelism, pipelin-
ing, and targeted data access and reuse. These are already being investigated in the
academic environment from various aspects such as productivity, portability, and scalabil-
ity. For instruction-programmable overlays, it was however largely unclear until our work
how close the performance of such architectures comes to that of fully specialized FPGA

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

implementations. Figure 41 illustrates the context of this research question in comparison
to alternative accelerator architectures.

To answer this question, we have implemented a diverse set of computational tasks with
identical interfaces on an overlay-based FPGA system and with highly specialized FPGA
designs. The tasks here are all runtime-intensive steps (often referred to as kernels) from
an application to compute stereo correspondence, which in turn is the most important and
costly intermediate step to compute depth from a pair of stereo images. By following
the best quality published algorithm [MSZ+11] in this area until recently, we achieve,
on one hand, a comparison between overlay and specialized kernels that is not biased
by FPGA-specific optimizations on the algorithm level and, on the other hand, the most
accurate stereo matching implementation with FPGA acceleration to this time. In contrast,
other FPGA implementations in this area (e.g. [SHW+14; JM14; TLLA14]) adapt the work
steps and their sequence to the target architecture to varying degrees, thus achieving higher
performance or lower space requirements on the FPGA with reduced result quality.

Due to the availability of suitable development tools and runtime environments to effec-
tively implement the respective approaches with overlay and specialized kernels, the two
approaches were implemented on two different target platforms: The Convey HC-1 with
an instruction-programmable FPGA overlay with vector architecture on one hand and the
Maxeler MPC-X platform with its own description language for highly specialized dataflow
kernels on the other. Both represent state-of-the-art systems with a high-performance server
processor and FPGA accelerator at the respective time of acquisition.

450x
375x

60

512x
384x

68

640x
350x

85

640x
480x

85

768x
480x

102

800x
600x

107

960x
640x

128

1024
x768

x137

1152
x864

x154

1280
x102

4x17
1

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

Overlay-Nutzung
Spezialisierte Kernels

Figure 42: Speedups of fully integrated stereo matching implementations on two systems
with FPGA accelerators. These measurements include overheads for recon-
figuration and data transfers, which favors the overlay architecture for small
problem sizes in comparison to the specialized kernels.

On both target platforms, the fully integrated computation of the stereo correspondence is
executed by offloading the runtime-intensive kernels to the respective FPGA accelerator.
Preparatory and management steps remain on the respective main processor. The runtimes
for data transfers, synchronization and, in the case of the specialized kernel designs, recon-

4. AMPEHRE: An Extensible Measurement Framework for Heterogeneous Compute Nodes 173

figuration included in this execution model limit the achievable performance. Nevertheless,
illustrated in Figure 42, both accelerator platforms achieve performance advantages over
the powerful main processor of the Maxeler MPC-X platform for most input sizes of the
application.

To quantify the conceptually driven performance differences between using an instruction-
programmable overlay and fully specialized FPGA designs, we had to factor out influences
of the specific platforms and their runtime environments. In [Ken16] and [KSP15], these
steps are explained in detail. Subsequently, it can be shown that using the overlay yields on
average about a factor of 3 less isolated kernel performance than FPGA implementations
fully adapted to the task. In return, for the overlay, the runtimes of the tools used for
translation or synthesis are several orders of magnitude shorter, amounting to only seconds
instead of hours or even days. Overall, the high productivity required to profit from FPGA
acceleration in the OTF context is not achieved by tool runtimes alone, but also depends
on programming patterns (see also Section 2) or automated tools (see also Section 5) for
code generation or overlay configuration generation and offloading to accelerators.

Thus, in the end, the decision between fully specialized FPGA kernels and overlay usage
is similar to the decision between ASICs and FPGAs: Given sufficient development time,
budget, expertise, and given a sufficiently high application demand, it will typically pay off

to fully specialize. However, if any of these preconditions is not met—as can often be the
case in OTF scenarios—overlays can provide an interesting alternative, at a performance
cost that we now understand better.

4 AMPEHRE: An Extensible Measurement Framework for
Heterogeneous Compute Nodes

Application performance profiling is a major step in software development. Based on
hardware performance counters provided by the target devices and on timing information,
developers gain knowledge about runtime behavior in terms of metrics such as the number
of executed instructions, cache misses, page-faults, or statistics about called functions.
Understanding runtime behavior is instrumental for optimizing performance. Examples
for widely-used performance analysis tools are the open-source tools Perf, IgProf,
and Likwid, and the vendor-specific tools Intel VTune Amplifier or the Nvidia GPU
development IDE Nvidia Nsight and command-line tool nvprof. With the introduction of
the Running Average Power Limit (RAPL) interface for Intel CPUs, developers are also
able to perform energy measurements on CPUs.

A shortcoming of most existing tools is their lack of an easy-to-use and extensible ap-
plication programmer interface (API) that allows user applications to read performance
and energy data comparable across different resource types. The Performance Applica-
tion Programming Interface (PAPI) project has been developed to help solve this issue.
Particularly with the PAPI version 5 release, developers are able to add capabilities for
power or temperature analysis by implementing so-called PAPI components, extending
PAPI to new platforms and other sensor types. PAPI provides a unified API that hides
the underlying device-specific measuring procedures when reading power, energy, and
temperature sensors. But, even with PAPI, the retrieved data must be interpreted to gain
semantically comparable measurements results across resource boundaries.

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

Linux Kernel v2.6.32

Heterogeneous Compute Node

Ampehre library

Vendor libraries

Live monitoring
tool

msmonitor

Measuring
tool

hettime

User
application

fork()

FPGA GPUCPU

PAPI library v5.5.1 (extended)

K
er

n
el

 s
p

ac
e

U
se

r
sp

ac
e

Live monitoring
tool
(client/server)
msmonitor_cs

Figure 43: Ampehre architecture (taken from [LWP18]). Blocks in orange denote compo-
nents we have implemented or extended.

To improve on this situation, we have developed the measurement framework Ampehre,
short for Accurately Measuring Power and Energy for Heterogeneous Resource Environ-
ments [LKEW]. Ampehre is designed for heterogeneous high-performance compute nodes
running Linux and (i) allows an easy integration into applications by providing a clear API
covering all resource types, (ii) is extensible to new resources and sensors through the use
of PAPI, and (iii) is available as open source.

Figure 43 presents the architecture of the Ampehre framework, which comprises three
layers in user space: an extended PAPI library, the Ampehre library, and the Ampehre
tools. We base the Ampehre framework on PAPI, which makes it inherently portable to
other systems running a Linux OS distribution, and we have extended the PAPI library
to support not only CPU and system-wide sensors but also to retrieve performance data
gathered at the accelerator components GPU and FPGA.

Figure 44 denotes the main PAPI components with their interfaces utilized by Ampehre
to obtain measurements from the heterogeneous computing resources and the main board
of our server node: The PAPI component rapl supports CPU measurements, includ-
ing the cores, last-level cache, memory controller and DRAMs. Modern Intel CPUs
provide several so-called Model Specific Registers (MSR) to retrieve data related to en-
ergy consumption, temperature, etc. The PAPI component ipmi is necessary to retrieve
system-wide measurements such as the system-wide power dissipation measured at the
power supply. For this, the component communicates with the Baseboard Management
Controller (BMC) by means of the Linux OpenIPMI library. IMPI is a standard to unify
server platform management. The Nvidia GPU is supported if PAPI is compiled with the
nvml component. This component includes the Nvidia Management Library (NVML),
which is used to obtain the current power dissipation and die temperature. Finally, Am-

4. AMPEHRE: An Extensible Measurement Framework for Heterogeneous Compute Nodes 175

pehre is enabled to gather measurement data on the Maxeler Vectis by linking against the
MaxelerOS library if the maxeler component is enabled in PAPI. From the overall four
described PAPI components, we have implemented maxeler and ipmi from scratch and
extended rapl and nvml in order to support the sensors of interest on our heterogeneous
compute node. The node employs a Dell PowerEdge T620 with two Intel Xeon E5-2609 v2
CPUs as host processors running CentOS 6.8 Linux with kernel v2.6.32, a PCIe-connected
Nvidia Tesla K20c GPGPU based on the Kepler microarchitecture, and a PCIe-connected
Maxeler Vectis FPGA board based on Xilinx Virtex 6 (xc6vsx475t).

Intelligent Platform Management Interface

Model Secific Registers MaxelerOS Nvidia Mgmt Library

CPU(s)

CoreCore

CoreCore

LLC, Mem.

Controller

DRAM

FPGA board

Main

Compute

FPGA

Interface

FPGA

DRAM

GPU board

Core

DRAM

PCI Express

BMC (iDRAC)South Bridge

PAPI: rapl PAPI: maxeler PAPI: nvml

PAPI: ipmi

Figure 44: PAPI components required to retrieve energy and temperature measurements
(taken from [LWP18]). We use Linux OS kernel interfaces to sample CPU and
BMC sensors (red blocks), and vendor libraries to retrieve measurements from
the FPGA and GPU boards (green blocks).

The Ampehre library extends PAPI functionality with the goal to hide all computations
and data interpretations from the application developer. The Ampehre library unifies
the meaning of gained data across resource boundaries and provides the developer with
a set of functions having the same semantics for all resource types. Table 1 gives an
overview of the metrics that can be reported by the Ampehre framework for each of the
four PAPI components. The measured energy is by definition a value accumulated over the
measurement period. For the other quantities, which are power, temperature, utilization,
frequency, and amount of allocated memory, Ampehre reports the current (latest) value
and the minimum, maximum, and average over the measurement period.

Developers can instantiate the Ampehre library in their applications to use our measurement
framework, or they can use one of the following Ampehre tools:

hettime extends the well-known Linux utility time by reporting comprehensive measure-
ments for an executed binary, i.e., also the energy consumed by the overall system, the
average power dissipation and maximum temperature for each component, etc. The results
can be stored in JSON files, CSV tables, or simply printed to the shell. hettime is highly
configurable through command line parameters.

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

Component
Energy Power Temp. Utilization Frequency Alloc. Memory

Accumulated Current, Minimum, Average, Maximum

rapl 3 3 3 3 3 3

nvml 3 3 3 3 3 3

maxeler 3 3 3 3 7 7

ipmi 3 3 3 7 7 7

Table 1: Quantities that can be measured or computed with Ampehre (taken
from [LWP18]).

msmonitor is a Qt-based live monitoring tool plotting the most recent measurements.
msmonitor can display the measurement data in the form of an array of curves or as heat
maps. These features are exemplary illustrated in Figure 45. The screenshot displays data
taken while an arbitrary set of 15 tasks is concurrently executed on CPU, GPU, and FPGA.
The array of curves on the left side of Figure 45 represent the current power dissipation of
the three computing resources, while the heat maps on the right side of Figure 45 show
device utilizations.

Figure 45: Power dissipation and utilization plotted by msmonitor while an arbitrary set
of 15 tasks are executed on CPU, GPU, and FPGA (taken from [LWP18]).

msmonitor_cs is a server-client implementation of msmonitor for reducing probing
effects on the measured server by transferring the GUI rendering to a client connected via
TCP/IP.

5 Transparent Acceleration for Heterogeneous Platforms with
Compilation to OpenCL

Hardware accelerators, such as GPUs or FPGAs, can offer exceptional performance
and energy advantages compared to CPU-only systems. Services that use accelerators
are especially interesting in an on-the-fly scenario because they offer higher degrees of
freedom in the configuration process, can result in different quality of service aspects,

5. Transparent Acceleration for Heterogeneous Platforms with Compilation to OpenCL 177

and finally improve the overall execution. Service providers, however, need to spend
considerable efforts on application acceleration without knowing how sustainable the
employed programming models, languages and tools are. To tackle this challenge, we
developed and demonstrated a new runtime system called HTroP [RVKP19; RVKP18]
that is able to automatically generate and execute parallel accelerator code (OpenCL) from
sequential CPU code. HTroP transforms suitable data-parallel loops into independent
OpenCL-typical work items and offloads the execution of these work items to the hardware
accelerators through a mix of library components and application-specific OpenCL host
code. Computational hotspots that are likely to profit from parallelization are identified
and can be offloaded to different resources (CPU, GPGPU and Xeon Phi) at runtime. We
demonstrated the potential of HTroP on a broad set of applications and are able to improve
performance and energy efficiency.

OpenCL provides an open standard interface for parallel computing using task- and data-
based parallelism, which can be executed across different devices. This means that by
generating OpenCL kernel code (once), one can target multiple accelerators. OpenCL, not
only poses the challenge of extracting hotspots into kernels and optimizing them for the
target accelerator architecture but also involves many tedious adjustments to the remaining
host code. Given these challenges, there is a considerable gap between the architectural
potential of highly heterogeneous multi-accelerator architectures and their actual adoption
and utilization that we aim to overcome with HTroP.

Our approach builds upon and integrates results from different open-source projects:
We consider LLVM bitcode as the input format to HTroP, on which all optimization,
transformation and acceleration steps are performed. The detection of data-parallel loops
is based on LLVM’s Polly project [GH16]. Polly uses an abstract mathematical description
to detect and model static control flow regions (so-called SCoPs). And finally, we use
LLVM’s Axtor backend [Mol11] to translate LLVM bitcode into OpenCL kernel code.
In our own previous work [DRVP15], we used OpenMP and vectorization to offload
hotspots from a low-power client to a remote server with an Intel Xeon PHI accelerator.
Related work has researched SCoP-based hotspot detection and acceleration but with other
programming models and fewer and different devices in the backend. With Polly-ACC,
Grosser et al. [GH16] target Nvidia GPUs using CUDA calls from the host CPU and a
PTX backend. Compared to our approach, LLVM bitcode can be generated for a wide
range of applications without requiring the source code to be available. Additionally, by
using OpenCL as kernel code, various services can be generated on-the-fly, targeting a
range of accelerators.

Figure 46 gives an overview of our approach. Our tool flow receives the legacy application
in LLVM bitcode and detects computational hotspots as SCoPs. These get parallelized and
offloaded using three subsequent optimization passes. In the first transformation step, the
Work-item Parallelizer uses the dependence analysis information (from Polly) to determine
how a loop can be transformed to expose parallelism suitable for OpenCL. For example,
Listing 10.1 shows a simple 2D convolution in pseudo code. The outer two f o r loops
(line 2 and 4) iterate over the entire input in. The inner two f o r loops (line 7-8) perform
the convolution for each entry. The dependence info reveals that the innermost loops are
data dependent. Hence, only the outer two loops are parallelized.

1 heavyConv2D (i n t * in , i n t * out , i n t rows , i n t c o l s) {
2 f o r (i n t r = 0 ; r < rows ; r ++) {
3 / / AFTER Work− i t e m P a r a l l e l i z e r f o r − l oop r e p l a c e d by : i n t r = g e t _ g l o b a l _ i d (0) ;

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

H
ot

sp
ot

Pa

ra
lle

liz
at

io
n

H
TR

O
P

PHICPU GPGPUOpenCL
Devices

Work-item Parallelizer

Hotspot Detection LLVM Polly/SCoPs

OpenCL Host CodeGen

Parallel App (OpenCL-enabled)

OpenCL Kernel CodeGen LLVM Axtor

LLVM Execution Engine

Legacy App (LLVM bitcode)

Figure 46: Architecture of the runtime system. The sequential application is analyzed and
parallel OpenCL code is generated on-the-fly.

4 f o r (i n t c = 0 ; c < c o l s ; c++) {
5 / / AFTER Work− i t e m P a r a l l e l i z e r f o r − l oop r e p l a c e d by : i n t c = g e t _ g l o b a l _ i d (1) ;
6 i n t | sum | = 0 ;
7 f o r (i n t i = 0 ; i < 5 ; i ++) {
8 f o r (i n t j = 0 ; j < 5 ; j ++) {
9 / / . . .

10 | sum | += i n [r + i] [c + j] * COEFFS[i] [j] ;
11 / / . . .
12 o u t [r] [c] = | sum | ;

Listing 10.1: Nested loops performing a 2D convolution. The two highlighted lines
show the modifications performed by the Work-item Parallelizer to expose
parallelism.

The following steps are performed to expose work-item parallelism in each loop that has
no dependencies:

1. Determine the loop induction variable.

2. Remove the loop control flow.

3. Replace the induction variable with a call to the
get_global_id OpenCL API call.

The induction variable of a loop represents the variable that is incremented/decremented for
each iteration (e.g., r and c in Listing 10.1). The induction variable can be obtained from
the loop header. Once the induction variable is found, we find the corresponding compare
instruction that checks the loop exit condition. The compare and branch instructions
associated with the loop control flow are removed. This effectively removes the loop
structure with all the code previously inside the loop being executed exactly once. The final
step is to replace the induction variable with a call to the get_global_id OpenCL API
call. The lines without line numbers in Listing 10.1 replace Lines 2 and 4 (with Lines 3
and 5) after the Work-item Parallelizer is done.

In the second optimization pass, this modified LLVM bitcode is fed into the Axtor-based
OpenCL Kernel CodeGen to produce corresponding OpenCL kernel code. Since the legacy

6. Conclusion and Outlook 179

Figure 47: Performance (speedup) of our runtime system (including all overheads) com-
pared to the normalized CPU baseline (= 1).

application does not originally support OpenCL, the OpenCL Host CodeGen updates the
application to support all the devices along with the corresponding OpenCL host code to
invoke the kernel. We have implemented a wrapper library that creates and exposes device
handles for all appropriate OpenCL devices of our evaluation platform to the global scope
of the application. The result is an OpenCL-enabled parallel application that is executed
through the LLVM Execution Engine and can offload hotspots to the appropriate OpenCL
device.

In order to evaluate our approach, we used the multi-accelerator that we have described in
Section 4 and Figure 43. We use a set of benchmark applications extracted from scientific
computing, financial, signal- and image processing, and security domains. The baseline
is single-threaded CPU code compiled with gcc v4.8.2 using the highest optimization
level -O3. The performance evaluation in Figure 47 reveals speedups for all measured
applications with considerable differences between applications and with visible, but small
differences among the target devices.

OpenCL turned out to be an effective vehicle for targeting multiple architectures, allowing
us to generate the mechanical parts of the host code and to use the same parallelism
pattern for the transformation of computationally intensive regions of the application into
accelerator code. Service providers can use HTroP in order to generate different variants
of services or optimize the execution of services on-the-fly.

6 Conclusion and Outlook

Over the three funding periods of CRC 901, the topic of the use of heterogeneous computing
resources in data centers has developed strongly not only in research but especially in
practical, economic applications. The ongoing shift of computation from end-user devices
to cloud data centers opens up cloud resource providers to leverage heterogeneous compute

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

resources and benefit from their advantages while keeping the programming interfaces
unchanged for service users. This enables faster technological innovation at the hardware
level without requiring radical changes in programming models and tooflows on the user
side. While the tools presented in this chapter have not been directly taken up on a
large scale, the concepts and methods have certainly found their way into practice. For
example, FPGA-based overlay architectures are used in Microsoft Bing to implement
scoring methods on search results. Heterogeneous programming models with support for
CPUs, GPUs and FPGAs as well as runtime systems for the dynamic allocation of tasks to
resources are also in widespread use today, e.g. in the SYCL standard which is the basis
for Intel’s development environments under the name oneAPI.

Last but not least, the extensive experience with FPGA accelerators, programming models
and runtime systems has also been incorporated into the design of the FPGA partition of
the Noctua 1 and Noctua 2 supercomputers at the Paderborn Center for Parallel Computing.
A unique platform has been created that provides a stable production environment for the
use of FPGAs in HPC and data-center applications. At the same time, the partition is an
ideal testbed for testing communication mechanisms in multi-FPGA applications due to a
worldwide unique architecture with an optical L1 network switch, which was developed at
the CRC. Thus, a basis for the continuation of this research line exists far beyond the end
of CRC 901.

We are pleased to note that the topic examined in CRC 901 has not become stale, even after
12 years of funding. Quite the contrary: although the advantages of highly specialized
domain-specific architectures are generally recognized, no other architectures have yet
been able to establish themselves apart from GPUs in the data center. One reason for this
is certainly that generating efficient code for specialized architectures from abstract specifi-
cations remains a major challenge. To have the potential of Domain-Specific Computing,
therefore, new approaches are necessary. We also see a high potential for research with
impact for methods that globally optimize the operation of a data center, acting across
layers. The current approach of increasingly dynamic but still local optimizations of the
operating state does not lead to globally optimal operating states. Especially in times of
increased volatility of energy price, energy availability, and load from user requirements,
feasible methods are needed to cope with the complexity of systems and requirements.

Bibliography

[DRVP15] Damschen, M.; Riebler, H.; Vaz, G.; Plessl, C.: Transparent offloading of computational
hotspots from binary code to Xeon Phi. In: Proc. Design, Automation and Test in Europe
Conf. (DATE). EDA Consortium, Mar. 2015, pp. 1078–1083

[GH16] Grosser, T.; Hoefler, T.: Polly-ACC Transparent compilation to heterogeneous hardware.
In: Proceedings of the 2016 International Conference on Supercomputing. ACM. 2016,
p. 1

[Han21] Hansmeier, T.: Self-aware Operation of Heterogeneous Compute Nodes using the Learning
Classifier System XCS. In: HEART ’21: Proceedings of the 11th International Sympo-
sium on Highly Efficient Accelerators and Reconfigurable Technologies. Association for
Computing Machinery (ACM), 2021

6. Conclusion and Outlook 181

[HBP22] Hansmeier, T.; Brede, M.; Platzner, M.: XCS on Embedded Systems: An Analysis of
Execution Profiles and Accelerated Classifier Deletion. In: GECCO ’22: Proceedings
of the Genetic and Evolutionary Computation Conference Companion. Association for
Computing Machinery (ACM), 2022, pp. 2071–2079

[HKP20a] Hansmeier, T.; Kaufmann, P.; Platzner, M.: An Adaption Mechanism for the Error
Threshold of XCSF. In: GECCO ’20: Proceedings of the Genetic and Evolutionary
Computation Conference Companion. Association for Computing Machinery (ACM),
2020, pp. 1756–1764

[HKP20b] Hansmeier, T.; Kaufmann, P.; Platzner, M.: Enabling XCSF to Cope with Dynamic
Environments via an Adaptive Error Threshold. In: GECCO ’20: Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion. Association for Computing
Machinery (ACM), 2020, pp. 125–126

[HP21] Hansmeier, T.; Platzner, M.: An Experimental Comparison of Explore/Exploit Strategies
for the Learning Classifier System XCS. In: GECCO ’21: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. Association for Computing Machinery
(ACM), 2021, pp. 1639–1647

[HP22] Hansmeier, T.; Platzner, M.: Integrating Safety Guarantees into the Learning Classi-
fier System XCS. In: Applications of Evolutionary Computation, EvoApplications 2022,
Proceedings. Vol. 13224. Lecture Notes in Computer Science. Springer International
Publishing, 2022, pp. 386–401

[JM14] Jin, M.; Maruyama, T.: Fast and Accurate Stereo Vision System on FPGA. In: ACM
Transactions on Reconfigurable Technology and Systems (TRETS) 7 (Feb. 2014), no. 1,
3:1–3:24.

[Ken16] Kenter, T.: Reconfigurable Accelerators in the World of General-Purpose Computing.
PhD thesis. Paderborn University, 2016.

[KSP15] Kenter, T.; Schmitz, H.; Plessl, C.: Exploring Trade-Offs between Specialized Dataflow
Kernels and a Reusable Overlay in a Stereo Matching Case Study. In: Int. Journal of
Reconfigurable Computing (IJRC) (2015), pp. 1–24

[LKEW] Lösch, A.; Knorr, C.; El-Ali, A.; Wiens, A.: Ampehre: Accurately Measuring Power and
Energy for Heterogeneous Resource Environments. http://ampehre.uni-paderborn.de/. Last
accessed on Jan 3, 2023

[LP17] Lösch, A.; Platzner, M.: reMinMin: A Novel Static Energy-Centric List Scheduling
Approach Based on Real Measurements. In: Proceedings of the 28th Annual IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Processors (ASAP).
2017

[LP18] Lösch, A.; Platzner, M.: A Highly Accurate Energy Model for Task Execution on Hetero-
geneous Compute Nodes. In: 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2018

[LP20] Lösch, A.; Platzner, M.: MigHEFT: DAG-based Scheduling of Migratable Tasks on
Heterogeneous Compute Nodes. In: 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 2020

[LWP18] Lösch, A.; Wiens, A.; Platzner, M.: Ampehre: An Open Source Measurement Framework
for Heterogeneous Compute Nodes. In: Proceedings of the International Conference
on Architecture of Computing Systems (ARCS). Vol. 10793. Lecture Notes in Computer
Science. Springer International Publishing, 2018, pp. 73–84

[MKP20] Meyer, M.; Kenter, T.; Plessl, C.: Evaluating FPGA Accelerator Performance with
a Parameterized OpenCL Adaptation of Selected Benchmarks of the HPCChallenge
Benchmark Suite. In: 2020 IEEE/ACM International Workshop on Heterogeneous High-
performance Reconfigurable Computing (H2RC). IEEE. 2020, pp. 10–18

Hansmeier, Kenter, Meyer, Riebler, Platzner, Plessl Subproject C2

[MKP22] Meyer, M.; Kenter, T.; Plessl, C.: In-depth FPGA accelerator performance evaluation
with single node benchmarks from the HPC challenge benchmark suite for Intel and Xilinx
FPGAs using OpenCL. In: Journal of Parallel and Distributed Computing 160 (2022),
pp. 79–89.

[MKP23] Meyer, M.; Kenter, T.; Plessl, C.: Multi-FPGA Designs and Scaling of HPC Challenge
Benchmarks via MPI and Circuit-Switched Inter-FPGA Networks. In: (2023).

[Mol11] Moll, S.: Decompilation of LLVM IR. In: Master’s thesis (2011)

[MSZ+11] Mei, X.; Sun, X.; Zhou, M.; Jiao, S.; Wang, H.; Zhang, X.: On Building an Accurate
Stereo Matching System on Graphics Hardware. In: Proc. ICCV Workshop on GPU in
Computer Vision Applications (GPUCV). IEEE, 2011

[RVKP18] Riebler, H.; Vaz, G.; Kenter, T.; Plessl, C.: POSTER: Automated Code Acceleration
Targeting Heterogeneous OpenCL Devices. In: (2018)

[RVKP19] Riebler, H.; Vaz, G.; Kenter, T.; Plessl, C.: Transparent Acceleration for Heterogeneous
Platforms With Compilation to OpenCL. In: ACM Transactions on Architecture and Code
Optimization (TACO) 16 (2019), no. 2, pp. 1–26

[SHW+14] Shan, Y.; Hao, Y.; Wang, W.; Wang, Y.; Chen, X.; Yang, H.; Luk, W.: Hardware Accelera-
tion for an Accurate Stereo Vision System Using Mini-Census Adaptive Support Region.
In: ACM Transactions on Embedded Computing Systems (TECS) 13 (Apr. 2014), no. 4s,
132:1–132:24

[TLLA14] Tippetts, B.; Lee, D. J.; Lillywhite, K.; Archibald, J. K.: Hardware-Efficient Design of
Real-Time Profile Shape Matching Stereo Vision Algorithm on FPGA. In: Int. Journal of
Reconfigurable Computing (IJRC) (2014)

183

Subproject C4:

On-The-Fly Compute Centers II: Execution of Composed Services in

Configurable Compute Centers

Holger Karl3, Marten Maack2, Friedhelm Meyer auf der Heide2, Simon
Pukrop2, Adrian Redder1

1 Department of Computer Science, Paderborn University,
Paderborn, Germany

2 Heinz Nixdorf Institute and Department of Computer
Science, Paderborn University, Paderborn, Germany

3 Hasso Plattner Institute, University of Potsdam,
Potsdam, Germany

1 Introduction

OTF compute centers are intended to exploit and support the characteristics of OTF services.
They also are expected to exist at various scale, ranging from full-fledged data centers
down to edge-computing semi-racks or even smaller. A characteristic of OTF services is
that they are composed of components with explicit, quantitative meta data about those
compositions – e.g., resource consumption per component, data flows between components,
etc. OTF centers should therefore exploit this meta data to improve service performance
and system efficiency. Moreover, OTF centers can be typically highly heterogeneous,
having various types of computation units and persistent storage units. If a service provides
metadata about its performance on different types of computation units, such information
is also used to make better scheduling decisions as well. OTF centers also have one or
more networks that connect these resources with each other. An OTF service can be
provided by a single or several cooperating (sometimes also competing), geographically or
organizationally distributed OTF compute centers. If necessary, they are supplemented by
resources temporarily rented from the cloud.

The OTF services to be executed are usually composed of several interlinked, interacting
components. Ideally, information about resource consumption, such as runtime and mem-
ory, is available for these components, possibly for different computing units such as CPUs,
GPUs, and FPGAs. Information about the interaction of these components is available,
such as the amount of data to be exchanged and minimum data rate requirements.

We have focused on resource management within as well as between data centers. We
have worked from abstract, algorithmic models to very concrete framework-specific
aspects, with methodological lines ranging from approximation and online algorithms with
provable quality guarantees to system design and evaluation platforms. In doing so, we

holger.karl@hpi.de (Holger Karl), marten.maack@hni.upb.de (Marten Maack), fmadh@upb.de (Friedhelm
Meyer auf der Heide), simonjp@hni.upb.de (Simon Pukrop), aredder@mail.upb.de (Adrian Redder)

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

have considered not only classical efficiency metrics such as throughput or utilization, but
also energy consumption, for example.

In Section 2.1: Approximation Algorithms for Scheduling, we deal with the complexity of
variants of scheduling problems. For this, we introduce new, and extend known models
that capture important properties and features such as energy efficiency, the problems
arising when global resources are available, the impact of setup times in reconfigurable
systems, and the challenges arising when the compute center may delegate parts of the
work to clouds. In these theoretical investigations, we have concentrated on algorithmic
and complexity-theoretic approaches. On the one side, we have proven hardness results;
on the other, we have developed approximation algorithms and proven bounds on their
approximation quality.

In Section 2.2: Distributed Execution of Service Chains, we present extensions of formal
description techniques towards OTF services. Further model extensions describe heteroge-
neous but interchangeable resources (e.g., CPU vs. FPGA). Based on these models, we
have developed algorithms and mechanisms: which resources (data rate, compute capacity,
. . .) are allocated to which component to which task on which server. We have considered
algorithms for both offline and online variants and have evaluated them both experimentally
and theoretically. Hand in hand with the experimental analyses, we have also used the
properties of real input streams (actual traces) as a starting point for modeling such streams
in order to perform more realistic experimental analyses. In addition, we have developed
heuristic or approximate solutions for these resource management problems and applied
experiments and competitive analysis to evaluate their quality, partly based on realistic
workloads.

2 Main Contributions

We structure the description of the main contributions of our subproject into the above-
mentioned two sections.

2.1 Approximation Algorithms for Scheduling

The area of scheduling generally deals with the planned processing of tasks. From a
computation perspective, addressing this topic leads to optimization problems that are
typically combinatorial in nature and—in all but the simplest cases—NP-hard.17 Hence,
even if the complete instance of such a problem is known, there is little hope for an efficient
algorithm that is guaranteed to find an optimal solution. One way of approaching this
problem is to design algorithms that guarantee a certain quality in the produced solutions.
In particular, an α-approximation for an optimization problem is guaranteed to produce a
solution with an objective value that is within a factor of α of the optimum. The parameter
α is called the approximation ratio or guarantee and, if not stated otherwise, the term
approximation algorithm is used for algorithms that have a running time bounded by a
polynomial in the input length of the problem. One of the earliest works in this direction
was done by Graham [Gra66] in the 1960s regarding a fundamental scheduling problem.
17They cannot be solved efficiently if P , NP, which is generally assumed to be true.

2. Main Contributions 185

L = ()

L′= ()

Figure 48: A simple example for a scheduling problem with 12 unit time jobs with prece-
dence constraints and three machines. For the first provided list L the list
scheduling algorithm yields a schedule with makespan six while 4 is optimal.
Generalizing this example, ratios arbitrarily close to 2 may occur. The list
scheduling algorithm would have found an optimal schedule given list L′.

We briefly discuss this classical result to make the topic more tangible and to introduce
some of the basic concepts.

In the respective problem, a given set of jobs has to be assigned to a set of identical
machines. Each job j has a processing time p j, and between any pair of jobs (j, j′) there
may be a precedence constraint j ≺ j′, that is, job j′ can be processed only after job j is
completed in this case. Furthermore, once the processing of a job is started, it cannot be
interrupted (no preemptions), and the objective is to minimize the point in time in which
the last job is completed—the makespan. Graham [Gra66] introduced the list scheduling
algorithm for this problem, which arranges the jobs in a list and always schedules the first
job on the list for which all precedence constraints are satisfied at the next possible time
that is as soon as there is an idle machine. In this work, it was shown that list scheduling
is a 2-approximation by considering two cases: Either all machines are working, or there
are idle machines. In the first case, the algorithm behaves optimally, and in the second,
either there are no more jobs or all the remaining jobs depend on the ones that are being
executed. The latter observation can be used to bound the times with idle machines
against the length of the longest chain of succeeding jobs which, in turn, is a lower bound
for the optimum. Hence, both the times with and without idle machines can be upper
bounded by the optimum, yielding the proof that list scheduling is a 2-approximation.18

In Figure 48, an example is provided showing that the analysis cannot be substantially
improved. Essentially, the best we can hope for regarding approximation algorithms for
NP-hard problems are so-called approximation schemes: A polynomial time approximation
scheme (PTAS) is a family of approximation algorithms (with polynomial running time)
that provide a (1 + ε)-approximation for each ε > 0. Moreover, if the running time of
the scheme is bounded by a polynomial in both the input length and 1/ε, it is called fully
polynomial (FPTAS).

Interestingly, the list scheduling algorithm essentially still works in an online setting where
the jobs are revealed over time during the processing time (they can be appended to the
list). It is easy to see that in such an online algorithm, no algorithm can be guaranteed

18The actual analysis is slightly sharper.

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

to find an optimal solution for each input instance. However, there is an established way
to measure the quality of an online algorithm that is closely related to the concept of
approximation algorithms. In particular, it is considered c-competitive if the objective
value achieved by the algorithm is guaranteed to be within a factor of c of an optimal offline
solution.19 Note that since the algorithm cannot know when the instance is completed, it
has to maintain the above property for the respective instance seen so far. Coming back
to the list scheduling algorithm as an example, it is easy to see that it barely uses any
information about the instance, which is why the mentioned analysis can be adapted to
show that it is 2-competitive.

Since the 1960s, the study of scheduling problems has expanded massively both in breadth
and depth. For a broad overview, we refer to the textbook by Pinedo [Pin16]. In the context
of the present subproject, however, approximation algorithms and to a much smaller extent,
online algorithms have primarily been considered for areas of scheduling with particular
relevance to OTF computing. In the following, we discuss the most prominent of the
considered directions and highlight some of the most important results achieved in the
subproject. Here we put the strongest focus on the topic we have dealt with the most at the
end of the project, that is, cloud assisted scheduling.

2.1.1 Energy-Efficient Scheduling

In the study of scheduling, there is typically a strong focus on optimizing performance.
Indeed, probably the most studied objective function in scheduling is the makespan,
that is, the point in time the last task of an instance is completed. In many contexts,
however, performance is neither the only nor the most important factor to consider, and
one additional aspect that is of particular importance in today’s world is energy efficiency.
It is not quite obvious how to best capture energy consumption in a theoretical model, but
a very influential approach to do so was introduced in 1995 by Yao et al. [YDS95] in a
seminal work: In the speed-scaling model, the clock rates of processors can be changed
at runtime, with slower clock rates resulting in lower overall energy consumption for the
computation. A crucial factor is that the energy consumption grows superlinearly with the
clock rate, with experiments pointing to growth with the third to fifth power in the clock
rate for some real-world settings [BBS+00]. Moreover, the model relates to real-world
techniques such as AMD’s PowerNow! or Intel’s SpeedStep.

As hinted above, a typical function modeling the energy consumption is of the form of sα,
where s is the clock speed of the processor, and α is a constant, usually between 3 and 5.
In the classical work by Yao et al. [YDS95], a set of given jobs with different release dates,
deadlines, and workloads has to be scheduled preemptively—the processing of a job may
be interrupted, and resumed at a later time—on a single speed-scalable processor. The goal
is to finish all the jobs in an energy-minimal way and both offline and online approaches
are provided to that end. In a later work due to Chan et al. [CLL11], jobs are additionally
associated with values and it is no more required to finish all jobs before their deadline but
rather a combined objective of spend energy and lost profit is considered.

In [KP13], we generalize and improve upon the work by Chan et al. [CLL11]. We

19Depending on the problem, the concept is sometimes defined slightly differently, that is, up to additive
constants.

2. Main Contributions 187

consider the online setting and develop a combinatorial greedy algorithm that guarantees a
competitive factor of αα, which is optimal at least for greedy algorithms. In [CLL11], on
the other hand, a (αα + 2eα)-competitive algorithm was presented for the single processor
case. Moreover, the analysis of the algorithm uses techniques that are significantly different
from the typical potential function argument. We utilize well-known tools from convex
optimization and duality theory, in particular those that have already proved useful in the
original work by Yao et al. [YDS95]. The developed algorithm, in some sense, can be
seen as a combination of similar convex programming techniques with a carefully crafted
greedy approach.

In [ABC+17], we consider a relaxed version of one of the central problems in speed-
scaling: scheduling with respect to a combined objective of energy consumption and
response time. While the problem regarding unit-sized jobs was well understood before,
our results explore two important additional aspects, namely, arbitrary job sizes and discrete
speed levels, which arguably model actual technology more accurately. Our results in
[ABC+17] represent the first step in several years to solve the complexity question of this
problem. More precisely, for the relaxation with fractional response times, we provide
an efficient and optimal algorithm that follows a geometric approach utilizing certain
structural properties that are obtained from an integer linear program and its dual.

2.1.2 Scheduling with Global Resources

In many real-world scheduling scenarios, different machines are connected via additional
shared resources. Early considerations in this direction have already been made in the
1970s by Garey and Graham [GG75] building on the seminal work due to Graham [Gra66],
discussed above. However, in the scheduling literature processors are very often assumed
to be independent of each other. In contrast, we have considered models in which m
identical machine share one additional resource, corresponding to, for instance, the data
rate of a memory bus connecting processors being limited. The tasks to be processed are
described by their processing times and resource requirement. The scheduler distributes
tasks to processors and manages the access of the processors to the shared resource. If
a task receives only a fraction of its resource requirement in a time step, its execution is
slowed down accordingly. For example, a job of size p can be processed in p time units
if it receives its full resource requirement in each time step. If it receives only half of its
request in each time step, the processing time increases to 2p. The goal is to minimize the
makespan. Our key results regarding this scheduling problem are presented in [KMRS17].
We show the problem to be NP-hard and provide an efficient approximation algorithm with
an approximation ratio of 2 + 1/(m−2). The algorithm utilizes a sliding windows approach
that considers jobs ordered by non-decreasing resource requirement and, for each time
step, tries to find a subset of consecutive jobs such that all but one can be completed using
the full resource. Furthermore, we consider a variation of this model involving composed
tasks consisting of multiple components, each of which has its own resource requirement.
A task is completed when all of its components are completed and the goal is to minimize
the average completion time of all task. We again show the problem to be NP-hard and
provide an approximation algorithm with a ratio 2 + 4/(m− 3) up to an additive constant.

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

2.1.3 Scheduling with Setup Times

In reconfigurable systems such as systems of FPGAs, a considerable amount of hardware
configuration may be required when switching between tasks of different types. For
scheduling in such systems, we have investigated a straightforward model in which we
consider n tasks divided into k classes on a set of m processors. The processors have to
be reconfigured to process the different classes. That is, each time a batch of jobs from
a fixed class is to be processed on a processor a (possibly class dependent) setup time
has to be paid. In [MMMR15], we provided the first results regarding this model with
identical machines, including a (3/2 + ε)-approximation and an FPTAS for the case with a
constant number of machines. This first result has quickly inspired further investigations
from other researchers. For instance, Jansen and Land [JL16] provided a very simple and
fast 3-approximation as well as a PTAS for the problem. In a follow-up work [JMM19],
we considered generalized machine models: First, we developed a PTAS for the case with
uniformly related machines, where the processing time of a job (and the setup time of a
class) is scaled according to a machine-dependent speed factor. In the case of unrelated
processing times (and setup times), we showed that no approximation algorithm with ratio
Ω(log n log m) is possible unless a common hypothesis from complexity theory fails. We
also provided a randomized algorithm with a matching upper bound. Lastly, we considered
variants on identical machines with assignment restrictions and provided both hardness
results and constant factor approximation algorithms.

2.1.4 Cloud Assisted Scheduling

Nowadays, a big part of web traffic and computational tasks are handled by large cloud
providers such as Amazon Web Services and Microsoft Azure. Naturally concluding from
that, a part of the CRC considered a setting in which computational resources are rented
from cloud providers, exclusively or additionally. We present two different approaches,
one where all jobs must be scheduled in the cloud and another where we own some free
hardware that can be enhanced by rented cloud machines.

Cost-efficient scheduling on machines from the cloud: We consider the former approach
in [MMMR18]. In that model, an online scheduler has to rent machines of a certain type
for some arbitrary duration to ensure that all jobs can be scheduled before their respective
deadline. Additionally, there is some machine-type dependent setup time s, before a
newly rented machine can be used. The goal is naturally to minimize the cost paid to
rent the machines. To be more specific, we assume that there are exactly two different
machine-types, which differ in their price and their setup time. Jobs, on the other hand,
consist of some processing time per machine-type, a release date, and a deadline. A critical
parameter in this paper is the minimum slack β, which is the minimum time between any
job release and the latest point where that job has to be scheduled to hit its deadline. Our
paper has two main results: First, if the setups are large in comparison to the minimum
slack (s > β) no finite competitiveness is possible. Secondly, if β = (1 + ε)s, for some ε
with 1/s ≤ ε ≤ 1, we give an algorithm that only depends on ε and the ratio of machine
prices, and is proven to be optimal up to a factor of O(1/ε2).

Server cloud scheduling: In [MMP21] we both incorporate the possibility to allow some
already owned hardware that can be augmented via the cloud, as well as imagining a big

2. Main Contributions 189

task that can be represented as a graph of small jobs that depend on each other. This
later part of our research combines various properties from different scheduling models,
of which most have already been studied individually. Those are, in no particular order,
unrelated machines, cost minimization for rentable machines, precedence constraints
between jobs, and communication delays between the types of machines. We try to present
this model in a bit more detail and describe one of the two main results.

We consider a scheduling problem S CS in which a task graph G = (J , E) has to be
scheduled on a combination of a local machine (server) and a limitless number of remote
machines (cloud). The task graph is a directed, acyclic graph. Each job j ∈ J has a
processing time on the server ps(j) and on the cloud pc(j). The values of ps and pc can
be arbitrary in N0, meaning that the server and the cloud are unrelated machines. An
edge e = (i, j) denotes precedence, i.e., job i has to be fully processed before job j can
start. Furthermore, an edge e = (i, j) has a communication delay of c(i, j) ∈ N0, which
means that after job i finished, j has to wait for an additional c(i, j) time steps before it
can start, if i and j are not both scheduled on the same type of machine (server or cloud).
A schedule π is a partition of the jobs into two sets: jobs processed on the server and the
cloud, respectively. Additionally, a schedule assigns some starting time to each job. The
cost (cost) of the schedule is then the total processing time of jobs processed on the cloud,
and the makespan (mspan) is the completion time of the last job. For a schedule to be
feasible, the following conditions must hold:

• Each job only starts after it is available, which means that all predecessors have
finished processing and relevant communication delays have passed.

• No two jobs process on the server in parallel.

• If there is a budget, the cost may not exceed it.

• If there is a deadline, the mspan may not exceed it.

Naturally, if there is a budget, the goal is to minimize the deadline. If there is a deadline,
the goal is to minimize the cost.

We categorize different sub-problems by their task graph structure and different processing
times. The main results are an FPTAS with respect to the makespan objective for a fairly
general case and strong hardness for the case with unit processing times and delays.

Imagine a task graph drawn in such a way that every edge goes from left to right. Now
assume that we split the jobs in this task graph into a left part (Jl) and a right part (Jr), so
that there are edges fromJl toJr, but no edges fromJr toJl. In other words, in a running
schedule, Jl and Jr could represent already processed jobs and still be processed jobs,
respectively. For any given task graph, we call the maximum number of edges between Jl

andJr the maximum cardinality source and sink dividing cut of the graph. We discuss how
to solve or approximate S CS problems with a constant size cut, but otherwise arbitrary task
graphs. We present the deadline-confined cost minimization; in the paper, we also show
how to adapt this to the budget-confined makespan minimization. We start by describing
a dynamic program to optimally solve instances of S CS with arbitrary task graphs. At
first, we will not confine the algorithm to polynomial time. Consider a given problem
instance with G = (J , E), processing times ps(j) and pc(j) for each j ∈ J , communication
delays c(i, j) for each (i, j) ∈ E, and a deadline d. We define intermediate states of a
(running) schedule as the states of our dynamic program. Such a state contains two types

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

j0

j1

j2

Figure 49: Example for a small task graph with some state of a schedule. j0, j1 and j2

represent jobs that are already processed but have some unprocessed successor
remaining. Open edges are marked orange.

of variables. First, we have two global variables, how many time steps have passed since
the beginning and the number of consecutive time steps the server has been idling (counted
from end to start). The second type is defined per open edge. An open edge is a e = (j, k)
where j has already been processed, but k has not. For each such edge e = (j, k) add the
following variables: the edge itself, whether j was processed on the server or the cloud,
and the number of time steps passed that passed since j’s completion. Note here that we
purposefully drop the completion time and location of every processed job without open
edges, as those are not important for future decisions anymore. There might be multiple
ways to reach a specific state, but we only care about the minimum possible cost to achieve
that state, which is the value of the state. We iteratively calculate the value of every state
reachable in a given time step = 0, 1, 2, This state forms the beginning of our state
list. We exhaustively calculate every state that is reachable during a specific time step,
given the set of states reachable during the previous time step. Intuitively, we try every
possible way to "fill up" the still undefined time windows of the server idling, and time
passed since some j of an open edge was completed. After the current time step reaches
our deadline, we can select the cheapest option from among the states to get the optimal
schedule. This algorithm is polynomial in the deadline, but that can be exponential in the
input size. To get an approximation algorithm that is polynomial in the input size, we
scale all processing times in relation to the deadline and the input size. While doing so,
we can (1 + ε)-approximate the optimal solution in time poly(n, ε), for any ε > 0, which
in turn means that we described an FPTAS for this problem. The other main result of the
paper is a proof that the S CS problem is strongly NP-hard, even if all processing times
and communication delays are equal to 1.

2.2 Distributed Execution of Service Chains

For the entire duration of the CRC, we have worked on basically the same scenario:
the distributed execution of service chains in a complex infrastructural concept. Let us
dissemble these terms first before digging into any more detailed contribution descrip-
tions. First, the services we are considering are not monolithic services provided by a

2. Main Contributions 191

single executable, e.g., a server process running somewhere. In line with developments
in software engineering, a monolithic service executable is broken down into smaller
independently executable pieces of software. They are connected together to collectively
provide a service. The load in such a scenario can widely differ: A service may be invoked
once by an individual user or repeatedly; a more interesting case is when a whole user
population requests a service for repeated execution, an entire stream of requests arrives.
The underlying infrastructure in such cases can be quite diverse: It can run from a tightly
controlled data center to an edge-computing scenario in wide-area networks that is still
under operational control of a single entity, to services and/or user populations that are
spread over many administrative domains with independent control. In all these scenarios,
there is a range of typical problems to solve in order to deal with load:

1. How many instances of a particular component service should be executed?

2. Where should these instances be placed?

3. Which request from which user is assigned to which instance; after processing one
step in a service chain, requests from which instance are forwarded to which other
instance?

These problems are known as the scaling, placement, and routing problems for service
chains. In addition, there are further problems to solve, such as state management, deploy-
ing executable artefacts, etc. Most of the work described in this section deals with these
problems under different perspectives.

In the following subsections, we first describe our contributions to these problems in
the context of computing inside a wide-area operator network (In-network computing;
Sections 2.2.1, 2.2.2, 2.2.3). Finally, in Section 2.2.4, we consider data center scenarios.

2.2.1 Description Techniques

When trying to deploy a service into a network, it is necessary to understand the character-
istics and properties of such a service. From a purely functional perspective, it suffices to
think of a service chain as a graph of atomic components, connected in a direct (typically,
acyclic) graph with explicitly marked ingress and egress points. During operation, that
knowledge suffices to forward one request along the chain (with additional information to
which particular instance to forward to).

But during deployment (and reconfiguration), only functional information is insufficient to
properly dimension resources. A better understanding of the required resources that a ser-
vice or its components need is required. More specifically, what is the relationship between,
on one hand (a) the load a component has to process (e.g., as a rate of temporal Poisson
process) and (b) the resources that are assigned to it (e.g., the number of virtual cores, in a
normalized manner) and, on the other hand, the resulting performance of such a component,
e.g., the throughput it can sustain or the per-request delay. In early publications in this
context, we have derived description formats to express such load-resource-performance
profiles in a standardized manner, for individual components, services, and recursively
defined services.

Here, we want to emphasize an aspect that has received little consideration and was first
investigated in [SSKW19], jointly with colleagues from other CRC projects. The question

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

occurs what happens if the service graph splits into multiple paths from ingress to egress
or if the service is request/reply-style, expecting an answer. Then, it matters whether
subreplies from individual paths can be used independently or whether they need to be
synchronized. Reference [SSKW19] shows that, all else being equal, this information
matters for optimal deployment. That reference also introduced a Petri-net-based formalism
to express such synchronization properties. Starting from a modeling formalism, we show
that it is possible to automatically generate simulation programs or input files for Petri net
solvers to assess the performance of concrete services. Moreover, thus modeled services
can be fed into orchestration system that can leverage information about synchronization
requirements for better orchestration decisions.

2.2.2 Orchestration

The above section has already mentioned the notion of “orchestration”—it is an umbrella
term to capture all decisions that need to be taken when deploying a distributed service into
a concrete infrastructure (e.g., as mentioned above, scaling, placement, and routing). In this
section, we describe various algorithmic problems that we have talked in the orchestration
context.

Conventional Orchestration Approaches A “conventional” approach is an approach
that assumes full knowledge about the services to be orchestrated and their constituting
performance profile, about the underlying infrastructure, and about the load patterns.
This line of work culminated, in a sense, in Reference [DKM18]. The JASPER system
proposed therein combined most of the aspects we had considered in previous papers and
automatically deals with scaling, placement, and routing. It takes service templates and
monitoring data of the underlying infrastructure as input and solves scaling, placement,
and routing in an integrated optimization process (Figure 50), unlike separated, individual
processes that were common in the literature before that. It handles dynamically adding
services and services that terminate after completion, taking account of the current resource
situation, and uses service templates in line with what was described before in Section 2.2.1.
The reference also shows that the considered problem is NP-complete (via a set cover
reduction proof). JASPER is also flexible in the way different optimization objectives can be
combined and in that constraint violations can be acceptable, but their number is minimized.
The solution approach is a mixed-integer linear program, with the typical limitations on
problem size and require solution time. These limitations are amended by a heuristic. At
the time of publication, a fairly unique feature of the heuristic was its capability to start
from an existing solution and look for small modifications to accommodate new services
upon arrival (Figure 51). This is considerably faster than always starting from scratch with
marginal reductions of solution quality.

As a more specific example of optimization potential, we point out Reference [KK17]. It
was one of the first papers to look at optimizing response time for such service chains,
conceiving of the entire system as a queuing system where queuing delay is a dominant
contributor to delay. The challenge was to find a good comprise for the non-linear time-
in-system formula in a queuing system. We tackled this by developing a custom-tailored
linear approximation to be used in a linear optimization program.

2. Main Contributions 193

Service

Template

Service

Template

JASPER:

Joint scaling, placement,

and routing

Services deployed on the

substrate network

M
o
n
it
o

ri
n
g

Figure 50: Main control loop of the inte-
grated JASPER approach for
orchestration (based on Fig-
ure 2 in [DKM18]).

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, MONTH YEAR 11

Algorithm 2 Auxiliary methods of the heuristic
1: /* Decrease the flows on the edges in E by �� in total */
2: procedure DECREASE(E,��)
3: sort E in non-decreasing order of flow data rate
4: for all e 2 E while flow data rate �(e) �� do
5: �� := �� � �(e)
6: remove e
7: if �� > 0 then
8: let e be the next edge
9: reduce flow of e by a factor of (�(e) � ��)/�(e)

10: /* Increase the flows in � leaving output k of instance i by ��
in total */

11: procedure INCREASE(i,k,�,��)
12: for all arc (c(i), j) leaving output k of c(i) do
13: if öi0 2 IOL with c(i0) = j and ii0 2 EOL then
14: ' := CREATEINSTANCEANDFLOW(j, i, ��)
15: �� := �� � (data rate of ')
16: � := � [{'}
17: for all ' 2 � do
18: d := INCRFLOW(',��)
19: �� := �� � d
20: while �� > 0 do
21: (c(i), j): random arc leaving output k of c(i)
22: ' := CREATEINSTANCEANDFLOW(j, i, ��)
23: �� := �� � (data rate of ')
24: /* Create an instance of component j with flow from instance i

of high data rate (capped at cutoff) */
25: procedure CREATEINSTANCEANDFLOW(j,i,cutoff)
26: for all v 2 V do
27: create temporary instance i0 of j on v
28: ': flow of data rate 0 from i to i0
29: INCRFLOW(',cutoff)
30: remove i0 and '

31: create instance of j on node resulting in best flow
32: /* Increase flow data rate by at most d */
33: procedure INCRFLOW(',d)
34: v := start node of '
35: v0 := end node of '
36: �1 := maximum flow based on capCPU (v0)
37: �2 := maximum flow based on capmem(v0)
38: d := min(d, �1, �2)
39: P: v { v0 path of high bandwidth (b) and low latency
40: increase ' by min(b, d) along P

INCREASE to create a new instance of a component together
with a flow from an existing instance), all nodes of the
substrate network are temporarily tried for hosting the new
instance. The candidate that leads to the best flow is selected
(lines 26–31). Finally, the INCRFLOW procedure (called by
both INCREASE and CREATEINSTANCEANDFLOW) increases
the data rate of a flow along a new path (lines 34–40).

As can be seen, we avoid computing maximum flows. This
is because the running time of the best known algorithms for
this purpose are worse than quadratic with respect to the size of
the graph [31]. Since these subroutines are run many times, the
high time complexity would be problematic for large substrate
networks. Instead, each run of INCRFLOW increases a flow
only along one new path. For finding the path, a modified best-
first-search [32] is used, which runs in linear time. It should
be noted that split flows can still be created if INCRFLOW is
run multiple times for a flow.

When improving a flow and when selecting from multiple
possible flows, the INCRFLOW and CREATEINSTANCEAND-

1
2
3

4 5
67
89

0

Fig. 5. Example substrate network

Node 1
Capacity: 100

Used: 80
S
0

FW
17

DPI
37

AV
9

PC
17

8

8

44

(a) Initial
embedding

Node 1
Capacity: 100

Used: 100
S
0

FW
31

DPI
40.43

AV
9.86

PC
18.71

15

8.86

4.434.43

Node 3
Capacity: 100

Used: 50

DPI
29.57

AV
7.14

PC
13.29

3.073.07

6.14

(b) Result of
increased source data
rate

Node 1
Capacity: 100

Used: 100
S
0

FW
31

DPI
40.43

AV
9.86

PC
18.71

15

8.86

4.434.43

Node 3
Capacity: 100

Used: 84

DPI
49

AV
12

PC
23

5.505.50

6.14

Node 9
Capacity: 100

Used: 100
S
0

FW
29

DPI
41.57

AV
10.14

PC
19.29

14

9.14

4.574.57

4.86

(c) Result of the emergence of a
second source

Fig. 6. Illustrative example: Each component is shown with its CPU demand
(memory values not shown for better readability)

FLOW routines must strike a balance between flow data rate
and the increase in overall delay of the solution. Our strategy
for comparing two possible flows is to first compare their data
rates and compare their latencies only if there is a tie. This
strategy is used in line 31 to select the best flow. The rationale
is that selecting flows with high data rate leads to a small
number of instances to be created. However, we also employ
a cutoff mechanism: flow data rates above the cutoff (the
increase in data rate that we want to achieve) do not add more
value and are hence regarded to be equal to the cutoff value.
This increases the likelihood of a tie, so that the tie-breaking
method of preferring lower latencies is also important. An
analogous strategy is used in line 39 to compare paths: the
primary criterion is to prefer paths with higher bandwidth –
up to the given cutoff d – and, in case of a tie, to prefer paths
with lower latency. For finding the best path, a modified best-
first-search is used, in which the nodes to be visited are stored
in a priority queue, where priority is defined in accordance
with the comparison relation described above.

VIII. EVALUATION

We implemented the presented algorithms in the form of a
C++ program. For solving the MILP, Gurobi Optimizer 7.0.16

was used. For substrate networks, we used benchmarks for the
Virtual Network Mapping Problem7 from Inführ and Raidl
[33]. As service templates, we used examples from IETF’s
Service Function Chaining Use Cases [34].

A. An example

First, we illustrate our approach on a small substrate net-
work of 10 nodes and 20 links (see Fig. 5) in which the
CPU and memory capacity of each node is both 100. In
this network, a service consisting of a source (S), a firewall

6http://www.gurobi.com/
7https://www.ac.tuwien.ac.at/files/resources/instances/vnmp

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2018.2846572

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Figure 51: Steps of JASPER when load
situation changes (Figure 6 in
[DKM18]).

across different nodes in the network. Requests need to traverse
instances of all service components in the specified order.

An instance can process multiple requests in parallel, pos-
sibly belonging to different services. In doing so, it requires
resources proportional to the total data rate it is processing. In
particular, we model resource requirements as linear function
c(�) = ↵c · � of the total traversing data rate �. All
instances of a component c have the same component-specific
coefficient ↵c. Furthermore, components may augment or
compress traversing data affecting the data rate (e.g. WAN
optimizers) [30]. Function µc(�) = �c ·� defines the outgoing
data rate for instances of component c, based on the total
traversing data rate � and coefficient �c. While such linear
functions are a fairly accurate representation of real-world
component characteristics [31], [32], the model can easily be
extended to more flexible piece-wise linear functions [33].

We adopt the perspective of serverless computing and focus
on inter-node coordination. When instantiating a component c
on node v, we assume that within node v (intra-node) a system
like Kubernetes [36] or an operating system transparently
deploys c on the node’s internal resources (machines, cores).

IV. HIERARCHICAL COORDINATION APPROACH

The main idea of our approach is to divide the network into
smaller domains and coordinate them in a hierarchical manner.
Each domain is a part of the network that may recursively
consist of sub-domains, forming a hierarchy. This hierarchical
approach allows both efficient parallel coordination of different
domains yet necessitates coordination between domains for
highly optimized results. We assume that dividing the network
into hierarchies of domains and sub-domains is out of scope
and happens before coordination starts, e.g., based on node
locality or business aspects. Our approach is not tied to any
structure and works with any given domains and hierarchies.

Given domains and hierarchies, our approach consists of two
phases: First, domains aggregate and advertise relevant infor-
mation (e.g., about available resources) to their coordinators
in a bottom-up manner. Second, based on this information,
the coordinators make coordination decisions in a top-down
manner. We choose top-down coordination to allow high-level
coordinators to optimize inter-domain decisions and guide
lower-level coordinators. Starting coordination directly at a
lower level would often lead to worse solutions. We ensure that
each high-level coordination decision can be further refined
into a feasible solution or directly reject requests at the top
level. Hence, we avoid overhead of jumping up and down
between levels to backtrack and fix infeasible embeddings.
To enable efficient top-down coordination, a main challenge
is advertising relevant but aggregated information from lower
levels in phase 1. More detailed information allows higher
quality coordination but also increases complexity. In the fol-
lowing, we introduce our notation for domains and hierarchies
and describe the two phases in more detail (see Alg. 1).

Algorithm 1 Hierarchical Coordination Algorithm

1: for k = 1 up to k̂ � 1 do . Phase 1
2: for i 2 {1, ..., nk�1} in parallel do
3: Aggregate sub-domain information as D̄k�1

i

4: Advertise D̄k
j = {D̄k�1

i |8i} to coord. j on level k +1

5: for k = k̂ down to 1 do . Phase 2
6: for j 2 {1, ..., nk} in parallel do
7: Embed request rk

j into D̄k�1
j by solving the MILP

8: Split request rk
j into rk�1

i for all coord. i on k� 1

Fig. 1: Example with k̂ = 2 hierarchies. Ingress and egress
nodes are shown in blue and border nodes in orange.

A. Domains and Hierarchies

We denote the total number of hierarchical levels as k̂
and a specific level as k k̂ 2 N0, where k = 0 is the
substrate network G = G0. In the example of Fig. 1, the
substrate network G0 = (V 0, L0) is split into n0 = 3 separate
domains D0

1, D
0
2, D

0
3 with D0

i = (V 0
i , L0

i). Each domain D0
i is

coordinated separately by its coordinator on k = 1, in parallel
with the other domains D0

j . At level k = 1, nodes are grouped
again into domains that are handled by coordinators on k = 2
(a single domain D1

1 in Fig. 1). This definition recursively
extends to an arbitrary number of k̂ hierarchies.

While we assume that all nodes V k on level k belong to
some domain Dk

i (i.e., V k =
Snk

i=1 V k
i), not all links Lk are

part of some domain. In particular, we distinguish between
intra-domain and inter-domain links. Intra-domain links Lk

i

connect nodes within a single domain Dk
i (lighter in Fig. 1).

Inter-domain links do not belong to any domain but connect
nodes across two different domains (thicker in Fig. 1). We
define border nodes Bk

i ✓ V k
i as the subset of nodes that have

an inter-domain link to another domain (orange in Fig. 1). For
example in Fig. 1, B0

2 = {v5, v6, v7}.

B. Bottom-Up Information Advertisement (Phase 1)

Each domain’s coordinator scales and places services as well
as routes traffic inside the domain. It needs to know about
available compute capacity, data rate limitations, and delays
within the domain. A domain on level k may comprise multiple

Figure 52: Example with k = 2 hierarchies. Ingress and egress nodes are shown in blue,
border nodes of a domain in orange (Figure 1 in [SJK21]).

Hierarchical Orchestration Despite all improvements we did to the orchestration
process, it still stayed a fairly complex problem. It stands to reason to break it down into
subproblems. Moreover, in a multi-provider environment, it is unreasonable to assume that
competing providers provide information about their infrastructure to each other. Both
make a central perspective on the orchestration problem questionable. We hence developed
a hierarchical approach to orchestrate services [SJK21] (Figure 52). The challenge was to
find a good separation of available information and responsibility. Inspired by well-known
multi-provider routing problems (known, e.g., from MPLS PCE contexts), we need to
not only account for the data rates, but also for computational capacity. We did so by
abstracting the capacity of a domain and only reported aggregated information to the higher
level. Recursively, this ensured conservative orchestration choices trading off optimality
for scalability.

Distributed Orchestration An alternative to hierarchical orchestration is to build
an entirely distributed orchestration approach where each node works for itself. The
challenge here is to deal with the non-locality of the orchestration problem: Resources
might be available outside any node’s observational horizon that still could result in a
better solution. Hence, there is an inherent greediness involved in our distributed approach
[SKK20].20 More specifically, we looked at a locally greedy scheme—which processes

20It bears mentioning that this paper resulted from a Bachelor thesis.

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

c1

c1 c2

c1

Monitoring

Update Rules

Reward

Service Component Node 1 Node 2 …

S1 C1 20% 30% …

S1 C2 40% 0% …

S2 C1 30% 60% …

Figure 53: Service orchestration as a centralized learning problem.

any stage in a service chain once there is sufficient capacity available at a node—and
combine it with an routing scheme where requests are forwarded on a shortest path towards
their egress node, hoping that there will be sufficient capacity on the way to process
remaining steps in a service chain (we did assume that every node can compute any
stage in any chain, i.e., that all deployment units are available everywhere). This request
forwarding does adjust to locally observable capacity information, rerouting a request
away from already overloaded links. As a consequence, this scheme only needs global
structural information (in particular, shortest paths) that change on long time scales and
can reasonably be assumed to be available, but it does not assume non-local capacity or
utilization information. It turns out that centralized heuristics are (unsurprisingly) still
competitive with such distributed schemes but that distributed schemes achieve almost
comparable performance at significantly reduced cost.

Machine-Learning-Based Orchestration All previously described orchestration ap-
proaches where “conventional” in the sense that they started from expert knowledge about
the problem, the environment, and possible solution approaches. While this lead to inter-
esting results and workable solutions, it is also promising to investigate currently popular
machine-learning-based approaches and see how they fit to the orchestration problem.
Specifically, reinforcement learning is a natural candidate, with an agent making orchestra-
tion decisions and obtaining rewards from the environment, e.g., informing it about how
many flows could have been successfully processed or what relevant quality-of-service
characteristics (e.g., request latency) were achieved. Typically, challenges to deal with
are how to encode a network and services in fixed-length inputs and state representations
necessary for an agent, how to encode suitable actions, and how to deal with delayed or
sparse rewards or with uncertainty about service or infrastructure descriptions.

One way to deal with the state-size problem is investigated in Reference [SKM+21]. The
key idea is, for each node, to use a table with service components as rows, other nodes as
columns, and as an entry the probability with which to forward a request for a particular
service component from one node to the node in the respective column. These tables
are learned by a central agent based on delayed monitoring data and are periodically
distributed back into the actual network. An illustratoin of the learning procedure is shown
in Figure 53. The actual decisions are all taken locally (only needing a table lookup and
a generation of a single random number). The results showed that such a centralized,
delayed-observation-delayed-reward approach works surprisingly well, but it is obviously
limited in scale. Separate tables need to be trained for each node.

To improve that situation, we compared it to another approach: Instead of training separate
tables per node, we trained individual agents per node that had more freedom for decisions

2. Main Contributions 195

Figure 54: FutureCoord plans service coordination beyond the current flow (left) with
forecasts of future demands (right); Figure 2 of [WSK22].

[SQK21]. This does improve the scalability of the overall concept in most cases; only in
the case of a deadline for service execution is the first approach superior.

Approaches such as these are interesting, but they do entirely disregard any a priori
understanding of the problem, at least at learning and inference time they are model-free. In
addition, they do need expert knowledge to set up the representation of states, observations,
and actions as well as to select the right reinforcement learning algorithms and neural
network structures. It should make sense to incorporate explicit knowledge into a machine-
learning approach, turning it into a model-based approach. FutureCoord [WSK22] is such
an approach. Unlike many ML approaches, it is based on Monte-Carlo Tree search as
the basic technique. It incorporates an explicit stochastic traffic model to use it for load
predictions and to prepare the network for upcoming load changes (Figure 54). Basically,
FutureCoord takes random samples from the stochastic traffic model, tries to optimize
service orchestration along these samples, and picks a most promising action. As expected,
the explicit inclusion of these traffic forecasts improves orchestration quality.

Distributed Machine Learning To make these ML approaches usable in a real system,
we need to consider where and how to train these models. Transferring all data to a
far-away cloud for training to later on retrieve the models is often not practical, given the
amount of training data to transport and the frequency of training. Hence, we need to
consider techniques for distributed, in-network machine learning. Notably, this problem is
a problem in the context of networking for ML (or generally for computing). Here, the
questions occurs what networking conditions need to be satisfied such that ML problems
can be solved in distributed manner using a parallel computing infrastructure. In contrast,
the distributed ML approaches discussed in the previous subsection considered the use of
ML for networking, specifically network orchestration.

A key question in such distributed ML setups is whether and how fast a training algorithm
converges. To accelerate the algorithm convergence, the space of learning variables is
divided into several coordinates and multiple machines are assigned to work on each one
asynchronously. The advantage of this approach is the potentially significantly enhanced
convergence speed [ZZY+13]. However, the heterogeneity of computing resources and the

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

assignment of multiple machines to one coordinate induces that each machine effectively
computes updates based on information with potentially significant age of information
(AoI). The AoI arises because as one machine computes an update, all other machines
may update their associated coordinate variables multiple times. It is therefore pertinent
to address two problems: 1) When do modern machine learning algorithms work in
the presence of the aforementioned AoI? 2) What is a representative model for AoI in
asynchronous parallel computing architectures? In [RRK22b] we addressed the first
problem. We developed AoI conditions for distributed stochastic gradient descent (DSGD),
the main algorithm that underlies deep learning and artificial intelligence. Our conditions
relate the cumulative distribution function of the AoI with the learning rates used by DSGD.
The relationship shows that for highly parallelized architectures with many asynchronous
machines (thus inducing large AoI), the GD updates should be performed with smaller
learning rates to counter the error induced by the AoI. In [RRK22a] we addressed the
second problem. We proposed a general model for AoI processes using event processes
that possess dependency decay. For computing, our AoI model allows modeling of highly
correlated traffic that share the parallel machines working on a machine learning problem.
In summary, our two works therefore guide the choice of learning rates for machine
learning algorithms running on parallel computing systems depending on the degree of
correlation of arriving jobs.

Dealing with States When orchestrating services, an important distinction is whether
the components are stateless or stateful: A stateless component obtains all required
information to process a request from the request itself; a stateful component has to
remember information from previous requests to process an actual one. Orchestrating
stateless components is much simpler as there is no need to keep track of which request
flow is mapped to which component, and rerouting can be done arbitrarily. But in reality,
stateful components do appear.

One particular challenge is then to ensure that, when a flow is rerouted towards other
components, the corresponding flow state is moved along. More specifically, we need to
ensure proper timing. Once a request arrives at a new component, the flow state must have
already been moved, but it must not be moved before the last request at the old component
has not finished processing. It becomes necessary to synchronize flow and state migration
with each other.

We tackled this problem by developing SHarP, a seamless handover protocol to integrate
flow/state-migration protocol [PKK18b; PKK19] on top of an SDN-enabled network.
The key idea is to use the SDN controller as a natural point of serialization by sending a
handover message, a very limited number of request messages, and state handling messages
via the controller (Figure 55 shows an intermediate step). This does impose additional load
on the controller, but in experiments we were able to show that this overhead can be limited
to a small number of messages, which should not create an unacceptable performance
burden for SDN controllers.

2.2.3 Evaluation & Prototyping

A lot of the orchestration ideas described in the previous subsections were evaluated
using simulations that use fairly simplistic models of the underlying system behavior—for

2. Main Contributions 197

Figure 55: An intermediate step in SHarP’s state handover via ingress switch and SDN
controller (Figure 3b of [PKK19]).

example, the assumption that components of different services do not interact in their
resource consumption and that components of the same service have natural dependencies,
e.g., that the data rate sustainable by the slowest component determines the bottleneck data
rate of an entire service. We were interested in double checking these assumption using
actual experiments.

The challenge for such experiments is the required scale: For wide-area and data-center
networks, we would need to run experiments on hundreds or thousands of nodes, which
might only be feasible in rare circumstances and not amenable to continuous experimental
work. Hence, we went for a compromise: to emulate actual environments, but run real
code. To do so, we had to extend existing emulation tools. Starting from the well-known
MiniNet tool, we first extended it to MaxiNet, enabling it to run in a distributed manner,
scaling to thousands of emulated nodes. Then, we added the capability to run ordinary
Docker containers as part of that emulation system, published as the tool ContainerNet
[PKK18a] (with over 160 forks on GitHub as of late October 2022).

We used ContainerNet to construct a profiling platform for service components and entire
services. It did turn out that it is necessary to profile services in their entirety [PK17] to
properly reflect their internal interactions. To deal with all these aspects, a non-trivial
system architecture emerged (Figure 56).

Figure 56: System architecture of our profiling system interacting with several NFV plat-
forms. The figure also shows the general workflow and generated artifacts
(Figure 1 of [PK17]).

2.2.4 Data Centers

In addition to service provisioning in wide-area networks, we also looked at data center
scenarios. For example, we considered how to deal with so-called “coflows”: a group

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

a flow that needs to be complete jointly before a distributed computation can continue
its next stage (e.g., in a gather-collect context). We investigated machine-learning-based
admission control and resource allocation schemes for that problem.

Here, we would like to describe an older contribution that addresses the following question:
How can one generate traffic (e.g., for a simulation or emulation) that faithfully represents
key statistical properties of actual data center traces? This is necessary as only limited
amounts of traces are available, which is insufficient to drive performance evaluation work
that is statistically meaningful.

In Reference [WK16], we describe a traffic generator that serves these needs; its main
workflow is shown in Figure 57. Practically speaking, at the time of that work, traces
on layer 2 (L2) were available, but for the scheduling work we were interested in, we
needed layer 4 (L4) flow traces that were extensible yet faithful. To this end, we analyzed
the available L2 traces and tried to infer L4 information from them. Checking whether
this inference was correct is simple: Just use these L4 traces to run network experiments,
collect L2 information, and compare statistical properties. The question is how to extract
L4 information from L2 information, given that L2 information hides the bidirectional
nature of TCP (packets are mirrored by acknowledgements in the opposite direction) and
that this ACK traffic must not be mistaken for “actual” L4 traffic. We hence had to figure
out the distribution functions for packet and ACK packet sizes and to “de-convolute” these
different traces from the available L2 information. In the end, it turned out that we were
able to construct corresponding L4 traces.

observed L2 Traces

observed L2 Traffic
Distributions

Analyze

inferred L4 Traffic
Distributions

Abstract

generated L4 Traffic
Schedule

Generate

Em
ul

at
e

generated L2 Traffic
Distributions

Analyze

?=

1

2

3 4

6

Part of DCT2Gen

generated L2 Traces 5

Figure 57: Workflow of DCT2Gen (Figure 1 in [WK16]).

3 Concluding Remarks

In Subproject C4, we considered the task of efficiently utilizing resources in highly
configurable compute centers, be they big or small, centralized or distributed, from a
variety of angles ranging from abstract algorithmic models to concrete framework-specific
aspects. We conclude the discussion of these efforts by highlighting possible future research
directions for some of the studied topics.

3. Concluding Remarks 199

Scheduling with Setup Times

Setup times are extensively studied in the area of scheduling with a wide variety of different
models. Regarding the class-based model considered in this subproject [MMMR15;
JMM19] there are interesting open problems regarding closely related variants. For
instance, the problem of identical machines with preemptions has been studied, i.e., where
the processing of jobs may be interrupted and resumed at a later time. However, there is
no PTAS known for this setting, and it seems challenging to design one. This is somewhat
surprising given the fact that the scheduling problem without preemptions admits a PTAS,
and the one with preemptions but without setup times is not even NP-hard. Moreover,
considering the variant with preemptions for more general machine models would be
interesting as well. Another interesting research direction can be derived from the fact that
several novel PTAS results for scheduling with setup times have been obtained via newly
developed techniques in the area of integer programming [JKMR22]. These techniques
are based on utilizing some structure in the constraint matrix in order to derive provably
efficient algorithms. It seems promising to further study the use of these techniques in the
area of scheduling and to extend the techniques themselves to enable better or more general
results, for instance, regarding scheduling with setup times. Lastly, there has been a recent
trend to consider semi-online models in which crucial information regarding the instance
is not known in advance, but estimates are given using a machine learning model, for
instance. There have been several recent, intriguing results in this direction for scheduling
problems presented at high-level conferences. It seems well worth considering scheduling
with setup times—or other problems considered in this subproject—from this angle.

Cloud-Assisted Scheduling

As the Internet transforms into a landscape largely dominated by giant cloud service
providers, cloud-assisted scheduling has become increasingly important. Since about 2010,
there has been a plethora of different models, both practical and theoretical, that try to
address some of the challenges that arise from this way of computing. A fundamental
problem for theoretical analysis seems to be that there are so many different important
properties of scheduling on clouds that a unifying model is currently out of reach. In no
particular order, one might consider the leasing model and associated costs, job structure,
precedence constraints, communication delays, release times, different machine speeds
and capabilities, additional resources, online vs. offline algorithms, and more. Following
on from this, it may be interesting to explore the limits at which generalizations of our
model from [MMP21] no longer yield efficient (approximation) algorithms. In particular,
the rental model and the cost function in our model are rather simple, we can get machines
for exactly the time intervals we need, and we pay only in direct proportion to the jobs
outsourced. A more elaborate and realistic leasing system for cloud resources, including
other costs and start-up times for new machines, could provide interesting insights. Finally,
in the context of the CRC, we would like to mention that this issue can also be explored
from a market perspective itself, where multiple cloud providers compete to schedule
customers’ jobs efficiently in order to maximize their own profits.

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

In-Network Computing

Since the start of this CRC, the notion of in-network computing has changed substantially.
By now, it is fairly commonplace to find discussions about many different forms of infras-
tructure, spreading the resources of data centers ever more thinly across real environments.
A common buzzword in this context is the “edge-cloud continuum,” where along the path
from a device to a centralized cloud, many different forms of service execution oppor-
tunities exist, e.g., gateways or micro-cloud data centers of various forms. Somethings,
about a dozen or so different stages are differentiated. Often, it is not entirely clear what
the differences are, but architectures exist that go to great pains to make such differences
and assign different roles, APIs, etc. We believe that artificially introducing differentiation
where none exists is detrimental to both the efficiency and uptake of such concepts. We
argue that consistent, simple concepts to distribute composed services are to be much
preferred, but they have not really materialized, despite a lot of practical progress in using
resources of different cloud providers. There is no consistent approach in sight.

We do acknowledge, however, that there are differences in business models associated
with such a multi-stage infrastructure. While that certainly drives competition and can
be a strong hindrance to standardization towards common APIs, there are also actual
consequences. For example, there is no clear notion of a “chain of custody” for storing data
or executing services. While fundamentally, this is in many forms unsolvable (essentially,
the impossibility of consensus in faulty, asynchronous systems), there still is a need for
practical compromises with a clear assignment of responsibilities and custody for data
or services. Again, while there is a lot of understanding available about basic concepts
and their limitations, there is no agreed standard that would foster the adoption of such
architectures.

Prototyping and Actual Experiences

Very much in the same vain, we believe that there is a need for more experimental
experience in real systems. A lot of results come from simulation or carefully controlled
lab environments and emulations, but there is not much academic work done in real
environments “in the wild.” As of today, this is still the purview of cloud providers,
hyperscalers and major over-the-top providers such as Netflix. This is a particular problem
for most work that follows machine-learning approaches: When no data is available, there
is nothing from which a model can be learned, and there is even less opportunity to really
test approaches to manage data centers (at whatever stage of a continuum). We believe
that this methodical gap needs to be closed, but there is no obvious approach how to do
that. This is a challenging area for systems research the coming years, which ensures that
our work stays relevant by being able to work from and test in relevant environments using
relevant data.

Bibliography

[ABC+17] Antoniadis, A.; Barcelo, N.; Consuegra, M. E.; Kling, P.; Nugent, M.; Pruhs, K.;
Scquizzato, M.: Efficient Computation of Optimal Energy and Fractional Weighted Flow
Trade-Off Schedules. In: vol. 79. 2. 2017, pp. 568–597.

3. Concluding Remarks 201

[BBS+00] Brooks, D. M.; Bose, P.; Schuster, S.; Jacobson, H. M.; Kudva, P.; Buyuktosunoglu, A.;
Wellman, J.; Zyuban, V. V.; Gupta, M.; Cook, P. W.: Power-Aware Microarchitecture:
Design and Modeling Challenges for Next-Generation Microprocessors. In: IEEE Micro
20 (2000), no. 6, pp. 26–44.

[CLL11] Chan, H.; Lam, T. W.; Li, R.: Tradeoff between energy and throughput for online deadline
scheduling. In: Sustain. Comput. Informatics Syst. 1 (2011), no. 3, pp. 189–195.

[DKM18] Dräxler, S.; Karl, H.; Mann, Z. A.: JASPER: Joint Optimization of Scaling, Placement,
and Routing of Virtual Network Services. In: IEEE Transactions on Network and Service
Management (2018)

[GG75] Garey, M. R.; Graham, R. L.: Bounds for Multiprocessor Scheduling with Resource
Constraints. In: SIAM J. Comput. 4 (1975), no. 2, pp. 187–200.

[Gra66] Graham, R. L.: Bounds for certain multiprocessing anomalies. In: Bell system technical
journal 45 (1966), no. 9, pp. 1563–1581

[JKMR22] Jansen, K.; Klein, K.; Maack, M.; Rau, M.: Empowering the configuration-IP: new PTAS
results for scheduling with setup times. In: Math. Program. 195 (2022), no. 1, pp. 367–401.

[JL16] Jansen, K.; Land, F.: Non-preemptive Scheduling with Setup Times: A PTAS. In: Euro-Par
2016: Parallel Processing - 22nd International Conference on Parallel and Distributed
Computing, Grenoble, France, August 24-26, 2016, Proceedings. Ed. by Dutot, P.; Trys-
tram, D. Vol. 9833. Lecture Notes in Computer Science. Springer, 2016, pp. 159–170.

[JMM19] Jansen, K.; Maack, M.; Mäcker, A.: Scheduling on (Un-)Related Machines with Setup
Times. In: 2019 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019. IEEE, 2019, pp. 145–154.

[KK17] Keller, M.; Karl, H.: Response-Time-Optimised Service Deployment: MILP Formula-
tions of Piece-wise Linear Functions Approximating Non-linear Bivariate Mixed-integer
Functions. In: IEEE Transactions on Network and Service Management (2017), no. 1,
pp. 121–135

[KMRS17] Kling, P.; Mäcker, A.; Riechers, S.; Skopalik, A.: Sharing is Caring: Multiprocessor
Scheduling with a Sharable Resource. In: Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC, USA, July
24-26, 2017. Ed. by Scheideler, C.; Hajiaghayi, M. T. ACM, 2017, pp. 123–132.

[KP13] Kling, P.; Pietrzyk, P.: Profitable scheduling on multiple speed-scalable processors.
In: 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13,
Montreal, QC, Canada - July 23 - 25, 2013. Ed. by Blelloch, G. E.; Vöcking, B. ACM,
2013, pp. 251–260.

[MMMR15] Mäcker, A.; Malatyali, M.; Meyer auf der Heide, F.; Riechers, S.: Non-preemptive
Scheduling on Machines with Setup Times. In: Algorithms and Data Structures - 14th
International Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceed-
ings. Ed. by Dehne, F.; Sack, J.; Stege, U. Vol. 9214. Lecture Notes in Computer Science.
Springer, 2015, pp. 542–553.

[MMMR18] Mäcker, A.; Malatyali, M.; Meyer auf der Heide, F.; Riechers, S.: Cost-efficient schedul-
ing on machines from the cloud. In: J. Comb. Optim. 36 (2018), no. 4, pp. 1168–1194.

[MMP21] Maack, M.; Meyer auf der Heide, F.; Pukrop, S.: “Server Cloud Scheduling.” In: Ap-
proximation and Online Algorithms - 19th International Workshop, WAOA 2021, Lisbon,
Portugal, September 6-10, 2021, Revised Selected Papers. Ed. by Könemann, J.; Peis, B.
Vol. 12982. Lecture Notes in Computer Science. Springer, 2021, pp. 144–164.

[Pin16] Pinedo, M. L.: Scheduling: Theory, Algorithms, and Systems. Springer, 2016

[PK17] Peuster, M.; Karl, H.: Profile Your Chains, Not Functions. Automated Network Service
Profiling in DevOps Environments. In: IEEE Conference on Network Function Virtualisa-
tion and Software Defined Networks (NFV-SDN). Berlin, 2017

Karl, Maack, Meyer auf der Heide, Pukrop, Redder C4

[PKK18a] Peuster, M.; Kampmeyer, J.; Karl, H.: Containernet 2.0: A Rapid Prototyping Platform
for Hybrid Service Function Chains. In: 4th IEEE International Conference on Network
Softwarization (NetSoft 2018). Montreal, 2018

[PKK18b] Peuster, M.; Küttner, H.; Karl, H.: Let the state follow its flows: An SDN-based flow
handover protocol to support state migration. In: 4th IEEE International Conference on
Network Softwarization (NetSoft 2018). Montreal, 2018

[PKK19] Peuster, M.; Küttner, H.; Karl, H.: A flow handover protocol to support state migration
in softwarized networks. In: International Journal of Network Management (2019)

[RRK22a] Redder, A.; Ramaswamy, A.; Karl, H.: Age of Information Process under Strongly Mixing
Communication – Moment Bound, Mixing Rate and Strong Law. In: Proceedings of the
58th Allerton Conference on Communication, Control, and Computing. 2022

[RRK22b] Redder, A.; Ramaswamy, A.; Karl, H.: Practical Network Conditions for the Convergence
of Distributed Optimization. In: IFAC-PapersOnLine 55 (2022), no. 13, pp. 133–138

[SJK21] Schneider, S. B.; Jürgens, M.; Karl, H.: Divide and Conquer: Hierarchical Network and
Service Coordination. In: IFIP/IEEE International Symposium on Integrated Network
Management (IM). Bordeaux, France: IFIP/IEEE, 2021

[SKK20] Schneider, S. B.; Klenner, L. D.; Karl, H.: Every Node for Itself: Fully Distributed
Service Coordination. In: IEEE International Conference on Network and Service Man-
agement (CNSM). IEEE, 2020

[SKM+21] Schneider, S. B.; Khalili, R.; Manzoor, A.; Qarawlus, H.; Schellenberg, R.; Karl, H.;
Hecker, A.: Self-Learning Multi-Objective Service Coordination Using Deep Reinforce-
ment Learning. In: Transactions on Network and Service Management (2021)

[SQK21] Schneider, S. B.; Qarawlus, H.; Karl, H.: Distributed Online Service Coordination
Using Deep Reinforcement Learning. In: IEEE International Conference on Distributed
Computing Systems (ICDCS). Washington, DC, USA: IEEE, 2021

[SSKW19] Schneider, S. B.; Sharma, A.; Karl, H.; Wehrheim, H.: Specifying and Analyzing Virtual
Network Services Using Queuing Petri Nets. In: 2019 IFIP/IEEE International Symposium
on Integrated Network Management (IM). Washington, DC, USA: IFIP, 2019, pp. 116–124

[WK16] Wette, P.; Karl, H.: DCT²Gen: A traffic generator for data centers. In: Computer Commu-
nications (2016), pp. 45–58

[WSK22] Werner, S.; Schneider, S. B.; Karl, H.: Use What You Know: Network and Service
Coordination Beyond Certainty. In: IEEE/IFIP Network Operations and Management
Symposium (NOMS). Budapest: IEEE, 2022

[YDS95] Yao, F. F.; Demers, A. J.; Shenker, S.: A Scheduling Model for Reduced CPU Energy.
In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin,
USA, 23-25 October 1995. IEEE Computer Society, 1995, pp. 374–382.

[ZZY+13] Zhang, S.; Zhang, C.; You, Z.; Zheng, R.; Xu, B.: Asynchronous stochastic gradient
descent for DNN training. In: 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE. 2013, pp. 6660–6663

203

Subproject C5:

Architectural Management of OTF Computing Markets

Gregor Engels1, Sebastian Gottschalk1, Dennis Kundisch2, Christian
Vorbohle2, Nancy V. Wünderlich3

1 Department of Computer Science, Paderborn University,
Paderborn, Germany

2 Department of Information Systems, Paderborn
University, Paderborn, Germany

3 Faculty of Economics and Management, TU Berlin,
Berlin, Germany

1 Introduction

Enterprise architectures are used as conceptual blueprints to describe the structure and
management of IT systems in organizations. An OTF computer market contains an
enterprise architecture that must be continuously aligned with its environment. In times
of ever faster-changing environments, architectures must also adapt ever faster with close
integration of the business, software, and infrastructure architecture. This section focuses
on three aspects of architectural management of OTF computing markets. First, we
provide an architectural framework for the static structuring of those markets, including all
architecture layers. Second, we focus on the business layer and, in particular, the dynamic
business model behavior of the market participants. Third, we identify drivers and barriers
to accepting OTF computing markets from multi-stakeholder perspectives. For all aspects,
we define the overall research opportunities, show selected highlights of our research, and
apply them to the design of OTF computing markets.

The main objective of our research was to understand the design of OTF computing markets
from a technical and business perspective. By looking at recent research contributions in
the field of enterprise architectures, we recognized that the various research disciplines are
more and more intertwined. Here, new substantial contributions result from the structured
combination of concepts from existing disciplines. Therefore, we use empirical and
conceptual research methods and recombine existing concepts from computer science,
information systems, and business administration to develop holistic solutions for OTF
computing markets.

As no OTF computing markets currently exist, we conducted our empirical and conceptual
studies in comparative markets and discuss how our results apply to the design of future
OTF computing markets. Here, we investigated software ecosystems for the architectural
framework and business models of single service providers. Next, we discovered business

gregor.engels@uni-paderborn.de (Gregor Engels), sebastian.gottschalk@uni-paderborn.de (Sebastian
Gottschalk), dennis.kundisch@wiwi.uni-paderborn.de (Dennis Kundisch), christian.vorbohle@wiwi.uni-
paderborn.de (Christian Vorbohle), wuenderlich@tu-berlin.de (Nancy V. Wünderlich)

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

ecosystems for the interrelationships of different business models. Last, we identified
potential drivers and barriers to stakeholders’ acceptance of OTF computing markets. Out
of that, we derived our corresponding research opportunities.

• Architecture framework: Our first research opportunity was to develop an architec-
tural framework for software ecosystems. We first wanted to get an overview of the
features of such ecosystems. Based on that, we identified critical design decisions for
different architectural layers. Out of that, we derived the main architectural design
patterns for various kinds of software ecosystems.

• Business model development: Our second research opportunity was to develop
business models for ecosystems. We first discovered and analyzed different modeling
languages in general and their applicability to business ecosystems. Second, we
analyzed different development methods to create a situation-specific business model
development approach. Third, we reviewed various software tools for business
model development as the foundation for our own one.

• Attractiveness factors: Our third research opportunity was to identify success
factors for OTF market providers. Based on a literature review on acceptance
drivers and barriers from service requesters, service providers, and market provider
perspectives, we conducted an exploratory qualitative interview study with potential
market participants and market providers.

2 Main Contributions

2.1 Architectural Framework for Software Ecosystems

Nowadays, concerning the changing needs of organizations, simple software solutions
have evolved into large-scale software systems [PFG13]. Designing the architecture
of those systems in advance is crucial for the success of organizations. However, the
designed architectures behind those systems are becoming more complex. Therefore,
various architectural approaches are proposed for developing and maintaining enterprise
architectures. Among others, the Zachman Framework and the Open Group Architecture
Framework (TOGAF) are well-known architecture frameworks for designing software
systems. Here, those frameworks structure various layers of the systems, including the
business architecture, the software architecture, and the infrastructure architecture. With
this, those frameworks aim to provide a closer alignment of the business aspects and
technical aspects.

While those architectural frameworks are developed for all kinds of systems, software
ecosystems are a subset with special requirements. Here, software ecosystems are defined
by Bosch et al. as “a software platform, a set of internal and external developers and a
community of domain experts in service to a community of users that compose relevant
solution elements to satisfy their needs” [BB10]. However, there is an identified lack
of reference models for designing ecosystems that support ecosystem providers in their
decision-making [AS16]. Therefore, within our research, we identified the architectural
design features of those ecosystems and modeled the variability of possible architectural
decisions. Out of that, we extracted patterns for various types of software ecosystems.

2. Main Contributions 205

2.1.1 Features of Software Ecosystems

To support the decision-making in those ecosystems, we first needed to clarify what the
common features of those ecosystems are. We have done that by reviewing the literature
on IT service markets in a systematic way.

Reputation
System

Business
Model

Security
Service Level
Agreements

Mediating Electronic
Product Catalog

ensures the validity
of rating and ranking

improves rating and ranking

improves sales performance

ensures malware-free services,
privacy, and access control

attracts
developers

enhances
collaborative work

imposes extra costs
in dynamic markets

Figure 58: Primary features of IT service markets [JPEK16].

The outcomes of our review were the following six primary features, shown in Figure
58, together with several subfeatures [JPEK16]. The reputation system is responsible
for collecting and aggregating the ratings and reviews of users for the services. Those
systems are used to build trust among the different users in the ecosystem and support the
ranking of single services. The business model is used to describe the rationale of how the
ecosystem can create, deliver and capture value for its users. This, in turn, supports the
sustainable growth of the ecosystem over time. The recommendation system handles the
discovery of different services within the ecosystems. With this, the ecosystem ensures
the users’ acceptance of new services. The mediating electronic product catalog acts as
an intermediary between the users and the developers to provide the users’ access to the
services. The ecosystem uses a catalog to support the standardized discovery and delivery
of those services. The security is used to save the users’ privacy and analyze the developers’
code. This is important for creating trust among the users for the provided services. The
service level agreements are used to guarantee the quality of certain services. This ensures
the usability of services also in a business context. We created a variability model for
designing software ecosystems from those identified sources and initial features.

2.1.2 Design Variabilities for Software Ecosystems

To support the decision-making for new and existing ecosystems, variability models
represent alternative design decisions, including various variation points with different
variants. To derive such a variability model, we used a systematic taxonomy development
method, derived a taxonomy for classifying objects based on their common characteristics,
and mapped it to a variability model.

The variability model, shown in Figure 59, consists of three different views based on the
architectural layers of enterprise software systems [JZEK17]. For the visualization, we
use orthogonal variability models, where mandatory or optional variation points for the
layer are connected through a minimum and maximum of mandatory or optional variants
as corresponding choices.

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

Legend

Strategic PartnerV1.1

Com-
plementary

Partnerships

VP1

Fee

VP2

Openness

VP3

Licensing

VP4

SupplierV1.2

Independent
Developer

V1.3

Platform FeeV2.1

Entrance FeeV2.2

OpenV3.1

ClosedV3.2

Public LicensingV4.1

Ecosystem-
specific

Licensing

V4.2B
u

si
n

es
s

V
ie

w
A

p
p

lic
at

io
n

 V
ie

w

Software
Product

V5.1

Deliverable

VP5

Software ServiceV5.2

Source CodeV5.3

V6.1

Extension
Development

VP6

Platform SDK

V6.2

Programming
Language

V6.3

IDE

Communication
Prototcol

Testing

V6.4

V6.5

User InterfaceV7.1

Platform
Interfaces

VP7

Platform
Features

V7.2

System LibrariesV7.3

Security
Check

VP8

Leaks & BugsV8.1

Policy ViolationV8.2

In
fr

as
tr

u
ct

u
re

 V
ie

w Delivery
Mode

VP9

Local InstallationV9.1

Remote DeliveryV9.2

Service
Execution

VP10

Operating
System

V10.1

Compute CenterV10.2

Data CenterV10.3

Service
Delivery

VP11

Telecommuni-
cation

V11.1

Content Delivery
Network

V11.2

Exclusively
WWW

V11.3

Assets

VP12

Mandatory
Variation Point

VP
VariantV

Optional
Variation Point

VP Mandatory Variability

Optional Variability

Figure 59: Variability model of architectural design decision [JZEK17].

The Business View includes the most influential decisions of the business strategy to create
a value-capturing environment around the ecosystem. Here, the complementary partner-
ships defines a strategy to choose partners for adding additional services to the ecosystems.
Fees describe the provision of payments to enter the ecosystem and use corresponding
services. Openness defines a strategy to which degree access to the ecosystem is possible
for the participants. Licensing describes how the ecosystem and additional services are
licensed to the partners as well as to the participants of the ecosystem.

2. Main Contributions 207

The Application View includes the architectural decisions focusing on the extensibility
of the ecosystem by the complementary partners. Here, the deliverable provides different
types of artifacts for the services the participants could use. Extension development
provides various techniques to allow partners to develop and test services for the ecosystem.
Platform interfaces provide various gateways to integrate the developed services into the
ecosystem. Security checks are integrated into the development or the delivery to protect
the participants of the ecosystems from misuse.

The Infrastructure View includes the necessary hard- and software to realize the func-
tionalities of the application view. Here, the deliverable mode provides different options
for delivering the services to the participants. The service execution describes the loca-
tion where those services are actually executed. The service delivery shows the backend
technology that the ecosystem provider uses to run the ecosystem and deliver the services.
The assets are additional devices that are used by the ecosystem provider to deliver the
ecosystem to the participants. Based on those variabilities, we extract architectural patterns
of typical software ecosystems.

2.1.3 Architectural Patterns for Software Ecosystems

To support the decision-making for those ecosystems, patterns describe abstracted knowl-
edge that occurs in multiple organizations. We derive those patterns using a quantitative
pattern-extraction method.

Large
ecosystems with many

extensions
and users

Complex eco-
systems with different

openess policies based
on agreements

Open-source
ecosystems with
reputation-based

extensions

Resale Software
Ecosystem

Partner-based
Ecosystem

OSS-based
Ecosystem

can be evolved to can be evolved to

can be a building block of
ecosystems of ecosystems

Figure 60: Architectural patterns of software ecosystems [JZK+18].

As shown in Figure 60, for the outcome we identified three different patterns of software
ecosystems [JZK+18]. Here, resale ecosystems provide a large number of extensions
by different independent external developers. After their creation, the extensions are
sold to many users within the ecosystem. Next, partner-based ecosystems are used for
complex ecosystems in new industrial sectors, where the external developers and ecosystem
providers build new extensions based on partnership agreements. Here, different openness
policies support providers in protecting intellectual property within their ecosystems. Last,
in OSS-based ecosystems, the software platform is mostly released under open source by
the ecosystem provider. The external developers are primarily not financially motivated
to develop extensions. Instead, they aim to gain reputations or extend the ecosystem for

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

their own purposes. Over that time, the partner-based and OSS-based ecosystems might
evolve into resale ecosystems. By considering those results, we developed our architectural
framework for software ecosystems.

2.1.4 Application to OTF Computing Markets

Architectural design decisions are essential for ecosystem providers in order to create new
or revisit existing ecosystems. However, there was less structured information on the most
critical design decision for the different architectural layers of business, software, and
infrastructure of software ecosystems available. Therefore, we developed an architectural
framework consisting of ecosystem market features, architectural design variabilities for
all layers, and possible ecosystem patterns.

Out of that knowledge, we developed an open-source software tool called SecoArc [SE20]
as an Eclipse plugin, which contains two main components for the pattern-centric design
of software ecosystems. First, ecosystem providers can model the different variabilities
of their ecosystems under the consideration of an existing meta-model. Second, the
provider can analyze those decisions for conformance errors and receives suggestions
for architectural patterns. With the tool, we support ecosystem providers in creating and
improving their software ecosystems. Here, we applied our architectural framework to
design OTF computing markets. By using the definition of software ecosystems from
Bosch et al. [BB10], the OTF market provider might provide the software platform for the
ecosystem. In those ecosystems, OTF service providers are the external developers whose
services are composed by the OTF providers as domain experts to individual solutions.
Those composed services are used by the OTF requestors as users. Lastly, the services are
executed in the infrastructure of the OTF compute center. Therefore, we can apply our
architecture framework for the market provider to design those ecosystems.

We applied our software tool SecoArc to the OTF Proof of Concept (OTF-PoC). Here, the
OTF-PoC21 is an instance of a potential OTF computing market, where a chatbot interface
is used to configure AI-based services. We conducted a case study with the aim of opening
the ecosystem for external services by placing representatives of the PoC development team
as well as external service providers in the role of potential market providers. The market
providers use the SecoArc tool to model different variabilities of the ecosystems. Those
variabilities consist of business-related (e.g., free or paid entrance fee (V2.1 in Figure
59)), application-related (e.g., Java and Python as programming languages (V6.3)), and
infrastructure-related (e.g., single or multiple servers for remote delivery (V9.2)) design
decisions.

Out of those designed decisions, they derived two different architectures. Here the over-
all vision was to provide “an ecosystem [that] should support innovation while being
sustainable in terms of confronting external threats that could have a long-term impact
on the platform’s success. Furthermore, the platform ownership should be managed by
using the GNU General Public License (GPL).” The first one is an open ecosystem in
which the platform remains an open-source project so that the ecosystem grows through

21Website of the OTF-PoC: https://sfb901.uni-paderborn.de/projects/
tools-and-demonstration-systems/tools-from-the-2nd-funding-period/
proof-of-concept

https://sfb901.uni-paderborn.de/projects/tools-and-demonstration-systems/tools-from-the-2nd-funding-period/proof-of-concept
https://sfb901.uni-paderborn.de/projects/tools-and-demonstration-systems/tools-from-the-2nd-funding-period/proof-of-concept
https://sfb901.uni-paderborn.de/projects/tools-and-demonstration-systems/tools-from-the-2nd-funding-period/proof-of-concept

2. Main Contributions 209

the direct contributions of service providers and the source code can be freely used. This
mostly relates to the OSS-based ecosystem architecture design pattern. The second one
is a semi-open controlled ecosystem where the number of service providers on the plat-
form drastically increases and the openness needs to be reduced by controlled software
development and the marketing environment. This mostly relates to the resale ecosystem
architecture design pattern. Based on those architectural patterns, we also need to develop
corresponding business models for actors in the business ecosystem. While we were
working on the development of the framework and its application to OTF computing
markets, we saw a special need for investigating the business models as part of the business
architecture.

2.2 Business Model Development for Ecosystems

Business Model Research is a rapidly growing field, and the concept’s usefulness has been
emphasized in research and practice. For the case of OTF computing, the interplay of
business models and technology is especially crucial as “a mediocre technology pursued
within a great business model may be more valuable than a great technology exploited
via a mediocre business model” [Tee10]. Consequently, the concept of business models
is a well-established means to offer an essential contribution to the business architecture
and acts as an intermediary between business strategy and business processes. A business
model describes the design or architecture by which a company creates and delivers value
for its customers, thereby generating profit [Tee10]. Some business model definitions also
make references to representing a system. By that, business models can also be viewed
as a system consisting of activities performed by the company and its ecosystem partners
[ZA13]. The challenge in developing business models for IT ecosystems is that every
combined product or service can be commercialized via an uncountable number of possible
business model alternatives. Developing economically successful business models for
all participants in a complex system, such as OTF computing markets, is a substantial
challenge and a decisive success factor.

Ecosystem Research is currently receiving increased attention from research and practice.
The concept of ecosystems originated in biology and was adapted to the business context in
the early 1990s as a community of cooperating companies or individuals. This community
creates products and services for customers who are also part of the business ecosystem,
such as suppliers, competitors, and other stakeholders. More recent research defines a
business ecosystem as companies collaborating to create a focal value proposition [Adn17],
consisting of multilateral and non-generic complementarities coupled with the absence of
full hierarchical control [JCG18]. This means that what enables businesses to collaborate
and align in an ecosystem is creating a shared value proposition for customers. The
business ecosystem concept, therefore, calls for a multi-actor assessment of how value is
created, delivered, and captured, i.e., an evaluation of whether a viable business model is
established for each ecosystem participant.

Both concepts provide the foundation for our second research opportunity: the development
of business models for IT ecosystems. However, akin to technology innovation, creating
and innovating a business model within an ecosystem environment is a creative and
collaborative process. Therefore, starting from the business model and business ecosystem

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

concept, we first analyzed and further developed modeling languages, innovation methods
and software tools to overcome knowledge boundaries, depart from traditional business
approaches, and utilize innovative ways instead to create, deliver and capture value.

2.2.1 Languages for Business Model Development

Business model modeling languages (BMMLs) explicitly communicate the core logic and
elements of a business model and employ “semantic constructs, visual form, and visual
notation to represent the business model of a given organization (but not tied to any specific
organization) for one or more purposes and through a consistent set of rules” [SMJ+22].

Compared to other subfields of research on conceptional modeling (e.g., process modeling),
research on business modeling is a relatively young subfield of research and less studied.
Given the continuously increasing relevance of business model innovation, we argue that
BMMLs will continue to be a relevant research topic for different research disciplines
such as computer science, information systems, or strategy. However, research within
and across disciplines has remained disparate rather than cumulative. Limited knowledge
accumulation is problematic because single contributions tend to remain isolated with little
relation to other solutions. The current proliferation of BMMLs substantially aggravates
the development of a cumulative research tradition. This underlines the necessity for a
firm understanding of the state of the art of modeling languages for business models and
a respective research agenda. The primary aim of this identified research opportunity is
(I) to advance our understanding of business modeling in general and, more specifically,
(II) to determine how companies in business ecosystems can be supported in developing
innovative business models collaboratively.

(I) Advance general understanding of business modeling. We observed that general
knowledge of BMMLs was limited in at least five major ways: (1) limited consolidation
(What BMMLs exist?); (2) limited theoretical grounding (How can we compare different
BMMLs?); (3) limited evaluation (What are their similarities and differences?), (4) limited
understanding of use (How were they researched and used so far?) and (5) future research
opportunities (What do we still need to know?). To answer these questions, we conducted
a cross-disciplinary synthesis of widely used BMMLs [SMJ+22].

Limited consolidation. In total, we identified 17 different BMMLs. The most well-known
examples are the Business Model Canvas [OP10] and e3value [GA03]. In Figure 61,
we demonstrate both modeling languages with an example of a mobile app store. Other
examples of BMMLs include the Causal Loop Diagram, ebusiness model schematics, the
Strategic Business Model Ontology, and the Value Stream Map.

Limited theoretical grounding. We suggest that BMMLs can be analyzed in terms of three
main characteristics: i.e., a) content, b) visual notation and form, and c) context of use, also
referred to as semantics, syntax, and pragmatics. The semantics of a modeling language
refers to what a language attempts to represent (i.e., the "vocabulary"). Syntax refers to
how a modeling language represents content, i.e., the type of visual notation it uses (i.e.,
graphical symbols) and the type of visual form it takes (i.e., the architectural form of a
representation). The pragmatics of a language refers to the context of use under which a
modeling language is applied.

2. Main Contributions 211

Figure 61: Two different ways of visualizing a mobile app store business model.

Limited evaluation. Comparing the identified BMMLs in terms of semantics leads to
the identification of different levels (low, moderate, high) of granularity and scope. For
example, the Business Model Canvas has a moderate scope and granularity because,
with its 9 semantic constructs, it covers 11 semantic sub-dimensions. In contrast, the
e3value covers fewer than 9 semantic sub-dimensions and therefore has a lower scope and
granularity, just as most other BMMLs. In terms of syntax, the majority use a network-
based visualization approach (e.g., e3value), and only three use a map-based approach (e.g.
Business Model Canvas). In terms of pragmatics, we identified five main purposes (e.g.,
generate business model ideas) by analyzing the author’s intention to use BMMLs. Here,
the intention to use the Business Model Canvas includes all five purposes. In comparison,
e3value only includes 4 purposes because it does not intend to support the design of
software-based business model development tools. In summary, our identified BMMLs
have been developed in a variety of disciplines and for different purposes. No well-accepted
set of semantic constructs exists, and various visual notations with a varying number of
views for representing semantic constructs have been proposed.

Limited understanding of use. To answer this question, we first analyzed research with
BMMLs in greater detail. Summarizing the purposes of employing BMMLs for research,
there is no systematic coherence between BMMLs and the purpose for which they are used.
However, very different BMMLs are used but for different purposes, partly also within
the same research discipline. Nevertheless, we identified four different ways of how the

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

purposes described before are realized with the help of a BMML: (1) artifact development,
(2) data collection, (3) business model analysis, and (4) results communication. Regarding
research about BMMLs, we identified multiple studies across four research streams. The
majority researched the Business Model Canvas, followed by e3Value. Overall, our review
reveals eight purposes for conducting research about BMMLs, e.g., for supporting the
development of software or design business models for sustainability. Across the eight
identified purposes, there are three different ways of how these purposes are pursued to
research about BMMLs: studies that (1) link BMMLs with other modeling languages, (2)
extend BMMLs with respect to the respective disciplinary background, (3) theoretically
ground BMMLs (e.g., [SL20]).

Future research opportunities. We took advantage of the opportunity that this thorough
analysis offers to suggest avenues for moving forward. For that, we used the same
dimensions to compare BMMLs, namely semantics, syntax, and pragmatics. Future
research should bridge existing knowledge and integrate investigations in areas such as
creativity and innovation management, information systems, or marketing and strategy.
These areas have the potential to contribute to research with and about BMMLs. Moreover,
two emerging research directions offer great potential for further investigations namely
digitally enabled business models and sustainability. Figure 62 offers an illustration and
synthesis.

Research findings

What do we know?

Research gaps

What do we need

to know?

Opportunities for future research

Research challenges

What challenges need to be

overcome?

Research directions

Semantics

(Meaning)

Variety of semantics: Partially

complementary, partially

conflicting

Research

with

and

about

BMMLs

Lack of a

well-accepted

semantic foundation

Semantics of the business

model concept are still debated

Difficutly to determine the

semantic correctness of a

business model

Difficulty to determine the

quality of a business model

Syntax

(Visual form)

Variety of syntax:

Partially complementary,

partially conflicting

Lack of a

well-accepted

syntactic foundation

Syntax differently impacts the

subjective and the objective

usefulness

Pragmatics

(Use context)

Five main purposes:

(1) Understand/communicate

(2) Analyze/evaluate

(3) Deduce requirements

(4) Generate ideas

(5) Support software tools

Lack of a

well-accepted

set of context factors

Multiplicity

of use

contexts

Visualizing

versus

visualization

Bridging: Integrate/import knowledge

from…

Creativity and innovation management:

- Idea generation experiments

- Expert evaluation

- Design knowledge for software tools

for new product development

Information systems:

- Modeling language research

- Design knowledge for creativity

support systems/electronic

brainstorming systems

Marketing and strategy:

- Observational studies/

qualitative field research

- Visual analysis

Emerging themes

Digitally enabled business model and

digital offerings

Sustainability

Figure 62: Summary of research on business model modeling languages [SMJ+22].

(II) Advance a specific understanding of business modeling for business ecosystems.
Based on these findings and identified future research directions, in [VK22] we analyzed
the merits and limitations of existing BMMLs to design and analyze business ecosystems.
In terms of semantics, we focused on analyzing relationship types to describe different
possibilities for connecting business models or business model components (e.g., structural,
dependency, dynamic). The multitude of BMMLs appear network-based and represent
interactions between actors in a business network. While most BMMLs in this segment
are limited to exchanging value streams, others include intangible exchanges such as
knowledge, internal impacts and goals, resources, and processes. Moreover, we built on

2. Main Contributions 213

existing ecosystem theory, for example, from [Adn17] and [JCG18], and derived four
dimensions for ecosystem analysis: (1) contingency risk, (2) specificity, (3) governance,
and (4) dynamics.

Despite network-based BMMLs being strongly related to enterprise interaction, BMMLs
need to pay more attention to the visualization of a shared value proposition and are
therefore less suited to analyzing the characteristics of companies collaborating in the
same business ecosystem. In general, our analysis shows limited possibilities to analyze
business ecosystems from the perspective of ecosystem theory.

By advancing both the general and specific understanding of BMMLs we provide a starting
point for further systematic comparisons and build on these findings by creating a modeling
approach that sets the focal value proposition in the center of the visualization. In this way,
we enable business modeling not only for intra-organizational business model innovation
but also for inter-organizational alignment, as in the case of OTF computing markets. With
our extensive knowledge base on BMMLs, future research holds great potential to enable
collaboration, thus contributing to the next steps of business modeling.

2.2.2 Methods for Business Model Development

To develop business models, domain experts in research and practice have proposed various
business model development methods (BMDMs) with different levels of detail in their
usage. To support the business developer in using these levels, we have conducted a
design science research study to propose a situation-specific business model development
approach that composes BMDMs to a specific situation of the organization. This situation-
specific adaptation has already proven its value in Situational Method Engineering (SME)
[HRÅR14], in which situation-specific software development methods are constructed
from fragments of a method repository. Our approach, as shown in Figure 63, introduces
five roles that are centered around three stages [GYNE22a].

The first stage of Knowledge Provision of Methods and Models is used to utilize the
knowledge about the development methods of the business model development and the
(canvas) models to visualize of the (business) models. In the beginning, the meta-method
engineer creates meta-models for the repositories of the methods and (canvas) models
(1.1). Here, the method repository is able to store different development steps together with
development phases or development step sequence patterns for later structuring. Moreover,
the (canvas) model repository is able to store different models of canvasses and templates
together with predefined information on them. Next, different domain experts explain their
domain knowledge of existing development methods and (canvas) modeling artifacts to
the method engineer (1.2). The method engineer, in turn, formalizes that knowledge in
terms of development methods and within (canvas) models according to the meta-models
to make it usable within the approach (1.3).

The second stage of Composition of Development Methods is used to construct the
development method out of the method repository and link method steps to the different
(canvas) models in the (canvas) model repository that are used within the development.
Here, the business developer of the organization explains to the method engineer the
current context in terms of the situation of the organization and application domain of
the service in which the business model should be developed (2.1). The method engineer

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

(1) Knowledge Provision of Methods and Models

Method Repository

(2) Continuous Composition of Development Methods

Development Method

(3) Enactment of Development Methods

Legend

Meta
Model

Process /
Artifact

Repository Instance of
Relationship

Reference
RelationshipActor

Method Meta-Model Canvas Model Meta-ModelMeta-
Method

Engineer

Method
Engineer

Domain
Expert

Business
Developer

Stake-
holder

Actor
Action

Canvas Model Repository

(1.1) develops meta models

(1.2) describes
methods and models

(1.3) formalizes methods
and models

(2.1) describes
situation

(2.2) formalizes context
and composes method

(3.1) enacts
method

(3.2) collaborates during enaction

Model

Development Process

Canvas Knowledge Models
(modeled as Feature Model)
Canvas Knowledge Models
(modeled as Feature Model)

Canvas Models

Artifacts
(modeled as Canvas Model)

Artifacts
(modeled as Canvas Model)

Canvas Artifacts

Context
Factors

Context

Figure 63: Situation-specific development of business models [GYNE22a].

formalizes these context factors as the situation of the development method and application
domain of the (canvas) models together with composing the development method (2.2).
Here, we support the pattern-based and phase-based composition of development methods.
For the pattern-based composition, we select different patterns based on the situation from
the method repository and nest them into each other. After that, we fill placeholders in
those patterns with development steps that are also selected concerning the situation. For
the phase-based composition, we select the different phases we want to support from the
method repository. After that, we select development steps for each phase concerning their
situation and order their execution sequence. For both compositions, we connect single
development steps to canvas models or template models in the (canvas) model repository
that are selected concerning the application domain of the service.

The third stage of Enactment of Development Methods is used to execute the development
process and create and modify corresponding artifacts during the development. Here,
the business developer executes the constructed development method as a development
process and uses the linked (canvas) models as (canvas) artifacts like for the canvasses
or templates (3.1). Moreover, other stakeholders can contribute to different development
steps and modify (canvas) artifacts during the execution (3.2). Here, that execution can
also lead to a change of the context and, therefore, to a modification of the development
method.

We applied our approach in two different domains. In the first domain, we analyzed
gray literature to develop business models for mobile applications [GYNE21]. Here, the
development methods are structured according to identified method patterns and canvas
models are used during the enactment. In the second domain, we analyzed design thinking
techniques for conducting design thinking workshops [GYNE22c]. Here, the development
methods are structured according to different design thinking phases and predefined
whiteboard templates are used during the enactment. To support the situation-specific

2. Main Contributions 215

development of business models, we have implemented the whole approach in a software
tool.

2.2.3 Software Tools for Business Model Development

Various software-based business model development tools (BMDTs) have been devel-
oped in research and practice to support the development of business models. To get an
overview of the functionalities of those BMDTs and identify open research topics, we
used a systematic taxonomy development to derive an underlying taxonomy of BMDTs
functionalities.

Dimension Characteristics

Customization

Development

Add Divide Link Rename
Change

arrangement

Element Element connection Template

Commenting
and Linking

Textual
comments

on
element-

level

Textual
comments

on business
model-
level

Graphical
comments

(predefined)

Graphical
comments
(freedom)

Link
files

Link web-
resources

Glossary
support

Assessment Correctness checkerNon-financial Assessment statusFinancial

Navigation and
Filtering

Model
comparison

Element
filter

Phase
management

Element
clipboard

Link to
business model

Framework
support

Communication Chat Discussion board User list

Synchronization Asynchronous modeling Concurrent modeling Synchronous modeling

Assessment
Workspace
awareness

Role management
Support of task

sharing
User management

Communication Version control Local repository Remote repository

Architecture Client / Server Client only Web-based

Data exchange Export Import

M
o

d
el

in
g

C
o

lla
b

o
ra

ti
o

n
Te

ch
n

ic
al

Figure 64: Functionality taxonomy for business model development tools [SSJ+20].

The first outcome is the Functionality Taxonomy with the following three perspectives
[SSJ+20] as shown in Figure 64. The modeling perspective refers to functions used par-
ticularly during the creation of a business model. Those functionalities range from the
customization of the underlying models, over commenting and linking on boards, to navi-
gation and the filtering of instances. The collaboration perspective presents functions that
support collaboration during the business model development. We derive functionalities
such as communication through the users, the synchronization of the modeling, or the
management of users and roles. The technical perspective describes the technical attributes
of those tools. It consists of the communication architecture of those BMDTs together
with their exchange of data.

The second outcome is a Future Research Agenda with the following five topics. This
agenda is structured around the groups of future functions, the evaluation of performance,
the incorporation of user and task characteristics, and the methods used. Here, the group

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

of methods topics refers to the variety of ways a BMDT for business model development
can be used. Here, its usage can be ranged from micro-level (e.g., the decision for a
moderating team member) to macro-level processes (e.g., usage of a specific development
method) or specific to the reasons for an organization (e.g., developing a new business
model vs. improving an existing business model). One open challenge is the composition
and enactment of business model development methods according to the situation of the
organization.

Based on those functionalities and open research in the method group, we developed the
Situational Business Model Developer (SBMD) [GYNE22b] as a BMDT, which was derived
as an IT artifact from the DSR study for situation-specific business model development
[GYNE22a]. It is a web-based solution that can be used within the web browser,22 and
the source code is freely accessible.23 It supports all the stages of knowledge provision of
methods and models, the composition of development methods, and their enactment. The
tool can be used by a single user or multiple users can collaborate during the development
steps. Moreover, the tool is based on a modular architecture, making it extensible for new
methods, models, and development support techniques.

Method Composition Method Enactment

P
at

te
rn

-b
as

ed
P

h
as

e-
b

as
ed

C
an

va
s

A
rt

if
ac

ts
Te

m
p

la
te

 A
rt

if
ac

ts

Figure 65: Screenshots of the Situational Business Model Developer.

Parts of our Situational Business Model Developer for the composition and enactment of
development methods can be seen in Figure 65. Before the composition and enactment, our
tool provides the knowledge of methods and models by filling the predefined repositories.
We filled those repositories with knowledge about business models for mobile apps and
workshops for design thinking. Nevertheless, those repositories can be continuously

22Online version of the Situational Business Model Developer: http://sebastiangtts.github.io/
situational-business-model-developer/

23Source code of the Situational Business Model Developer: https://github.com/sebastiangtts/
situational-business-model-developer

http://sebastiangtts.github.io/situational-business-model-developer/
http://sebastiangtts.github.io/situational-business-model-developer/
https://github.com/sebastiangtts/situational-business-model-developer
https://github.com/sebastiangtts/situational-business-model-developer

2. Main Contributions 217

extended by the users of the tool. For the method repository, we allow the creation of
atomic method elements combined into method building blocks as development steps and
optionally structured according to method patterns. For the (canvas) model repository, we
allow the creation of atomic (canvas) elements that are structured into (canvas) building
blocks and visually represented through (canvas) models. For the method composition,
and after defining the context, we support using patterns and phases. During the pattern-
based composition, we support the combination of different method patterns to structure
the method building blocks. During the phase-based composition, we support selecting
different phases from the method elements and assign of multiple method building blocks
to them. For the method enactment, we support the creation of canvas artifacts and
template artifacts, besides from simple text documents. The canvas artifacts are visual
representations of canvas models where predefined knowledge of the canvas building
blocks supports filling out of the boxes. The template artifacts are visualizations of the
template models, which can be freely filled out. During the enactment, the conduction
of development steps might also lead to a change in the context and, therefore, a change
in the composed development method. A deeper explanation of the tool is available in
the explanation section within the tool. By considering those results, we draw the lessons
learned for ecosystem business model development.

2.2.4 Application to OTF Computing Markets

The concept of business models and business ecosystems are well-established means to
contribute to creating a business architecture. Using these concepts, we analyzed BMMLs,
innovation methods, and software tools in general, identified current research gaps, and
proposed a research agenda with future research directions. Building on this research on
modeling languages, methods, and tools, we developed a procedure model for business
model collaboration, such as in the case of OTF computing markets.

In [RLL+22], we offer a comprehensive new set of methods and modeling approaches,
which should be used in a workshop setting with multiple company representatives and can
be supported by collaboration tools such as Miro or as a part of design thinking workshops
in our SBMD. The BMI4BE procedure model can be used for two possible application
contexts: (1) to innovate an already existing business ecosystem or (2) to design a new
business ecosystem. By this, the procedure model is also an extension of existing business
model innovation methods (e.g., The Business Model Canvas).

The idea of the procedure model (see Figure 66) is based on the consideration that repre-
sentatives of the individual companies first focus on creating value for potential customers
of the business ecosystem to develop a shared value proposition and a market perspective.
Subsequently, the (potentially) participating companies’ contributions to the ecosystem are
specified, and the necessary business model flows are developed. On this basis, a common
visualization of the ecosystem is created to analyze the flows between the individual
companies. In the last step, every company uses these results to develop the necessary
transformation for their current business model. These steps can be repeated iteratively
until every representative agrees on the outcome.

Figure 67 shows an example of the visualization of a possible ecosystem flow map (Phase
5) for OTF computing markets. This example was created during a CRC901 research

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

Phase 1.
 Development

of the
customer

perspective

Phase 2.
Development

of the
market

perspective

Phase 3.
Development

of the
company

perspective

Phase 4.
 Development

of the
ecosystem
perspective

Phase 5.
 Visualization

of the
business

ecosystem

Phase 6.
 Development

of the
company

transformations

Transition
to idea

evaluation

Figure 66: Phase diagram of the BMI4BE procedure model [RLL+22].

seminar in May 2022 with researchers from other subprojects and is one of four innovative
solutions created during a workshop. The example in Figure 67 shows that OTF computing
markets could serve more than one customer segment, which mainly interacts with a
market provider. Behind this market provider, OTF computing solutions are generated
by an ecosystem of multiple OTF providers, which combine modules from the service
provider, infrastructure provider and component provider. Moreover, computing centers
deliver fast cloud solutions for small and medium-sized enterprises. As this example shows,
the market provider and its attractiveness to potential customers play a central role. These
attractiveness factors are further analyzed in the next section.

Ecosystem Flow Map

Provider

Legend: Channels

Customer
Relationships

Information /
Data

Money / Finan-
cial Assets

Products /
Services

Human
Ressources

Customer
Segments

Aggregator

....Customer /
Company

Figure 67: Ecosystem flow map of an OTF computing market.

2.3 Attractiveness of Platforms

Platforms can be viewed as particular kinds of markets that play the role of facilitators
for an exchange or a transaction between different types of stakeholders that could not
otherwise, transact with each other, or only with great difficulty [BKW21]. We define a
digital platform as a mediating entity operating in two (or multi)-sided markets, which uses
the Internet to enable direct interactions between two or more distinct but interdependent

2. Main Contributions 219

groups of users so as to generate value for at least one of the groups.

In our research, we explore the success factors of digital platforms based on a literature
review on drivers and barriers of technology acceptance in related contexts and on an
empirical qualitative research study with potential stakeholders of a future OTF market.

2.3.1 Stakeholders of Matchmaking Platforms

Our research focuses on the application of the OTF market as a type of matchmaking
platform such as Airbnb and TaskRabbit, which are often characterized by “high platform
intermediation as well as high levels of consociality” [PK18]. Matchmaker platforms
provide the infrastructure to facilitate interactions among the platform users: the service
providers on one side and the service requesters/end users on the other. Market providers
of such matchmaking platforms typically do not provide the services themselves that
are offered on the platform (e.g., only hosts offer accommodation). The core value
proposition of a matchmaking platform provider comes from providing a pairing of market
participants (e.g., matching hosts with guests [PK18]). Thus, market providers constitute
new organizational forms that rely on individual service providers as their co-producers,
who are not employees of the platform, but usually act as independent entrepreneurs. On
matchmaking platforms, we observe triadic service relationships between three stakeholder
entities: the market provider, the service providers, and the service requesters.

Thus, the relationship management measures of a platform provider differ considerably
from the relationship management of traditional customer-firm relationships given the
unique characteristics of matchmaking platform business models. A market provider not
only has to manage a requester base and attract and retain a critical mass of requesters on
the platform but also needs a critical mass of service providers that guarantee the service
provision and consumption on the platform. Thus, it is crucial for market providers to
understand what drives the attraction of matchmaking platforms in order to recruit and
retain participants on all market sides.

2.3.2 Framework of Drivers and Barriers of Platform Acceptance

Literature on platform acceptance is sparse and often reflects only one stakeholder per-
spective (e.g., end user’s perspective). For example, [JPML21] conducted a study with 450
Airbnb guests and identified network externalities, trust, perceived ease of use, perceived
usefulness, and the level of interactivity on the platform as factors influencing end users’
intention to purchase on the Airbnb platform. Since there is no study that brings together
the acceptance drivers and barriers from multiple stakeholders, we develop a framework
on multi-stakeholder perspectives on the acceptance of matchmaking platforms. Figure 68
illustrates such a framework.

To develop our framework, we draw from different literature streams that explore potential
acceptance factors pertaining to one or more perspectives. In particular, we draw on
literature on technology acceptance from an end-user and employee perspective (e.g.,
[Dav89]), literature on the digital transformation of firms (e.g., [WLCH19]), and literature
on work-relationships of employees and solo entrepreneurs (e.g., [KBE21]).

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

Market Provider

Transformation-related characteristics
digital maturity, skills and capabilities,

innovativeness

Service Requester / End User

Transaction-based perceptions
service quality, satisfaction, CX

Relationship-based perceptions
relationship length, community and

brand identification

Risk-related perceptions
data privacy, functional and financial

risk

Service Provider

Interorganisational perceptions
dependence, power

Work-related perceptions
job attractiveness, job satisfaction,

working conditions, culture and
community

Technology-based perceptions
usefullness, ease of use, reliability,

demontrability

Trust-related perceptions
organizational trust, peer trust, brand

trust

Control-related perceptions
proxy control, transparency

Value-related perceptions
expected value, utility, costs

Content characteristics (e.g., company size, number of participants)
& Industry Characteristics (e.g., competition, digital transformation level)

Figure 68: Framework on multi-stakeholder perspectives on the acceptance of matchmak-
ing platforms.

Technology perceptions, transcending trust- and control-related beliefs and value percep-
tions are likely to affect the acceptance of matchmaking platforms for service requesters,
service providers and market providers alike. Technology perceptions such as ease of use
and perceived usefulness [Dav89] or reliability and result demonstrability have been shown
to positively affect the adoption decision of individuals as well as organizational adoption
decisions. Trust-related beliefs pertain to trustworthiness perceptions of individuals such
as market participants as well as organizational trust in market providers. Trustful rela-
tionships have been shown to foster the acceptance of platforms for end consumers and
organizations alike. Especially the trust in the brand of the market provider is likely to
affect the acceptance of service requesters and service providers. Parallel to trust research,
studies on the concept of control have shown that control is a human driving force. Control
over technology addresses an individual’s or an organization’s need to demonstrate compe-
tence, superiority, and mastery of technology. Eventually, the value market participants
see in using the platform can be considered a main driver for platform acceptance. End
requesters might compare the costs and utility of competing platforms to make an informed
decision.

In addition to the aforementioned drivers that might pertain to multiple OTF market stake-
holders, studies have identified factors that predominantly relate to one stakeholder group.
For example, end users’/requesters’ acceptance of platforms is likely to be influenced
by relational variables beyond trust, such as the length of the relationship between the
customer and the platform or individual service providers. Especially in the context of
matchmaking platforms with a high level of consociality, a strong platform brand or com-
munity identification of end requesters might even outweigh risk perceptions. Research has
identified that in technology-mediated service encounters such as transactions on platforms,

2. Main Contributions 221

risk perceptions (e.g., regarding data privacy, and functional or financial risks) are generally
pronounced [PW16]. Although the relationship between the service providers and the
market provider does not resemble a professional work relationship, service providers
on platforms, who act as solo entrepreneurs, might also count in work-related factors
in their decision to use the platform [KBE21]. Interorganizational perceptions such as
the service providers’ perception of dependence on the market provider, their perception
of autonomy, and the power the market provider has over the service providers might
influence job satisfaction. Moreover, when an adoption decision is perceived as forced,
individuals are likely to have negative emotions and increasing switching intentions. Also,
typical work-related perceptions such as job attractiveness, strong relationships, a pleasant
working condition, and a friendly work culture and community have been shown to impact
employee job satisfaction. We argue that such factors can be considered drivers of platform
acceptance, especially if the service providers act as solo entrepreneurs.

A company’s decision to extend the pipeline business model or switch to a platform
business model and become a market provider is typically dependent on organizational
characteristics such as capabilities, the innovativeness of the management and staff, and
the overall digital maturity of the firm [WLCH19]. In addition, context factors of the
market or network, such as the number of participants, company sizes and industry
characteristics such as the competitive level and the level of digitization of the market, are
likely to strengthen or weaken the importance of the identified acceptance factors from the
perspectives of service requesters, service providers, and market providers.

2.3.3 Application to OTF Computing Markets

We conducted a scenario-based qualitative interview study with 22 potential stakeholders
from research institutions as well as companies of a future OTF market. Overall, the study
yielded text data from 163 pages of transcribed interview material. Based on the text
analysis we could support the importance of most drivers and barriers of our framework
(see Figure 68). Most importantly, technology-based perceptions seem to be relevant for
all perspectives. For example, one interviewee mentioned the ease of use of the platform
as a main driver for the service requesters’ acceptance: “Maybe how it’s easy to use that
platform. And how you get assistance from . . . our salespeople. . . . Yeah. I think that’s the
difference.” (ID 11). Also, value-based perceptions seem crucial for accepting the OTF
market from the service requester and service provider perspective as one interviewee
mentions: “You’ve got to create some value to motivate the users to contribute.” (ID 5).
Brand-related trust as well as community and brand identification were seen as drivers of
service requesters’ acceptance: “And of course, it’s very important that this platform has
a good image. . . . the surrounding communication is very important. . . . What are the
comments from users? Is there anything building up? . . . Do you get positive comments
from friendly users?” (ID 6).

Beyond identified factors that apply to the acceptance of individual market participants,
we could support the importance of transformation-related factors such as organizational
capabilities that influence a company’s decision to transform into a market provider. The
necessity to develop and maintain a sophisticated skillset of the staff of the market provider
is illustrated by the following quote: “And you also have to think about crucial factors of
developing platforms . . . I think you have to have an interdisciplinary team of different

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

roles. So, you need, someone who’s professional a UX design, you need an IT expert,
you need someone who understands how the platform works. . . . I think a big success
factor [is] that you’ve got this mixed team of different roles, different experts, that all work
together. Because it’s pretty complicated to build a platform from scratch. . . . You have to
combine a lot of knowledge” (ID 5).

In sum, we observe that the attraction factors of OTF computing markets are multi-faceted
and apply to three perspectives: market provider, service provider, and service requester.
Managers of OTF computing markets are encouraged to invest equally in the attraction
and retention of both market sides.

3 Impact and Outlook

OTF computing markets are a promising new type of ecosystem to increase the value
for potential end users by combining the offering from all involved market participants.
In our research, we investigated the underlying enterprise architecture, the development
of business models, and acceptance factors for the platform itself as well as the market
participants. Our results impact the design of future OTF computing markets as well
as the analyzed comparative markets such as mobile ecosystems. For that, first, our
developed architectural framework and the SeCoArc tool support software ecosystem
designers in the analysis of existing software ecosystems as well as the design of new
ones. Second, our BMI4BE method is based on multiple research results from prior
research and is an interdisciplinary approach developed by researchers from business
administration, information systems, and computer science. By that, the method is one
of the first considering multiple research disciplines and was communicated to practice
in [RLL+22]. Third, our SBMD tool has been developed for the comparative market of
mobile ecosystems. The SBMD is released under open source so that it can be extended by
additional features, for example, crowd validation. Fourth, we identified factors that impact
the attractiveness of OTF computing markets for multiple stakeholders. These results, for
example, that end users’ acceptance of platforms is likely to be influenced by the length of
the relationship between the customers and the platform provides a solid foundation for
further investigations for successful and sustainable OTF computing markets.

In the future, we aim to increase the impact of our contributions by research on simulation
and evolution. For that, our first aspect covers dynamics in software ecosystems. Here,
we want to understand the evolution of those ecosystems over time with their business,
technical, and infrastructure aspects. Second, we want to research the simulation of
business models [KV23]. Here, we plan to calculate the financial assessments of business
models under different internal and external circumstances. Third, we want to investigate
the changes in stakeholder perceptions over time. Here, the aim is to understand changes
in the short-term, mid-term, and long-term relationships among the stakeholders.

Acknowledgments

We would like to thank Bahar Schwichtenberg, Daniel Szopinski, and Helene Rebelo for
their contributions to Subproject C5 over the last years.

3. Impact and Outlook 223

Bibliography

[Adn17] Adner, R.: Ecosystem as Structure. In: Journal of Management 43 (2017), no. 1, pp. 39–58

[AS16] Axelsson, J.; Skoglund, M.: Quality assurance in software ecosystems: A systematic
literature mapping and research agenda. In: Journal of Systems and Software 114 (2016),
pp. 69–81

[BB10] Bosch, J.; Bosch-Sijtsema, P.: From integration to composition: On the impact of software
product lines, global development and ecosystems. In: Journal of Systems and Software
83 (2010), no. 1, pp. 67–76

[BKW21] Beverungen, D.; Kundisch, D.; Wünderlich, N.: Transforming into a platform provider:
strategic options for industrial smart service providers. In: Journal of Service Management
32 (2021), no. 4, pp. 507–532

[Dav89] Davis, F. D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology. In: MIS Quarterly 13 (1989), no. 3, p. 319

[GA03] Gordijn, J.; Akkermans, J. M.: Value-based requirements engineering: exploring innova-
tive e-commerce ideas. In: Requirements Engineering 8 (2003), no. 2, pp. 114–134

[GYNE21] Gottschalk, S.; Yigitbas, E.; Nowosad, A.; Engels, G.: Situation-Specific Business Model
Development Methods for Mobile App Developers. In: Enterprise, Business-Process and
Information Systems Modeling. Ed. by Augusto, A.; Gill, A.; Nurcan, S.; Reinhartz-
Berger, I.; Schmidt, R.; Zdravkovic, J. Vol. 421. Lecture Notes in Business Information
Processing. Cham: Springer International Publishing, 2021, pp. 262–276

[GYNE22a] Gottschalk, S.; Yigitbas, E.; Nowosad, A.; Engels, G.: Continuous situation-specific
development of business models: knowledge provision, method composition, and method
enactment. In: Software and Systems Modeling (2022), no. 22, pp. 47–73

[GYNE22b] Gottschalk, S.; Yigitbas, E.; Nowosad, A.; Engels, G.: Situational Business Model
Developer: A Tool-support for Situation-specific Business Model Development. In: Wirt-
schaftsinformatik 2022 Proceedings. AIS, 2022

[GYNE22c] Gottschalk, S.; Yigitbas, E.; Nowosad, A.; Engels, G.: Towards Software Support for
Situation-Specific Cross-Organizational Design Thinking Processes. In: IWSiB ’22. Pitts-
burgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 1–8.

[HRÅR14] Henderson-Sellers, B.; Ralyté, J.; Ågerfalk, P. J.; Rossi, M.: Situational Method Engi-
neering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014

[JCG18] Jacobides, M. G.; Cennamo, C.; Gawer, A.: Towards a theory of ecosystems. In: Strategic
Management Journal 39 (2018), no. 8, pp. 2255–2276

[JPEK16] Jazayeri, B.; Platenius, M. C.; Engels, G.; Kundisch, D.: Features of IT Service Markets:
A Systematic Literature Review. In: Service-Oriented Computing. Ed. by Sheng, Q. Z.;
Stroulia, E.; Tata, S.; Bhiri, S. Vol. 9936. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2016, pp. 301–316

[JPML21] Jung, J.; Park, E.; Moon, J.; Lee, W. S.: Exploration of Sharing Accommodation Platform
Airbnb Using an Extended Technology Acceptance Model. In: Sustainability 13 (2021),
no. 3, p. 1185

[JZEK17] Jazayeri, B.; Zimmermann, O.; Engels, G.; Kundisch, D.: A Variability Model for Store-
Oriented Software Ecosystems: An Enterprise Perspective. In: Service-Oriented Com-
puting. Ed. by Maximilien, M.; Vallecillo, A.; Wang, J.; Oriol, M. Vol. 10601. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2017, pp. 573–588

[JZK+18] Jazayeri, B.; Zimmermann, O.; Küster, J.; Engels, G.; Szopinski, D.; Kundisch, D.: Pat-
terns of Store-orieted Software Ecosystems: Detection, Classification, and Analysis of
Design Options. In: Proceedings of Latin American Conference on Pattern Languages of
Programming. 2018

Gottschalk, Vorbohle, Kundisch, Engels, Wünderlich Subproject C5

[KBE21] Karanović, J.; Berends, H.; Engel, Y.: Regulated Dependence: Platform Workers’ Re-
sponses to New Forms of Organizing. In: Journal of Management Studies 58 (2021), no. 4,
pp. 1070–1106

[KV23] Ksouri-Gerwien, C.; Vorbohle, C.: Supporting Business Model Decision-making in B2B
Ecosystems: A Framework for Using System Dynamics. In: Proceedings of the 55th
Hawaii International Conference on System Sciences (HICSS). 2023

[OP10] Osterwalder, A.; Pigneur, Y.: Business model generation: a handbook for visionaries,
game changers, and challengers. Hoboken, New Jersey: John Wiley & Sons, 2010

[PFG13] Pernstål, J.; Feldt, R.; Gorschek, T.: The lean gap: A review of lean approaches to
large-scale software systems development. In: Journal of Systems and Software 86 (2013),
no. 11, pp. 2797–2821

[PK18] Perren, R.; Kozinets, R. V.: Lateral Exchange Markets: How Social Platforms Operate in
a Networked Economy. In: Journal of Marketing 82 (2018), no. 1, pp. 20–36

[PW16] Paluch, S.; Wünderlich, N. V.: Contrasting risk perceptions of technology-based service
innovations in inter-organizational settings. In: Journal of Business Research 69 (2016),
no. 7, pp. 2424–2431

[RLL+22] Robra-Bissantz, S.; Lattemann, C.; Laue, R.; Leonhard-Pfleger, R.; Wagner, L.; Ge-
rundt, O.; Schlimbach, R.; Baumann, S.; Vorbohle, C.; Gottschalk, S.; Kundisch, D.;
Engels, G.; Wünderlich, N.; Nissen, V.; Lohrenz, L.; Michalke, S.: Methoden zum Design
digitaler Plattformen, Geschäftsmodelle und Service-Ökosysteme. In: HMD Praxis der
Wirtschaftsinformatik 59 (2022), no. 5, pp. 1227–1257

[SE20] Schwichtenberg, B.; Engels, G.: SecoArc: A Framework for Architecting Healthy Soft-
ware Ecosystems. In: Software Architecture. Ed. by Muccini, H.; Avgeriou, P.; Buhnova,
B.; Camara, J.; Caporuscio, M.; Franzago, M.; Koziolek, A.; Scandurra, P.; Trubiani, C.;
Weyns, D.; Zdun, U. Vol. 1269. Communications in Computer and Information Science.
Cham: Springer International Publishing, 2020, pp. 95–106

[SL20] Schwarz, J. S.; Legner, C.: Business model tools at the boundary: exploring communities
of practice and knowledge boundaries in business model innovation. In: Electronic Markets
30 (2020), no. 3, pp. 421–445

[SMJ+22] Szopinski, D.; Massa, L.; John, T.; Kundisch, D.; Tucci, C. L.: Modeling Business Models:
A cross-disciplinary Analysis of Business Model Modeling Languages and Directions for
Future Research. In: Communications of the Association for Information Systems (2022),
no. 51, pp–pp

[SSJ+20] Szopinski, D.; Schoormann, T.; John, T.; Knackstedt, R.; Kundisch, D.: Software tools for
business model innovation: current state and future challenges. In: Electronic Markets 30
(2020), no. 3, pp. 469–494

[Tee10] Teece, D. J.: Business Models, Business Strategy and Innovation. In: Long Range Planning
43 (2010), no. 2/3, pp. 172–194.

[VK22] Vorbohle, C.; Kundisch, D.: Overcoming Silos: A Review of Business Model Modeling
Languages for Business Ecosystems. In: Proceedings of the 30th European Conference on
Information Systems (ECIS), Research-in-Progress. 2022

[WLCH19] Williams, P. A.; Lovelock, B.; Cabarrus, T.; Harvey, M.: Improving Digital Hospital
Transformation: Development of an Outcomes-Based Infrastructure Maturity Assessment
Framework. In: JMIR medical informatics 7 (2019), no. 1

[ZA13] Zott, C.; Amit, R.: The business model: A theoretically anchored robust construct for
strategic analysis. In: Strategic Organization 11 (2013), no. 4, pp. 403–411

225

Transfer Project T1:

Flexible Industrial Analytics on Reconfigurable Systems-On-Chip

Alexander Boschmann2, Lennart Clausing1, Felix Jentzsch1, Hassan
Ghasemzadeh Mohammadi1, Marco Platzner1

1 Department of Computer Science, Paderborn University,
Paderborn, Germany

2 Weidmüller Interface GmbH & Co. KG., Germany

1 Introduction

Industrial analytics refers to the current trend in automation technology to collect and
analyze a variety of measured values from machines and from production processes in
order to generate added value for future operations. Industrial analytics is a business field
with great economic potential, and Weidmüller wants to position itself as a leading provider
of industrial analytics solutions within the framework of the mission statement Industry
4.024. Examples for industrial analytics include the detection of significant deviations from
the target behavior of a machine [MKPN13], the detection of inefficiencies [MPK15], the
creation of fault forecasts and the diagnosis of fault causes. The added value achieved is
the avoidance of machine breakdowns, the minimization of downtime, or in general, the
increase of plant productivity and production output [PKG+16].

In embedded analytics, i.e., the implementation of analysis functions directly in the
automation devices within a production plant, Weidmüller relies on reconfigurable System-
on-Chip (rSoC). The challenges in using rSoC for industrial analytics are on the one hand
the required flexibility in system design and, on the other hand, the increasing heterogeneity
of rSoC platforms. Flexibility is needed since the functions of industrial analytics have
to be selected, configured and assembled on an application-specific basis, implemented
as a hardware/software co-design and deployed on an rSoC. Flexibility can further be
exploited during runtime to use the resources efficiently under varying load situations. The
technological evolution of rSoC platforms is toward more heterogeneous architectures: for
example, recent rSoCs combine multiple processor types with reconfigurable hardware,
embedded graphics processors, and application-specific blocks.

The combination of increasing dynamics of tasks and heterogeneity of the underlying
architectures is also the guiding theme of basic scientific research in subproject C2 of SBF
901. There, novel architectures and programming models for heterogeneous computing
nodes are investigated and developed. By transferring these basic scientific results to the
industrial analytics application domain, this transfer project aims to achieve the following
goals:

Alexander.Boschmann@weidmueller.com (Alexander Boschmann), lennart.clausing@upb.de (Lennart Claus-
ing), felix.jentzsch@upb.de (Felix Jentzsch), ghasemzadeh@gmail.com (Hassan Ghasemzadeh Mohammadi),
platzner@ubp.de (Marco Platzner)
24https://www.weidmueller.com/int/solutions/industrial_analytics/index.jsp

https://www.weidmueller.com/int/solutions/industrial_analytics/index.jsp

Boschmann, Clausing, Jentzsch, Ghasemzadeh Mohammadi, Platzner Transfer Project T1

1. Characterization of essential functions of industrial analytics and design of hard-
ware/software partitionings suitable for an rSoC implementation.

2. Development of architectures and programming environments to enable transmodal
migration on rSoC.

3. Demonstration of rSoC technology for industrial analytics use cases.

For rSoC architectures and programming environments we draw on preliminary work,
the ReconOS [AHK+14] operating system for reconfigurable computers. ReconOS al-
lows for multithreaded programming across the software/hardware boundary by turning
accelerator functions into so-called hardware threads and semantically integrating them
as threads into a guest operating system environment. Compared to related approaches
such as BOPRH [KB08], Hthreads [ASA+08], FUSE [IS11], SPREAD [WZW+13], and
LEAP [FYAE14], ReconOS is more flexible and more rapidly portable to new guest
operating systems and FPGA technologies. In particular, ReconOS has demonstrated its
usefulness in three scenarios: First, ReconOS supports a step-by-step development flow
starting from a software application prototype on desktop under Linux. Only when the
prototype is functionally correct, is the application ported to the embedded rSoC, which is
typically a low effort since the embedded CPU cores also run Linux. As a last step, threads
that are amenable to hardware acceleration are gradually moved from software to hardware.
Second, ReconOS facilitates design space exploration since different hardware/software
partitionings can easily be generated by simply modifying system configuration data and
no changes are needed to unaffected threads or the operating system. This feature has
been used, for example, to develop a video object tracking system [HLP13]. Finally,
ReconOS even allows for the construction of adaptive or self-adaptive systems, where a
hardware/software application monitors its own performance and changes the architecture,
for example the number of used CPU cores and hardware threads or the hardware/software
partitioning, in reaction to a varying workload [AHL+14].

2 Main Contributions

In the course of the transfer project, we have achieved the following results:

• We have developed ReconOS64 as a new version of the ReconOS architecture and
operating system layer for the modern 64-bit rSoC technology used in the project,
i.e., the Xilinx UltraScale+ MPSoC platform FPGAs [CP22; Cla21].

• We have created a build tool flow for ReconOS64 that includes a high-level synthesis
(HLS) tool flow and thus allows for creating hardware threads not only in hardware
description languages such as VHDL and Verilog, but also in C/C++.

• We have implemented several industrial analytics functions as software/hardware
co-designs on the rSoC platform, including k-NN [Ria17], decison trees/random
forests, SVM [BTW+17], and neural network models [Nga22].

• We have worked on several industrial analytics case studies for condition monitoring
and anomaly detection, respectively, targeting wind turbines, molding machines and
welding machines [Kau22].

In the following, we select two of these topics for elaboration, the ReconOS64 development
and the DeepWind case study, a condition monitoring system for wind turbines.

2. Main Contributions 227

2.1 The ReconOS64 Operating System for 64-bit Platform FPGAs

ReconOS64 bases on previous ReconOS [AHK+14; LP09] implementations but targets
modern platform FPGAs with 64-bit processors. The step towards 64-bit support and
the use of modern platform FPGAs is important, since many applications, in particular
industrial analytics functions, require the increased computing capabilities and resources
provided by modern rSoC. ReconOS and its 64-bit version are freely available in open
source25.

Figure 69 shows the architecture of ReconOS64 on the Xilinx UltraScale+ MPSoC. The
processing system (PS) comprises a 64-bit quad-core CPU and runs the 64-bit Xilinx
PetaLinux as the host operating system. ReconOS64 extends the host operating system
by the ReconOS driver in kernel space and several libraries in user space for, e.g., thread
synchronization, communication, management and bitstream loading. The programmable
logic part of the platform FPGA is structured into so-called reconfigurable slots that
constitute rectangular areas of the programmable logic fabric. Reconfigurable slots accom-
modate hardware threads, which are ReconOS’ abstractions of accelerated functions. A
main feature of ReconOS is that hardware threads access the operating system using the
same services as software threads running on the CPU, thus enabling the multithreaded
programming abstraction across the hardware/software boundary. This is made possible
by delegate threads, light-weight software threads that conduct operating system calls on
behalf of their corresponding hardware threads.

Figure 69: ReconOS64 Architecture on the Xilinx UltraScale+ MPSoC (taken from [CP22]).

The intellectual property (IP) cores of ReconOS64 responsible for connecting hardware
threads with the host operating system are shown in green color in Figure 69. Each

25www.reconos.de

www.reconos.de

Boschmann, Clausing, Jentzsch, Ghasemzadeh Mohammadi, Platzner Transfer Project T1

hardware thread comprises the actual user logic and an operating system finite state
machine (OSFSM) that sequentializes the thread’s operating system interactions and
handles synchronization between the user logic and the software. Further, each hardware
thread is connected to an operating system interface (OSIF) FIFO that buffers the operating
system calls, i.e., their commands with parameters and return values. The FIFO also serves
to separate the clock regions of the ReconOS64 design from the hardware threads to allow
them to run at different frequencies. The OSIF FIFOs connect to a central OSIF IP core
that collects the commands and parameters for all service requests and, in addition, to
a dedicated OSIF interrupt controller that raises a CPU interrupt whenever a hardware
thread wants to execute an operating system call. On the software side, the raised interrupt
will activate the OSIF interrupt service routine (ISR), which in turn sets the delegate
thread corresponding to the hardware thread that is ready to run. The delegate thread then
accesses the OSIF IP core, retrieves the command and parameters and actually performs
the operating system call. In case there are return values, they are written back to the
hardware threads.

The proc_control IP core together with the proc_control kernel driver are also involved
in operating system communication as they propagate reset signals towards the hardware
threads. In ReconOS64 the native data type is 64 bit. Hence, all IP cores involved in
operating system communication support command, parameter, and return data structures
in multiples of 64-bit. This is particularly important since many operating system calls,
e.g., message box reads and writes, are typically used to communicate 64-bit pointers
between software and hardware threads. A consequence of the 64-bit orientation is that
data of smaller width has to be either padded to the next multiple of eight bytes or, if
several small-sized data are to be written or read, concatenated to blocks of eight byte.

The IP cores of ReconOS64 responsible for supporting memory accesses of the hardware
threads are displayed in orange color in Figure 69. While address pointers in ReconOS64 are
64-bit wide, the Linux configuration we use on the ARMv8 CPU architecture uses a virtual
address space of 512 GB that is mapped to a physical address space of 256 TB. Hence,
the systems’ memory management unit (MMU) considers only the lower 39 bit of virtual
addresses and deals with 48-bit physical addresses. The page size in our configuration
amounts to 4 KB. Hardware threads use virtual addresses and access memory via their
memory interfaces (MEMIF). ReconOS64 employs three IP cores for establishing memory
access. The Arbiter resolves simultaneous accesses from different hardware threads,
the MMU performs the translation to physical addresses, and the AXI Interface / Burst
Generator interfaces to the AXI bus and ensures burst transfers. Initially, the content of
the ARM CPU’s Translation Table Base Register (TTBR) is transferred to the MMU via
the kernel driver and the proc_control IP core to ensure that the MMU has the physical
address of the ReconOS process’ first-level page table. Then, the MMU performs the page
table walk which results in at most three memory accesses. To speed up memory access
for hardware threads, the MMU includes a translation look-aside buffer (TLB) that caches
recent translations between the 27-bit virtual page numbers and the 36 bit physical page
numbers. The size of the TLB is configurable. The proc_control component supports the
handling of page faults during address translation. Therefore, proc_control needs to be
able to raise an interrupt with the CPU.

Dynamic thread management is supported through partial reconfiguration in ReconOS64 .
Generally, a hardware thread is assigned to a reconfigurable slot, which is a rectangular

2. Main Contributions 229

area of logic resources on the FPGA residing in the same clock region. A new feature of
ReconOS64 are reconfigurable slot groups, which specify sets of reconfigurable slots of
the same size. Each hardware thread is assigned to one or more such reconfigurable slot
groups, and multiple hardware threads can be assigned to the same reconfigurable slot
group. The introduction of reconfigurable slot groups makes the runtime mapping between
hardware threads and reconfigurable slots more flexible.

ReconOS64 allows for the hardware threads to run at individual clock rates, in particular
different ones from the clock of the static ReconOS part. These individual clock signals
are fed from the ReconOS64 clocking IP core that utilizes a Mixed-mode Clock Manager
(MMCM) tile with static multiplier and variable dividers for each clock output. Reconfig-
urable slot groups can be assigned to individual clocks as long as the clock tile resources
are not exceeded. Using a function from the ReconOS64 thread management library, both
software and hardware threads can set the clock frequencies for hardware threads by
modifying the clock dividers in the corresponding ReconOS64 clocking IP core.

Figure 70: ReconOS64 build tool flow (adapted from [AHK+14]).

The ReconOS64 build tool flow takes as inputs the sources for the application’s software
threads in C/C++ and the sources for the hardware threads in either VHDL/Verilog or
C/C++ for use with high-level synthesis (HLS). For both, a predefined set of ReconOS64 -
specific library functions is provided. A further input is the system specification comprising
a set of ReconOS64 IP cores and the configuration file. The configuration file includes
definitions for the target platform, the reconfigurable slots, and reconfigurable slot groups
and assigns the hardware threads to reconfigurable slot groups. Further, all operating
system service objects, such as message boxes, mutexes, and semaphores, are listed in
the configuration file. The build process relies on a Python-based templating system. The
application software is cross-compiled with the aarch64-gcc compiler, which results in

Boschmann, Clausing, Jentzsch, Ghasemzadeh Mohammadi, Platzner Transfer Project T1

the application executable. On the hardware side of the build tool flow, the ReconOS
Development Kit (RDK) processes the configuration file and generates IP sources from
architecture- and board-specific templates. The flow then generates a Xilinx Vivado project
incorporating the user-provided hardware threads, either directly from the VHDL/Verilog
code or the result from HLS, with all necessary components and connections. The hardware
build process results in the static bitstream for the ReconOS64 system and a set of partial
bitstreams for the hardware threads. Information from the hardware build process (e.g.,
used address ranges for IP cores) together with a generic Xilinx PetaLinux template project,
the ReconOS64 kernel module and device tree, and boot components are used to configure
and generate a bootable system including the operating system kernel and the root file
system.

2.2 DeepWind: An Accurate Wind Turbine Condition Monitoring Framework via
Deep Learning on Embedded Platforms

The generation of electricity using wind turbines is rapidly growing and becoming more
important since it is considered as an affordable and clean substitute for fossil fuel-based
electricity production. Wind turbines are used in a large variety of environments, both
onshore and offshore, and they are exposed to harsh working conditions, such as unbalanced
wind load, wind turbulence, and large temperature variations [QL15]. To service running
wind turbines unceasingly and safely, and particularly reduce the maintenance costs,
adequate online condition monitoring systems (CMSs) are required [Wei]. CMSs identify
the type and the location of faults and, more importantly, diagnose the transformation of a
fault into an error and possibly into a failure.

During wind turbine operation, a CMS constantly takes measurements that determine the
condition of the critical components, e.g., the rotor blades. The measurements provide
indications for problems such as blade damages after lightning strikes, heavy vibrations of
the blades, or the ice accretion on a rotor blade. Ice accretion may lead to dangerous ice
throw, which is a major risk for the surroundings of wind turbines. Therefore, more and
more local authorities insist on blade measuring ice detection systems. By processing the
information of a CMS, a diagnosis, e.g., inspection, necessary repair, or necessity of turbine
shutdown, is reached and an adequate maintenance plan is formulated. Consequently, the
CMS facilitates low-cost maintenance before a critical failure happens while diminishing
the downtime of the wind turbine, also increasing its dependability and lifetime. Defects
can cause abnormal vibrations of the blades, which can be sensed by accelerometers
installed on the blades. Earlier work applied frequency spectrum analyses [CG05; WX06]
to detect such defects. However, such analyses require manual feature engineering and
extensive trial-and-error to identify patterns in the vibrations that correctly match to faulty
cases.

In DeepWind, we propose a novel framework to build an end-to-end condition monitoring
and fault detection system for rotor blades. The framework starts with a preprocessing
step to reduce the complexity of the raw sensor data. Then, inspired by the success
of deep learning in time series analysis, we train a multi-channel convolutional neural
network (MC-CNN) that can automatically extract a set of discriminative features from
the sensor data. Finally, the trained MC-CNN is automatically mapped to an embedded

2. Main Contributions 231

FPGA platform, where a combination of software and hardware identifies fault occurrences
within the data streamed from accelerometer sensors.

Testing set

Training &

Validation set

Class balancing

via bootstrapping

Downsampling

Preprocessing

Dataset splitting

Raw data Windowing

Figure 71: Main steps of data preprocessing: downsampling, windowing, data set splitting,
and training set bootstrapping (taken from [GAR+20]).

Figure 71 illustrates the main steps of the sensor data preprocessing. The main goal of the
preprocessing step is to convert the raw sensor data into a cleanly formatted data set that
can be used later by the MC-CNN for fault detection purposes. The complexity of sensor
data is reduced by applying downsampling, in which the number of sample points in the
input data is reduced. We utilize the Mode-Median-Bucket algorithm [Ste13], in which
every window is divided into several subwindows in such a way that each subwindow
contains the same number of samples. The algorithm considers important features from
each bucket with mode, median, global peaks, or global trough values and filters out the
other samples in each subwindow. In the next step, we utilize the windowing technique
to divide each input data frame into a number of smaller segments called windows. Each
window simply adopts the label of its data frame. Finally, we form our training and testing
data sets from the obtained windows. We modify the training set by bootstrapping with
replacement to ensure that the number of samples from both faulty and non-faulty classes
are comparable. This is an important step to be able to train a high-quality classifier that
provides high accuracy and recall on the testing set [Man22].

As the target feature extractor and classifier, we exploit a multi-channel CNN, in which the
training of each individual univariate data, e.g., raw data from each sensor, is performed
independently [Kau22]. Indeed, we can draw a lot of inference from the local properties
of each sensor without losing the generality of our classifier, by decoupling the data of
different sensors. The architecture of the MC-CNN model we have used in this work is
shown in Figure 72. After preprocessing the sensor data we apply a Fast Fourier Transform
(FFT) on each input window to extract its Spectrum Frequency (SF). The obtained SFs are
then fed into the MC-CNN.

The first part of the MC-CNN performs feature extraction and contains two 1-D convolution
layers as well as two max-pooling layers. For each sensor, the so-called channel, we utilize
50 and 40 feature maps in the first and second convolution layers with the size of 8 and 4,
respectively. As we have two sensors per blade, we exploit six 1-D convolution channels.
The outcomes of each convolution layer are downsampled by a max-pooling layer to
control the growth in the size of the extracted features. Finally, the obtained features are
fed into a fully connected layer with 400 neurons. This layer is followed by a softmax
layer that generates the conditional probability of faulty and non-faulty classes. Note that
the training of the MC-CNN is performed offline, and then the trained model is quantized
and mapped on the hardware for the inference phase.

On the hardware side of our framework, called TFPGA, we utilize an rSoC as the tar-
get platform. We exploit hardware/software codesign to both efficiently distribute the

Boschmann, Clausing, Jentzsch, Ghasemzadeh Mohammadi, Platzner Transfer Project T1

Fully connected layer

with softmax output
Pooling

layer

1-D Convolution

layer

Pooling

layer

1-D Convolution

layer

Channel 1
Channel 2

Channel 6

FFT

MC-CNN

Preprocessing

step

Conditional probability

of each sensor status,

i.e., faulty or non-faulty

Figure 72: The architecture of multi-channel CNN for fault detection. The convolution
layers have 50 and 40 filters with kernel sizes of 8 and 4, respectively. For each
window, obtained from the preprocessing step, the FFT spectrum is computed
and the outcome is fed to the MC-CNN (taken from [GAR+20]).

framework tasks on various rSoC resources and benefit from the customizability and
parallelism offered by FPGAs. For inference, the tasks of the preprocessing step, e.g.,
downsampling and windowing, as well as the FFT computation for each obtained window
are assigned to the CPUs of the rSoC. Note that the bootstrapping task is just performed
on the training data set and is omitted from consideration in the inference phase. Next, the
trained MC-CNN network is analyzed, and a C++ implementation of this model is created.
This code is then given to Xilinx SDSoC to create a bitstream needed for the target FPGA.
To improve the execution time of the software model and reduce its size, the framework
exploits a custom precision scaling feature that enables a designer to utilize the underlying
hardware more efficiently by tuning the parameters of the given network.

We have used a real-word data set provided by Weidmüller Monitoring Systems GmbH to
evaluate the approach. The data set comprises time series data measured with a sampling
rate of 1 kHz from the edge-wise and flap-wise sensors for each of three rotor blades. For
every half hour (i.e., 1.8 million sample points), the data is labeled with the sensor status
in that interval as faulty or non-faulty. After preprocessing, we have obtained samples with
a window size of 1 second along with corresponding labels. We have used 80% of the data
for training and validation and the remaining 20% for testing. All the models have been
implemented with the Keras library [Ker].

Figure 73 shows the classification result of our DeepWind framework. The figure plots
the achieved F1-score versus the six channels, i.e., two per blade, where each channel
represents a sensor blade. The F1-score is the harmonic mean of precision and recall and
reaches its best value at 1, which translates to perfect precision and recall. Our proposed
MC-CNN based fault detection scheme provides an average of 0.94 for the F1-score. As a
baseline technique, we have experimented with a Support Vector Machine (SVM) used
previously by the application partner, which results in an F1-score of 0.64 on average.
Importantly, for all of the six channels MC-CNN provides better classification results in
comparison with SVM, making our MC-CNN approach a successful technique to capture
the most discriminative features for the sensor blade fault detection problem.

Figure 74 represents the accuracy for various quantization settings and for the reference
software implementation, which utilizes double-precision floating point. The results show
an accuracy penalty of 6% for a 16-bit quantization, which we deem acceptable without
model retraining. When only the weights are quantized further to 8 bit, we even observe

3. Impact and Outlook 233

a slight increase in accuracy to 87%. We attribute this to the inherent regularization
characteristic of the quantization, since we know that the original model benefits from
dedicated regularization, namely through dropout. We have also measured the resource
usage for different quantization settings. The initial results revealed that going from 16
to 8 bit leads to a slight saving in lookup tables of 12%. Quantization of weights to 8
bit achieves a 34% decrease in embedded memory (BRAM) usage. These results show
that weight quantization is effective for reducing the memory footprint in an MC-CNN
hardware accelerator.

0.87

0.94 0.92
0.99 0.99 0.97

0.58

0.66 0.67
0.73

0.78

0.41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

F
-1

-s
co

re

Channels

MC-CNN

SVM

Figure 73: F1-score of MC-CNN and SVM methods for six channels (taken
from [GAR+20]).

91%
85% 84%

87%

76%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Float (SW) 16/16 16/8 8/16 8/8

A
cc

u
ra

cy

Bit-width (weights/activations)

Figure 74: Accuracy vs. bit width of the MC-CNN on a Xilinx UltraScale+ MPSoC (taken
from [GAR+20]).

3 Impact and Outlook

This transfer project allowed us to further develop and apply reconfigurable system-on-chip
technology to the concrete application domain of industrial analytics functions, together
with the application partner Weidmüller. Overall, the project was successful since the
newly developed 64-bit ReconOS64 architecture provides CPU cores with sufficient com-
pute power and hardware acceleration for industrial analytics functions. The corresponding

Boschmann, Clausing, Jentzsch, Ghasemzadeh Mohammadi, Platzner Transfer Project T1

build tool flow has shown to support the specification of runtime-reconfigurable functions
in a rather simple way. We have implemented a number of typical functions of industrial
analytics as software/hardware co-designs with ReconOS64 and demonstrated that different
trade-offs between performance and resource consumption can be explored. Our develop-
ments are open source and can thus be used and leveraged by others. We have also worked
on several use cases, where condition monitoring for wind turbines is so far the most
successful one. For this use case, we could propose an industrial analytics function that
greatly improves the existing solution in terms of quality. The mapping to an embedded
rSoC is also of great interest, since then the condition monitoring system can be placed
near the sensors in the rotor blades and running such functions on servers in wind turbines
can be avoided.

One aspect planned for this transfer project could not yet be realized in a use case,
the transmodal migration of industrial analytics functions. While this feature has been
demonstrated in the lab, for the concrete use cases it was more important to spend time for
developing industrial analytics functions that excel in functional quality. One particular
challenge for developing good solutions is that often only small data sets or data with very
imbalanced classes are available.

Ongoing and future work includes the development of more solutions for condition moni-
toring and predictive maintenance, in particular for welding machines [Kum23], and the
further optimization of ReconOS64 .

For mapping DNN architectures to rSoC, in this transfer project we have first used our
TFPGA framework (cf. Section 2.2) and, later, we have developed a framework that
focuses on TF Lite26 with its backend delegate modules. We have developed an FPGA
delegate for TF Lite that facilitates the necessary hardware/software co-design using the
ReconOS64 architecture and operating system (cf. Section 2.1). The partial reconfiguration
support of ReconOS64 enables the instantiation of model-tailored accelerator architectures.
Mapping DNNs to rSoC technology remains an area of active research. Recently, we have
switched to the open source FINN framework [BPF+18] that maps DNNs as streaming
dataflow architectures to FPGAs and features flexible quantization as well as quantization-
aware DNN training.

Bibliography

[AHK+14] Agne, A.; Happe, M.; Keller, A.; Lubbers, E.; Plattner, B.; Platzner, M.; Plessl, C.:
ReconOS: An Operating System Approach for Reconfigurable Computing. In: IEEE Micro
34 (Jan. 2014), no. 1, pp. 60–71

[AHL+14] Agne, A.; Happe, M.; Lösch, A.; Plessl, C.; Platzner, M.: Self-awareness as a Model for
Designing and Operating Heterogeneous Multicores. In: ACM Transactions on Reconfig-
urable Technology and Systems (TRETS) 7 (2014), no. 213

[ASA+08] Andrews, D.; Sass, R.; Anderson, E.; Agron, J.; Peck, W.; Stevens, J.; Baijot, F.; Komp,
E.: Achieving Programming Model Abstractions for Reconfigurable Computing. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 16 (2008), no. 1, pp. 34–44

[BPF+18] Blott, M.; Preusser, T. B.; Fraser, N. J.; Gambardella, G.; O’brien, K.; Umuroglu, Y.;
Leeser, M.; Vissers, K.: FINN-R: An End-to-End Deep-Learning Framework for Fast
Exploration of Quantized Neural Networks. In: 11 (2018), no. 3.

26https://www.tensorflow.org/lite

https://www.tensorflow.org/lite

3. Impact and Outlook 235

[BTW+17] Boschmann, A.; Thombansen, G.; Witschen, L.; Wiens, A.; Platzner, M.: A Zynq-based
dynamically reconfigurable high density myoelectric prosthesis controller. In: In Proceed-
ings of Design, Automation and Test in Europe (DATE). IEEE, 2017

[CG05] Caselitz, P.; Giebhardt, J.: Rotor condition monitoring for improved operational safety of
offshore wind energy converters. In: J. Sol. Energy Eng. 127 (2005), no. 2, pp. 253–261

[Cla21] Clausing, L.: ReconOS64: High-Performance Embedded Computing for Industrial An-
alytics on a Reconfigurable System-on-Chip. In: Proceedings of the 11th International
Symposium on Highly Efficient Accelerators and Reconfigurable Technologies. ACM,
2021

[CP22] Clausing, L.; Platzner, M.: ReconOS64: A Hardware Operating System for Modern Plat-
form FPGAs with 64-Bit Support. In: 2022 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2022, pp. 120–127

[FYAE14] Fleming, K.; Yang, H.-J.; Adler, M.; Emer, J.: The LEAP FPGA operating system. In:
International Conference on Field Programmable Logic and Applications (FPL). IEEE,
2014

[GAR+20] Ghasemzadeh Mohammadi, H.; Arshad, R.; Rautmare, S.; Manjunatha, S.; Kuschel, M.;
Jentzsch, F. P.; Platzner, M.; Boschmann, A.; Schollbach, D.: DeepWind: An Accu-
rate Wind Turbine Condition Monitoring Framework via Deep Learning on Embedded
Platforms. In: 2020 25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). 2020

[HLP13] Happe, M.; Lübbers, E.; Platzner, M.: A Self-adaptive Heterogeneous Multi-core Ar-
chitecture for Embedded Real-time Video Object Tracking. In: International Journal of
Real-time Image Processing 8 (2013), no. 1, pp. 95–110

[IS11] Ismail, A.; Shannon, L.: FUSE: Front-End User Framework for O/S Abstraction of
Hardware Accelerators. In: International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2011

[Kau22] Kaur, P.: Analysis of Time-Series Classification in Conditional Monitoring Systems.
MA thesis. Paderborn University, 2022

[KB08] Kwok-Hay So, H.; Brodersen, R.: Runtime Filesystem Support for Reconfigurable FPGA
Hardware Processes in BORPH. In: International Symposium on Field-Programmable
Custom Computing Machines (FCCM). 2008

[Ker] Keras: The Python Deep Learning API. https://keras.io

[Kum23] Kumar, N. Y. M.: Data Analytics for Predictive Maintenance of Time Series Data. MA
thesis. Paderborn University, 2023

[LP09] Lübbers, E.; Platzner, M.: ReconOS: Multithreaded Programming for Reconfigurable
Computers. In: ACM Trans. Embed. Comput. Syst. 9 (Oct. 2009), no. 1

[Man22] Manjunatha, S.: Dealing with Pre-Processing and Feature Extraction of Time-Series Data
in Predictive Maintenance. MA thesis. Paderborn University, 2022

[MKPN13] Maier, A.; Köster, M.; Paiz Gatica, C.; Niggemann, O.: Automated Generation of Timing
Models in Distributed Production Plants. In: Proceedings of the IEEE International
Conference on Industrial Technology (ICIT). IEEE, 2013

[MPK15] Michels, J. S.; Paiz Gatica, C.; Köster, M.: Anomalien und Ineffizienz in Produktionsan-
lagen erkennen. In: atp edition - Automatisierungstechnische Praxis 57 (2015), no. 10,
p. 26

[Nga22] Ngayap, V. I. T.: FreeRTOS on a MicroBlaze Soft-Core Processor with Hardware Acceler-
ators. MA thesis. Paderborn University, 2022

[PKG+16] Paiz Gatica, C.; Köster, M.; Gaukstern, T.; Berlin, E.; Meyer, M.: An Industrial Analyt-
ics Approach to Predictive-Maintenance for Machinery Applications. In: Proceedings of
the IEEE International Conference on Emerging Technologies and Factory Automation.
2016

https://keras.io

Boschmann, Clausing, Jentzsch, Ghasemzadeh Mohammadi, Platzner Transfer Project T1

[QL15] Qiao, W.; Lu, D.: A survey on wind turbine condition monitoring and fault diagnosis—Part
I: Components and subsystems. In: IEEE Transactions on Industrial Electronics 62 (2015),
no. 10, pp. 6536–6545

[Ria17] Riaz, U.: Acceleration of Industrial Analytics Functions on a Platform FPGA. MA thesis.
Paderborn University, 2017

[Ste13] Steinarsson, S.: Downsampling time series for visual representation. PhD thesis. 2013

[Wei] Weidmüller: Monitoring Systems GmbH: BLADEcontrol condition monitoring system.
https://mdcop.weidmueller.com/mediadelivery/asset/900_87890

[WX06] Watson, S.; Xiang, J.: Real-time condition monitoring of offshore wind turbines. In:
Proceedings of European Wind Energy Conference & Exhibition (EWEC), Athens, Greece.
Vol. 27. 2006, p. 647654

[WZW+13] Wang, Y.; Zhou, X.; Wang, L.; Yan, J.; Luk, W.; Peng, C.; Tong, J.: SPREAD: A Streaming-
Based Partially Reconfigurable Architecture and Programming Model. In: IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 21 (12 2013), pp. 2179–2192

https://mdcop.weidmueller.com/mediadelivery/asset/900_87890

237

Transfer Project T2:

Practical Cryptographic Techniques for Secure and

Privacy-Preserving Customer Loyalty Systems

Johannes Blömer1, Jan Bobolz2, Fabian Eidens1, Tibor Jager3, Paul
Kramer1

1 Department of Computer Science, Paderborn University,
Paderborn, Germany

2 School of Informatics, University of Edinburgh,
Scotland, UK a

3 School of Electrical, Information and Media
Engineering, University of Wuppertal, Wuppertal,
Germany

aWork done while at Paderborn University

1 Introduction

In this transfer project, we designed, implemented, and evaluated a cryptographically secure
and privacy-preserving incentive system for retail stores. An incentive system is a system
in which customers can participate in promotions to obtain rewards or discounts. They can
be deployed to influence the shopping behavior of customers, for example, to achieve a
higher customer loyalty rate or increase sales. Further, incentive systems are used as a tool
for collecting customer data that serves for instance marketing purposes. Popular incentive
systems, e.g., German Payback and American Express Membership Rewards, focus on the
latter data-driven business model. Therefore, they are neither privacy-preserving nor do
they follow a rule to minimize data collection. They essentially possess a complete record
of all members’ shopping history in their databases. An infamous example of what can
happen if this customer data is not protected properly occurred at the loyalty program of
the retailer Target, who in 2012 exposed a girl’s pregnancy to her father with coupons sent
by Target.27 Not only individual incidents but also the GDPR as an effort of the EU to
protect customer data motivate the need for a privacy-focused alternative.

In this transfer project with Diebold Nixdorf, we designed an incentive system that fills
this gap. We visualize the main differences to “classical” incentive systems in Figure 75.
The main idea is to replace the large central database that contains the users’ shopping
records with a token stored on the user’s smartphone. Thereby, we drastically reduce the
data that can be linked to a user. This token holds the state required for the business logic
and is typically a point count computed from the shopping history. We use cryptographic

bloemer@upb.de (Johannes Blömer), jan.bobolz@ed.ac.uk (Jan Bobolz), fabian.eidens@uni-paderborn.de
(Fabian Eidens), tibor.jager@uni-wuppertal.de (Tibor Jager), paul.kramer@upb.de (Paul Kramer)
27https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

Blömer, Eidens, Jager, Kramer Transfer Project T2

Provider

DB

App

token

signature

50€ user_id name points purchases

00117 John 15 Chocolate Bar
Cereal

00354 Max 2 …

update

+15

Store

Figure 75: Main differences between our incentive system and “classical” incentive sys-
tems. The shopping records with point count in the provider’s database are
replaced with signed token in app.

protocols to change the point count of the token when a user wants to collect points for their
current basket or trade points for some reward. These protocols, among other properties,
ensure privacy and prevent double-spending attacks. Double-spending is the canonical
attack on token-based systems, in which an attacker copies a digital token and redeems it
multiple times.

In addition to designing the incentive system, we implemented a demonstrator and further
adjusted the system to address real-world cryptographic challenges. The in-store experience
with the demonstrator of the incentive system is as follows: A user goes shopping using
their phone and the store’s app installed (which includes the incentive system client). In
the store, the user scans barcodes of items with their phone, which are then added to a
digital basket. In the app, the user can see running promotions that will give them benefits,
e.g., buying four chocolate bars and getting one free. The checkout process is also handled
in the app and automatically handles the promotion benefits for the user, e.g., checks if the
basket contains four chocolate bars and adds a discount for one of them. In our incentive
system, these promotions are not limited to a single store visit. Rather, a user can, for
example, buy two chocolate bars now and two next time. The incentive system stores this
state in a secure token on the user’s device.

We started the project with a study of existing cryptographic incentive systems from
the literature [MDPD15; JR16; HHNR17] that introduced the concept to let users store
their points in an authenticated form. The techniques we developed in Subproject C1
Robustness and Security for anonymous credentials and their implementations turned out
to be well suited for this, solve open problems, and compensate for some of the downsides
of the existing systems. Furthermore, we discussed real-world store infrastructure and
details of the currently used hardware with the project partner. We identified the following
requirements for a privacy-preserving incentive system.

• Anonymity: Providers are unable to link earn/spend transactions to users. In practice,
this protects users from having their shopping history linked to their identity and
point values.

• Soundness: Users cannot spend more points than they have earned.

• Online double-spending protection: Given continuous access to a central database,
the provider can immediately detect double-spending.

• Offline double-spending protection: Providers can even detect double-spending

2. Main Contribution 239

in one store without continuous access to a central database. Double-spending
transactions can be detected and the perpetrating user can be identified. Losses
incurred by double-spending can be reclaimed from that user.

• Partial spending: Users can choose how many points they spend in one transaction.

• Efficiency: The process of earning and spending points can be run on a consumer
phone and existing store infrastructure, i.e., the privacy-preserving incentive system
is ready for real-world applications.

Our privacy-preserving incentive systems [BBDE19; BEK+20] fulfill all of the goals.
Previous systems from the literature do not have offline double-spending protection, they
do not support partial spending or, if they support partial spending, the combination with
offline double-spending protection is not securely realized. In the following, we present the
incentive systems in more detail, how we adapt them in this project, and discuss highlights
of the project results. Furthermore, we give important lessons that we learned in the process
from theory to practice.

2 Main Contribution

The main privacy issue of current incentive systems in practice is that the incentive
system provider stores user data (e.g., each user’s point count) in a central database. This
architecture practically forces participating users to reveal their identities in order for
the correct entry to be updated in the provider’s database. Unfortunately, this allows the
provider to link purchases to the user’s identity, enabling the creation of detailed user
profiles. Our main idea to remedy this, as sketched in Figure 75, is to store personal
user data (name, current point value) in a cryptographically authenticated token on the
user device instead of a central database. We run privacy-preserving protocols that can
update the user’s data without ever revealing the data or the user’s identity to the incentive
system provider. For example, we can have a user with k points update their point count by
+15. After that procedure, the user will hold a token that certifies k + 15 points, while the
provider does not learn the old value k, the new value k + 15, or any other user data. The
provider is only aware that it increments some hidden authenticated value k by +15.

The first iteration of our incentive system [BBDE19] is built from updatable anonymous
credentials (UAC), which indeed store authenticated data (“attributes”) within an authenti-
cated token (“credential”) that can be updated in a privacy-preserving way (see Subproject
C1 Robustness and Security on page 145). The main idea of an update operation [BBDE19]
is that the user first computes the update (e.g., +15) locally, sends this updated data in
hidden form (in a cryptographic commitment) to the provider, and proves, with a zero-
knowledge proof of knowledge, that the hidden data is a valid update to the user’s old
authenticated data. The provider then blindly authenticates the updated data.

One of the main challenges when building cryptographic incentive systems is how to
handle double-spending. Say a user holds a token with 20 points. Of course, the user
and provider can run the update protocol for the user to receive an updated token with
20 − 5 = 15 points. However, we need a mechanism to prevent the user from using the old
20 point token again (which would be considered double-spending). Note that detecting
double-spending is made difficult by our strong privacy aspirations: the act of spending a

Blömer, Eidens, Jager, Kramer Transfer Project T2

token must not reveal any information about the token, hence the token itself is generally
hidden. As a consequence, using the same token twice is, by default, not detectable by the
provider. One typical way to solve the double-spending issue is online double-spending
detection. There, every token is assigned a random ID. To invalidate a token (e.g., in the
−5 scenario above), the user reveals the token’s random ID. The provider checks whether
that ID has already been invalidated and, if so, whether the user is trying to double-spend
the token. To ensure privacy, the random ID is chosen by the user and only revealed to
the provider when invalidating the token. This means that as long as the user does not
double-spend, the provider only learns meaningless random numbers through this process.
The downside to this approach is that it requires stores to have a consistent connection
to a database containing all invalidated IDs. If a store loses the database connection, it
cannot check whether a user is double-spending or legitimately spending a valid token.
Offline double-spending protection (e.g., [HHNR17]) is an additional feature that mitigates
this issue. It allows offline stores to speculatively accept a token without checking the ID.
If it later turns out that the ID had already been spent (e.g., in another store), the offline
double-spending protection feature guarantees that the double-spending user’s identity can
be revealed, allowing stores to identify misbehaving users and recoup any losses (rewards
given erroneously) incurred by undetected double-spending. We combine both sorts of
double-spending mitigation in [BBDE19].

Afterward, we identified that in real-world applications, the earning of points is the most
frequent operation and should be further optimized. Typically, users have to earn points
many times before they can spend them on a reward. In the follow-up paper [BEK+20],
we present a new incentive system in which the protocol to earn points works without
the relatively costly machinery of zero-knowledge proofs of knowledge. This is enabled
by using structure-preserving signatures on equivalence classes (SPS-EQ) [FHS19] to
authenticate the user data. SPS-EQ come with special randomization features that allow
the provider to verify and modify a hidden version of the user’s data. Additionally,
we add desirable features such as (1) improved privacy for double-spending users (in
[BBDE19], double-spending users would incidentally reveal their whole purchase history to
the provider) and (2) support for retrying interrupted protocol executions without triggering
double-spending protection. We use the ideas from [BEK+20] as the cryptographic basis of
our system. However, we have significantly extended the construction and its infrastructure
to match the requirements and desirable features of real-world stores.

2.1 Prototype

In the following, we describe how the in-store experience mentioned in the introduction is
supported by the incentive system prototype developed in this project. Recall that a user
interacts with the system using their smartphone and the app that we developed. At the first
start, the app explains key features of the incentive system and then guides the user through
a one-time registration process (Figure 76). The result is a join-token in the form of a
digital signature on the user identity by the provider. By this, we can later guarantee for the
store that the system can identify users to claim any losses, but only if they double-spend.
We use the join-token in any interaction with the store in the incentive system to prove that
the user is part of the system and therefore a valid user. The app then fetches any running
promotions of the store. Promotions are an artifact that the store provider can configure. It

2. Main Contribution 241

Figure 76: 1.-3. onboarding and registration screens in app. 4) dashboard with an overview
of running promotions. 5) detail screen for VIP promotion.

encapsulates the rules for how users can gain rewards. In the prototype, we support the
following promotions with some examples of the rules and rewards:

• discount promotions with the rule “buy x many A” and the reward “get Y for free”,

• VIP promotions with the rule “buy x currency worth of products (over multiple
visits), become bronze (x > c1), silver (x > c2) or gold VIP (x > c3)” with the reward
that the user gets 2%, 5%, or 10% discount on future purchases, and

• streak promotions with the rule “go shopping at least once every 7 days” and the
reward “get a free coffee after a streak of 2 weeks”.

The user (and app) is now ready for the main part of the shopping, i.e., scanning products
and putting them in the digital basket (see Figure 77). Here, the store is not involved and
no data is revealed since the app has all the necessary data stored locally. When users are
ready for the checkout they can do so directly in the app and leave the store. During the
checkout process in the app, the app checks if any promotions can be updated following
the rules of the promotions. For example, the user has previously bought 2 chocolate bars
(as stored in the user’s token), 1 is in the basket, and there is a discount promotion that
gives 1 chocolate bar for free if the user has bought at least 3. Then the app interacts with
the provider to get a privacy-preserving update on the promotion.

Let us describe the update process in detail. A user has a token for every promotion
certifying the status of the promotion. These tokens are obtained by proving ownership
of a join-token and initialized with a starting value of 0. A token is a Pedersen commit-
ment [Ped91] on the user’s status of the promotion, a cryptographic primitive that hides
the data but allows proving statements on the data. In addition, a valid token must be
signed with an SPS-EQ signature by the provider. This prevents users from generating
valid tokens, i.e., “printing money”.

For our example, if the user simply wants to collect 2 points for buying 2 chocolate bars,
the app runs the earn protocol with the provider: The app sends the randomized token to
the provider, who adds 2 points to the token and issues an SPS-EQ signature on the token
with +2 points. The app de-randomizes this new token and stores the token worth +2

Blömer, Eidens, Jager, Kramer Transfer Project T2

Figure 77: Walkthrough of the shopping process: 1) Scanning products, 2) selecting up-
dates for promotions, 3) details on privacy consequences of updates, 4) result
screen with QR code as proof of payment and for claiming rewards.

points. This earn protocol only uses the algebraic properties of the SPS-EQ signatures.

At some point, the user will have collected enough points to get some reward, and the
app then runs the spend protocol. For example, we assume the user collected 5 points,
whereas 4 points can be traded in for a free chocolate bar. For this, we utilize non-
interactive zero-knowledge arguments of knowledge (NIZKs), namely Schnorr-style Sigma
protocols [Sch90]. The app generates a remainder token holding the remaining amount
of 1 point. Then, it sends the current token with 5 points and the remainder token with 1
points together with an NIZK that proves the following statements: 1) The old token holds
at least 4 points (using a so-called range proof) and 2) The remainder token holds 4 points
less than the original token. After verifying the proof, the provider is convinced that the
new token has been correctly updated according to the rules of the promotion and signs
the remainder token, which becomes the new valid token of the user. Additionally, the
reward is added to the user’s basket. To prevent double-spending attacks, the old token is
invalidated through this procedure, which we explain later in more detail.

All these updates are privacy-preserving, meaning that updates cannot be linked to users,
and the exact points counts of the tokens are kept secret. Only necessary data is shared
with the provider. We achieve this by the randomization properties of SPS-EQ signatures,
the hiding properties of Pedersen commitments, and the zero-knowledge properties of the
NIZKs.

So far, we only considered the provider’s side as one abstract instance, which corresponds
to older versions of the incentive system [BBDE19; BEK+20]. However, it turned out
that applying this system to multiple stores, e.g., all stores of a supermarket chain, is
a non-trivial task: Simply deploying copies of the incentive system at each store is not
desirable, because the provider’s secret key would be shared among all stores, and hence
one compromised store would break the whole system. For availability reasons, we must

2. Main Contribution 243

keep some functionality in the stores such that users can pay their baskets and update tokens
in case of network outages. Our new multi-store infrastructure fulfills both requirements
(see Figure 78):

• There is exactly one provider in the cloud that holds the SPS-EQ secret key. Only
the provider can issue SPS-EQ signatures and thus create and update tokens. The
SPS-EQ secret key could be stored in a hardware security module (HSM).

• Every store has some standard digital signature key pair (ECDSA) that is trusted
in the incentive system’s public-key infrastructure. The store uses its secret key to
authorize the provider to execute a token update.

Store 1
Provider

SPS-EQ
key pair dsid

blacklist

transaction
database

ECDSA
key pair

baskets

App

token

Store 2 Store 3

Store n

2. Randomized
token + request

6. Randomized token +
request + ECDSA
signature4. ECDSA

signature on
token update

7. Compute
new token
from SPS-EQ
signature

1. Generate
request

3. Verify
based on
basket. Wait
for Payment.
Sign.

7. Verify, check
blacklist, store in
transaction DB, create
signature for new token

8. SPS-EQ
signature

5. Verify ECDSA

Figure 78: Multi-store infrastructure.

First, the user communicates with one of the stores. The store verifies the user’s request
based on the user’s baskets and then issues an ECDSA signature to authorize a token
update. For example, if a user wants to earn points for some basket, the store computes and
signs the number of points to earn. This process functions in the store even if it is offline,
and the user can send the signature to the provider later to obtain an updated token. Then,
the provider again performs some verification, checks the store’s signature, and then gives
some SPS-EQ signature to the user. The user obtained a new token with a valid SPS-EQ
signature.

The new multi-store infrastructure enables us to keep the transaction history of users that
double-spend secret to the point of double-spending without needing the expensive and
complex forward tracing technique from [BEK+20]. Furthermore, during the implemen-
tation and discussions with Diebold Nixdorf, we identified the problem of scaling the
incentive system to multiple stores. Motivated by this, we introduced the multi-store
infrastructure that solved both our scaling problems and enabled clearing (i.e., the ability
to establish a pool of money that stores pay into when issuing points and can withdraw
from when giving out rewards). To summarize, implementing the incentive system made
real-world cryptographic challenges visible and lead to improving several aspects of the
incentive system.

Blömer, Eidens, Jager, Kramer Transfer Project T2

2.2 Implementation and the Role of Cryptimeleon

The implementation of the incentive system is provided under the open-source MIT
license on GitHub.28 It is powered by the Cryptimeleon project29 developed at Paderborn
University, a collection of cryptography-prototyping libraries written in Java. They provide
all necessary primitives, for instance, basic math structures, SPS-EQ signatures, and NIZKs.
Further, they natively support the MCL30 library that ships highly optimized bilinear curves
to all relevant architectures. The Android app is implemented in Kotlin with the framework
Jetpack Compose. The web services use Java and Spring Boot and are deployed via Docker
and Docker Compose; our web app is written in Vue.js.

While there is still room for optimizations and speedups, all implemented protocols run
in well under a second and thus are more than practical. We summarize our benchmark
results in Table 1.

Time (ms) Size (KB)
Protocol A∗ S† A∗ P† A∗ Total A→S S→A A→P P→A Total

Registration 0.0 0.5 0.7 1.9 10.0 13.0 0.4 0.9 1.0 0.8 3.1
Join 23.3 3.2 16.8 43.3 2.1 0.9 2.9
Earn 6.0 0.4 4.1 3.7 14.2 28.4 0.5 0.8 1.9 0.9 4.0
Spend 47.7 21.4 0.5 24.0 15.1 108.7 12.0 1.0 12.3 1.0 26.4

Table 1: Benchmarks for simple point-collection promotion. Times averaged over 1000
runs on Google Pixel 5 ∗and M1 Macbook Pro †. Message sizes were recorded
with Wireshark. Abbreviations: app (A), store (S), provider (P).

3 Impact and Outlook

Right now, privacy is under attack by surveillance capitalism: Corporations collect data
about people on a large scale, analyze it, create comprehensive user profiles, and then use
those profiles for profit, usually via targeted advertisement. This data collection is already
pervasive online. Additionally, digital incentive systems bring data collection to even more
areas of everyday life, namely offline shopping.

Even if the provider of a traditional incentive system has good intentions, users have no
agency over the data they hand over each time they interact with the incentive system. It is
entirely possible, perhaps even likely, that the collected data will eventually be hacked or
leaked, or that the provider changes its strategy and starts abusing the collected data.

Privacy-preserving incentive systems, such as the one we have developed, play a crucial
role in solving the privacy issues of traditional incentive systems: Users gain cryptographic
guarantees that their data cannot be collected by the provider. From the point of view
of the provider, a privacy-preserving incentive system still offers all the (non-invasive)

28https://github.com/cryptimeleon/incentive-system
29https://cryptimeleon.org
30https://github.com/herumi/mcl

https://github.com/cryptimeleon/incentive-system
https://cryptimeleon.org
https://github.com/herumi/mcl

3. Impact and Outlook 245

benefits for participating stores, giving them a way to reward loyalty, gamify shopping
through points, or incentivize the purchase of certain products.

Unfortunately, right now, there seems to be insufficient incentive for stores to deploy a
privacy-preserving system instead of one that collects as much data as possible. While
users would unequivocally prefer a privacy-preserving solution, in practice, sufficiently
many users are ignorant or apathetic towards privacy and are willing to participate in
systems without any expectation of privacy. Providers, of course, prefer collecting data
over not collecting data. There are two possible ways out of this situation. First, we (as
a society) can educate users about the dangers of the unmitigated collection of personal
data. If sufficiently many users demand privacy, privacy-preserving systems will gain
traction. Second, we can prescribe a privacy-preserving system through law. The GDPR
has been incredibly impactful regarding data collection and user consent. In the same vein,
mandating the use of privacy-preserving systems could be a highly effective consumer
protection law. Projects such as ours take the first important step towards this, proving that
such systems can be built with reasonable effort. This is crucial information for lawmakers,
who would be understandably hesitant to outlaw systems with no viable alternative.

Projects such as this one are also valuable because they bring together practical aspects
and academia. Often, academia only supplies the very first step for building new systems:
the very basic ideas. These ideas are motivated and illustrated by idealized scenarios
and aim to answer fundamental questions rather than supply a comprehensive blueprint
for building concrete systems. As a second step, it is then on the industry to take the
academic answers and refine them into a real system. As evidenced by this project, it is
sometimes fruitful to involve academia in the second step. This allows the academic side
to revisit their idealized assumptions (using insights from the industry) and to improve
upon their answers. For example, our new infrastructure with support for multiple stores is
a direct result of requirements from our industry partner, improving and even simplifying
the system we have built based on idealized assumptions. It is also important to test
and benchmark constructions in software for demonstration. Not only does the resulting
software serve as a demonstrator, showing that building such systems is realistic, but the
process of implementing the system also forces one to consider crucial details previously
ignored. Those may even represent future research opportunities or collaboration with
industry partners on related topics.

While our system proves that a privacy-preserving approach to incentive systems is viable,
there are some open research questions to consider in the future: (1) How we can guard
our system against adversaries with access to a hypothetical large quantum computer?
(2) What are further applications for the techniques we used for incentive systems (e.g.,
electronic cash)? (3) How can we make the public more cognizant of the privacy issues of
currently deployed systems, and of the alternatives enabled by modern cryptography?

Bibliography

[BBDE19] Blömer, J.; Bobolz, J.; Diemert, D.; Eidens, F.: Updatable Anonymous Credentials and
Applications to Incentive Systems. In: ACM CCS 2019: 26th Conference on Computer
and Communications Security. ACM Press, 2019, pp. 1671–1685

Blömer, Eidens, Jager, Kramer Transfer Project T2

[BEK+20] Bobolz, J.; Eidens, F.; Krenn, S.; Slamanig, D.; Striecks, C.: Privacy-Preserving Incentive
Systems with Highly Efficient Point-Collection. In: ASIACCS 20: 15th ACM Symposium
on Information, Computer and Communications Security. Ed. by Sun, H.-M.; Shieh, S.-P.;
Gu, G.; Ateniese, G. ACM Press, Oct. 2020, pp. 319–333

[FHS19] Fuchsbauer, G.; Hanser, C.; Slamanig, D.: Structure-Preserving Signatures on Equivalence
Classes and Constant-Size Anonymous Credentials. In: Journal of Cryptology 32 (Apr.
2019), no. 2, pp. 498–546

[HHNR17] Hartung, G.; Hoffmann, M.; Nagel, M.; Rupp, A.: BBA+: Improving the Security and
Applicability of Privacy-Preserving Point Collection. In: ACM CCS 2017: 24th Conference
on Computer and Communications Security. Ed. by Thuraisingham, B. M.; Evans, D.;
Malkin, T.; Xu, D. ACM Press, Oct. 2017, pp. 1925–1942

[JR16] Jager, T.; Rupp, A.: Black-Box Accumulation: Collecting Incentives in a Privacy-Preserving
Way. In: Proceedings on Privacy Enhancing Technologies 2016 (July 2016), no. 3, pp. 62–
82

[MDPD15] Milutinovic, M.; Dacosta, I.; Put, A.; Decker, B. D.: uCentive: An Efficient, Anony-
mous and Unlinkable Incentives Scheme. In: TrustCom/BigDataSE/ISPA (1). IEEE, 2015,
pp. 588–595.

[Ped91] Pedersen, T. P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Shar-
ing. In: Proceedings of the 11th Annual International Cryptology Conference on Advances
in Cryptology. CRYPTO ’91. Berlin, Heidelberg: Springer-Verlag, 1991, pp. 129–140

[Sch90] Schnorr, C. P.: Efficient Identification and Signatures for Smart Cards. In: Advances in
Cryptology — CRYPTO’ 89 Proceedings. Ed. by Brassard, G. New York, NY: Springer
New York, 1990, pp. 239–252

3. Impact and Outlook 247

Zuletzt erschienene Bände der Verlagsschriftenreihe des Heinz Nixdorf Instituts

__

Bezugsadresse:
Heinz Nixdorf Institut
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Bd. 386 SCHNEIDER, M.: Spezifikationstechnik zur
Beschreibung und Analyse von
Wertschöpfungssystemen. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 386, Pader-
born, 2018 – ISBN 978-3-947647-05-7

Bd. 387 ECHTERHOFF, B.: Methodik zur Einführung

innovativer Geschäftsmodelle in
etablierten Unternehmen. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 387, Pader-
born, 2018 – ISBN 978-3-947647-06-4

Bd. 388 KRUSE, D.: Teilautomatisierte Parameter-

identifikation für die Validierung von
Dynamikmodellen im modellbasierten
Entwurf mechatronischer Systeme.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Band
388, Paderborn, 2019 – ISBN 978-3-
947647-07-1

Bd. 389 MITTAG, T.: Systematik zur Gestaltung der

Wertschöpfung für digitalisierte hybride
Marktleistungen. Dissertation, Fakultät für
Maschinenbau, Universität Paderborn,
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 389, Paderborn, 2019 –
ISBN 978-3-947647-08-8

Bd. 390 GAUSEMEIER, J. (Hrsg.): Vorausschau und

Technologieplanung. 15. Symposium für
Vorausschau und Technologieplanung,
Heinz Nixdorf Institut, 21. und 22.
November 2019, Berlin-Branden-
burgische Akademie der Wissenschaften,
Berlin, Verlagsschriftenreihe des Heinz
Nixdorf Instituts, Band 390, Paderborn,
2019 – ISBN 978-3-947647-09-5

Bd. 391 SCHIERBAUM, A.: Systematik zur Ableitung

bedarfsgerechter Systems Engineering
Leitfäden im Maschinenbau. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 391, Pader-
born, 2019 – ISBN 978-3-947647-10-1

Bd. 392 PAI, A.: Computationally Efficient

Modelling and Precision Position and
Force Control of SMA Actuators.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Band
392, Paderborn, 2019 – ISBN 978-3-
947647-11-8

Bd. 393 ECHTERFELD, J.: Systematik zur Digitali-
sierung von Produktprogrammen. Disser-
tation, Fakultät für Maschinenbau, Uni-
versität Paderborn, Verlagsschriftenreihe
des Heinz Nixdorf Instituts, Band 393,
Paderborn, 2020 – ISBN 978-3-947647-
12-5

Bd. 394 LOCHBICHLER, M.: Systematische Wahl ei-

ner Modellierungstiefe im Entwurfspro-
zess mechatronischer Systeme. Disserta-
tion, Fakultät für Maschinenbau, Universi-
tät Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 394, Pader-
born, 2020 – ISBN 978-3-947647-13-2

Bd. 395 LUKEI, M.: Systematik zur integrativen

Entwicklung von mechatronischen
Produkten und deren Prüfmittel.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Band
395, Paderborn, 2020 – ISBN 978-3-
947647-14-9

Bd. 396 KOHLSTEDT, A.: Modellbasierte Synthese

einer hybriden Kraft-/Positionsregelung
für einen Fahrzeugachsprüfstand mit
hydraulischem Hexapod. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 396,
Paderborn, 2021 – ISBN 978-3-947647-
15-6

Bd. 397 DREWEL, M.: Systematik zum Einstieg in

die Plattformökonomie. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 397,
Paderborn, 2021 – ISBN 978-3-947647-
16-3

Bd. 398 FRANK, M.: Systematik zur Planung des

organisationalen Wandels zum Smart
Service-Anbieter. Dissertation, Fakultät
für Maschinenbau, Universität Paderborn,
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 398, Paderborn, 2021 –
ISBN 978-3-947647-17-0

Bd. 399 KOLDEWEY, C.: Systematik zur Entwick-

lung von Smart Service-Strategien im
produzierenden Gewerbe. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 399, Pader-
born, 2021 – ISBN 978-3-947647-18-7

Zuletzt erschienene Bände der Verlagsschriftenreihe des Heinz Nixdorf Instituts

__

Bezugsadresse:
Heinz Nixdorf Institut
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Bd. 400 GAUSEMEIER, J. (Hrsg.): Vorausschau und
Technologieplanung. 16. Symposium für
Vorausschau und Technologieplanung,
Heinz Nixdorf Institut, 2. und 3. Dezem-
ber 2021, Berlin-Brandenburgische
Akademie der Wissenschaften, Berlin,
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 400, Paderborn, 2021 –
ISBN 978-3-947647-19-4

Bd. 401 BRETZ, L.: Rahmenwerk zur Planung und

Einführung von Systems Engineering und
Model-Based Systems Engineering.
Dissertation, Fakultät für Elektrotechnik,
Informatik und Mathematik, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 401,
Paderborn, 2021 – ISBN 978-3-947647-
20-0

Bd. 402 WU, L.: Ultrabreitbandige Sampler in

SiGe-BiCMOS-Technologie für Analog-
Digital-Wandler mit zeitversetzter
Abtastung. Dissertation, Fakultät für
Elektrotechnik, Informatik und
Mathematik, Universität Paderborn,
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 402, Paderborn, 2021 –
ISBN 978-3-947647-21-7

Bd. 403 HILLEBRAND, M.: Entwicklungssystematik
zur Integration von Eigenschaften der
Selbstheilung in Intelligente Technische
Systeme. Dissertation, Fakultät für
Elektrotechnik, Informatik und
Mathematik, Universität Paderborn,
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 403, Paderborn, 2021 –
ISBN 978-3-947647-22-4

Bd. 404 OLMA, S.: Systemtheorie von Hardware-

in-the-Loop-Simulationen mit Anwendung
auf einem Fahrzeugachsprüfstand mit
parallelkinematischem Lastsimulator.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Band
404, Paderborn, 2022 – ISBN 978-3-
947647-23-1

Bd. 405 FECHTELPETER, C.: Rahmenwerk zur

Gestaltung des Technologietransfers in
mittelständisch geprägten Innovations-
clustern. Dissertation, Fakultät für
Elektrotechnik, Informatik und Mathe-
matik, Universität Paderborn, Verlags-
schriftenreihe des Heinz Nixdorf Instituts,
Band 405, Paderborn, 2022 – ISBN 978-
3-947647-24-8

Bd. 406 OLEFF, C.: Proaktives Management von
Anforderungsänderungen in der
Entwicklung komplexer technischer
Systeme. Dissertation, Fakultät für
Maschinenbau, Universität Paderborn,
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 406, Paderborn, 2022 –
ISBN 978-3-947647-25-5

Bd. 407 JAVED, A. R.: Mixed-Signal Baseband

Circuit Design for High Data Rate
Wireless Communication in Bulk CMOS
and SiGe BiCMOS Technologies.
Dissertation, Fakultät für Elektrotechnik,
Informatik und Mathematik, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 407, Pader-
born, 2022 – ISBN 978-3-947647-26-2

Bd. 408 DUMITRESCU, R, KOLDEWEY, C.: Daten-

gestützte Projektplanung. Fachbuch.
Fakultät für Elektrotechnik, Informatik und
Mathematik, Universität Paderborn,
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 408, Paderborn, 2022 –
ISBN 978-3-947647-27-9

Bd. 409 PÖHLER, A.: Automatisierte dezentrale

Produktionssteuerung für cyber-
physische Produktionssysteme mit digita-
ler Repräsentation der Beschäftigten.
Dissertation, Fakultät für Maschinenbau,
Universität Paderborn, Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Band
409, Paderborn, 2022 – ISBN 978-3-
947647-28-6

Bd. 410 RÜDDENKLAU, N.: Hardware-in-the-Loop-

Simulation von HD-Scheinwerfer-Steuer-
geräten zur Entwicklung von Lichtfunk-
tionen in virtuellen Nachtfahrten. Disser-
tation, Fakultät für Maschinenbau,
Universität Paderborn, Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Band
410, Paderborn, 2023 – ISBN 978-3-
947647-29-3

Bd. 411 BIEMELT, P.: Entwurf und Analyse modell-

prädiktiver Regelungsansätze zur Steige-
rung des Immersionsempfindens in inter-
aktiven Fahrsimulationen. Dissertation,
Fakultät für Maschinenbau, Universität
Paderborn, Verlagsschriftenreihe des
Heinz Nixdorf Instituts, Band 411, Pader-
born, 2023 – ISBN 978-3-947647-30-9

Das Heinz Nixdorf Institut –
Interdisziplinäres Forschungszentrum

für Informatik und Technik

Das Heinz Nixdorf Institut ist ein Forschungszentrum der Universität Paderborn. Es entstand

1987 aus der Initiative und mit Förderung von Heinz Nixdorf. Damit wollte er Ingenieurwis-

senschaften und Informatik zusammenführen, um wesentliche Impulse für neue Produkte und

Dienstleistungen zu erzeugen. Dies schließt auch die Wechselwirkungen mit dem gesellschaft-

lichen Umfeld ein.

Die Forschungsarbeit orientiert sich an dem Programm „Dynamik, Vernetzung, Autonomie:

Neue Methoden und Technologien für die intelligenten technischen Systeme von morgen“. In

der Lehre engagiert sich das Heinz Nixdorf Institut in Studiengängen der Informatik, der Inge-

nieurwissenschaften und der Wirtschaftswissenschaften.

Heute wirken am Heinz Nixdorf Institut acht Professoren/in mit insgesamt 120 Mitarbeiterin-

nen und Mitarbeitern. Pro Jahr promovieren hier etwa 15 Nachwuchswissenschaftlerinnen und

Nachwuchswissenschaftler.

Heinz Nixdorf Institute –
Interdisciplinary Research Centre

for Computer Science and Technology

The Heinz Nixdorf Institute is a research centre within the University of Paderborn. It was

founded in 1987 initiated and supported by Heinz Nixdorf. By doing so he wanted to create a

symbiosis of computer science and engineering in order to provide critical impetus for new

products and services. This includes interactions with the social environment.

Our research is aligned with the program “Dynamics, Networking, Autonomy: New methods

and technologies for intelligent technical systems of tomorrow”. In training and education the

Heinz Nixdorf Institute is involved in many programs of study at the University of Paderborn.

The superior goal in education and training is to communicate competencies that are critical in

tomorrows economy.

Today eight Professors and 120 researchers work at the Heinz Nixdorf Institute. Per year ap-

proximately 15 young researchers receive a doctorate.

	Contents
	Subproject A1: Capabilities and Limitations of Local Strategies in Dynamic Networks
	Subproject A3: The Market for Services: Incentives, Algorithms, Implementation
	Subproject A4: Empirical Analysis in Markets for OTF Services
	Subproject B1: Dialogue-Based Requirement Compensation and Style-Adjusted Data-To-Text Generation
	Subproject B2: Configuration and Evaluation
	Subproject B3: Composition Analysis in Unknown Contexts
	Subproject B4: Verifying Software and Reconfigurable Hardware Services
	Subproject C1: Robustness and Security
	Subproject C2: On-The-Fly Compute Centers I: Heterogeneous Execution Environments
	Subproject C4: On-The-Fly Compute Centers II: Execution of Composed Services in Configurable Compute Centers
	Subproject C5: Architectural Management of OTF Computing Markets
	Transfer Project T1: Flexible Industrial Analytics on Reconfigurable Systems-On-Chip
	Transfer Project T2: Practical Cryptographic Techniques for Secure and Privacy-Preserving Customer Loyalty Systems

