
85

Subproject B2:

Configuration and Evaluation

Jonas Hanselle1, Eyke Hüllermeier2, Felix Mohr3, Axel Ngonga1,
Mohamed Ahmed Sherif1, Alexander Tornede4, Marcel Wever2

1 Department of Computer Science, Paderborn University,
Germany

2 Institute of Informatics, LMU Munich, Munich,
Germany

3 Universidad de La Sabana, Chía, Colombia
4 Institute of Artificial Intelligence, Leibniz Unversity

Hannover, Germany

Subproject B2 “Configuration and Evaluation” deals with methods and algorithms for the
configuration and evaluation of software services in the OTF Computing scenario. During
the three funding periods, various techniques have been developed and implemented for
this purpose. Moreover, these techniques have been instantiated and evaluated on case
studies from different domains: image processing, automated machine learning (AutoML),
and question answering (QA) systems.

1 Introduction

Subproject B2 plays a central role within the CRC as a whole. Its task is to develop methods
for the configuration of software services according to the requirement specifications
provided by the user (cf. subproject B1). For this purpose, services traded on OTF markets
are collected and assembled in an appropriate way. Before a service composition is
executed, it will be analyzed for functional correctness (cf. subproject B3).

In the first period of the CRC, the focus of the subproject has been on

• the construction of a basic service configurator,

• the matching of services as an important part of the configuration process,

• the use of machine learning (ML) methods for the adptation of evaluation functions
(in agreement with the users’ preferences),

• the investigation of theoretical limits of the (automation of the) configuration process.

In the second period, subproject B2 concentrated on

• the extension of the configuration approach from a sequential to a sequential-
hierarchical, template-based process,

jonas.hanselle@uni-paderborn.de (Jonas Hanselle), eyke@lmu.de (Eyke Hüllermeier), fe-
lix.mohr@unisabana.edu.co (Felix Mohr), axel.ngonga@upb.de (Axel Ngonga), mohamed.sherif@uni-
paderborn.de (Mohamed Sherif), a.tornede@ai.uni-hannover.de (Alexander Tornede), mar-
cel.wever@ifi.lmu.de (Marcel Wever)

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

• the improvement of ML-based adaptation techniques by new methods from the field
of preference learning,

• the adaptation of the configuration to market changes (e.g., the offering of new
services or changing user preferences),

• a better interlinking of the configuration and the execution phase.

The third period was dedicated to

• the integration of the user in the configuration process, and the realization of this
process in an online manner,

• the increase of the efficiency of automatic service configuration by exchanging
information between different but related configuration processes,

• the use of quality criteria of services as part of the objective function,

• the broadening of the evaluation by means of a complementary case study in the
field of question answering systems.

While the focus of the subproject was mainly on conceptual and methodological contri-
butions, the development of methods and algorithms has been accompanied by concrete
implementations from the very beginning. Moreover, conceptual solutions have been
instantiated and evaluated on case studies from different domains, starting with image
processing in the first funding period. Later on, the instantiation of service configuration
has been realized for the practically relevant case of machine learning functionality, with
the vision to establish “OTF Machine Learning” as an extension of what is currently
known as “Automated Machine Learning” (AutoML) [HKV19]. In the last funding period,
question answering systems have been added as a third application domain.

2 Highlights and Lessons Learned

In the following, we give an overview of the most important achievements of the subproject
and summarize the key results that have been accomplished during the three funding
periods of the CRC.

2.1 Domain-Independent Service Composition

During the first phase of the project, the main focus was on the functional aspect of
automated service composition without a commitment to a specific domain. In this
scenario, the user provides a formal specification of the functional requirements in terms
of inputs, outputs, preconditions, and effects (IOPE) of the desired service. It is assumed
that there is a set of existing services with the same type of descriptions that can be used to
create the new desired service. The preconditions define types of and potential relationships
between inputs. The effects describe conditions that the service guarantees to hold on the
inputs or outputs after execution. The language used to describe preconditions and effects
is a decidable subset of first-order logic. In particular, they serve to describe the meaning of
outputs with respect to inputs. A simple example is a currency converter service that takes

2. Highlights and Lessons Learned 87

a value x in EUR and returns its equivalent y in USD, and the effect could be described by
EUR2USD(x,y).

This task is an extended version of the classical planning problem. The services correspond
to planning operators, instances of which can be connected into a chain of service calls,
which correspond to actions in the classical planing setup. From this viewpoint, a service
composition is a plan, and the initial state is the preconditions specified in the query, and
the goal state is the effect specified in the query. The first crucial aspect that differentiates
automated service composition from classical planning is that the operators can create new
objects (the outputs), which is not supported in classical planning. A second difference
is that the quality of a solution is not a scalar but a vector. In classical planning, the cost
of a plan is the sum of the (scalar) costs of actions. However, in a service composition,
several qualities of service (QoS) such as throughput, availability, privacy, etc. have to be
considered in addition to the price.

Importantly, this type of problem is much more challenging than the much more commonly
studied problem of pure QoS optimization over a pre-defined service workflow, where it
is assumed that the general controller of the desired service is already implemented and
connects to yet unspecified components through fixed interfaces. For each interface, a
finite set of candidates is assumed to be available and can be plugged into the solution.
The goal is then to pick the best combination of such candidates that, when put together,
optimize the overall QoS of the configuration. This is a configuration of a controller, and
the decisions the agent need to make to set up a solution are a strict subset of the decisions
the agent has to make in the case of automated service composition.

Within this phase, we were the first to propose a planning algorithm that is capable of
automatically creating service compositions based on functional descriptions in which the
effects relate outputs to inputs while optimizing QoS. The approach is based on backward
planning [MJB15] and is the first algorithm of its kind that is able to compose services
not only based on the types of the inputs and outputs (monadic preconditions and effects),
but can work with preconditions and effects of any arity. Starting from the goal definition
with an empty composition, it tries to prepend service calls to the current composition that
resolve at least one open requirement. Such a prepended service call typically comes with
its own preconditions, which are added to the agenda unless they are provided in the initial
state (preconditions warranted by the client in the query).

Another highlight of the approach is that it is able to prune nodes from the search space,
if they are redundant in some way to make the search more efficient. First, it cuts nodes
that encode compositions containing a service twice with the same inputs. Second, the
algorithm prunes nodes of compositions that have a precondition that includes the pre-
condition of one of its own subcompositions. That is, a node is pruned if it is associated
with a composition whose preconditions are a superset of the preconditions of another
composition.

In spite of its innovative aspects, the background search still suffered from a number of
inefficiencies, which could be overcome by the development of a partial order planning
algorithm [Moh]. The main advantage of a partial order planning (POP) compared to
forward or backward planning is that it takes into account that the only constraint on the
order of the planning operators is the flow of data. This specific property of the automated
service composition problem implies that a huge number of serialized compositions are

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

equivalent from both the functional and the QoS viewpoint. This implies that the search
space in forward or backward composition contains a huge number of mirrors, which are
avoided in POP. In POP, orders in the plan are only partially fixed as far as necessary,
based on the preconditions and effects of the operators used.

A further limitation of these compositions is that they cannot contain conditional paths let
alone loops. To overcome this limitation, we proposed a template approach for loops in
which a general structure with generic preconditions and effects is defined [MW15]. A
replacement of service placeholders leads to a concrete service instantiation with concrete
preconditions and effects. During a regular composition process, this mechanism can be
invoked as a subroutine to create services with non-linear control flows on the fly.

All of the above composition approaches are based on orchestration. That means that it is
assumed that there is a central instance that controls the service invocations and the data
flow between them. In contrast to this, a choreography approach does not have a central
controller, but all the participants of a composition are told about where, i.e., to which
other services, they should send their output for a specific composition. This decentralized
execution of service compositions can lead to enormous performance improvements,
because the data has to travel very short distances (maybe even within the same compute
center) compared to a centralized approach.

Based on the previous work, a choreography-based approach was developed in [JK16].
The main challenge in this approach is to trigger the execution of a service decentrally as
soon as all the data of a service has arrived. In this work, the logic of service composition
execution is modeled through Petri nets, in which data is seen as a resource and services as
transitions that consume and produce data. Needless to say, the service does not actually
consume the data, but the semantics of Petri nets are used to model the behavior of such a
service.

In an alternative research thread in this phase, we investigated the issue that purely formal
service descriptions are usually not suffecient to capture the user expectations. A common
example for this is image processing. At the symbolic level, it is virtually impossible
for the user to specify the desired transformation of an image. Instead, it can be sensible
to show different proposals to the user and ask him for feedback. Such feedback can be
binary, i.e., the user is rather satisfied than not with a result, or one provides several options
and lets the user rank the alternatives. From this feedback, it is then in principle possible
to learn which services (and their configurations) the user prefers over others. The main
challenge is here to identify to which of the services within a composition to attribute a
good or bad ranking.

To address this problem and to learn the relevance of a specific service (for a particular user
in a concrete context), temporal difference (TD) learning was used [JM15]. We recognize
that every service is, in a specific context, associated with a latent reward that is neither
known before nor cannot be observed directly. However, if one interprets the set of partial
compositions as the state space of an MDP, it is possible to learn the appropriateness of
the components through TD learning. This is because TD learning propagates back the
final evaluations to the state over time and, in this way, indirectly assigns ratings to partial
compositions.

In this last approach, the composition technique deviates from the other techniques in
that a forward search is adopted based on rules or tasks. The original problem is still to

2. Highlights and Lessons Learned 89

convert an initial condition into a goal condition, but the services are no longer explicitly
equipped with specific preconditions and effects, except maybe the types of the inputs and
outputs. To decide whether a service is suitable for a specific task, the approach uses the
concept of rules, which can be seen as possible ways of solving tasks. This view is closely
related to hierarchical planning, which is also the basis of the ML-Plan approach developed
in the second phase. The composition problem is then described through a context-free
grammar in which the initial state is the start symbol, non-terminal symbols encode tasks,
and production rules encode how tasks can be resolved. Such a rule maps a task to a series
(usually of length 1) of services and possibly a new non-terminal. It can hence be seen as a
task composition.

In summary, the first phase of the project focused on automated composition of services
into a new service that satisfies the functional requirements specified by the user. To this
end, classical planing was extended to support the generation of new planning objects and
to support vector-valued QoS optimization. Based on the observation that fully ordered
planning leads to significant inefficiencies, an alternative approach based on partial order
planning was developed, that significantly outperforms the previously developed backward
search. These orchestration-based approaches have been modified and extended in order to
support choreography-based compositions, the latter of which were achieved by the means
of Petri nets. Orthogonal to these efforts, we investigated the potential of composition
approaches that take into account the fact that many important aspects of even the functional
behavior of services cannot be captured in symbolic encodings. This makes it necessary to
propose to the user a set of potentially satisfying solutions, all of which comply with the
formal requirements posed by the user, and to ask the user for feedback.

The insights and experiences gained during this first phase were crucial for the definition
of the goals in the following phases. One of the most important insights was indeed the
limitation of formal service specifications. One very prominent example of automated
service composition, where formal specifications are of no use is, automated machine
learning. At the formal level, the goal here is simply to find a machine learning pipeline.
The challenge is, however, that such pipelines work differently well on different datasets,
and a pipeline that works well on one dataset may not work well on another one. Among
hundreds of possible pipelines and billions of their configurations, the goal is to find the
best suited one suited according to a performance measure such as accuracy.

2.2 ML-Plan: Configuring Machine Learning Pipelines

As mentioned in the previous section, a particularly interesting and practically relevant
domain is machine learning. In this domain, services can process and model data in a wide
variety of ways for different tasks. While there are many different functionally equivalent
services for a task, the real interest is in finding services that satisfy certain non-functional
properties, such as high accuracy and/or low prediction time. Since the non-functional
properties can vary widely for different datasets and thus which service is best suited, it
is important to determine the most appropriate service for each data set, which in turn
requires expertise in the field of machine learning.

The need for applications with machine learning techniques has increased rapidly, espe-
cially in recent years, and cannot be satisfied by the available experts in this field. This

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

situation gave rise to the vision of automated machine learning (AutoML), which deals,
among other things, with the automated selection and parameterization of machine learning
algorithms. These algorithms are often arranged in a so-called pipeline where first the
data is pre-processed and transformed in a certain way and eventually passed to a learning
algorithm. Choosing the right algorithms also in the right order is of high importance to
obtain the best possible results with respect to the non-functional requirements. In other
words, AutoML deals with the automated and personalized delivery of machine learning
applications.

Considering machine learning algorithms as services, the search for suitable machine
learning algorithms or services fits seamlessly into the setting of OTF Computing, where a
machine learning service or a composition of machine learning services on the requirements
should be provided according to the user. While existing AutoML tools rely on techniques
such as Bayesian optimization [THHL13; FKE+15], genetic programming [OBUM16;
GV19] or reinforcement learning, we have continued our work with planning algorithms
from the previous funding phase. More specifically, we have developed an AutoML system
based on the paradigm of HTN-planning and using a best-first search for the search, which
borrows concepts from the Monte Carlo tree search for the node evaluation.

Another problem is that with the ongoing search for suitable machine learning services,
these adapt too much to the training data provided and do not generalize as well, which
results in lower accuracy on new, unseen data. To avoid this effect, we propose a two-step
AutoML process with ML-Plan [MWH18b], in which part of the training data is retained
for a later final candidate selection. In a first phase, a pool of promising candidates can be
put together with the reduced training data set and a final candidate can later be selected
from this pool with the data that has not yet been used. In this way, the previously described
effect, which is also referred to as overfitting in the literature, can be largely avoided.

In [MLHW18], we first developed an extension of HTN-planning to programmatic task
network planning (PTN-planning), which can be used to combine the static search space
model with dynamically determined ones. Information can be entangled to make the
search space dependent on certain dynamic state properties. In addition, we compared
ML-Plan with the state-of-the-art approaches and were able to determine a competitive
performance for ML-Plan. A key component for the success of ML-Plan is the search
space modeling based on HTN-planning, more specifically PTN-planning. The search
space naturally exhibits hierarchical structures, e.g., learning algorithms that wrap other
learning algorithms, for example, to tackle subproblem of the original problem. Further-
more, machine learning algorithms typically expose so-called hyperparameters which are
parameters of the learning algorithm that may impact the learning behavior. Depending
on which machine learning algorithm is chosen, different hyperparameters need to be
optimized, introducing additional hierarchical structures and constraints. A schematic
illustration of these hierarchical structures is shown in Figure 21 as well as in the following
section (cf. Figure 23).

As already pointed out before, HTN-planning allows to capture those hierarchical structures
and dependencies in a very natural way. In Figure 22 a search tree induced by HTN-
planning and fast forward decomposition is shown, where an initial complex task is
iteratively refined by other complex tasks or primitive task via so-called methods until
only primitive tasks are left. The search space model follows a divide-and-conquer
approach so that complex tasks are step-by-step broken down to (hopefully) simpler

2. Highlights and Lessons Learned 91

AdaBoost

DecisionTree

Figure 21: A schematic illustration of a machine learning pipeline consisting of a prepro-
cessing step and a learning algorithm.

Figure 22: Derivation of pipelines via hierarchical planning. Complex tasks are colored in
red and primitive tasks in green. Arcs indicate methods.

tasks until all complex tasks have been refined by primitive tasks eventually. Intuitively
speaking, ML-Plan tries to imitate a human developer faced with a complex task of
providing a machine learning pipeline for a given problem. Then, this abstract task is
decomposed step-by-step to smaller abstract tasks such as choosing a learning algorithm
and preprocessing algorithms until all decisions regarding machine learning algorithms
and their hyperparameter values have been made.

ML-Plan has served as a starting point for several subsequent works. In a first sequel, we
extended the search space of ML-Plan from the commonly configured two-step pipelines,
involving a single pre-processing algorithm and a learning algorithm, to pipelines compris-
ing a potentially unlimited number of pre-processing algorithms arranged in a tree-shaped
structure and again a learning algorithm. In this way, ML-Plan is capable of building more
sophisticated data transformations to pre-process the given data. Furthermore, while ML-
Plan was originally developed for binary and multinomial classification tasks, it has been
extended to regression, multi-label classification [WMH18; WMTH19], and more recently,
remaining useful lifetime estimation in the realm of predictive maintenance [TTW+20].

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

Even in these settings, which are sometimes quite different from the original classification
setting, it has shown strong performance, rendering ML-PLan a relatively flexible AutoML
framework. To prepare ML-Plan for its deployment in an OTF market, where machine
learning algorithms are provided in the form of cloud services which are computed in
a distributed system, ML-Plan was also extended to work with services in a distributed
environment [MWHF18; MWH18a].

Beyond scientific successes and academic publications, ML-Plan was a key component in
the proof-of-concept project, a demonstrator joining various subprojects of the collaborative
research center. More specifically, ML-Plan was used in the implementation of the on-the-
fly provider for the configuration of the machine learning services. Therefore, ML-Plan
represents the beating heart of one of the considered on-the-fly scenarios, i.e., on-the-fly
machine learning [MWTH19].

2.3 Automated Configuration of Multi-Label Classifiers

Another relevant learning problem, which is also extremely interesting from an AutoML
point of view, is the so-called multi-label classification. Here, in contrast to conventional,
single label, classification problems (SLC), instances can be associated not only with one
class, but with several classes at the same time. Consequently, instead of mapping from
X to L, where X is the instance space and L is the set of class labels, models map to the
power set of L, i.e., all possible label combinations. While single-label classification tries
to learn primarily dependencies between X and L, much of the MLC literature also tries to
exploit dependencies between labels, i.e., between elements in L, in order to increase the
generalization goodness.

Based on methods for SLC, a diverse repertoire of MLC methods has been developed over
time. One strain of the literature adapts SLC models and/or learning algorithms for the
MLC setting, so-called algorithm adaptation approaches. Alternatively, MLC problems
are transformed into one or multiple SLC problem(s) such that in turn already well-studied
SLC methods can be applied to the induced problems.

An exemplary selection of algorithms constituting a multi-label classifier is illustrated in
Figure 23.

From an AutoML perspective, problem transformation methods need to be configured
with an SLC method as a base learner, and the choice of both the problem transformation
method as well as the baselearner depends on the task in question, i.e., the dataset and loss
function. Hence, the search space for automatically selecting algorithms and optimizing
their hyperparameters is a multiple of the search space of SLC, which is reported already
huge, since the search space for SLC is included for each MLC problem transformation
method. Also in this direction of extending AutoML methods it is questionable to what
extent the already proposed methods can be applied to the MLC setting. More precisely,
questions of scalability arise.

Another question is how to design a fair and meaninigful comparison. In the literature,
oftentimes complete AutoML systems are proposed that combine an optimization method
with a custom search space definition and a module for evaluating solution candidates.
However, we are interested in how well optimization methods scale with the increasing

2. Highlights and Lessons Learned 93

ExpectationMaximization

hyper-parameters

RandomSubspaceML

hyper-parameters

Monte Carlo Classifier Chains

hyper-parameters

Bagging

hyper-parameters

SMO

hyper-parameters

NormalizedPolyKernel

hyper-parameters

B
as

ic
 S

in
gl

e-
La

be
l C

la
ss

ifi
er

M
et

a
Si

ng
le

-L
ab

el
 C

la
ss

ifi
er

B
as

ic
 M

ul
ti-

La
be

l C
la

ss
ifi

er

M
et

a
M

ul
ti-

La
be

l C
la

ss
ifi

er
s

Figure 23: A schematic illustration of the structure of a multi-label classifier following a
problem transformation strategy. Such a multi-label classifier may comprise
multiple "layers" of algorithms where for each layer one can in principle choose
between different algorithms of that type.

search space size, and how well they can handle the AutoML for MLC problem. To
be clear, we are not interested in an AutoML system as such, but to investigate which
optimization method is best suited for this particular setting. This requires to unify certain
design decisions as for instance the search space and the evaluation module, as well as
other more technical design decisions: parallelization, degree of parallelization, memory
constraints, etc. Moreover, AutoML systems often work with different ML libraries as
a backend, i.e., some systems may work with scikit-learn [PVG+11], some with WEKA
[HFH+09], and again others may work with mlr3 [LBR+19]. However, implementations
of the same methods may differ significantly and oftentimes some methods are not even
available in all libraries. Thus, for a fair comparison of optimization methods they should
be benchmarked in a unified environment such that all the optimization methods use
exactly the same implementations of the solution candidate evaluation and operate on the
same search space. We interpret the latter in a way that all optimization methods may
potentially encounter every candidate another optimization method may be able to find. Of
course, the precise specification of the search space may differ from optimization method
to optimization method.

In [WTMH21] we present answers to both questions: How to benchmark different op-
timization methods proposed for AutoML in the SLC setting and to what extent those
methods appear to scale well with the specifics of the MLC setting. To this end, we first
propose a benchmarking framework which, in principle, can be used to benchmark any
type of combined algorithm selection and hyperparameter optimization problem setting.

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

Meaning the benchmark is not limited to MLC problems but can be used for SLC problems
as well. The implementation of the benchmark framework is cross-platform and can be
used to integrate, for example, implementations in Python and Java. This allows optimiza-
tion methods implemented for different platforms to work with the same evaluation module
without the need for re-implementing the optimization method for another platform. Beside
the software, the benchmark also comes with constraints on the hardware to use and a limit
on the time budget. Regarding the time budget the proposed benchmark restricts both the
total runtime and the runtime for evaluating a solution candidate. The latter is an important
aspect since the time allowed for evaluating a single solution candidate implicitly prunes
slower candidates from the search space and thus different approaches would again operate
on different search spaces.

Based on this benchmark framework, an extensive empirical study was conducted com-
paring 6 optimization methods for a total of 24 datasets with 10 different train-test splits
each. Furthermore, we considered a total of 3 performance measures for optimization,
which generalize the F1 measure in three different ways from the SLC to the MLC setting.
Generally speaking, we found that all the six optimization methods are struggling with the
MLC setting, taking quite some time to return reasonable solutions. In fact, on average,
only after 4 hours the optimization methods reach a level which is at least close to the
best result that can be obtained after 24h. Most interestingly, we find that rather greedy
approaches such as the optimization method employed in our AutoML system ML-Plan
and Hyperband, an optimization method based on the successive halving paradigm, appear
to perform overall best. We hypothesize that this is due to the fact that the choice of the al-
gorithm is more important than tuning the hyperparameters. Furthermore, the evaluation of
solution candidates is typically more costly so that multi-fidelity optimization appears to be
indeed a crucial characteristic for an optimization method aiming to automate multi-label
classification.

2.4 Censored Data in Algorithm Selection

Algorithm selection (AS) [Ric76; KHNT19] is the task of finding the most suitable
algorithm for a given problem instance of an algorithmic problem domain, such as the
Boolean satisfiability problem (SAT) or classification (machine learning). Typically,
suitability is measured in terms of a performance measure, which characterizes some
sort of solution quality which shall be maximized or some kind of cost which shall be
minimized. One of the most prominent performance measures is the runtime an algorithm
needs in order to return a valid solution, which is of special interest in the domain of
hard combinatorial problems such as SAT or integer optimization. A common approach
towards per-instance algorithm selection is the use of machine learning, in which runtime
measurements of algorithms from previous runs are used in order to estimate the algorithms’
runtimes on new, previously unseen problem instances.

AS is of particular interest for the CRC, as it is a subproblem of AutoML that can be
solved with conceptually simpler approaches making it easier to study certain properties
associated with it. In particular, in this section, we elaborate on the problem of so-called
right-censored training data [KK10], which can be found quite frequently in AS, algorithm
configuration (AC) [SBT+22], hyperparameter optimization (HPO) [FH19; BBL+21] and
AutoML problems.

2. Highlights and Lessons Learned 95

In order to deduce estimators for the algorithms’ runtimes, one generally assumes that
problem instances can be represented in terms of characteristics, so called features or
meta-features in the context of meta-learning [Van18], that should be correlated with the
performance measure, in this case runtime. Correspondingly, the training data needed to
learn such estimators consists of feature descriptions of problem instances and the runtimes
achieved by various algorithms on this particular problem instance. Since algorithms for
such hard problems may exhibit extremely long runtimes, they are generally not run for
an indefinite amount of time until they eventually terminate, but are rather terminated
externally once the time exceeds a certain threshold T , called cutoff. Thus, the training
data contains right-censored datapoints, i.e. observations of which we do not know the
exact runtime, but only a lower bound T .

Naturally, such a right-censored datapoint is not a scalar value, but rather a right-open
interval and thus cannot be used as a standard regression training datapoint, but has to be
treated differently. The community has suggested a variety of approaches in the literature
of how to handle such datapoints in the context of AS, AC, HPO and AutoML [XHHL07;
HTWH20; HTWH21; HHL11; ELH+18; EHM+20].

The simplest approach for dealing with such censored samples is to ignore them all together,
which, however, comes with a loss of information. Although the censored data cannot be
used directly as training points, they do contain information, which should be incorporated.
Another simple strategy is imputation. For example, in the case when algorithm selectors
are evaluated based on the so-called PAR10 score [KHNT19] - a penalized version of
runtime - censored samples are commonly replaced by the cutoff time T or a multiple
thereof, such as 10 T . Obviously, such imputations can easily result in a strong bias
of the model learned on such data [Gre05]. A more sophisticated approach to impute
right-censored data developed by [SH79] samples from a truncated normal distribution
and is leveraged by many AS and AC approaches (e.g. [XHHL07; ELH+18]). However,
as we show in [TWW+20b], these approaches do not necessarily improve upon the naive
imputation schemes discussed above.

All of the approaches presented above share the problem that they are rather indirect
solutions for dealing with censored data and as such, come with the disadvantages noted
above. In contrast to that, methods from the field of survival analysis [KK10] (SA) can
inherently deal censored datapoints and are thus much more suited for the kind training data
often found in AS, AC, HPO and AutoML problems. Correspondingly, in [TWW+20a] we
adapt rigorous statistical SA methods for constructing algorithm selectors using partially
right-censored runtime data. In particular, using random survival forests [IKBL08], we
learn algorithm runtime distributions, which we then leverage to obtain an estimated
algorithm runtime.

In order to derive a point estimate of the runtime of an algorithm from the runtime
distribution, a first natural choice is the expectation of the distribution, i.e., the expected
algorithm runtime. While this does indeed yield reasonably good algorithm selections in
many practical cases, the expected value can be overly optimistic for the selection of an
algorithm, if the performance measure penalizes timeouts of algorithms excessively as is
the case for the PAR10 score.

To mitigate overly optimistic selections in such cases, we advocate for a decision-theoretic
selection approach that incorporates the concept of risk aversion, which coincides with

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

Figure 24: General process of the online algorithm selection setting. In each round, the
selector is asked to select an algorithm, which is then evaluated using the
performance measure resulting in an evaluation result fed back to the learner.
Based on this result, the learner can update its internal model.

timeout aversion in our case. To this end, we compute the expectation of a risk-averse loss
function applied to the random variable modeling the runtime of an algorithm instead of
directly computing the expectation of that random variable.

Combining the concepts of SA and decision-theoretic risk aversion allows us to achieve
state-of-the-art algorithm selection performance on the de-facto standard AS benchmark,
called ASLib [BKK+16], beating the hitherto state of the art by roughly 15%.

Standard AS considers an offline problem in the sense that one usually assumes a phase
prior to the actual application of the selector, where any form of data generation and
learning can take place. In contrast, online AS (OAS) weakens this assumptions and
instead aims at selectors, which are learned and updated online in a round-wise manner
without any prior learning phase. For this purpose, in each round, the selector is asked to
select an algorithm, which is then evaluated using the performance measure, resulting in
an evaluation result fed back to the learner. Based on this result, the learner can update its
internal model. The process is depicted in Figure 24.

The problems associated with censored data are even more prominent in the online case, as
one only obtains a single datapoint each round, which might even be censored. If censored
datapoints are, for example, dropped in such cases instead of incorporated into the learning
process, the model cannot be updated and no learning takes place for that round.

Unfortunately, the SA methods we previously discussed cannot be used in the online
setting, as the vast majority of such methods are inherently designed as offline approaches.
For example, Cox’ proportional hazards model [Cox72] leverages the Breslow estimator
to estimate the baseline survival function, which has to store all data previously seen in
the form of risk-sets [Bre72]. Naturally, storing all previously seen data is not a viable
approach in an online setting as the storage complexity grows with the time horizon in
such a case.

2. Highlights and Lessons Learned 97

As an alternative solution, in [TBH22] we suggest to adapt well-known bandit algorithms to
OAS and runtime-oriented loss functions. In particular, we investigate the bias incurred by
directly applying a UCB strategy [ACF02], when censored samples are dropped completely
or imputed with the cutoff T . The corresponding bias-correction terms result in extremely
large confidence bounds that do no longer yield reasonable algorithm selections in practice.
To alleviate these problems, we propose a Thompson sampling approach [Tho33; RRK+18]
that is adapted to losses strongly penalizing algorithm timeouts and imputes censored
samples by an online variant of the Schmee&Hahn approach [BJ79].

With this approach we can improve upon existing OAS approaches in terms of selection
performance while featuring a runtime and space complexity independent of the time
horizon - a property that other existing approaches do not offer.

2.5 Adagio - Automated Data Augmentation of Knowledge Graphs Using
Multi-Expression Learning

The creation of an RDF knowledge graph for a particular application commonly involves
a pipeline of tools that transform a set of input data sources into an RDF knowledge
graph in a process called dataset augmentation. The components of such augmentation
pipelines often require extensive configuration to lead to satisfactory results. Thus, non-
experts are often unable to use them. In this section, we present the basic idea behind
Adagio [DSN22], an efficient supervised algorithm based on genetic programming for
learning knowledge graph augmentation pipelines of arbitrary length. Our approach uses
multi-expression learning to learn augmentation pipelines able to achieve a high F-measure
on the training data. Our evaluation suggests that our approach can efficiently learn a
larger class of RDF dataset augmentation tasks than the state of the art while using only a
single training example. Even on the most complex augmentation problem we posed, our
approach consistently achieves an average F1-measure of 99% in under 500 iterations with
an average runtime of 16 seconds.

RDF Dataset. An RDF dataset D is a set of triples {(s, p, o) ∈ (R∪B)×R× (R∪B∪L)},
where R is the set of all RDF IRI resources, B is the set of all RDF blank nodes and L is
the set of all RDF literals. We denote the set of all RDF datasets asD.

Dataset Operators. A function O(n,m) : Dn+1 → Dm is called a dataset operator. Intuitively,
a dataset operator O(n,m) processes n input datasets using another dataset C as configuration
to produce m output datasets. We call n the in-degree and m the out-degree of O(n,m)

and will resort to writing just O when the lack of their specification will incur no loss of
generality. Given integers i ∈ [1, n], j ∈ [1,m], we call the ith argument of O(n,m) and the
jth component in the output of O(n,m) the in-port i and out-port j, respectively. The set of
all dataset operators is denoted as O.

Augmentation Graphs. An augmentation graph G = (O,E,L,M) is a directed acyclic
labeled multigraph where O is a set of dataset operators, which act as vertices; E is the
set of edges, which represent flow of data; L is the edge labeling function, which defines
mappings between dataset operator out-ports and in-ports for a given edge; and M is a
mapping from vertices to configuration datasets. We call the subsets of vertices with 0
in-degree root vertices. leaf vertices are the and subsets of vertices with 0 out-degree.

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

Figure 25: Running example augmentation graph.

All other vertices are inner vertices. Note that, per definition all root vertices of an
augmentation graph must be dataset emitters, all leaf vertices must be dataset acceptors and
all inner vertices must be augmentation operators. In our running example augmentation
graph in Figure 25, we coloured all root vertices blue and all leaf vertices red. The intuition
behind L is that, given e = (O1,O2), we need to define which of O1’s out-ports map to
which of O2’s in-ports. For instance, in our running example in Figure 25, the label set on
the edge between O4 and O5 indicates that O4’s first output dataset is the second argument
to O5. To evaluate an augmentation graph, we first obtain the RDF datasets as output of
the root vertices in Or. These datasets then flow through the graph as specified by the
semantics we associated with the edge set E and the label multiset L. Whenever a dataset
operator O(n,m) ∈ Oi has received all its n input datasets, it is evaluated using M(O(n,m))
as its last argument. The flow through the graph continues until eventually all vertices
have been evaluated. We call an augmentation graph G linear if there exists at most a
single path between O1 and O2; semi-linear if there is a pair of vertices u, v ∈ O, u , v for
which there exist multiple paths from u to v; confluent if it has multiple root vertices and
exactly one leaf vertex; inherently confluent if it is confluent and it only contains confluent
augmentation operators, general otherwise.

Augmentation Tables. An augmentation table T is a condensed linear representation for
inherently confluent augmentation graphs based on column tables [KP98]. The idea behind
this representation is that each row represents one dataset operator. We can go through this
table from top to bottom and evaluate the dataset operators which correspond to a row i
using only the results of rows 1 to i − 1. Since dataset acceptors produce no output, they
are omitted in this representation for the sake of simplicity.

Let G = (O,E,L,M) be an inherently confluent augmentation graph. Moreover, let
N(O) B max

{
n | O(n,m) ∈ O

}
denote the maximum in-degree in O. An augmentation table

is a table with 3 + N(O) columns and |O| rows, where the first column contains dataset
operators, the second column contains configuration datasets and the third column contains
the in-degrees of the dataset operators in the first column. The last N(O) columns contain
the indices of the rows used as input to the corresponding dataset operator. Given an
augmentation table T, we write Ti and Ti, j to refer to the ith row and the jth column
in the ith row of T, respectively. Applying this representation to our running example
augmentation graph in Figure 25 gives the augmentation table depicted in Table 1. The
algorithm for the computation of an augmentation table from a given inherently confluent
augmentation graph is given in [KP98].

2. Highlights and Lessons Learned 99

Table 1: Running example augmentation table.
T1: O1 C1 0 0 0 0
T2: O2 C2 1 1 0 0
T3: O3 C3 2 1 2 0
T4: O4 C4 1 3 0 0
T5: O5 C5 3 2 4 3

We call a row within an augmentation table an output row, if it is not used as input to a
subsequent row. Note that output rows always correspond to dataset acceptors and that
our previous definition of augmentation tables allows for only a single output row, as our
augmentation tables must be isomorphic to inherently confluent augmentation graphs.

Multi-Expressive Augmentation Tables. A multi-expressive augmentation table is a
generalized augmentation table that has more than one output row. Note that, any row in
a multi-expressive augmentation table can be seen as an output row by just disregarding
all rows below it. Given such a reference output row in a multi-expressive augmentation
table, we can derive a normal augmentation table by following the procedure introduced
in [DSN22].

Problem Definition. The problem under study is to find an adequate enrichment graph
for a given training example. We restrict ourselves to learning the subclass of inherently
confluent enrichment graphs. We will furthermore restrict our study to enrichment graphs
where the maximum in-degree of the involved enrichment operators and the number of
involved dataset emitters are at most two.

Learning Algorithm. The core of our learning approach is a population-based (µ + λ)
multi-expression learning (MEP) algorithm10 that is able to learn the subclass of inherently
confluent augmentation graphs. Our population consists of a fixed number µ + λ of
multi-expressive augmentation tables that we also call genotypes. All genotypes have
a fixed number r of rows. Tournament selection [MG95] with a tournament size of 3
and a selection probability of 0.75 is applied for determining the mating pool and for
selecting the survivors. We use 1-elitist selection [Mit98] to avoid a decrease in fitness.
Both the offspring and the survivors are subject to mutation. The offspring fraction α =

µ

λ
,

mutation probability σ and mutation rate ρ are hyperparameters that need to be determined
experimentally. Therefore, we ran a series of grid searches on augmentation tasks with
increasing difficulty and used our insights from previous runs to fine-tune the next. We
report the final grid search results in Figure 26. These results suggest that the best set of
hyperparameters are the offspring fraction α = 1, the mutation probability σ = 0.5 and the
mutation rate ρ = 0.5.

The algorithm will stop when either a perfect solution is found, a maximum number g of
generations is exceeded or our convergence detection terminates it. As the results of RDF
dataset augmentation are commonly expected to have a regular structure, we can expect
the output dataset to be decomposable into a number of subgraphs that are isomorphic up
to a certain error w.r.t. some structural graph similarity measure. We therefore regard the
training examples as a list of source concise bounded descriptions (CBDs) and a single
target CBD of sufficient depth to representatively capture the desired augmentation. This is
10µ is the population size and λ is the recombination pool size.

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

0.10.30.50.70.9
0.1 0.3 0.5 0.7 0.9

22

24

26

28

α = 0.0
α = 0.2

α = 0.4
α = 0.6
α = 0.8
α = 1.0

ρσ

M
ea

n
#

G
en

er
at

io
ns

21

22

23

24

25

26

27

28

St
an

da
rd

D
ev

ia
tio

n

0.1 0.3 0.5 0.7 0.9
0.1

0.3

0.5

0.7

0.9

ρ

σ

20

21

22

23

24

25

M
ea

n
#

G
en

er
at

io
ns

Figure 26: Hyperparameter Optimization Results.

in accordance with the observation that a single pair of CBD often suffices for the training
of augmentation pipelines [SNL15]. Note our choice to restrict the number of involved
dataset emitters to at most two.

3 Conclusion and Outlook

Subproject B2 plays a central role within the overall architecture of the CRC, since the
automatic configuration of software services is at the core of the OTF Computing paradigm.
As such, it is closely connected to other subprojects, which either build on the service
configurations provided by B2 (such as B3, which is responsible for the formal verification
of configurations), or provide important input (most notably the service specifications
produced by B1).

Starting with a relatively abstract, logic-based approach using formal specifications of
functional requirements and techniques from automated planning for service composition,
the focus of this subproject has shifted toward more concrete applications, such as auto-
mated machine learning (AutoML) and query answering (QA), and the use of data-driven
methods for service composition. Interestingly, this has led to attributing a double role to
machine learning, which served as a key methodology for automated service composition
and, simultaneously, as an important use case.

Tackling the problem of automated service configuration for more concrete applications
was mainly motivated by the observation that developing methods for this task, including
the formal specification of requirements with preconditions and effects, the formalization of
underlying domain knowledge, etc., is very difficult and hardly practicable on a completely
generic level. Moreover, many criteria influencing the quality of a service, and hence being
essential for the optimization of a composition, cannot be assessed in a purely formal way.
Instead, a service composition must be realized and executed — for example, the quality of
a machine learning pipeline can only be judged on an implementation level, by running it
and applying it to a real data set.

The research conducted in the course of this subproject has not only contributed to the OTF
framework of the CRC, but also created impact in other fields and scientific disciplines.
A notable example is our work on AutoML, most visibly manifested in the AutoML

3. Conclusion and Outlook 101

tool ML-Plan, which has been well received by the research community. In spite of this
success, the vision we have for this field has not yet been realized: Going beyond the use of
individual tools for AutoML, we envision “OTF Machine Learning” as a natural next step
in the evolution of AI technology, and an important contribution to the democratization
of AI. What we mean by OTF-ML is the realization of the OTF computing paradigm
for the specific case of machine learning (or, more generally, data science) functionality,
not restricted to individual software tools but including the entire compute and market
infrastructure. We are convinced that this vision will become reality in the not too distant
future, also thanks to the foundations that have been laid by this CRC.

Bibliography

[ACF02] Auer, P.; Cesa-Bianchi, N.; Fischer, P.: Finite-time analysis of the multiarmed bandit
problem. In: Machine Learning 47 (2002), no. 2-3, pp. 235–256.

[BBL+21] Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann,
T.; Becker, M.; Boulesteix, A.-L., et al.: Hyperparameter optimization: Foundations,
algorithms, best practices and open challenges. In: arXiv preprint arXiv:2107.05847
(2021)

[BJ79] Buckley, J.; James, I.: Linear regression with censored data. In: Biometrika 66 (1979),
no. 3, pp. 429–436

[BKK+16] Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Malitsky, Y.; Fréchette, A.; Hoos,
H. H.; Hutter, F.; Leyton-Brown, K.; Tierney, K.; Vanschoren, J.: ASlib: A benchmark
library for algorithm selection. In: Artif. Intell. 237 (2016)

[Bre72] Breslow, N. E.: Contribution to discussion of paper by DR Cox. In: Journal of the Royal
Statistical Society 34 (1972), pp. 216–217

[Cox72] Cox, D. R.: Regression models and life tables (with discussion). In: Journal of the Royal
Statistical Society 34 (1972), no. 2, pp. 187–220

[DSN22] Dressler, K.; Sherif, M. A.; Ngomo, A.-C. N.: ADAGIO - Automated Data Augmentation
of Knowledge Graphs Using Multi-expression Learning. In: Proceedings of the 33rd ACM
Conference on Hypertext and Hypermedia. 2022.

[EHM+20] Eggensperger, K.; Haase, K.; Müller, P.; Lindauer, M.; Hutter, F.: Neural model-based
optimization with right-censored observations. In: CoRR abs/2009.13828 (2020). arXiv:
2009.13828.

[ELH+18] Eggensperger, K.; Lindauer, M.; Hoos, H. H.; Hutter, F.; Leyton-Brown, K.: Efficient
benchmarking of algorithm configurators via model-based surrogates. In: Machine Learn-
ing 107 (2018), no. 1, pp. 15–41.

[FH19] Feurer, M.; Hutter, F.: Hyperparameter optimization. In: Automated machine learning.
Springer, Cham, 2019, pp. 3–33

[FKE+15] Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J. T.; Blum, M.; Hutter, F.:
Efficient and Robust Automated Machine Learning. In: Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada. Ed. by Cortes, C.; Lawrence,
N. D.; Lee, D. D.; Sugiyama, M.; Garnett, R. 2015, pp. 2962–2970.

[Gre05] Greene, W. H.: Censored data and truncated distributions. In: NYU Working Paper (2005)

[GV19] Gijsbers, P.; Vanschoren, J.: GAMA: Genetic Automated Machine learning Assistant. In:
J. Open Source Softw. 4 (2019), no. 33, p. 1132.

[HFH+09] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H.: The
WEKA data mining software: an update. In: ACM SIGKDD explorations newsletter 11
(2009), no. 1, pp. 10–18

https://arxiv.org/abs/2009.13828

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

[HHL11] Hutter, F.; Holger H. Hoos; Leyton-Brown, K.: Bayesian optimization with censored
response data. In: NIPS workshop on Bayesian Optimization, Sequential Experimental
Design and Bandits. Dec. 2011

[HKV19] Hutter, F.; Kotthoff, L.; Vanschoren, J., eds.: Automated Machine Learning - Methods,
Systems, Challenges. The Springer Series on Challenges in Machine Learning. Springer,
2019.

[HTWH20] Hanselle, J.; Tornede, A.; Wever, M.; Hüllermeier, E.: Hybrid ranking and regression
for algorithm selection. In: KI 2020: Advances in Artificial Intelligence - 43rd German
Conference on AI. 2020, pp. 59–72.

[HTWH21] Hanselle, J.; Tornede, A.; Wever, M.; Hüllermeier, E.: Algorithm selection as superset
learning: Constructing algorithm selectors from imprecise performance data. In: Advances
in Knowledge Discovery and Data Mining - 25th Pacific-Asia Conference, PAKDD 2021.
2021, pp. 152–163.

[IKBL08] Ishwaran, H.; Kogalur, U. B.; Blackstone, E. H.; Lauer, M. S.: Random survival forests.
In: The annals of applied statistics 2 (2008), no. 3, pp. 841–860

[JK16] Jungmann, A.; Kleinjohann, B.: Automatic Composition of Service-Based Image Process-
ing Applications. In: 2016 IEEE International Conference on Services Computing (SCC).
2016, pp. 106–113

[JM15] Jungmann, A.; Mohr, F.: An approach towards adaptive service composition in markets
of composed services. In: Journal of Internet Services and Applications 6 (2015), no. 1,
pp. 1–18

[KHNT19] Kerschke, P.; Hoos, H. H.; Neumann, F.; Trautmann, H.: Automated algorithm selection:
Survey and perspectives. In: Evolutionary Computation 27 (2019), no. 1, pp. 3–45.

[KK10] Kleinbaum, D. G.; Klein, M.: Survival Analysis. Vol. 3. Springer, 2010

[KP98] Kvasnièka, V.; Pospíchal, J.: Simple Implementation of Genetic Programming by Column
Tables. In: Soft Computing in Engineering Design and Manufacturing. Ed. by Chawdhry,
P. K.; Roy, R.; Pant, R. K. London: Springer London, 1998, pp. 48–56.

[LBR+19] Lang, M.; Binder, M.; Richter, J.; Schratz, P.; Pfisterer, F.; Coors, S.; Au, Q.; Casal-
icchio, G.; Kotthoff, L.; Bischl, B.: mlr3: A modern object-oriented machine learning
framework in R. In: J. Open Source Softw. 4 (2019), no. 44, p. 1903.

[MG95] Miller, B. L.; Goldberg, D. E.: Genetic Algorithms, Tournament Selection, and the
Effects of Noise. In: Complex Systems 9 (1995), no. 3.

[Mit98] Mitchell, M.: An introduction to genetic algorithms. MIT Press, 1998.

[MJB15] Mohr, F.; Jungmann, A.; Büning, H. K.: Automated Online Service Composition. In: 2015
IEEE International Conference on Services Computing. 2015, pp. 57–64

[MLHW18] Mohr, F.; Lettmann, T.; Hüllermeier, E.; Wever, M.: Programmatic task network plan-
ning. In: Proceedings of the 1st ICAPS Workshop on Hierarchical Planning. 2018, pp. 31–
39

[Moh] Mohr, F.: Towards automated service composition under quality constraints. PhD thesis.
Dissertation, Paderborn, Universität Paderborn, 2016

[MW15] Mohr, F.; Walther, S.: Template-based generation of semantic services. In: International
Conference on Software Reuse. Springer. 2015, pp. 188–203

[MWH18a] Mohr, F.; Wever, M.; Hüllermeier, E.: Automated Machine Learning Service Composi-
tion. In: CoRR abs/1809.00486 (2018). arXiv: 1809.00486.

[MWH18b] Mohr, F.; Wever, M.; Hüllermeier, E.: ML-Plan: Automated machine learning via
hierarchical planning. In: Mach. Learn. 107 (2018), no. 8-10, pp. 1495–1515

[MWHF18] Mohr, F.; Wever, M.; Hüllermeier, E.; Faez, A.: (WIP) Towards the Automated Compo-
sition of Machine Learning Services. In: 2018 IEEE International Conference on Services
Computing, SCC 2018, San Francisco, CA, USA, July 2-7, 2018. IEEE, 2018, pp. 241–244

https://arxiv.org/abs/1809.00486

3. Conclusion and Outlook 103

[MWTH19] Mohr, F.; Wever, M.; Tornede, A.; Hüllermeier, E.: From Automated to On-The-Fly
Machine Learning. In: LNI P-294 (2019), pp. 273–274

[OBUM16] Olson, R. S.; Bartley, N.; Urbanowicz, R. J.; Moore, J. H.: Evaluation of a Tree-based
Pipeline Optimization Tool for Automating Data Science. In: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24, 2016.
Ed. by Friedrich, T.; Neumann, F.; Sutton, A. M. ACM, 2016, pp. 485–492.

[PVG+11] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel,
M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., et al.: Scikit-learn: Machine learning in
Python. In: the Journal of machine Learning research 12 (2011), pp. 2825–2830

[Ric76] Rice, J. R.: The Algorithm Selection Problem. In: Adv. Comput. 15 (1976), pp. 65–118.

[RRK+18] Russo, D.; Roy, B. V.; Kazerouni, A.; Osband, I.; Wen, Z.: A tutorial on Thompson
sampling. In: Foundations and Trends in Machine Learning 11 (2018), no. 1, pp. 1–96.

[SBT+22] Schede, E.; Brandt, J.; Tornede, A.; Wever, M.; Bengs, V.; Hüllermeier, E.; Tierney, K.:
A Survey of Methods for Automated Algorithm Configuration. In: Journal of Artificial
Intelligence (2022)

[SH79] Schmee, J.; Hahn, G. J.: A simple method for regression analysis with censored data. In:
Technometrics 21 (1979), no. 4

[SNL15] Sherif, M. A.; Ngomo, A.-C. N.; Lehmann, J.: Automating RDF Dataset Transformation
and Enrichment. In: The Semantic Web. Latest Advances and New Domains. Ed. by
Gandon, F.; Sabou, M.; Sack, H.; d’Amato, C.; Cudré-Mauroux, P.; Zimmermann, A.
Cham: Springer International Publishing, 2015, pp. 371–387

[TBH22] Tornede, A.; Bengs, V.; Hüllermeier, E.: Machine Learning for Online Algorithm Selec-
tion under Censored Feedback. en. In: Proceedings of the AAAI Conference on Artificial
Intelligence 36 (June 2022), no. 9. Number: 9, pp. 10370–10380.

[THHL13] Thornton, C.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: The 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013. Ed. by Dhillon, I. S.; Koren, Y.; Ghani, R.;
Senator, T. E.; Bradley, P.; Parekh, R.; He, J.; Grossman, R. L.; Uthurusamy, R. ACM,
2013, pp. 847–855.

[Tho33] Thompson, W. R.: On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. In: Biometrika 25 (1933), no. 3/4, pp. 285–294

[TTW+20] Tornede, T.; Tornede, A.; Wever, M.; Mohr, F.; Hüllermeier, E.: AutoML for Predictive
Maintenance: One Tool to RUL Them All. In: IoT Streams for Data-Driven Predictive
Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning - Second
International Workshop, IoT Streams 2020, and First International Workshop, ITEM 2020,
Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Revised
Selected Papers. Ed. by Gama, J.; Pashami, S.; Bifet, A.; Mouchaweh, M. S.; Fröning,
H.; Pernkopf, F.; Schiele, G.; Blott, M. Vol. 1325. Communications in Computer and
Information Science. Springer, 2020, pp. 106–118.

[TWW+20a] Tornede, A.; Wever, M.; Werner, S.; Mohr, F.; Hüllermeier, E.: Run2Survive: A
Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. en. In:
Proceedings of The 12th Asian Conference on Machine Learning. ISSN: 2640-3498.
PMLR, Sept. 2020, pp. 737–752.

[TWW+20b] Tornede, A.; Wever, M.; Werner, S.; Mohr, F.; Hüllermeier, E.: Run2Survive: A
Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. In:
Proceedings of The 12th Asian Conference on Machine Learning, ACML 2020, 18-20
November 2020, Bangkok, Thailand. Vol. 129. Proceedings of Machine Learning Research.
PMLR, 2020, pp. 737–752.

[Van18] Vanschoren, J.: Meta-learning: A survey. In: arXiv preprint arXiv:1810.03548 (2018)

Hanselle, Hüllermeier, Mohr, Ngonga, Sherif, Tornede, Wever Subproject B2

[WMH18] Wever, M. D.; Mohr, F.; Hüllermeier, E.: ML-Plan for unlimited-length machine learning
pipelines. In: ICML 2018 AutoML Workshop. 2018.

[WMTH19] Wever, M. D.; Mohr, F.; Tornede, A.; Hüllermeier, E.: Automating multi-label classifi-
cation extending ml-plan. In: ICML 2019 AutoML Workshop. 2019.

[WTMH21] Wever, M.; Tornede, A.; Mohr, F.; Hüllermeier, E.: AutoML for Multi-Label Classifica-
tion: Overview and Empirical Evaluation. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 43 (2021), no. 9, pp. 3037–3054

[XHHL07] Xu, L.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K.: SATzilla-07: The design and analysis
of an algorithm portfolio for SAT. In: International Conference on Principles and Practice
of Constraint Programming. Springer. 2007, pp. 712–727

	Contents
	Subproject A1: Capabilities and Limitations of Local Strategies in Dynamic Networks
	Subproject A3: The Market for Services: Incentives, Algorithms, Implementation
	Subproject A4: Empirical Analysis in Markets for OTF Services
	Subproject B1: Dialogue-Based Requirement Compensation and Style-Adjusted Data-To-Text Generation
	Subproject B2: Configuration and Evaluation
	Subproject B3: Composition Analysis in Unknown Contexts
	Subproject B4: Verifying Software and Reconfigurable Hardware Services
	Subproject C1: Robustness and Security
	Subproject C2: On-The-Fly Compute Centers I: Heterogeneous Execution Environments
	Subproject C4: On-The-Fly Compute Centers II: Execution of Composed Services in Configurable Compute Centers
	Subproject C5: Architectural Management of OTF Computing Markets
	Transfer Project T1: Flexible Industrial Analytics on Reconfigurable Systems-On-Chip
	Transfer Project T2: Practical Cryptographic Techniques for Secure and Privacy-Preserving Customer Loyalty Systems

