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Subproject B3 "Composition Analysis in Uncertain Contexts" deals with the quality
assurance of service compositions as assembled by Subproject B2. Over the three funding
periods, the objectives varied in the type of service composition, type of requirements and
the type of analysis considered.

1 Introduction

Within the CRC, the task of Subproject B3 is to develop techniques for quality assurance
of service compositions. Subproject B2 assembles service compositions from services
traded on markets based on a requirements specification given by a user. For the interface
between Subprojects B2 and B3, a common modeling language has been developed in the
first period of the CRC. The task of B3 then consisted of analyzing the service composition
before its execution.

In the first period of the CRC, the focus of the subproject has been on

• the development of a common modeling language for describing service composi-
tions as used by Subprojects B1, B2 and B3,

• the analysis of non-functional properties (performance, scalability, and elasticity) of
service compositions via simulations, and

• the analysis of functional properties as specified by pre- and postconditions for
service compositions via logical encodings and SMT solving.

In the second period, Subproject B3 concentrated on
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• the use of templates for service compositions and analysis with the objective of
speeding up quality assurance in an on-the-fly context,

• the localization of errors in service compositions when requirements are not met
(again employing logical encodings and SMT solving), and

• the analysis of non-functional properties via machine learning techniques.

For the third period of the CRC, the focus shifted to considering service compositions
with components generated by data-driven techniques. This was motivated by the type of
compositions generated by Subproject B2 that started to concentrate on the generation of
machine learning (ML) pipelines. Research in B3 then studied

• the analysis of data-driven systems with respect to specific (hyper-)properties,

• machine learning methods for the prediction of non-functional properties of service
compositions that can be trained on-the-fly in an online (rather than batch) mode, as
well as

• the increase of the robustness of such methods (e.g., against uncertainty or missing
information about the context).

Throughout the entire funding period, all conceptual developments were complemented by
tool implementations and extensive empirical evaluations. The research results have been
published in international conferences and journals. In the following, we highlight some
selected results of Subproject B3.

2 Main Contributions

2.1 Performance Prediction via Simulation

In on-the-fly computing scenarios, service compositions were assumed to happen at run-
time and on demand. However, those compositions not only need to compose the right
services horizontally (i.e., select a complete set of components which together fulfil all
domain requirements) but also vertically. The latter means allocating the services on the
right amount of resources, i.e., computing, storage and networking capacity.

Nevertheless, in contrast to classical static compositions, the environment of the service
composition is unknown and can vary significantly over time. Hence, the allocation needs
to adapt to the current environment based on quality requirements expressed via goals and
formalized in service level objectives (SLOs).

In our research, we modeled not only these goals, SLOs, but also the composition and the
self-adaptations, which always keep adjusting the allocation to the current environment.
For these models we have developed a simulator that enables developers to judge the effec-
tiveness of the composition and its self-adaptations upfront. We focused on performance
and elasticity in our research and included adaptation strategies in our models and analyses
that deal with elasticity.

As introduced above, performance and, more specifically, scalability and elasticity were
the quality properties that we aimed to predict based on models of this service composition.
For this purpose, a service composition model has to be enriched with performance-relevant
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annotation. The contributions within Subproject B3 for this are described in the following
paragraphs.

Performance Modeling

In order to predict the performance of a service composition, we introduced a performance
modeling approach in [BBM13; BLB13] and further refined it with viewpoints and roles in
[Bec17]. With our performance modeling approach, we provide the necessary precondition
for the assessment of performance properties of service compositions: the extended
service composition model contains performance-relevant information, such as the resource
consumption of a service, as well as available resources of the service composition’s
execution environment. Additionally, with service level objectives (SLOs), performance
demands for the execution of a service composition can be specified. A concrete workload
scenario and its evolution can be specified in order to simulate a service composition
execution and thus predict its scalability and elasticity.

Metrics for Scalability and Elasticity

We formally defined a service composition as a self-adaptive system that can be scalable
and elastic by adapting its architecture to its performance demands, specified as SLOs,
on-the-fly. The formalization is based on the Fuzzy Branching Temporal Logic [MLL04],
which allowed us to define a notion of graded SLO achievement, i.e., performance demands
of a service can be gradually fulfilled.

We defined scalability as the ability of a service composition to eventually adapt its capacity
to different workload scenarios without missing defined service level objectives. Elasticity
is the degree to which is service composition is able to self-adapt to workload scenarios,
such that it achieves all of its service level objectives to a certain grade. To quantify the
elasticity grade, we defined the two elasticity metric as time to SLO achievment (TTSA)
and accumulated SLO achievement grade (ASAG).

TTSA is the metric that reflects the duration a service composition requires to achieve its
SLOs in a certain workload scenario. The duration is calculated as the difference from
the point in time when the service composition is in a specified state, e.g., its initial state,
until the point in time when the service composition is in a state in which its SLOs are
achieved. The base unit of the time to SLO achievement is defined as the base unit of time,
i.e., seconds (s).

ASAG is the metric that reflects the normalized, accumulated SLO achievement grade of a
service composition in a certain workload scenario. The ASAG value is calculated as the
(normalized) integral of the SLO achievement of a service composition over time from the
point in time when the service composition is in a specified state, e.g., its initial state, until
the point in time when the service composition is in a state in which its SLOs are achieved.
The metric has no unit, but the values are normalized and are in the interval between 0 and
1, i.e., interval [0; 1].

Prediction of Scalability and Elasticity

Based on our formalization and on our metric definitions, we provided prediction methods
for our scalability and elasticity metrics based on a performance simulation of the service
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composition. Figure 27 illustrates the states of a scalable service composition. The starting
state of the simulation Σ0 is given by the service composition model, see step (1). The
state transitions αi are also defined in the model as model transformations. In order to
predict scalability of the service composition, each state that is reachable via a model
transformation is simulated, see steps (2) and (3) in Figure 27. In each simulation it is
checked whether all defined SLOs are achieved eventually, i.e., in a stable performance
state. This is repeated until a state is reached that fulfills all SLOs or no more states can be
explored, see step (4) in Figure 27. The elasticity is predicted by starting a performance
simulation in the initial state Σ0 and applying model transformations during this simulation
whenever a precondition of a state transition is met. In this way, the elasticity metrics
described above can be determined.
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Figure 27: Exploration of scalability.

2.2 Algorithm Selection for Software Verification

During the second phase of the CRC, Subproject B3 investigated machine learning tech-
niques for selecting analysis techniques. More specifically, we looked at various techniques
for software verification and studied the question of algorithm selection, i.e., how to select
an appropriate technique for a verification task at hand [CHJW17; RHJW20; RW19]. Even
though software verification is a mature field and a lot of software verification algorithms
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Figure 28: Overview of the PeSCo framework.

have been developed over the past decades [BDW15; BF16; BKW10; HCD+13; CJS+16],
this is an important question as there is no single algorithm that dominates all other verifi-
cation algorithms on all possible verification problems. Therefore, we (often manually)
have to pick the right algorithm for a given verification task.

To automate the selection process, we developed an approach for predicting the task-specific
performance of software verification algorithms [RHJW20]. An accurate prediction can
then help us to automatically identify and select the best performing algorithm for a given
task. In the following, we describe the approach and its instantiations in more detail.

Learning to Select Verifiers

We assume that a verification task consists of a program P and a specification ϕ. The
software verification algorithm, or software verifier for short, then has to verify whether
the program satisfies the specification or not. Note that in reality the verification process is
limited by system resources and the verifier can only be successful if it verifies a given
task within a certain amount of time or memory.

Now, given a set of verifiers A = {A1, A2, . . . , An}, our goal is to identify the verifier
that verifies the given verification task within the given resource constraints. For this,
we employed a machine learning model that learns to “guess” the performance of the
individual algorithms and then rank them accordingly. We then select the highest ranked
verification algorithm.

However, to design such a learning based model that can predict the performance of
verifiers, we had to overcome two key challenges:

1. How to represent programs and specifications such that we can infer the performance
of verifiers?

2. How to integrate our representation into classical machine learning pipelines?

In contrast to previous work [TKK+14; DPVZ17], we decided against representing the
verification tasks as feature vectors directly and choose a representation that is closer to
the internal representations used inside verifiers. In fact, our approach transforms a given
verification task into a combination of an abstract syntax tree, control flow graph and
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program dependency graph [HR92]. In our case, the specification is encoded inside the
program and therefore indirectly represented through the graph structure.

To integrate our program representation into the learning process, we employed a kernel
based method [SS02] that enabled us to directly learn on graph representations without
an extra feature extraction process. In other words, by employing kernel-based methods,
our model learns which graph structures are important for predicting the performance of
verifiers. For this, we introduced a custom kernel and utilized kernelized support vector
machines [SS02] for the learning process.

During training, our learner learns to rank verification algorithms via the ranking by a
pairwise comparison (RPC) framework [FH10]. Here, the learning task is decomposed
into multiple binary classification problems. Each resulting classifier then predicts whether
a verifier Ai performs better on the given task than another verifier A j. We define that a
verifier Ai is better than a verifier A j on a given task (and therefore ranked higher) if Ai is
more likely to solve the task within the given resource constraints or both verifiers solve
the task equally likely but Ai is likely faster.

Finally, we employ the learned model to predict the most likely best performing verifier for
a given task. An overview of the prediction process is shown in the upper part of Figure 28.
For a new verification task, we first parse the given program and specification into the
graph representation. The graph representation is then provided to the learned Kernel RPC
model which predicts a ranking of verifiers.

Predicting Sequential Compositions of Verifiers

We implemented our selection approach inside the verification tool CPAchecker [BK11],
which ultimately resulted in a new verification tool called PeSCo [RW19]. PeSCo ranks
up to six base verification algorithms and then executes them in order. As a result, PeSCo
is able to select from over 15 different sequential verifier compositions based on the
characteristics of the given verification task.

In addition, we found that performance modeling for ranking verification algorithms is also
effective in practice. With its selection approach, PeSCo won the second place in the overall
category of the 8th international software verification competition (SVComp) [Bey19] and
since then remains highly successful in the competition.

As part of a DFG-funded project on “Cooperative Verification” we continue the work of
algorithm selection for software verification, now with a focus on selecting components
for a cooperative approach.

2.3 Functional Analysis of Service Compositions

In the first two phases of Subproject B3, we considered the analysis of service compositions
specified in the common modeling language, jointly developed between Subprojects B1,
B2 and B3 [AWBP14]. The focus was on the analysis of functional properties specified
via pre- and postconditions for service compositions. The compositions are assembled
out of single services traded on the market. Each such service has a specification written
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Figure 29: Overview of the ontology-based approach

in the modeling language as well. The vocabulary of the modeling language is based on
a domain-specific ontology. This accounts to types used in service signatures, but also
to predicates occurring in preconditions and effects of services. Ontologies, in particular
those enhanced with rules, capture the knowledge of domain experts on properties of and
relations between domain concepts.

Our verification technique for service compositions [WW13] makes use of this domain
knowledge. We consider a service composition to be an assembly of services of which
we just know signatures, preconditions, and effects. Compositions are written in a simple
workflow language, such as specifiable via activity diagrams. We aim at proving that
a composition satisfies a (user-defined) requirement, specified in terms of guaranteed
preconditions and required postconditions. For an underlying verification engine we use
an SMT solver. More specifically, we translate single service specifications, the service
composition and the ontology rules to first order predicate logic to be fed into an SMT
solver (see Figure 29). Similarly, we translate the user requirement into a logical formula.
To take advantage of the domain knowledge (and often, to enable verification at all),
the knowledge is fed into the solver in the form of sorts, uninterpreted functions and, in
particular, assertions as to enhance the solver’s reasoning capabilities. Thereby, we allow
for deductions within a domain previously unknown to the solver. In the CRC, we have
applied our technique on a case study from the area of water network optimization software
(as studied by Subproject C3 on "Modeling of Optimization Problems" in the first phase).
In the following, we describe the technique in more detail.

Verification Approach

We assume a given composition of services, each with an ontology-based interface spec-
ification. Apart from interfaces, nothing is known about the services (black-box view).
In the context of service-oriented architectures (SOA), this is a quite likely scenario:
Providers sell their services but not the code itself. In fact, a service might not even run
on the consumer side, but could either completely stay on the provider machine or run
in the cloud. Furthermore, the requirements on an assembled service composition are
specific to the domain; instead of proving general safety or reachability properties alone
(as state-of-the-art software verification tools do), consumers expect the verification to
prove domain-specific requirements. We leverage this by grounding service specifications
on ontologies.
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Figure 30: Service composition of the WaterNet Optimizer.

We exemplify this with the case study “water supply network optimization” (see Figure 30
for a service composition in this domain). Software services in this domain handle
different tasks of analyzing and optimizing existing municipal water supply networks.
Single services designed for different subtasks can be assembled into a composition. This
concerns services such as (a) compacting the size (and layout) of network models, (b)
generating mathematical optimization problems from networks, (c) solving optimization
problems, and (d) applying optimal solutions to networks. As the behavior of these services
is specified in terms of interfaces only, this is a black-box view and for the analysis we can
therefore only assume that services adhere to their specification.

Every water network has specific hydraulic characteristics, as well as other properties such
as the cost of operation. A typical domain specific requirement on a composition of some
optimization services is that an optimized network (produced by the composition) has the
same hydraulic characteristics as the original input network, but a better (e.g., lower) cost
of operation. The verification technique has to derive this property from the given service
specifications, the way of assembling the services and the additional domain knowledge
stored in the ontology.

Our approach to the verification of such a service composition is based on the use of an
SMT solver (satisfiability modulo theories solver) as reasoning engine. Basically, our
technique feeds three types of inputs (domain knowledge, service interface specifications,
and assembly) into the SMT solver in different forms (see Figure 29). These inputs,
combined with the user’s requirements specification, are encoded as first-order logic
formulae. In this encoding, the user requirement is negated. The resulting formula is
then checked for satisfiability: If unsatisfiable, the requirement is fulfilled; if satisfiable, a
counterexample is found.

More specifically, we start with an ontology of the domain which – besides the standard
concepts and their relations – models additional rules about the domain by first-order
logic. The predicates therein are the relations in the ontology. Providers of services use the
ontology to specify a service’s signature and its preconditions and effects. Consumers use
the ontology to specify requirements of a service composition. For verification, we use the
concepts of the ontology as types for the solver, relations as uninterpreted functions, and
rules as constraints on the interpretation of these functions. The rules are thus being used
for deduction together with the decidable theories of the solver (e.g., linear arithmetic).
The creation of verification conditions for a given service composition and requirements
follows ideas of Hoare-style proofs. It turns out that the verification typically requires
the additional domain knowledge for a successful reasoning: The knowledge of human
domain experts (e.g. about hydraulic properties of different forms of networks) needs to be
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provided to the solver.

Templates

In cooperation with Subproject B2 [MW15], the basic verification approach was comple-
mented with the idea of templates [WW14; WW16]. This was motivated by the on-the-fly
principle, because pre-verified templates upon instantiation only require checks of the
soundness of the instantiation, not of the entire composition. Templates can capture known
composition patterns, and thus allow for the application of the general principle of pattern
usage in software engineering.

More specifically, following our approach for the verification of service compositions,
templates are workflow descriptions with service placeholders. Service placeholders
are replaced by concrete services during instantiation. If a template is shown to be
correct, then all of its (valid) instantiations will be correct by construction. Every template
specification contains functional properties given in terms of pre- and postconditions (again
with associated meaning “if precondition fulfilled, then postcondition guaranteed”), and a
correct template provably adheres to this specification. To verify correctness of templates,
we employ the Hoare-style proof calculus as of above.

The definition of “correctness” as well as giving a proof calculus for templates, however,
poses a non-trivial task on verification. Since templates should be usable in a wide range
of contexts and the instantiations of service placeholders are unknown at template design
time, we cannot give a fixed semantics to templates. Rather, the template semantics needs
to be parameterized in usage context and service instantiation. A template is only correct
if it is correct for all (allowed) usage contexts. Similarly, a useful proof calculus has to
be applicable in all possible contexts and service instantiations. We guarantee this by
defining a proof calculus that is parameterized in usage contexts and template-specific
constraints.

Technically, we capture the usage contexts by ontologies, and the interpretation of concepts
and predicates occurring therein by logical structures. A template ontology defines the
concepts and predicates of a template. Furthermore, a template specification contains
constraints defining additional conditions on instantiations. These constraints allow us to
verify the correctness of the template despite unknown usage and unknown fixed semantics.
A template instantiation replaces the template ontology with a homomorphous domain
ontology, and the service placeholders with concrete services of this domain. Verification
of the instantiation then amounts to checking whether the (instantiated) template constraints
are valid within the domain ontology, and thus can be carried out on-the-fly.

2.4 Performance Prediction via Machine Learning

As an alternative to the use of simulation techniques (cf. Section 2.1), the potential of
machine learning (ML) methods for non-functional analysis and performance prediction
has been investigated in the second and third funding period. The idea here is to induce
models that predict a property of a service composition, given the specification of the
service as input. What makes this problem challenging from an ML perspective is the
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specific structure of service compositions: Services are recursively structured objects of
variable size. Representing them in terms of feature vectors of fixed length, the format
commonly assumed by most ML methods, is difficult and will necessarily cause a loss of
information.

To cope with these challenges, we introduced a new ML setting that we call “learning
to aggregate” (LTA). Roughly, learning-to-aggregate problems are supervised machine
learning problems in which data objects are represented in the form of a composition of a
(variable) number on constituents; such compositions are associated with an evaluation,
score, or label, which is the target of the prediction task, and which can presumably be
modeled in the form of a suitable aggregation of the properties of its constituents. Thus,
our LTA framework establishes a close connection between machine learning and a branch
of mathematics devoted to the systematic study of aggregation functions [GMMP09].

A bit more formally, we proceed from a set of training dataD =
{
(c1, y1), . . . , (cN , yN)

}
⊂

C × Y, where C is the space of compositions and Y a set of possible (output) values
associated with a composition. Since aggregation is often used for the purpose of evaluating
a composition, we also refer to the values yi as scores. A composition ci ∈ C is a multiset
(bag) of constituents ci = {ci,1, . . . , ci,ni}, where ni = |ci| is the size of the composition;
scores yi are typically scalar values (e.g., representing a specific non-functional property of
a service). Constituents ci, j can be of different type, and the description of a constituent
may or may not contain the following information:

• A label specifying the role of the constituent in the composition. For example,
suppose a composition is a service in the form a machine learning pipeline (cf.
Subproject B2) consisting of an algorithm for data preprocessing, a method for
inducing a classifier, and an algorithm for postprocessing predictions. By assigning
labels to these constituents, such as pre, induce, and post, additional information
is provided about the part of the composition they belongs to (thereby adding
additional structure to the composition).

• A description of properties of the constituent, for example, memory requirements
of an algorithm. Formally, we assume properties to be given in the form of a
feature vector vi, j ∈ V, whereV is a corresponding feature space. However, more
complex descriptions are conceivable. For example, the description could itself be a
composition.

• A local evaluation in the form of a score yi, j ∈ R+.

Finally, a composition can also be equipped with an additional structure in the form of a
(binary) relation on its constituents. In this case, a composition is not simply an unordered
set (or bag) of constituents but a more structured object, such as a sequence (like in the
above example of an ML pipeline) or a graph.

Like in standard supervised learning, the goal in learning-to-aggregate is to induce a model
h : C −→ Y that predicts scores for compositions. More specifically, given a hypothesis
spaceH and a loss function L : Y2 −→ R+, the goal is to find a hypothesis h∗ ∈ H that
provides optimal predictions in the sense of minimal L in expectation.
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Figure 31: Illustration of a basic version of the learning-to-aggregate framework.

Learning Aggregation Functions

One of the key problems in learning to aggregate is to combine a variable number of scores
yi, j, pertaining to evaluations of the constituents ci, j in a composition c, into a single score
yi. In Figure 31, which provides an overview of the LTA setting, this step corresponds to
the part marked by the dashed rectangle.

Now, suppose that we know or can at least reasonably assume that yi is obtained from
yi,1, . . . , yi,ni through an aggregation process defined by a binary aggregation function
A : Y2 −→ Y:

yi = A
(
. . . A

(
A(yi,1, yi,2), yi,3

)
, . . . , yi,ni

)
.

In the simplest case, where the constituents do not have labels and hence cannot be
distinguished, the aggregation should be invariant against permutation of the constituents
in the bag. Thus, it is reasonable to assume A to be associative and symmetric. Besides,
one may of course restrict an underlying class of candidate functions A by additional
assumptions, such as monotonicity.

Starting from a class A of aggregation functions, instead from a hypothesis space H
directly, has at least two important advantages. First, as just said, it allows for incorporating
prior knowledge about the aggregation, which may serve as a suitable inductive bias of
the learning process. Second, it naturally solves the problem that hypotheses h ∈ H must
accept inputs of any size. Indeed, under the assumption of associativity and symmetry, a
binary aggregation function A is naturally extended to any arity, and can hence be used as
a “generator” of a hypothesis h = hA:

h(y1, . . . , yn) = A(n)(y1, . . . , yn) = A
(
A(n−1)(y1, . . . , yn−1), yn

)
for all n ≥ 1, where h(y1) = A(1)(y1) = y1 by definition. For these reasons, we consider the
learning of (binary) aggregation functions, and related to this the specification of a suitable
classA of candidates, as an integral part of learning to aggregate.

Disaggregation

The aggregation we have been speaking about so far is an aggregation on the level of scores.
Thus, we actually assume that local scores yi, j of the constituents ci, j are already given
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and that we are interested in aggregating them into an overall score yi of the composition
ci. This is indeed the genuine purpose of aggregation functions, which typically assume
that all scores are elements of the same scale Y. Now, suppose that local scores yi, j are
not part of the training data. Instead, the constituents ci, j are only described in terms of
properties in the form of feature vectors vi, j ∈ V. A natural way to tackle the learning
problem, then, is to consider the local scores as latent variables, and to induce them as
functions f : V −→ Y of the properties.

More specifically, we assume these functions to be parameterized by a parameter vector θ,
and the aggregation function A by a parameter λ. The model is then of the form

yi = Aλ(yi,1, . . . , yi,ni) = Aλ

(
fθ(vi,1), . . . , fθ(vi,ni)

)
,

and the problem consists of learning both the aggregation function A, i.e., the parameter λ,
and the mapping from features to local scores, i.e., the parameter θ, simultaneously. Here,
supervision only takes place on the level of the entire composition, namely in the form of
scores yi, whereas the “explanation” of these scores via induction of local scores is part of
the learning problem.

The decomposition of global scores into several local scores is sometimes referred to as
disaggregation (because it inverts the direction of aggregation, which is from local scores
to global ones). One could then try to learn how the constituents are rated (via fθ) and,
simultaneously, how the corresponding local scores are aggregated into a global rating (via
Aλ). Obviously, there is a strong interaction between local rating and aggregation on a
global level. An important question, therefore, concerns the identifiability of the model,
i.e., the question whether different parameterizations imply different models (or, more
formally, whether (λ, θ) , (λ′, θ′) implies that the corresponding models assign different
scores yi , y′i for at least one composition).

Instantiations

The LTA framework as outlined above has been instantiated in different ways and evaluated
on practical learning tasks. A first instantiation based on a class of aggregation functions
called uninorms has been proposed in [MH16]. Learning algorithms for another type
of aggregation function, so-called ordered weighted averaging operators, have been
developed and tested in [MH19].

2.5 Testing of Data-Driven Software Systems

In the third phase of the CRC, the service compositions to be analyzed by Subproject B3
were pipelines of machine learning components, such as data generation, preprocessing,
learning etc. generated by Subproject B2. Essentially, through the pipeline of such services,
B2 generates data-driven software systems (DSS).

Unlike traditional software systems, where intended behavior of the software is pro-
grammed by the developer, data-driven software learns its intended functionality from
lots of examples. The analysis of such a system faces two fundamental challenges: (1)
identification of the requirements to be checked and (2) development of an analysis method.
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The first challenge arises out of the fact that the actual intended behavior of the learned
component is unclear as otherwise learning would not be required at all. The second
challenge arises because learning algorithms generate a diverse set of different classifiers
(or regressors).

More precisely, given a set of data instances (also called a training data set), a machine
learning algorithm generalizes from the data set thereby generating a machine learning
(ML) model (or DSS11). Formally, this model is a mapping from inputs to an output, i.e.,

M : X1 × . . . × Xn → Y .

The Xi denotes the value set of the input element (also called the feature) i and Y denotes
the set of output values. However, it is essentially unclear what the correct outcome of
this process is, i.e., what is considered to be an expected model M. Moreover, even if we
can identify some requirements to check, there can be different types of ML models as
the outcome of the learning process, depending on the learning algorithm used, such as
decision tree, neural network, random forest, support vector machine or others.

In recent years, with the increased usage of such data-driven software, there have been
a number of works focusing on ensuring the quality of such data-driven systems (see
e.g., [ZHML22; Alb21]). To this end, two approaches are currently followed: a) developing
an ML algorithm guaranteeing a requirement per design or b) validating the requirement on
a given DSS. There are shortcomings for both of these approaches. Firstly, the requirement-
per-design algorithms are only available for a small number of requirements. Moreover,
it has been found out that in some cases these algorithms were unable to guarantee the
desired requirements [GBM17]). Secondly, validation techniques are either restricted to a
specific model or to a specific requirement to check, such as checking fairness for deep
neural network model [ZWS+20].

Within Subproject B3, we have proposed a validation technique called property-driven
testing with the intention of overcoming the shortcomings of existing techniques. Our
method is a validation technique in that we aim at the falsification of requirements,
i.e., finding counterexamples to properties like standard testing techniques do. Contrary
to standard testing often using random generation of test inputs, we however have a
systematic, verification-based technique for generating potential counterexamples. Our
technique is "property-based” as it allows the checking of user-supplied properties, writ-
ten in a pre- and postcondition format. We have implemented this testing approach in
a tool named mlcheck and have evaluated it to check a number of properties on sev-
eral types of ML models. All the code and data of this work is publicly available at
https://github.com/arnabsharma91/MlCheck. Next, we briefly describe the steps involved
in our property-driven testing framework.

Property-Driven Testing

We have developed a testing mechanism that allows the user to specify the property using
a standard specification language that would then be used for test case generation. To this
end, we have the following two contributions: a) a domain-specific property specification
language and b) a targeted test case generation method.
11We use the term ML model and data-driven software (DSS) interchangeably in this section.



Wehrheim, Hüllermeier, Becker, Becker, Richter, Sharma Subproject B3

MUT

Prop

White-Box Model
(Re)Training

Formula
Generation

SMT Solving
& Augmentation

Test
Suite

Figure 32: Workflow of test data generation

Property specification. We give an assume/assert style specification language where an
assume statement specifies a condition on the input and assert statement specifies the
condition to be satisfied by the output of an ML model. We develop this considering
Python as a base programming language because of its high use in developing data-driven
software. Essentially, assume/assert statements are defined as calls to the functions Assume
and Assert respectively and take the following form [SDNW21].

Assume(‘<condition>‘,<arg1>, ...)
Assert(‘<condition>‘,<arg1>, ...)

The first parameter is a string defining a logical condition on the input data instance (for
Assume) or the output (for Assert) of the model under test (MUT), combining any other
variables in the code. The rest of the arguments give the values of these variables respecting
the order of their occurrences in the condition. Later, this condition, along with the values
of the variables, is translated to a logical formulae. Further details about our specification
language and its grammar can be found here [SMHW22].

Test case generation. We perform this step employing a technique called verification-based
testing, which we propose in [SW20]. To this end, first of all, we generate a set of data
instances randomly and for each of these instances we get the corresponding predictions
(i.e., outputs) from the MUT. The set of instances, along with their predictions form the
training data set for a white-box model (see Figure 32). The newly generated white-box
model in our framework can be either a decision tree or a neural network model. It
approximates the MUT. Next, we convert white-box model W and the negation of the
property specification to a logical formula (in SMT-LIB format12) φW and φ¬P respectively
and we conjunct them to get φW ∧ φ¬P. This translation to logical formula guarantees to
give a satisfiable formula if and only if the white-box model does not satisfy the property.
The conjuncted formula then is given to the satisfiability modulo theory (SMT) solver
Z3 [MB08]. If the Z3 finds the formula to be satisfiable, it will return a counterexample to
the property, i.e., an input to W that shows the violation of the given property.

Now, this counterexample serves as a test case and, using a method called pruning, we
generate more of these. However, as we find the counterexamples on W, not on the MUT,
we must check the validity of the counterexamples on the MUT. In case they are not valid,
we add the input instances from the counterexamples, along with its real predictions from
MUT to the training data set and retrain the model W to get a better approximation of the
MUT. Otherwise, we store the counterexamples and return them as counterexamples for
the MUT M. These steps are repeated until a user defined timeout occurs.

12http://smtlib.cs.uiowa.edu/
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Results

We have implemented the property-driven testing approach in a tool called mlcheck

and applied it to check for several types of properties. For example, in [SW20], we
applied our approach to test monotonicity requirements of ML models. Our evaluation
shows that our approach outperforms adaptive random testing [CLM04] and property-
based testing [CH00] approaches in finding out monotonicity violations. Furthermore,
our approach can find out the violations even for ML models that are by designed to
be monotonic. We also checked for several types of fairness criteria in [SW20] and
found our approach to be effective in finding out more number of fairness violations
than the existing fairness testing approaches [ALN+19; UAC18]. Our approach shows
that existing learning algorithms that are by design meant to be fair can generate unfair
models, leading to fairness violation. In a later work, we furthermore checked security
and concept relationship requirements (developed in cooperation with Subproject B2) of
data-driven software [SDNW21]. Finally, in a recent work we used mlcheck to evaluate
a number of mathematical properties on a specific type of ML models (i.e., regression
models) [SMHW22]. In this case, the requirements reflect properties of aggregation
functions as studied within B3 in the context of "learning to aggregate” [MH16; MH19].
Thus, we can apply our tool in testing diverse properties for several types of data-driven
software systems.

3 Impact and Outlook

The research conducted in this Subproject over the last decade, and notably the contribu-
tions highlighted in this chapter, has been impactful and has triggered follow-up work by
ourselves and other scholars.

For example, based on our research on the prediction of scalability and elasticity (which
ended after the first period due to the leave of PI Becker), several follow-up projects pushed
these ideas further. The EU FP7 project CloudScale extended the presented simulation
approach to analyze SLO achievement by architectural templates (ATs), which makes it
much easier for end users to model typical elasticity patterns in cloud computing allocations.
Becker and his colleagues also contributed a pattern catalogue containing patterns for
horizontal and vertical scale-up/-down and scale-out/-in including the corresponding load
balancing strategies.

When using the approach in practice, it was realized that it can be rather difficult to analyze
the simulator’s results and to improve the self-adaptation rules based on these results
alone. Hence, in a current ongoing DFG project, we aim at explainability of the simulator’s
results. The vision is that, based on the simulator’s results, the system should explain which
self-adaptations have been taken when and why. Ideally, it might even make suggestions
on how to change the self-adaptation rules to achieve improved results.

Another example of impactful research is our work on algorithm selection for software
verification. In particular, the development of the tool PeSCo has inspired the development
of other algorithm selectors. We ourselves have shown that approaches based on neural
networks can be used to learn transferable feature representation, applicable to many
verifier selection scenarios [RW20]. Apart from us, Beyer et al. [BKR22] have found
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that combinations of complete verification tools chosen via algorithm selection signifi-
cantly outperform the performance of single tools. Finally, a new verification tool called
GraVeS [LD22] has been developed based on the PeSCo architecture, and has already been
evaluated successfully in the software verification competition [Bey22].

Our work on machine learning for predictive modeling of service properties has triggered
follow-up work, too. In particular, the “learning-to-aggregate” setting that we introduced
has inspired other researchers. Obviously, this setting is not restricted to the prediction of
properties of service compositions, but can also be applied to other learning tasks, where
global scores are naturally modeled as an aggregation of local evaluations. In [PTF+21],
for example, the LTA framework has been picked up and extended by the introduction of
so-called learnable aggregation functions (LAF) for sets of any cardinality. This class of
functions is shown to be very versatile and able to approximate many important aggregators
in a flexible way. In experimental studies, the approach has been compared to other methods
for learning from sets, and was found to outperform state-of-the-art approaches from the
field of deep neural networks.

On a broader scale, the importance of the research topics addressed in this subproject is
even likely to increase in the near future, especially due to the rapid development in the
field of artificial intelligence. With the quick expansion of practical AI applications, along
with the increasing trend toward the data-driven construction of AI tools based on neural
network technology, the verification of these tools is becoming more and more crucial. We
initialized work in this direction in the third funding period, but of course, this can mark
just the start of a bigger research program. Currently, for example, there is a lot of work on
formal verification of neural networks, motivated by the need to provide formal guarantees
on the correctness, safety, robustness, or fairness of such networks. In a sense, verification
goes hand in hand with other approaches aimed at increasing the trustworthiness of AI
systems, such as explainability. We believe that the methods and tools developed in this
subproject provide a suitable basis for further developments in this field.
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[FH10] Fürnkranz, J.; Hüllermeier, E.: Preference Learning and Ranking by Pairwise Compar-
ison. In: Preference Learning. Ed. by Fürnkranz, J.; Hüllermeier, E. Springer, 2010,
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ASE. Ed. by Huchard, M.; Kästner, C.; Fraser, G. ACM, 2018, pp. 98–108.

[WW13] Walther, S.; Wehrheim, H.: Knowledge-Based Verification of Service Compositions -
An SMT Approach. In: 2013 18th International Conference on Engineering of Complex
Computer Systems. IEEE Computer Society, 2013, pp. 24–32.

[WW14] Walther, S.; Wehrheim, H.: Verified Service Compositions by Template-Based Construc-
tion. In: FACS. Ed. by Lanese, I.; Madelaine, E. Vol. 8997. Lecture Notes in Computer
Science. Springer, 2014, pp. 31–48.

[WW16] Walther, S.; Wehrheim, H.: On-the-fly construction of provably correct service composi-
tions - templates and proofs. In: Sci. Comput. Program. 127 (2016), pp. 2–23.

[ZHML22] Zhang, J. M.; Harman, M.; Ma, L.; Liu, Y.: Machine Learning Testing: Survey, Landscapes
and Horizons. In: IEEE Trans. Software Eng. 48 (2022), no. 2, pp. 1–36.

[ZWS+20] Zhang, P.; Wang, J.; Sun, J.; Dong, G.; Wang, X.; Wang, X.; Dong, J. S.; Dai, T.: White-box
fairness testing through adversarial sampling. In: ICSE ’20: 42nd International Conference
on Software Engineering. Ed. by Rothermel, G.; Bae, D. ACM, 2020, pp. 949–960.


	Contents
	Subproject A1:  Capabilities and Limitations of Local Strategies in Dynamic Networks
	Subproject A3:  The Market for Services: Incentives, Algorithms, Implementation
	Subproject A4:  Empirical Analysis in Markets for OTF Services
	Subproject B1: Dialogue-Based Requirement Compensation and Style-Adjusted Data-To-Text Generation
	Subproject B2: Configuration and Evaluation
	Subproject B3: Composition Analysis in Unknown Contexts
	Subproject B4:  Verifying Software and Reconfigurable Hardware Services
	Subproject C1:  Robustness and Security
	Subproject C2:  On-The-Fly Compute Centers I: Heterogeneous Execution Environments
	Subproject C4: On-The-Fly Compute Centers II: Execution of Composed Services in Configurable Compute Centers
	Subproject C5:  Architectural Management of OTF Computing Markets
	Transfer Project T1:  Flexible Industrial Analytics on Reconfigurable Systems-On-Chip
	Transfer Project T2:  Practical Cryptographic Techniques for Secure and Privacy-Preserving Customer Loyalty Systems

