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1 Introduction

Subproject B4 focuses on designing quality assurance measures for single services that
are (i) purchased, (ii) composed into service compositions, and (iii) directly employed at
runtime in an on-the-fly manner. These measures must allow one to check if an acquired IT
service actually fulfills the properties as promised by the service provider. The techniques
for ensuring the quality of services must further enable their users to quickly check whether
the desired properties hold without forcing them to expensively analyze the service and
verify the properties themselves. In this subproject, we consider service providers that
assemble compositions and compute centers that execute services as users. The target
of the quality assurance measures are individual IT services that are offered in an OTF
market. Since services might be implemented in software or synthesized in reconfigurable
hardware components, measures to check both must be created.

For example, a service composition used for image recognition may rely on a software or
hardware service implementing a filter that is used as an image preprocessor. Hence, it
must be ensured that this preprocessing service is safe to use. To this regard, safety stands
for the property that no error location can be reached.

To reach these goals, Subproject B4 has proposed proof-carrying services. Proof-carrying
services come with a proof in form of a certificate that allows its users to efficiently check
whether the certificate and therefore the properties that the service claims to hold are valid
or not, instead of requiring them to extensively analyze and compute the proof for the
target service. The idea is to shift the computational expense of verifying the desired
properties of an IT service to its respective provider. With respect to software services,
the technique implemented for creating and checking certificates is called proof-carrying
code (PCC) or, in case of reconfigurable hardware components, proof-carrying hardware
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(PCH). Besides PCC, the Programs-from-Proofs (PfP) technique has been proposed, which
follows the same goal. However, in contrast to PCC, PfP does not attach certificates or
proofs to a service, but instead uses the proof to transform the program (service) into an
equivalent program for which the properties of interest can be verified more easily—the
service provider thus still verifies the original program whereas the user only has to verify
the transformed program. PfP is in depth described as one of the subproject’s selected
topics in Section 2.1.

In the area of PCH, we have proposed techniques to verify functional and non-functional
properties. As an example, in Section 2.2 we elaborate on certifying memory access
monitors for reconfigurable hardware systems. In such systems, different modules need to
access shared memory, and predefined static or dynamic memory access patterns describe
legal access sequences. A memory access monitor is a runtime module that captures these
patterns and blocks illegal accesses. Certifying such monitors instead of the complete
modules greatly reduces the required computational effort.

Under the term hardware/software-co-verification (HW/SW-co-verification) Subproject
B4 has developed techniques that pair PCC and PCH. These techniques target services
or programs that use so-called custom instructions to trigger reconfigurable hardware
components. In order to pair PCC with PCH, pre- and postconditions are computed during
software verification, such that the hardware verification must assure that these conditions
hold. These conditions become part of the certificate and, hence, must only be computed
by the service provider, which further unburdens the user. The selected topic presented
in Section 2.3 provides more information about HW/SW-co-verification.

In both areas, software (PCC) and hardware (PCH), only safety properties were initially
considered. Later on in the project, the focus shifted to the more challenging—with
respect to verification/analysis complexity—security properties. This shift required the
design of novel techniques as well as the implementation of new frameworks and tools.
In Section 2.4, we present the novel Phasar framework that we developed as part of
Subproject B4. Phasar allows one to statically analyze software written in languages from
the C family. We use it to design and prototype new analysis algorithms and strategies
to effectively compute safety and security properties (and their proofs) for the target
services.

Existing mature static analysis tools were also used to create certificates for security
properties. These tools usually provide no proof; hence, the quality of the certificate relies
on the quality or accuracy of the analysis. Therefore, instruments to determine the accuracy
of analyses become indispensable. Consequently, in Section 2.5 we take a closer look at
benchmarking software analyses.

2 Selected Research Topics

2.1 Programs-from-Proofs

The goal of Subproject B4 is to provide approaches that let consumers (users) of software
or hardware services efficiently and automatically check whether a service ensures the
desired properties. One means to achieve this goal is to apply the principle of proof-
carrying code (PCC). To achieve efficient checking, PCC relocates the major workload of
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Figure 33: Generic workflow of the Programs-from-Proofs approach.

checking: namely, performing the proof that the service ensures the desired properties, to
the service producer. The producer then attaches the generated proof in form of a certificate
to the service. Hence, the consumer only needs to check whether the certificate attests
that the service ensures the desired properties, which is typically assumed to be more
efficient than proof generation. Several PCC instances for various properties and analysis
techniques have been suggested, some relying on mathematical proofs and others on more
general concepts of proofs, such as abstract state spaces. However, often these approaches
suffer from large certificates. Furthermore, consumers are bound to specific validation
approaches often tailored to the type of certificate and cannot apply existing verification
technology. In addition, proof generation is not automatic for all PCC instances.

To overcome these issues, Subproject B4 has proposed an alternative principle, named
Programs-from-Proofs (PfP). Like PCC, PfP is a generic principle that still forces the
service producer to perform the work-intensive part of proof generation. However, it
goes without certificates and lets the consumer employ existing, but relatively efficient
verification techniques, such as dataflow analyses instead of specific validation techniques,
for example. To achieve this, PfP uses the insights that the structure of a software service
(i.e., program) can heavily influence the complexity of verification but that many proofs, in
particular proofs that model the (abstract) state space of a (software) service, restructure
the service such that its verification becomes simpler. More concretely, PfP employs the
proof to transform the (software) service into a different, but behaviorally equivalent and
property preserving (software) service that is easier to verify.

Figure 33 shows the generic workflow of the PfP approach, which we explain in more
detail in the following.

1. Initially, the producer verifies (software) service P with respect to property ϕ, apply-
ing a potentially complex and costly verification. During the complex verification,
many PfP instances use a combination of a computational expensive, incremental
analysis and a cheap analysis. The cheap analysis is responsible for checking the
property while the main purpose of the expensive analysis is to restructure the (ab-
stract) state space, i.e., to restructure the paths of the analyzed (software) services by
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unfolding loops, avoiding reintegration of branches, excluding infeasible execution
paths, etc., such that the cheap analysis succeeds in property checking. To achieve
the necessary restructuring, the expensive analysis often performs the restructuring
incrementally based on the failed proof attempts of the cheap analysis.

2. After the producer’s verification attempt succeedes, the producer uses the proof to
automatically transfer the restructuring that was done for proving the property to
the service. Thereby, it is important that the transformation (1) does not change the
service’s (functional) behavior, (2) keeps the validity of the property, and (3) ensures
simple verification of the property on the transformed (software) service PT . All
PfP instances Subproject B4 has developed focus on proofs in form of abstract
reachability graphs (ARGs). An ARG is a representation of the abstract state
space of a (software) service. Important for the PfP instances is that all ARG
paths correspond to syntactic paths in the analyzed (software) service and that
all syntactic paths that are also semantically feasible (i.e., the executable paths)
are represented in the ARG. However, an ARG and the (software) service likely
structure paths differently and the ARG may contain less infeasible syntactic paths.
All those differences allowed the cheap analysis component to prove the validity of
the property. The ARG characteristics mentioned above are the reasons why the PfP
instances, which Subproject B4 has developed, all translate the ARG, in particular its
paths with their structure, into a (software) service, which becomes the transformed
service PT delivered to the consumer. Furthermore, these characteristics allow one
to verify the desired behavioral equivalence of the (software) service before and after
transformation.

3. Once the consumer has received the transformed service PT , he or she performs a
simple verification of the transformed service PT to efficiently and automatically
check whether a service ensures the desired property ϕ. If the complex verification
consisted of a combination of cheap and expensive analysis as described above,
the simple verification typically applies (a variant of) the cheap analysis technique,
although the consumer might use a different implementation of the cheap analysis.
Our PfP instances even allow the cheap analysis to become path-insensitive. Typi-
cally, our instances each use a variant of the respective cheap analysis that performs
an efficient, flow-sensitive dataflow analysis. The reason is that any path sensitivity
that the cheap analysis contributed during complex verification is also incorporated
in the ARG structure and, thus, in the transformed (software) service. To prevent
the consumer from harm, the simple verification must be tamper-proof, i.e., it must
detect any tampering of the process that invalidates the desired property on the
received service, e.g., deviations in properties, invalid producer proofs, incorrect
transformation, or changes to the transformed service during delivery. Hence, the
simple verification must be sound, i.e., it must ensure that only services that fulfill the
desired property are verified successfully. Since soundness is typically guaranteed by
the simple verification technique itself, we focused on showing successful consumer
verification in a tamper-free PfP workflow. More concretely, for the PfP instances
Subproject B4 has developed, we have proven that the simple verification will suc-
ceed if the complex and simple verification consider the same property, the complex
verification has succeeded, and the simple verification verifies the services computed
by the transformation based on the proof generated by the complex verification.
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4. Depending on the outcome of the simple verification, the consumer lastly either runs
the transformed service in case of a successful verification or otherwise discards the
service.

Our proof-of-concept instance for PfP [WSW13] has addressed typestate properties, proto-
col-like properties enhancing types with information about their state, and has introduced
the idea to transform ARGs into services (programs). Its complex verification combines
predicate model checking and a typestate analysis, while the simple verification performs
a pure typestate dataflow analysis. A typestate analysis allows to decide whether certain
operations are possible with respect to the typestate of a variable. For example, an integer
variable may be in the typestate uninitialized, demanding that it is initialized before it
is used. Subsequent PfP instances [JW15; JW17] have extended the supported types of
analyses and properties, but reuse the idea of ARG to service (program) transformation.
Furthermore, we have used the software analysis framework CPAchecker [BK11], a tool
that supports configurable program analysis, to implement our PfP instances. While we
have reused CPAchecker’s existing analyses and its possibility to combine analyses to
realize the complex and simple verification, we have integrated the ARG to service (pro-
gram) transformation into CPAchecker. Practical evaluations of our PfP instances with
CPAchecker have shown that the consumer’s simple verification is indeed significantly
more efficient in terms of runtime and memory usage than the producer’s complex ver-
ification. Also, PfP is often more efficient than existing PCC approaches applicable to
configurable program analyses.

The PfP approach here makes a first essential contribution in the range of the proof
procedures. As described before, PfP addresses the problem that proofs stored in the
proof-carrying code method are usually very large and therefore inefficient to handle. It
could be shown that this can succeed by means of PfP to embed the proof quasi partially
directly into the structure of the program which can be analyzed. Thereby, the size of the
proof is reduced and nevertheless the possibility of the efficient proof examination by the
user remains. As a result, PfP thus allows for an often more efficient examination of the
necessary evidence and a more efficient transfer of this evidence to the user. However,
another advantage of PfP over PCC is also the reduction in trusted base: In PCC, the user
must trust the verification procedure, which itself is often relatively complex (albeit runtime
efficient). In PfP, however, this checking procedure corresponds to a relatively simple data
flow analysis, which should increase confidence that this procedure is error-free. PfP thus
increases confidence in the overall security of the corresponding services.

2.2 Proof-Carrying Hardware

Proof-carrying hardware (PCH) was first proposed by Drzevitzky et al. [DKP09; DKP10]
as the reconfigurable hardware equivalent of PCC. The PCH concept distinguishes a
circuit producer (e.g., a design center) and a consumer, e.g., a data center operating a
reconfigurable computer or an embedded system based on a reconfigurable system-on-chip.
The consumer loads and executes reconfigurable hardware modules that were created by
the producer. Additionally, the consumer specifies a security property that the modules
need to fulfill and, before loading, requires formal proofs of the properties. It is the task
of the producer to generate not only the modules but also the proofs and transmit both to
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the consumer. The consumer will verify that the proofs are correct and actually belong to
the modules. In PCH, the compound of module implementation and the proof have been
denoted as a proof-carrying bitstream.

An important security property for reconfigurable hardware systems pertains to memory
access policies. The density of today’s reconfigurable hardware devices allows for imple-
menting reconfigurable systems with a large number of modules or cores, respectively.
Through dynamic or even partial reconfiguration, modules can be loaded on demand,
increasing flexibility. Several modules that access the same physical memory need to
adhere to a specified policy governing their access patterns. A simple static policy, for
example, is to enforce that each core can only access its own segment of the memory.
There are, however, more involved policies in use when it comes to intended sharing of
data between cores, the handling of conflict-of-interest classes, or different security levels.
Huffmire et al. [HSKL08] introduced a monitoring-based approach to ensure memory
access security. They presented a formal language and a compilation tool flow that allows
a designer to specify a memory access policy and generate a circuit for a so-called memory
access monitor. All modules’ memory accesses have to be routed through the monitor,
enabling the monitor to block any memory access that violates the policy at runtime.

We guarantee memory access security in the strength of formal verification by bringing
together the monitoring approach of Huffmire et al. with the proof-carrying hardware
concept. The consumer operates a reconfigurable resource where several cores access
shared memory and memory accesses are routed through a memory access monitor that
implements a predefined memory access policy. The policy can change during runtime
to reflect different applications and security requirements. The consumer receives a new
monitor together with a proof of its functional correctness, verifies the proof and, in case
of success, partially reconfigures the monitor.

Our tool flow starts with the consumer that uses behavioral Verilog to specify the memory
access policy. The producer receives the design specification and synthesizes it into an
FPGA bitstream, using the tools of Huffmire et al. and, subsequently, VTR for Verilog
synthesis and place & route. After that, the producer re-extracts the logic function from the
bitstream and, together with the original design specification, computes the miter function.
The miter function is shown in Figure 34 and is constructed such that the output of the
miter, i.e., the error flag, can only be 1 if the specification and implementation differ for at
least one input vector. For proving functional equivalence for combinational circuits, it is
thus sufficient to prove unsatisfiability of the miter. We use ABC to construct a miter in
conjunctive normal form and the SAT solver PicoSAT to prove unsatisfiability. PicoSAT
also generates a proof trace that, together with the bitstream, forms the proof-carrying
bitstream.

Dynamic memory access policies lead to sequential monitor circuits. Thus, we extended
the concept and tool flow to also work with sequential miters using bounded sequential
equivalence checking [WDP14]. A sequential miter circuit is unrolled for a specified
number n of time frames, resulting in n copies of the circuit that are connected at their
flip flops. Every time frame represents one clock cycle, and we can change the primary
inputs and observe the primary outputs at every individual cycle. The miter construction
then compares all outputs in each time frame and the flip flop signals of the last frame, and
raises the error flag if there is a deviation somewhere. As we have to choose a specific
amount of unrolling time frames, we observe that the compiled monitors are essentially
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Figure 34: Miter M(S (x), I(x)) for proving the functional equivalence of specification S
and implementation I, (taken from [WDP14]).

state machines, and their internal transitions only depend on their current state and the new
input. Suppose there is an input sequence i that satisfies the miter function, i.e., it leads to
different outputs for the implemented circuit and the specification, and the corresponding
state transition path of the state machine contains cycles. Then the input sequence i′, which
leaves out all state cycles of i, is also a valid input sequence and it also satisfies the miter.
If the miter is thus provably unsatisfiable for all maximum length-cycle free state transition
paths, it is unsatisfiable for all input sequences of all lengths. Hence, we can simply use a
number n of unrolling frames larger than the number s of automaton states to ensure that
every cycle-free sequence has been considered.

The consumer receives the bitstream for the monitor circuit together with the proof trace
for unsatisfiability. In a first step, the consumer also extracts the monitor’s logic function
from the bitstream and forms a miter in conjunctive normal form in the same way as the
producer, but with the original specification. The so-created miter is compared to the miter
sent by the producer, which is part of the proof trace. If the miters do not match, then the
proof is not based on the desired functionality and the monitor is refused. If the miters
match, the consumer verifies the proof by checking each reduction step in the proof trace
until an empty clause results. Only then, is the implementation shown to adhere to the
security property and the monitor accepted.

To demonstrate the capability of our proposed approach for ensuring memory security,
we built a prototypical system. As platform we chose a ZedBoard containing a Xilinx
Zynq-7000 system-on-a-chip with a dual ARM Cortex-A9, and 512 MB RAM. Our proto-
type architecture embeds a virtual FPGA overlay into a reconfigurable system as shown in
Figure 35. We use a virtual FPGA since we need to be able to interpret the transmitted
configuration bitstream for the memory access monitor. FPGA vendors typically do not
share the necessary information, and reverse engineering the bitstream or additionally
transmitting and interpreting low-level circuit descriptions such as Xilinx XDL are ex-
tremely tedious processes. Virtual FPGAs or FPGA overlay architectures have become
increasingly popular in the last years for a number of reasons. They provide a means to
implement portable circuits, bring partial reconfiguration capabilities to FPGAs that have
no native support of this feature, achieve fast configuration rates, prototype coarse grained
arrays, or be able to implement circuits created with open source tool flows such as VTR
on real FPGAs.

We leverage the virtual FPGA overlay ZUMA and embed it into ReconOS [LP09]. Re-



Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

Processing System / Application Processor Unit

Programmable Logic

SWT 0 SWT n

Operating System
ReconOS driver

... DT 0 DT m...

HWT 0 HWT m...

General Purpose Bus (AXI)

FIFO to AXI bridge

Arbiter
MMU

Memory
Controller

Memory Bus (AXI)

ACP / High Performance General Purpose

virtual FPGA

Monitor

Figure 35: Xilinx Zynq version of ReconOS, with n + 1 software threads (SWT), m + 1
hardware threads (HWT), their m + 1 delegate threads (DT), and an arbiter
including a memory monitor in the memory access path of the HWTs (taken
from [WDP14]).



2. Selected Research Topics 133

Program P

(Configurable)

Analysis

+

Certificate C(P,U)

Program P

(Configurable)

Certificate

Validator

Program P’

+

Certificate C’

safe

Property U

ConsumerProducer

C’=C(P’,U)

yes

P=P’

Figure 36: Certification generation and validation.

conOS is an execution environment for hybrid hardware/software systems featuring a
multithreaded programming model that allows for regular software threads as well as
hardware threads. The use of ReconOS enables us to use a mature, Linux-based infras-
tructure for implementing hardware/software systems, including a CPU core, memory
controller, peripherals and a standard software operating system. As shown in Figure 35,
we have modified the ReconOS arbiter in the memory access path of the hardware threads
to include the memory access monitor. The access monitor itself is implemented in our
ZUMA virtual FPGA overlay. For the inputs, the arbiter provides the monitor the virtual
memory address, the type of the request (read or write) and its source, the hardware thread
identifier.

We further presented a series of experiments to investigate different aspects of our approach
and prototype. The experiments showed that the approach is feasible and can secure static
and dynamic memory access policies of different complexities. With 61.84% to 90.53%
of the overall workload, depending on the memory access policy, the producer clearly
bears the computational burden of establishing the consumer’s trust in the module. As
expected, the overlay comes with rather high area and delay overheads. The reduction of
these overheads was also addressed.

2.3 Proof-Carrying Code and Its Relation to Proof-Carrying Hardware

The core principle underlying the work of Subproject B4 was to enable on-the-fly checking
of service correctness by attaching proofs as witnesses to the correctness of both software
and hardware. Here, we briefly explain our technique of proof-carrying code (software
verification) and its integration with hardware verification.

For proof-carrying code we employ analysis and verification techniques that can formally
prove the validity of properties in software programs. Hence, we can employ the proofs
as a form of certificate to a service’s correctness. The basic principle of proof-carrying
code is the idea that the generation of certificates (on the side of the service producer)
can be time-consuming while its validation (on the side of the consumer) should be easy.
Figure 36 depicts this basic scheme. The producer develops a program (service) P, which
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should adhere to property (requirement) U. The producer is supposed to carry out the
costly analysis (proving the holding of property U on P). The outcome of the analysis,
more specifically the correctness proof, is then attached to the program in the form of a
certificate. When a consumer wants to use this service, it retrieves program and certificate
from some repository. Our assumption here is, however, that neither producer nor storage
in repositories can be fully trusted. Thus, the consumer might actually receive a slightly
different program P′ or a slightly modified certificate C′. Our technique enables the
consumer to quickly validate whether the certificate still fits to the program and thereby
whether the received program P′ meets the intended requirement U.

Instead of developing a certification technique per property or per class of properties,
we have investigated the generation of certificates for arbitrary properties [JW14] via a
configurable certification process. Our generic approach builds on an existing framework
for configurable program analysis with tool support in the form of CPAchecker [BK11].
CPAchecker executes an analysis meta algorithm generating a (structured) abstract reach-
ability set of a given program. The meta algorithm can be steered by a number of user-
supplied inputs (e.g., telling CPAchecker when to stop the analysis and when to merge
states). This presents a way of uniting different program analysis techniques, ranging from
data-flow analyses, to computing abstract information for control flow graphs, to model
checking, computing a tree-like abstract structure. The generated reach set is then subject
to property checking.

For the certification process, we use the—anyway generated—reach set as certificate.
Similar to the analysis, we develop a generic configurable certificate validation framework
with a corresponding meta algorithm for certificate checking. In addition, we provide a way
of (in a large number of cases automatically) generating the configuration of the certificate
validation from a given configuration of the analysis. Our approach is tamper-proof in that
the certificate validator only outputs “yes” if the program P remains unchanged (P = P′)
and the obtained (and possibly corrupted) certificate C′ is a valid certificate for the program
P with respect to a desired property U. We have implemented our technique within the
CPAchecker framework, and evaluated it on a number of different analysis techniques. For
all of these, certificate validation is faster than analysis. We proved soundness of all of
our techniques, i.e., we have shown them to be tamper-free.

To connect to the certification on the hardware level, we have studied how software certifi-
cates relate to the underlying hardware used for execution. Software analyses typically
rely on the correctness of the processor hardware executing the program. More specifi-
cally, the strongest postcondition computation used to determine the successor state of a
given state for a program statement assumes that the processor correctly implements the
statement’s semantics. Certificate validation heavily employs the strongest postcondition
computations. This assumption of correct hardware is certainly valid for standard proces-
sors, since they undergo extensive simulation, testing, and partly also formal verification
processes. However, during the last years processors with so-called custom instruction (CI)
set extensions became popular, which challenge this correctness assumption. Customized
instructions map a part of an application’s data flow graph to specialized functional units
in the processor pipeline in order to improve performance and/or energy efficiency.

In [JPWW14], we have presented a novel formal approach for software/hardware co-
verification, in particular for processors with custom instruction set extensions. It (partially)
employs the certificate computed by the software analysis to derive requirements on the



2. Selected Research Topics 135

Program Property

Requirements

CI
Implementation

Software
Analysis

1

Hardware Analysis

Functional
Equivalence

Properties
derived by the

Software Analysis

2

ci.c

ci.blif

P 𝜑

CI
Specification

Approach #1 Approach #2

✓/

✓/

✓[if       ]

OR

Figure 37: Overview of hardware-software co-certification.

hardware. These requirements then need to be validated in order for the software analysis
to produce trustworthy results. Figure 37 gives an overview of our approach.

We have studied two different approaches for integrating software and hardware analyses
that differ in what needs to be verified on the hardware side. Our first approach proves
functional equivalence between the specification and the implementation of a custom
instruction, e.g., that an integer adder is actually adding integer values. While proving
equivalence is potentially the most runtime-consuming approach, it is also the most
powerful, as it inherently covers all behavioral properties of the custom instruction on
which software analyses could rely. Our second approach ties together software and
hardware analyses more closely by exploiting the abstract state space of the program
generated during verification to identify the specific properties of the individual program
statements the software analysis has actually used during verification. These properties
become requirements on the hardware. We thereby tailor the hardware verification exactly
to the needs of the software analysis, hoping to avoid unnecessarily complex and runtime-
consuming hardware verification.

We have built a toolchain automating all the steps of our approach, which are (1) the
software analysis computing requirements on the hardware via the use of a verification
tool plus information about the custom instructions, (2) the hardware analysis synthesizing
property checkers from requirement and custom instruction specification, and (3) a SAT
solver for checking satisfiability of the custom instruction implementation together with
the property checker. We have evaluated our technique on different custom instructions
occurring in programs using several software analyses for requirements extraction. As a
main result from our experimentation, we can conclude that while tailoring the hardware
verification more to the concrete needs of the software analysis indeed generally results in
lower computational effort, neither approach is superior for all cases.
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2.4 Static Analysis with Phasar

Another selected topic of Subproject B4 is embodied in the genesis and development of
the meanwhile well-known Phasar [SHB19] project for static program analysis. Phasar

is a modular static analysis framework targeting the C and C++ programming languages
and has been built on top of LLVMto account for the lack of general infrastructure for the
analysis of such programs. Phasar’s infrastructure allows one to quickly draft prototypes
for new program analyzers, novel algorithms and analysis strategies, and also allows for
their evaluation.

We have built several novel analysis approaches on top of Phasar, which we present in the
following paragraphs.

C/C++ languages are often used for projects that require a direct interface with operating
systems or hardware components. They offer control to programmers for creating efficient
programs, but also require correct usage to avoid bugs or security issues. Compilers such
as GCC and Clang and additional tools, such as Cppcheck and Clang Static Analyzer, aid
in creating secure software. However, they often provide only simple checks or have a
large number of false or missed warnings due to imprecise analysis. For Java programs,
program-analysis frameworks such as Soot, WALA, and Doop provide more precise
dataflow analysis. This type of implementation was not available for C/C++. This is where
Phasar came in, a novel program-analysis framework designed for LLVM infrastructure.
It can be used for dataflow problems, call-graph construction, and points-to information.
Phasar is intended for static analysis and complements LLVM toolchain features. Some
parts may be used as a compiler pass.

C/C++ programs can represent an entire software product line using static conditionals
called features. Traditional static analysis techniques cannot be applied to software product
lines directly, because the process of generating and analyzing all software products
becomes prohibitively expensive due to the possibly exponential number of software
products. To solve this problem, VarAlyzer, a family-based approach was developed,
which analyzes a software product line as a whole. VarAlyzer transforms preprocessor
directives into ordinary C code using a configuration-aware type checker. It supports
not just analyses encoded in IFDS but also those encoded in interprocedural distributive
environments (IDE). VarAlyzer outputs the fully context- and flow-sensitive dataflow facts
along with a feature constraint describing the product configurations for which they hold.
This allows developers to find bugs and vulnerabilities much earlier in the development
process, when a preprocessor has not yet even been applied, for instance, in a version-
control system. The effectiveness of VarAlyzer has been evaluated using a typestate
analysis that checks for the correct usages of OpenSSL’s Envelope (EVP) APIs on 95
compilation units. Challenges related to evaluating VarAlyzer on full SPLs are detailed
in [SGP+22].

ModAlyzer [SHB21] is a novel approach that enables the scaling of static analyses on
large software projects. The approach involves the pre-computation of summaries for
parts of code that do not frequently change, which can be integrated into larger analysis
scopes. The summaries can be seen as proofs of the property the client analysis attempts to
demonstrate. Whole-program analysis (WPA), which can be memory-intensive and cause
runtime problems, can be substituted with intra-procedural analyses that are simple enough
to scale, as demonstrated by tools such as Clang-tidy and Cppcheck. However, semantic
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program analyses such as shape, typestate, and dataflow analyses require detailed program
representations that include the effects of procedure calls, which are impossible to scale if
calculated for the entire program.

ModAlyzer provides a compositional approach to program analysis that is capable of
scaling static context-sensitive, field-sensitive, and flow-sensitive inter-procedural program
analysis. This is achieved through the compositional computation of analysis information.
The success of the compositional analysis depends on the number of reusable parts of the
application, for example, libraries, or parts that do not change from one analysis run to
the next. Black Duck’s recent study shows that 96% of the applications they scan contain
open-source components, and those components now account for, on average, 57% of the
code. The application of compositional analysis can accelerate the analysis of applications
by reusing analysis results from previous runs, especially as open-source dependencies are
updated much less frequently than application code.

Although previous work on compositional program analysis has been limited to certain
types of dataflow analysis, ModAlyzer provides a mechanism for analysis dependency
management for a fully compositional analysis that automates updates whenever new
information becomes available that affects existing information. The approach also involves
an efficient summary format that is able to persist general data. ModAlyzer can potentially
scale the analysis of applications by reusing analysis results from previous runs.

Last but not least, IncAlyzer was developed to support summarization and reuse of static
analysis information for frequently changing parts of a program. It assumes that the target
project is developed using a version control system and aims at maximizing the reuse of
static analysis information computed on a previous revision of the target project that is
still valid. Summarization techniques can be used to pre-compute summaries that can be
reused while analyzing the actual application code and may decrease the analysis time
by a large factor. Tree-adjoining languages and Dyck context-free language reachability
can help to increase the number of useful summaries. Incremental analysis can improve
scalability for frequently changing code, as changes made to a program are usually small
and thus should only cause invalidation of a small amount of the analysis results. Existing
incremental static analysis techniques ignore the information provided by version control
systems (VCS) and are only concerned with dataflow information.

Contrary to the Reviser approach, which only considers the dataflow parts of a client
analysis for its incremental analysis and computes the code delta based on the inter-
procedural control-flow graphs, IncAlyzer makes the complete client analysis stack (con-
trol-flow, callgraph, points-to, type-hierarchy and dataflow information) incremental and
uses VCS information to obtain the code delta directly. If IncAlyzer recognizes that a code
change has no impact on the semantics of the program while producing commit-annotated
IR, no reanalysis is performed on the IR. IncAlyzer has great potential to allow developers
to check-in persisted static analysis results directly to the VCS managed code repository
for each commit of a project which are then both kept in sync throughout the continuous
integration development of the project. This has the advantage that each revision only
needs to be analyzed once. Any developer can check out a code revision accompanied
by its respective up-to-date analysis results, allowing them to check and reuse them for
incremental analysis locally. This allows static analysis information for each commit to
be viewed as “certificate” which can be checked instantaneously for each given commit,
according to the precision and capabilities of the underlying client analysis, of course. One



Wehrheim, Platzner, Bodden, Schubert, Pauck, Jakobs Subproject B4

may even bind those “certificates” to the code, e.g., using cryptographic hashing, to avoid
accidental or intentional manipulation.

2.5 Benchmarking with ReproDroid

The number of research communities fostering open science is steadily increasing. For
instance, the software engineering community has turned artifact evaluations from a rarity
into a standard. Funding agencies nowadays join this effort by rewarding the availability
of open science artifacts. For these reasons, instruments to drive reproducible evaluations
have become more important and needed than ever before. Building such instruments, in
particular in the context of on-the-fly computing, proves to be challenging, since the market
and its ecosystem must be available and accessible. With ReproDroid [PBW18], a frame-
work that allows to create or adapt benchmarks so that these can be executed and evaluated
automatically, we have proposed such an evaluation instrument for Android taint analysis.
We have used ReproDroid to evaluate whether six “Android taint analysis tools keep their
promises” [PBW18], to create, execute and evaluate a real-world benchmark [LPP+22]
and to evaluate cooperative analyses [PW19].

Android taint analyses track the flow of sensitive data throughout one or multiple apps.
Whenever sensitive information is accessed via a private source, it is marked as tainted
and tracked through the app’s data (and control) flow. If tainted data reaches a public
sink, a data leak is reported in form of a taint flow that stretches from source to sink. We
differentiate intra-app taint flows inside a single app from inter-app taint flows between
apps.

To evaluate taint analysis tools, benchmarks are usually employed. A benchmark, in this
context, consists of two parts: a set of apps and its ground truth, which is a complete list of
all taint flows occurring in these apps. Since it is often difficult to determine whether a
ground truth is correct or complete, micro benchmarks are often used. Micro benchmarks
consist of tiny apps that were only implemented for benchmarking purposes. Each micro
benchmark app usually implements only a single taint flow that uses or exploits a specific
Android or programming language feature. Hence, the ground truth can be defined by
documenting this specific taint flow only.

In the past, a benchmark’s ground truth was often described in natural language, which
allowed different interpretations and ultimately led to irreproducible results. ReproDroid

uses the Android app analysis query language (AQL) [PBW18; PW19] to precisely specify
a benchmark’s ground truth and to interact with arbitrary Android taint analysis tools. Fig-
ure 38 provides an overview of ReproDroid’s toolchain. First, the benchmark refinement
and execution wizard (BREW) takes a set of apps as input. During Step 1, the sources
and sinks that occur in these apps are identified. BREW allows to automate this process
by automatically selecting sources and sinks which are specified in a configurable list.
Such lists are typically used by taint analysis tools to identify the respective statements.
Furthermore, for each pair of source and sink that belongs to the same benchmark case, it is
specified whether it describes an expected or a not-expected taint flow. While an expected
taint flow should be found by an analysis, a not-expected taint flow should explicitly not
be found—finding it is considered to be a false positive result. Once the ground truth
is fully described in BREW, the benchmark is ready to be executed. To do so, BREW
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Figure 38: Sketch of the ReproDroid toolchain.

forwards one AQL query per benchmark case to the next component: namely, the AQL
System, which performs Step 2 (see Figure 38). As the name suggests, the AQL System is
the default system for using the AQL. In case of a query asking for taint flows, the AQL
System looks up a taint analysis tool in its configuration and runs it in order to answer the
query. If required, the taint analysis tool’s output is converted into the AQL answer format.
This answer is replied to BREW, which then compares the answer against the ground truth
to finally compute the accuracy metrics precision, recall and F-measure (Step 3). These
metrics summarize the benchmark’s outcome and allow us to compare the performance of
different tools.

In a first study [PBW18], we have used ReproDroid to check the feature and accuracy
promises given for six taint analysis tools. For example, it is claimed that FlowDroid, the
most-cited tool, is context-, flow-, field-, object-sensitive and lifecycle-aware and that it
achieves certain precision, recall and F-measure scores for the DroidBench benchmark.
Additionally, it is claimed that these tools are able to analyze real-world apps—a promise
that we have also attempted to validate. In conclusion, we have found that most promises
were kept by most tools. However, all of them seemed to struggle in case of real-world
scenarios.

Initially, we have used ReproDroid to adapt the most-used (with respect to citations) micro
benchmarks for Android taint analyses (DroidBench and ICC-Bench) such that they can
automatically be executed and evaluated to guarantee reproducibility and comparability.
Later, the real-world benchmark TaintBench [LPP+22] was created with and for Repro-
Droid. TaintBench comprises 39 malware apps that have been shipped via various app
markets. For these 39 apps, 203 expected and 46 not-expected taint flows have been
determined manually and specified in ReproDroid. Even though this ground truth is most
likely incomplete, through the definition of expected and not-expected taint flows we
are still able to evaluate taint analysis tools on this baseline. In the end, TaintBench has
allowed us to gain novel and measurable insights that reveal capabilities and inabilities
of analyses especially while handling real-world scenarios. Most surprisingly, it has also
allowed us to detect regressions between two versions of two state-of-the-art analysis tools
(Amandroid and FlowDroid) that were not visible using micro benchmarks only.

Combinations of analyses (cooperative analyses) can also be evaluated by means of
ReproDroid [PW19]. In this case, the AQL is not only used to interact with arbitrary
analysis tools but also to steer the cooperation between analysis tools, e.g., how to combine
their results. To efficiently execute cooperative analyses, the AQL System allows to
distribute the execution of different tools onto distinct and distributed AQL Systems. We
have composed four cooperative strategies that overall employed 12 analysis tools in order
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to deal with four analysis challenges. One of these strategies, for instance, deals with
inter-app communication. This strategy allows to detect taint flows that start in one app
and end in another. To do so, a taint analysis tool is queried to find intra-app taint flows
and a combination of two additional tools to find inter-app flows. By means of the AQL,
these intra- and inter-app flows are stitched together which has ultimately allowed us to
detect taint flows across app boundaries. In case of all four challenges (reflection, native
code, inter-component, and inter-app communication) significant improvements were able
to be achieved through cooperation and measured via ReproDroid.

In the context of on-the-fly computing, cooperative analyses can be interpreted as service
compositions themselves, i.e., each analysis tool represents a service, an AQL query de-
scribes the service composition, and the AQL System stands for a service provider, whereas
another AQL System may take the role of a compute center. In this scope, ReproDroid can
be used to determine the quality of services and service compositions. Due to the repro-
ducible nature of benchmarks executed via ReproDroid anyone (consumer or producer) is
able to check whether certain properties (e.g., accuracy metrics) are accomplished by a
service (composition). Trustworthy and demonstrably accurate (cooperative) analyses can
then be used for the “certification” of other services or service compositions.

3 Impact and Outlook

Subproject B4 has worked on various proof-carrying service techniques throughout all
three periods of the CRC 901. In the beginning, the fundamentals of proof-carrying code
(PCC) and proof-carrying hardware (PCH) have been examined closely, extended, and
implemented in first prototypes. The evaluations conducted along the way have already
proven the potential of these techniques in the context of on-the-fly computing, i.e., safety
properties of services, to be used in service compositions, they could be certified by service
providers (producers), and they were less expensively checked by their users (consumers,
e.g., compute centers). Next, mainly during the second period, (1) PCC and PCH have
been brought together such that software and hardware services interacting with each other
can be certified collectively, (2) mature implementations have been developed to extend
the field of application, such that more versatile (software and hardware) services and
properties, in particular security-related properties, can be analyzed and certified, and
(3) techniques to assess the quality of analyses have been researched and implemented.
For example, the Phasar analysis and the ReproDroid benchmarking framework were
constructed. While approaching the end of the CRC, the benefits of the effort spent so
far became measurable not only in terms of more than 100 publications contributed by
Subproject B4 but also in terms of available and usable artifacts, which have and will cause
impact beyond research.13 In the following, we present and discuss these benefits in the
context of the five selected topics detailed above.

Based on the core scheme of proof-carrying code, we have investigated a number of
optimizations and extensions (e.g., Programs-from-Proofs). The goal, for instance, was to
provide more compact certificates. We have furthermore studied certification techniques
for hyperproperties, more specifically for information flow properties [TW18]. Information
flow analysis investigates the flow of data in applications, checking in particular for flows
13https://ris.uni-paderborn.de/project/12 (19.04.2023)

https://ris.uni-paderborn.de/project/12
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from private sources to public sinks. Flow- and path-sensitive analyses are, however,
often too costly to be performed every time a security-critical application is run. We
have proposed a variant of proof-carrying code for information flow security. To this
end, we have developed information flow certificates that get attached to programs as
well as a method for information flow certificate validation. The technique has also been
implemented within the program analysis tool CPAchecker [BK11]. Furthermore, we
have studied different security policies for information flow and their integration in a
certification context [TW18].

Programs-from-Proofs (PfP) represents one of these proof-carrying code (PCC) opti-
mizations for which we have in turn proposed several extensions. The first PfP extension
supports reachability properties and any kind of dataflow analysis as cheap analysis. Hence,
complex verification becomes a combination of predicate model checking and an arbitrary
dataflow analysis, named predicated dataflow analysis, while the simple analysis uses the
dataflow analysis alone. Later, a generic PfP framework [JW17] has added support for
arbitrary properties expressible as property automaton (including typestate and reachability
properties). In addition, the framework allows to combine arbitrary expensive and cheap
analyses in the complex verification as long as the cheap analysis solely checks the property,
it is at least flow-sensitive, and both analyses are expressible in the framework of config-
urable program analysis [BK11], which allows to describe arbitrary abstract-interpretation
based analyses. The simple analysis then uses the cheap analysis reconfigured as a dataflow
analysis. Not only the generic PfP framework but all our PfP instances rely on the existing
concept of configurable program analysis to describe the analyses: in particular, complex
and simple verification as well as the combination of expensive and cheap analyses. As a
last extension we have also adopted the idea of PfP to perform runtime verification with
no overhead. These extensions and in particular the generic framework, show that the
Programs-from-Proofs technique is highly applicable with respect to various properties
and services. In conclusion, due to our research and implementations, the PfP approach
has become a usable approach instead of a mostly theoretical concept.

Besides developing proof-carrying hardware (PCH) frameworks for certifying functional
equivalence for combinational and sequential circuits, we presented PCH approaches for
certifying non-functional security properties such as the worst-case execution time of
hardware modules and keeping predefined error bounds for approximated circuits. For
the demonstration of the PCH concept, we relied first on abstract FPGAs that could only
be simulated, and later on virtual FPGA overlays that allowed us to show the feasibility
of PCH on real FPGA hardware. In more recent work, we studied PCH as a tool for
detecting hardware trojans in reconfigurable modules and showcased these methods on
Lattice FPGAs with their known bitstream formats. Lastly, we want to mention that the
proof-carrying hardware term that was introduced in the context of this subproject has
been taken up by others [LJM12]. This silently demonstrates the impact of our research
conducted in this area.

The concepts of PCC (software) and PCH (hardware) are built on the notion of a certificate
certifying the correctness of software or hardware with respect to specified requirements.
For the software, this is (in our project) a compact version of the abstract reachability graph
(ARG) constructed during software verification. On the consumer side, the ARG is checked
for two properties: (1) its fit to the program, i.e., whether it is an abstract reachability graph
for the program, and (2) its consistency with the requirement, i.e., whether it actually proves
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program correctness. While we used these certificates to realize the collaborative analysis
of software and hardware services, such certificates have also recently been employed in
software verification competitions such as SV-COMP [Bey22]. SV-COMP is an annual
competition for software verification mainly targeting C programs. The tools participating
in the competition have to determine whether a specified requirement is met or not. In
the first case, tools are required to provide correctness witnesses, in the latter, violation
witnesses. The correctness witnesses serve the same purpose as our certificates (and almost
take the same form). Witnesses are then also checked for their soundness using so-called
witness validators. This usage of certificates in competitions indicates and exemplifies that
the concepts also proposed by Subproject B4 are adopted and used by others.

We started the Phasar project in 2016 and made the first version publicly available in 2018
in a full-day workshop at the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) conference. As of today, the Phasar github repository
has achieved 773 stars, was forked 123 times, and has grown far beyond the scope of
Subproject B4 as 41 developers from around the globe contributed to the framework.14

Moreover, each of the mentioned extension of Phasar (ModAlyzer, IncAlyzer, Var-
Alyzer—see Section 2.4) is accompanied by a research paper that includes extensive
evaluations of the respective approach. Each paper, in turn, comes with an evaluated
artifact that provides the option to reproduce the presented results. In summary, Phasar

has become a mature analysis framework that is evaluated, recognized and adopted by
research and industry.

With ReproDroid we contributed an open source framework that allows anyone to evaluate
analyses automatically and in a reproducible fashion on given benchmarks. Consequently,
ReproDroid simplifies the benchmarking process, which was often performed manually
before. Therefore and since evaluations such as benchmark executions are indispensable
to show the effectiveness and efficiency of analyses, ReproDroid was not only used by us
in our five subsequent publications to drive the associated evaluations but also by others.
This versatile usage of ReproDroid best shows its impact in the community. In future, it
could even become more important as a driver for competitions in the area of Android taint
analysis, for example. Please note that each of our publications involving ReproDroid

comes with an evaluated artifact and/or an open source repository. The related repositories
in sum acquired 65 stars. All frameworks, tools and benchmarks released are also available
on the respective website of the CRC.15

In summary, Subproject B4 has left its mark in the area of proof-carrying services or, in
general, on soft- and hardware verification and analysis. Due to the publications made
as well as the implementations and artifacts contributed, this mark has become persistent
such that future researchers and practitioners can take our ideas, understand our results,
use our tools and frameworks, and continue what has been started.
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