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1 Introduction

Subproject C2 investigated the execution of configured IT services in OTF Compute
Centers with heterogeneous computing nodes combining CPUs, GPUs, and FPGAs. The
key idea in the subproject is that a service can exist in multiple variants that are specifically
tailored for different processor or accelerator architectures. While the execution of these
variants leads to the same functional behavior, the non-functional properties, such as energy
consumption or latency, may differ considerably. We can exploit this fact by creating
variants of services for different hardware architectures at compile time and chosing the
optimal variant at runtime according to resource availability to improve performance or
efficiency, for example.

In Subproject C2, we have developed methods for this purpose. Specifically, we have
studied, how we can create programming models that enable and exploit dynamic dispatch-
ing of services (which are themselves part of composed services) to different execution
resources; how we can model, optimize, and empirically validate the benefits of dynamic
dispatching of services; and how we can develop novel hardware architectures and runtime
systems for increasing the effectiveness of this approach.

Over the three funding periods for CRC 901, we have studied the aforementioned idea of
dynamic dispatching of services to heterogeneous resources, putting a different emphasis
in each of the funding periods, which is summarized in the following.

In the first funding period, fundamental architectures and basic mechanisms for hetero-
geneous migration of services between different computing resources were developed.
Heterogeneous migration includes transmodal migration between software and hardware
as a special case. We have implemented a system based on POSIX threads with a scheduler
for heterogeneous systems and a programming model tuned to it. The approach supports
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the implementation and execution of OTF services on different target architectures by a
checkpointing mechanism. This makes it possible to interrupt a running service, save its
state, and migrate it.

Furthermore, basic concepts for an on-the-fly hardware acceleration approach have been
developed. Here, implementations for the different architectures do not have to be created
manually but are generated automatically for a limited set of application classes. These
methods open up fundamentally new possibilities for dynamically allocating services to
the available computing resources and migrating between resources as needed such that
application- and system-level goals can be optimized, e.g., throughput, energy consumption,
etc. The necessary adaptation of the application to the given programming model and
the requirement for architecture-independent checkpoints, however limit the usability and
productivity of the approach.

For the second funding period, we have therefore chosen programmability and efficiency
as the focus topics. By aligning our programming model with OpenCL as a standardized
programming interface for heterogeneous computing, the effort required to program hetero-
geneously migratable services was significantly reduced. Building on this programming
model, scheduling algorithms were developed to optimize runtime and energy consumption.
Programming for heterogeneous migration is elaborated in Section 2, and a new runtime
system able to automatically generate OpenCL accelerator code from sequential CPU code
is discussed in Section 5. For scheduling and migration decisions, it is useful to have as
precise information as possible about how well individual services are suited for execution
on different target architectures. For the necessary off-line characterization of services, we
have developed the Ampehre framework, which allows precise measurements of many
system parameters of the heterogeneous computing node. The Ampehre measurement
framework has been employed to create a highly accurate energy model for task execution
on heterogeneous compute nodes [LP18] and was instrumental in developing schedulers
utilizing heterogeneous task migration to minimize runtime and energy [LP17], [LP20]. A
more detailed description of Ampehre is given in Section 4.

To improve the efficiency of on-the-fly acceleration with FPGAs, overlay architectures
were developed that trade off between maximum specialization and full programmability
but can be configured much faster. This allows FPGAs to largely avoid the long synthesis
and implementation times associated with full specialization. To investigate this approach,
hand-designed overlays have been studied and methods for automatically configuring
overlays have been developed. This approach is presented in Section 3.

Finally, the focus of the third funding period was on mastering the complexity of modern
architectures and runtime systems in heterogeneous OTF compute center architectures,
where compute nodes must run composed services with varying requirements and optimiza-
tion goals. The development of increasingly complex runtime systems with centralized
scheduling no longer seems promising for such systems. The heterogeneity in the OTF
compute centers leads to large amounts of diverse information and optimization goals,
which makes designing a centralized scheduler an infeasibly complex task. Instead, we
studied concepts of self-aware computing to provide runtime systems with an increased
degree of autonomy and learning capability. We experimented with learning classifier
systems, in particular XCS, as algorithmic methods for achieving the required learning
capability for heterogeneous compute nodes [Han21]. We extended XCS to allow them to
adapt their parameters at runtime [HKP20a], which is highly effective in dynamic environ-
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ments [HKP20b]. Furthermore, we empirically evaluated different strategies for switching
between exploration and exploitation [HP21] and presented an approach for providing
safety guarantees [HP22] for XCS. We also came up with an embedded implementation of
XCS [HBP22] to evaluate its resource consumption.

We extended our consideration from a single heterogeneous compute node, each with one
FPGA, to an entire cluster of such compute nodes. To exploit this kind of infrastructure,
models and procedures to partition the composed services onto a multi-FPGA cluster
in a meaningful way are required. Therefore, we developed an OpenCL benchmark
suite [MKP20] to determine and capture the relevant performance characteristics for the
execution of services on such a system, which can serve as a basis for more accurate models
for dynamic composition of services in the spirit of the OTF concept. Major aspects
were the configurability of the benchmarks [MKP22] and the utilization of direct and
highly efficient FPGA-to-FPGA interconnect options in addition to a classical architectural
approach in which FPGAs communicate only via CPUs [MKP23]. The benchmarks in
the suite are designed to support these various communication approaches and produce
comparable performance results for all considered communication infrastructures.

2 Programming for Heterogeneous Migration

Computing nodes are increasingly heterogeneous and augment CPUs with accelerator
technologies such as GPUs and FPGAs. To benefit from such a computing environment,
developers must identify hotspots or tasks in their applications, port those to the available
accelerators, and finally optimize them to achieve high performance. Additionally, schedul-
ing techniques are needed that distribute the workload of one or several applications to
the heterogeneous resources, subject to an optimization objective such as minimization of
runtime or energy consumption.

The introduction of OpenCL as a programming language greatly simplified the use of
accelerator technologies. With OpenCL compilers available for CPUs, GPUs, and even FP-
GAs, application code is basically executable on all these resources without any additional
porting effort. However, since OpenCL is not performance-portable, developers must
still optimize their task implementations to achieve good performance for the different
resources.

Current accelerators rely on a run-to-completion execution model, where a task assigned
to an accelerator computes there until termination. This is in strong contrast to CPU-based
computing, where operating systems provide preemptive multitasking, and might severely
impact system performance since a running task cannot be migrated to a better-suited
resource in a later execution phase.

In this section, we give an overview of our novel OpenCL-based programming framework
that overcomes the limitations of the run-to-completion approach. We introduce a pro-
gramming pattern and execution model for tasks that allow us to migrate them between
the resources of a heterogeneous compute node at predefined states without losing their
computational progress. While we focus on OpenCL, the approach is more general and sup-
ports programming languages with host-centric execution models, also including OpenMP,
OpenACC, CUDA, and the Maxeler MaxJ hardware description language. Developers only
need to provide functionally identical task implementations for the resources. Furthermore,
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our work includes an interface for inter-process communication between the tasks and a
scheduler framework. Using this interface, schedulers can decide and execute task-resource
assignment, including heterogeneous migration.

Applications following a host-centric programming style are bipartite: The host code is
responsible for resource management, which includes allocating local memory on the
accelerator, transferring data to and from the accelerator, and triggering computations. The
computations on the accelerator are denoted as kernel code. The CPU plays a special role
since it is the host and can at the same time also execute kernel code.

In our approach, we store relevant task state information in memory and transfer this
information between the host memory and an accelerator’s local memory. Through such
state transfers, migration can be implemented even between very diverse resources such
as FPGAs and GPUs. This technique is often referred to as checkpointing and poses
two challenges: First, task developers or automated tools need to identify checkpoints
in application tasks that can be mapped to other resources in order to continue the task
computation without loss in their computational progress. Moreover, minimal task states
are favorable since state transfers are expensive and constitute overhead. Second, the
checkpointing frequency must be carefully selected to balance between the overhead
incurred by checkpointing and the ability of being able to quickly migrate when needed.

A possible method to enable task migration by checkpointing is adapting the loop strip
mining transformation to a task’s kernel code. The loop of a data-parallel kernel is split
into an outer and an inner loop, which is vectorizable. The outer loop is then run as host
code, and the adjusted kernel comprising the inner loop is called from the host. This way,
the adjusted kernel works on blocks of data successively and after each kernel execution,
i.e., an iteration of the outer loop, the checkpoint can be transferred. Since the inner loop is
kept in vectorized form, a checkpointed task implementation can provide high performance
for data-parallel tasks if the checkpoint distance is sufficiently large.

Our programming pattern for heterogeneous task migration supports checkpointing and
comprises five stages:

1. The bookkeeping stage is the task preparation stage, where we allocate memory
space in the host memory and read input data from the hard disk or the network
interface. This stage is resource-independent and therefore involves only activities
handled by the CPU.

2. The init stage allocates memory space in the local memory of the accelerator and
transfers the checkpoint to this memory.

3. The compute stage executes the kernel code. Each time the compute stage is
called, the kernel processes the next block of data and stores its progress as updated
checkpoint. Furthermore, the kernel must be able to report its computational progress
to enable the host to keep track of the overall task computation.

4. The fini stage is the counterpart of the init stage and transfers the checkpoint back
into host memory before releasing the accelerator device.

5. The cleaning stage is the final one and the counterpart of the bookkeeping stage, as
it writes the computation results to the hard disk or the network interface. This stage
is resource-independent and thus exclusively executed on the host processor.
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Based on this pattern, a task is migrated from resource A to resource B by calling the
fini stage for the task implementation running on resource A followed by executing the
init stage of the task implementation for resource B. The resulting migration overhead
comprises two parts: The first and frequently dominating part is the time to transfer the
checkpoints during the fini and init stages. The second part includes additional steps for
preparing the target resource, such as the reconfiguration of an FPGA device.

We explain the lifecycle of a migratable task using the example shown in Figure 39, which
lists the pseudo code for the four major software components involved. main.cpp instan-
tiates ExampleOCL configured for CPU usage and resource-specific implementations for
GPU and FPGA. ExampleOCL itself loads the checkpointed OpenCL kernel example and
compiles it for execution on the CPU. The kernel illustrates checkpointing by iterating
over successive sections of a strip-mined loop, with iters_per_checkpoint specifying
the size of data processes per kernel execution. The task’s progress can be determined
by comparing the progress counter with the num_of_checkpoints. Note the three
resource-specific stages implemented in ExampleOCL. The init and fini stages are transfer-
ring the checkpoint between the host memory and the local memory of the device. Since
host memory and CPU-related memory are identical, the checkpoint is not copied. The
compute method is then working on the checkpoint by only reading and writing data
in the local memory. After adding all resource-specific implementations of the task in
main.cpp, the task executor TaskExec is called. The pseudo code in Figure 39 also
illustrates the execution of execute_online(), interacting with a scheduler connected
via Inter-Process Communication (IPC).

The code listed in Figure 39 correlates to the task lifecycle depicted as a flowchart in
Figure 40. The dotted shapes clarify the mapping between the pseudo code and the
flowchart. The first activity is calling the bookkeeping method, which is executed by
the host processor and prepares the task for execution. Then, the task enters an execution
loop where it remains until the entire data is processed, i.e., the task execution state is
FINISHED. The first step in the execution loop is to wait for resource assignment, which
is implemented as a blocking IPC receive call that returns the assigned resource from the
scheduler. Next, the init method of the chosen task implementation is called and the
current checkpoint is copied into the target local memory. The following do-while loop
iteratively calls compute and informs the scheduler about the task execution progress.
While compute actually executes resource-specific kernels on the CPU or accelerators,
denoted by dark blue, red, and green colored box fillings, the init and fini box fillings
are kept in light colors to depict that the devices are active by copying checkpoint data or
reconfiguring the FPGA.

After the task execution progress has been sent to the scheduler, the task execution state is
checked. In case the task execution has finished, we exit the do-while loop and call fini
for the current task implementation, release the resource, and finally execute cleaning. If
the task execution has not been finished yet, we communicate with the scheduler to figure
out whether a task must be migrated. If so, the fini stage is called, the resource is released,
and a new resource assignment is requested in the next iteration of the execution loop.
After a new resource has been assigned, the task again calls the init method for the new
resource.

The programming framework has been implemented in C++ and allows an easy integration
of new computing resources by overriding corresponding class methods. Based on the
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void TaskExec::execute_online() {

  taskImpl = taskImpls[CPU];

  taskImpl->bookkeeping();

  state = CONTINUE;

  while (state != FINISHED) {

    resource = comm->recvResource();

    taskImpl = taskImpls[resource];

    taskImpl->init();

    do {

      state = taskImpl->compute();

      comm->sendProgress(progress);

      if (state == FINISHED ||

          comm->recvMigration()) {

        break;

      }

    } while (true);

    taskImpl->fini();

    comm->sendRelease();

  }

  taskImpl = taskImpls[CPU];

  taskImpl->cleaning();

}

ExampleOCL::ExampleOCL(resource) : Example(resource) {

  platform = cl::Platform::get();

  device   = platform.getDevices(resource);

  context  = cl::Context(device);

  program  = cl::Program(context, "example.cl");

  program.build();

  kernel   = cl::Kernel(program, "example");

}

void ExampleOCL::init() {

  context.enqueueWriteBuffer(device, checkpoint_data);

}

state ExampleOCL::compute() {

  context.enqueueWriteBuffer(device, progress);

  kernel.setKernelArg(0, progress);

  kernel.setKernelArg(1, iters_per_checkpoint);

  kernel.setKernelArg(2, checkpoint_data);

  context.enqueueNDRangeKernel(device, kernel);

  context.enqueueReadBuffer(device, progress);

  return (progress < num_checkpoints) ?

                             CONTINUE : FINISHED;

}

void ExampleOCL::fini() {

  context.enqueueReadBuffer(device, checkpoint_data);

}

int main() {

  TaskImpl *ex_cpu   = new ExampleOCL(CPU);

  TaskImpl *ex_gpu   = new ExampleGPU();

  TaskImpl *ex_fpga  = new ExampleFPGA();

  TaskExec *executor = new TaskExec();

  executor->add(ex_cpu);

  executor->add(ex_gpu);

  executor->add(ex_fpga);

  executor->execute_online();

  return EXIT_SUCCESS;

}

__kernel void example(

  __global int  *progress,

           int   iters_per_checkpoint,

  __global DATA *checkpoint_data) {

  for (int i = (*progress  ) * iters_per_checkpoint;

           i < (*progress+1) * iters_per_checkpoint;

           i++) {

    // execute to next checkpoint

  }

  (*progress)++;

}
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Figure 39: Major software components for a migratable task.

programming framework, two schedulers for heterogeneous compute nodes have been
realized that demonstrate the potential of heterogeneous migration in terms of runtime and
energy minimization. In [LP17], the reMinMin scheduler has been presented based on a
static list scheduling approach for energy minimization. In [LP20], MigHEFT focused on
scheduling migratable task graphs to heterogeneous resources.

3 Analyzing FPGA Overlays as Target for OTF Hardware Accelerator
Generation

Overlays are configurations for FPGAs that are not fixed to a specific task, but instead
provide a limited form of programmability, more abstract than that of the underlying
FPGA fabric. Compared to highly optimized application-specific libraries, overlays enable
significantly more applications as candidates for FPGA acceleration in an OTF context,
because overlays can be more broadly applied. They thus provide a purchasing argument
for FPGAs for OTF compute centers that need to aim for good utilization of their hardware
over time. Also, in comparison to the synthesis of FPGA designs from high-level language
code, where OpenCL and recently SYCL are particularly promising as a description
language, overlays can help to avoid the extremely long synthesis runtimes of several hours
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Figure 40: Lifecycle of a migratable task.

up to days, which are typical for FPGAs. Paired with suitable compilation approaches,
they can also reduce the demand for manual development or optimization ahead of OTF
deployment.
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Figure 41: Qualitative illustration on the impact of architecture features of accelerators
on efficiency. Quantifying the performance overheads of FPGA overlays was
the central research question of this contribution.

We distinguish between processor-like instruction-programmable overlays and structurally
programmable or configurable overlays. For both approaches, diverse architectures have
been presented that gain their efficiency from various combinations of parallelism, pipelin-
ing, and targeted data access and reuse. These are already being investigated in the
academic environment from various aspects such as productivity, portability, and scalabil-
ity. For instruction-programmable overlays, it was however largely unclear until our work
how close the performance of such architectures comes to that of fully specialized FPGA
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implementations. Figure 41 illustrates the context of this research question in comparison
to alternative accelerator architectures.

To answer this question, we have implemented a diverse set of computational tasks with
identical interfaces on an overlay-based FPGA system and with highly specialized FPGA
designs. The tasks here are all runtime-intensive steps (often referred to as kernels) from
an application to compute stereo correspondence, which in turn is the most important and
costly intermediate step to compute depth from a pair of stereo images. By following
the best quality published algorithm [MSZ+11] in this area until recently, we achieve,
on one hand, a comparison between overlay and specialized kernels that is not biased
by FPGA-specific optimizations on the algorithm level and, on the other hand, the most
accurate stereo matching implementation with FPGA acceleration to this time. In contrast,
other FPGA implementations in this area (e.g. [SHW+14; JM14; TLLA14]) adapt the work
steps and their sequence to the target architecture to varying degrees, thus achieving higher
performance or lower space requirements on the FPGA with reduced result quality.

Due to the availability of suitable development tools and runtime environments to effec-
tively implement the respective approaches with overlay and specialized kernels, the two
approaches were implemented on two different target platforms: The Convey HC-1 with
an instruction-programmable FPGA overlay with vector architecture on one hand and the
Maxeler MPC-X platform with its own description language for highly specialized dataflow
kernels on the other. Both represent state-of-the-art systems with a high-performance server
processor and FPGA accelerator at the respective time of acquisition.
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Figure 42: Speedups of fully integrated stereo matching implementations on two systems
with FPGA accelerators. These measurements include overheads for recon-
figuration and data transfers, which favors the overlay architecture for small
problem sizes in comparison to the specialized kernels.

On both target platforms, the fully integrated computation of the stereo correspondence is
executed by offloading the runtime-intensive kernels to the respective FPGA accelerator.
Preparatory and management steps remain on the respective main processor. The runtimes
for data transfers, synchronization and, in the case of the specialized kernel designs, recon-
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figuration included in this execution model limit the achievable performance. Nevertheless,
illustrated in Figure 42, both accelerator platforms achieve performance advantages over
the powerful main processor of the Maxeler MPC-X platform for most input sizes of the
application.

To quantify the conceptually driven performance differences between using an instruction-
programmable overlay and fully specialized FPGA designs, we had to factor out influences
of the specific platforms and their runtime environments. In [Ken16] and [KSP15], these
steps are explained in detail. Subsequently, it can be shown that using the overlay yields on
average about a factor of 3 less isolated kernel performance than FPGA implementations
fully adapted to the task. In return, for the overlay, the runtimes of the tools used for
translation or synthesis are several orders of magnitude shorter, amounting to only seconds
instead of hours or even days. Overall, the high productivity required to profit from FPGA
acceleration in the OTF context is not achieved by tool runtimes alone, but also depends
on programming patterns (see also Section 2) or automated tools (see also Section 5) for
code generation or overlay configuration generation and offloading to accelerators.

Thus, in the end, the decision between fully specialized FPGA kernels and overlay usage
is similar to the decision between ASICs and FPGAs: Given sufficient development time,
budget, expertise, and given a sufficiently high application demand, it will typically pay off

to fully specialize. However, if any of these preconditions is not met—as can often be the
case in OTF scenarios—overlays can provide an interesting alternative, at a performance
cost that we now understand better.

4 AMPEHRE: An Extensible Measurement Framework for
Heterogeneous Compute Nodes

Application performance profiling is a major step in software development. Based on
hardware performance counters provided by the target devices and on timing information,
developers gain knowledge about runtime behavior in terms of metrics such as the number
of executed instructions, cache misses, page-faults, or statistics about called functions.
Understanding runtime behavior is instrumental for optimizing performance. Examples
for widely-used performance analysis tools are the open-source tools Perf, IgProf,
and Likwid, and the vendor-specific tools Intel VTune Amplifier or the Nvidia GPU
development IDE Nvidia Nsight and command-line tool nvprof. With the introduction of
the Running Average Power Limit (RAPL) interface for Intel CPUs, developers are also
able to perform energy measurements on CPUs.

A shortcoming of most existing tools is their lack of an easy-to-use and extensible ap-
plication programmer interface (API) that allows user applications to read performance
and energy data comparable across different resource types. The Performance Applica-
tion Programming Interface (PAPI) project has been developed to help solve this issue.
Particularly with the PAPI version 5 release, developers are able to add capabilities for
power or temperature analysis by implementing so-called PAPI components, extending
PAPI to new platforms and other sensor types. PAPI provides a unified API that hides
the underlying device-specific measuring procedures when reading power, energy, and
temperature sensors. But, even with PAPI, the retrieved data must be interpreted to gain
semantically comparable measurements results across resource boundaries.
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Figure 43: Ampehre architecture (taken from [LWP18]). Blocks in orange denote compo-
nents we have implemented or extended.

To improve on this situation, we have developed the measurement framework Ampehre,
short for Accurately Measuring Power and Energy for Heterogeneous Resource Environ-
ments [LKEW]. Ampehre is designed for heterogeneous high-performance compute nodes
running Linux and (i) allows an easy integration into applications by providing a clear API
covering all resource types, (ii) is extensible to new resources and sensors through the use
of PAPI, and (iii) is available as open source.

Figure 43 presents the architecture of the Ampehre framework, which comprises three
layers in user space: an extended PAPI library, the Ampehre library, and the Ampehre
tools. We base the Ampehre framework on PAPI, which makes it inherently portable to
other systems running a Linux OS distribution, and we have extended the PAPI library
to support not only CPU and system-wide sensors but also to retrieve performance data
gathered at the accelerator components GPU and FPGA.

Figure 44 denotes the main PAPI components with their interfaces utilized by Ampehre
to obtain measurements from the heterogeneous computing resources and the main board
of our server node: The PAPI component rapl supports CPU measurements, includ-
ing the cores, last-level cache, memory controller and DRAMs. Modern Intel CPUs
provide several so-called Model Specific Registers (MSR) to retrieve data related to en-
ergy consumption, temperature, etc. The PAPI component ipmi is necessary to retrieve
system-wide measurements such as the system-wide power dissipation measured at the
power supply. For this, the component communicates with the Baseboard Management
Controller (BMC) by means of the Linux OpenIPMI library. IMPI is a standard to unify
server platform management. The Nvidia GPU is supported if PAPI is compiled with the
nvml component. This component includes the Nvidia Management Library (NVML),
which is used to obtain the current power dissipation and die temperature. Finally, Am-
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pehre is enabled to gather measurement data on the Maxeler Vectis by linking against the
MaxelerOS library if the maxeler component is enabled in PAPI. From the overall four
described PAPI components, we have implemented maxeler and ipmi from scratch and
extended rapl and nvml in order to support the sensors of interest on our heterogeneous
compute node. The node employs a Dell PowerEdge T620 with two Intel Xeon E5-2609 v2
CPUs as host processors running CentOS 6.8 Linux with kernel v2.6.32, a PCIe-connected
Nvidia Tesla K20c GPGPU based on the Kepler microarchitecture, and a PCIe-connected
Maxeler Vectis FPGA board based on Xilinx Virtex 6 (xc6vsx475t).
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Figure 44: PAPI components required to retrieve energy and temperature measurements
(taken from [LWP18]). We use Linux OS kernel interfaces to sample CPU and
BMC sensors (red blocks), and vendor libraries to retrieve measurements from
the FPGA and GPU boards (green blocks).

The Ampehre library extends PAPI functionality with the goal to hide all computations
and data interpretations from the application developer. The Ampehre library unifies
the meaning of gained data across resource boundaries and provides the developer with
a set of functions having the same semantics for all resource types. Table 1 gives an
overview of the metrics that can be reported by the Ampehre framework for each of the
four PAPI components. The measured energy is by definition a value accumulated over the
measurement period. For the other quantities, which are power, temperature, utilization,
frequency, and amount of allocated memory, Ampehre reports the current (latest) value
and the minimum, maximum, and average over the measurement period.

Developers can instantiate the Ampehre library in their applications to use our measurement
framework, or they can use one of the following Ampehre tools:

hettime extends the well-known Linux utility time by reporting comprehensive measure-
ments for an executed binary, i.e., also the energy consumed by the overall system, the
average power dissipation and maximum temperature for each component, etc. The results
can be stored in JSON files, CSV tables, or simply printed to the shell. hettime is highly
configurable through command line parameters.
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Component
Energy Power Temp. Utilization Frequency Alloc. Memory

Accumulated Current, Minimum, Average, Maximum

rapl 3 3 3 3 3 3

nvml 3 3 3 3 3 3

maxeler 3 3 3 3 7 7

ipmi 3 3 3 7 7 7

Table 1: Quantities that can be measured or computed with Ampehre (taken
from [LWP18]).

msmonitor is a Qt-based live monitoring tool plotting the most recent measurements.
msmonitor can display the measurement data in the form of an array of curves or as heat
maps. These features are exemplary illustrated in Figure 45. The screenshot displays data
taken while an arbitrary set of 15 tasks is concurrently executed on CPU, GPU, and FPGA.
The array of curves on the left side of Figure 45 represent the current power dissipation of
the three computing resources, while the heat maps on the right side of Figure 45 show
device utilizations.

Figure 45: Power dissipation and utilization plotted by msmonitor while an arbitrary set
of 15 tasks are executed on CPU, GPU, and FPGA (taken from [LWP18]).

msmonitor_cs is a server-client implementation of msmonitor for reducing probing
effects on the measured server by transferring the GUI rendering to a client connected via
TCP/IP.

5 Transparent Acceleration for Heterogeneous Platforms with
Compilation to OpenCL

Hardware accelerators, such as GPUs or FPGAs, can offer exceptional performance
and energy advantages compared to CPU-only systems. Services that use accelerators
are especially interesting in an on-the-fly scenario because they offer higher degrees of
freedom in the configuration process, can result in different quality of service aspects,
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and finally improve the overall execution. Service providers, however, need to spend
considerable efforts on application acceleration without knowing how sustainable the
employed programming models, languages and tools are. To tackle this challenge, we
developed and demonstrated a new runtime system called HTroP [RVKP19; RVKP18]
that is able to automatically generate and execute parallel accelerator code (OpenCL) from
sequential CPU code. HTroP transforms suitable data-parallel loops into independent
OpenCL-typical work items and offloads the execution of these work items to the hardware
accelerators through a mix of library components and application-specific OpenCL host
code. Computational hotspots that are likely to profit from parallelization are identified
and can be offloaded to different resources (CPU, GPGPU and Xeon Phi) at runtime. We
demonstrated the potential of HTroP on a broad set of applications and are able to improve
performance and energy efficiency.

OpenCL provides an open standard interface for parallel computing using task- and data-
based parallelism, which can be executed across different devices. This means that by
generating OpenCL kernel code (once), one can target multiple accelerators. OpenCL, not
only poses the challenge of extracting hotspots into kernels and optimizing them for the
target accelerator architecture but also involves many tedious adjustments to the remaining
host code. Given these challenges, there is a considerable gap between the architectural
potential of highly heterogeneous multi-accelerator architectures and their actual adoption
and utilization that we aim to overcome with HTroP.

Our approach builds upon and integrates results from different open-source projects:
We consider LLVM bitcode as the input format to HTroP, on which all optimization,
transformation and acceleration steps are performed. The detection of data-parallel loops
is based on LLVM’s Polly project [GH16]. Polly uses an abstract mathematical description
to detect and model static control flow regions (so-called SCoPs). And finally, we use
LLVM’s Axtor backend [Mol11] to translate LLVM bitcode into OpenCL kernel code.
In our own previous work [DRVP15], we used OpenMP and vectorization to offload
hotspots from a low-power client to a remote server with an Intel Xeon PHI accelerator.
Related work has researched SCoP-based hotspot detection and acceleration but with other
programming models and fewer and different devices in the backend. With Polly-ACC,
Grosser et al. [GH16] target Nvidia GPUs using CUDA calls from the host CPU and a
PTX backend. Compared to our approach, LLVM bitcode can be generated for a wide
range of applications without requiring the source code to be available. Additionally, by
using OpenCL as kernel code, various services can be generated on-the-fly, targeting a
range of accelerators.

Figure 46 gives an overview of our approach. Our tool flow receives the legacy application
in LLVM bitcode and detects computational hotspots as SCoPs. These get parallelized and
offloaded using three subsequent optimization passes. In the first transformation step, the
Work-item Parallelizer uses the dependence analysis information (from Polly) to determine
how a loop can be transformed to expose parallelism suitable for OpenCL. For example,
Listing 10.1 shows a simple 2D convolution in pseudo code. The outer two f o r loops
(line 2 and 4) iterate over the entire input in. The inner two f o r loops (line 7-8) perform
the convolution for each entry. The dependence info reveals that the innermost loops are
data dependent. Hence, only the outer two loops are parallelized.

1 heavyConv2D ( i n t * in , i n t * out , i n t rows , i n t c o l s ) {
2 f o r ( i n t r = 0 ; r < rows ; r ++) {
3 / / AFTER Work− i t e m P a r a l l e l i z e r f o r − l oop r e p l a c e d by : i n t r = g e t _ g l o b a l _ i d ( 0 ) ;
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Figure 46: Architecture of the runtime system. The sequential application is analyzed and
parallel OpenCL code is generated on-the-fly.

4 f o r ( i n t c = 0 ; c < c o l s ; c++) {
5 / / AFTER Work− i t e m P a r a l l e l i z e r f o r − l oop r e p l a c e d by : i n t c = g e t _ g l o b a l _ i d ( 1 ) ;
6 i n t | sum | = 0 ;
7 f o r ( i n t i = 0 ; i < 5 ; i ++) {
8 f o r ( i n t j = 0 ; j < 5 ; j ++) {
9 / / . . .

10 | sum | += i n [ r + i ] [ c + j ] * COEFFS[ i ] [ j ] ;
11 / / . . .
12 o u t [ r ] [ c ] = | sum | ;

Listing 10.1: Nested loops performing a 2D convolution. The two highlighted lines
show the modifications performed by the Work-item Parallelizer to expose
parallelism.

The following steps are performed to expose work-item parallelism in each loop that has
no dependencies:

1. Determine the loop induction variable.

2. Remove the loop control flow.

3. Replace the induction variable with a call to the
get_global_id OpenCL API call.

The induction variable of a loop represents the variable that is incremented/decremented for
each iteration (e.g., r and c in Listing 10.1). The induction variable can be obtained from
the loop header. Once the induction variable is found, we find the corresponding compare
instruction that checks the loop exit condition. The compare and branch instructions
associated with the loop control flow are removed. This effectively removes the loop
structure with all the code previously inside the loop being executed exactly once. The final
step is to replace the induction variable with a call to the get_global_id OpenCL API
call. The lines without line numbers in Listing 10.1 replace Lines 2 and 4 (with Lines 3
and 5) after the Work-item Parallelizer is done.

In the second optimization pass, this modified LLVM bitcode is fed into the Axtor-based
OpenCL Kernel CodeGen to produce corresponding OpenCL kernel code. Since the legacy
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Figure 47: Performance (speedup) of our runtime system (including all overheads) com-
pared to the normalized CPU baseline (= 1).

application does not originally support OpenCL, the OpenCL Host CodeGen updates the
application to support all the devices along with the corresponding OpenCL host code to
invoke the kernel. We have implemented a wrapper library that creates and exposes device
handles for all appropriate OpenCL devices of our evaluation platform to the global scope
of the application. The result is an OpenCL-enabled parallel application that is executed
through the LLVM Execution Engine and can offload hotspots to the appropriate OpenCL
device.

In order to evaluate our approach, we used the multi-accelerator that we have described in
Section 4 and Figure 43. We use a set of benchmark applications extracted from scientific
computing, financial, signal- and image processing, and security domains. The baseline
is single-threaded CPU code compiled with gcc v4.8.2 using the highest optimization
level -O3. The performance evaluation in Figure 47 reveals speedups for all measured
applications with considerable differences between applications and with visible, but small
differences among the target devices.

OpenCL turned out to be an effective vehicle for targeting multiple architectures, allowing
us to generate the mechanical parts of the host code and to use the same parallelism
pattern for the transformation of computationally intensive regions of the application into
accelerator code. Service providers can use HTroP in order to generate different variants
of services or optimize the execution of services on-the-fly.

6 Conclusion and Outlook

Over the three funding periods of CRC 901, the topic of the use of heterogeneous computing
resources in data centers has developed strongly not only in research but especially in
practical, economic applications. The ongoing shift of computation from end-user devices
to cloud data centers opens up cloud resource providers to leverage heterogeneous compute
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resources and benefit from their advantages while keeping the programming interfaces
unchanged for service users. This enables faster technological innovation at the hardware
level without requiring radical changes in programming models and tooflows on the user
side. While the tools presented in this chapter have not been directly taken up on a
large scale, the concepts and methods have certainly found their way into practice. For
example, FPGA-based overlay architectures are used in Microsoft Bing to implement
scoring methods on search results. Heterogeneous programming models with support for
CPUs, GPUs and FPGAs as well as runtime systems for the dynamic allocation of tasks to
resources are also in widespread use today, e.g. in the SYCL standard which is the basis
for Intel’s development environments under the name oneAPI.

Last but not least, the extensive experience with FPGA accelerators, programming models
and runtime systems has also been incorporated into the design of the FPGA partition of
the Noctua 1 and Noctua 2 supercomputers at the Paderborn Center for Parallel Computing.
A unique platform has been created that provides a stable production environment for the
use of FPGAs in HPC and data-center applications. At the same time, the partition is an
ideal testbed for testing communication mechanisms in multi-FPGA applications due to a
worldwide unique architecture with an optical L1 network switch, which was developed at
the CRC. Thus, a basis for the continuation of this research line exists far beyond the end
of CRC 901.

We are pleased to note that the topic examined in CRC 901 has not become stale, even after
12 years of funding. Quite the contrary: although the advantages of highly specialized
domain-specific architectures are generally recognized, no other architectures have yet
been able to establish themselves apart from GPUs in the data center. One reason for this
is certainly that generating efficient code for specialized architectures from abstract specifi-
cations remains a major challenge. To have the potential of Domain-Specific Computing,
therefore, new approaches are necessary. We also see a high potential for research with
impact for methods that globally optimize the operation of a data center, acting across
layers. The current approach of increasingly dynamic but still local optimizations of the
operating state does not lead to globally optimal operating states. Especially in times of
increased volatility of energy price, energy availability, and load from user requirements,
feasible methods are needed to cope with the complexity of systems and requirements.
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