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1 Introduction

OTF compute centers are intended to exploit and support the characteristics of OTF services.
They also are expected to exist at various scale, ranging from full-fledged data centers
down to edge-computing semi-racks or even smaller. A characteristic of OTF services is
that they are composed of components with explicit, quantitative meta data about those
compositions – e.g., resource consumption per component, data flows between components,
etc. OTF centers should therefore exploit this meta data to improve service performance
and system efficiency. Moreover, OTF centers can be typically highly heterogeneous,
having various types of computation units and persistent storage units. If a service provides
metadata about its performance on different types of computation units, such information
is also used to make better scheduling decisions as well. OTF centers also have one or
more networks that connect these resources with each other. An OTF service can be
provided by a single or several cooperating (sometimes also competing), geographically or
organizationally distributed OTF compute centers. If necessary, they are supplemented by
resources temporarily rented from the cloud.

The OTF services to be executed are usually composed of several interlinked, interacting
components. Ideally, information about resource consumption, such as runtime and mem-
ory, is available for these components, possibly for different computing units such as CPUs,
GPUs, and FPGAs. Information about the interaction of these components is available,
such as the amount of data to be exchanged and minimum data rate requirements.

We have focused on resource management within as well as between data centers. We
have worked from abstract, algorithmic models to very concrete framework-specific
aspects, with methodological lines ranging from approximation and online algorithms with
provable quality guarantees to system design and evaluation platforms. In doing so, we
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have considered not only classical efficiency metrics such as throughput or utilization, but
also energy consumption, for example.

In Section 2.1: Approximation Algorithms for Scheduling, we deal with the complexity of
variants of scheduling problems. For this, we introduce new, and extend known models
that capture important properties and features such as energy efficiency, the problems
arising when global resources are available, the impact of setup times in reconfigurable
systems, and the challenges arising when the compute center may delegate parts of the
work to clouds. In these theoretical investigations, we have concentrated on algorithmic
and complexity-theoretic approaches. On the one side, we have proven hardness results;
on the other, we have developed approximation algorithms and proven bounds on their
approximation quality.

In Section 2.2: Distributed Execution of Service Chains, we present extensions of formal
description techniques towards OTF services. Further model extensions describe heteroge-
neous but interchangeable resources (e.g., CPU vs. FPGA). Based on these models, we
have developed algorithms and mechanisms: which resources (data rate, compute capacity,
. . . ) are allocated to which component to which task on which server. We have considered
algorithms for both offline and online variants and have evaluated them both experimentally
and theoretically. Hand in hand with the experimental analyses, we have also used the
properties of real input streams (actual traces) as a starting point for modeling such streams
in order to perform more realistic experimental analyses. In addition, we have developed
heuristic or approximate solutions for these resource management problems and applied
experiments and competitive analysis to evaluate their quality, partly based on realistic
workloads.

2 Main Contributions

We structure the description of the main contributions of our subproject into the above-
mentioned two sections.

2.1 Approximation Algorithms for Scheduling

The area of scheduling generally deals with the planned processing of tasks. From a
computation perspective, addressing this topic leads to optimization problems that are
typically combinatorial in nature and—in all but the simplest cases—NP-hard.17 Hence,
even if the complete instance of such a problem is known, there is little hope for an efficient
algorithm that is guaranteed to find an optimal solution. One way of approaching this
problem is to design algorithms that guarantee a certain quality in the produced solutions.
In particular, an α-approximation for an optimization problem is guaranteed to produce a
solution with an objective value that is within a factor of α of the optimum. The parameter
α is called the approximation ratio or guarantee and, if not stated otherwise, the term
approximation algorithm is used for algorithms that have a running time bounded by a
polynomial in the input length of the problem. One of the earliest works in this direction
was done by Graham [Gra66] in the 1960s regarding a fundamental scheduling problem.
17They cannot be solved efficiently if P , NP, which is generally assumed to be true.
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Figure 48: A simple example for a scheduling problem with 12 unit time jobs with prece-
dence constraints and three machines. For the first provided list L the list
scheduling algorithm yields a schedule with makespan six while 4 is optimal.
Generalizing this example, ratios arbitrarily close to 2 may occur. The list
scheduling algorithm would have found an optimal schedule given list L′.

We briefly discuss this classical result to make the topic more tangible and to introduce
some of the basic concepts.

In the respective problem, a given set of jobs has to be assigned to a set of identical
machines. Each job j has a processing time p j, and between any pair of jobs ( j, j′) there
may be a precedence constraint j ≺ j′, that is, job j′ can be processed only after job j is
completed in this case. Furthermore, once the processing of a job is started, it cannot be
interrupted (no preemptions), and the objective is to minimize the point in time in which
the last job is completed—the makespan. Graham [Gra66] introduced the list scheduling
algorithm for this problem, which arranges the jobs in a list and always schedules the first
job on the list for which all precedence constraints are satisfied at the next possible time
that is as soon as there is an idle machine. In this work, it was shown that list scheduling
is a 2-approximation by considering two cases: Either all machines are working, or there
are idle machines. In the first case, the algorithm behaves optimally, and in the second,
either there are no more jobs or all the remaining jobs depend on the ones that are being
executed. The latter observation can be used to bound the times with idle machines
against the length of the longest chain of succeeding jobs which, in turn, is a lower bound
for the optimum. Hence, both the times with and without idle machines can be upper
bounded by the optimum, yielding the proof that list scheduling is a 2-approximation.18

In Figure 48, an example is provided showing that the analysis cannot be substantially
improved. Essentially, the best we can hope for regarding approximation algorithms for
NP-hard problems are so-called approximation schemes: A polynomial time approximation
scheme (PTAS) is a family of approximation algorithms (with polynomial running time)
that provide a (1 + ε)-approximation for each ε > 0. Moreover, if the running time of
the scheme is bounded by a polynomial in both the input length and 1/ε, it is called fully
polynomial (FPTAS).

Interestingly, the list scheduling algorithm essentially still works in an online setting where
the jobs are revealed over time during the processing time (they can be appended to the
list). It is easy to see that in such an online algorithm, no algorithm can be guaranteed

18The actual analysis is slightly sharper.
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to find an optimal solution for each input instance. However, there is an established way
to measure the quality of an online algorithm that is closely related to the concept of
approximation algorithms. In particular, it is considered c-competitive if the objective
value achieved by the algorithm is guaranteed to be within a factor of c of an optimal offline
solution.19 Note that since the algorithm cannot know when the instance is completed, it
has to maintain the above property for the respective instance seen so far. Coming back
to the list scheduling algorithm as an example, it is easy to see that it barely uses any
information about the instance, which is why the mentioned analysis can be adapted to
show that it is 2-competitive.

Since the 1960s, the study of scheduling problems has expanded massively both in breadth
and depth. For a broad overview, we refer to the textbook by Pinedo [Pin16]. In the context
of the present subproject, however, approximation algorithms and to a much smaller extent,
online algorithms have primarily been considered for areas of scheduling with particular
relevance to OTF computing. In the following, we discuss the most prominent of the
considered directions and highlight some of the most important results achieved in the
subproject. Here we put the strongest focus on the topic we have dealt with the most at the
end of the project, that is, cloud assisted scheduling.

2.1.1 Energy-Efficient Scheduling

In the study of scheduling, there is typically a strong focus on optimizing performance.
Indeed, probably the most studied objective function in scheduling is the makespan,
that is, the point in time the last task of an instance is completed. In many contexts,
however, performance is neither the only nor the most important factor to consider, and
one additional aspect that is of particular importance in today’s world is energy efficiency.
It is not quite obvious how to best capture energy consumption in a theoretical model, but
a very influential approach to do so was introduced in 1995 by Yao et al. [YDS95] in a
seminal work: In the speed-scaling model, the clock rates of processors can be changed
at runtime, with slower clock rates resulting in lower overall energy consumption for the
computation. A crucial factor is that the energy consumption grows superlinearly with the
clock rate, with experiments pointing to growth with the third to fifth power in the clock
rate for some real-world settings [BBS+00]. Moreover, the model relates to real-world
techniques such as AMD’s PowerNow! or Intel’s SpeedStep.

As hinted above, a typical function modeling the energy consumption is of the form of sα,
where s is the clock speed of the processor, and α is a constant, usually between 3 and 5.
In the classical work by Yao et al. [YDS95], a set of given jobs with different release dates,
deadlines, and workloads has to be scheduled preemptively—the processing of a job may
be interrupted, and resumed at a later time—on a single speed-scalable processor. The goal
is to finish all the jobs in an energy-minimal way and both offline and online approaches
are provided to that end. In a later work due to Chan et al. [CLL11], jobs are additionally
associated with values and it is no more required to finish all jobs before their deadline but
rather a combined objective of spend energy and lost profit is considered.

In [KP13], we generalize and improve upon the work by Chan et al. [CLL11]. We

19Depending on the problem, the concept is sometimes defined slightly differently, that is, up to additive
constants.
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consider the online setting and develop a combinatorial greedy algorithm that guarantees a
competitive factor of αα, which is optimal at least for greedy algorithms. In [CLL11], on
the other hand, a (αα + 2eα)-competitive algorithm was presented for the single processor
case. Moreover, the analysis of the algorithm uses techniques that are significantly different
from the typical potential function argument. We utilize well-known tools from convex
optimization and duality theory, in particular those that have already proved useful in the
original work by Yao et al. [YDS95]. The developed algorithm, in some sense, can be
seen as a combination of similar convex programming techniques with a carefully crafted
greedy approach.

In [ABC+17], we consider a relaxed version of one of the central problems in speed-
scaling: scheduling with respect to a combined objective of energy consumption and
response time. While the problem regarding unit-sized jobs was well understood before,
our results explore two important additional aspects, namely, arbitrary job sizes and discrete
speed levels, which arguably model actual technology more accurately. Our results in
[ABC+17] represent the first step in several years to solve the complexity question of this
problem. More precisely, for the relaxation with fractional response times, we provide
an efficient and optimal algorithm that follows a geometric approach utilizing certain
structural properties that are obtained from an integer linear program and its dual.

2.1.2 Scheduling with Global Resources

In many real-world scheduling scenarios, different machines are connected via additional
shared resources. Early considerations in this direction have already been made in the
1970s by Garey and Graham [GG75] building on the seminal work due to Graham [Gra66],
discussed above. However, in the scheduling literature processors are very often assumed
to be independent of each other. In contrast, we have considered models in which m
identical machine share one additional resource, corresponding to, for instance, the data
rate of a memory bus connecting processors being limited. The tasks to be processed are
described by their processing times and resource requirement. The scheduler distributes
tasks to processors and manages the access of the processors to the shared resource. If
a task receives only a fraction of its resource requirement in a time step, its execution is
slowed down accordingly. For example, a job of size p can be processed in p time units
if it receives its full resource requirement in each time step. If it receives only half of its
request in each time step, the processing time increases to 2p. The goal is to minimize the
makespan. Our key results regarding this scheduling problem are presented in [KMRS17].
We show the problem to be NP-hard and provide an efficient approximation algorithm with
an approximation ratio of 2 + 1/(m−2). The algorithm utilizes a sliding windows approach
that considers jobs ordered by non-decreasing resource requirement and, for each time
step, tries to find a subset of consecutive jobs such that all but one can be completed using
the full resource. Furthermore, we consider a variation of this model involving composed
tasks consisting of multiple components, each of which has its own resource requirement.
A task is completed when all of its components are completed and the goal is to minimize
the average completion time of all task. We again show the problem to be NP-hard and
provide an approximation algorithm with a ratio 2 + 4/(m− 3) up to an additive constant.
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2.1.3 Scheduling with Setup Times

In reconfigurable systems such as systems of FPGAs, a considerable amount of hardware
configuration may be required when switching between tasks of different types. For
scheduling in such systems, we have investigated a straightforward model in which we
consider n tasks divided into k classes on a set of m processors. The processors have to
be reconfigured to process the different classes. That is, each time a batch of jobs from
a fixed class is to be processed on a processor a (possibly class dependent) setup time
has to be paid. In [MMMR15], we provided the first results regarding this model with
identical machines, including a (3/2 + ε)-approximation and an FPTAS for the case with a
constant number of machines. This first result has quickly inspired further investigations
from other researchers. For instance, Jansen and Land [JL16] provided a very simple and
fast 3-approximation as well as a PTAS for the problem. In a follow-up work [JMM19],
we considered generalized machine models: First, we developed a PTAS for the case with
uniformly related machines, where the processing time of a job (and the setup time of a
class) is scaled according to a machine-dependent speed factor. In the case of unrelated
processing times (and setup times), we showed that no approximation algorithm with ratio
Ω(log n log m) is possible unless a common hypothesis from complexity theory fails. We
also provided a randomized algorithm with a matching upper bound. Lastly, we considered
variants on identical machines with assignment restrictions and provided both hardness
results and constant factor approximation algorithms.

2.1.4 Cloud Assisted Scheduling

Nowadays, a big part of web traffic and computational tasks are handled by large cloud
providers such as Amazon Web Services and Microsoft Azure. Naturally concluding from
that, a part of the CRC considered a setting in which computational resources are rented
from cloud providers, exclusively or additionally. We present two different approaches,
one where all jobs must be scheduled in the cloud and another where we own some free
hardware that can be enhanced by rented cloud machines.

Cost-efficient scheduling on machines from the cloud: We consider the former approach
in [MMMR18]. In that model, an online scheduler has to rent machines of a certain type
for some arbitrary duration to ensure that all jobs can be scheduled before their respective
deadline. Additionally, there is some machine-type dependent setup time s, before a
newly rented machine can be used. The goal is naturally to minimize the cost paid to
rent the machines. To be more specific, we assume that there are exactly two different
machine-types, which differ in their price and their setup time. Jobs, on the other hand,
consist of some processing time per machine-type, a release date, and a deadline. A critical
parameter in this paper is the minimum slack β, which is the minimum time between any
job release and the latest point where that job has to be scheduled to hit its deadline. Our
paper has two main results: First, if the setups are large in comparison to the minimum
slack (s > β) no finite competitiveness is possible. Secondly, if β = (1 + ε)s, for some ε
with 1/s ≤ ε ≤ 1, we give an algorithm that only depends on ε and the ratio of machine
prices, and is proven to be optimal up to a factor of O(1/ε2).

Server cloud scheduling: In [MMP21] we both incorporate the possibility to allow some
already owned hardware that can be augmented via the cloud, as well as imagining a big
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task that can be represented as a graph of small jobs that depend on each other. This
later part of our research combines various properties from different scheduling models,
of which most have already been studied individually. Those are, in no particular order,
unrelated machines, cost minimization for rentable machines, precedence constraints
between jobs, and communication delays between the types of machines. We try to present
this model in a bit more detail and describe one of the two main results.

We consider a scheduling problem S CS in which a task graph G = (J , E) has to be
scheduled on a combination of a local machine (server) and a limitless number of remote
machines (cloud). The task graph is a directed, acyclic graph. Each job j ∈ J has a
processing time on the server ps( j) and on the cloud pc( j). The values of ps and pc can
be arbitrary in N0, meaning that the server and the cloud are unrelated machines. An
edge e = (i, j) denotes precedence, i.e., job i has to be fully processed before job j can
start. Furthermore, an edge e = (i, j) has a communication delay of c(i, j) ∈ N0, which
means that after job i finished, j has to wait for an additional c(i, j) time steps before it
can start, if i and j are not both scheduled on the same type of machine (server or cloud).
A schedule π is a partition of the jobs into two sets: jobs processed on the server and the
cloud, respectively. Additionally, a schedule assigns some starting time to each job. The
cost (cost) of the schedule is then the total processing time of jobs processed on the cloud,
and the makespan (mspan) is the completion time of the last job. For a schedule to be
feasible, the following conditions must hold:

• Each job only starts after it is available, which means that all predecessors have
finished processing and relevant communication delays have passed.

• No two jobs process on the server in parallel.

• If there is a budget, the cost may not exceed it.

• If there is a deadline, the mspan may not exceed it.

Naturally, if there is a budget, the goal is to minimize the deadline. If there is a deadline,
the goal is to minimize the cost.

We categorize different sub-problems by their task graph structure and different processing
times. The main results are an FPTAS with respect to the makespan objective for a fairly
general case and strong hardness for the case with unit processing times and delays.

Imagine a task graph drawn in such a way that every edge goes from left to right. Now
assume that we split the jobs in this task graph into a left part (Jl) and a right part (Jr), so
that there are edges fromJl toJr, but no edges fromJr toJl. In other words, in a running
schedule, Jl and Jr could represent already processed jobs and still be processed jobs,
respectively. For any given task graph, we call the maximum number of edges between Jl

andJr the maximum cardinality source and sink dividing cut of the graph. We discuss how
to solve or approximate S CS problems with a constant size cut, but otherwise arbitrary task
graphs. We present the deadline-confined cost minimization; in the paper, we also show
how to adapt this to the budget-confined makespan minimization. We start by describing
a dynamic program to optimally solve instances of S CS with arbitrary task graphs. At
first, we will not confine the algorithm to polynomial time. Consider a given problem
instance with G = (J , E), processing times ps( j) and pc( j) for each j ∈ J , communication
delays c(i, j) for each (i, j) ∈ E, and a deadline d. We define intermediate states of a
(running) schedule as the states of our dynamic program. Such a state contains two types
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Figure 49: Example for a small task graph with some state of a schedule. j0, j1 and j2

represent jobs that are already processed but have some unprocessed successor
remaining. Open edges are marked orange.

of variables. First, we have two global variables, how many time steps have passed since
the beginning and the number of consecutive time steps the server has been idling (counted
from end to start). The second type is defined per open edge. An open edge is a e = ( j, k)
where j has already been processed, but k has not. For each such edge e = ( j, k) add the
following variables: the edge itself, whether j was processed on the server or the cloud,
and the number of time steps passed that passed since j’s completion. Note here that we
purposefully drop the completion time and location of every processed job without open
edges, as those are not important for future decisions anymore. There might be multiple
ways to reach a specific state, but we only care about the minimum possible cost to achieve
that state, which is the value of the state. We iteratively calculate the value of every state
reachable in a given time step = 0, 1, 2, . . . . This state forms the beginning of our state
list. We exhaustively calculate every state that is reachable during a specific time step,
given the set of states reachable during the previous time step. Intuitively, we try every
possible way to "fill up" the still undefined time windows of the server idling, and time
passed since some j of an open edge was completed. After the current time step reaches
our deadline, we can select the cheapest option from among the states to get the optimal
schedule. This algorithm is polynomial in the deadline, but that can be exponential in the
input size. To get an approximation algorithm that is polynomial in the input size, we
scale all processing times in relation to the deadline and the input size. While doing so,
we can (1 + ε)-approximate the optimal solution in time poly(n, ε), for any ε > 0, which
in turn means that we described an FPTAS for this problem. The other main result of the
paper is a proof that the S CS problem is strongly NP-hard, even if all processing times
and communication delays are equal to 1.

2.2 Distributed Execution of Service Chains

For the entire duration of the CRC, we have worked on basically the same scenario:
the distributed execution of service chains in a complex infrastructural concept. Let us
dissemble these terms first before digging into any more detailed contribution descrip-
tions. First, the services we are considering are not monolithic services provided by a
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single executable, e.g., a server process running somewhere. In line with developments
in software engineering, a monolithic service executable is broken down into smaller
independently executable pieces of software. They are connected together to collectively
provide a service. The load in such a scenario can widely differ: A service may be invoked
once by an individual user or repeatedly; a more interesting case is when a whole user
population requests a service for repeated execution, an entire stream of requests arrives.
The underlying infrastructure in such cases can be quite diverse: It can run from a tightly
controlled data center to an edge-computing scenario in wide-area networks that is still
under operational control of a single entity, to services and/or user populations that are
spread over many administrative domains with independent control. In all these scenarios,
there is a range of typical problems to solve in order to deal with load:

1. How many instances of a particular component service should be executed?

2. Where should these instances be placed?

3. Which request from which user is assigned to which instance; after processing one
step in a service chain, requests from which instance are forwarded to which other
instance?

These problems are known as the scaling, placement, and routing problems for service
chains. In addition, there are further problems to solve, such as state management, deploy-
ing executable artefacts, etc. Most of the work described in this section deals with these
problems under different perspectives.

In the following subsections, we first describe our contributions to these problems in
the context of computing inside a wide-area operator network (In-network computing;
Sections 2.2.1, 2.2.2, 2.2.3 ). Finally, in Section 2.2.4, we consider data center scenarios.

2.2.1 Description Techniques

When trying to deploy a service into a network, it is necessary to understand the character-
istics and properties of such a service. From a purely functional perspective, it suffices to
think of a service chain as a graph of atomic components, connected in a direct (typically,
acyclic) graph with explicitly marked ingress and egress points. During operation, that
knowledge suffices to forward one request along the chain (with additional information to
which particular instance to forward to).

But during deployment (and reconfiguration), only functional information is insufficient to
properly dimension resources. A better understanding of the required resources that a ser-
vice or its components need is required. More specifically, what is the relationship between,
on one hand (a) the load a component has to process (e.g., as a rate of temporal Poisson
process) and (b) the resources that are assigned to it (e.g., the number of virtual cores, in a
normalized manner) and, on the other hand, the resulting performance of such a component,
e.g., the throughput it can sustain or the per-request delay. In early publications in this
context, we have derived description formats to express such load-resource-performance
profiles in a standardized manner, for individual components, services, and recursively
defined services.

Here, we want to emphasize an aspect that has received little consideration and was first
investigated in [SSKW19], jointly with colleagues from other CRC projects. The question
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occurs what happens if the service graph splits into multiple paths from ingress to egress
or if the service is request/reply-style, expecting an answer. Then, it matters whether
subreplies from individual paths can be used independently or whether they need to be
synchronized. Reference [SSKW19] shows that, all else being equal, this information
matters for optimal deployment. That reference also introduced a Petri-net-based formalism
to express such synchronization properties. Starting from a modeling formalism, we show
that it is possible to automatically generate simulation programs or input files for Petri net
solvers to assess the performance of concrete services. Moreover, thus modeled services
can be fed into orchestration system that can leverage information about synchronization
requirements for better orchestration decisions.

2.2.2 Orchestration

The above section has already mentioned the notion of “orchestration”—it is an umbrella
term to capture all decisions that need to be taken when deploying a distributed service into
a concrete infrastructure (e.g., as mentioned above, scaling, placement, and routing). In this
section, we describe various algorithmic problems that we have talked in the orchestration
context.

Conventional Orchestration Approaches A “conventional” approach is an approach
that assumes full knowledge about the services to be orchestrated and their constituting
performance profile, about the underlying infrastructure, and about the load patterns.
This line of work culminated, in a sense, in Reference [DKM18]. The JASPER system
proposed therein combined most of the aspects we had considered in previous papers and
automatically deals with scaling, placement, and routing. It takes service templates and
monitoring data of the underlying infrastructure as input and solves scaling, placement,
and routing in an integrated optimization process (Figure 50), unlike separated, individual
processes that were common in the literature before that. It handles dynamically adding
services and services that terminate after completion, taking account of the current resource
situation, and uses service templates in line with what was described before in Section 2.2.1.
The reference also shows that the considered problem is NP-complete (via a set cover
reduction proof). JASPER is also flexible in the way different optimization objectives can be
combined and in that constraint violations can be acceptable, but their number is minimized.
The solution approach is a mixed-integer linear program, with the typical limitations on
problem size and require solution time. These limitations are amended by a heuristic. At
the time of publication, a fairly unique feature of the heuristic was its capability to start
from an existing solution and look for small modifications to accommodate new services
upon arrival (Figure 51). This is considerably faster than always starting from scratch with
marginal reductions of solution quality.

As a more specific example of optimization potential, we point out Reference [KK17]. It
was one of the first papers to look at optimizing response time for such service chains,
conceiving of the entire system as a queuing system where queuing delay is a dominant
contributor to delay. The challenge was to find a good comprise for the non-linear time-
in-system formula in a queuing system. We tackled this by developing a custom-tailored
linear approximation to be used in a linear optimization program.
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Algorithm 2 Auxiliary methods of the heuristic
1: /* Decrease the flows on the edges in E by �� in total */
2: procedure DECREASE(E,��)
3: sort E in non-decreasing order of flow data rate
4: for all e 2 E while flow data rate �(e)  �� do
5: �� := �� � �(e)
6: remove e
7: if �� > 0 then
8: let e be the next edge
9: reduce flow of e by a factor of (�(e) � ��)/�(e)

10: /* Increase the flows in � leaving output k of instance i by ��
in total */

11: procedure INCREASE(i,k,�,��)
12: for all arc (c(i), j) leaving output k of c(i) do
13: if öi0 2 IOL with c(i0) = j and ii0 2 EOL then
14: ' := CREATEINSTANCEANDFLOW( j, i, ��)
15: �� := �� � (data rate of ')
16: � := � [ {'}
17: for all ' 2 � do
18: d := INCRFLOW(',��)
19: �� := �� � d
20: while �� > 0 do
21: (c(i), j): random arc leaving output k of c(i)
22: ' := CREATEINSTANCEANDFLOW( j, i, ��)
23: �� := �� � (data rate of ')
24: /* Create an instance of component j with flow from instance i

of high data rate (capped at cutoff) */
25: procedure CREATEINSTANCEANDFLOW( j,i,cutoff)
26: for all v 2 V do
27: create temporary instance i0 of j on v
28: ': flow of data rate 0 from i to i0
29: INCRFLOW(',cutoff)
30: remove i0 and '

31: create instance of j on node resulting in best flow
32: /* Increase flow data rate by at most d */
33: procedure INCRFLOW(',d)
34: v := start node of '
35: v0 := end node of '
36: �1 := maximum flow based on capCPU (v0)
37: �2 := maximum flow based on capmem(v0)
38: d := min(d, �1, �2)
39: P: v { v0 path of high bandwidth (b) and low latency
40: increase ' by min(b, d) along P

INCREASE to create a new instance of a component together
with a flow from an existing instance), all nodes of the
substrate network are temporarily tried for hosting the new
instance. The candidate that leads to the best flow is selected
(lines 26–31). Finally, the INCRFLOW procedure (called by
both INCREASE and CREATEINSTANCEANDFLOW) increases
the data rate of a flow along a new path (lines 34–40).

As can be seen, we avoid computing maximum flows. This
is because the running time of the best known algorithms for
this purpose are worse than quadratic with respect to the size of
the graph [31]. Since these subroutines are run many times, the
high time complexity would be problematic for large substrate
networks. Instead, each run of INCRFLOW increases a flow
only along one new path. For finding the path, a modified best-
first-search [32] is used, which runs in linear time. It should
be noted that split flows can still be created if INCRFLOW is
run multiple times for a flow.

When improving a flow and when selecting from multiple
possible flows, the INCRFLOW and CREATEINSTANCEAND-
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Fig. 6. Illustrative example: Each component is shown with its CPU demand
(memory values not shown for better readability)

FLOW routines must strike a balance between flow data rate
and the increase in overall delay of the solution. Our strategy
for comparing two possible flows is to first compare their data
rates and compare their latencies only if there is a tie. This
strategy is used in line 31 to select the best flow. The rationale
is that selecting flows with high data rate leads to a small
number of instances to be created. However, we also employ
a cutoff mechanism: flow data rates above the cutoff (the
increase in data rate that we want to achieve) do not add more
value and are hence regarded to be equal to the cutoff value.
This increases the likelihood of a tie, so that the tie-breaking
method of preferring lower latencies is also important. An
analogous strategy is used in line 39 to compare paths: the
primary criterion is to prefer paths with higher bandwidth –
up to the given cutoff d – and, in case of a tie, to prefer paths
with lower latency. For finding the best path, a modified best-
first-search is used, in which the nodes to be visited are stored
in a priority queue, where priority is defined in accordance
with the comparison relation described above.

VIII. EVALUATION

We implemented the presented algorithms in the form of a
C++ program. For solving the MILP, Gurobi Optimizer 7.0.16

was used. For substrate networks, we used benchmarks for the
Virtual Network Mapping Problem7 from Inführ and Raidl
[33]. As service templates, we used examples from IETF’s
Service Function Chaining Use Cases [34].

A. An example

First, we illustrate our approach on a small substrate net-
work of 10 nodes and 20 links (see Fig. 5) in which the
CPU and memory capacity of each node is both 100. In
this network, a service consisting of a source (S), a firewall

6http://www.gurobi.com/
7https://www.ac.tuwien.ac.at/files/resources/instances/vnmp
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Figure 51: Steps of JASPER when load
situation changes (Figure 6 in
[DKM18]).

across different nodes in the network. Requests need to traverse
instances of all service components in the specified order.

An instance can process multiple requests in parallel, pos-
sibly belonging to different services. In doing so, it requires
resources proportional to the total data rate it is processing. In
particular, we model resource requirements as linear function
c(�) = ↵c · � of the total traversing data rate �. All
instances of a component c have the same component-specific
coefficient ↵c. Furthermore, components may augment or
compress traversing data affecting the data rate (e.g. WAN
optimizers) [30]. Function µc(�) = �c ·� defines the outgoing
data rate for instances of component c, based on the total
traversing data rate � and coefficient �c. While such linear
functions are a fairly accurate representation of real-world
component characteristics [31], [32], the model can easily be
extended to more flexible piece-wise linear functions [33].

We adopt the perspective of serverless computing and focus
on inter-node coordination. When instantiating a component c
on node v, we assume that within node v (intra-node) a system
like Kubernetes [36] or an operating system transparently
deploys c on the node’s internal resources (machines, cores).

IV. HIERARCHICAL COORDINATION APPROACH

The main idea of our approach is to divide the network into
smaller domains and coordinate them in a hierarchical manner.
Each domain is a part of the network that may recursively
consist of sub-domains, forming a hierarchy. This hierarchical
approach allows both efficient parallel coordination of different
domains yet necessitates coordination between domains for
highly optimized results. We assume that dividing the network
into hierarchies of domains and sub-domains is out of scope
and happens before coordination starts, e.g., based on node
locality or business aspects. Our approach is not tied to any
structure and works with any given domains and hierarchies.

Given domains and hierarchies, our approach consists of two
phases: First, domains aggregate and advertise relevant infor-
mation (e.g., about available resources) to their coordinators
in a bottom-up manner. Second, based on this information,
the coordinators make coordination decisions in a top-down
manner. We choose top-down coordination to allow high-level
coordinators to optimize inter-domain decisions and guide
lower-level coordinators. Starting coordination directly at a
lower level would often lead to worse solutions. We ensure that
each high-level coordination decision can be further refined
into a feasible solution or directly reject requests at the top
level. Hence, we avoid overhead of jumping up and down
between levels to backtrack and fix infeasible embeddings.
To enable efficient top-down coordination, a main challenge
is advertising relevant but aggregated information from lower
levels in phase 1. More detailed information allows higher
quality coordination but also increases complexity. In the fol-
lowing, we introduce our notation for domains and hierarchies
and describe the two phases in more detail (see Alg. 1).

Algorithm 1 Hierarchical Coordination Algorithm

1: for k = 1 up to k̂ � 1 do . Phase 1
2: for i 2 {1, ..., nk�1} in parallel do
3: Aggregate sub-domain information as D̄k�1

i

4: Advertise D̄k
j = {D̄k�1

i |8i} to coord. j on level k +1

5: for k = k̂ down to 1 do . Phase 2
6: for j 2 {1, ..., nk} in parallel do
7: Embed request rk

j into D̄k�1
j by solving the MILP

8: Split request rk
j into rk�1

i for all coord. i on k� 1

Fig. 1: Example with k̂ = 2 hierarchies. Ingress and egress
nodes are shown in blue and border nodes in orange.

A. Domains and Hierarchies

We denote the total number of hierarchical levels as k̂
and a specific level as k  k̂ 2 N0, where k = 0 is the
substrate network G = G0. In the example of Fig. 1, the
substrate network G0 = (V 0, L0) is split into n0 = 3 separate
domains D0

1, D
0
2, D

0
3 with D0

i = (V 0
i , L0

i ). Each domain D0
i is

coordinated separately by its coordinator on k = 1, in parallel
with the other domains D0

j . At level k = 1, nodes are grouped
again into domains that are handled by coordinators on k = 2
(a single domain D1

1 in Fig. 1). This definition recursively
extends to an arbitrary number of k̂ hierarchies.

While we assume that all nodes V k on level k belong to
some domain Dk

i (i.e., V k =
Snk

i=1 V k
i ), not all links Lk are

part of some domain. In particular, we distinguish between
intra-domain and inter-domain links. Intra-domain links Lk

i

connect nodes within a single domain Dk
i (lighter in Fig. 1).

Inter-domain links do not belong to any domain but connect
nodes across two different domains (thicker in Fig. 1). We
define border nodes Bk

i ✓ V k
i as the subset of nodes that have

an inter-domain link to another domain (orange in Fig. 1). For
example in Fig. 1, B0

2 = {v5, v6, v7}.

B. Bottom-Up Information Advertisement (Phase 1)

Each domain’s coordinator scales and places services as well
as routes traffic inside the domain. It needs to know about
available compute capacity, data rate limitations, and delays
within the domain. A domain on level k may comprise multiple

Figure 52: Example with k = 2 hierarchies. Ingress and egress nodes are shown in blue,
border nodes of a domain in orange (Figure 1 in [SJK21]).

Hierarchical Orchestration Despite all improvements we did to the orchestration
process, it still stayed a fairly complex problem. It stands to reason to break it down into
subproblems. Moreover, in a multi-provider environment, it is unreasonable to assume that
competing providers provide information about their infrastructure to each other. Both
make a central perspective on the orchestration problem questionable. We hence developed
a hierarchical approach to orchestrate services [SJK21] (Figure 52). The challenge was to
find a good separation of available information and responsibility. Inspired by well-known
multi-provider routing problems (known, e.g., from MPLS PCE contexts), we need to
not only account for the data rates, but also for computational capacity. We did so by
abstracting the capacity of a domain and only reported aggregated information to the higher
level. Recursively, this ensured conservative orchestration choices trading off optimality
for scalability.

Distributed Orchestration An alternative to hierarchical orchestration is to build
an entirely distributed orchestration approach where each node works for itself. The
challenge here is to deal with the non-locality of the orchestration problem: Resources
might be available outside any node’s observational horizon that still could result in a
better solution. Hence, there is an inherent greediness involved in our distributed approach
[SKK20].20 More specifically, we looked at a locally greedy scheme—which processes

20It bears mentioning that this paper resulted from a Bachelor thesis.
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Figure 53: Service orchestration as a centralized learning problem.

any stage in a service chain once there is sufficient capacity available at a node—and
combine it with an routing scheme where requests are forwarded on a shortest path towards
their egress node, hoping that there will be sufficient capacity on the way to process
remaining steps in a service chain (we did assume that every node can compute any
stage in any chain, i.e., that all deployment units are available everywhere). This request
forwarding does adjust to locally observable capacity information, rerouting a request
away from already overloaded links. As a consequence, this scheme only needs global
structural information (in particular, shortest paths) that change on long time scales and
can reasonably be assumed to be available, but it does not assume non-local capacity or
utilization information. It turns out that centralized heuristics are (unsurprisingly) still
competitive with such distributed schemes but that distributed schemes achieve almost
comparable performance at significantly reduced cost.

Machine-Learning-Based Orchestration All previously described orchestration ap-
proaches where “conventional” in the sense that they started from expert knowledge about
the problem, the environment, and possible solution approaches. While this lead to inter-
esting results and workable solutions, it is also promising to investigate currently popular
machine-learning-based approaches and see how they fit to the orchestration problem.
Specifically, reinforcement learning is a natural candidate, with an agent making orchestra-
tion decisions and obtaining rewards from the environment, e.g., informing it about how
many flows could have been successfully processed or what relevant quality-of-service
characteristics (e.g., request latency) were achieved. Typically, challenges to deal with
are how to encode a network and services in fixed-length inputs and state representations
necessary for an agent, how to encode suitable actions, and how to deal with delayed or
sparse rewards or with uncertainty about service or infrastructure descriptions.

One way to deal with the state-size problem is investigated in Reference [SKM+21]. The
key idea is, for each node, to use a table with service components as rows, other nodes as
columns, and as an entry the probability with which to forward a request for a particular
service component from one node to the node in the respective column. These tables
are learned by a central agent based on delayed monitoring data and are periodically
distributed back into the actual network. An illustratoin of the learning procedure is shown
in Figure 53. The actual decisions are all taken locally (only needing a table lookup and
a generation of a single random number). The results showed that such a centralized,
delayed-observation-delayed-reward approach works surprisingly well, but it is obviously
limited in scale. Separate tables need to be trained for each node.

To improve that situation, we compared it to another approach: Instead of training separate
tables per node, we trained individual agents per node that had more freedom for decisions
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Figure 54: FutureCoord plans service coordination beyond the current flow (left) with
forecasts of future demands (right); Figure 2 of [WSK22].

[SQK21]. This does improve the scalability of the overall concept in most cases; only in
the case of a deadline for service execution is the first approach superior.

Approaches such as these are interesting, but they do entirely disregard any a priori
understanding of the problem, at least at learning and inference time they are model-free. In
addition, they do need expert knowledge to set up the representation of states, observations,
and actions as well as to select the right reinforcement learning algorithms and neural
network structures. It should make sense to incorporate explicit knowledge into a machine-
learning approach, turning it into a model-based approach. FutureCoord [WSK22] is such
an approach. Unlike many ML approaches, it is based on Monte-Carlo Tree search as
the basic technique. It incorporates an explicit stochastic traffic model to use it for load
predictions and to prepare the network for upcoming load changes (Figure 54). Basically,
FutureCoord takes random samples from the stochastic traffic model, tries to optimize
service orchestration along these samples, and picks a most promising action. As expected,
the explicit inclusion of these traffic forecasts improves orchestration quality.

Distributed Machine Learning To make these ML approaches usable in a real system,
we need to consider where and how to train these models. Transferring all data to a
far-away cloud for training to later on retrieve the models is often not practical, given the
amount of training data to transport and the frequency of training. Hence, we need to
consider techniques for distributed, in-network machine learning. Notably, this problem is
a problem in the context of networking for ML (or generally for computing). Here, the
questions occurs what networking conditions need to be satisfied such that ML problems
can be solved in distributed manner using a parallel computing infrastructure. In contrast,
the distributed ML approaches discussed in the previous subsection considered the use of
ML for networking, specifically network orchestration.

A key question in such distributed ML setups is whether and how fast a training algorithm
converges. To accelerate the algorithm convergence, the space of learning variables is
divided into several coordinates and multiple machines are assigned to work on each one
asynchronously. The advantage of this approach is the potentially significantly enhanced
convergence speed [ZZY+13]. However, the heterogeneity of computing resources and the
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assignment of multiple machines to one coordinate induces that each machine effectively
computes updates based on information with potentially significant age of information
(AoI). The AoI arises because as one machine computes an update, all other machines
may update their associated coordinate variables multiple times. It is therefore pertinent
to address two problems: 1) When do modern machine learning algorithms work in
the presence of the aforementioned AoI? 2) What is a representative model for AoI in
asynchronous parallel computing architectures? In [RRK22b] we addressed the first
problem. We developed AoI conditions for distributed stochastic gradient descent (DSGD),
the main algorithm that underlies deep learning and artificial intelligence. Our conditions
relate the cumulative distribution function of the AoI with the learning rates used by DSGD.
The relationship shows that for highly parallelized architectures with many asynchronous
machines (thus inducing large AoI), the GD updates should be performed with smaller
learning rates to counter the error induced by the AoI. In [RRK22a] we addressed the
second problem. We proposed a general model for AoI processes using event processes
that possess dependency decay. For computing, our AoI model allows modeling of highly
correlated traffic that share the parallel machines working on a machine learning problem.
In summary, our two works therefore guide the choice of learning rates for machine
learning algorithms running on parallel computing systems depending on the degree of
correlation of arriving jobs.

Dealing with States When orchestrating services, an important distinction is whether
the components are stateless or stateful: A stateless component obtains all required
information to process a request from the request itself; a stateful component has to
remember information from previous requests to process an actual one. Orchestrating
stateless components is much simpler as there is no need to keep track of which request
flow is mapped to which component, and rerouting can be done arbitrarily. But in reality,
stateful components do appear.

One particular challenge is then to ensure that, when a flow is rerouted towards other
components, the corresponding flow state is moved along. More specifically, we need to
ensure proper timing. Once a request arrives at a new component, the flow state must have
already been moved, but it must not be moved before the last request at the old component
has not finished processing. It becomes necessary to synchronize flow and state migration
with each other.

We tackled this problem by developing SHarP, a seamless handover protocol to integrate
flow/state-migration protocol [PKK18b; PKK19] on top of an SDN-enabled network.
The key idea is to use the SDN controller as a natural point of serialization by sending a
handover message, a very limited number of request messages, and state handling messages
via the controller (Figure 55 shows an intermediate step). This does impose additional load
on the controller, but in experiments we were able to show that this overhead can be limited
to a small number of messages, which should not create an unacceptable performance
burden for SDN controllers.

2.2.3 Evaluation & Prototyping

A lot of the orchestration ideas described in the previous subsections were evaluated
using simulations that use fairly simplistic models of the underlying system behavior—for
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Figure 55: An intermediate step in SHarP’s state handover via ingress switch and SDN
controller (Figure 3b of [PKK19]).

example, the assumption that components of different services do not interact in their
resource consumption and that components of the same service have natural dependencies,
e.g., that the data rate sustainable by the slowest component determines the bottleneck data
rate of an entire service. We were interested in double checking these assumption using
actual experiments.

The challenge for such experiments is the required scale: For wide-area and data-center
networks, we would need to run experiments on hundreds or thousands of nodes, which
might only be feasible in rare circumstances and not amenable to continuous experimental
work. Hence, we went for a compromise: to emulate actual environments, but run real
code. To do so, we had to extend existing emulation tools. Starting from the well-known
MiniNet tool, we first extended it to MaxiNet, enabling it to run in a distributed manner,
scaling to thousands of emulated nodes. Then, we added the capability to run ordinary
Docker containers as part of that emulation system, published as the tool ContainerNet
[PKK18a] (with over 160 forks on GitHub as of late October 2022).

We used ContainerNet to construct a profiling platform for service components and entire
services. It did turn out that it is necessary to profile services in their entirety [PK17] to
properly reflect their internal interactions. To deal with all these aspects, a non-trivial
system architecture emerged (Figure 56).

Figure 56: System architecture of our profiling system interacting with several NFV plat-
forms. The figure also shows the general workflow and generated artifacts
(Figure 1 of [PK17]).

2.2.4 Data Centers

In addition to service provisioning in wide-area networks, we also looked at data center
scenarios. For example, we considered how to deal with so-called “coflows”: a group
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a flow that needs to be complete jointly before a distributed computation can continue
its next stage (e.g., in a gather-collect context). We investigated machine-learning-based
admission control and resource allocation schemes for that problem.

Here, we would like to describe an older contribution that addresses the following question:
How can one generate traffic (e.g., for a simulation or emulation) that faithfully represents
key statistical properties of actual data center traces? This is necessary as only limited
amounts of traces are available, which is insufficient to drive performance evaluation work
that is statistically meaningful.

In Reference [WK16], we describe a traffic generator that serves these needs; its main
workflow is shown in Figure 57. Practically speaking, at the time of that work, traces
on layer 2 (L2) were available, but for the scheduling work we were interested in, we
needed layer 4 (L4) flow traces that were extensible yet faithful. To this end, we analyzed
the available L2 traces and tried to infer L4 information from them. Checking whether
this inference was correct is simple: Just use these L4 traces to run network experiments,
collect L2 information, and compare statistical properties. The question is how to extract
L4 information from L2 information, given that L2 information hides the bidirectional
nature of TCP (packets are mirrored by acknowledgements in the opposite direction) and
that this ACK traffic must not be mistaken for “actual” L4 traffic. We hence had to figure
out the distribution functions for packet and ACK packet sizes and to “de-convolute” these
different traces from the available L2 information. In the end, it turned out that we were
able to construct corresponding L4 traces.

observed L2 Traces

observed L2 Traffic  
Distributions

Analyze

inferred L4 Traffic  
Distributions

Abstract

generated L4 Traffic   
Schedule

Generate

Em
ul

at
e

generated L2 Traffic    
Distributions

Analyze

?=

1

2

3 4

6

Part of DCT2Gen

generated L2 Traces    5

Figure 57: Workflow of DCT2Gen (Figure 1 in [WK16]).

3 Concluding Remarks

In Subproject C4, we considered the task of efficiently utilizing resources in highly
configurable compute centers, be they big or small, centralized or distributed, from a
variety of angles ranging from abstract algorithmic models to concrete framework-specific
aspects. We conclude the discussion of these efforts by highlighting possible future research
directions for some of the studied topics.
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Scheduling with Setup Times

Setup times are extensively studied in the area of scheduling with a wide variety of different
models. Regarding the class-based model considered in this subproject [MMMR15;
JMM19] there are interesting open problems regarding closely related variants. For
instance, the problem of identical machines with preemptions has been studied, i.e., where
the processing of jobs may be interrupted and resumed at a later time. However, there is
no PTAS known for this setting, and it seems challenging to design one. This is somewhat
surprising given the fact that the scheduling problem without preemptions admits a PTAS,
and the one with preemptions but without setup times is not even NP-hard. Moreover,
considering the variant with preemptions for more general machine models would be
interesting as well. Another interesting research direction can be derived from the fact that
several novel PTAS results for scheduling with setup times have been obtained via newly
developed techniques in the area of integer programming [JKMR22]. These techniques
are based on utilizing some structure in the constraint matrix in order to derive provably
efficient algorithms. It seems promising to further study the use of these techniques in the
area of scheduling and to extend the techniques themselves to enable better or more general
results, for instance, regarding scheduling with setup times. Lastly, there has been a recent
trend to consider semi-online models in which crucial information regarding the instance
is not known in advance, but estimates are given using a machine learning model, for
instance. There have been several recent, intriguing results in this direction for scheduling
problems presented at high-level conferences. It seems well worth considering scheduling
with setup times—or other problems considered in this subproject—from this angle.

Cloud-Assisted Scheduling

As the Internet transforms into a landscape largely dominated by giant cloud service
providers, cloud-assisted scheduling has become increasingly important. Since about 2010,
there has been a plethora of different models, both practical and theoretical, that try to
address some of the challenges that arise from this way of computing. A fundamental
problem for theoretical analysis seems to be that there are so many different important
properties of scheduling on clouds that a unifying model is currently out of reach. In no
particular order, one might consider the leasing model and associated costs, job structure,
precedence constraints, communication delays, release times, different machine speeds
and capabilities, additional resources, online vs. offline algorithms, and more. Following
on from this, it may be interesting to explore the limits at which generalizations of our
model from [MMP21] no longer yield efficient (approximation) algorithms. In particular,
the rental model and the cost function in our model are rather simple, we can get machines
for exactly the time intervals we need, and we pay only in direct proportion to the jobs
outsourced. A more elaborate and realistic leasing system for cloud resources, including
other costs and start-up times for new machines, could provide interesting insights. Finally,
in the context of the CRC, we would like to mention that this issue can also be explored
from a market perspective itself, where multiple cloud providers compete to schedule
customers’ jobs efficiently in order to maximize their own profits.
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In-Network Computing

Since the start of this CRC, the notion of in-network computing has changed substantially.
By now, it is fairly commonplace to find discussions about many different forms of infras-
tructure, spreading the resources of data centers ever more thinly across real environments.
A common buzzword in this context is the “edge-cloud continuum,” where along the path
from a device to a centralized cloud, many different forms of service execution oppor-
tunities exist, e.g., gateways or micro-cloud data centers of various forms. Somethings,
about a dozen or so different stages are differentiated. Often, it is not entirely clear what
the differences are, but architectures exist that go to great pains to make such differences
and assign different roles, APIs, etc. We believe that artificially introducing differentiation
where none exists is detrimental to both the efficiency and uptake of such concepts. We
argue that consistent, simple concepts to distribute composed services are to be much
preferred, but they have not really materialized, despite a lot of practical progress in using
resources of different cloud providers. There is no consistent approach in sight.

We do acknowledge, however, that there are differences in business models associated
with such a multi-stage infrastructure. While that certainly drives competition and can
be a strong hindrance to standardization towards common APIs, there are also actual
consequences. For example, there is no clear notion of a “chain of custody” for storing data
or executing services. While fundamentally, this is in many forms unsolvable (essentially,
the impossibility of consensus in faulty, asynchronous systems), there still is a need for
practical compromises with a clear assignment of responsibilities and custody for data
or services. Again, while there is a lot of understanding available about basic concepts
and their limitations, there is no agreed standard that would foster the adoption of such
architectures.

Prototyping and Actual Experiences

Very much in the same vain, we believe that there is a need for more experimental
experience in real systems. A lot of results come from simulation or carefully controlled
lab environments and emulations, but there is not much academic work done in real
environments “in the wild.” As of today, this is still the purview of cloud providers,
hyperscalers and major over-the-top providers such as Netflix. This is a particular problem
for most work that follows machine-learning approaches: When no data is available, there
is nothing from which a model can be learned, and there is even less opportunity to really
test approaches to manage data centers (at whatever stage of a continuum). We believe
that this methodical gap needs to be closed, but there is no obvious approach how to do
that. This is a challenging area for systems research the coming years, which ensures that
our work stays relevant by being able to work from and test in relevant environments using
relevant data.
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[KMRS17] Kling, P.; Mäcker, A.; Riechers, S.; Skopalik, A.: Sharing is Caring: Multiprocessor
Scheduling with a Sharable Resource. In: Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC, USA, July
24-26, 2017. Ed. by Scheideler, C.; Hajiaghayi, M. T. ACM, 2017, pp. 123–132.

[KP13] Kling, P.; Pietrzyk, P.: Profitable scheduling on multiple speed-scalable processors.
In: 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13,
Montreal, QC, Canada - July 23 - 25, 2013. Ed. by Blelloch, G. E.; Vöcking, B. ACM,
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