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1 Introduction

Industrial analytics refers to the current trend in automation technology to collect and
analyze a variety of measured values from machines and from production processes in
order to generate added value for future operations. Industrial analytics is a business field
with great economic potential, and Weidmüller wants to position itself as a leading provider
of industrial analytics solutions within the framework of the mission statement Industry
4.024. Examples for industrial analytics include the detection of significant deviations from
the target behavior of a machine [MKPN13], the detection of inefficiencies [MPK15], the
creation of fault forecasts and the diagnosis of fault causes. The added value achieved is
the avoidance of machine breakdowns, the minimization of downtime, or in general, the
increase of plant productivity and production output [PKG+16].

In embedded analytics, i.e., the implementation of analysis functions directly in the
automation devices within a production plant, Weidmüller relies on reconfigurable System-
on-Chip (rSoC). The challenges in using rSoC for industrial analytics are on the one hand
the required flexibility in system design and, on the other hand, the increasing heterogeneity
of rSoC platforms. Flexibility is needed since the functions of industrial analytics have
to be selected, configured and assembled on an application-specific basis, implemented
as a hardware/software co-design and deployed on an rSoC. Flexibility can further be
exploited during runtime to use the resources efficiently under varying load situations. The
technological evolution of rSoC platforms is toward more heterogeneous architectures: for
example, recent rSoCs combine multiple processor types with reconfigurable hardware,
embedded graphics processors, and application-specific blocks.

The combination of increasing dynamics of tasks and heterogeneity of the underlying
architectures is also the guiding theme of basic scientific research in subproject C2 of SBF
901. There, novel architectures and programming models for heterogeneous computing
nodes are investigated and developed. By transferring these basic scientific results to the
industrial analytics application domain, this transfer project aims to achieve the following
goals:
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1. Characterization of essential functions of industrial analytics and design of hard-
ware/software partitionings suitable for an rSoC implementation.

2. Development of architectures and programming environments to enable transmodal
migration on rSoC.

3. Demonstration of rSoC technology for industrial analytics use cases.

For rSoC architectures and programming environments we draw on preliminary work,
the ReconOS [AHK+14] operating system for reconfigurable computers. ReconOS al-
lows for multithreaded programming across the software/hardware boundary by turning
accelerator functions into so-called hardware threads and semantically integrating them
as threads into a guest operating system environment. Compared to related approaches
such as BOPRH [KB08], Hthreads [ASA+08], FUSE [IS11], SPREAD [WZW+13], and
LEAP [FYAE14], ReconOS is more flexible and more rapidly portable to new guest
operating systems and FPGA technologies. In particular, ReconOS has demonstrated its
usefulness in three scenarios: First, ReconOS supports a step-by-step development flow
starting from a software application prototype on desktop under Linux. Only when the
prototype is functionally correct, is the application ported to the embedded rSoC, which is
typically a low effort since the embedded CPU cores also run Linux. As a last step, threads
that are amenable to hardware acceleration are gradually moved from software to hardware.
Second, ReconOS facilitates design space exploration since different hardware/software
partitionings can easily be generated by simply modifying system configuration data and
no changes are needed to unaffected threads or the operating system. This feature has
been used, for example, to develop a video object tracking system [HLP13]. Finally,
ReconOS even allows for the construction of adaptive or self-adaptive systems, where a
hardware/software application monitors its own performance and changes the architecture,
for example the number of used CPU cores and hardware threads or the hardware/software
partitioning, in reaction to a varying workload [AHL+14].

2 Main Contributions

In the course of the transfer project, we have achieved the following results:

• We have developed ReconOS64 as a new version of the ReconOS architecture and
operating system layer for the modern 64-bit rSoC technology used in the project,
i.e., the Xilinx UltraScale+ MPSoC platform FPGAs [CP22; Cla21].

• We have created a build tool flow for ReconOS64 that includes a high-level synthesis
(HLS) tool flow and thus allows for creating hardware threads not only in hardware
description languages such as VHDL and Verilog, but also in C/C++.

• We have implemented several industrial analytics functions as software/hardware
co-designs on the rSoC platform, including k-NN [Ria17], decison trees/random
forests, SVM [BTW+17], and neural network models [Nga22].

• We have worked on several industrial analytics case studies for condition monitoring
and anomaly detection, respectively, targeting wind turbines, molding machines and
welding machines [Kau22].

In the following, we select two of these topics for elaboration, the ReconOS64 development
and the DeepWind case study, a condition monitoring system for wind turbines.



2. Main Contributions 227

2.1 The ReconOS64 Operating System for 64-bit Platform FPGAs

ReconOS64 bases on previous ReconOS [AHK+14; LP09] implementations but targets
modern platform FPGAs with 64-bit processors. The step towards 64-bit support and
the use of modern platform FPGAs is important, since many applications, in particular
industrial analytics functions, require the increased computing capabilities and resources
provided by modern rSoC. ReconOS and its 64-bit version are freely available in open
source25.

Figure 69 shows the architecture of ReconOS64 on the Xilinx UltraScale+ MPSoC. The
processing system (PS) comprises a 64-bit quad-core CPU and runs the 64-bit Xilinx
PetaLinux as the host operating system. ReconOS64 extends the host operating system
by the ReconOS driver in kernel space and several libraries in user space for, e.g., thread
synchronization, communication, management and bitstream loading. The programmable
logic part of the platform FPGA is structured into so-called reconfigurable slots that
constitute rectangular areas of the programmable logic fabric. Reconfigurable slots accom-
modate hardware threads, which are ReconOS’ abstractions of accelerated functions. A
main feature of ReconOS is that hardware threads access the operating system using the
same services as software threads running on the CPU, thus enabling the multithreaded
programming abstraction across the hardware/software boundary. This is made possible
by delegate threads, light-weight software threads that conduct operating system calls on
behalf of their corresponding hardware threads.

Figure 69: ReconOS64 Architecture on the Xilinx UltraScale+ MPSoC (taken from [CP22]).

The intellectual property (IP) cores of ReconOS64 responsible for connecting hardware
threads with the host operating system are shown in green color in Figure 69. Each
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hardware thread comprises the actual user logic and an operating system finite state
machine (OSFSM) that sequentializes the thread’s operating system interactions and
handles synchronization between the user logic and the software. Further, each hardware
thread is connected to an operating system interface (OSIF) FIFO that buffers the operating
system calls, i.e., their commands with parameters and return values. The FIFO also serves
to separate the clock regions of the ReconOS64 design from the hardware threads to allow
them to run at different frequencies. The OSIF FIFOs connect to a central OSIF IP core
that collects the commands and parameters for all service requests and, in addition, to
a dedicated OSIF interrupt controller that raises a CPU interrupt whenever a hardware
thread wants to execute an operating system call. On the software side, the raised interrupt
will activate the OSIF interrupt service routine (ISR), which in turn sets the delegate
thread corresponding to the hardware thread that is ready to run. The delegate thread then
accesses the OSIF IP core, retrieves the command and parameters and actually performs
the operating system call. In case there are return values, they are written back to the
hardware threads.

The proc_control IP core together with the proc_control kernel driver are also involved
in operating system communication as they propagate reset signals towards the hardware
threads. In ReconOS64 the native data type is 64 bit. Hence, all IP cores involved in
operating system communication support command, parameter, and return data structures
in multiples of 64-bit. This is particularly important since many operating system calls,
e.g., message box reads and writes, are typically used to communicate 64-bit pointers
between software and hardware threads. A consequence of the 64-bit orientation is that
data of smaller width has to be either padded to the next multiple of eight bytes or, if
several small-sized data are to be written or read, concatenated to blocks of eight byte.

The IP cores of ReconOS64 responsible for supporting memory accesses of the hardware
threads are displayed in orange color in Figure 69. While address pointers in ReconOS64 are
64-bit wide, the Linux configuration we use on the ARMv8 CPU architecture uses a virtual
address space of 512 GB that is mapped to a physical address space of 256 TB. Hence,
the systems’ memory management unit (MMU) considers only the lower 39 bit of virtual
addresses and deals with 48-bit physical addresses. The page size in our configuration
amounts to 4 KB. Hardware threads use virtual addresses and access memory via their
memory interfaces (MEMIF). ReconOS64 employs three IP cores for establishing memory
access. The Arbiter resolves simultaneous accesses from different hardware threads,
the MMU performs the translation to physical addresses, and the AXI Interface / Burst
Generator interfaces to the AXI bus and ensures burst transfers. Initially, the content of
the ARM CPU’s Translation Table Base Register (TTBR) is transferred to the MMU via
the kernel driver and the proc_control IP core to ensure that the MMU has the physical
address of the ReconOS process’ first-level page table. Then, the MMU performs the page
table walk which results in at most three memory accesses. To speed up memory access
for hardware threads, the MMU includes a translation look-aside buffer (TLB) that caches
recent translations between the 27-bit virtual page numbers and the 36 bit physical page
numbers. The size of the TLB is configurable. The proc_control component supports the
handling of page faults during address translation. Therefore, proc_control needs to be
able to raise an interrupt with the CPU.

Dynamic thread management is supported through partial reconfiguration in ReconOS64 .
Generally, a hardware thread is assigned to a reconfigurable slot, which is a rectangular
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area of logic resources on the FPGA residing in the same clock region. A new feature of
ReconOS64 are reconfigurable slot groups, which specify sets of reconfigurable slots of
the same size. Each hardware thread is assigned to one or more such reconfigurable slot
groups, and multiple hardware threads can be assigned to the same reconfigurable slot
group. The introduction of reconfigurable slot groups makes the runtime mapping between
hardware threads and reconfigurable slots more flexible.

ReconOS64 allows for the hardware threads to run at individual clock rates, in particular
different ones from the clock of the static ReconOS part. These individual clock signals
are fed from the ReconOS64 clocking IP core that utilizes a Mixed-mode Clock Manager
(MMCM) tile with static multiplier and variable dividers for each clock output. Reconfig-
urable slot groups can be assigned to individual clocks as long as the clock tile resources
are not exceeded. Using a function from the ReconOS64 thread management library, both
software and hardware threads can set the clock frequencies for hardware threads by
modifying the clock dividers in the corresponding ReconOS64 clocking IP core.

Figure 70: ReconOS64 build tool flow (adapted from [AHK+14]).

The ReconOS64 build tool flow takes as inputs the sources for the application’s software
threads in C/C++ and the sources for the hardware threads in either VHDL/Verilog or
C/C++ for use with high-level synthesis (HLS). For both, a predefined set of ReconOS64 -
specific library functions is provided. A further input is the system specification comprising
a set of ReconOS64 IP cores and the configuration file. The configuration file includes
definitions for the target platform, the reconfigurable slots, and reconfigurable slot groups
and assigns the hardware threads to reconfigurable slot groups. Further, all operating
system service objects, such as message boxes, mutexes, and semaphores, are listed in
the configuration file. The build process relies on a Python-based templating system. The
application software is cross-compiled with the aarch64-gcc compiler, which results in
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the application executable. On the hardware side of the build tool flow, the ReconOS
Development Kit (RDK) processes the configuration file and generates IP sources from
architecture- and board-specific templates. The flow then generates a Xilinx Vivado project
incorporating the user-provided hardware threads, either directly from the VHDL/Verilog
code or the result from HLS, with all necessary components and connections. The hardware
build process results in the static bitstream for the ReconOS64 system and a set of partial
bitstreams for the hardware threads. Information from the hardware build process (e.g.,
used address ranges for IP cores) together with a generic Xilinx PetaLinux template project,
the ReconOS64 kernel module and device tree, and boot components are used to configure
and generate a bootable system including the operating system kernel and the root file
system.

2.2 DeepWind: An Accurate Wind Turbine Condition Monitoring Framework via
Deep Learning on Embedded Platforms

The generation of electricity using wind turbines is rapidly growing and becoming more
important since it is considered as an affordable and clean substitute for fossil fuel-based
electricity production. Wind turbines are used in a large variety of environments, both
onshore and offshore, and they are exposed to harsh working conditions, such as unbalanced
wind load, wind turbulence, and large temperature variations [QL15]. To service running
wind turbines unceasingly and safely, and particularly reduce the maintenance costs,
adequate online condition monitoring systems (CMSs) are required [Wei]. CMSs identify
the type and the location of faults and, more importantly, diagnose the transformation of a
fault into an error and possibly into a failure.

During wind turbine operation, a CMS constantly takes measurements that determine the
condition of the critical components, e.g., the rotor blades. The measurements provide
indications for problems such as blade damages after lightning strikes, heavy vibrations of
the blades, or the ice accretion on a rotor blade. Ice accretion may lead to dangerous ice
throw, which is a major risk for the surroundings of wind turbines. Therefore, more and
more local authorities insist on blade measuring ice detection systems. By processing the
information of a CMS, a diagnosis, e.g., inspection, necessary repair, or necessity of turbine
shutdown, is reached and an adequate maintenance plan is formulated. Consequently, the
CMS facilitates low-cost maintenance before a critical failure happens while diminishing
the downtime of the wind turbine, also increasing its dependability and lifetime. Defects
can cause abnormal vibrations of the blades, which can be sensed by accelerometers
installed on the blades. Earlier work applied frequency spectrum analyses [CG05; WX06]
to detect such defects. However, such analyses require manual feature engineering and
extensive trial-and-error to identify patterns in the vibrations that correctly match to faulty
cases.

In DeepWind, we propose a novel framework to build an end-to-end condition monitoring
and fault detection system for rotor blades. The framework starts with a preprocessing
step to reduce the complexity of the raw sensor data. Then, inspired by the success
of deep learning in time series analysis, we train a multi-channel convolutional neural
network (MC-CNN) that can automatically extract a set of discriminative features from
the sensor data. Finally, the trained MC-CNN is automatically mapped to an embedded
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FPGA platform, where a combination of software and hardware identifies fault occurrences
within the data streamed from accelerometer sensors.

Testing set

Training & 

Validation set

Class balancing 

via bootstrapping

Downsampling

Preprocessing
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Raw data Windowing

Figure 71: Main steps of data preprocessing: downsampling, windowing, data set splitting,
and training set bootstrapping (taken from [GAR+20]).

Figure 71 illustrates the main steps of the sensor data preprocessing. The main goal of the
preprocessing step is to convert the raw sensor data into a cleanly formatted data set that
can be used later by the MC-CNN for fault detection purposes. The complexity of sensor
data is reduced by applying downsampling, in which the number of sample points in the
input data is reduced. We utilize the Mode-Median-Bucket algorithm [Ste13], in which
every window is divided into several subwindows in such a way that each subwindow
contains the same number of samples. The algorithm considers important features from
each bucket with mode, median, global peaks, or global trough values and filters out the
other samples in each subwindow. In the next step, we utilize the windowing technique
to divide each input data frame into a number of smaller segments called windows. Each
window simply adopts the label of its data frame. Finally, we form our training and testing
data sets from the obtained windows. We modify the training set by bootstrapping with
replacement to ensure that the number of samples from both faulty and non-faulty classes
are comparable. This is an important step to be able to train a high-quality classifier that
provides high accuracy and recall on the testing set [Man22].

As the target feature extractor and classifier, we exploit a multi-channel CNN, in which the
training of each individual univariate data, e.g., raw data from each sensor, is performed
independently [Kau22]. Indeed, we can draw a lot of inference from the local properties
of each sensor without losing the generality of our classifier, by decoupling the data of
different sensors. The architecture of the MC-CNN model we have used in this work is
shown in Figure 72. After preprocessing the sensor data we apply a Fast Fourier Transform
(FFT) on each input window to extract its Spectrum Frequency (SF). The obtained SFs are
then fed into the MC-CNN.

The first part of the MC-CNN performs feature extraction and contains two 1-D convolution
layers as well as two max-pooling layers. For each sensor, the so-called channel, we utilize
50 and 40 feature maps in the first and second convolution layers with the size of 8 and 4,
respectively. As we have two sensors per blade, we exploit six 1-D convolution channels.
The outcomes of each convolution layer are downsampled by a max-pooling layer to
control the growth in the size of the extracted features. Finally, the obtained features are
fed into a fully connected layer with 400 neurons. This layer is followed by a softmax
layer that generates the conditional probability of faulty and non-faulty classes. Note that
the training of the MC-CNN is performed offline, and then the trained model is quantized
and mapped on the hardware for the inference phase.

On the hardware side of our framework, called TFPGA, we utilize an rSoC as the tar-
get platform. We exploit hardware/software codesign to both efficiently distribute the
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Figure 72: The architecture of multi-channel CNN for fault detection. The convolution
layers have 50 and 40 filters with kernel sizes of 8 and 4, respectively. For each
window, obtained from the preprocessing step, the FFT spectrum is computed
and the outcome is fed to the MC-CNN (taken from [GAR+20]).

framework tasks on various rSoC resources and benefit from the customizability and
parallelism offered by FPGAs. For inference, the tasks of the preprocessing step, e.g.,
downsampling and windowing, as well as the FFT computation for each obtained window
are assigned to the CPUs of the rSoC. Note that the bootstrapping task is just performed
on the training data set and is omitted from consideration in the inference phase. Next, the
trained MC-CNN network is analyzed, and a C++ implementation of this model is created.
This code is then given to Xilinx SDSoC to create a bitstream needed for the target FPGA.
To improve the execution time of the software model and reduce its size, the framework
exploits a custom precision scaling feature that enables a designer to utilize the underlying
hardware more efficiently by tuning the parameters of the given network.

We have used a real-word data set provided by Weidmüller Monitoring Systems GmbH to
evaluate the approach. The data set comprises time series data measured with a sampling
rate of 1 kHz from the edge-wise and flap-wise sensors for each of three rotor blades. For
every half hour (i.e., 1.8 million sample points), the data is labeled with the sensor status
in that interval as faulty or non-faulty. After preprocessing, we have obtained samples with
a window size of 1 second along with corresponding labels. We have used 80% of the data
for training and validation and the remaining 20% for testing. All the models have been
implemented with the Keras library [Ker].

Figure 73 shows the classification result of our DeepWind framework. The figure plots
the achieved F1-score versus the six channels, i.e., two per blade, where each channel
represents a sensor blade. The F1-score is the harmonic mean of precision and recall and
reaches its best value at 1, which translates to perfect precision and recall. Our proposed
MC-CNN based fault detection scheme provides an average of 0.94 for the F1-score. As a
baseline technique, we have experimented with a Support Vector Machine (SVM) used
previously by the application partner, which results in an F1-score of 0.64 on average.
Importantly, for all of the six channels MC-CNN provides better classification results in
comparison with SVM, making our MC-CNN approach a successful technique to capture
the most discriminative features for the sensor blade fault detection problem.

Figure 74 represents the accuracy for various quantization settings and for the reference
software implementation, which utilizes double-precision floating point. The results show
an accuracy penalty of 6% for a 16-bit quantization, which we deem acceptable without
model retraining. When only the weights are quantized further to 8 bit, we even observe
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a slight increase in accuracy to 87%. We attribute this to the inherent regularization
characteristic of the quantization, since we know that the original model benefits from
dedicated regularization, namely through dropout. We have also measured the resource
usage for different quantization settings. The initial results revealed that going from 16
to 8 bit leads to a slight saving in lookup tables of 12%. Quantization of weights to 8
bit achieves a 34% decrease in embedded memory (BRAM) usage. These results show
that weight quantization is effective for reducing the memory footprint in an MC-CNN
hardware accelerator.
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Figure 73: F1-score of MC-CNN and SVM methods for six channels (taken
from [GAR+20]).
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Figure 74: Accuracy vs. bit width of the MC-CNN on a Xilinx UltraScale+ MPSoC (taken
from [GAR+20]).

3 Impact and Outlook

This transfer project allowed us to further develop and apply reconfigurable system-on-chip
technology to the concrete application domain of industrial analytics functions, together
with the application partner Weidmüller. Overall, the project was successful since the
newly developed 64-bit ReconOS64 architecture provides CPU cores with sufficient com-
pute power and hardware acceleration for industrial analytics functions. The corresponding
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build tool flow has shown to support the specification of runtime-reconfigurable functions
in a rather simple way. We have implemented a number of typical functions of industrial
analytics as software/hardware co-designs with ReconOS64 and demonstrated that different
trade-offs between performance and resource consumption can be explored. Our develop-
ments are open source and can thus be used and leveraged by others. We have also worked
on several use cases, where condition monitoring for wind turbines is so far the most
successful one. For this use case, we could propose an industrial analytics function that
greatly improves the existing solution in terms of quality. The mapping to an embedded
rSoC is also of great interest, since then the condition monitoring system can be placed
near the sensors in the rotor blades and running such functions on servers in wind turbines
can be avoided.

One aspect planned for this transfer project could not yet be realized in a use case,
the transmodal migration of industrial analytics functions. While this feature has been
demonstrated in the lab, for the concrete use cases it was more important to spend time for
developing industrial analytics functions that excel in functional quality. One particular
challenge for developing good solutions is that often only small data sets or data with very
imbalanced classes are available.

Ongoing and future work includes the development of more solutions for condition moni-
toring and predictive maintenance, in particular for welding machines [Kum23], and the
further optimization of ReconOS64 .

For mapping DNN architectures to rSoC, in this transfer project we have first used our
TFPGA framework (cf. Section 2.2) and, later, we have developed a framework that
focuses on TF Lite26 with its backend delegate modules. We have developed an FPGA
delegate for TF Lite that facilitates the necessary hardware/software co-design using the
ReconOS64 architecture and operating system (cf. Section 2.1). The partial reconfiguration
support of ReconOS64 enables the instantiation of model-tailored accelerator architectures.
Mapping DNNs to rSoC technology remains an area of active research. Recently, we have
switched to the open source FINN framework [BPF+18] that maps DNNs as streaming
dataflow architectures to FPGAs and features flexible quantization as well as quantization-
aware DNN training.
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