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1 Introduction

In this transfer project, we designed, implemented, and evaluated a cryptographically secure
and privacy-preserving incentive system for retail stores. An incentive system is a system
in which customers can participate in promotions to obtain rewards or discounts. They can
be deployed to influence the shopping behavior of customers, for example, to achieve a
higher customer loyalty rate or increase sales. Further, incentive systems are used as a tool
for collecting customer data that serves for instance marketing purposes. Popular incentive
systems, e.g., German Payback and American Express Membership Rewards, focus on the
latter data-driven business model. Therefore, they are neither privacy-preserving nor do
they follow a rule to minimize data collection. They essentially possess a complete record
of all members’ shopping history in their databases. An infamous example of what can
happen if this customer data is not protected properly occurred at the loyalty program of
the retailer Target, who in 2012 exposed a girl’s pregnancy to her father with coupons sent
by Target.27 Not only individual incidents but also the GDPR as an effort of the EU to
protect customer data motivate the need for a privacy-focused alternative.

In this transfer project with Diebold Nixdorf, we designed an incentive system that fills
this gap. We visualize the main differences to “classical” incentive systems in Figure 75.
The main idea is to replace the large central database that contains the users’ shopping
records with a token stored on the user’s smartphone. Thereby, we drastically reduce the
data that can be linked to a user. This token holds the state required for the business logic
and is typically a point count computed from the shopping history. We use cryptographic
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Figure 75: Main differences between our incentive system and “classical” incentive sys-
tems. The shopping records with point count in the provider’s database are
replaced with signed token in app.

protocols to change the point count of the token when a user wants to collect points for their
current basket or trade points for some reward. These protocols, among other properties,
ensure privacy and prevent double-spending attacks. Double-spending is the canonical
attack on token-based systems, in which an attacker copies a digital token and redeems it
multiple times.

In addition to designing the incentive system, we implemented a demonstrator and further
adjusted the system to address real-world cryptographic challenges. The in-store experience
with the demonstrator of the incentive system is as follows: A user goes shopping using
their phone and the store’s app installed (which includes the incentive system client). In
the store, the user scans barcodes of items with their phone, which are then added to a
digital basket. In the app, the user can see running promotions that will give them benefits,
e.g., buying four chocolate bars and getting one free. The checkout process is also handled
in the app and automatically handles the promotion benefits for the user, e.g., checks if the
basket contains four chocolate bars and adds a discount for one of them. In our incentive
system, these promotions are not limited to a single store visit. Rather, a user can, for
example, buy two chocolate bars now and two next time. The incentive system stores this
state in a secure token on the user’s device.

We started the project with a study of existing cryptographic incentive systems from
the literature [MDPD15; JR16; HHNR17] that introduced the concept to let users store
their points in an authenticated form. The techniques we developed in Subproject C1
Robustness and Security for anonymous credentials and their implementations turned out
to be well suited for this, solve open problems, and compensate for some of the downsides
of the existing systems. Furthermore, we discussed real-world store infrastructure and
details of the currently used hardware with the project partner. We identified the following
requirements for a privacy-preserving incentive system.

• Anonymity: Providers are unable to link earn/spend transactions to users. In practice,
this protects users from having their shopping history linked to their identity and
point values.

• Soundness: Users cannot spend more points than they have earned.

• Online double-spending protection: Given continuous access to a central database,
the provider can immediately detect double-spending.

• Offline double-spending protection: Providers can even detect double-spending
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in one store without continuous access to a central database. Double-spending
transactions can be detected and the perpetrating user can be identified. Losses
incurred by double-spending can be reclaimed from that user.

• Partial spending: Users can choose how many points they spend in one transaction.

• Efficiency: The process of earning and spending points can be run on a consumer
phone and existing store infrastructure, i.e., the privacy-preserving incentive system
is ready for real-world applications.

Our privacy-preserving incentive systems [BBDE19; BEK+20] fulfill all of the goals.
Previous systems from the literature do not have offline double-spending protection, they
do not support partial spending or, if they support partial spending, the combination with
offline double-spending protection is not securely realized. In the following, we present the
incentive systems in more detail, how we adapt them in this project, and discuss highlights
of the project results. Furthermore, we give important lessons that we learned in the process
from theory to practice.

2 Main Contribution

The main privacy issue of current incentive systems in practice is that the incentive
system provider stores user data (e.g., each user’s point count) in a central database. This
architecture practically forces participating users to reveal their identities in order for
the correct entry to be updated in the provider’s database. Unfortunately, this allows the
provider to link purchases to the user’s identity, enabling the creation of detailed user
profiles. Our main idea to remedy this, as sketched in Figure 75, is to store personal
user data (name, current point value) in a cryptographically authenticated token on the
user device instead of a central database. We run privacy-preserving protocols that can
update the user’s data without ever revealing the data or the user’s identity to the incentive
system provider. For example, we can have a user with k points update their point count by
+15. After that procedure, the user will hold a token that certifies k + 15 points, while the
provider does not learn the old value k, the new value k + 15, or any other user data. The
provider is only aware that it increments some hidden authenticated value k by +15.

The first iteration of our incentive system [BBDE19] is built from updatable anonymous
credentials (UAC), which indeed store authenticated data (“attributes”) within an authenti-
cated token (“credential”) that can be updated in a privacy-preserving way (see Subproject
C1 Robustness and Security on page 145). The main idea of an update operation [BBDE19]
is that the user first computes the update (e.g., +15) locally, sends this updated data in
hidden form (in a cryptographic commitment) to the provider, and proves, with a zero-
knowledge proof of knowledge, that the hidden data is a valid update to the user’s old
authenticated data. The provider then blindly authenticates the updated data.

One of the main challenges when building cryptographic incentive systems is how to
handle double-spending. Say a user holds a token with 20 points. Of course, the user
and provider can run the update protocol for the user to receive an updated token with
20 − 5 = 15 points. However, we need a mechanism to prevent the user from using the old
20 point token again (which would be considered double-spending). Note that detecting
double-spending is made difficult by our strong privacy aspirations: the act of spending a
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token must not reveal any information about the token, hence the token itself is generally
hidden. As a consequence, using the same token twice is, by default, not detectable by the
provider. One typical way to solve the double-spending issue is online double-spending
detection. There, every token is assigned a random ID. To invalidate a token (e.g., in the
−5 scenario above), the user reveals the token’s random ID. The provider checks whether
that ID has already been invalidated and, if so, whether the user is trying to double-spend
the token. To ensure privacy, the random ID is chosen by the user and only revealed to
the provider when invalidating the token. This means that as long as the user does not
double-spend, the provider only learns meaningless random numbers through this process.
The downside to this approach is that it requires stores to have a consistent connection
to a database containing all invalidated IDs. If a store loses the database connection, it
cannot check whether a user is double-spending or legitimately spending a valid token.
Offline double-spending protection (e.g., [HHNR17]) is an additional feature that mitigates
this issue. It allows offline stores to speculatively accept a token without checking the ID.
If it later turns out that the ID had already been spent (e.g., in another store), the offline
double-spending protection feature guarantees that the double-spending user’s identity can
be revealed, allowing stores to identify misbehaving users and recoup any losses (rewards
given erroneously) incurred by undetected double-spending. We combine both sorts of
double-spending mitigation in [BBDE19].

Afterward, we identified that in real-world applications, the earning of points is the most
frequent operation and should be further optimized. Typically, users have to earn points
many times before they can spend them on a reward. In the follow-up paper [BEK+20],
we present a new incentive system in which the protocol to earn points works without
the relatively costly machinery of zero-knowledge proofs of knowledge. This is enabled
by using structure-preserving signatures on equivalence classes (SPS-EQ) [FHS19] to
authenticate the user data. SPS-EQ come with special randomization features that allow
the provider to verify and modify a hidden version of the user’s data. Additionally,
we add desirable features such as (1) improved privacy for double-spending users (in
[BBDE19], double-spending users would incidentally reveal their whole purchase history to
the provider) and (2) support for retrying interrupted protocol executions without triggering
double-spending protection. We use the ideas from [BEK+20] as the cryptographic basis of
our system. However, we have significantly extended the construction and its infrastructure
to match the requirements and desirable features of real-world stores.

2.1 Prototype

In the following, we describe how the in-store experience mentioned in the introduction is
supported by the incentive system prototype developed in this project. Recall that a user
interacts with the system using their smartphone and the app that we developed. At the first
start, the app explains key features of the incentive system and then guides the user through
a one-time registration process (Figure 76). The result is a join-token in the form of a
digital signature on the user identity by the provider. By this, we can later guarantee for the
store that the system can identify users to claim any losses, but only if they double-spend.
We use the join-token in any interaction with the store in the incentive system to prove that
the user is part of the system and therefore a valid user. The app then fetches any running
promotions of the store. Promotions are an artifact that the store provider can configure. It
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Figure 76: 1.-3. onboarding and registration screens in app. 4) dashboard with an overview
of running promotions. 5) detail screen for VIP promotion.

encapsulates the rules for how users can gain rewards. In the prototype, we support the
following promotions with some examples of the rules and rewards:

• discount promotions with the rule “buy x many A” and the reward “get Y for free”,

• VIP promotions with the rule “buy x currency worth of products (over multiple
visits), become bronze (x > c1), silver (x > c2) or gold VIP (x > c3)” with the reward
that the user gets 2%, 5%, or 10% discount on future purchases, and

• streak promotions with the rule “go shopping at least once every 7 days” and the
reward “get a free coffee after a streak of 2 weeks”.

The user (and app) is now ready for the main part of the shopping, i.e., scanning products
and putting them in the digital basket (see Figure 77). Here, the store is not involved and
no data is revealed since the app has all the necessary data stored locally. When users are
ready for the checkout they can do so directly in the app and leave the store. During the
checkout process in the app, the app checks if any promotions can be updated following
the rules of the promotions. For example, the user has previously bought 2 chocolate bars
(as stored in the user’s token), 1 is in the basket, and there is a discount promotion that
gives 1 chocolate bar for free if the user has bought at least 3. Then the app interacts with
the provider to get a privacy-preserving update on the promotion.

Let us describe the update process in detail. A user has a token for every promotion
certifying the status of the promotion. These tokens are obtained by proving ownership
of a join-token and initialized with a starting value of 0. A token is a Pedersen commit-
ment [Ped91] on the user’s status of the promotion, a cryptographic primitive that hides
the data but allows proving statements on the data. In addition, a valid token must be
signed with an SPS-EQ signature by the provider. This prevents users from generating
valid tokens, i.e., “printing money”.

For our example, if the user simply wants to collect 2 points for buying 2 chocolate bars,
the app runs the earn protocol with the provider: The app sends the randomized token to
the provider, who adds 2 points to the token and issues an SPS-EQ signature on the token
with +2 points. The app de-randomizes this new token and stores the token worth +2
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Figure 77: Walkthrough of the shopping process: 1) Scanning products, 2) selecting up-
dates for promotions, 3) details on privacy consequences of updates, 4) result
screen with QR code as proof of payment and for claiming rewards.

points. This earn protocol only uses the algebraic properties of the SPS-EQ signatures.

At some point, the user will have collected enough points to get some reward, and the
app then runs the spend protocol. For example, we assume the user collected 5 points,
whereas 4 points can be traded in for a free chocolate bar. For this, we utilize non-
interactive zero-knowledge arguments of knowledge (NIZKs), namely Schnorr-style Sigma
protocols [Sch90]. The app generates a remainder token holding the remaining amount
of 1 point. Then, it sends the current token with 5 points and the remainder token with 1
points together with an NIZK that proves the following statements: 1) The old token holds
at least 4 points (using a so-called range proof) and 2) The remainder token holds 4 points
less than the original token. After verifying the proof, the provider is convinced that the
new token has been correctly updated according to the rules of the promotion and signs
the remainder token, which becomes the new valid token of the user. Additionally, the
reward is added to the user’s basket. To prevent double-spending attacks, the old token is
invalidated through this procedure, which we explain later in more detail.

All these updates are privacy-preserving, meaning that updates cannot be linked to users,
and the exact points counts of the tokens are kept secret. Only necessary data is shared
with the provider. We achieve this by the randomization properties of SPS-EQ signatures,
the hiding properties of Pedersen commitments, and the zero-knowledge properties of the
NIZKs.

So far, we only considered the provider’s side as one abstract instance, which corresponds
to older versions of the incentive system [BBDE19; BEK+20]. However, it turned out
that applying this system to multiple stores, e.g., all stores of a supermarket chain, is
a non-trivial task: Simply deploying copies of the incentive system at each store is not
desirable, because the provider’s secret key would be shared among all stores, and hence
one compromised store would break the whole system. For availability reasons, we must
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keep some functionality in the stores such that users can pay their baskets and update tokens
in case of network outages. Our new multi-store infrastructure fulfills both requirements
(see Figure 78):

• There is exactly one provider in the cloud that holds the SPS-EQ secret key. Only
the provider can issue SPS-EQ signatures and thus create and update tokens. The
SPS-EQ secret key could be stored in a hardware security module (HSM).

• Every store has some standard digital signature key pair (ECDSA) that is trusted
in the incentive system’s public-key infrastructure. The store uses its secret key to
authorize the provider to execute a token update.
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Figure 78: Multi-store infrastructure.

First, the user communicates with one of the stores. The store verifies the user’s request
based on the user’s baskets and then issues an ECDSA signature to authorize a token
update. For example, if a user wants to earn points for some basket, the store computes and
signs the number of points to earn. This process functions in the store even if it is offline,
and the user can send the signature to the provider later to obtain an updated token. Then,
the provider again performs some verification, checks the store’s signature, and then gives
some SPS-EQ signature to the user. The user obtained a new token with a valid SPS-EQ
signature.

The new multi-store infrastructure enables us to keep the transaction history of users that
double-spend secret to the point of double-spending without needing the expensive and
complex forward tracing technique from [BEK+20]. Furthermore, during the implemen-
tation and discussions with Diebold Nixdorf, we identified the problem of scaling the
incentive system to multiple stores. Motivated by this, we introduced the multi-store
infrastructure that solved both our scaling problems and enabled clearing (i.e., the ability
to establish a pool of money that stores pay into when issuing points and can withdraw
from when giving out rewards). To summarize, implementing the incentive system made
real-world cryptographic challenges visible and lead to improving several aspects of the
incentive system.
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2.2 Implementation and the Role of Cryptimeleon

The implementation of the incentive system is provided under the open-source MIT
license on GitHub.28 It is powered by the Cryptimeleon project29 developed at Paderborn
University, a collection of cryptography-prototyping libraries written in Java. They provide
all necessary primitives, for instance, basic math structures, SPS-EQ signatures, and NIZKs.
Further, they natively support the MCL30 library that ships highly optimized bilinear curves
to all relevant architectures. The Android app is implemented in Kotlin with the framework
Jetpack Compose. The web services use Java and Spring Boot and are deployed via Docker
and Docker Compose; our web app is written in Vue.js.

While there is still room for optimizations and speedups, all implemented protocols run
in well under a second and thus are more than practical. We summarize our benchmark
results in Table 1.

Time (ms) Size (KB)
Protocol A∗ S† A∗ P† A∗ Total A→S S→A A→P P→A Total

Registration 0.0 0.5 0.7 1.9 10.0 13.0 0.4 0.9 1.0 0.8 3.1
Join 23.3 3.2 16.8 43.3 2.1 0.9 2.9
Earn 6.0 0.4 4.1 3.7 14.2 28.4 0.5 0.8 1.9 0.9 4.0
Spend 47.7 21.4 0.5 24.0 15.1 108.7 12.0 1.0 12.3 1.0 26.4

Table 1: Benchmarks for simple point-collection promotion. Times averaged over 1000
runs on Google Pixel 5 ∗and M1 Macbook Pro †. Message sizes were recorded
with Wireshark. Abbreviations: app (A), store (S), provider (P).

3 Impact and Outlook

Right now, privacy is under attack by surveillance capitalism: Corporations collect data
about people on a large scale, analyze it, create comprehensive user profiles, and then use
those profiles for profit, usually via targeted advertisement. This data collection is already
pervasive online. Additionally, digital incentive systems bring data collection to even more
areas of everyday life, namely offline shopping.

Even if the provider of a traditional incentive system has good intentions, users have no
agency over the data they hand over each time they interact with the incentive system. It is
entirely possible, perhaps even likely, that the collected data will eventually be hacked or
leaked, or that the provider changes its strategy and starts abusing the collected data.

Privacy-preserving incentive systems, such as the one we have developed, play a crucial
role in solving the privacy issues of traditional incentive systems: Users gain cryptographic
guarantees that their data cannot be collected by the provider. From the point of view
of the provider, a privacy-preserving incentive system still offers all the (non-invasive)

28https://github.com/cryptimeleon/incentive-system
29https://cryptimeleon.org
30https://github.com/herumi/mcl
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benefits for participating stores, giving them a way to reward loyalty, gamify shopping
through points, or incentivize the purchase of certain products.

Unfortunately, right now, there seems to be insufficient incentive for stores to deploy a
privacy-preserving system instead of one that collects as much data as possible. While
users would unequivocally prefer a privacy-preserving solution, in practice, sufficiently
many users are ignorant or apathetic towards privacy and are willing to participate in
systems without any expectation of privacy. Providers, of course, prefer collecting data
over not collecting data. There are two possible ways out of this situation. First, we (as
a society) can educate users about the dangers of the unmitigated collection of personal
data. If sufficiently many users demand privacy, privacy-preserving systems will gain
traction. Second, we can prescribe a privacy-preserving system through law. The GDPR
has been incredibly impactful regarding data collection and user consent. In the same vein,
mandating the use of privacy-preserving systems could be a highly effective consumer
protection law. Projects such as ours take the first important step towards this, proving that
such systems can be built with reasonable effort. This is crucial information for lawmakers,
who would be understandably hesitant to outlaw systems with no viable alternative.

Projects such as this one are also valuable because they bring together practical aspects
and academia. Often, academia only supplies the very first step for building new systems:
the very basic ideas. These ideas are motivated and illustrated by idealized scenarios
and aim to answer fundamental questions rather than supply a comprehensive blueprint
for building concrete systems. As a second step, it is then on the industry to take the
academic answers and refine them into a real system. As evidenced by this project, it is
sometimes fruitful to involve academia in the second step. This allows the academic side
to revisit their idealized assumptions (using insights from the industry) and to improve
upon their answers. For example, our new infrastructure with support for multiple stores is
a direct result of requirements from our industry partner, improving and even simplifying
the system we have built based on idealized assumptions. It is also important to test
and benchmark constructions in software for demonstration. Not only does the resulting
software serve as a demonstrator, showing that building such systems is realistic, but the
process of implementing the system also forces one to consider crucial details previously
ignored. Those may even represent future research opportunities or collaboration with
industry partners on related topics.

While our system proves that a privacy-preserving approach to incentive systems is viable,
there are some open research questions to consider in the future: (1) How we can guard
our system against adversaries with access to a hypothetical large quantum computer?
(2) What are further applications for the techniques we used for incentive systems (e.g.,
electronic cash)? (3) How can we make the public more cognizant of the privacy issues of
currently deployed systems, and of the alternatives enabled by modern cryptography?
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