
LitCQD: Multi-Hop Reasoning in Incomplete
Knowledge Graphs with Numeric Literals

Caglar Demir[0000−0001−8970−3850], Michel Wiebesiek, Renzhong Lu,
Axel-Cyrille Ngonga Ngomo[0000−0001−7112−3516], and

Stefan Heindorf[0000−0002−4525−6865](�)

Paderborn University, Germany
{caglar.demir@, renzhong@mail., axel.ngonga@, heindorf@}upb.de,

michel.wiebesiek@mailbox.org

Abstract. Most real-world knowledge graphs, including Wikidata, DB-
pedia, and Yago are incomplete. Answering queries on such incomplete
graphs is an important, but challenging problem. Recently, a number of
approaches, including complex query decomposition (CQD), have been
proposed to answer complex, multi-hop queries with conjunctions and
disjunctions on such graphs. However, these approaches only consider
graphs consisting of entities and relations, neglecting literal values. In this
paper, we propose LitCQD—an approach to answer complex, multi-hop
queries where both the query and the knowledge graph can contain nu-
meric literal values: LitCQD can answer queries having numerical answers
or having entity answers satisfying numerical constraints. For example, it
allows to query (1) persons living in New York having a certain age, and
(2) the average age of persons living in New York. We evaluate LitCQD
on query types with and without literal values. To evaluate LitCQD, we
generate complex, multi-hop queries and their expected answers on a
version of the FB15k-237 dataset that was extended by literal values.

1 Introduction

Knowledge Graphs (KGs) such as Wikidata [30], DBpedia [3], and YAGO [25]
have been of increasing interest in both academia and industry, e.g., for major
question answering systems [1, 9, 27] and for intelligent assistants such as Amazon
Alexa, Siri, and Google Now. Natural language questions on such KGs are typically
answered by translating them into subsets of First-Order Logic (FOL) involving
conjunctions (∧), disjunctions (∨), and existential quantification (∃) of multi-
hop path expressions in the KGs. However, this approach to modeling queries
has an important intrinsic flaw: Almost all real-world KGs are incomplete [8,
10, 20]. Traditional symbolic models, which rely on sub-graph matching, are
unable to infer missing information on such incomplete KGs [12]. Hence, they
often return empty answer sets to queries that can be answered by predicting
missing information. Hence, several approaches (e.g., GQE [12], Query2Box [22],
and CQD [2]) have recently been proposed that can query incomplete KGs
by performing neural reasoning over Knowledge Graph Embeddings (KGEs).

2 C. Demir et al.

However, all the aforementioned models operate solely on KGs consisting of
entities and relations and none of them supports KGs with literal values such
as the age of a person, the height of a building, or the population of a city.
Taking literal values into account, however, has been shown to improve predictive
performance in many tasks [13, 18].

In this paper, we remedy this drawback and propose LitCQD, a neural
reasoning approach that can answer queries involving numerical literal values
over incomplete KGs. LitCQD extends CQD by combining a KGE model (e.g.,
ComplEx-N3 [19]) that predicts missing entities/relations with a literal KGE
model (e.g., TransEA [31]) able to predict missing numerical literal values.
Therewith, LitCQD can mitigate missing entities/relations as well as missing
numerical values to answer various types of queries. Moreover, we increase the
expressiveness of queries that can be answered on KGs with literal values by
allowing queries (1) to contain filter restrictions involving literals and (2) to ask
for predictions of numeric values (see Example 1).

Example 1. The query “Who (P?) is married to somebody (P) younger than
25? ” with a filter restriction “younger than 25” can be rewritten as P?.∃P,C :
hasAge(P,C) ∧ lt(C, 25) ∧married(P, P?).

To answer this query, we predict the age of all persons P in the knowledge graph
and check whether the condition “less than 25” is fulfilled. Then, all persons P?

married to persons P are returned.
To evaluate filter expressions such as “less than 25” on incomplete knowl-

edge graphs, we introduce continuous attribute filter functions (Section 4.1,
Equations 8–10) and improve them by introducing attribute existence checks
(Equations 11–12). We predict attribute values for a subset of entities that are
obtained via beam search with an attribute predictor (Section 4.2).

In our experiments (Section 5), we use a similar setup to Arakelyan et al.
[2], García-Durán and Niepert [11], Hamilton et al. [12] and use the FB15k-
237 dataset augmented with literals [11]. However, as previous work did not
contain queries with literal values, we generate such queries and their expected
answers. Our experiments suggest that LitCQD can effectively answer various
types of queries involving literal values, which was not possible before (Tables 3,
4). Moreover, our results show that including literal values during the training
process improves the query answering performance even on standard queries in
our benchmark (Table 2). Our contributions can be summarized as follows:

– Filter restrictions with literals: We propose an approach that can answer
multi-hop queries where numeric literals are used to filter valid answers (e.g.,
“return entities whose age is less than 25”).

– Prediction of literal values: We propose an approach that can predict the
numeric values of literals (e.g., “return mean age of married people’).

– Benchmark construction: We generate multi-hop queries with numeric literals
and their expected answers.

– Embeddings with literals: We show that using knowledge graph embeddings
that support literal values even yields better results for traditional queries
without literal values.

LitCQD: Multi-Hop Reasoning in Knowledge Graphs with Numeric Literals 3

2 Background and Preliminaries

In this section, we introduce knowledge graphs without literals and queries on
them, before introducing our approach with literals in Section 4.

2.1 Knowledge Graph without Literals

A knowledge graph (KG) without literals is defined as G = {(h, r, t)} ⊆ E ×R×E ,
where h, t ∈ E denote entities and r ∈ R denotes a relation [12, 22]. G can be
regarded as a FOL knowledge base, where a relation r ∈ R corresponds to a
binary function r̂ : E × E → {1, 0} and a triple (h, r, t) corresponds to an atomic
formula α = r̂(h, t) [2]. When it is clear from the context that r̂ denotes a binary
function, we may simply write r as in the following definitions.

2.2 Multihop Queries without Literals

Conjunctive Queries. A conjunctive graph query [2, 12, 22, 23] q ∈ Q(G) over G
is defined as

q = E? . ∃E1, . . . , Em : α1 ∧ α2 ∧ . . . ∧ αn, (1)

where

– αi = r(e, E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or
– αi = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E ̸= E′, r ∈ R.

In the query, the target variable E? and the existentially quantified variables
E1, . . . , Em are bound to subsets of entities E . The entities bound to E? represent
the answer nodes of the query. The conjunction α1 ∧ α2 ∧ . . . ∧ αn consists
of n atoms defined over relations r ∈ R, anchor entities e ∈ E and variables
E,E′ ∈ {E?, E1, . . . , Em}.

Example 2. The question “Which (D?) drugs are to interact with (P) proteins
associated with the diseases e1 and e2? ” can be represented as the query

q = D?.∃P : assoc(e1, P) ∧ assoc(e2, P) ∧ interacts(P,D?), (2)

where D?, P are bound to subsets of entities E , e1, e2 ∈ E are anchor entities,
and interacts, assoc ∈ R are relations.

The dependency graph of a query q ∈ Q(G) is defined over its query edges α1,
α2, . . . , αn with nodes being either anchor entities or variables [12]. Following
Hamilton et al. [12] and Arakelyan et al. [2], we focus on queries whose dependency
graph forms a Directed Acyclic Graph (DAG) with anchor entities being source
nodes and the target variable being the unique sink node (such queries are called
valid queries in previous work [2, 12]). Figure 2 (left) represents the dependency
graph of the query in Equation (2). Note that for simplicity, we use the term of
an entity in a KG interchangeably with a node in a dependency graph.

4 C. Demir et al.

e1

e2

P D?

assoc

assoc
interacts

e1

e2

p1

p2

p3

p4

d1

d2

d3

d4

assoc

assoc

interacts

interacts

assoc interacts

interactsassoc

assoc interacts
interacts

Fig. 1. Example query without literals (see Equation (2)). Dependency graph of query
(left) and symbolic query answering on an incomplete graph (right). Solid bold lines
represent paths leading to answer entities. Dashed lines represent missing triples.

The dependency graph of a query encodes the computation graph to obtain the
answer set JqK via projection P and intersection I operators [22]. Starting from a
set of anchor nodes (e.g., e1, e2), JqK is derived by iteratively applying P and/or I
until the unique sink target node (e.g.,D?) is reached. Given a set of entities S ⊆ E
and a relation r ∈ R, the projection operator is defined as P(S, r) := ∪e∈S {x ∈
E : r̂(e, x) = 1} where the binary function r̂ : E×E → {1, 0} indicates whether the
triple (e, r, x) exists in G.1 Given a set of entity sets {S1, S2, . . . , Sn}, Si ⊆ E , the
intersection operator I is defined as I({S1, S2, . . . , Sn}) := ∩n

i=1Si. Therefore, the
conjunctive query defined in Equation (2) can be answered via the computation

P
(
I
({

P({e1}, assoc),P({e2}, assoc)
})
, interacts

)
. (3)

In the example of Figure 2 (right), a traditional, symbolic approach yields the
answer set JqK = {d3, d4} although the complete answer set taking missing
triples into account would be JqK = {d2, d3, d4}. The result is obtained as follows:
Starting at the anchor entities e1 and e2, the entity p3 is the only entity for
which both assoc(e1, p3) and assoc(e2, p3) hold. Moving on from p3, a traditional,
symbolic approach can only reach the entities d3, d4 via the “interacts” relation,
but not the entity d2 because the edge (p3, interacts, d2) is missing. Note that d1
is not part of the answer set because both p1 and p2 are only associated with e1.

Existential Positive First-order (EPFO) Queries. An EPFO query q in its Dis-
junctive Normal Form (DNF) is a disjunction of conjunctive queries [2, 22]:

q = E? . ∃E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

n1
∧ · · · ∧ αd

nd
), (4)

where αj
i are defined as above. Its dependency graph is a DAG having three

types of directed edges: projection, intersection, and union; the union U of entity
sets S1, S2, . . . , Sn ⊆ E is U({S1, S2, . . . , Sn}) := ∪n

i=1Si.

1 When computing the ground truth answer on the complete graph, we check whether
(e, r, x) ∈ G (see details on query generation below and in Hamilton et al. [12]). When
performing neural reasoning, r̂ is approximated with a link predictor yielding a score
between 0 and 1.

LitCQD: Multi-Hop Reasoning in Knowledge Graphs with Numeric Literals 5

3 Related Work

In this section, we overview the state of the art with regards to knowledge graph
embeddings and neural query answering on incomplete knowledge graphs.

3.1 Knowledge Graph Embeddings and Literals

In the last decade, a plethora of knowledge graph embedding (KGE) models have
been successfully applied to tackle various tasks, including link prediction, relation
prediction, community detection, fact checking, and class expression learning [15–
17, 20, 24, 29]. KGE research has mainly focused on learning embeddings for
entities and relations tailored towards predicting missing entities/links, i.e.,
tackling single-hop queries [4, 6–8, 20, 26, 29, 33, 34]. Despite their effectiveness
in tackling single-hop queries, KGE models cannot be directly applied to answer
multi-hop queries because multi-hop query answering is a strict generalization [21].
Most KGE models do not incorporate literals (e.g., age of a person, height of
a person, or date of birth), but there has been a growing interest in designing
such models. For instance, Wu and Wang [32] propose TransEA by extending
the translation loss used in TransE [5] by adding the attribute loss as a weighted
regularization term. García-Durán and Niepert [11] propose KBLRN that is
based on relation features, numerical literals, and a KGE model. Kristiadi et al.
[18] propose LiteralE, which applies a non-linear parameterized function to merge
entity embeddings with numerical literals. Thereby, LiteralE is computationally
less demanding than KBLRN as it does not require any rule generation for
relation features and is more expressive than TransEA as TransEA integrates
the impact of literals linearly.

3.2 Neural Query Answering on Incomplete Knowledge Graphs

In recent years, significant progress has been made on querying incomplete KGs.
Hamilton et al. [12] laid the foundations for multi-hop reasoning with graph
query embeddings (GQE). Given a conjunctive query (e.g., Equation (2)), they
learn continuous vector representations for queries, entities, and relations and
answer queries by performing projection P and intersection I operations in the
embedding vector space. Ren et al. [22] show that GQE cannot answer EPFO
queries (see Equation (4)) since GQE does not model the union operator U .
Hence, they propose Query2Box that represents an EPFO query with a set of box
embeddings, where one box embedding is constructed per conjunctive subquery.
A query is answered by returning the entities whose minimal distance to one of
the box embeddings is smallest.

All the aforementioned models learn query embeddings and answer queries via
nearest neighbor search in the embedding space. However, learning embeddings
for complex, multi-hop queries involving conjunctions and disjunctions can be
computationally demanding. Towards this end, Arakelyan et al. [2] propose
complex query decomposition (CQD). They answer EPFO queries by decomposing

6 C. Demir et al.

them into single-hop subqueries and aggregate the scores of a pre-trained single-
hop link predictor (e.g., ComplEx-N3). Scores are aggregated using a t-norm and
t-conorm—continuous generalizations of the logical conjunction and disjunction [2,
14]. Their experiments suggest that CQD outperforms GQE and Query2Box; it
generalizes well to complex query structures while requiring orders of magnitude
less training data. Zhu et al. [35] highlight that CQD is the only interpretable
model among the aforementioned models as it produces intermediate results. In
this work, we extend CQD to answer multi-hop queries involving literals.

4 LitCQD: Multi-hop Reasoning with Literals

A knowledge graph with numeric literals (i.e., with scalar values), can be defined
as GA = {(h, r, t)} ⊂ (E × R × E) ∪ (E × A × R), where R ∩ A = ∅ and A and
R denote numeric attributes and real numbers, respectively [18]. The binary
function â : E × R 7→ {1, 0} indicates whether an entity has attribute a ∈ A and
we might just write a instead of â when this is clear from context. We categorize
EPFO queries q ∈ Q(GA) involving literals depending on the type of their answer
sets JqK: In Section 4.1, we define queries with entities as answer set JqK ⊆ E ;
in Section 4.2, we define queries with a literal value as answer JqK ∈ R.

4.1 Multihop Queries with Literals and Entity Answers

An EPFO query q on a KG with numeric literals (GA) can be defined as

q = E? . ∃E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

1 ∧ · · · ∧ αd
nd
), (5)

where

– αj
i = r(e, E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αj
i = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E ̸= E′, r ∈ R or

– αj
i = a(E,C) ∧ af (C, c), with E ∈ {E?, E1, . . . , Em}, C ∈ {C1, . . . , Cl},
a ∈ A, af ∈ {lt, gt, eq}, c ∈ R.

In the query, the target variable E? and the variables E1, . . . , Em are bound to
subsets of entities E and the variables C1, . . . , Cl are bound to numeric values
from R. The binary function r : E × E 7→ {1, 0} denotes whether a relation exists
between the two entities, a : E×R 7→ {1, 0} whether an attribution relation exists,
and af : R× R 7→ {1, 0} is one of the attribute filter conditions lt (less-than), gt
(greater-than), or eq (equal-to). For example, lt(20, 25) returns 1 because 20 ≤ 25.
To approximately answer queries defined with Equation (5) and assuming an
incomplete knowledge graph, we propose the following optimization problem:

argmax
E?,E1,...,Em

(
α1
1 ⊤ . . . ⊤ α1

n1

)
⊥ . . . ⊥

(
αd
1 ⊤ . . . ⊤ αd

nd

)
(6)

where

– αj
i = ϕr(e, E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

LitCQD: Multi-Hop Reasoning in Knowledge Graphs with Numeric Literals 7

E? C < 25hasAge

e1

e2

e3

22

24

27hasAge

hasAge

hasAge

Fig. 2. Example query with literals and entity answer (see Equation (7)). On the left,
the query’s dependency graph is shown and on the right, symbolic query answering on
an incomplete graph with literal values. Bold lines represent paths leading to answer
entities, dashed lines represent missing triples, solid existing triples.

– αj
i = ϕr(E,E

′), with E,E′ ∈ {E?, E1, . . . , Em}, E ̸= E′, r ∈ R or
– αj

i = ϕaf ,a(ϕa(E), c), with E ∈ {E?, E1, . . . , Em}, a ∈ A, af ∈ {lt, gt, eq},
c ∈ R,

and ϕr : E × E 7→ [0, 1] is a link predictor that predicts a likelihood of a link
between two entities via a relation r. ϕa : E 7→ R is an attribute predictor that
predicts a value of an attribute a given an entity. An attribute filter predictor
ϕaf ,a : R× R 7→ [0, 1] predicts a likelihood that the filter condition is met given
the predicted attribute value ĉ := ϕa(·) and the constant value c ∈ R specified in
the query. All three predictors are derived from a KGE model as described below.
A t-norm ⊤ : [0, 1]× [0, 1] 7→ [0, 1] is considered as a continuous generalization of
the logical conjunction [2, 14]. Given a t-norm ⊤, the complementary t-conorm
can be defined as ⊥(a, b) = 1 − ⊤(1 − a, 1 − b) [2]. Numerically, the Gödel t-
norm ⊤min(x, y) = min{x, y}, the product t-norm ⊤prod(x, y) = x · y, or the
Łukasiewicz t-norm ⊤Luk(x, y) = max{0, x + y − 1} can be used to aggregate
predicted likelihoods to obtain a query score [2]. With this formulation, various
questions involving numerical values can be asked on incomplete GA. For example,
the question “Which entities are younger than 25? ” can be represented as

q = E? . ∃C : hasAge(E?, C) ∧ lt(C, 25). (7)

The dependency graph of this query is visualized in Figure 2 (left). Let S? be the
entities bound to variable E?. Then the projection of S? with hasAge is performed
by an attribute prediction model ϕhasAge(S?) ∈ R|E| that predicts the value of
the attribute a for each entity in e ∈ E. The answer set is obtained by filtering
entities via ϕlt. A subgraph of GA satisfying this query is visualized in Figure 2
(right). While a symbolic approach only yields the answer set JqK = {e1}, our
approach involving link predictors can identify the full answer set JqK = {e1, e2}.

We solve the optimization problem in Equation (6) approximately with a
variant of beam search by greedily searching for sets of entities S?, S1, . . . Sm sub-
stituting the variables E?, E1, . . . , Em in a fashion akin to CQD [2]. In the example
in Equation (7), given the hasAge attribute, attribute values ĉ = ϕhasAge(e) ∈ R
are predicted for all entities e ∈ E . Next, likelihoods of fulfilling the filter condition
“less than 25” can be inferred via ϕlt(ĉ, 25). Finally, all entities are sorted by

8 C. Demir et al.

their query scores in descending order and the top k entities are considered to be
answers of q. It is important to note that LitCQD like CQD not only computes
the final answer but also intermediate steps leading to this answer. In this sense,
LitCQD can be considered an interpretable model.

Joint Training of Link and Attribute Predictors. Following Arakelyan et al. [2],
we use ComplEx-N3 [19] as entity predictor ϕr(·, ·). As attribute predictor ϕa(·),
we employ TransEA [31]. We jointly train the KGE models underlying both
models. The link predictor ComplEx-N3 has previously been found to work well
for multi-hop query answering [2] and to perform better than DistMult [2, 33]. In
a pilot study, we also experimented with the attribute predictor MTKGNN [28].
Overall, it achieved similar performance to TransEA, but we decided to move
forward with TransEA, because it slightly outperformed MTKGNN in terms of
MRR and required less parameters. KBLRN [11] and LiteralE [18] only compute
knowledge graph embeddings based on literal information, but they do not predict
the value of attributes which is required in our framework.

Attribute Filter Function without Existence Check. The attribute filter function
returns a score indicating the likelihood that the filter condition is met. First, we
define a preliminary version ϕ′af ,a of the function, which does not check whether
the attribute relation a actually exist for an entity. The function is defined case
by case. For the equal-to condition, i.e., for af = eq, we define it as

ϕ′eq,a(ĉ, c) :=
1

exp(|ĉ− c|/σa)
, (8)

where ĉ = ϕa(e), e ∈ E , c ∈ R is a numeric literal (e.g., 25 in Figure 2, left) and
σa denotes the standard deviation of Ca where Ca := {c ∈ R|â(e, c) = 1, e ∈ E}
are all literal values found on GA given an attribute a. With ϕ′eq,a(ĉ, c), we map
the difference between the predicted attribute value ĉ and the constant value
ĉ specified in the query into the unit interval [0, 1]. As the difference | ĉ − c |
approaches 0, ϕeq,a(ĉ, c) approaches 1. The division by the standard deviation σa
normalizes the difference | ĉ− c |. For the attribute filter function with less-than
(af = lt), we define

ϕ′lt(ĉ, c) :=
1

1 + exp((ĉ− c)/σa)
. (9)

As ĉ−c→ −∞, ϕlt(ĉ, c) → 1. Following Equation (9), the attribute filter function
with greater-than is defined as

ϕ′gt(ĉ, c) := 1− ϕlt(ĉ, c). (10)

We also experimented with a version where the standard deviation σa was not
computed per attribute but for all literal values independent of a, i.e., σ was
computed for

⋃
a∈A Ca. We picked the latter variant as default for our LitCQD

approach as it outperformed the former variant in our experiments.

LitCQD: Multi-Hop Reasoning in Knowledge Graphs with Numeric Literals 9

Attribute Filter Function with Existence Check. The preliminary attribute filter
function ϕ′af ,a assumes that the attribute relation a exists for each entity in the
knowledge base which is clearly not the case. Hence, we employ a model ϕexists,a(e)
that scores the likelihood that the attribute relation a exists for entity e. Then
the final attribute filter function ϕaf ,a is obtained by combining the attribute
existence predictor ϕexist,a(e) with the preliminary filter predictor ϕ′af ,a:

ϕaf ,a(ĉ, c) := ϕexists,a(e) · ϕ′af ,a(ĉ, c) (11)

Technically, the attribute existence predictor is realized by adding a dummy
entity eexists to the knowledge base along with dummy edges ra(e, eexists) if entity e
has an attribute relation a. Then, the existence of an attribute is predicted with
the link predictor as

ϕexists,a(e) := ϕra(e, eexists) (12)

Note that the dummy entity and the dummy relations are only added to the
train set but not the validation or test set.

4.2 Multihop Queries with Literals and Literal Answers

Here, we define an EPFO query q on an incomplete GA, whose answer JqK ∈ R is
a real number (instead of a subset of entities) as follows

q = ψ(C?) . ∃E?, E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

1 ∧ · · · ∧ αd
nd
), (13)

where ψ : 2R 7→ R is a permutation-invariant aggregation function and

– αj
i = r(e, E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αj
i = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E ̸= E′, r ∈ R or

– αj
i = a(E,C) ∧ af (C, c), with E ∈ {E?, E1, . . . , Em}, C ∈ {C?, C1, . . . , Cl}
a ∈ A, af ∈ {lt, gt, eq}, c ∈ R.

Variable bindings S?, S1, . . . , Sm for E?, E1, . . . , Em are obtained via the same
optimization problem as in Section 4.1. Then the set of values C? can be computed
by applying the attribute value predictor ϕa on the entities in S?.

With this formulation, various questions can be asked on incomplete GA. For
instance, the question “What is the average age of Turing Award (TA) winners? ”
can be answered by computing the mean of a set of numeric literals C?:

mean(C?).∃E? : winner(E?, turingAward) ∧ hasAge(E?, C?) (14)

Similarly, the question “What is the minimum age of Turing Award (TA) win-
ners? ” can be answered by computing the minimum of a set of numeric literals
C?:

min(C?).∃E? : winner(E?, turingAward) ∧ hasAge(E?, C?) (15)

Figure 3 visualizes a subgraph of GA to answer q defined in Equation (14). Having
found the binding S? = {e1, e2} for E?, to each e ∈ S?, we apply the attribute
predictor ϕwinner(e, turingAward) and average the results, yielding the answer
JqK = 22+24

2 = 23—in contrast to JqK = 22 by a symbolic approach that neglects
missing information.

10 C. Demir et al.

E? C?TA hasAgewinner

e1

e2

TA

22

24
winner

winner

winner

hasAge

hasAge

Fig. 3. Example of a query predicting attribute values (see Equation (14)). On the
left, the dependency graph of the query is shown, on the right a subgraph to answer q.
Dashed lines represent missing information. Bold lines represent paths leading to the
symbolic answer JqK = 22.

5 Experimental Results

After a brief description of the experimental setup, we evaluate the performance
of LitCQD on the query types shown in Table 1. Finally, we show the answers of
LitCQD for an example query. Our code is publicly available.2

5.1 Experimental Setup

Dataset and Query Generation. We use the FB15k-237 dataset augmented with
attributes as done by García-Durán and Niepert [11]. The dataset contains 12,390
entities, 237 entity relations, 115 attribute relations, and 29,229 triples. Queries
and their expected answers are generated as by Hamilton et al. [12]. The newly
introduced attribute filter conditions (af) are handled as follows: When checking
for equality (af (C, c) = eq(C, c)), we consider all entities whose attribute value
lies within one standard deviation from c as correct where the standard deviation
is computed per attribute relation a; when checking the less-than or greater-than
criterion, the criterion is checked exactly, i.e., all entities with attribute value
“≤ c” or “≥ c” are considered correct. In a preprocessing step, we normalize all
values of an attribute to the unit interval via min-max scaling. Table 1 gives an
overview of the newly introduced query types along with previous query types.

Hyperparameters. Per query type, we tried 16 different configurations on the
validation set and chose the best before applying the model to the test set. As
our framework is derived from the CQD framework, it allows two different opti-
mization algorithms: Continuous optimization (Co), Combinatorial optimization
(Beam); two t-norms: Gödel (min), product (prod); and 7 different beam sizes
k ∈ {22, 23, . . . , 28} for the combinatorial optimization algorithm. Each optimiza-
tion algorithm is computed for both of the t-norms resulting in 2 configurations
using the continuous optimization algorithm and 14 using the combinatorial
optimization algorithm as every beam size is evaluated for both t-norms.

5.2 Multihop Queries without Literals

In a first experiment (Table 2), we compare the performance of our approach
LitCQD to CQD [2] and Query2Box [22] on multihop entity queries without
2 https://github.com/dice-group/LitCQD

https://github.com/dice-group/LitCQD

LitCQD: Multi-Hop Reasoning in Knowledge Graphs with Numeric Literals 11

Table 1. Overview of different query types. Entity queries without literals were proposed
by Ren et al. [22]. Entity queries with literals and queries with literal answers are newly
proposed in this paper.

Multihop queries without literals

1p E? . r(e, E?)
2p E? . ∃E1 : r1(e, E1) ∧ r2(E1, E?)
3p E? . ∃E1E2.r1(e, E1) ∧ r2(E1, E2) ∧ r3(E2, E?)
2i E? . r1(e1, E?) ∧ r2(e2, E?)
3i E? . r1(e1, E?) ∧ r2(e2, E?) ∧ r3(e3, E?)
ip E? . ∃E1.r1(e1, E1) ∧ r2(e2, E1) ∧ r3(E1, E?)
pi E? . ∃E1.r1(e1, E1) ∧ r2(E1, E?) ∧ r3(e2, E?)
2u E? . r1(e1, E?) ∨ r2(e2, E?)
up E? . ∃E1.[r1(e1, E1) ∨ r2(e2, E1)] ∧ r3(E1, E?)

Multihop queries with literals and entity answers

ai E? . ∃C1.a(E?, C1) ∧ af (C1, c)
2ai E? . ∃C1C2.a1(E?, C1) ∧ af1 (C1, c1) ∧ a2(E?, C2) ∧ af2 (C2, c2)
pai E? . ∃C1.r(e, E?) ∧ a(E?, C1) ∧ af (C1, c1)
aip E? . ∃E1C1.a(E1, C1) ∧ af (C1, c1) ∧ r(E1, E?)
au E? . ∃C1C2.a1(E?, C1) ∧ af1 (C1, c1) ∨ a2(E?, C2) ∧ af2 (C2, c2)

Multihop queries with literals and literal answers

1ap mean(C?) . a(e, C?)
2ap mean(C?) . ∃E1.r(e, E1) ∧ a(E1, C?)
3ap mean(C?) . ∃E1E2.r1(e, E1) ∧ r2(E1, E2) ∧ a(E2, C?)

literals, which can be answered by all three models—in contrast to more expressive
queries that can only be answered by LitCQD. While CQD does not utilize literal
information and employs the vanilla ComplEx-N3 [19] model, LitCQD employs
a model combining ComplEx-N3 [19] with TransEA [31]. Table 2 shows that
LitCQD clearly outperforms CQD and Query2Box in terms of the mean reciprocal
rank (MRR), and Hits@k for k ∈ {1, 3, 10}.

5.3 Multihop Queries with Literals and Entity Answers

Table 3 shows the evaluation results for the new query types with filter restrictions
introduced in Section 4.1 (second block in Table 1). For the simple ai query, each
filtering expression (less-than, equals, greater-than) is evaluated separately; the
other query types contain all three filtering expressions. Except for aip queries,
all query types with literals can be answered with a performance of at least 0.256
which is comparable to query types without literals (cf. Table 2).

Moreover, we experimented with different variants of our model and performed
an ablation study. As described in Section 4.1, Equation (11), the attribute filter
predictor ϕaf ,a is a product of ϕexists,a(e) and ϕ′af ,a(ĉ, c). We performed three
experiments, where we replaced each/both of the two scoring functions by the

12 C. Demir et al.

Table 2. Query answering results for multihop queries without literals. Results were
computed for test queries over the FB15k-237 dataset and evaluated in terms of mean
reciprocal rank (MRR) and Hits@k for k ∈ {1, 3, 10}.

Method Average 1p 2p 3p 2i 3i ip pi 2u up

MRR

Query2Box 0.213 0.403 0.198 0.134 0.238 0.332 0.107 0.158 0.195 0.153
CQD 0.295 0.454 0.275 0.197 0.339 0.457 0.188 0.267 0.261 0.214
LitCQD (ours) 0.301 0.457 0.285 0.202 0.350 0.466 0.193 0.274 0.266 0.215

HITS@1

Query2Box 0.124 0.293 0.120 0.071 0.124 0.202 0.056 0.083 0.094 0.079
CQD 0.211 0.354 0.198 0.137 0.235 0.354 0.130 0.186 0.165 0.137
LitCQD (ours) 0.215 0.355 0.206 0.141 0.245 0.365 0.129 0.193 0.168 0.135

HITS@3

Query2Box 0.240 0.453 0.214 0.142 0.277 0.399 0.111 0.176 0.226 0.161
CQD 0.322 0.498 0.297 0.208 0.380 0.508 0.195 0.290 0.287 0.230
LitCQD (ours) 0.330 0.506 0.309 0.214 0.395 0.517 0.204 0.296 0.295 0.235

HITS@10

Query2Box 0.390 0.623 0.356 0.259 0.472 0.580 0.203 0.303 0.405 0.303
CQD 0.463 0.656 0.422 0.312 0.551 0.656 0.305 0.425 0.465 0.370
LitCQD (ours) 0.472 0.660 0.439 0.323 0.561 0.663 0.315 0.434 0.475 0.379

constant value 1. Table 3 shows that both components are crucial and the
performance drops drastically if one of them is removed.

Moreover, the Equation (8) and Equation (9) normalize the difference ĉ− c
by dividing by the standard deviation. Per default (first line), LitCQD employs
the universal standard deviation across all attributes of the knowledge base, i.e.,
the standard deviation σ of

⋃
a∈A Ca. As an alternative, we computed attribute-

specific standard deviations σa per Ca. Table 3 (last line) shows that using an
attribute-specific standard deviation instead of a universal standard deviation
leads to a lower performance on five query types, to the same performance on
one query type, and to a higher performance on only one query type.

5.4 Multihop Queries with Literals and Literal Answers

Table 4 evaluates the performance of queries asking for literal answers. The
predicted numeric values are compared to the actual numeric values in terms of
mean absolute error (MAE) and mean squared error (MSE). Interestingly, we
notice that the mean absolute error for the 2ap queries is lower than for 1ap
queries. This can be explained by the fact that for 1ap queries a single prediction
of an attribute value is made whereas 2ap queries average multiple predictions (the
number of the beam width). For 3ap queries, the mean absolute error increases
again because the relation path becomes longer and errors accumulate.

LitCQD: Multi-Hop Reasoning in Knowledge Graphs with Numeric Literals 13

Table 3. Query answering results for multihop queries with literals and entity answers.
Our best-performing model LitCQD is compared to variations thereof. Results were
computed for test queries over the FB15k-237 dataset and evaluated in terms of Hits@10.

Method ai-lt ai-eq ai-gt 2ai aip pai au

LitCQD 0.405 0.361 0.317 0.336 0.182 0.463 0.256

- w/o attribute filter predictor 0.280 0.005 0.237 0.148 0.124 0.421 0.054
- w/o attribute existence predictor 0.206 0.137 0.128 0.104 0.167 0.470 0.120
- w/o both 0.015 0.001 0.003 0.001 0.051 0.412 0.003
- with attribute-specific stdev 0.405 0.232 0.329 0.216 0.174 0.320 0.212

Table 4. Query answering results for multihop queries with literals and literal answers.
Results were compute for test queries over the FB15k-237 dataset and evaluated in
terms of mean absolute error (MAE) and mean squared error (MSE).

Method 1ap 2ap 3ap

MAE MSE MAE MSE MAE MSE

LitCQD 0.050 0.011 0.034 0.005 0.041 0.007

Mean Predictor 0.338 0.141 0.344 0.140 0.359 0.151

As a simple baseline, we also report the results of the model that always
predicts the mean value 1

|Ca|
∑

c∈Ca
c of the attribute a in the whole knowledge

graph (mean predictor in the table).

5.5 Example Query and Answers

As an illustration of the model’s query-answering ability, consider the query “What
are musicians from the USA born before 1972?” and its logical representation

E? . ∃C1./music/artist/origin(USA, E?)∧
/people/person/date_of_birth(E?, C1) ∧ lt(C1, 1972).

(16)

Table 5 lists the top 10 returned answers. Although the model confuses the band
Funkadelic as musicians with a date of birth, the model is able to produce a
reasonable ranking of entities. Out of these 10 entities, the entity Robert E. Lee
receives the highest score of 0.95 for the attribute portion of the query. The model
is confident that the entity has the attribute /people/person/date_of_birth
and that its value is less than 1972. The entities Dio, Rob Thomas, and Donna
Summer only receive a score of 0.39 for the attribute portion of the query because
their predicted values are closer to the threshold of 1972. The model is more
certain that the connection /music/artist/origin, USA exists for John Denver
compared to Robert E. Lee. While Linus Pauling is a chemist rather than a musi-
cian and the dataset does not contain the connection /music/artist/origin,
USA, the learned embeddings implicitly encode that Linus Pauling has another
connection to the entity USA via the /people/person/nationality relation.

14 C. Demir et al.

Table 5. Ranking of LitCQD’s top 10 answers to the query in Equation (16) including
their expected and predicted attribute value for date_of_birth. The star (*) indicates
attribute values unseen during training and the double star (**) refers to attribute
values not part of the dataset at all. The dash (–) indicates that an entity does not
have a date of birth.

Rank Answer Expected Attr. Predicted Attr.

1 Linus Pauling 1901.17 1900.06
2 John Denver 1944.00 1941.52
3 Funkadelic – 1925.21
4 Friedrich Hayek 1899.42 1900.04
5 Robert E. Lee 1807.08 1794.49
6 Dio 1942** 1935.59
7 Marvin March 1930.42 1922.07
8 Rob Thomas 1972* 1943.72
9 Ezra Pound 1885.83 1882.00
10 Donna Summer 1949.00 1948.55

6 Conclusion

In this paper, we propose LitCQD, a novel approach to answer multihop queries
on incomplete knowledge graphs with numeric literals. Our approach allows
answering queries that could not be answered before, e.g., queries involving literal
filter restrictions and queries predicting the value of numeric literals. Moreover, our
experiments suggest that even the performance of answering multihop queries that
could be answered before improves as the underlying knowledge graph embedding
models now take literal information into account. This is an important finding
as most real-world knowledge graphs contain millions of entities with numerical
attributes. In future work, we plan to further increase the expressiveness of our
queries, e.g., by supporting string literals, Boolean literals, and datetime literals.

Acknowledgements This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 860801, the Horizon Europe research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 101073307,
and the Horizon Europe research and innovation programme under grant agree-
ment No 101070305. This work has also been supported by the Ministry of Culture
and Science of North Rhine-Westphalia (MKW NRW) within the project SAIL
under the grant No NW21-059D and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation): TRR 318/1 2021 – 438445824.

Bibliography

[1] Adolphs, P., Theobald, M., Schäfer, U., Uszkoreit, H., Weikum, G.: YAGO-
QA: answering questions by structured knowledge queries. In: ICSC, pp.
158–161, IEEE Computer Society (2011)

LitCQD: Multi-Hop Reasoning in Knowledge Graphs with Numeric Literals 15

[2] Arakelyan, E., Daza, D., Minervini, P., Cochez, M.: Complex query answering
with neural link predictors. In: ICLR, OpenReview.net (2021)

[3] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.:
DBpedia: A nucleus for a web of open data. In: ISWC/ASWC, Lecture
Notes in Computer Science, vol. 4825, pp. 722–735, Springer (2007)

[4] Balazevic, I., Allen, C., Hospedales, T.M.: TuckER: tensor factorization
for knowledge graph completion. In: EMNLP/IJCNLP (1), pp. 5184–5193,
Association for Computational Linguistics (2019)

[5] Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.:
Translating embeddings for modeling multi-relational data. In: NIPS, pp.
2787–2795 (2013)

[6] Demir, C., Moussallem, D., Heindorf, S., Ngonga Ngomo, A.: Convolutional
hypercomplex embeddings for link prediction. In: ACML, Proceedings of
Machine Learning Research, vol. 157, pp. 656–671, PMLR (2021)

[7] Demir, C., Ngonga Ngomo, A.: Convolutional complex knowledge graph
embeddings. In: ESWC, Lecture Notes in Computer Science, vol. 12731, pp.
409–424, Springer (2021)

[8] Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d
knowledge graph embeddings. In: AAAI, pp. 1811–1818, AAAI Press (2018)

[9] Diefenbach, D., Tanon, T.P., Singh, K.D., Maret, P.: Question answering
benchmarks for Wikidata. In: ISWC (Posters, Demos & Industry Tracks),
CEUR Workshop Proceedings, vol. 1963, CEUR-WS.org (2017)

[10] Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality
of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semantic Web 9(1),
77–129 (2018)

[11] García-Durán, A., Niepert, M.: KBLRN: end-to-end learning of knowledge
base representations with latent, relational, and numerical features. In: UAI,
pp. 372–381, AUAI Press (2018)

[12] Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embed-
ding logical queries on knowledge graphs. Advances in neural information
processing systems 31 (2018)

[13] Heindorf, S., Blübaum, L., Düsterhus, N., Werner, T., Nandkumar Golani,
V., Demir, C., Ngonga Ngomo, A.: EvoLearner: learning description logics
with evolutionary algorithms. In: WWW, pp. 818–828, ACM (2022)

[14] Klement, E., Mesiar, R., Pap, E.: Triangular norms. position paper I: basic
analytical and algebraic properties. Fuzzy Sets Syst. 143(1), 5–26 (2004)

[15] Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Learning concept
lengths accelerates concept learning in ALC. In: ESWC, Lecture Notes in
Computer Science, vol. 13261, pp. 236–252, Springer (2022)

[16] Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Neural class
expression synthesis. In: ESWC, Lecture Notes in Computer Science, vol.
13870, pp. 209–226, Springer (2023)

[17] Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Neural class
expression synthesis in ALCHIQ(D). In: ECML, Lecture Notes in Computer
Science, Springer (2023)

16 C. Demir et al.

[18] Kristiadi, A., Khan, M.A., Lukovnikov, D., Lehmann, J., Fischer, A.: In-
corporating literals into knowledge graph embeddings. In: ISWC, Lecture
Notes in Computer Science, vol. 11778, pp. 347–363, Springer (2019)

[19] Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for
knowledge base completion. In: ICML, Proceedings of Machine Learning
Research, vol. 80, pp. 2869–2878, PMLR (2018)

[20] Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational
machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

[21] Ren, H., Dai, H., Dai, B., Chen, X., Zhou, D., Leskovec, J., Schuurmans, D.:
SMORE: knowledge graph completion and multi-hop reasoning in massive
knowledge graphs. In: KDD, pp. 1472–1482, ACM (2022)

[22] Ren, H., Hu, W., Leskovec, J.: Query2box: Reasoning over knowledge graphs
in vector space using box embeddings. In: ICLR, OpenReview.net (2020)

[23] Ren, H., Leskovec, J.: Beta embeddings for multi-hop logical reasoning in
knowledge graphs. In: NeurIPS (2020)

[24] Morim da Silva, A.A., Röder, M., Ngonga Ngomo, A.: Using compositional
embeddings for fact checking. In: ISWC, Lecture Notes in Computer Science,
vol. 12922, pp. 270–286, Springer (2021)

[25] Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowl-
edge. In: WWW, pp. 697–706, ACM (2007)

[26] Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: knowledge graph embedding by
relational rotation in complex space. In: ICLR (Poster), OpenReview.net
(2019)

[27] Tahri, A., Tibermacine, O.: DBPedia based factoid question answering
system. International Journal of Web & Semantic Technology 4(3), 23
(2013)

[28] Tay, Y., Tuan, L.A., Phan, M.C., Hui, S.C.: Multi-task neural network
for non-discrete attribute prediction in knowledge graphs. In: CIKM, pp.
1029–1038, ACM (2017)

[29] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex
embeddings for simple link prediction. In: ICML, JMLR Workshop and
Conference Proceedings, vol. 48, pp. 2071–2080, JMLR.org (2016)

[30] Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase.
Commun. ACM 57(10), 78–85 (2014)

[31] Wu, Y., Wang, Z.: Knowledge graph embedding with numeric attributes of
entities. In: Rep4NLP@ACL, pp. 132–136, Association for Computational
Linguistics (2018)

[32] Wu, Y., Wang, Z.: Knowledge graph embedding with numeric attributes of
entities. In: Rep4NLP@ACL, pp. 132–136, Association for Computational
Linguistics (2018)

[33] Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and
relations for learning and inference in knowledge bases. In: ICLR (Poster)
(2015)

[34] Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings.
In: NeurIPS, pp. 2731–2741 (2019)

LitCQD: Multi-Hop Reasoning in Knowledge Graphs with Numeric Literals 17

[35] Zhu, Z., Galkin, M., Zhang, Z., Tang, J.: Neural-symbolic models for logical
queries on knowledge graphs. In: ICML, Proceedings of Machine Learning
Research, vol. 162, pp. 27454–27478, PMLR (2022)

	LitCQD: Multi-Hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals

