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Abstract
Models computed using deep learning have been ef-
fectively applied to tackle various problems in many
disciplines. Yet, the predictions of these models are
often at most post-hoc and locally explainable. In
contrast, class expressions in description logics are
ante-hoc and globally explainable. Although state-
of-the-art symbolic machine learning approaches are
being successfully applied to learn class expressions,
their application at large scale has been hindered by
their impractical runtimes. Arguably, the reliance on
myopic heuristic functions contributes to this lim-
itation. We propose a novel neuro-symbolic class
expression learning model, DRILL, to mitigate this
limitation. By learning non-myopic heuristic func-
tions with deep Q-learning, DRILL efficiently steers
the standard search procedure in a quasi-ordered
search space towards goal states. Our extensive
experiments on 4 benchmark datasets and 390 learn-
ing problems suggest that DRILL converges to goal
states at least 2.7 times faster than state-of-the-art
models on all learning problems. The results of
our statistical significance test confirms that DRILL
converges to goal states significantly faster (p-value
< 1%) than state-of-the-art models on all bench-
mark datasets. We provide an open-source imple-
mentation of DRILL, including pre-trained models,
training and evaluation scripts.

1 Introduction
Transparency and explainability are quintessential to establish
trust in AI decisions [Holzinger et al., 2019; Samek and Müller,
2019]. Being able to explain Machine Learning (ML) deci-
sions becomes particularly important on the Web, the largest
and arguably most used information infrastructure available
to humanity with over 5 billion users [Statista, 2023]. A key
development over the last decade has been the increasing
availability of Web data in the form of partially large-scale
Knowledge Bases (KBs) in RDF [Hogan et al., 2021]. Ac-
cording to the 2022 crawl of WebDataCommons, roughly 50%
of the Web sites now contain (fragments of) RDF KBs. The
giant joint KB that can be extracted from the Web is known to
contain at least 82 billion assertions [Bizer et al., 2022].

E+ = {Female individuals having a sister }
E− = {Individuals having no sister} ⊤

Person . . . Place . . . Organisation

Person ⊓ ∃hasSibling.⊤

Male ⊓ ∃hasSibling.⊤ . . . Female ⊓ ∃hasSibling.Female

Figure 1: Illustration of traversing a quasi-ordered search space S.
Rectangles represent explored ALC expressions in S. Green filled
rectangles mark a sequence of ALC expressions that leads to a goal
expression.

This bundle of machine-processable knowledge has led to
Web-scale KBs being used in a plethora of applications rang-
ing from the discovery of protein functions [Kulmanov et
al., 2018] to content recommendation systems [Oramas et al.,
2016]. Devising explainable ML approaches for Web-scale
RDF KBs is hence an indisputable building block of a trust-
worthy Web. Here, we focus on scaling up Class Expression
Learning (CEL) over Description Logics (DLs) [Lehmann
and Hitzler, 2010]. The formal setting of CEL is as follows:
Given a knowledge base K in a DL (e.g., ALC), a set of pos-
itive individuals E+, and a set of negative individuals E−,
the goal is to learn a class expression H in the given DL
such that ∀p ∈ E+ K |= H(p) and ∀n ∈ E− K ̸|= H(n).
State-of-the-art symbolic models attempt to find H by refor-
mulating the CEL problem as a search problem in an infi-
nite quasi-ordered state space (S,⪯) [Bühmann et al., 2018;
Lehmann et al., 2011]. This search problem is tackled by iter-
atively exploring states from S, starting from an initial state
(e.g., ⊤) and aiming to terminate in a goal state H (see Exam-
ple 1 and Figure 1).

Example 1. Given a set of persons who have a sister as E+

and a set of persons who have no sister as E−, a CEL models
may traverse the sequence ⊤ ⇝ Person ⇝ Person ⊓
∃hasSibling.⊤⇝ Person⊓∃hasSibling.Female.

The search for a hypothesis H is steered by optimizing a
heuristic function that signals how well an expression fits a
learning problem and can be used as starting point for the next



steps of the search. However, heuristic functions of state-of-
the-art models determine the heuristic value of a state without
any consideration for possible future states (see Section 3).
We argue that this is an important drawback of current CEL
models, which incur exploring a large number of states to find
a goal state [Bin et al., 2016; Hitzler et al., 2020]. Current
remedies include applying (a) the redundancy elimination and
(b) expression simplification rules [Lehmann et al., 2011].
However, these treatments introduce additional computation
and often do not hinder impractical runtimes.

We address this drawback by proposing a neuro-symbolic
and refinement-based CEL approach, DRILL, that relies on a
deep Q-network to efficiently steer the search towards a goal
state while incorporating consideration for future states in im-
mediate actions. We tackle CEL by training DRILL to select
actions in a fashion that maximizes cumulative discounted
future rewards. Learning cumulative discounted future re-
wards of states decreases the runtimes of CEL and makes
the aforementioned remedies unnecessary. Moreover, DRILL
does not require length information pertaining to class expres-
sions to converge towards syntactically simpler expressions
because it implicitly learns to avoid syntactically complex
expressions during training. Importantly, leveraging a deep
Q-network enables DRILL to perform estimations in a batch
fashion by using multi-CPUs or -GPUs. Most existing state-
of-the-art models (e.g., CELOE, OCEL, ELTL, DL-FOIL, and
SParCEL) relies on a single CPU to perform estimations in a
sequential manner [Bühmann et al., 2018; Fanizzi et al., 2018;
Tran et al., 2017]. Not exploiting modern parallel compute
architectures can regarded as yet another hindrance to scaling
to large real-world KBs.

To train DRILL, we design an unsupervised training pro-
cedure based on [Mnih et al., 2015]. Through this training
procedure, DRILL can be trained on any KB in a DL (e.g.,
ALC or SROIQ) with no adjustment of its architecture. This
is because the training procedure requires only a refinement
operator, a retrieval function, and an embedding look-up op-
eration pertaining to a selected DL (see Algorithm 1). Our
experiments suggest that DRILL steers the search towards goal
states more efficiently than state-of the art approaches based
on refinement operators in 390 CEL problems on 4 benchmark
datasets. In particular, DRILL finds goal states at least 2.7
times faster than state-of-the-art approaches on all benchmark
datasets. The results of one- and two-sided Wilcoxon signed
rank tests confirm that the superior performance of DRILL is
significant at a confidence level of 99%. The main contribu-
tions of this paper are as follows:

1. We model CEL using refinement operators within the
framework of reinforcement learning.

2. We present a Q-network and a length-based refinement
operator to guide the search for class expressions within
an infinite state space.

3. We provide an open-source implementation of our frame-
work to foster research in the direction of combining
reinforcement learning with CEL.1

1https://github.com/dice-group/DRILL

2 Related Work
A plethora of works have investigated class expression
learning in Description Logics (DLs) [Hitzler et al., 2009;
Lehmann, 2010]. Most symbolic systems differ in the usage
of heuristic functions and the design of the refinement opera-
tors. For instance, Badea et al. [Badea and Nienhuys-Cheng,
2000] apply a top-down refinement operator to supervised
learning. YINYANG combines the previous approaches to
learn class expressions [Iannone et al., 2007]. DL-FOIL uses
unlabeled individuals to take the open-world assumption into
account [Fanizzi et al., 2018]. SParCEL employs upward and
downward refinements together [Tran et al., 2017].

DL-Learner [Lehmann, 2010; Lehmann, 2009] is regarded
as the most mature and recent system for CEL [Sarker and
Hitzler, 2019]. DL-Learner consists of several state-of-the-art
models, including OCEL, ELTL, and CELOE. These models
apply a proper and complete refinement operator to traverse
in a quasi-ordered state space (S,⪯). The search of a de-
sired class expression begins with the most general expres-
sion (⊤) and continues to more specific expressions. During
the search, CELOE prioritizes syntactically shorter expres-
sions (see Section 3.2), whereas OCEL and ELTL incorpo-
rate similar heuristic rules in their search. Aforementioned
models apply the redundancy elimination and the expression
simplification rules to decrease the runtimes. Although ap-
plying such fixed rules may reduce the number of explored
expressions, long runtimes and extensive memory require-
ments still prohibit large scale applications of state-of-the-art
approaches based on refinement operators [d’Amato, 2020;
Hitzler et al., 2020; Sarker and Hitzler, 2019]. All afore-
mentioned models rely on myopic heuristics. The goal of
this paper is to address exactly this drawback through deep-
Q-learning. As DL-Learner is regarded as the most mature
and recent system for CEL, we evaluate DRILL against CEL
models included in DL-Learner.

3 Preliminaries
3.1 Knowledge Bases and Description Logics
A KB is a pair K = (T ,A). T denotes the set of termi-
nological axioms describing the relationships between class
expressions (also called concepts) in K. Every terminological
axiom is of the form of A ⊑ B or A ≡ B where A and B are
class expressions. A denotes the set of assertions describing
relationships among individuals a, b ∈ NI via roles r ∈ NR

as well as instantiation relationships. Every assertion in A
must thus be of the form A(a) or r(a, b), where A is a concept,
r ∈ NR, and a, b ∈ NI . Here, we consider KBs in the DL
ALC (Attributive Language with Complements). The model-
theoretic semantics of ALC are given in the supplementary
material.

3.2 Class Expression Learning over ALC
We define CEL in a fashion akin to [Lehmann and Hitzler,
2010]. Let K = (T ,A) over ALC, the set E+ of positive
individuals, the set E− of negative individuals be given. The
goal of CEL is to find a class expression H in ALC that
satisfies

∀p ∈ E+ K |= H(p) ∧ ∀n ∈ E− K ̸|= H(n). (1)

https://github.com/dice-group/DRILL


The problem of finding H is transformed into a search problem
within a quasi-ordered state space (S,⪯), where each state
s ∈ S is a valid ALC class expression from all valid class
expressions denoted by C. Note that we use C and S inter-
changeably as S solely represents quasi-ordered C. Traversing
S is conducted via a downward refinement operator (also
called specialization) ρ : S → 2S defined as

∀s ∈ S : ρ(s) ⊆ {s′ ∈ S | s′ ⪯ s}. (2)

State-of-the-art models often begin their search towards an
H after a search tree is initialized with the most general state
(⊤) as a root node. This search tree is iteratively built by
selecting the node with the highest heuristic value and adding
its refinements as its children into a search tree. The key to an
efficient search in S is a heuristic function steering the search
towards an H . In current approaches, the heuristic function
depends on a retrieval function R : C → 2NI , which maps
a class expression to the set of its individuals. For example,
given s ∈ S and its a downward refinement s′ ∈ ρ(s), CELOE
computes the heuristic value

ϕCELOE(s, s
′) = Q(s′) + λ ·

[
Q(s′)− Q(s)

]
− β · |s′|, (3)

where β > λ ≥ 0, Q(·) denotes a quality function (e.g., the
F1 score), and |s′| stands for the length of s′. Through Q(·)
and | · |, ϕCELOE(·, ·) steers the search towards more accurate
and syntactically shorter expressions. The F1 score of s is
computed as

F1(s) =
|E+ ∩R(s)|

|E+ ∩R(s)|+ 1
2 (|E− ∩R(s)|+ |E+ \ R(s)|)

.

(4)

3.3 Reinforcement Learning
Reinforcement Learning (RL) has been successfully applied
in learning policies for sequential decision-making problems.
Notable examples range from deep Q-learning for Atari game-
playing [Mnih et al., 2015] to protein folding [Jumper et al.,
2021]. Sequential decision problems in RL are often modeled
as Markov Decision Processes (MDPs) applied to model the
synchronous interaction between an agent and an environment
in RL. Formally, a Markov Decision Process (MDP) is a 5-
tuple ⟨S,A,R,T, γ⟩, where S is a set of states, A is a set of
actions, R is a reward function, T is a transition function and
γ ∈ [0, 1) is the discount rate. Given a state st ∈ S at a time
t, an agent takes an action at from the set A(st) of actions
available on st. Upon taking an action, the agent receives a
reward rt and reaches the next state st+1. The probability of
reaching st+1 and receiving rt by taking action at in a given
st is assigned by T. This synchronous interaction between
agent and environment induces a trajectory τ . The discounted
return of the tth point in τ is defined as

Gt = rt + γrt+1 + γ2rt+2 + . . .+ γ|τ |−tr|τ |−t, (5)

where γ determines the present value of future rewards. The
goal of an RL agent is to select actions in a fashion that max-
imizes the cumulate discounted rewards [Sutton and Barto,
2018]. A policy π prescribes which action to take in a given
state. An optimal policy π∗ hence prescribes actions on any

state that maximize Gt. To obtain π∗, value functions are often
used. The action-value function Qπ : S× A→ R is defined
as

Qπ(s, a) = Eπ [Gt | st = s,at = a] . (6)

Using the Bellman equation, the optimal action-value function
Q∗ can be approximated:

Qi+1(s, a)← Qi(s, a) + α
[
r + γ max

a′∈A(s′)
Qi(s′, a′)−Qi(s, a)

]
,

(7)
where α ∈ (0, 1]. By means of the iterative update defined
in Equation (7), Qi converges to Q∗ as i → ∞ [Sutton and
Barto, 2018]. However, iteratively approximating exact op-
timal values is often computationally infeasible as |S| or |A|
increase. In practice, a neural network parameterized with
Θ is commonly applied to approximate the optimal action-
value function, Q(s,a; Θ) ≈ Q∗(s,a) [Riedmiller, 2005;
Mnih et al., 2015]. To this end, trajectories are often accumu-
lated as a RL agent interacts with an environment. A training
dataset D is iteratively built through appending trajectories.
Then, Θ is updated via minimizing the following loss function
(r + γmaxa′∈A(s′) Q(s′,a′; Θ) − Q(s,a; Θ))2 [Riedmiller,
2005]. Through introducing the experience replay mecha-
nism and using the target network idea, Mnih et al. [Mnih et
al., 2015] extend the previous work and design the following
Q-loss function

L(Θi) = E(s,a,r,s′)∼U(D)

[(
r + γmaxa′∈A(s′) Q(s′,a′; Θ−

i )−Q(s,a; Θi)
)2

]
,

(8)
where (s,a, r, s′) ∼ U(D) denotes drawing a data point uni-
formly at random from a set of most recent data points. Hence,
the size of D is fixed and it contains only most recent interac-
tions between an RL agent and an RL environment. Moreover,
Θi are the parameters of the neural network at iteration i and
Θ−

i is the parameters of the same neural network that is only
updated at every few steps. This framework (known as deep
Q-learning and deep Q-network) allows approximating Q∗
even in large state-action spaces.

4 Methodology
4.1 Motivation
Devising a suitable heuristic function is crucial in CEL. The
search of a H is steered by optimizing a heuristic ϕ : S×S 7→
R that is expected to signal how well refining a quasi-ordered
state and transition into one of its refinement state assists to
find a H . Equation (3) indicates that ϕ(s, s′) of state-of-the-art
approaches compute heuristic values without incorporating
any information pertaining to ρ(s′). This is analogous to
setting γ = 0 in Equation (5), i.e., to setting the present value
of future rewards to 0. This implies that heuristic functions of
state-of-the-art CEL models correspond to myopic RL agents,
whose only concern is to maximize immediate rewards [Sutton
and Barto, 2018]. To address this drawback, we reformulate
the CEL problem defined in Equation (1) as a problem of
maximizing the cumulative discounted future rewards defined
in Equation (5). To maximize the latter, we leverage the deep
Q-learning framework.



4.2 Quasi-ordered RL Environment
A RL environment is constructed via continuous vector rep-
resentations of quasi-ordered states. To obtain these repre-
sentations, we leverage pre-trained ConEx knowledge graph
embedding models provided by the Dice Embeddings frame-
work [Demir and Ngonga Ngomo, 2021]2. An embedding of
an ALC class expression corresponds to an embedding of the
set of individuals obtained via the retrieval functionR. This
embedding lookup operation is denoted with E(R(·)), where
E : 2NI 7→ R|2NI |×d and d denotes the size of an embedding
vector. A RL state s ∈ R|R(s)|×d is obtained by using R
with a pre-trained embedding model. For instance, the initial
state of this RL environment is represented with embeddings
of ⊤, i.e., embedding of all individuals E(R(⊤)). By this,
a RL environment can be constructed regardless of selected
Open World Assumption (OWA) or Closed World Assump-
tion (CWA), since R returns a set of individuals under any
of these assumptions. In this environment, we consider a RL
action a ∈ A(s) as an action of refining a quasi-ordered state
and transitioning to s′ ∈ ρ(s). Importantly, note that a RL
environment for more expressive DLs (e.g. SROIQ [Hor-
rocks et al., 2006]) can be readily constructed provided that
respectiveR(·), E(·), and ρ(·) for K over SROIQ are given.
This is also shown in the requirements of Algorithm 1. Here,
we focus on constructing a RL environment based on ALC as
ALC is often used in the related works.

4.3 DRILL
The standard deep Q-loss function defined in Equation (8)
cannot be directly applied in this quasi-ordered RL envi-
ronment, since the set of possible actions on a given RL
state is not fixed as in [Mnih et al., 2015]. To mitigate
this issue, we used the state-state Q function [Edwards et
al., 2020]. The state-state Q function allows avoiding redun-
dant states on RL environments, where the set of possible
actions is not fixed. As the number of redundant states in-
creases, using the state-state Q function often leads to more
favorable results than using the state-action Q function. The
ability of avoiding redundant states without requiring any ad-
ditional computation is particularly important for our purpose,
as many state-of-the-art symbolic models (CELOE, OCEL,
and ELTL) apply redundancy elimination techniques to re-
move redundant states from their search [Lehmann, 2010;
Lehmann et al., 2011]. Therefore, minimizing the state-state
Q function may permit incorporating consideration for future
states in immediate decisions and pruning redundant states
without additional computation. With these considerations in
mind, we designed the following loss function

L(Θi) = E

[(
r + γmaxx⪯s′ Q(s′, x, e+, e−; Θ−

i )−Q(s, s′, e+, e−; Θi)
)2

]
,

(9)
where the expectation w.r.t. (s, s′, r, e+, e−) ∼ U(D). To
minimize Equation (9), we adapt the deep Q-Network pro-
posed in [Mnih et al., 2015] as follows

ϕDRILL([s, s
′, e+, e−]; Θ) = f

(
vec(f

(
Ψ([s, s′, e+, e−]) ∗ ω)

)
·W

)
·H ,

(10)
2https://github.com/dice-group/dice-embeddings

where Θ = [ω,W,H] denotes trainable parameters. Two
quasi-ordered RL states s ∈ R|R(s)|×d, s′ ∈ R|R(s′)|×d are
obtained through applyingR(·) and E(·) consecutively. Simi-
larly, e+ ∈ R|E+|×d and e− ∈ R|E−|×d are obtained via E(·).
Note that E(·) returns a set of embedding vectors of size d. To
obtain permutation-invariant representations, we apply Ψ(·)
to convert a input into R4×d by averaging the embeddings of
its input. By doing so, the output of ϕDRILL is invariant to the
order of items in s, s′, e+, and e−. Moreover, f(·), vec(·), ∗
and ω correspond the rectified linear unit function, a flattening
operation, the convolution operation, and kernels in the convo-
lution operation. W and H denote two linear transformations,
respectively.

4.4 Rewards and Unsupervised Training
We base our reward function on the CELOE heuristic:

R(s, s′) =
{
maxreward, if F1-score(s′) = 1;

ϕCELOE(s, s
′), if F1-score(s′) < 1.

(11)

A reward of transitioning from RL state s to s′ is based on the
heuristic value of refining a quasi-ordered class expression s
and transitioning to s′ provided that s′ is not a class expres-
sion maximizing Equation (4). Through minimizing Equa-
tion (9) on D, DRILL is expected to steer the search towards
shorter class expressions without computing lengths of class
expressions. This stems from the fact that DRILL is trained
on rewards that involves the length information provided
within ϕCELOE. DRILL mitigates the myopic heuristic na-
ture of ϕCELOE through learning discounted cumulative future
rewards, i.e., discounted cumulative future CELOE heuristic
values. Importantly, this setting allows to avoid additional
computations required to determine a length of a class expres-
sion.

To generate learning problems for training, ρ(·) is iteratively
applied in a randomized depth-first search manner starting
from ⊤. During this randomized process, each state s satisfy-
ing the length constraint 1 ≤ |s| ≤ maxlen and |R(s)| > 0
is stored. In our experiments, we set maxlen = 5. To ensure
the heterogeneity of the set of learning problems, we perform
this task m times. For each stored state, we compute all pos-
itive E+ = R(s) and negative examples E− = NI \ R(s),
respectively. This operation often results in creating imbal-
anced E+ and E−, with |E−| >> |E+| being common. To
alleviate imbalanced examples, we randomly undersample the
largest set of examples so that |E+| = |E−|. The training
procedure is applied several times to generate several learn-
ing problems. For each learning problem, DRILL was trained
according to Algorithm 1. Importantly, required inputs of Al-
gorithm 1 confirm that DRILL can be readily used on KB in
more expressive DLs provided that ρ(·), R(·), and E(·) are
given.

We design a length-base refinement operator on ALC. The
operator is designed to make no use of subsumption informa-
tion but rather to consider concept length as ordering. This
in contrast to most refinement operators found the in the lit-
erature, which order concepts w.r.t. the subsumption relation.
By this operator, we measure the impact of the influence of
subsumption semantics on DRILL. Let NC be a finite set of

https://github.com/dice-group/dice-embeddings


Algorithm 1 DRILL with deep Q-learning training procedure

1: Require: E+, E−, ρ, R, R, E , Θ, M , T
2: for m := 1, M do
3: s, s ::= E(R(⊤)),⊤
4: for t := 1, T do
5: z := {s′ ∈ ρ(s)|E(R(s′))}
6: if ϵ > .1 then
7: Select random s′ ∈ z
8: else
9: Select s′ := argmaxs′∈zϕDRILL([s, s′, e+, e−]); Θ)

10: end if
11: Compute reward r := R(s, s′)
12: Append [s, s′, e+, e−, r] to D
13: Set s, s ::= s′, s′
14: end for
15: Reduce ϵ with a constant
16: if m % 5 == 0 then
17: Sample random minibatches from D
18: Compute loss of minibatches w.r.t. Equation (9)
19: Update Θ accordingly
20: end if
21: end for

named concepts and let R be a finite set of roles. We set
N+

C = NC ∪ {⊤,⊥}. The set S of all ALC class expressions
built upon NC and R is defined as follows: First, N+

C ⊂ S.
Now, let r ∈ R. If C and D are elements of S, then so are
(C ⊓D), (C ⊔D), ∃r.C, ∀r.C, and ¬C. We use the length
of concepts to define an ordering over the set S as follows:
∀C,D ∈ S : C ⪯ D iff |C| ≤ |D|. We define the operator ρ
over (S,⪯) as follows:

ρ(C) =



{∃r.C, ∀r.C,C ⊓ ⊤, C ⊔ ⊤,¬C,C} for any C

{∃r.ρ(X)} if C = ∃r.X
{∀r.ρ(X)} if C = ∀r.X
{¬ρ(X)} if C = ¬X
{ρ(X) ⊔ ρ(Y )} if C = X ⊔ Y

{ρ(X) ⊓ ρ(Y )} if C = X ⊓ Y

N+
C if C = ⊤

(12)

5 Experiments

5.1 Datasets and Experimental Setup

We used four benchmark datasets (Family, Carcinogenesis,
Mutagenesis and Biopax) [Bin et al., 2016; Fanizzi et al.,
2018]. We compared approaches via the F1-score, accu-
racy, and the runtime in a manner akin to [Lehmann and
Hitzler, 2010]. We used two standard stopping criteria for
all approaches. (i) We set the maximum runtime to 3 sec-
onds as models often reach good solutions within 1.5 sec-
onds [Lehmann and Hitzler, 2010]. (ii) Approaches were
configured to terminate as soon as they found a goal state (i.e.,
a state with F1-score = 1.0). Note that (i) was a soft constraint
as the runtime criterion is not checked during obtaining re-
finements in DL-Learner. If models do not find a goal state, a
most accurate state is retrieved.

6 Results
Benchmark Learning Problems Table 1 reports results
on 20 benchmark learning problems provided within DL-
Learner [Lehmann, 2009]. These results suggest that ap-
proaches yield similar performances in terms of F1-score and
accuracy on benchmark datasets. Yet, DRILL outperforms
all other approaches on all datasets w.r.t. its runtime. On all
benchmark datasets, DRILL requires at most 3.3 seconds to
reach state-of-the-art performance, while CELOE, OCEL, and
ELTL require at most 21 seconds, 23.5 seconds, and 22.1,
respectively. Overall, DRILL is at least 2.7 times more time-
efficient than CELOE, OCEL and ELTL on all standard learn-
ing problems. Moreover, during our experiments, we observed
that the F1-score of the best found concept in OCEL are not
reported. Results also indicate that CELOE, OCEL, and ELTL
do not terminate within the set maximum runtime. We delved
into their implementations in the DL-Learner framework and
observed that the maximum runtime criterion is not checked
until refinements of a given class expression are obtained (also
mentioned in Section 5). Note that we also evaluated DL-
FOIL and SParCEL in our initial experiments. However, both
approaches failed to terminate. Consequently, we could not
include DL-FOIL and SParCEL in our final set of experiments.

Convergence over Shorter Class Expressions Table 2
shows that DRILL and CELOE often converge towards shorter
concepts compared to OCEL and ELTL on 18 learning prob-
lems. This indicates that DRILL learned to converge over
shorter concepts without any additional computation, i.e.,
the overhead of computing lengths of concepts is mitigated.

In Section 6, we reported a sequence of quasi-ordered class
expressions terminating a final prediction for the Uncle learn-
ing used in Table 2. Section 6 highlights that for a given
learning problem, (a) each intermediate decision leading to
a prediction can be obtained, and (b) the trade-off between
runtimes and effectiveness. Note that (a) can be enriched
through collecting different sequences of quasi-ordered class
expressions terminating in Male ⊓ ∀hasSibling.⊤.

Random Learning Problems Table 4 reports results on 370
learning problems generated on benchmark datasets. These
results confirm that DRILL consistently finds a goal concept
faster than all other approaches. Importantly, DRILL was al-
ways able to find goal concepts in all learning problems. To
exclude any possible impact of the process of learning problem
generation, we conduct an experiment based on fully random
learning problems. Although, in practice, CEL problems are
not randomly generated, we were interested in quantify CEL
performance on random learning problems with different sizes.
Table 5 reports results on random learning problems with dif-
ferent sizes. Overall results indicate that OCEL does not find
any adequate solution as the size of the random inputs increase,
while ELTL performs poorly compared to CELOE and DRILL.
Moreover, DRILL and CELOE often return expressions having
similar F1-scores. Yet, DRILL often finds expressions having
higher accuracy in a better runtime. Hence, we can conclude
that it is improbable that the better performance of DRILL is
due to the experimental setting used in Section 5.



Dataset #LP DRILL CELOE OCEL ELTL

F1 Acc. RT F1 Acc. RT F1 Acc. RT F1 Acc. RT
Family 18 0.96 0.95 1.2 0.97 0.97 3.6 * 0.94 6.1 0.96 0.95 3.4
Carcinogenesis 1 0.71 0.56 3.3 0.71 0.56 21.1 † † 23.5 0.71 0.57 22.1
Mutagenesis 1 0.70 0.54 3.0 0.70 0.54 13.9 † † 13.2 0.70 0.54 13.2

Table 1: Results on benchmark datasets. #LP, F1, Acc, and RT denote the number of benchmark learning problems, the F1-score, the accuracy,
and runtime in seconds, respectively. † stands for no solution found by the respective approach. ∗ indicates that respective value is not reported
in DL-Learner. Bold entries denote best results.

Expression DRILL CELOE OCEL ELTL

L F1 Acc RT L F1 Acc RT L F1 Acc RT L F1 Acc RT
Aunt 6 0.83 0.79 3.3 6 0.83 0.79 5.7 16 * 1.00 5.8 1 0.80 0.76 2.8
Brother 1 1.00 1.00 0.2 1 1.00 1.00 2.9 1 * 1.00 5.8 5 1.00 1.00 3.8
Cousin 4 0.73 0.65 2.9 5 0.79 0.74 5.9 21 * 1.00 6.2 1 0.66 0.50 3.0
Daughter 1 1.00 1.00 0.2 1 1.00 1.00 2.9 1 * 1.00 5.9 3 1.00 1.00 2.9
Father 1 1.00 1.00 0.2 1 1.00 1.00 3.0 1 * 1.00 6.0 3 1.00 1.00 3.0
Granddaughter 1 1.00 1.00 0.2 1 1.00 1.00 3.1 1 * 1.00 5.3 1 1.00 1.00 2.9
Grandfather 1 1.00 1.00 0.2 1 1.00 1.00 2.9 1 * 1.00 5.7 1 1.00 1.00 3.0
Grandgranddaughter 1 1.00 1.00 0.2 1 1.00 1.00 2.9 1 * 1.00 5.9 7 1.00 1.00 3.0
Grandgrandfather 1 0.94 0.94 1.2 5 1.00 1.00 3.0 5 * 1.00 5.8 7 1.00 1.00 3.7
Grandgrandmother 9 0.94 0.94 2.3 5 1.00 1.00 3.1 5 * 1.00 5.9 7 1.00 1.00 3.7
Grandgrandson 1 0.92 0.92 3.5 5 1.00 1.00 5.7 5 * 1.00 6.6 7 1.00 1.00 3.1
Grandmother 1 1.00 1.00 0.2 1 1.00 1.00 2.8 1 * 1.00 5.9 1 1.00 1.00 3.1
Grandson 1 1.00 1.00 0.2 1 1.00 1.00 2.8 1 * 1.00 6.0 1 1.00 1.00 3.0
Mother 1 1.00 1.00 0.2 1 1.00 1.00 2.9 1 * 1.00 5.9 5 1.00 1.00 3.1
PersonWithASibling 1 1.00 1.00 0.2 1 1.00 1.00 2.8 1 * 1.00 7.0 1 1.00 1.00 3.1
Sister 1 1.00 1.00 0.2 1 1.00 1.00 2.8 1 * 1.00 5.8 5 1.00 1.00 3.0
Son 1 1.00 1.00 0.2 1 1.00 1.00 3.0 1 * 1.00 5.7 3 1.00 1.00 2.9
Uncle 5 0.90 0.89 2.9 5 0.90 0.89 5.9 † † † 5.8 1 0.88 0.87 3.9

Table 2: Results of single learning problems on the Family benchmark dataset. F1, Acc, and RT denote the F1-score, the accuracy, and
runtime in seconds, respectively. † stands for no solution found by the respective approach. ∗ indicates that respective value is not reported in
DL-Learner. Bold entries denote best results.

DRILL

Step Prediction F1 Acc. RT
1 ⊤ 0.67 0.67 0.1
2 Male 0.88 0.86 1.2
3 Male ⊓ ∃ hasSibling.⊤ 0.90 0.89 2.9

Table 3: A sequence of quasi-ordered concepts terminating in a most
accurate concept found for the Uncle learning problem.

Length-based vs Subsumption-based Refinement Opera-
tor We were interested in quantifying the impact of using
our length-based refinement operator instead of a subsumption-
based refinement operator on DRILL’s performance. To
that end, we replaced our length-based refinement operator
with CELOE’s refinement operator in the implementation of
DRILL. We chose this refinement operator because it per-
formed best in all of our previous experiments. All other
parameters remained constant. Our results are shown in Ta-
ble 6 and suggest that DRILL with the length-based refinement
operator (see Equation (12)) performs better in terms of F1,
Acc, and RT than DRILL with CELOE’s refinement operator.
These results suggest that our length-based refinement oper-
ator allows DRILL to steer the search towards more accurate

expressions efficiently, although F1 and Acc scores are on a
par. This is an important result as it suggests that the semantics
of the data are well captured in the embeddings used as input
to DRILL. Hence, DRILL follows more of a linear construction
of the class expression instead of an inference-based selection
as in previous works.

Statistical Hypothesis Testing We performed a Wilcoxon
signed-rank test. Our null hypothesis was that the perfor-
mances of DRILL and CELOE come from the same distri-
bution provided that a goal state is found. The alternative
hypothesis was that these results come from different distri-
butions. To perform the Wilcoxon signed-rank test (one-and
two-sided ), we used the runtimes of DRILL and CELOE on
benchmark datasets provided both approaches found a goal
state. We were able to reject the null hypothesis with a p-value
< 1%. Ergo, the superior runtime performance of DRILL is
statistically significant.

7 Discussion
Our results on all benchmark datasets suggest that DRILL
achieves state-of-the-art performance w.r.t. the quality of the
expressions found during the search, while outperforming the
state of the art significantly w.r.t. its runtime.



Dataset #LP DRILL CELOE OCEL ELTL

F1 Acc. T F1 Acc RT F1 Acc RT F1 Acc RT
Family 74 1.00 1.00 1.1 1.00 1.00 3.6 * 1.00 6.2 1.00 1.00 3.5
Carcinogenesis 100 1.00 1.00 2.2 1.00 1.00 17.3 * 1.00 20.6 1.00 1.00 19.1
Mutagenesis 100 1.00 1.00 1.4 1.00 1.00 10.0 * 0.98 12.9 0.97 0.97 10.2
Biopax 96 1.00 1.00 1.1 0.99 0.99 3.7 * 1.00 6.74 0.99 0.98 3.7

Table 4: Results on automatically generated learning problems. #LP, F1, Acc, and RT denote the number learning problems, the F1-score of
prediction, accuracy of prediction, and runtime in seconds, respectively. ∗ indicates that respective value is not reported in DL-Learner. Bold
entries denote best results.

Dataset DRILL CELOE OCEL ELTL

N F1 Acc RT F1 Acc RT F1 Acc RT F1 Acc RT

Family 1 0.97 0.95 0.4 0.97 0.95 3.6 * 1.00 6.1 0.97 0.95 3.6
10 0.77 0.73 1.3 0.78 0.72 6.3 † † † 0.67 0.51 3.3

Carcinogenesis 1 0.93 0.90 1.2 0.93 0.90 19.3 * 0.80 20.1 0.93 0.90 19.3
10 0.71 0.60 2.2 0.71 0.58 22.7 † † † 0.67 0.50 19.6

Mutagenesis 1 0.97 0.85 2.8 0.97 0.95 11.4 * 0.90 14.0 0.93 0.90 11.6
10 0.71 0.61 3.2 0.70 0.58 13.9 † † † 0.67 0.50 10.9

Biopax 1 0.93 0.90 1.0 0.93 0.90 4.9 * 0.80 7.3 0.93 0.90 4.7
10 0.73 0.65 3.7 0.72 0.60 7.1 † † † 0.67 0.50 4.4

Table 5: Results on fully randomly generated learning problems. E+ and E− are constructed via drawing N random individuals NI without
replacement, where |E+| = |E−|. † stands for no solution found by the approach and for the number learning problems, respectively. ∗
indicates that respective value is not reported in DL-Learner. Bold entries denote best results.

Dataset #LP Length-Based Ref. CELOE’s Ref.

F1 Acc RT F1 Acc RT
Family 74 1.00 1.00 1.1 0.97 0.97 1.25
Carcinogenesis 100 1.00 1.00 2.2 0.93 0.93 12.8
Biopax 96 1.00 1.00 1.1 0.99 0.99 1.68

Table 6: Results on comparing refinement operators in DRILL.

This improvement in performance is due to the following:
(i) deep Q-learning with the state-state Q loss function, (ii) the
length-based refinement operator and (iii) the efficient com-
putation of heuristic values. Deep Q-learning endows DRILL
with the ability of considering future rewards, while selecting
the next state for the refinement. State-of-the-art approaches
lack this ability. Through minimizing the state-state Q-loss
function, DRILL can detect redundant states without any ad-
ditional computation. To detect redundant states, CELOE,
OCEL, and ELTL require additional computations. Moreover,
DRILL learns to converge to simple expressions without com-
puting lengths of expressions, whereas other approaches yet
again perform addition computations (see Equation (3)). These
additional computations inherently increase their runtimes.
DRILL achieved state-of-the-art performance on all datasets
without over-parameterization and extensive parameter opti-
mization. Throughout our experiments, DRILL was trained
with a fixed configuration: 32 input channels, (3x3) kernel.
Consequently, we conjecture that performing a more extensive
hyperparameter optimization (e.g., via Hyperband [Li et al.,

2017]) is likely to improve the results even further. Moreover,
the Q-network used in DRILL can assign scores for the re-
finements in a batch manner, while the sequential nature of
state-of-the-art models precludes batch computation.

To exclude that our results were due to the approach used
to generate learning problems being akin to that used to train
DRILL, we carried out experiments with learning problems
whose positive and negative examples were selected randomly.
Although CEL problems are rarely constructed at random, we
aimed to check the hypothesis that our runtime improvement
was due to our approach to problem generation. Our results
clearly indicate that this is not the case.

8 Conclusion
We introduced DRILL, a novel neuro-symbolic CEL approach
to accelerate the problem of learning ALC concepts. DRILL
effectively detects adequate ALC concepts without excessive
exploration. Our experiments show that DRILL outperforms
state-of the art models in 390 CEL problems on 4 benchmark
datasets w.r.t. the quality of found concepts and the total com-
putational time. The results of our statistical tests (one- and
two-sided Wilcoxon signed rank tests) confirm the superior
performance of DRILL. We strongly believe that incorporating
neural models in CEL is worth pursuing further. Here, we fo-
cused mainly on using permutation-independent embeddings
tailored towards predicting quality of predefined ALC expres-
sions. Learning embeddings tailored towards more expressive
DLs expressions may also lead to valuable insights.
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