
Accelerating Concept Learning via Sampling
Alkid Baci∗

alkid@campus.uni-paderborn.de
Paderborn University
Paderborn, Germany

Stefan Heindorf∗
heindorf@uni-paderborn.de

Paderborn University
Paderborn, Germany

ABSTRACT
Node classification is an important task in many fields, e.g., predict-
ing entity types in knowledge graphs, classifying papers in citation
graphs, or classifying nodes in social networks. In many cases, it
is crucial to explain why certain predictions are made. Towards
this end, concept learning has been proposed as a means of inter-
pretable node classification: given positive and negative examples
in a knowledge base, concepts in description logics are learned that
serve as classification models. However, state-of-the-art concept
learners, including EvoLearner and CELOE exhibit long runtimes.
In this paper, we propose to accelerate concept learning with graph
sampling techniques. We experiment with seven techniques and tai-
lor them to the setting of concept learning. In our experiments, we
achieve a reduction in training size by over 90% while maintaining
a high predictive performance.

CCS CONCEPTS
• Computing methodologies→ Logical and relational learning;
Description logics; Supervised learning by classification.

KEYWORDS
Knowledge bases; Concept learning; Graph sampling
ACM Reference Format:
Alkid Baci and Stefan Heindorf. 2023. Accelerating Concept Learning via
Sampling. In Proceedings of the 32nd ACM International Conference on In-
formation and Knowledge Management (CIKM ’23), October 21–25, 2023,
Birmingham, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3583780.3615158

1 INTRODUCTION
Node classification is a crucial task in various fields such as knowl-
edge graphs, citation graphs, and social networks. The goal of node
classification is to predict the label of each node in a graph given
its features and the graph topology. Several concept learning ap-
proaches have been proposed to tackle this task [5, 7, 10, 12]: Given
a learning problem that consists of positive and negative examples
in a knowledge base, concepts in description logics [1] are learned
which serve as interpretable classification models. For example, the
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3615158

concept of Father in a knowledge base of family relationships might
be expressed as (¬𝑓 𝑒𝑚𝑎𝑙𝑒) ⊓ (∃ ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑.⊤). Applying this expres-
sion to each node allows binary classification with interpretable
concepts that can be easily understood by domain experts. Concept
learning has been successfully applied in various domains such as
bioinformatics [13], ontology engineering [11], and Industry 4.0 [2].

In this paper, we propose sampling techniques to speed up con-
cept learning. We tailor seven well-known graph sampling algo-
rithms including node samplers, edge-samplers, and exploration-
based samplers to the task of concept learning and we evaluate
them on the five largest datasets from the SML-Bench [17] frame-
work with the two popular concept learners EvoLearner [5] and
CELOE [10, 12]. Our experiments show that we can reduce the con-
cept learner’s training data by over 90% while maintaining a high
predictive performance. Our contributions can be summarized as
follows: (1)We show that concept learners can be executed on a frac-
tion of their original training data to speed up their runtime while
maintaining a high-predictive performance. (2) We tailor classic
graph-based samplers to the task of concept learning (Section 3.2).
(3) We investigate the trade-off between sample size and predic-
tive performance (Section 4.2). (4) We investigate and compare 14
different samplers for concept learning (Section 4.3).

2 RELATEDWORK
Concept learning. DL-Learner [10, 12] is a popular concept learn-

ing suite for learning concepts in description logics. Its best algo-
rithm CELOE is based on inductive logic programming and refines
the most general top concept (⊤) step by step by means of a refine-
ment operator. The more recent Ontolearn library encompasses the
state-of-the-art concept learner EvoLearner [5] which is based on
evolutionary algorithms and has been found to outperform CELOE,
e.g., on the SML benchmarking framework [17]. Neural Class Ex-
pression Synthesis [7, 8] considers concept learning as a translation
problem and “translates” positive/negative examples to a class ex-
pression. While it can predict a class expression in milliseconds, its
training data generation relies on search-based concept learners
like EvoLearner and CELOE and is the computational bottleneck
of the approach. In this paper, we show that search-based concept
learners can be trained on a fraction of their original training data
while maintaining a high predictive performance.

Graph sampling. Graph sampling techniques select a subset of
nodes and edges from an original graph generating a smaller graph
that retains important properties of the original graph [6]. Leskovec
and Faloutsos [14] have shown that sampling techniques can effi-
ciently and accurately sample real-world graphs, including social
networks and web crawls. Sampling techniques can be categorized
as node-based, edge-based, and exploration-based. In this paper,
we consider techniques from all three categories. Our samplers are

https://orcid.org/0009-0001-3279-0161
https://orcid.org/0000-0002-4525-6865
https://doi.org/10.1145/3583780.3615158
https://doi.org/10.1145/3583780.3615158
https://doi.org/10.1145/3583780.3615158

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Alkid Baci and Stefan Heindorf

Algorithm 1 Induce knowledge base from knowledge graph

Input: Knowledge base K represented as an OWL ontology,
knowledge graph G with triples (ℎ, 𝑟, 𝑡) ∈ E × R × E

Output: The new sampled knowledge base
Function: sample_KB(K,G):
1: for 𝑖𝑛𝑑 ∈ K .𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 () do
2: if 𝑖𝑛𝑑 ∉ G.𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 () then
3: K .𝑟𝑒𝑚𝑜𝑣𝑒_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (𝑖𝑛𝑑) ⊲ removes all links, too
4: else
5: for 𝑝𝑟𝑜𝑝 ∈ 𝑖𝑛𝑑.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 () do
6: for 𝑣𝑎𝑙𝑢𝑒 ∈ 𝑖𝑛𝑑.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑣𝑎𝑙𝑢𝑒𝑠 (𝑝𝑟𝑜𝑝) do
7: if (𝑖𝑛𝑑, 𝑝𝑟𝑜𝑝, 𝑣𝑎𝑙𝑢𝑒) ∉ G then
8: 𝑖𝑛𝑑.𝑟𝑒𝑚𝑜𝑣𝑒_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑣𝑎𝑙𝑢𝑒 (𝑝𝑟𝑜𝑝, 𝑣𝑎𝑙𝑢𝑒)
9: end if
10: end for
11: if 𝑖𝑛𝑑.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑣𝑎𝑙𝑢𝑒𝑠 (𝑝𝑟𝑜𝑝) is empty then
12: 𝑖𝑛𝑑.𝑟𝑒𝑚𝑜𝑣𝑒_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑝𝑟𝑜𝑝)
13: end if
14: end for
15: end if
16: end for
17: return K

inspired by the little ball of fur (LBoF) library [16]. However, the
library is limited to undirected and connected NetworkX and Net-
workKit graphs. Therefore, we adapt samplers from this library to
sample knowledge bases in theweb ontology language OWL andwe
reimplement their samplers for the owlready2 [9] and Ontolearn [5]
libraries. Moreover, we tailor the samplers to the task of concept
learning, yielding our “learning problem-centered” samplers.

3 SAMPLING
In this section, we introduce our samplers to sample OWL knowl-
edge bases, which serve as input for concept learners. All our sam-
plers follow the same basic structure: (1) We represent an OWL
knowledge base as a knowledge graph in the same way as pre-
viously done by EvoLearner [5], (2) we execute a sampling algo-
rithm on the knowledge graph, (3) we return the OWL knowl-
edge base induced by the sampled knowledge graph. Algorithm 1
shows how a sampled knowledge graph induces an OWL knowl-
edge base. A knowledge graph G is defined as a set of triples
G = {(ℎ, 𝑟, 𝑡)} ⊂ (E × R × E) where E denotes the set of enti-
ties and R the set of relations between entities—known as object
properties in OWL.

3.1 Basic Samplers
First, we describe the basic samplers that we employ, before we
describe how we tailor them to the task of concept learning.

Random nodes (RN). Entities are selected uniformly at random
from the set of all entities E in the knowledge graph. The knowledge
graph induced by the selected entities is returned.

Random edges (RE). First, an entity ℎ′ ∈ E is picked uniformly
at random. Then a triple (ℎ′, 𝑟 ′, 𝑡 ′) with ℎ as subject is chosen
uniformly at random from {(ℎ, 𝑟, 𝑡) ∈ G : 𝑟 ∈ R, 𝑡 ∈ E, ℎ = ℎ′}.

Algorithm 2 Random walk sampler

Input: Knowledge graph G with triples (ℎ, 𝑟, 𝑡) ∈ E × R × E,
number of nodes to sample 𝑁

Output: The new sampled knowledge graph
Function: random_walk_sampling(G, 𝑁):
1: G′ ← ∅; E′ ← ∅ ⊲ new empty KG
2: 𝑒 ← select random entity from E; E′ ← E′ ∪ {𝑒}
3: while |E′ | < 𝑁 do
4: 𝑆 ← {(ℎ, 𝑟, 𝑡) ∈ G|ℎ = 𝑒, 𝑟 ∈ R, 𝑡 ∈ E}
5: if 𝑆 = ∅ then
6: 𝑒 ← select random entity from E; E′ ← E′ ∪ {𝑒}
7: else
8: Select (ℎ′, 𝑟 ′, 𝑡 ′) from 𝑆 uniformly at random
9: E′ ← E′ ∪ {𝑡 ′}; G′ ← G′ ∪ {(ℎ′, 𝑟 ′, 𝑡 ′)}
10: 𝑒 ← 𝑡 ′

11: end if
12: end while
13: return G′

Random walks (RW) [4, 16]. The Random Walk (RW) sampler
(see Algorithm 2) randomly “walks” along the edges of the knowl-
edge graph. In each step, for a starting entity 𝑒 ∈ E, it picks a triple
(ℎ′, 𝑟 ′, 𝑡 ′) from 𝑆 := {(ℎ, 𝑟, 𝑡) ∈ K : ℎ = 𝑒, 𝑟 ∈ R, 𝑡 ∈ E} uniformly
at random and “walks” along the edge to entity 𝑡 ′. The next step
continues with 𝑡 ′ as a start entity. If an entity does not have an
outgoing edge, the walker continues from a new entity that is cho-
sen uniformly at random. While random walk sampling is a simple
and efficient exploration-based strategy, it suffers from at least two
problems that are tackled in the following by more sophisticated
samplers: (1) a random walker might get stuck in a loop and never
reaches parts of the graph that are far away or disconnected, (2)
an outgoing edge is always selected uniformly at random which
might not be the best choice.

Random walks with jumps (RWJ). This sampler is similar to RW.
The only difference is that in a step, it either follows the RW algo-
rithm or jumps to an arbitrary node. The decision is made randomly
according to a hyperparameter called “jump probability.” Unlike
RW, the jumps allow the walker to escape from loops or small
connected components of the graph.

Random walk with jumps and prioritization (RWJP). This sampler
does not select the neighbors uniformly at random but prioritizes
their selection based on the page rank [3] 𝑃𝑅(𝑒) of each node 𝑒 . A
triple from 𝑆 is selected according to the probability

𝑃 (select (ℎ′, 𝑟 ′, 𝑡 ′) ∈ 𝑆) = 𝑃𝑅(𝑡 ′)∑
(ℎ′,𝑟 ,𝑡) ∈𝑆 𝑃𝑅(𝑡)

.

Forest fire (FF) [14–16]. Forest fire simulates a forest fire spread-
ing through the nodes of a graph. The algorithm uses a parametrized
stochastic version of breadth-first-search, and has three hyperpa-
rameters: (1) the burning probability 𝑝 which determines the likeli-
hood that a node will be “burned” and added to the sample, (2) the
maximum size of the visited node backlog, and (3) the restart hop
size which determines the number of nodes that will be chosen to
continue the burning process once the current set of nodes in the
burning process has been exhausted.

Accelerating Concept Learning via Sampling CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

3.2 Learning Problem-centered Samplers
Given positive 𝐸+ and negative example entities 𝐸− in a knowledge
base, the task of a concept learner is to learn a concept in description
logics such that many of the positive entities are entailed by this
concept and many of the negative entities are not [5]. Let 𝐸 =

𝐸+ ∪ 𝐸− be all example entities—dubbed learning problem (LP)
entities. We exploit the LP entities to improve our basic samplers
by increasing the chances of the LP entities being sampled. We call
our modifications learning problem-centered (LPC) and describe
them below. While our LPC modifications of random node and edge
samplers focus on the close neighborhood of LP entities, our LPC
modifications of random walk and forest fire samplers may explore
entities further away from LP entities.

Random nodes and edges (RN-LPC, RE-LPC). The LPC modifi-
cation for RN aims to preserve the local neighborhood of the LP
entities. The local k-hop neighborhood of LP entities is fully pre-
served and nodes are only sampled from the𝑘+1-hop neighborhood.
Given the number of nodes 𝑁 that are to be sampled, 𝑘 is chosen
such that the size of the 𝑘-hop neighborhood is smaller than 𝑁 and
the size of the 𝑘 + 1-hop neighborhood is larger than 𝑁 . Similarly,
RE-LPC takes all edges from the 𝑘-hop neighborhood and samples
edges from the 𝑘 +1-hop neighborhood of learning problem entities
until the specified number of nodes has been reached.

Random walks (RW-LPC, RWJ-LPC, RWP-LPC, RWJP-LPC). The
idea behind the LPC modifications of RW, RWJ, RWP, and RWJP is
as follows: The walker starts from a LP entity 𝑒 ∈ 𝐸 and continues
as normal. When the walker reaches a node without neighbors, it
will restart again from one of the LP entities in 𝐸 which is chosen
uniformly at random. For RWJ and RWJP, the walker jumps only
to the LP entities. As it may happen with this approach that there
are not enough nodes to sample around the LP neighborhood, we
fall back to the original version of the sampler without the LPC
modification if no new node was added to the sample for a long time.
In our experiments, we chose 5% of the graph size as threshold,
i.e., we count the number of steps no new node was added and
when this number exceeds 5% of the entities in the graph, we do
not employ the LPC modification anymore. This ensures that the
algorithm terminates and the sample will contain the number of
nodes 𝑁 specified by the user.

Forest fire (FF-LPC). Our LPCmodification of FF works as follows:
We add all LP entities to the queue and the FF algorithm starts by
burning the first entity from the queue. Once a burning process
finishes for a LP entity, the algorithm will continue with the next
LP entity in the queue. In contrast to some of our other samplers,
FF will explore a larger neighborhood of the first LP entities and
there is no guarantee that all LP entities are considered before the
specified sample size has been reached.

4 EVALUATION
After giving a brief introduction to our evaluation setup, we inves-
tigate two research questions: (1) What is the trade-off between
sample size and predictive performance? (2) What is the best sam-
pler maintaining a high predictive performance of concept learners?

Table 1: Overview of the datasets in terms of number of in-
stances, axioms, atomic concepts, properties, expressiveness
and positive and negative examples (𝐸+, 𝐸−) [5].

Instances Axioms Atomic Object Data Expres- |𝐸+ | |𝐸− |
Dataset Concepts Prop. Prop. siveness

Carcinogenesis 22,372 74,566 142 4 15 ALC(D) 162 136
Hepatitis 6,812 79,935 14 5 12 ALE(D) 206 294
Mutagenesis 14,145 62,066 86 5 6 AL(D) 13 29
NCTRER 10,209 103,070 37 9 50 ALCI(D) 131 93
Premier League 11,859 2,155,439 10 14 202 ALEH(D) 40 41

4.1 Evaluation Setup
Datasets. We conduct our evaluation on the large SML-Bench

datasets [17] shown in Table 1. We omit smaller datasets as they
yielded trivial results and the goal of sampling is to reduce the size
of large datasets.

Concept learners. We employ the state-of-the-art concept learn-
ers EvoLearner [5] andCELOE [10, 12] tomeasure their performance
on the sampled datasets and thus evaluate the samplers for the task
of concept learning. We picked EvoLearner as an example of an
evolutionary algorithm and CELOE as an example of an inductive
logic programming approach that is based on refinement operators.
Both concept learners were run with their default hyperparame-
ters which were previously found to work well on the SML-Bench
datasets [5].

Robustness and evaluation metrics. For each setting, i.e., each
combination of sample size, sampler, and dataset, we perform 100
different samples. On each sample, we train the concept learner
and measure the concept learner’s performance on the original, un-
sampled dataset. A good sampler should generate a good training
set such that a concept learner trained on it achieves a high perfor-
mance. Following Heindorf et al. [5], we measure performance in
terms of 𝐹1-measure that indicates how well the learned concept
covers positive examples, but not negative examples. If a basic sam-
pler does not sample any positive example, we consider half of the
sampled nodes to be positive in order to guarantee that the concept
learner returns at least some result.

Hyperparameters. All our samplers allow specifying the number
of nodes to be sampled. Moreover, we employ the default hyper-
parameters from the little-ball-of-fur library:1 Random walk jump
utilizes the random jump probability that we set to 0.1. Forest fire
utilizes the burning probability 𝑝 = 0.4, a visited node backlog size
of 100, and the restart hop size 10.

Implementation. We implemented our samplers within the On-
tolearn library [5], which is based on owlready2 [9]. Our code is
publicly available.2

4.2 Sample Size vs. Predictive Performance
Figure 1 (top) investigates the trade-off between sample size and
runtime where the sample size is measured as percentage of nodes
from the original dataset and the runtime is measured in seconds.
1https://little-ball-of-fur.readthedocs.io/en/latest/
2https://github.com/alkidbaci/OntoSample

https://little-ball-of-fur.readthedocs.io/en/latest/
https://github.com/alkidbaci/OntoSample

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Alkid Baci and Stefan Heindorf

5%10%15%20%25%
15

20

25

30

RN-LPC

RWJ-LPC

RWJP-LPC

RE-LPC

FF-LPC

sample size

ru
nt

im
e(

s)

5%10%15%20%25%
10

15

20

25

RN-LPC

RWJ-LPC

RWJP-LPC

RE-LPC

FF-LPC

sample size

5%10%15%20%25%

0.25

0.5

0.75

RN-LPC

RWJ-LPC
RWJP-LPC

RE-LPC

FF-LPC

sample size

F1

5%10%15%20%25%

RN-LPC RWJ-LPC

RWJP-LPC

RE-LPC

FF-LPC

sample size

Figure 1: Average runtime in seconds (top) and 𝑭1-measure
(bottom) of EvoLearner on Carcinogenesis (left) andHepatitis
(right) depending on sampler and sample size.

We can observe that the runtime of EvoLearner decreases approxi-
mately linearly with sample size for the Carcinogenesis and Hep-
atitis datasets—and for other datasets and CELOE, too, which is not
shown in the figure due to space constraints.

Figure 1 (bottom) investigates the trade-off between sample size
and predictive performance. For the Carcinogenesis dataset (left),
most samplers maintain a high predictive performance until a sam-
ple size of about 10–15% when the performance starts to decrease;
for Hepatitis (right), the performance remains high throughout all
sample sizes and only slightly decreases. We attribute this effect to
the complexity of the learning problems. It was previously shown
that good solutions for Carcinogenesis require longer concepts than
good solutions for Hepatitis [5], i.e., Carcinogenesis is a more diffi-
cult learning problem. Moreover, we observed that the lengths of
the predicted concepts decrease with sample size until only trivial
solutions are predicted in the end.

4.3 Evaluation of Samplers
Table 2 compares different samplers in terms of EvoLearner’s and
CELOE’s performance for a sample size of 10%. For comparison,
we also show the performances when training on the full datasets,
i.e., a sample size of 100%. The results show that for many datasets
(Mutagenesis, NCTRER, Premier League) a perfect solution can still
be learned with only 10% of the original dataset—in particular when
using our learning problem-centered (LPC) samplers. If datasets
have a small number of positive/negative examples (Mutagenesis,
Premier League), LPC samplers tend to outperform non-LPC sam-
plers. For Carcinogenesis and Hepatitis, the best sampler depends
on the dataset and concept learner. For Carcinogenesis, the classic
samplers perform considerably better than the LPC samplers for
Evolearner whereas the LPC samplers perform better in the case of

Table 2: Comparison of samplers in terms of EvoLearner’s
and CELOE’s 𝑭1-measure on the full datasets and 10% thereof.

Samplers Carcinog. Hepatitis Mutag. NCTRER Prem. League

𝐹1-measure of EvoLearner for 100% sample size

No sampler 0.71 ± 0.01 0.75 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

𝐹1-measure of EvoLearner for 10% sample size

RN 0.59 ± 0.20 0.45 ± 0.13 0.56 ± 0.32 0.99 ± 0.01 0.76 ± 0.22
RE 0.68 ± 0.02 0.59 ± 0.02 0.85 ± 0.19 0.99 ± 0.01 0.66 ± 0.04
RW 0.65 ± 0.05 no result no result 0.96 ± 0.9 0.97 ± 0.03
RWJ 0.64 ± 0.10 0.58 ± 0.09 0.57 ± 0.26 0.97 ± 0.08 0.97 ± 0.05
RWP 0.65 ± 0.09 no result no result 0.98 ± 0.06 0.93 ± 0.10
RWJP 0.63 ± 0.11 0.59 ± 0.10 0.56 ± 0.21 0.98 ± 0.04 0.91 ± 0.14
FF 0.56 ± 0.11 0.62 ± 0.11 0.49 ± 0.16 0.73 ± 0.19 0.99 ± 0.01

RN-LPC 0.48 ± 0.22 0.37 ± 0.14 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01
RE-LPC 0.48 ± 0.32 0.58 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01
RW-LPC 0.50 ± 0.28 no result no result 1.00 ± 0.00 1.00 ± 0.00
RWJ-LPC 0.50 ± 0.28 0.62 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
RWP-LPC 0.48 ± 0.29 no result no result 1.00 ± 0.00 1.00 ± 0.00
RWJP-LPC 0.50 ± 0.29 0.62 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
FF-LPC 0.42 ± 0.28 0.56 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01

𝐹1-measure of CELOE for 100% sample size

No sampler 0.71 ± 0.00 0.70 ± 0.01 0.92 ± 0.00 0.98 ± 0.00 0.66 ± 0.00

𝐹1-measure of CELOE for 10% sample size

RN 0.46 ± 0.25 0.43 ± 0.17 0.35 ± 0.24 0.97 ± 0.05 0.66 ± 0.00
RE 0.54 ± 0.22 0.58 ± 0.03 0.79 ± 0.20 0.98 ± 0.04 0.64 ± 0.01
RW 0.45 ± 0.25 no result no result 0.93 ± 0.12 0.66 ± 0.00
RWJ 0.48 ± 0.22 0.55 ± 0.12 0.32 ± 0.21 0.95 ± 0.09 0.66 ± 0.00
RWP 0.47 ± 0.24 no result no result 0.98 ± 0.06 0.66 ± 0.00
RWJP 0.42 ± 0.26 0.56 ± 0.11 0.33 ± 0.19 0.96 ± 0.08 0.66 ± 0.00
FF 0.56 ± 0.12 0.63 ± 0.07 0.15 ± 0.19 0.60 ± 0.18 0.66 ± 0.00

RN-LPC 0.62 ± 0.14 0.53 ± 0.12 1.00 ± 0.00 0.98 ± 0.00 0.66 ± 0.00
RE-LPC 0.33 ± 0.30 0.57 ± 0.04 0.98 ± 0.01 0.98 ± 0.00 0.66 ± 0.23
RW-LPC 0.55 ± 0.23 no result no result 0.98 ± 0.00 0.66 ± 0.00
RWJ-LPC 0.54 ± 0.26 0.62 ± 0.04 1.00 ± 0.00 0.98 ± 0.00 0.66 ± 0.00
RWP-LPC 0.59 ± 0.21 no result no result 0.98 ± 0.00 0.66 ± 0.00
RWJP-LPC 0.51 ± 0.26 0.61 ± 0.04 1.00 ± 0.00 0.98 ± 0.00 0.66 ± 0.00
FF-LPC 0.42 ± 0.27 0.62 ± 0.05 0.98 ± 0.02 0.98 ± 0.00 0.66 ± 0.00

CELOE. When a sampler gets stuck and does not reach the specified
number of nodes to be sampled, we indicate this with “no results”
in the table. A better predictive performance often goes hand in
hand with a lower standard deviation.

A manual error analysis revealed that sampling makes it par-
ticularly challenging to learn concepts that contain cardinality re-
strictions, such as “≤ 3 hasAtom.⊤” which denotes “nodes that are
connected via the hasAtom relation to at most 𝑛 = 3 other nodes.”
On the sampled graphs, often lower thresholds 𝑛 are learned than
on the full graphs. We leave it to future work to develop tailored
solutions to this problem.

5 CONCLUSIONS
In this paper, we propose the usage of graph samplers to speed up
concept learners on knowledge bases. We experiment with classic
graph samplers such as randomwalks and we tailor them to concept
learning by emphasizing the positive and negative examples in the
sampling process—dubbed learning problem-centered samplers.
Our results show that the concept learner’s training data can often
be reduced while maintaining a high predictive performance. In
the future, we will apply our sampling techniques to large-scale
knowledge graphs such as Wikidata, DBpedia, and YAGO.

Accelerating Concept Learning via Sampling CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

REFERENCES
[1] Franz Baader, Ian Horrocks, and Ulrike Sattler. 2004. Description logics. Springer.
[2] Simon Bin, Patrick Westphal, Jens Lehmann, and Axel Ngonga. 2017.

Implementing scalable structured machine learning for big data in the SAKE
project. In IEEE BigData. IEEE Computer Society, 1400–1407.

[3] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Comput. Networks 30, 1-7 (1998), 107–117.

[4] Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina Markopoulou. 2010.
Walking in Facebook: A Case Study of Unbiased Sampling of OSNs. In
INFOCOM. IEEE, 2498–2506.

[5] Stefan Heindorf, Lukas Blübaum, Nick Düsterhus, Till Werner,
Varun Nandkumar Golani, Caglar Demir, and Axel-Cyrille Ngonga Ngomo. 2022.
EvoLearner: Learning Description Logics with Evolutionary Algorithms. In
WWW. ACM, 818–828.

[6] Pili Hu and Wing Cheong Lau. 2013. A Survey and Taxonomy of Graph
Sampling. CoRR abs/1308.5865 (2013).

[7] N’Dah Jean Kouagou, Stefan Heindorf, Caglar Demir, and Axel-Cyrille
Ngonga Ngomo. 2023. Neural Class Expression Synthesis. In ESWC (Lecture
Notes in Computer Science, Vol. 13870). Springer, 209–226.

[8] N’Dah Jean Kouagou, Stefan Heindorf, Caglar Demir, and Axel-Cyrille
Ngonga Ngomo. 2023. Neural Class Expression Synthesis in ALCHIQ(D). In

ECML/PKDD (Lecture Notes in Computer Science). Springer.
[9] Jean-Baptiste Lamy. 2017. Owlready: Ontology-oriented programming in

Python with automatic classification and high level constructs for biomedical
ontologies. Artif. Intell. Medicine 80 (2017), 11–28.

[10] Jens Lehmann. 2009. DL-Learner: Learning Concepts in Description Logics. J.
Mach. Learn. Res. 10 (2009), 2639–2642.

[11] Jens Lehmann, Sören Auer, Lorenz Bühmann, and Sebastian Tramp. 2011. Class
expression learning for ontology engineering. J. Web Semant. 9, 1 (2011), 71–81.

[12] Jens Lehmann and Pascal Hitzler. 2010. Concept learning in description logics
using refinement operators. Mach. Learn. 78, 1-2 (2010), 203–250.

[13] Jens Lehmann and Johanna Völker. 2014. Perspectives on Ontology Learning.
Studies on the Semantic Web, Vol. 18. IOS Press.

[14] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In
KDD. ACM, 631–636.

[15] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In KDD.
ACM, 177–187.

[16] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Little Ball of Fur: A
Python Library for Graph Sampling. In CIKM. ACM, 3133–3140.

[17] Patrick Westphal, Lorenz Bühmann, Simon Bin, Hajira Jabeen, and Jens
Lehmann. 2019. SML-Bench - A benchmarking framework for structured
machine learning. Semantic Web 10, 2 (2019), 231–245.

	Abstract
	1 Introduction
	2 Related Work
	3 Sampling
	3.1 Basic Samplers
	3.2 Learning Problem-centered Samplers

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Sample Size vs. Predictive Performance
	4.3 Evaluation of Samplers

	5 Conclusions
	References

