
Fakultät für Elektrotechnik, Informatik und Mathematik

Diplomarbeit

Construction and Applications of
Identity-Based Encryption without

Pairings∗

Jonas Schrieb
E-Mail: jonas@upb.de

Paderborn, den 10. November 2008

vorgelegt bei

Prof. Dr. Johannes Blömer
Prof. Dr. Friedhelm Meyer auf der Heide

∗The title of this thesis unfortunately does not fit its content. A more meaningful tit-
le would have been “Efficient Chosen-Ciphertext Security from Selective-ID Secure
Identity-Based Encryption”. The reason is that the topic of this thesis has shifted
during my work. Whereas chosen-ciphertext security originally was meant to be the
application of one specific IBE scheme it is now the main topic.

Ehrenwörtliche Erklärung
Hiermit versichere ich, die vorliegende Arbeit ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu
haben. Alle Stellen, die aus den Quellen entnommen wurden, sind als
solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Paderborn, den 10. November 2008

Jonas Schrieb

iii

iv

Contents

1 Introduction 1
1.1 Public Key and Identity-Based Encryption 1
1.2 Security Against Weak and Strong Attackers 3
1.3 From Weak Identity-Based to Strong Public Key Encryption 4
1.4 Related Work . 5
1.5 Contribution and Organization of this Thesis 7

2 Basic Definitions and Concepts 9
2.1 Encryption Schemes . 10
2.2 Security Definitions . 14
2.3 Relations Between the Encryption Schemes 19
2.4 Other Cryptographic Primitives . 22
2.5 Bilinear Groups . 23
2.6 Reductionist Proofs and Game Playing Technique 25

3 Review of Related Work 29
3.1 Hash-Free BB1-IBKEM . 29
3.2 Full BB1-IBKEM . 32
3.3 BMW-KEM . 36
3.4 The CHK Transformation . 37
3.5 BMW-PKE and the ACIK Transformation 38

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM 43
4.1 Inspiration from BMW-KEM . 43
4.2 The Core Transformation . 46
4.3 The Hash-Based Transformation . 53
4.4 Review of both Transformations . 55

5 CCA2 Security from Generic Tag-/Identity-Based KEM 61
5.1 The Signature-Based Transformation (Idea) 61
5.2 The Generalized Core Transformation 63
5.3 The Signature-Based Transformation (Proof) 65

6 Conclusion and Future Work 69
6.1 Conclusion . 69
6.2 Future Work . 70

Bibliography 71

v

Contents

vi

1 Introduction
In this diploma thesis, two constructions are investigated that transform weakly se-
cure identity-based encryption schemes into strongly secure public key encryption
schemes. The following sections briefly explain those two concepts of encryption,
the meaning of weak and strong security, and give an intuition for the transforma-
tion. Finally, an overview of related work and this thesis’ topics is given.

1.1 Public Key and Identity-Based Encryption
The concept of Public Key Encryption (PKE), suggested by Diffie and Hellman
[DH76]1, started a revolution in cryptography. It enabled Alice and Bob (two
persons well known in cryptography, who want to talk confidently over insecure
channels) to encrypt their communication without ever having met before. The
scheme is depicted in Figure 1.1.
To be able to receive confidential messages, Bob has to generate a pair of keys

PKB, SKB (algorithm: KeyGen). PKB is posted to a public directory, but SKB

is kept secret. If Alice (or anyone else) wants to communicate with Bob, she
retrieves his public key PKB from the directory and uses it to encrypt the messages
(algorithm: Encrypt). Only Bob can decrypt the ciphertext with help of his secret
key SKB (algorithm: Decrypt). For secure message transfer in the other direction,
Alice’s key pair is used, which she has generated independently.
So far, there remains one important problem: If Eve can fool Alice to use her

public key PKE instead of Bob’s, she can decrypt all messages destined to Bob.
As a simple solution, Bob could hand over his public key personally, but this would
remove the most important property of PKE: Alice and Bob shall not have to meet
personally prior to secure communication. Certificates are a much better counter
measure against this attack. This is not part of PKE but belongs to the Public Key
Infrastructure [KL07, §12.3]. It is sketched in the following to motivate identity-
based encryption.
A trusted third party (TTP) stands surety for the validity of public keys. After

key generation, Bob personally contacts the TTP, gives a proof of his identity
(e. g., by showing his passport), and hands in his public key. The TTP then issues
a certificate crtB that connects Bob’s identity (e. g., his full name or his email
address) with his public key PKB. In order to validate certificates, Alice needs the
TTP’s public parameters. The distribution of those is still vulnerable to the attack

1In fact, work on this field had been done earlier by British researchers at the CESG, but was
classified as “confidential” for a long time [Ell87].

1

1 Introduction

C

Alice

Encrypt Decrypt MM

Bob

KeyGen

Tr. Third Party
(Publ. Key Infrastr.)

„I'm Bob“
&„Bob?“

SKB

PKB

check

PKB

PKB

PKB & crtB

& crtB para
m

ete
rs

directory SK

C

Alice

PK

Trusted Third Party

PKB

PubKey

Encrypt

Setup

Decrypt MM

„Bob“

SecKey

„I'm Bob“

Bob

SKB

Figure 1.1: Public Key Encryption (left) and Identity-Based Encryption (right).
The clouds represent parts that do not belong to the scheme but are helpful
to understand the similarities and differences of PKE and IBE. Thick lines
denote the necessity of personal contact.

by Eve, as described for the exchange of public keys above, so Alice has to fetch
them personally from the TTP.
In total, since certificates cannot completely avoid the need of personal contact,

all interaction with the TTP remains expensive. But for each user, this is neces-
sary only once in order to get the TTP’s parameters and a certificate for the own
public key. After this initialization steps, the users only have to contact a directory
and retrieve some public keys plus according certificates. This may be done over
untrusted connections and only needs local validity checks.
Several years after invention of PKE, Shamir [Sha84] wanted to get rid of key di-

rectories and certificates. He came up with a new idea that he called Identity-Based
Encryption (IBE). After initially having received some parameters, Alice should be
able to derive Bob’s public key PKB from his identity only by local computations.
This removes the need for directories to store PKB and for certificates to link Bob’s
identity with PKB. The full scheme can be seen in Figure 1.1.
In contrast to PKE, where the TTP is “only” an add-on to simplify public key

distribution, the TTP plays a vital role for the definition of IBE. Initially, it sets
up the system by generating a master key pair PK, SK (algorithm: Setup). When
Bob joins the system, the TTP verifies his identify (e. g., by checking his passport),
derives his personal secret key SKB from his identity and the master secret key
SK (algorithm: SecKey), and finally returns SKB to him. When Alice joins the
system, she is given the TTP’s public master key PK. As for PKE, all interaction
with the TTP has to be done via personal contact. After these initial steps, Alice
can compute PKB simply by using PK and Bob’s identity (algorithm: PubKey).
Encryption and decryption stay the same (algorithms: Encrypt and Decrypt).
IBE has the advantage of easy key distribution and low run-time costs—the TTP

may even be removed after every user has gotten his secret key. It fits very well

2

1.2 Security Against Weak and Strong Attackers

to the needs of wireless networks [KKA03] or multiplayer games [DHMR07], since
no delay occurs on determining the public key for new communications partners.
The possibility to put more information into the “identity string” (e. g., not only
the email address, but also an expiry date) opens its use to several interesting
applications as in [MBH03] or [BF01, §1.1].
So, why should someone still be interested in PKE schemes? If Eve corrupts the

TTP, she can compute all secret keys and thus read all confidential messages. Alice
and Bob will not even be able to notice that. For PKE on the other hand, the
worst thing Eve can do with a corrupted TTP is to certify her own public key as
the one of Bob. From that moment on, she can read all messages sent from Alice
to Bob, but not the older ones. Furthermore, eventually Alice will be suspicious if
Bob cannot decrypt the messages she sends to him. In total, IBE needs a higher
level of trust in the TTP’s integrity, which is not given in every situation. For this
reason, both concepts coexist legitimately.

1.2 Security Against Weak and Strong Attackers
One important part of security definitions for encryption schemes is a precise model
for the power of an attacker (for an overview see [BDPR98]). There are three very
common scenarios. All have in common that Eve intercepts a ciphertext C? that
has been sent from Alice to Bob. Eve wants to gain information on the underlying
message. The very basic form of security under chosen plaintext attacks (CPA)
models situations where an attacker Eve listens to the communication between
Alice and Bob, but does not interfere. It is assumed that Eve knows the algorithms
and public keys in use, but nothing else. So she can encrypt plaintexts of her choice
and, for example, compare them to what Alice sends to Bob.
For security under non-adaptive chosen ciphertext attacks (CCA1), Eve may pre-

pare her attack using an oracle which decrypts any ciphertexts of her choice. It
may only be used until Eve intercepts the ciphertext C?. This models a situation
where Eve has access to Bob’s decryption device while he is out for lunch (and thus
also known as “lunchtime attack”). After Bob has returned, Eve tries to decrypt
his incoming messages, but she cannot access the decryption device any longer.
The strongest type of security is against (adaptive) chosen ciphertext attacks

(CCA2), where Eve may access the decryption oracle even after intercepting C?.
The only restriction is that she may not ask for the decryption of the the inter-
cepted ciphertext C?, as this would make the attack trivial. On first sight, securing
against such a strong attacker seems to be a very hypothetical problem without
much impact on practical uses of cryptography. But for several reasons (some are
described in the next chapter), CCA2 security has gained a lot of attention, today.
The construction of CCA2 secure PKE schemes is a very active field in crypto-

graphy. There are several approaches to gain CCA2 security from weaker primitives
such as trapdoor permutations [Sho02] or CPA secure PKE schemes [FO99, NY90].
The first two are very efficient, but their security proofs rely on the random or-

3

1 Introduction

acle model [BR93]. For practical implementations, where random functions are
replaced by hash functions, this provides only heuristic (yet widely tolerated) se-
curity arguments. The third is highly inefficient due to its use of non-interactive
zero-knowledge techniques [BFM88].
There is another proposal on how to obtain CCA2 secure PKE schemes from

algebraic constructs with particular properties [CS02]. It has a rigorous security
proof and makes a huge step towards practicability. The ciphertext is “only” four
times as long as the message, which is a good improvement, but still unsatisfactory
in practice. Therefore, it is an interesting task to find even more efficient CCA2
secure PKE schemes. Interestingly, this is possible if CPA secure IBE (instead of
PKE) is used as the basic building block.

1.3 From Weak IBE to Strong PKE
IBE has one essential property that allows this strong transformation to PKE. It
is a kind of “independence” between the key pairs of different users. Even, if Eve
spies out the secret keys of many other users or gets the keys by collaboration, this
shall not help her with messages encrypted for Bob. If the secret keys may not
help, then particularly decryptions of arbitrary messages under those secret keys
cannot help. This is so important that it should be noted down:

Fact: Decryptions of ciphertexts using SKID 6= SKID?, do not
give any information on a message encrypted with PKID?.

To understand the basic idea of the following transformation, it is advisable to
completely forget about the structure of IBE as described in the sections before.
Instead, the master key pair PK, SK is given a new interpretation, which is very
handy for the use in the following PKE construction. Consider the table in Fig-
ure 1.2, where each row consists of an arbitrary string (the former identity) and a
corresponding key pair. The middle and right columns are essentially determined
by PK and SK (the former master key pair), so these two keys can be seen as a
very compact representation for a large set of public and secret keys. In the fol-
lowing, it is best to think of the Setup algorithm as a generator for a large table of
key pairs. The PubKey and SecKey algorithms can be interpreted as table lookups
for specific public and secret keys, respectively.
This table can then be used to create a CCA1 secure PKE scheme as follows. Bob

uses the Setup algorithm to generate the table of key pairs (represented by PK and
SK) and publishes the column of public keys (represented by PK). If Alice wants
to send a message M , she selects one of those public keys by randomly choosing
a bitstring ID? and encrypts M under PKID? to obtain C?. Since Bob needs to
know which secret key is the right one for decryption, Alice sends as ciphertext the
tuple 〈ID?, C?〉. Now, Bob can determine SKID? and decrypt C?.
How does this give CCA1 security? Recall that the attacker Eve may use the

decryption oracle only before she intercepts the ciphertext. Furthermore, in this

4

1.4 Related Work

ID PubKey(PK, ID) SecKey(SK, ID)
“Bob” PKB SKB

“Eve” PKE SKE

“banana” PKbanana SKbanana

“fgvztgm”

Figure 1.2: In IBE, a master key pair “PK,SK” can be interpreted as a very compact
representation of a large table of corresponding public and secret keys.

new PKE, the intercepted ciphertext is a tuple 〈ID?, C?〉. This means that Eve
can query the decryption for several ciphertexts of the form 〈ID,C〉, but since
she does not know ID? at that time and the table is large, ID 6= ID? holds for
every query with high probability. Hence, all decryptions are done with secret keys
SKID 6= SKID? , and thus by the above fact are useless for Eve. Without a useful
decryption oracle, she cannot do better than in a chosen plaintext attack, which is
covered by CPA security of the IBE.

Paradigm 1: To rule out the decryption oracle before interception of
〈ID?,C?〉, the selection of ID? should be unpredictable to an attacker.

In contrast, for CCA2 security, Eve may still use the decryption oracle after inter-
cepting 〈ID?, C?〉. Therefore, she could ask for the decryption of 〈ID?, C〉, with
C 6= C?. This would give her the decryption of a ciphertext using the secret key
SKID? . Such a decryption will not automatically help her—in fact, Eve has to
choose C in a clever way to benefit from its decryption—, but it renders all argu-
ments invalid that are based on the above stated fact. Several efficient approaches
have been proposed, that circumvent these problems and obtain CCA2 security.
They all follow the same idea:

Paradigm 2: To rule out the decryption oracle after interception
of 〈ID?,C?〉, it should be infeasible (or impossible) for an attacker
to find a modification 〈ID?,C〉, where C is valid under PKID?.

As a result, no ciphertext submitted to the decryption oracle can help Eve: Either
holds ID 6= ID? (allowing use of the above fact) or ID = ID? but the ciphertext
is probably invalid and hence the oracle only returns “ciphertext invalid”.

1.4 Related Work
For this thesis, basically five constructions (presented in three papers) are impor-
tant. They are depicted in Figure 1.3. All have in common that they turn CPA
secure IBE into CCA2 secure PKE somehow using the above mentioned paradigms.
They essentially differ in their tradeoff between generality and efficiency.

5

1 Introduction

sID aID

C
PA

C
C
A

2
[CHK04]
[BK05]

IBE

IBKEM
partitioned

strong IBKEM
partitioned

KEM PKE
BMW-PKE

[BMW05a] [BMW05a][ACIK07]

BMW-KEM

BB1-IBE Waters-IBE

Waters-IBKEMBB1-IBKEM

?

Figure 1.3: A schematic depiction of related work. Solid lines denote efficient transfor-
mations without efficiency loss. Dashed lines indicate transformations, that
introduce computational overhead or enlarge ciphertexts. The question mark
roughly points out the open problem that is tackled in this paper.
The standard security variant for IBE is “aID” and the weaker form is “sID”.
“Partitioned” and “strong” denote the additional structural properties and
the strengthened variant of CPA security from [ACIK07].

The first construction is due to Canetti et al. [CHK04]. The ideas presented in
the previous section originate from their work. The CHK transformation uses a
signature scheme to link ID? and C?. Any modification as described in the second
paradigm implies a forgery of signatures and thus is infeasible. This construction is
generic, i. e., any CPA secure IBE can be used as basic building block. The use of
the signature scheme introduces a computational overhead and enlarges ciphertexts.
Boneh and Katz [BK05] replace the signatures by more efficient means to improve
the efficiency. The BK transformation is not considered here, because it is similar
in spirit to the CHK transformation but technically much more complicated.
The second approach due to Boyen et al. [BMW05a], investigates another way to

implement the above paradigms. They directly define CCA2 secure schemes that are
reminiscent of the original IBE, but do not result from a generic transformation rule.
Specific properties of the “underlying” IBE are exploited to avoid any overhead.
The ciphertext size of the new PKE is the same as in the original IBE and there
is no need to use any additional cryptographic primitives, like signatures as above.
In a nutshell, generality is sacrificed for efficiency.
These ideas are applied to two concrete schemes: The first, Waters-IBE [Wat05]

6

1.5 Contribution and Organization of this Thesis

is turned into BMW-PKE. The second, BB1-IBE2 [BB04], has weaker security
properties thanWaters-IBE and is transformed into a key encapsulation mechanism:
BMW-KEM. KEM is a restricted form of PKE, only capable of encrypting randomly
generated one-time keys instead of arbitrary messages chosen by the sender. These
one-time keys may then be used with techniques from secret key encryption to
obtain a full-fledged hybrid PKE. Consequently, a KEM is not a real restriction
compared to a PKE. In fact, for efficiency reasons hybrid PKE schemes are preferred
to plain PKE schemes in practice. The same considerations are true for identity-
based KEM (IBKEM), which is a restricted form of IBE. All in all, it is perfectly
reasonable to do research on KEM (IBKEM) instead of PKE (IBE).
The third paper is closely related to the second. Abe et al. [ACIK07] analyze

the construction of BMW-PKE from Waters-IBE and extract the properties that
have been exploited. The results are additional structural requirements, a slightly
strengthened variant of CPA security, and a construction rule that is applicable
to any IBKEM with these additional properties. Their transformation has the
full efficiency of the “Waters-IBE-to-BMW-PKE” construction, but broadens its
applicability to other IBKEM.
The additional structural requirements are satisfied by many IBKEM and are

easy to verify by only looking at the algorithms. The strengthened security variant,
on the other hand, might be not so widespread or is more elaborate to check,
because one has to get into the security proof. As a compromise, the authors give
a second transformation, which only requires the structural properties but not the
strengthened security variant. Therefore, it sacrifices a little bit of efficiency by
introduction of a chameleon hash function3.

1.5 Contribution and Organization of this Thesis
Applying the transformation of Abe et al. to Waters-IBE gives BMW-PKE. Thus,
it may be seen as a good explanation for the general principle that underlies the
construction of BMW-PKE. However, the authors cannot tell how BMW-KEM re-
sults from BB1-IBE, i. e., they do not give a transformation that turns IBKEMs
with “properties like BMW-KEM” into CCA2 secure KEMs. Actually, they expect
that such a transformation would require “a stronger (and less natural) security
requirement” and proving satisfaction of this requirement to be “not easier than
providing a direct proof for the transformed KEM” [ACIK07, §5.4]. In other words,
they think that it is not possible to find some “useful” construction that explains
the general principle behind BMW-KEM.
In this thesis, their conjecture will be refuted. The “BB1-IBE-to-BMW-KEM”

transformation will be generalized in a similar (and practical) way, as Abe et al.
do it for “Waters-IBE-to-BMW-PKE”. Furthermore, its relationship with the CHK

2Boneh and Boyen define two IBE. BB1-IBE denotes the first one, described in §4 of their paper.
3This second transformation has also been found (and published earlier) by Zhang [Zha07]. As
he does not consider the construction of BMW-PKE, his paper is less of interest for this thesis.

7

1 Introduction

transformation will be investigated. It will turn out that both have a common core,
which may be interpreted as the formalization of paradigm 1 and 2.
In Chapter 2, all necessary definitions are introduced. In Chapter 3, the above

mentioned related work is presented in more detail. In Chapter 4, first the relation-
ship between BB1-IBE and BMW-KEM is reviewed intuitively, and then formalized.
The chapter ends with a brief overview on the applicability of both constructions.
In Chapter 5, the CHK transformation is reviewed in this new framework, which re-
veals its relationship to BMW-KEM. Finally, the main achievements are subsumed
in Chapter 6, and interesting open problems are proposed for future work.

8

2 Basic Definitions and Concepts
Modern cryptography distinguishes from classic cryptography by a much more pre-
cise conception of what security is and how to convince others that a scheme might
be secure. Often, the formal process can be divided into the following steps.

1. Define the goals of a scheme, i. e., its algorithmic interface and correctness
properties to tell whether an algorithm correctly implements this interface.

2. Provide a precise definition for the circumstances under that a scheme is con-
sidered to be secure. In particular, define the abilities of a possible attacker.

3. State a hardness assumption on which the security relies. This can either be
the assumption that some number-theoretic problem is hard to solve, or that
a secure implementation for some underlying cryptographic scheme exists.

4. Reduce the number-theoretic problem or the security of an underlying crypto-
graphic scheme to the breakage of a concrete implementation. This proves the
concrete implementation to be secure under the condition that the hardness
assumption holds.

The introduction already has given an informal description of the algorithms for
PKE and IBE and briefly mentioned KEM and IBKEM. In Section 2.1, all those
encryption schemes will be specified formally. In Section 2.2, several security defini-
tions will be given for each of these schemes that vary in the power of the attacker.
In Section 2.3, the relations between different encryption schemes and their dif-
ferently strong security definitions are briefly stated. Section 2.4 introduces two
more cryptographic primitives that are essential for the upcoming transformations:
Hash functions and signatures. The algebraic construct of bilinear groups together
with some related problems that are widely believed to be computationally hard
are presented in Section 2.5. Bilinear groups are the base for many IBE or IBKEM
schemes, including BB1-IBE and Waters-IBE. Finally, the widespread proof tech-
niques of reductionist proofs and game playing are briefly explained in Section 2.6.

Notation: An algorithm is probabilistic polynomial time (PPT) if it uses random
bits in addition to its input and has a running time that is polynomially bounded
in the bit-length of its input. poly(λ) denotes the set of all polynomials in variable
λ. In several definitions, a PPT algorithm is equipped with a security parameter
λ ∈ N written as unary number 1λ. The purpose is to give the algorithm an input of
bit-length λ (instead of log2(λ) if λ was encoded as a binary number), which implies

9

2 Basic Definitions and Concepts

a time bound in poly(λ) and such, for example, the ability of producing a key pair
of bit-length λ. A PPT algorithm A can be given access to several (not necessarily
polynomially bounded) oracles O1, O2, . . ., which are denoted as AO1,O2,.... Each
oracle query counts as one time-step.
In probabilistic algorithms or random experiments an operator “←” is extensively

used that has two meanings. If X is a finite set, then x ← X means picking
x uniformly at random from X. Otherwise, x ← A(y, z, . . .) means feeding the
(possibly randomized) algorithm A with inputs y, z, . . . and assigning the output
to x. PrExp[E] is the probability that event E occurs in experiment Exp, where the
probability is over all sampled values and the internal randomness of all involved
algorithms. Sometimes the following abbreviations are used: Pr[Exp = win], which
denotes the probability for the designated return value of the experiment to become
“win”, or Pr[description of an experiment : E], where the (short) experiment is
directly defined between “[” and “:”.
In the following, advantage functions (depending on the security parameter λ)

will measure the success of an attacker in such an experiment. A function f : N→
[0, 1] is called negligible if it decreases faster than any inverse of a polynomial, i. e.,
∀p ∈ poly(λ) : ∃Λ ∈ N : ∀λ > Λ : f(λ) < 1/p(λ). Furthermore, negl(λ) is the set
of all negligible functions. The sum of two negligible functions and the product of
a polynomial and negligible function are again negligible.

2.1 Encryption Schemes
In this section, the algorithms for public key encryption (PKE) and the concept of
hybrid encryption (KEM, DEM) are formally defined. Then, identity-based encryp-
tion (IBKEM, IBE) plus a not yet mentioned cross between public key and identity-
based encryption called tag-based encryption (TBKEM, TBE) are presented.

2.1.1 Public Key Encryption (PKE)
A public key encryption scheme PKE is defined by three PPT algorithms for key
generation, encryption, and decryption [KL07, §10.2]. Exchange and certification
of public keys (§1.1 on p.1) is beyond the scope of this definition.

KeyGen(1λ) ; PK, SK; The key generator takes a security parameter λ ∈ N and
computes a public/secret key pair PK, SK.

Encrypt(PK,M) ; C; The encryption algorithm takes a messageM and encrypts
it to a ciphertext C under the public key PK. The set of valid ciphertexts
under PK is denoted as C(PK) and contains all ciphertexts that might be
returned by Encrypt on input PK and some message M .

Decrypt(SK,C) ;M ; The decryption algorithm recovers the message M from a
ciphertext C with help of the secret key SK.

10

2.1 Encryption Schemes

In the definition only SK is given as input for Decrypt, although PK might also
be needed. To avoid clutter, throughout all definitions only the strongest key is
explicitly stated as input and the weaker keys are implicitly assumed to be available,
too. I. e., for PKE, feeding Decrypt with SK implicitly includes PK.

PKE is correct if for all key pairs PK, SK and all messages M it holds that:

Decrypt(SK,Encrypt(PK,M)) = M

Correctness only affects valid ciphertexts. If Decrypt is started on an invalid C /∈
C(PK), it may return an arbitrary message or a special rejection symbol ⊥.

2.1.2 Hybrid Encryption (KEM, DEM)
Apart from the drawback of involved key exchange, there are two big advantages
with the older technique of secret key encryption (SKE) compared to PKE: Flexi-
ble message spaces and efficiency. Many SKE constructions can encrypt messages
of arbitrary length and structure, whereas in PKE this often is restricted due to
the encoding of messages as elements of the underlying algebraic groups. Further-
more, SKE is very fast and has almost no ciphertext expansion, i. e., message and
ciphertext have essentially the same length.
To have the advantages of both worlds, it has become common practice to use

the following procedure to encrypt a message M under a public key PK: First,
generate a short random keyK and encrypt it to CK using PKE with the public key
PK. Then, encrypt the longer messageM to CM using SKE with the one-time key
K. Finally send both ciphertexts 〈CK , CM〉 to the recipient, who can first obtain K
from CK using his secret key SK corresponding to PK and then recoverM from CM
using K as key for the SKE scheme. By now, the definitions of PKE and SKE have
been further optimised towards this application. The result is a Key Encapsulation
Mechanism (KEM) as replacement for PKE, a Data Encryption Mechanism (DEM)
in place of SKE and a key derivation function (KDF) that translates the output of
KEM into a usable key for DEM [CS04].

Key Encapsulation Mechanism: PKE is designed to encrypt arbitrary messages
of the sender’s choice, but for hybrid encryption, this is too powerful. There is no
need to choose the session key first and then, in a separate step, encrypt it. It would
be perfectly ok if the encryption algorithm outputs both: A random looking session
key K and its encryption C. This is exactly, what a KEM does. Surprisingly, in
many cases this can be done more efficiently than PKE.
A key encapsulation mechanism KEM is a collection of three PPT algorithms for

key pair generation, session key encapsulation and restoration.

KeyGen(1λ) ; PK, SK; The key generator takes a security parameter λ ∈ N and
computes a public/secret key pair PK, SK.

11

2 Basic Definitions and Concepts

Encaps(PK) ; K,C; The encapsulation algorithm generates a session key K and
encapsulates it in a ciphertext C under the public key PK. The session key
space and the set of valid ciphertexts are denoted asK(PK) and C(PK). They
contain all session keys and ciphertexts, respectively that might be returned
by Encaps on input PK. K(PK) has to be superpolynomially large in λ.

Decaps(SK,C) ; K; The decapsulation algorithm recovers the session key K
from a ciphertext C with help of the secret key SK.

KEM is correct if for all key pairs PK, SK it holds that

Decaps(SK,C) = K if K,C ← Encaps(PK)

Again, this correctness property only affects valid ciphertexts. For an invalid ci-
phertext, Decaps may output arbitrary session keys or the rejection symbol ⊥.

Data Encryption Mechanism: From the algorithmic point of view, a DEM is like
an SKE, except that there is no need for an algorithm to generate the secret key.
The real difference will be in the security definition. A Data Encryption Mechanism
(DEM) is specified by two deterministic polynomial time algorithms and a function
` ∈ poly(λ) that determines the size of session keys for a security parameter λ ∈ Z.

Encrypt(K,M) ; C; Encrypts a message M to a ciphertext C with help of the
session key K ∈ {0, 1}`(λ).

Decrypt(K,C) ;M ; Recovers the message M from a ciphertext C with help of
the session key K ∈ {0, 1}`(λ).

A DEM is correct if for all K ∈ {0, 1}`(λ) and all messages M it holds that

Decrypt(K,Encrypt(K,M)) = M

2.1.3 Identity-Based Encryption (IBKEM, IBE)
As outlined in the introduction (§1.1 on p.1), PKE and IBE (or KEM and IBKEM)
only differ in key generation and distribution. In the identity-based setting, the
KeyGen algorithm is replaced by three algorithms for master key pair generation,
computing the public key, and computing the secret key for an identity [BF01,
BFMLS05]. Similar to PKE, identification of the user at the TTP and secure
transport of the secret key to the user are not part of this definition and have to be
handled by other means. An identity-based key encapsulation mechanism IBKEM
is defined by the following five PPT algorithms:

Setup(1λ) ; PK, SK; The setup algorithm takes a security parameter λ ∈ N and
computes a master public/secret key pair PK, SK.

12

2.1 Encryption Schemes

PubKey(PK, ID) ; PKID; (deterministic) The public key generator computes
the public key PKID for identity ID ∈ {0, 1}∗ using master public key PK.

SecKey(SK, ID) ; SKID; The secret key generator computes a secret key SKID

for identity ID ∈ {0, 1}∗ using the master secret key SK.

Encaps(PKID) ; K,C; The encapsulation algorithm generates a session key K
and encapsulates it in a ciphertext C under the public key PKID. The ses-
sion key space and the set of valid ciphertexts are denoted as K(PKID) and
C(PKID) and defined analogously to that of KEM.

Decaps(SKID, C) ; K; The decapsulation algorithm recovers the session key K
from a ciphertext C with help of the secret key SKID.

As for PKE, for every algorithm only the strongest key is listed. All weaker keys
are implicitly assumed included, too. This means that, e. g., Decaps also gets PKID

and PK. IBKEM is correct if for all ID ∈ {0, 1}∗ and all key pairs PKID, SKID:

Decaps(SKID, C) = K if K,C ← Encaps(PKID)

The notion of identity-based encryption (IBE) is related in the same way to IBKEM
as KEM to PKE, i. e., IBE.Encrypt additionally takes a message M , but does not
output a session key K and IBE.Decrypt restores M instead of K.

2.1.4 Tag-Based Encryption (TBKEM, TBE)
Tag-based encryption (key encapsulation) is a mixture of PKE and IBE (KEM and
IBKEM) [MRY04]1. As in the public key setting, key pairs are generated by every
user on his own. But similar to the identities, binary strings called tags are used
as additional input for encryption and decryption. TBKEM is likewise suitable
for the ideas sketched in the introduction (§1.3 on p.4), although with identity-
based techniques the basic idea is more intuitively comprehensible. Furthermore,
basing the constructions on TBKEM gives more generality, as IBKEM naturally
gives TBKEM, but TBKEM is strictly weaker. It can be built from primitives that
are currently not known to give IBKEM [Kil06]. A tag-based key encapsulation
mechanism TBKEM is defined by three PPT algorithms for key pair generation,
encryption and decryption.
KeyGen(1λ) ; PK, SK; The key generator takes a security parameter λ ∈ N and

computes a public/secret key pair PK, SK.

Encaps(PK, tag) ; K,C; The encapsulation algorithm generates a session key K
and encapsulates it in a ciphertext C under the public key PK and tag ∈
{0, 1}∗. The session key space and the set of valid ciphertexts are denoted as
K(PK, tag) and C(PK, tag) and defined analogously to that of KEM.

1[MRY04] define tag-based encryption. To my best knowledge, tag-based KEM has not been
formalized yet, but the definition given here is the straight forward merger of TBE and KEM.
It must not be confused with Tag-KEM [AGKS05], which is a TBKEM with special properties.

13

2 Basic Definitions and Concepts

Decaps(SK, tag, C) ; K; The decapsulation algorithm recovers the session key
K from a ciphertext C with help of the secret key SK and the tag ∈ {0, 1}∗.

TBKEM is correct if for all key pairs PK, SK and tag it holds that:

Decaps(SK, tag, C) = K if K,C ← Encaps(PK, tag)

The notion of tag-based encryption (TBE) is related in the same way to TBKEM
as KEM to PKE, i. e., TBE.Encrypt additionally takes a message M , but does not
output a session key K and TBE.Decrypt restores M instead of K.

2.2 Security Definitions
For encryption schemes, security definitions consist of two parts: A security goal
that describes the type of attack a scheme should resist, and an attack model that
defines the power of the attacker. For both, there are several flavors that can be
freely combined. These are the most common security goals:

Semantic Security (SS): Given a ciphertext, no attacker should be able to com-
pute any “meaningful information” about the underlying message.

Non-Malleability (NM): Given a ciphertext, no attacker should be able to com-
pute another ciphertext such that the underlying messages are “meaningfully
related”.

Indistinguishable Encryptions (IND): Given a ciphertext that is the encryption
for one randomly selected of two equal-size messages, the attacker should not
be able to tell which message has been encrypted.

The first one models the confidentiality that an encryption scheme should pro-
vide and is clearly desirable. The second models some kind of tamper-resistance.
Consider a tendering where several companies send their encrypted prices to the
ordering party. In a malleable cryptosystem, it could be possible to intercept the
ciphertext of a competitor and modify it to a slightly lower price. The “meaningful
relation” could be “M ′ = M − 1”, for example. The usefulness of the third one is
not so obvious. Luckily, it can be shown to be equivalent with semantic security
and in the strongest attack model even with non-malleability. Since its simple for-
malization makes it handy for proofs, it is the security goal of choice in this paper
(and most others).
The attack models define how much information is given to the attacker:

Chosen Plaintext Attack (CPA): The attacker can obtain encryptions for mes-
sages of his choice. In the public key setting, this is accomplished by giving
the public key as input.

14

2.2 Security Definitions

Non-Adaptive Chosen Ciphertext Attack (CCA1): In addition to the public key,
the attacker can obtain decryptions for ciphertexts of his choice. Therefore, he
is given access to a decryption oracle that on input C outputs Decrypt(SK,C).
He may use it only to prepare his attack before seeing the ciphertext.

(Adaptive) Chosen Ciphertext Attack (CCA2): The attacker may use the de-
cryption oracle during the whole attack. To rule out trivial attacks, the
attacker may not request the decryption for the ciphertext he is given.

The complete security definitions are then obtained by combing both tokens, e. g.,
the strongest one is IND-CCA2. One might wonder why this strong notion is
desirable, or whether it might be too strong. There are at least three good reasons
to try to achieve it:

1. There is a practical attack on SSL that uses a weak form of a chosen ciphertext
attack against RSA. IND-CCA2 is a sufficient condition for resistance against
this attack, the others are not.

2. IND-CCA2 implies both SS-CCA2 and NM-CCA2, whereas for the weaker
attack models it only gives SS-∗ [BDPR98, GM84, ACG+06]. Therefore, a
single security proof can provide both, confidentiality and tamper-resistance.

3. Tackling difficult problems should be in the nature of every researcher ,.

In the following, the formal security definitions for indistinguishability are given.
If not otherwise stated, they can be found in the same literature as cited in the
previous section. Security is defined by a random experiment called ExpScheme,A

IND-ATK(λ),
where ATK is a token representing the attack model and Scheme is one of PKE,
KEM, IBKEM, The outcome of the experiment is either win or lose. A’s quality
is measured in its advantage compared to a trivial attacker that only guesses without
looking at its input and such wins with probability 1/2.

AdvScheme,A
IND-ATK(λ) :=

∣∣∣∣Pr[ExpScheme,A
IND-ATK(λ) = win]− 1

2

∣∣∣∣
Definition 2.1. A Scheme is ε-IND-ATK secure if ε ∈ negl(λ) and it holds for
any PPT algorithm A that

AdvScheme,A
IND-ATK(λ) ≤ ε(λ)

In all definitions, A may be run in several phases. For indistinguishable encryptions
of PKE, there are two phases: Phase 1 before A is shown the ciphertext and phase
2 afterwards. Then, A is split into several subalgorithms, e. g., A = 〈A1,A2〉. It
is implicitly assumed that A2 has access to all variables used by A1. In particular,
external input and query answers are available to A from the moment they are
provided to A, until the end of the experiment. All computations of ExpScheme,A

IND-ATK(λ)
that are not part of A are said to be executed by the environment.

15

2 Basic Definitions and Concepts

Definition 2.2. For PKE, the experiment of indistinguishable encryptions under
chosen ciphertext attacks (IND-CCA2) is defined as follows.

ExpPKE,A
IND-CCA2(λ):

PK, SK ← KeyGen(1λ)
M0,M1 ← ADecrypt

1 (PK)
b ← {0, 1}
C? ← Encrypt(PK,Mb)
b′ ← ADecrypt

2 (C?)
if b = b′, then output win

M0,M1 have to be of equal length. On query Decrypt-oracle(C)—where C may
be an arbitrary (valid or invalid) ciphertext—the decrypt oracle returns M ←
Decrypt(SK,C). In phase 2, A may not ask for the decryption of C?.
The other two experiments are exactly the same except that for IND-CCA1, only
A1 may access the Decrypt oracle, and for IND-CPA, neither A1 nor A2 may.
This exactly captures the intuitive definitions above: In phase 1, A may prepare its
attack given the ability to encrypt messages of his choice using PK and to decrypt
ciphertexts of his choice via the oracle. It may request any C – it might even request
the not yet known C? by accident. Eventually, A outputs two messages. One of
the two messages is randomly chosen, encrypted and the challenge ciphertext C? is
given back to A. Then in phase 2, A tries to find out whether M0 or M1 has been
encrypted (i. e., b = 0 or b = 1), still having the power of encrypting messages and
decrypting ciphertexts 6= C?. Finally, A outputs a guess b′ for the value of b. A
wins if this guess is correct.
In case that A violates the restrictions on message length and oracle queries,

the experiment is aborted. This means that the execution of A is stopped and the
outcome of the experiment is set such that it doesn’t contribute to A’s advantage,
i. e., A’s “guess” is chosen randomly (b′ ← {0, 1}).
For KEM, the above stated intuition for indistinguishability does not make any

sense. It is replaced by another that is similar in spirit: Given a ciphertext and a
session key, the attacker should not be able to tell whether the key corresponds to
the ciphertext or is random. This definition is tailored for proving the security of
hybrid encryptions.
Definition 2.3. For KEM, the experiment of indistinguishable encapsulation under
chosen ciphertext attacks (IND-CCA2) is defined as follows.

ExpKEM,A
IND-CCA2(λ):

PK, SK ← KeyGen(1λ)
ADecaps

1 (PK)
b ← {0, 1}
K?

0 , C
? ← Encaps(PK)

K?
1 ← K(PK)

b′ ← ADecaps
2 (K?

b , C
?)

if b = b′, then output win

16

2.2 Security Definitions

On query Decaps-oracle(C), where C may be an arbitrary (valid or invalid) cipher-
text, the decapsulation oracle returns M ← Decaps(SK,C). In phase 2, A may not
ask for the decapsulation of C?.
For IND-CCA1, phase 2 is replaced by A2(K?

b , C
?), and for IND-CPA both,

phases are merged to A(PK,K?
b , C

?) that takes place at the end of the experiment.

Phase 1 might look a little bit strange, since A1 has no output. But remember
that A1 also has some “hidden output”, since by convention A2 knows all the
values computed by A1. Since A1 does not have any restriction on Decaps queries
(opposed to A2 that may not query C?), it really might help A2 and is not useless.
This is different for IND-CPA attacks, where, without oracle access, A1 would not
have any more power than A2, so both can be merged.
Now, let’s turn to the security of IBKEM. With KEM, every user individually

generates his own key pair, and such, all these key pairs are independent of each
other. For IBKEM, on the other hand, all key pairs depend on the master key
pair of the TTP. To rule out the possibility that knowledge of some secret key
helps attacking another one, the security definition has to be adjusted. A secret
key for identity ID? shall stay secure even if the attacker gets knowledge of some
secret keys for other identities (recall the “Fact” mentioned in §1.3 on p.4). This is
modeled by a SecKey oracle returning the secret key SKID on input ID. Queries
for secret keys of ID? itself have to be denied in order to rule out trivial attacks.
The identity ID? may be chosen by the attacker. The attack models are extended

by two variants that determine the attacker’s power regarding the selection of ID?:

Selective Identity Attack (sID): The attacker has to select ID? without prior to
seeing any other value of the experiment. This model is due to [CHK03].

Adaptive Identity Attack (aID): The attacker may use the master public key
and all oracles to choose ID?. This model is due to [BF01].

These identity attack models can be additionally combined with the other attack
models, ranging from IND-sID-CPA to IND-aID-CCA2. In the following, both
experiments are defined for IBKEM. The experiments for IBE are related to it in
the same way as those for PKE to those for KEM. IND-∗ID-CPA security is the
most interesting for this paper and is therefore defined here.

Definition 2.4. For IBKEM, the experiment of indistinguishable encapsulation
under chosen plaintext attacks (IND-∗ID-CPA) is defined as follows.

17

2 Basic Definitions and Concepts

ExpIBKEM,A
IND-sID-CPA(λ):

PK, SK ← Setup(1λ)
ID? ← A1(1λ)
b ← {0, 1}
PKID? ← PubKey(PK, ID?)
K?

0 , C
? ← Encaps(PKID?)

K?
1 ← K(PKID?)

b′ ← ASecKey
2 (PK,K?

b , C
?)

if b = b′, then output win

ExpIBKEM,A
IND-aID-CPA(λ):

PK, SK ← Setup(1λ)
ID? ← ASecKey

1 (PK)
b ← {0, 1}
PKID? ← PubKey(PK, ID?)
K?

0 , C
? ← Encaps(PKID?)

K?
1 ← K(PKID?)

b′ ← ASecKey
2 (K?

b , C
?)

if b = b′, then output win

On query SecKey-oracle(ID), the oracle uses the SecKey algorithm to compute
SKID and returns that key. The queried ID may not be ID?. In the adaptive
identity setting, this restriction is retroactive for phase 1, i. e., A1 may not output
an ID? that has been part of a SecKey query before.

One might wonder why for IND-sID-CPA, A is given no chance to access a SecKey-
oracle before getting the challenge ciphertext. The reason is that this gives A no
additional advantage, similar as in IND-CPA for KEM. Therefore it is dropped. In
the CCA experiments, A1 (which selects ID? in IND-sID-CPA) is renamed to A0
and a new A1 is added that may access the SecKey- and Decaps-oracle.
As TBKEM is a hybrid of KEM and IBKEM, it is not surprising that this is

also true for the security definitions. Everything being related to keys is similar
to the KEM definitions, and everything with tags is reminiscent of the IBKEM
definitions. As for IBKEM the attacker may choose a tag? it would like to attack.
There are several new attack models related to this tag?:

Selective/Adaptive Tag Attack (sTag/aTag): This is analogous to sID and aID
for IBKEM. The selective notion is due to [Kil06] the adaptive due to [MRY04].

Weak Chosen Ciphertext Attack (wCCA1/wCCA2): This is similar to CCA1/2,
except that the Decaps oracle is replaced by wDecaps. This weaker oracle
is restricted to queries where tag? is not involved. These weakened attack
models are due to [MRY04].

Again all the tag and ciphertext attack models can be freely combined, giving eight
different notions of security. The IND-∗Tag-wCCA2 security is the most interesting
for this paper and is therefore defined in the following.

Definition 2.5. For TBKEM, the experiment of indistinguishable encapsulation
under selective/adaptive tag and weak chosen ciphertext attacks (IND-∗Tag-wCCA2)
is defined as follows.

18

2.3 Relations Between the Encryption Schemes

ExpTBKEM,A
IND-sTag-wCCA2(λ):

PK, SK ← Setup(1λ)
tag? ← A1(1λ)
b ← {0, 1}
K?

0 , C
? ← Encaps(PK, tag?)

K?
1 ← K(PK, tag?)

b′ ← AwDecaps
2 (PK,K?

b , C
?)

if b = b′, then output win

ExpTBKEM,A
IND-aTag-wCCA2(λ):

PK, SK ← Setup(1λ)
tag? ← AwDecaps

1 (PK)
b ← {0, 1}
K?

0 , C
? ← Encaps(PK, tag?)

K?
1 ← K(PK, tag?)

b′ ← AwDecaps
2 (K?

b , C
?)

if b = b′, then output win

On query wDecaps-oracle(tag, C), for tag 6= tag? and an arbitrary (valid or invalid)
ciphertext C, the decapsulation oracle returns M ← Decaps(SK, tag, C). Similar
to the restriction on the SecKey oracle for IBKEM, this rule is retroactive for A1
in the adaptive tag attack, i. e., A1 may not output a tag? that has been part of a
wDecaps query before.

Last but not least, the security for DEM has to be defined. It is structurally similar
to that of PKE above, but optimized towards being the minimal preconditions for
the security of hybrid encryption.

Definition 2.6. For DEM, the experiment of indistinguishable encryption under
chosen ciphertext attacks (IND-CCA2) is defined as follows.

ExpDEM,A
IND-CCA2(λ):

K ← {0, 1}`(λ)

M0,M1 ← A1(1λ)
b ← {0, 1}
C? ← Encrypt(K,Mb)
b′ ← ADecrypt

2 (C?)
if b = b′, then output win

M0,M1 have to be of equal length. On query Decrypt-oracle(C), where C may be
an arbitrary (valid or invalid) ciphertext 6= C?, the decrypt oracle returns M ←
Decrypt(K,C).

Contrary to PKE, there is no public key that could be given to the attacker. This
withdraws A the possibility to get encryptions for messages of its choice. Further-
more, the Decrypt oracle may not be accessed in phase 1. This simply stems from
the fact that this is not needed in the security proof for hybrid encryption.

2.3 Relations Between the Encryption Schemes
Figure 2.1 shows several relations between the different encryption schemes and
the most important attack models (the security goal is always ciphertext indistin-
guishability). The constructions are sketched below:

19

2 Basic Definitions and Concepts

()

()

(sTag)
TBKEM

(sID)
IBKEM

CPA
KEM

CCA2

TBEPKE IBE

CCA1

CCA2

(wCCA2)

(wCCA1)

Figure 2.1: Relations between the different schemes. Solid lines are direct implications or
trivial constructions without efficiency loss. Dashed lines indicate transfor-
mations that expand ciphertext length and loosen the security bound. The
cancelled line denotes an impossibility result.

PKE|TBE|IBE to KEM|TBKEM|IBKEM: If the message space of PKE is large
enough, a “message” can be chosen randomly and used as session key.

KEM.Encaps(PK):
K ←MsgSpace
C ← PKE.Encrypt(PK,K)

KEM.Decaps(SK,C):
K ← PKE.Decrypt(SK,C)

If the message space is too small, multiple messages can be chosen and the con-
catenation thereof forms the session key. The construction is analogous to obtain
TBKEM from TBE or IBKEM from IBE.

KEM|TBKEM|IBKEM to PKE|TBE|IBE: For KEM-to-PKE this is shown in
[CS04]. One needs an IND-CCA2 secure DEM and a suitable key derivation function
KDF. As a simple, but very restrictive example for a KDF, one may think of a
function that maps a uniform distribution in the session key space K(λ) of KEM to
an “almost uniform” distribution in {0, 1}`(λ).

PKE.Encrypt(PK,M):
K,CK ← KEM.Encaps(PK)
K ← KDF(K)
CM ← DEM.Encrypt(K,M)
C ← 〈CK , CM〉

PKE.Decrypt(SK,C):
〈CK , CM〉 ← C
K ← KEM.Decaps(PK,CK)
K ← KDF(K)
CM ← DEM.Decrypt(K,CM)

The construction is similar to obtain TBE from TBKEM or IBE from IBKEM.

TBKEM to KEM: Leaving out the tag during all computations gives a KEM.

20

2.3 Relations Between the Encryption Schemes

KEM to TBKEM: This transformation is based on a simple idea given in [Kil06].
To construct a TBE from a PKE, simply concatenate the message M and the tag.

TBE.Encrypt(PK, tag,M):
M ←M ||tag
C ← PKE.Encrypt(PK,M)

TBE.Decrypt(SK, tag, C):
M ||tag′ ← PKE.Decrypt(SK,C)
check tag

?= tag′

To obtain TBKEM from KEM one can use the following sequence of transforma-
tions: KEM ; PKE ; TBE ; TBKEM. Clearly, this construction is only of
theoretical interest. In the formal security game for TBKEM, the tag’s purpose is
only to control the oracle access. Thus, for CPA security, KEM and TBKEM are
equivalent, as there is no oracle access.

Weak TBKEM to KEM: Recall the “fact” that has been essential for (intuitive)
security of the transformations from CPA secure IBE to CCA2 secure PKE (§1.3
on p.4): Decapsulations using SKID 6= SKID? shall not help with a ciphertext
encrypted with PKID? . An analogous fact is implied by the wDecaps oracle for
wCCA1/2 secure TBKEM: decapsulations using tag 6= tag? will not help with a
ciphertext encrypted using tag?. Therefore, the constructions as sketched in the
introduction (§1.4 on p.5) will also obtain IND-CCA1/2 secure KEM from IND-
sTag-wCCA1/2. As these transformations are the main topic of this thesis, they are
omitted here and will be studied in Chapter 4 and Chapter 5.

IBKEM to TBKEM: This transformation is simple again: the tag is used as ID.
TBKEM.Encaps(PK, tag):
ID ← tag
PKID ← IBKEM.PubKey(PK, ID)
K,C ← IBKEM.Encaps(PKID)

TBKEM.Decaps(SK, tag, C):
ID ← tag
SKID ← IBKEM.SecKey(SK, ID)
K ← IBKEM.Decaps(SKID, C)

The “rise” of CPA to wCCA2 security stems from the fact that a IBKEM.SecKey
oracle can be used to decapsulate messages for any ID 6= ID? and thus allow the
simulation of the wDecaps oracle.

PKE|KEM|TBE|TBKEM do not give IBKEM: Boneh et al. [BPR+08] show
that IND-CCA2 secure PKE cannot give IBE. It is easy to see in the diagram that
PKE, KEM, TBE and TBKEM of any security level is equivalent to or weaker than
IND-wCCA2 secure TBKEM, particularly IND-CCA2 secure PKE is equivalent.
This justifies the placement of the cancelled arrow and the title of this paragraph.

aTag/aID and sTag/sID: The diagram looks the same for aTag/aID security. It
is clear that aTag/aID implies sTag/sID security. On the other hand, even IND-
sTag/sID-CCA2 does not necessarily give IND-aTag/aID-CPA security [Gal06]2.

2This seems to contradict to another result due to Boneh and Boyen which roughly says that
any IND-sID-∗ secure IBE already has IND-aID-∗ security, but with a bad security bound
[BB04, §7]. In fact, their results are incomparable due to subtle differences in the notions of
asymptotic security (used in [Gal06] and this thesis) and concrete security (used in [BB04]).

21

2 Basic Definitions and Concepts

2.4 Other Cryptographic Primitives
In this section, two more cryptographic schemes are presented. They are not di-
rectly related to encryption but needed for several constructions in later chapters.
With help of target collision resistant hash functions, arbitrary tags/identities from
{0, 1}∗ can be mapped to elements of some finite group in a secure way. Those
group elements can be used in the encryption schemes. Strongly unforgeable one-
time signature schemes are crucial for the CHK transformation.

2.4.1 Target Collision Resistant Hash Functions
A family of keyed hash functions H [KL07, §4.6] is a collection of functions that
map a binary string x ∈ {0, 1}∗ and a hash key k ∈ {0, 1}`(λ) of length ` ∈ poly(λ)
into elements from finite groups Gλ:

H =
{
Hλ : {0, 1}∗ × {0, 1}`(λ) → Gλ

}
λ∈N

Usually, one drops λ and writesHk(x) instead ofH(x, k) for any fixed k. A standard
security demand for hash functions used in cryptography is collision resistance,
which roughly means that given a random k, it should be computationally infeasible
to find x, x? with Hk(x) = Hk(x?). Here, the weaker but cheaper to implement
target collision resistance (also known as universal one-wayness) [NY89] suffices,
where the attacker has to commit to x? before knowing the hash key.

Definition 2.7. For a family of keyed hash functions H, the experiment of target
collision resistance (TCR) is defined as follows.

ExpH,ATCR(λ):
x? ← A1(1λ)
k ← {0, 1}`(λ)

x ← A2(k)
if Hk(x) = Hk(x?) and
x 6= x?, then output win

Similar to above, the quality of A is measured relative to an algorithm that only
guesses without looking at k. Since this algorithm is supposed to win the experiment
with probability close to 0 (instead of 1/2 as before), the advantage of A is defined
a little bit different this time:

AdvH,ATCR(λ) := Pr[ExpH,ATCR(λ) = win]

H is ε-TCR secure if ε ∈ negl(λ) and for every PPT algorithm A it holds that

AdvH,ATCR(λ) ≤ ε(λ)

22

2.5 Bilinear Groups

2.4.2 Strongly Existentially Unforgeable One-Time Signatures
A signature scheme Sig is defined by three PPT algorithms for key pair generation,
digital signing and signature verification [KL07, §12.2].
KeyGen(1λ) ; V K, SigK; The key generator takes a security parameter λ ∈ N

and computes a public verification key V K and a secret signing key SigK.

Sign(SigK,M) ; sig; The signing algorithm takes a message M and generates a
digital signature sig with help of the signing key SigK.

Verify(V K,M, sig) ; true/false; The verification algorithm checks the signature
sig using verification key V K and outputs true if it is valid for message M .

The scheme is correct if for all key pairs V K, SigK and messages M it holds that:

Verify(V K,M, Sign(SigK,M)) = true

The scheme is secure if, given V K, no efficient attacker is able to produce a pair
M, sig, such that sig is a valid signature of M under V K, even if he gets the
signature sig? for one message M? of his choice. This is formalized as follows:
Definition 2.8. For a signature scheme Sig, the experiment of strongly existen-
tially unforgeability under one-time chosen message attacks (SEU-OT) is defined as:

ExpSig,A
SEU-OT(λ):

V K, SigK ← KeyGen(1λ)
M, sig ← ASign(V K)
if Verify(V K,M, sig) = true, then output win

A may query the Sign oracle for at most one message M?, which is answered with
sig? ← Sign(SigK,M?). If A makes this query, then its output 〈M, sig〉 has to be
6= 〈M?, sig?〉.

The restriction on A’s output only demands that M 6= M? or sig 6= sig?, in par-
ticular, A is allowed to output a new signature sig for the same message M?. This
is unlike other variants of unforgeability, where M? may not be reused [ADR02].

Sig is ε-SEU-OT secure if ε ∈ negl(λ) and for all PPT algorithms A it holds that

Pr[ExpSig,A
SEU-OT(λ) = win] =: AdvSig,A

SEU-OT(λ) ≤ ε(λ)

2.5 Bilinear Groups
Bilinear groups provide a rich algebraic structure that fits very well the needs for
many cryptographic constructions. They are used for (but not limited to) many
identity-based encryption schemes. Two constructions presented in Chapter 3 are
based on bilinear groups. Boneh and Franklin [BF01] construct bilinear groups from
elliptic curves over finite fields and a modification of the Weil- or Tate-pairing.

23

2 Basic Definitions and Concepts

Definition 2.9. A cyclic group G of prime order p is called bilinear if there exists
another cyclic group GT of order p together with a map e : G×G→ GT such that:

• e is bilinear, i. e., for any x, y, z ∈ G it holds that

e(x · y, z) = e(x, z) · e(y, z) and e(x, y · z) = e(x, y) · e(x, z)

• e is not degenerate, i. e., if g generates G then e(g, g) generates GT

• the operations in G and GT as well as the map e are efficiently computable

As convention, g will always denote a generator in G.

The following fact will be used in several calculations with bilinear groups:

∀a, b ∈ Z : e(ga, gb) = e(g, g)ab = e(gb, ga)

When doing cryptography in cyclic finite groups, there are many common problems
that security may be based on. They are roughly defined as follows [KL07, §7.3]:

Discrete logarithm (DLOG): Given g, x ∈ G, compute a ∈ Z|G|, such that x = ga.

Computational Diffie-Hellman (CDH): Given g, x, y ∈ G, compute t ∈ G such
that 〈g, x, y, t〉 is a Diffie-Hellman tuple, i. e., of the form 〈g, ga, gb, gab〉 for
some a, b ∈ Z|G|.

Decisional Diffie-Hellman (DDH): Given g, x, y, t ∈ G, decide whether 〈g, x, y, t〉
is a Diffie-Hellman tuple.

The latter two problems can be transferred to bilinear groups [BF01]. A direct
translation by replacing t ∈ G with T ∈ GT and gab with e(g, g)ab would clearly fail
due to the bilinearity of e. Therefore, a third element z = gc comes into play.

Bilinear computational Diffie-Hellman (BCDH): Given g, x, y, z ∈ G, compute
T ∈ GT such that 〈g, x, y, z, T 〉 is a bilinear Diffie-Hellman tuple, i. e., of the
form 〈g, ga, gb, gc, e(g, g)abc〉 for some a, b, c ∈ Z|G|.

Bilinear decisional Diffie-Hellman (BDDH): Given g, x, y, z ∈ G and T ∈ GT ,
decide whether 〈g, x, y, z, T 〉 is a bilinear Diffie-Hellman tuple.

The assumption that the BDDH problem is hard is used for the security proof of
several encryption schemes, so it will be formalized now. Let BGGen be an PPT
algorithm that on input 1λ outputs a tuple 〈p,G,GT , e, g〉 where G is a bilinear
group of order p, e the bilinear map into GT and g a generator of G.

24

2.6 Reductionist Proofs and Game Playing Technique

Definition 2.10. For the bilinear group generator BGGen, the bilinear decision
Diffie-Hellman experiment (BDDH) is defined as:

ExpBGGen,A
BDDH (λ):

p,G,GT , e, g ← BGGen(1λ)
a, b, c ← Zp

x, y, z ← ga, gb, gc

T0 ← e(g, g)abc
T1 ← GT

b̂ ← {0, 1}
b′ ← A(p,G,GT , e, g, x, y, z, Tb̂)
if b̂ = b′, then output win

The BDDH is ε-hard in groups generated by BGGen if ε ∈ negl(λ) and for every
PPT algorithm A it holds that

Pr[ExpBGGen,A
BDDH (λ) = win] =: AdvBGGen,A

BDDH (λ) ≤ ε(λ)

2.6 Reductionist Proofs and GamePlayingTechnique
Proofs by reduction are a very common tool in cryptography. In the following the
basic method and the more sophisticated game playing technique are described in
a quite abstract fashion. Two extensive examples, exactly employing the following
descriptions, are given in Section 3.1 and Section 3.2. Consider the case that the
implementation of a concrete scheme (e. g., an IBKEM) has to be proven secure in
some sense (e. g., IND-sID-CPA), under the assumption that some number-theoretic
problem (e. g., the BDDH problem) is hard. The basic organization of such a proof
often is as described in the following.
Let A be an arbitrary attacker, who tries to break IBKEM in the IND-sID-CPA

experiment. Nothing may be assumed about A except that it conforms to the
rules of the IND-sID-CPA experiment. The task is to construct an algorithm B
that somehow uses A to solve the BDDH problem. B is given some input values
according to the BDDH experiment and has to simulate the environment of A as
defined in the IND-sID-CPA experiment, i. e., set up a master key pair, compute
a challenge ciphertext, and answer all queries to the SecKey oracle. B’s goal is
to compute all input values for A from its own input in such a way that A does
not notice the difference (i. e., all values given to A have exactly the probability
distribution as defined in the random experiment and the concrete IBKEM), and B
wins if and only if A wins. This implies:

AdvIBKEM,A
IND-sID-CPA(λ) =

∣∣∣∣Pr[ExpIBKEM,A
IND-sID-CPA(λ) = win]− 1

2

∣∣∣∣
=
∣∣∣∣Pr[ExpBGGen,B

BDDH (λ) = win]− 1
2

∣∣∣∣ = AdvBGGen,B
BDDH (λ)

25

2 Basic Definitions and Concepts

If the BDDH problem is hard by assumption, then there is a bound ε ∈ negl(λ) for
the advantage of every algorithm trying to solve it (including B). This gives:

AdvBGGen,B
BDDH (λ) ≤ ε(λ)

Combining both (in-)equalities gives ε as upper bound for A’s advantage. Since A
has been chosen arbitrary, the advantage of any attacker of IBKEM has to be less
or equal ε and thus IBKEM is ε-secure.
For more complex proofs, this simple reduction technique does not suffice (or

more precisely, would make the proof hard to follow). If this is the case, it may
sometimes be helpful to organize the proof in a sequence of games. Assume this time
that IBKEM is a scheme which is composed by another IND-sID-CPA secure IBKEM
and a TCR-secure hash function H. In many cases, one of the underlying schemes
can be considered the main primitive (here IBKEM) and the other(s) are auxiliary
primitives (here H). Note that for a security proof, somehow two reductions have
to be combined, as IBKEM’s security relies on both underlying primitives.
One solution is to define a sequence of random experiments Game 1. . .Game

n where Game 1 equals the original experiment ExpIBKEM,A
IND-sID-CPA(λ) and Game i+1

results from a small modification of Game i. As the goal of these modifications,
finally B (trying to break the main primitive) should be able to easily simulate
Game n for A as in the basic reduction technique described above. Furthermore,
the difference of A’s winning probability between two consecutive games should be
very small, i. e., one should be able to prove∣∣∣Pr[Game i A(λ) = win]− Pr[Game i+1 A(λ) = win]

∣∣∣ ≤ εi(λ)

for suitable εi ∈ negl(λ). Often, this can be proven by reducing the differences to
security of the auxiliary primitives. Then, A’s advantage can be upper bounded
using a telescoping sum and the equations above.
In the concrete example with IBKEM, H, and IBKEM, there would be a “se-

quence” of two games Game 1 = ExpIBKEM,A
IND-sID-CPA(λ) and Game 2. The difference

between Game 1 and 2 could be bounded by the security of H, and A’s advantage
in Game 2 could be bounded by the security of IBKEM:

AdvIBKEM,A
IND-sID-CPA(λ) =

∣∣∣∣Pr[ExpIBKEM,A
IND-sID-CPA(λ) = win]− 1

2

∣∣∣∣
=
∣∣∣∣PrGame 1[A wins]− 1

2

∣∣∣∣
=
∣∣∣∣PrGame 1[A wins]− PrGame 2[A wins] + PrGame 2[A wins]︸ ︷︷ ︸

= 0

−1
2

∣∣∣∣
≤
∣∣∣∣PrGame 1[A wins]− PrGame 2[A wins]

∣∣∣∣ +
∣∣∣∣PrGame 2[A wins]− 1

2

∣∣∣∣
≤ AdvH,BTCR(λ) + AdvIBKEM,B

IND-sID-CPA(λ) ≤ ε1(λ) + ε(λ)

26

2.6 Reductionist Proofs and Game Playing Technique

Consequently, for any attacker A of IBKEM, the advantage of breaking the scheme
can be bounded by the sum of two negligible functions. This again is a negligible
function and such gives a suitable bound for the security of IBKEM.
A simple but important tool for bounding |PrGame i[A wins]−PrGame i+1[A wins]|

is the analysis based on failure events F . Intuitively, if two games are “identical
until F occurs”, then the difference of A’s winning probability can be bounded by
Pr[F]. More formally, this can be done with a framework of Bellare and Rogaway
[BR06], where games are considered that are “identical until bad is set”. As here
only a simple subset of this framework is used, it is introduced by example: Game
1 and Game 2 are “identical until F occurs”, whereas Game 1’ and Game 2’ are
their equivalents, rewritten to be “identical until bad is set”.

Game 1:

do this

Game 1’ :
if F
bad← true
do this

else
do this

Game 2’ :
if F
bad← true
do that

else
do this

Game 2:
if F
do that

else
do this

Lemma 2.11 (Fundamental Lemma, [BR06]). If Game i and Game i+1 are “iden-
tical until bad is set”, then∣∣∣PrGame i[A wins]− PrGame i+1[A wins]

∣∣∣ ≤ PrGame i[bad is set]

Furthermore, bad is set with the same probability in both games

PrGame i[bad is set] = PrGame i+1[bad is set]

If further on, PrGame i[A wins | bad is set] = 1
2 or PrGame i+1[A wins | bad is set] = 1

2
holds, then the above can be refined to3:

∣∣∣PrGame i[A wins]− PrGame i+1[A wins]
∣∣∣ ≤ 1

2 · PrGame i[bad is set]

With one exception, in the following proofs this lemma will be applied to games
that are “only” identical until some failure event F occurs. Their rewriting to
games that are identical until bad is set is trivial in all cases and thus omitted.

3This does not occur in the original lemma, but can be obtained by a simple modification.

27

2 Basic Definitions and Concepts

28

3 Review of Related Work
This chapter deals with all schemes that are necessary to understand the following
work. These are: A restricted and a full IBKEM version of BB1-IBE (Section 3.1,
Section 3.2), BMW-KEM (Section 3.3), the CHK transformation (Section 3.4), and
finally a very brief summary of Waters-IBKEM, BMW-PKE and the related ACIK
transformation (Section 3.5)

3.1 Hash-Free BB1-IBKEM
In the original paper, BMW-KEM is said to be based on BB1-IBE, but according
to the authors’ description of the analogy between both schemes [BMW05a, §4.2],
BMW-KEM may be interpreted as being based on an IBKEM version of BB1-IBE.
For this reason, only the IBKEM (§2.1.3 on p.12) version is presented here.
In this section, a restricted version of BB1-IBKEM is defined where identities

may be chosen only from Zp. In the next section, this will be extended to arbitrary
identities by hashing these from {0, 1}∗ into Zp.
Construction 3.1. The hash-free version hfBB1-IBKEM is defined from a bilinear
group generated by BGGen (Def. 2.9 on p.24) as follows:

Setup(1λ) 〈p,G,GT , e, g〉 ← BGGen(1λ)
a, b, c ← Zp

g1, g2, g3 ← ga, gb, gc

Z ← e(g1, g2)
PK ← 〈p,G,GT , e, g, g1, g2, g3, Z〉
SK ← ga2

PubKey(PK, ID ∈ Zp) PKID ← gID1 · g3

SecKey(SK, ID ∈ Zp) r ← Zp

SKID ← 〈gr, SK · PKr
ID〉

Encaps(PKID) s ← Zp

C ← 〈gs, PKs
ID〉

K ← Zs

Decaps(SKID, C) 〈S1, S2〉 ← SKID

〈C1, C2〉 ← C
K ← e(S2, C1)/e(C2, S1)

The correctness can easily be checked using the bilinearity of e:
e(S2, C1)
e(C2, S1)

= e(SK · PKr
ID, g

s)
e(PKs

ID, g
r) = e(SK, gs) · e(PKID, g)rs

e(PKID, g)rs
= e(g, g)abs = Zs

29

3 Review of Related Work

The proof of IND-sID-CPA security (Def. 2.4 on p.17) is based on the BDDH
problem (Def. 2.10 on p.25). It is straightforward, as it exactly follows the “basic
reduction technique” (§2.6 on p.25).
Theorem 3.2 (analogously to [BB04, Theorem 4.1], but as IBKEM version).
If the BDDH problem is ε-hard in the groups generated by BGGen, then:

hfBB1-IBKEM is ε-IND-sID-CPA secure.

Proof. Let A be an arbitrary IND-sID-CPA attacker of hfBB1-IBKEM. An algo-
rithm B has to be constructed that uses A as help for solving the BDDH problem.
The goal is that B gives a perfect simulation of the IND-sID-CPA experiment for
A such that B wins if and only if A wins.
On the left side below, the definition of the IND-sID-CPA experiment is recapit-

ulated, using the concrete algorithms of hfBB1-IBKEM. The right side shows the
simulation by B, which runs itself in the BDDH experiment.

The experiment as expected by A:

〈p,G,GT , e〉 ← BGGen(1λ)
a, b, c ← Zp

g1, g2, g3 ← ga, gb, gc

Z ← e(g1, g2)
PK ← 〈p,G,GT , e,

g1, g2, g3, Z〉
SK ← ga2

ID? ← A1(1λ)

b̂ ← {0, 1}
PKID? ← gID

?

1 · g3
s ← Zp

C? ← 〈gs, PKs
ID〉

K?
0 ← Zs (= e(g, g)abs)

K?
1 ← GT

b′ ← ASecKey
2 (PK,K?

b̂
, C?)

The SecKey oracle (for ID 6= ID?):
r ← Zp

SKID ← 〈gr, SK · PKr
ID〉

The experiment as simulated by B:

B’s environment computes:
〈p,G,GT , e〉 ← BGGen(1λ)
a, b, s ← Zp

x, y, z ← ga, gb, gs

T0 ← e(g, g)abs
T1 ← GT

b̂ ← {0, 1}
B on input 〈p,G,GT , e, x, y, z, Tb̂〉:
ID? ← A1(1λ)
g1, g2 ← x, y
Z ← e(g1, g2)
c′ ← Zp

g3 ← gc
′ · g−ID?1

PK ← 〈p,G,GT , e,
g1, g2, g3, Z〉

C? ← 〈z, zc′〉
K?
b̂

← Tb̂

b′ ← ASecKey
2 (PK,K?

b̂
, C?)

return b′ as own guess for BDDH
The SecKey oracle as simulated by B:
r′ ← Zp

SKID ← 〈gr
′ · g

−1
ID−ID?
2 , PKr′

ID · g
−c′

ID−ID?
2 〉

(B never divides by 0, as ID 6= ID?)

30

3.1 Hash-Free BB1-IBKEM

The high-level strategy of B is as follows. The values from B’s environment are used
in such a way that T0 = K?

0 and T1 = K?
1 , and thus, B can solve the BDDH problem

if and only if A distinguishes honestly computed keys from random. Unfortunately,
by doing this, B neither knows the master secret key SK (=gab) nor the randomness
s used in the challenge ciphertext. Nevertheless, B must be able to compute SK ·
PKr

ID for the SecKey oracle and PKs
ID? for the challenge ciphertext. The crucial

idea that enables B to simulate these steps is the special choice of g3 based on ID?.
It is important to note that although g3 is based computationally on ID?, both are
stochastically independent.
The formal argument now is as follows. First of all, it has to be shown that
B gives a perfect simulation, i. e., all values given to A by B have the probability
distribution as defined in the original experiment:
• It is easy to see that most values—namely p,G,GT , e, a, b, g1 (=x), g2 (=y),
Z, b̂, s, the first part of C? (= z), K?

0 (= T0), K?
1 (= T1) and K?

b̂
(= Tb̂)—are

computed as expected by comparing the left and right side above. The only
difference is the order of their computation and their initial naming, as some
of them are computed by B’s environment instead of B itself.

• g3 is expected to be computed as gc for c uniform in Zp.
Instead, B computes it as gc′ · g−ID?1 , which equals gc for c := c′ − a · ID?. If
c′ is uniform in Zp then c is, too, no matter what a or ID? is. As result, g3
is distributed correctly, although B does not know the corresponding c.

• The second part of C? is expected to be PKs
ID? =

(
gID

?

1 · g3
)s
. But this is ex-

actly what B computes, because zc′ = (gs)c
′
=
(
gc
′
)s

=
(

(gc′ · g−ID?1)︸ ︷︷ ︸
=g3

·gID?1

)s
.

• The argument for the first part of a secret key SKID is the same as for g3,
leading to gr′ · g

−1
ID−ID?
2 = gr for r := r′− 1/(ID− ID?). By easy (but bulky)

computation one can evaluate that the second part is correct, too, because
PKr′

ID · g
−c′

ID−ID?
2 = SK · PKr

ID.
Then, as all input values of A have the same probability distribution in the simu-
lation and in the original experiment, it can be concluded that A’s output b′ must
be distributed the same in both experiments, too. Furthermore, b̂ is in both cases
computed in the same way. In total, b = b̂ must hold with the same probability:
PrExphfBB1-IBKEM,A

IND-sID-CPA (λ)

[
b̂ = b′

]
= Prsimulation by B

[
b̂ = b′

]
= PrExpBGGen,B

BDDH (λ)

[
b̂ = b′

]
As described in Section 2.6 (p.25), this gives an upper bound for the advantage of
every attacker A for hfBB1-IBKEM and finishes the proof.

AdvhfBB1-IBKEM,A
IND-sID-CPA (λ) =

∣∣∣∣Pr[ExphfBB1-IBKEM,A
IND-sID-CPA (λ) = win]− 1

2

∣∣∣∣
=
∣∣∣∣Pr[ExpBGGen,B

BDDH (λ) = win]− 1
2

∣∣∣∣ = AdvBGGen,B
BDDH (λ) ≤ ε(λ)

31

3 Review of Related Work

As this was the first proof, it was given quite in detail. In the following proofs, only
the implementation of B will be given—not its embedding in its own attack game
or the concrete experiment that A expects. It will be much easier to see that B’s
simulation fits A’s expectation and often subsumed by a sentence like “B perfectly
simulates . . . as expected by A and consequently wins if and only if A wins”.
The ciphertexts in hfBB1-IBKEM can be characterized as follows:

Fact 3.3. Let PKID a valid public key, C = 〈C1, C2〉 be an arbitrary ciphertext
and C1 = gs (recall: g generates G). Then the following statements are equivalent:

1. C is valid for PKID, i. e., C ∈ C(PKID)

2. C2 = PKs′
ID and s′ = s (if PKID is a generator)

C2 = gs
′ and s′ = 0 (if not, i. e., PKID = 1 as G has prime order)

3. C2 = Ca·ID+c
1 (recall: g1 = ga, g3 = gc and PKID = gID1 · g3)

4. e(C2, g) = e(C1, PKID)

3.2 Full BB1-IBKEM
Now, hfBB1-IBKEM can be turned into full BB1-IBKEM that supports arbitrary
identities from {0, 1}∗ (§2.1.3 on p.12). The construction is quite easy and only
requires the application of a suitable hash function (§2.4.1 on p.22).

Construction 3.4. The transformation IBKEM := arbID(IBKEM, H) turns any
IBKEM with a restricted identity space IDSpace and a keyed hash function Hk :
{0, 1}∗ → IDSpace into an IBKEM with arbitrary identities. It is defined as follows:

IBKEM.Setup(1λ) PK, SK ← IBKEM.Setup(1λ)
k ← {0, 1}`(λ)

PK ← 〈PK, k〉
IBKEM.PubKey(PK, ID) ID ← Hk(ID)

PKID ← IBKEM.PubKey(PK, ID)
IBKEM.SecKey(SK, ID) ID ← Hk(ID)

SKID ← IBKEM.SecKey(SK, ID)
Encaps and Decaps stay unchanged.

The proof of IND-sID-CPA security (Def. 2.4 on p.17) will be a good example for
the game playing technique (second half of §2.6 on p.26). As this is the first use of
the “fundamental lemma” (Lem. 2.11 on p.27), things will be done in great detail.

Theorem 3.5 ([BB04, Theorem 8.1]). If IBKEM is ε-IND-sID-ATK secure (for
ATK ∈ {CPA, CCA1/2}) and H is ε̂-TCR secure (Def. 2.7 on p.22), then:

IBKEM := arbID(IBKEM, H) is (ε+ ε̂/2)-IND-sID-ATK secure.

32

3.2 Full BB1-IBKEM

Proof. The proof is only given for IND-sID-CPA security. It can easily be adapted
for the other two cases of IND-sID-CCA1 and IND-sID-CCA2 security.
The security of IBKEM is heavily based on IBKEM. Indeed, an attacker A of

IBKEM can be turned almost directly into an attacker B of IBKEM. A problem
will occur only if A requests a secret key for some ID with Hk(ID) = Hk(ID?),
but this can be avoided due to the TCR-security of H. The proof is based on the
following “sequence” of two games.

Game 1 This is the IND-sID-CPA experiment for IBKEM.

Game 2 This is the same as Game 1, except if A queries the IBKEM.SecKey oracle
for an ID 6= ID? with Hk(ID) = Hk(ID?). Then the experiment will be
aborted, i. e., A is stopped and its guess is chosen randomly (b′ ← {0, 1}).

Proof Overview The change from Game 1 to 2 can be bounded by an algorithm
B attacking the security of the auxiliary primitive H. This results in:

|PrAGame 1[b = b′]− PrAGame 2[b = b′]| ≤ AdvH,BTCR(λ)/2 ≤ ε̂(λ)/2

Game 2 can be perfectly simulated by attacker B of the main primitive IBKEM:

|PrAGame 2[b = b′]− 1/2| = AdvIBKEM,B
IND-sID-CPA(λ) ≤ ε(λ)

Combining both equations bounds A’s advantage (as described in §2.6 on p.26):

AdvIBKEM,A
IND-sID-CPA(λ) ≤ ε(λ) + ε̂(λ)/2

Game 1 to Game 2: The analysis is based on failure events, a technique intro-
duced together with the fundamental lemma. The failure event is F := “A makes
a query to the IBKEM.SecKey oracle for an ID with Hk(ID) = Hk(ID?)”. In order
to derive the desired bound on the difference of Game 1 and Game 2 the following
three facts have to be proven.

• Game 1 and 2 can be rewritten to games that are “identical until bad is set”
and where bad is set if and only if F occurs.

• If F occurs, then A wins Game 2 with probability 1/2.

• An algorithm B can be constructed that breaks the TCR-security of H if and
only if F occurs in Game 2.

The first step gives the applicability of the lemma. The second step allows to even
use the slightly sharper bound at the end of that lemma. This results in:

|PrAGame 1[b = b′]− PrAGame 2[b = b′]| ≤ PrGame 2[F]/2

33

3 Review of Related Work

The third step bounds

PrGame 2[F] = PrExpH,BTCR(λ)[B wins] = AdvH,BTCR(λ) ≤ ε̂(λ)

Let’s begin with the first step: As both games differ only in the implementation of
the SecKey oracle, only these parts are rewritten:

SecKey(ID) oracle in Game 1:
if ID 6= ID? ∧Hk(ID) = Hk(ID?)
bad← true
proceed

if ID = ID?

abort
ID ← Hk(ID)
SKID ← IBKEM.SecKey(SK, ID)

SecKey(ID) oracle in Game 2:
if ID 6= ID? ∧Hk(ID) = Hk(ID?)
bad← true
abort

if ID = ID?

abort
ID ← Hk(ID)
SKID ← IBKEM.SecKey(SK, ID)

Both oracles are equivalent to those as defined in Game 1 and Game 2. The last
four lines give an oracle as defined in the IND-sID-CPA experiment, and thus as
in Game 1: For any ID 6= ID?, it is expected to output a secret key computed as
defined in the arbID transformation (Con. 3.4 on p.32). The first three lines have
no impact on the left side. On the right side, they implement the newly introduced
abort in Game 2. It is obvious that bad is set to true if and only if F occurs. This
finishes the first of the above stated steps.
Now assume that F occurs in Game 2. Then, by definition of Game 2, the

experiment is aborted, i. e., A is stopped and its guess is chosen as b′ ← {0, 1}.
Therefore, it holds with probability 1/2 that b = b′, i. e., PrGame 2[A wins | F] =
1/2. This allows the application of the third part of the fundamental lemma.
As last step, an algorithm B has to be created that simulates Game 2 for A and

attacks H in the TCR experiment. Whenever F occurs during that simulation, B
has to break H, i. e., find an x that collides in H with a previously selected target
x?. B is defined as follows:

B1(1λ): • run A1(1λ) to obtain ID?

• output x? ← ID?

B2(k): • PK, SK ← IBKEM.Setup(1λ)
• PK ← 〈PK, k〉
• compute b, PKID? , K

?
0 , C

?, K?
1 as expected

• start AIBKEM.SecKey
2 (PK)

• if the simulation has not been aborted by B during
the IBKEM.SecKey oracle, then output x← ID?

34

3.2 Full BB1-IBKEM

IBKEM.SecKey-oracle(ID) for A:
• if ID 6= ID? ∧Hk(ID) = Hk(ID?) ← F occurs

then abort and output x← ID

• if ID = ID?

then abort and output x← ID?

• else compute and return SKID as expected

In fact, B does all computations of Game 2 on its own, except choosing the hash
key k. After A1 has selected ID?, B outputs this identity as target x? for attacking
the hash function H. In return, it is given a hash key k which it uses to complete
PK. In this way, B has generated a valid public key PK as well as the secret key
SK and thus is able to give a perfect simulation, including the SecKey oracle. If
F occurs, then B outputs an x with x = ID 6= ID? = x? and Hk(x) = Hk(ID) =
Hk(ID?) = Hk(x?), i. e., it wins in the TCR experiment for H. On the other hand,
if F does not occur, then B eventually outputs x with x = ID? = x? and definitely
does not win. In total, B wins if and only if F occurs. This ends the proof of the
third step above and finishes the bounding of differences between Game 1 and 2.

Game 2 to IBKEM: Now, an IND-sID-CPA attacker B of IBKEM can easily simu-
late Game 2 for A. It delegates all IBKEM related computations to its environment
and only adds the hash function. B is defined as follows:

B1(1λ): • start A1(1λ) to obtain the attacked identity ID?

• choose a hash key k ← {0, 1}`(λ)

• output as own attacked identity ID? ← Hk(ID?)

BIBKEM.SecKey
2 (PK,K?

b , C
?):

• set PK ← 〈PK, k〉
• start AIBKEM.SecKey

2 (PK,K?
b , C

?)
• use A2’s output b′ as own guess

IBKEM.SecKey-oracle(ID) for A2:
• if Hk(ID) = Hk(ID?) abort, else
• ID ← Hk(ID) (6= Hk(ID?) = ID?)
• SKID ← IBKEM.SecKey-oracle(ID)

Due to B’s choice ID? ← Hk(ID?), the challenge ciphertext is computed (by
B’s environment) with respect to the public key IBKEM.PubKey(PK, ID?). This
is equivalent to IBKEM.PubKey(PK, ID?). In the same way, all answers of the
IBKEM.SecKey-oracle fulfill A’s expectations. B’s IBKEM.SecKey oracle queries are
always permitted, as ID 6= ID? always holds. Consequently, B gives a perfect
simulation and wins exactly if A wins.

35

3 Review of Related Work

The steps to show the applicability of the fundamental lemma (the biggest part of
“Game 1 to Game 2”) have been quite technical but not very difficult or enlighten-
ing. As a consequence, they will be left out in the following proofs. Instead, only
the probability for F to occur will be analyzed.
This construction (Con. 3.4 on p.32), applied to the hash-free variant of BB1-

IBKEM, gives the full version. Let H be a hash function from {0, 1}∗ to Zp, then:

BB1-IBKEM := arbID(hfBB1-IBKEM, H)

Corollary 3.6. If the BDDH problem is ε-hard in the groups generated by BGGen
(Def. 2.10 on p.25) and H is ε̂-TCR secure (Def. 2.7 on p.22), then:

BB1-IBKEM is (ε+ ε̂/2)-IND-sID-CPA secure.

3.3 BMW-KEM
BMW-KEM is a direct construction of an IND-CCA2 secure KEM (§2.1.2 on p.11
and Def. 2.3 on p.16). In fact, in can be interpreted as a very efficient application
of paradigm 1 and 2 from the introduction (§1.3 on p.5) to BB1-IBKEM.

Construction 3.7. BMW-KEM is defined as follows:

KeyGen(1λ) exactly as Setup in BB1-IBKEM but
SK ← 〈ga2 , a, c〉

Encaps(PK) s ← Zp

C ← 〈C1, C2〉 = 〈gs, (gHk(C1)
1 · g3)s〉

K ← Zs

Decaps(SK,C) 〈SK, a, c〉 ← SK
〈C1, C2〉 ← C

check C
a·Hk(C1)+c
1

?= C2
if not then return K ← ⊥
else return K ← e(SK,C1)

In comparison to BB1-IBKEM, the encapsulation algorithm is subject to a subtle
but important change. Instead of getting an PKID as external input, the first part
of the ciphertext is used to compute “PKC1” as base for C2. The decapsulation
algorithm is modified a little bit more, but this will turn out as a comparatively
unimportant change. Note that there is no overhead in BMW-KEM compared to
BB1-IBKEM. Ciphertext size is the same and the Decaps algorithm is even more
efficient in BMW-KEM. The exact relationship between both schemes and the
realization of the paradigms will be studied in Chapter 4.
Note: This version of BMW-KEM maps C1 into Zp using a keyed hash function

Hk. The main version of [BMW05a] improves this by replacing Hk with a (non-
keyed) function H: G→ Zp, which is “almost injective”. It is not considered here.

36

3.4 The CHK Transformation

Theorem 3.8 (almost1 as [BMW05a, Theorem 4.1]). If the BDDH problem is
ε-hard in the groups generated by BGGen and H is ε̂-TCR secure, then follows:

BMW-KEM is a (ε+ ε̂/2 + qDecaps/2p)-IND-CCA2 secure KEM,

where qDecaps is the number of oracle queries and p is the size of the bilinear group.

3.4 The CHK Transformation
The CHK transformation is a generic transformation from any IND-sID-CPA secure
IBE and any strongly existentially unforgeable one-time signature to IND-CCA2
secure PKE. Here, an IBKEM-to-KEM version is presented (for all definitions see
§2.1 on p.10 and §2.4.2 on p.23).

Construction 3.9. The CHK(-KEM) transformation KEM := CHK(IBKEM, Sig)
for an arbitrary IBKEM and a signature scheme Sig is defined as follows:

KEM.KeyGen(1λ) PK, SK ← IBKEM.Setup(1λ)
KEM.Encaps(PK) VK, SigK ← Sig.KeyGen(1λ)

ID ← VK
PKID ← IBKEM.PubKey(PK, ID)
K,C ← IBKEM.Encaps(PKID)
sig ← Sig.Sign(SigK,C)
C ← 〈ID,C, sig〉
return K,C

KEM.Decaps(SK,C) 〈ID,C, sig〉 ← C
VK ← ID

check Sig.Verify(VK,C, sig) ?= true
if not then return K ← ⊥
SKID ← IBKEM.SecKey(SK, ID)
K ← IBKEM.Decaps(SKID, C)

For each key encapsulation, a fresh verification key VK is chosen and used as ID.
The session key K is encapsulated under this ID, and the resulting ciphertext C
is signed with the corresponding signing key SigK. For decapsulation, the signa-
ture is checked first, and then K is restored with the appropriate secret key. The
computational overhead of KEM compared to IBKEM is given by a signing key gen-
eration and a signature computation for encapsulation, and a signature verification
for decapsulation. The ciphertext is enlarged by a verification key and a signature.
Paradigm 1 from the introduction (§1.3 on p.5) is not realized exactly in the

proposed way. ID is chosen randomly from all valid verification keys VK of Sig
1The ε̂/2 in the security bound does not occur in [BMW05a] as the authors prove the version
where H is “almost injective”. If they also had proven the version with a hash function, the
security bound would be exactly as above.

37

3 Review of Related Work

instead of arbitrary binary strings. This subset is still big enough to make ID = VK
unpredictable for an attacker and thus render the Decaps oracle in phase 1 useless.
The reason for paradigm 2 to be fulfilled is roughly as follows. Assume that an

attacker is given a ciphertext 〈ID?, C
?
, sig?〉, and he manages to submit a valid

ciphertext 〈ID?, C, sig〉 to the Decaps oracle. This would include a signature sig
for the “message” C that is valid under the verification key ID? = VK?. Such a
forgery can easily be converted into an SEU-OT attacker for Sig (Def. 2.8 on p.23)
and thus is infeasible. Consequently, the Decaps oracle in phase 2 is useless, too.
Together with the IND-sID-CPA security of IBKEM (Def. 2.4 on p.17) this gives

IND-CCA2 security for KEM (Def. 2.3 on p.16):
Theorem 3.10 (analogously to [CHK04, Thm. 1] but as IBKEM-to-KEM version).
Let IBKEM be ε-IND-sID-CPA secure and Sig be ε̂-SEU-OT secure, then follows:

CHK(IBKEM, Sig) is a (ε+ ε̂)-IND-CCA2 secure KEM.
This will not be proven here. Instead, the analysis of the relationship between the
CHK transformation and BMW-KEM in Chapter 5 yields a similar theorem that
implies a weakened version of the above as corollary. A modification to produce
exactly the above theorem as corollary will also be briefly suggested.

3.5 BMW-PKE and the ACIK Transformation
Here, an IBKEM version of Waters-IBE and the related BMW-PKE are sketched
briefly and then the two ACIK transformations are defined. This section shall
enable the reader to compare the work of [ACIK07] with the ideas presented in
later chapters. Therefore, it is not given with much explanations. The reader
might want to skim over this section for now and return after reading Chapter 4.

Waters-IBKEM and BMW-PKE: The IBKEM version of Waters-IBE is closely
related to hfBB1-IBKEM (Con. 3.1 on p.29). The main difference is the compu-
tation of the users’ public keys. BB1-IBKEM assumes ID ∈ Zp and computes
PKID ← gID1 · g3. Waters-IBKEM uses an ID ∈ {0, 1}n (where n is arbitrary but
fixed), parses this as (I1, . . . , In) and computes:

PKID ←
(∏
Ij=1

hj
)
· g3

where h1, . . . , hn ← G are additional elements in PK chosen during Setup. The
other algorithms SecKey, Encaps and Decaps work as in hfBB1-IBKEM. This special
form of computing PKID is also known as the Waters hash of an identity. It makes
the crucial difference that allows to prove security under adaptive-identity attacks.
Theorem 3.11 (analogously to [Wat05, Theorem 1], but as IBKEM version).
If the BDDH problem is ε-hard in the groups generated by BGGen, then:

Waters-IBKEM is
(
32 · (n+ 1) · qSecKey · ε

)
-IND-aID-CPA secure.

where qSecKey is the number of the attacker’s oracle queries.

38

3.5 BMW-PKE and the ACIK Transformation

The relationship between BMW-PKE and BMW-KEM is quite similar, although the
differences are a little bit bigger. In BMW-KEM a random key and ciphertext are
encapsulated as K ← Zs, C1 ← gs and C2 ← (gHk(ID)

1 · g3)s for a randomly chosen
s ∈ Zp. In BMW-PKE on the other hand, a message M ∈ GT is encrypted as:

CM ←M ·Zs, C1 ← gs, (I1, . . . , In)← Hk(CM || C1), C2 ←
(∏
Ij=1

hj
)s

I. e., Zs is not used as session key K but to hide M . Furthermore in C2 the Waters
hash is used and applied to both CM and C1. The decapsulation can be done in an
efficient way similar to BMW-KEM by using the discrete logarithms of all hi. The
security relation between BMW-PKE and Waters-IBKEM is as between BMW-KEM
and BB1-IBKEM:
Theorem 3.12 (almost2 as [BMW05a, Theorem 3.1]). If the BDDH problem is
ε-hard in the groups generated by BGGen and H is ε̂-TCR secure, then follows:

BMW-PKE is a
(
32 · (n+ 1) · qDecrypt · ε+ ε̂/2

)
-IND-CCA2 secure KEM,

where qDecaps is the number of oracle queries and p is the size of the bilinear group.

The ACIK transformations: As noted in the introduction Abe et al. [ACIK07]
have extracted the specific properties of Waters-IBKEM that allow its transforma-
tion into BMW-PKE. The results are the following definitions and transformations:
Definition 3.13 ([ACIK07, Definition 2]). An IBKEM (§2.1.3 on p.12) is said to
be ACIK-partitioned if (for all possible public/secret keys and identities) it satisfies
the following three properties:
• Independence property ofK: The encapsulated key K does not depend on ID.

• Unique split property of C: The ciphertext C can be split into two parts
C = 〈C1, C2〉 such that the first part C1 does not depend on ID. Furthermore,
the first part C1 and ID together uniquely determine the second part C2.

• Perfect $-rejection property: For every invalid C = 〈C1, C2〉 /∈ C(PKID) it
is required that IBKEM.Decaps(IBKEM.SecKey(SK, ID), 〈C1, C2〉)) outputs a
random K ∈ K(PK).

These partition properties imply that IBKEM.Encaps can be split into two parts,
IBKEM.Encaps1, and IBKEM.Encaps2 that create 〈K,C1〉 and C2, respectively.

Encaps1(PK) ; K,C1, σ; which outputs the session key K, first part of the ci-
phertext C1 and some important values σ from its internal state. E. g., σ
could be all randomness produced by the internal coin tosses. It is meant
only as input for the second stage and has to be deleted afterwards.

Encaps2(PKID, σ) ; C2; (deterministic) computes the second ciphertext part C2.

2As for BMW-KEM the ε̂/2 in the security bound does not occur in [BMW05a] as the authors
prove the version where H is “almost injective”.

39

3 Review of Related Work

Furthermore, they define a strengthened version of IND-aID-CPA security. Com-
pared to the standard version of this security definition (Def. 2.4 on p.17), the main
difference is that K?

b and C?
1 can be computed independently of ID? and are given

to the attacker already at the beginning of phase 1.
Definition 3.14 ([ACIK07, §5.3]). For an ACIK-partitioned IBKEM, the strong
IND-aID-CPA experiment is defined as follows:

ExpIBKEM,A
strong-IND-aID-CPA(λ):

PK, SK ← Setup(1λ)
K?

0 , C
?
1 , σ

? ← Encaps1(PK)
K?

1 ← K(PK)
b ← {0, 1}
ID? ← ASecKey

1 (PK,K?
b , C

?
1)

PKID? ← PubKey(PK, ID?)
C?

2 ← Encaps2(PKID? , σ
?)

b′ ← ASecKey
2 (C?

2)
if b = b′, then output win

On query SecKey-oracle(ID), the oracle uses the SecKey algorithm to compute
SKID and returns that key. The queried ID may not be ID?. Furthermore, A1
may not output an ID? that has been part of a SecKey query before.
Now all preconditions for the first3 ACIK transformation are met. In fact, the
authors give a construction that turns a partitioned IBKEM (§2.1.3 on p.12) into
a Tag-KEM [AGKS05]. This is a special case of a TBKEM (§2.1.4 on p.13) which
allows transformations into PKE (§2.1.1 on p.10) that are more efficient than KEM-
to-PKE transformations (§2.3 on p.19). To avoid the need of yet another definition,
here a simplified version of their transformation is defined which directly gives PKE.
Construction 3.15 ([ACIK07, §5.3]). The first ACIK transformation PKE :=
ACIK1(IBKEM) for an ACIK-partitioned TBKEM is defined as follows:

PKE.KeyGen(1λ) PK, SK ← IBKEM.Setup(1λ);
PKE.Encrypt(PK,M) K,C1, σ ← IBKEM.Encaps1(PK)

CM ←M ⊕K
ID ← CM || C1
PKID ← PubKey(PK, ID)
C2 ← IBKEM.Encaps2(PKID, σ)
C ← 〈CM , C1, C2〉

PKE.Decaps(SK,C) 〈CM , C1, C2〉 ← C
ID ← CM || C1
SKID ← SecKey(SK, ID)
K ← IBKEM.Decaps(SKID, 〈C1, C2〉)
M ← CM ⊕K

3In fact, the authors define this construction as second in their paper, but it better fits the
presentation in this thesis, to do it the other way round.

40

3.5 BMW-PKE and the ACIK Transformation

If the above criteria of ACIK-partitioned IBKEM and strong security are met, then
this transformation results in IND-CCA2 secure (Def. 2.2 on p.16) PKE.
Theorem 3.16 ([ACIK07, Theorem 7]). If IBKEM is ACIK-partitioned and ε-
strong-IND-sID-CPA secure, then:

PKE := ACIK1(IBKEM) is ε-IND-CCA2 secure.
This essentially reflects the transformation from Waters-IBKEM to BMW-PKE,
Waters-IBKEM fits all preconditions and the outcome of ACIK1(Waters-IBKEM)
is basically BMW-PKE.
The second ACIK transformation is less demanding, as it does not need strong

IND-aID-CPA security but can be applied to any (non-strong) IND-sID-CPA secure
IBKEM. The downside is that it introduces an additional computational overhead
and enlarges ciphertexts by using a chameleon hash function.
A chameleon hash function is roughly a hash function that allows someone to

obtain collisions if a secret trapdoor t is known, but remains collision resistant for
anyone else. It consists of three algorithms CHM.KeyGen, which generates a hash
key k and a trapdoor t, a randomized hash algorithm CHM.H, that takes input x
and randomness r and produces a hash value y, and finally a trapdoor algorithm
CHM.Trap, which on input t, x, r, x′ finds different randomness r′ such that H(x, r) =
H(x′, r′). A chameleon hash function is computationally more demanding than a
target collision resistant hash function (§2.4.1 on p.22) but much more efficient
than a strongly existentially unforgeable signature scheme (§2.4.2 on p.23). For
more details see [ACIK07, §2.6].
With this chameleon hash function the second ACIK transformation can be de-

fined. Again, the construction is presented in a simplified version resulting in PKE.
Construction 3.17 ([ACIK07, §4]). The second ACIK transformation PKE :=
ACIK2(IBKEM,CHM) for an ACIK-partitioned TBKEM and a chameleon hash
function CHM is defined as follows:

PKE.KeyGen(1λ) PK, SK ← IBKEM.Setup(1λ);
k, t ← CHM.KeyGen(1λ);
PK, SK ← 〈PK, k〉, SK

PKE.Encrypt(PK,M) K,C1, σ ← IBKEM.Encaps1(PK)
CM ←M ⊕K
r ← Rand
ID ← CHM.H(CM || C1, r)
PKID ← PubKey(PK, ID)
C2 ← IBKEM.Encaps2(PKID, σ)
C ← 〈CM , C1, C2, r〉

PKE.Decaps(SK,C) 〈CM , C1, C2, r〉 ← C
ID ← CHM.H(CM || C1, r)
SKID ← SecKey(SK, ID)
K ← IBKEM.Decaps(SKID, 〈C1, C2〉)
M ← CM ⊕K

41

3 Review of Related Work

Compared to the first ACIK transformation ciphertexts are enlarged by the size of
r. Furthermore, for encryption and decryption an additional CHM.H computation
has to be done. Note, that the trapdoor t and the CHM.Trap algorithm is never
used in the scheme. It is only needed for the security proof.

Theorem 3.18 ([ACIK07, Theorem 3]). If IBKEM is ACIK-partitioned and ε-
IND-sID-CPA secure and CHM is ε̂-RPC-secure (this form of security has not been
defined in this paper), then:

PKE := ACIK2(IBKEM,CHM) is (ε+ ε̂)-IND-CCA2 secure.

For proving security of both ACIK transformations it is essential that either a
strong form of adaptive-identity security is present (ACIK1) or the missing secu-
rity is compensated by a chameleon hash function (ACIK2). Abe et al. [ACIK07,
§5.4] do not expect that one can do without both (and get KEM instead of PKE):

“Similar to [BMW05a, Kil06] one could try to directly build a key-
encapsulation mechanism [CS04] (KEM) out of an sID partitioned IBKEM
using a target-collision resistant hash function H as follows. To encapsu-
late, first compute key and the first part of the ciphertext as 〈K,C1, σ〉 ←
IBKEM.Encaps1(PK). Then, the second part of the ciphertext is computed
as C2 ← IBKEM.Encaps2(PKID, σ), where ID ← H(C1) is used to tie
the two ciphertexts together. Whereas syntactically this is correct, with-
out assuming further algebraic structure it seems hard to relate security
of the KEM to the security of the IBKEM. This is since a simulator for
the KEM security experiment interacting with the sID IBKEM challenger
has to commit to a target identity before seeing the public key. But in
the scheme the target identity depends on the first part of the target ci-
phertext and hence a stronger (and less natural) security requirement to
the IBKEM scheme is needed for a general security reduction. In general,
proving that the IBKEM satisfies such a stronger security property seems
not easier than providing a direct proof for the transformed KEM.”

(The algorithmic parts have been slightly adjusted to fit the notation used here.)

42

4 Efficient CCA2 Security from
Special Tag-/Identity-Based KEM

Boyen et al. [BMW05a] give two direct constructions of CCA2 secure public-key
schemes that are reminiscent of CPA secure identity-based schemes. The IND-
CCA2 secure BMW-PKE is obtained from the IND-aID-CPA secure Waters-IBKEM
and the IND-CCA2 secure BMW-KEM is derived from the IND-sID-CPA secure
BB1-IBKEM. The distinguishing feature of Waters-IBKEM and BB1-IBKEM is
that the former has aID security whereas the latter only has sID security.
Abe et al. [ACIK07] define partitioned IBKEMs and give two constructions of

IND-CCA2 secure PKE that either use a strong version of IND-aID-CPA security
or need additional cryptographic primitives: Chameleon hash functions which are
more demanding than standard hash functions. These transformations give a good
explanation of the relationship between Waters-IBKEM and BMW-PKE.
In this chapter, analogue transformations are sought that explain the relationship

between BB1-IBKEM and BMW-KEM. The transformations should give CCA2
secure KEM instead of PKE, but therefore neither need aID security nor need
additional strong cryptographic primitives—but a standard hash function is ok.
In Section 4.1, the construction of BMW-KEM is examined in an intuitive way.

This will result in several properties of BB1-IBKEM that allow this construction.
These properties together with a transformation rule will be formalized in Sec-
tion 4.2 as the “Core Transformation”. This is the analogue to the first ACIK
transformation. Analogue to the second ACIK transformation, in Section 4.3, the
need of the stronger security variant will be avoided by introducing the “Hash-Based
Transformation”. Finally, in Section 4.4, the applicability of both transformations
as well as their similarities and differences to the ACIK transformations will be
reviewed.

4.1 Inspiration from BMW-KEM
Before starting with abstract definitions, it is advisable to have a closer look at
BB1-IBKEM and BMW-KEM and to work out the basic ideas. In Figure 4.1, the
IND-sID-CPA secure (Def. 2.4 on p.17) BB1-IBKEM and the IND-CCA2 secure
(Def. 2.3 on p.16) BMW-KEM are recapitulated. As already mentioned before,
both differ slightly in the Encaps algorithm and a little bit more in the Decaps
algorithm. What changes are relevant for the security gain?

43

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

As an intermediate step a TBKEM (§2.1.4 on p.13) version of BB1-IBKEM is given.
BB1-TBKEM may be seen as a hybrid of BB1-IBKEM and BMW-KEM. It leaves
the encapsulation essentially unchanged, but incorporates already the changes in
decapsulation. The Decaps algorithm first checks whether C is a valid ciphertext
with respect to tag (compare equation 3 of Fact 3.3 on p.32), and then restores
K directly using SK. This takes a cheap exponentiation and only one expensive
computation of the bilinear map e. It is more efficient than the generic IBKEM-
to-TBKEM transformation (§2.3 on p.19), which would interpret tag as identity,
derive a secret key SKID for that identity from SK, and restore K using SKID.
BB1-TBKEM obtains IND-sTag-wCCA2 security (Def. 2.5 on p.18):

Theorem 4.1. If the BDDH problem is ε-hard in the groups generated by BGGen
(Def. 2.10 on p.25) and the H is ε̂-TCR secure (Def. 2.7 on p.22), then:

BB1-TBKEM is (ε+ ε̂/2)-IND-sTag-wCCA2 secure.

Proof Sketch. The proof is basically the same as for BB1-IBKEM (Thm. 3.2 on p.30
and Cor. 3.6 on p.36), except that the attacker is given a wDecaps oracle, which
decapsulates ciphertexts for any tag 6= tag?, instead of a SecKey oracle, which
returns the secret key for any ID 6= ID?.
As in the proof for hfBB1-IBKEM (Thm. 3.2 on p.30), the simulator B postpones

the generation of PK until after A has chosen tag?. Thus, it can base the choice of
g3 on tag? in a way that enables it to correctly construct the challenge ciphertext
and to simulate the wDecaps oracle. For oracle simulation, valid ciphertexts can be
answered using techniques of the SecKey oracle from the security proof of hfBB1-
IBKEM and invalid ciphertexts can be detected via equation 4 of Fact 3.3 (p.32)
and is answered with ⊥.

Although the naming of IND-sID-CPA versus IND-sTag-wCCA2 might suggest it,
there is no improvement of security from step BB1-IBKEM to BB1-TBKEM. The
SecKey oracle gives the attacker the same power as the wDecaps oracle (in fact even
more), as the secret keys can be used by the attacker to decapsulate ciphertexts for
any ID 6= ID?.
Consequently, the subtle change of Encaps between BB1-TBKEM and BMW-KEM

must be the key part of the transformation. In the introduction (§1.3 on p.4) some
intuition for creating IND-CCA2 secure PKE from IND-sID-CPA secure IBE has
been given. Indeed, BMW-KEM may be seen as a somewhat modified implementa-
tion of the paradigms given there (on p.5). They are repeated in the following (but
formulated in the TBKEM setting).

• Essential fact: Decapsulations using tag′ 6= tag will not help with a ciphertext
encapsulated using tag. (This is modelled by the wDecaps oracle.)

• Basic idea: The sender uses a different tag for every encapsulation. The tag
has to be prepended to the ciphertext, i. e., send 〈tag, C〉.

44

4.1 Inspiration from BMW-KEM

common Setup/KeyGen(1λ)
〈p,G,GT , e, g〉 ← BGGen(1λ)
a, b, c ← Zp

g1, g2, g3 ← ga, gb, gc

�

BC

GF Z ← e(g1, g2)
k ← {0, 1}`(λ)

PK ← 〈p,G,GT , e, g, g1, g2, g3, Z, k〉
SK ← ga2 resp. SK ← 〈ga2 , a, c〉

(1) PubKey(PK, ID)
PKID ← g

Hk(ID)
1 · g3

Encaps(PKID)
s ← Zp

C ← 〈gs, PKs
ID〉

= 〈gs, (gHk(ID)
1 · g3)s〉

K ← Zs

SecKey(SK, ID)
r ← Zp

SKID ← 〈gr, SK · PKr
ID〉

Decaps(SKID, C)
〈S1, S2〉 ← SKID

〈C1, C2〉 ← C
K ← e(S2, C1)/e(C2, S1)

(2) Encaps(PK, tag)
s ← Zp

C ←
〈
gs, (gHk(tag)

1 · g3)s
〉

K ← Zs

Decaps(SK, tag, C)
〈SK, a, c〉 ← SK
〈C1, C2〉 ← C

check C
a·Hk(tag)+c
1

?= C2

if true K ← e(SK,C1), else K ← ⊥

(3) Encaps(PK)
s ← Zp

C ← 〈C1, C2〉
=
〈
gs, (gHk(C1)

1 · g3)s
〉

K ← Zs

Decaps(SK,C)
〈SK, a, c〉 ← SK
〈C1, C2〉 ← C

check C
a·Hk(C1)+c
1

?= C2

if true K ← e(SK,C1), else K ← ⊥

Figure 4.1: A comparison of (1) BB1-IBKEM and (3) BMW-KEM plus an intermediate
step (2) BB1-TBKEM. The step (1)→ (2) explains the increased efficiency of
BMW-KEM and the step (2) → (3) gives the gain in security.

• Paradigm 1: To rule out the decapsulation oracle before interception of 〈tag, C〉,
the selection of tag should be unpredictable to an attacker.

• Paradigm 2: To rule out the decapsulation oracle after interception of 〈tag, C〉,
it should be infeasible (or impossible) for an attacker to find a modification
〈tag, C ′〉, where C ′ is valid under PK and tag.

In BMW-KEM, the randomly chosen tag in the computation of C2 is replaced by the
first ciphertext part C1. This is only possible, as in BB1-TBKEM the ciphertext is
dividable into two parts, where the first one does not depend on the tag. Replacing
tag by C1 can be interpreted as a modification of the basic idea as follows. Instead
of choosing tag separately and prepending it to C, it is encoded as part of C.
If C1 is interpreted as this encoding, it is written as “tag” in the following, e. g.,
C = 〈C1, C2〉 = 〈“tag”, C2〉.

45

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

With paradigm 1, “tag” has to be unpredictable for the attacker. This is fulfilled, as
C1 =“tag” is uniformly distributed in G and |G| = p is large. The requirement for
BB1-TBKEM is that the choice of the first ciphertext part should be unpredictable.
Paradigm 2 is satisfied by the following observation. In BMW-KEM, C2 is

uniquely determined by PK and C1. This means that for fixed PK and C1, there
is only a single C2 such that C = 〈C1, C2〉 is a valid ciphertext. Consequently, it
is impossible for an attacker given 〈“tag”,C2〉 = 〈C1, C2〉 to find a C ′2 such that
〈“tag”,C ′2〉 = 〈C1, C

′
2〉 is valid. The structural requirement for BB1-TBKEM which

permits this argument is that the second part of the ciphertext is uniquely deter-
mined by the first one, the public key and the tag. The above observations plus
a fourth more technical property of BB1-TBKEM will make up the definition of
partitioned TBKEM.
Similar to the work of [ACIK07], BB1-TBKEM also fulfills a strong version of

IND-sTag-wCCA2 security, which is essential for the security proof of BMW-KEM.
In Theorem 4.1 (which originates in Thm. 3.2 on p.30), the high-level strategy for
the simulator B was as follows: First, it lets the attacker A1 choose tag?, and then
it determines PK, C? = 〈C?

1 , C
?
2〉 and finally K?

b . This order seemed necessary,
as parts of PK—namely g3—were chosen dependently on tag?. Looking more
carefully at the proof, one can see that there is much more freedom in the order of
computation. Particularly, B does not base the computation of C?

1 on tag?—neither
directly nor indirectly—, and hence it can be determined before A chooses tag?.
This is very important in order to use the proof techniques from BB1-TBKEM

for BMW-KEM. Assume that in the proof of BB1-TBKEM, B would have to know
tag? in order to compute C?

1 . This would result in a cyclic dependency when
carrying over the proof to BMW-KEM: To compute C?

1 the value of “tag?” would
be needed—but “tag?” is nothing else than C?

1 . As result, it is crucial for the
proof of BMW-KEM that during the proof of IND-sTag-weakCCA2 security for
BB1-TBKEM, the simulator B may determine C?

1 before tag? is chosen by A1, and
consequently the computation of C?

1 is not based on tag?.
All observations from this section may be summarized as follows. IND-CCA2

secure BMW-KEM is constructed from IND-sID-CPA secure BB1-IBKEM in two
steps. First, BB1-TBKEM is obtained from BB1-IBKEM in a non-generic way. It
optimizes the efficiency of decapsulation but does not have any impact on security.
Then, a seemingly simple modification of the encapsulation algorithm—which may
be seen as very efficient implementation of the basic idea from the introduction—
raises security to IND-CCA2. Five properties of BB1-TBKEM, combined as parti-
tioned TBKEM and strong IND-sTag-wCCA2 security, are essential to render this
transformation possible.

4.2 The Core Transformation
In this section, the common core of all following transformations is formalized.
The result is a novel construction rule that explains how BMW-KEM is obtained

46

4.2 The Core Transformation

from BB1-TBKEM (Figure 4.1 on p.45). First, partitioned TBKEMs and their
transformation into KEMs will be defined. Then, the notion of strong IND-sTag-
wCCA2 security will be defined, and finally IND-CCA2 security will be proven for
KEMs that are based on strong IND-sTag-wCCA2 secure partitioned TBKEMs.
As a side effect, this gives a very cheap way to obtain IND-CCA1 security.

Definition 4.2. A TBKEM (§2.1.4 on p.13) is partitioned if it additionally sat-
isfies the following properties:

• Split of ciphertext: The ciphertext C can be split into two parts, C = 〈C1, C2〉,
where the first part C1 only depends on the public key PK and not the tag.
This allows to rewrite the Encaps algorithm as follows:
Encaps1(PK) ; C1, σ; which outputs the first part of the ciphertext C1 and

some important values σ from its internal state. E. g., σ could be all
randomness produced by the internal coin tosses. It is meant only as
input for the second stage and has to be deleted afterwards.

Encaps2(PK, tag, σ) ; K,C2; (deterministic) which returns session key K
and the second ciphertext part C2.

• Unpredictability of C1: There is a negligible bound ε1(λ) such that

max
PK

max
C1

Pr[C?
1 ← Encaps1(PK) : C?

1 = C1] =: ε1(λ) ∈ negl(λ)

• Uniqueness of C2: The second part C2 is uniquely determined by the public
key PK, the tag, and the first part C1.

• Simulatable rejection: There is an efficient algorithm Reject(PK, tag, C) that
has the same output distribution as Decaps(SK, tag, C) for any invalid ci-
phertext C /∈ C(PK, tag). There is no requirement for the output distribution
of Reject on any input with C ∈ C(PK, tag)!

The first three properties have been identified in the section before. The last one is
needed in the security proof where the “decapsulation” of some invalid ciphertexts
has to be simulated without knowing the secret key.
The uniqueness property implies that there exists a function from PK, tag, C1 to

C2. So one might wonder why Encaps2 is given σ instead of C1 as input. Examining
this question on the concrete example BB1-TBKEM gives a first intuition: Encaps1
chooses a random s and computes C1 as gs. Now Encaps2 shall compute K ←
e(g1, g2)s and C2 ← (gtag1 g3)s. Doing this given only g, g1, g2, g3, tag and gs would
require solving1 the BCDH problem in GT and the CDH problem in G (§2.5 on
p.23), but with s as additional input this is easy.

1The reduction is as follows (sketch): given a CDH instance 〈g, x = gs, y = gt〉 one would choose
random g1, set g3 ← y · g−tag1 and C1 ← x. Having an algorithm that computes C2 from these
values would solve the CDH problem, since C2 = (gtag1 g3)s = ys = gst. Similar reasoning
works for K and the BCDH problem.

47

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

Following a more abstract argument, computing K,C2 from PK, tag, C1 generally
should be a computational hard problem. First assume that it was computationally
feasible to compute K from these values. This would clearly break security, since
an eavesdropper knowing PK, tag, C1 could then directly compute K. Now assume
that C2 could be efficiently computed from PK, tag, C1. This would not necessarily
break security, but then C2 would at least be a redundant value, since the receiver
could compute it on his own.
Due to the split property, a KEM (§2.1.2 on p.11) construction can be defined.

Construction 4.3. The core transformation KEM := Core(TBKEM) for a parti-
tioned TBKEM is defined as follows:

KEM.KeyGen(1λ) PK, SK ← TBKEM.KeyGen(1λ);
KEM.Encaps(PK) C1, σ ← TBKEM.Encaps1(PK)

tag ← C1
K,C2 ← TBKEM.Encaps2(PK, tag, σ)
C ← 〈C1, C2〉

KEM.Decaps(SK,C) 〈C1, C2〉 ← C
tag ← C1
K ← TBKEM.Decaps(SK, tag, C)

As seen in the section before, to make a security proof for KEM out of the proof for
TBKEM, the latter one must have a special structure: The simulator has to be able
to determine C?

1 before tag? is chosen by A1. This is enforced by modifying the
IND-sTag-wCCA2 experiment (Def. 2.5 on p.18) such that the simulator is required
to give C?

1 as input for A1.

Definition 4.4. For a partitioned TBKEM, the strong IND-sTag-wCCA2 experi-
ment is defined as follows:

ExpTBKEM,A
strong IND-sTag-wCCA2(λ):

PK, SK ← KeyGen(1λ)
C?

1 , σ
? ← Encaps1(PK)

tag? ← A1(C?
1)

b ← {0, 1}
K?

0 , C
?
2 ← Encaps2(PK, tag?, σ?)

K?
1 ← K(PK, tag?)

b′ ← AwDecaps
2 (PK,K?

b , C
?
2)

if b = b′, then output win

On query wDecaps-oracle(tag, C), for tag 6= tag? and an arbitrary (valid or invalid)
ciphertext C, the decapsulation oracle returns M ← Decaps(SK, tag, C).

Note that the only difference to the standard IND-sTag-wCCA2 experiment is the
input value for A1. Given an IND-sTag-wCCA2 TBKEM, most likely there is no
need for a dedicated proof of strong security. Instead, the proof of IND-sTag-
wCCA2 security can be analyzed for whether the simulator may determine C?

1

48

4.2 The Core Transformation

without knowing tag?. Clearly, for BB1-TBKEM this is the case, as B simply
uses its own input value z as C?

1 (see Thm. 4.1 on p.44 and Thm. 3.2 on p.30).
Now, all prerequisites for the proof of IND-CCA2 security (Def. 2.3 on p.16) for
Core(TBKEM) are met.

Theorem 4.5. If TBKEM (partitioned) is ε-strong-IND-sTag-wCCA2 secure, then:

KEM := Core(TBKEM) is (ε+ qDecaps · ε1/2)-IND-CCA2 secure,

where ε1 is the upper bound for the C1-unpredictability Definition 4.2, and where
qDecaps is the number of the attacker’s oracle queries.

Proof. Let A be an attacker of KEM in the IND-CCA2 experiment. It has to be
shown that its advantage is smaller than ε+ qDecaps · ε1/2. To bound this value, this
IND-CCA2 experiment is modified slightly in a sequence of three games, such that in
the last game, A can be turned into an attacker B of TBKEM (Definition 4.4). The
idea behind these games follows the two paradigms identified in the introduction
and restated in the section before (§4.1 on p.44).

Game 1 This is the IND-CCA2 game for KEM.

Game 2 The execution of A1 is delayed a bit and its KEM.Decaps oracle aborts2 if
a ciphertext 〈C?

1 , . . .〉 is queried, i. e., that starts as the challenge ciphertext.

Game 3 At the KEM.Decaps oracle in phase 2, any query for a ciphertext 〈C?
1 , C2〉

with C1 6= C?
1 , i. e., starting as but being different from the challenge, is

rejected by setting tag ← C?
1 and then returning TBKEM.Reject(PK, tag, C).

ExpKEM,A
Game 2/3(λ):

PK, SK ← KEM.KeyGen(1λ)
AKEM.Decaps

1 (PK)
b ← {0, 1}
K?

0 , C
? ← KEM.Encaps(PK) (recall that C? = 〈C?

1 , C
?
2〉)

K?
1 ← K(λ)

AKEM.Decaps
1 (PK)

(
abort 〈C?

1 , . . .〉 Game 2

)
b′ ← AKEM.Decaps

2 (K?
b , C

?)
(
abort 〈C?

1 , C
?
2〉, reject 〈C?

1 , C2〉 Game 3

)
if b = b′, then output win

Proof Overview: The attacker B of TBKEM has to simulate a full KEM.Decaps
oracle for A. This will be no problem for queries where the decapsulation of a
ciphertext 〈C1, C2〉 with C1 6= C?

1 (recall the convention from the previous section
to think of “tag” for C1, then the inequality reads as “tag”6=“tag?”). B can do this
easily with the help of the TBKEM.wDecaps oracle. The other queries, i. e., where

2As before “abort” means, that the execution of A is stopped and b′ ← {0, 1} is chosen randomly.

49

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

C1 = C?
1 , are called problematic, as B may not use its TBKEM.wDecaps oracle in

these cases. Those problematic queries can be correctly answered by B in
• neither phase of Game 1,

• only phase 1 of Game 2,

• both phases of Game 3.

↓ paradigm 1

↓ paradigm 2

The change in Game 2 reflects the exploitation of paradigm 1. As B may abort on
any problematic query, it is able to simulate the full (modified) KEM.Decaps oracle
in phase 1. As A does not know C?

1 at that time, it may ask such a problematic
query only by accident. This can be bounded using the unpredictability of C?

1 as:

|PrAGame 1[b = b′]− PrAGame 2[b = b′]| ≤ qDecaps(λ) · ε1(λ)/2

Game 3 mainly takes advantage of the uniqueness of C?
2 (reflecting paradigm 2).

B may either abort or reject on any problematic query, which solves its problems
with simulating the KEM.Decaps oracle in phase 2. The differences from Game 2
to Game 3 will turn out as purely “cosmetic” and are not at all recognized by A:

|PrAGame 2[b = b′]− PrAGame 3[b = b′]| = 0

Finally, Game 3 can be perfectly simulated by attacker B of TBKEM, leading to:

|PrAGame 3[b = b′]− 1/2| = AdvTBKEM,B
strong IND-sTag-wCCA2(λ) ≤ ε(λ)

Collecting all these equations bounds A’s advantage (as explained in §2.6 on p.25).

Game 1 to Game 2: The shift of A1 makes no difference at all to the result
of the experiment, but for the abort condition to be well-defined it is necessary
that C? is determined prior to the execution of A1. The other change, the newly
introduced abort, makes a real difference. But with the help of the fundamental
lemma (Lem. 2.11 on p.27) and a failure event F it will be shown that this difference
is small. Recall from Theorem 3.5 (p.32) how the applicability of that lemma can
be proven. This will not be redone here. Instead, only a suitable failure event F is
defined and PrAGame 1[F] is bounded, which gives:

|PrAGame 1[b = b′]− PrAGame 2[b = b′]| ≤ PrAGame 1[F]/2

Let the challenge ciphertext be written as C? = 〈C?
1 , C

?
2〉. Let Q1 be the first halves

of all ciphertexts queried at the KEM.Decaps oracle byA1. Both games are the same
unless A1 makes a problematic query, i. e., the failure event F is “C?

1 ∈ Q1”. The
probability for this event to occur in Game 1 will be bounded as follows.
Consider a conditioned probability space that fixes all randomness in Game 1

except that one used for computing the challenge ciphertext C?. In particular,
C? = 〈C?

1 , C
?
2〉 may still vary, but PK, SK, the randomness in the Decaps oracle,

50

4.2 The Core Transformation

and the randomness in A are fixed. The important question is whether Q1 is
fixed, too. Assuming this for a short while allows the following bound for every
conditioned space (and so for the whole Game 1):

Pr[F] = Pr[C?
1 ∈ Q1]

=
∑

C1∈Q1

Pr[C?
1 = C1]

(
↙ C?

1 is determined by Encaps1(PK)
)

=
∑

C1∈Q1

Pr[C?
1 ← Encaps1(PK) : C?

1 = C1]︸ ︷︷ ︸
≤ε1(λ) see Definition 4.2 on p.47

≤ |Q1| · εcp(λ)
≤ qDecaps(λ) · εcp(λ)

It still has to be shown that Q1 is fixed in all conditioned spaces. The first Decaps
query C of A1 is a function of PK and A’s randomness. Since both are fixed, C will
always be the same over all possibilities of C?. The answer K of the Decaps oracle
is a function of SK, the randomness of the oracle and C. Since all are fixed, the
same holds for K. The next query of A1 is a function of PK, A’s randomness and
the first answer K and is thus fixed, too. By induction, the set of all ciphertexts
queried by A1 is fixed and thus Q1 has to be fixed, too.
In the following, a reasoning in this manner will be subsumed as “A1’s view is

independent of C? and so is Q1”. It is important to note the subtleties of such an
argument. For Game 2 it would be wrong! A’s view is not independent of C?. The
reason is that the answer of the modified Decaps oracle also takes C? into account
in order to decide whether it should return the key or abort. Nevertheless, in Game
1 this argument is valid and the above bound holds.

Game 2 to Game 3: In both games, the only valid ciphertext starting with C?
1

is 〈C?
1 , C

?
2〉 due to the unique split property and the fact that in KEM C?

1 is used
as “tag”. So TBKEM.Reject perfectly simulates decapsulation for all other (invalid)
ciphertexts starting with C?

1 and nothing changes from A’s point of view.

Game 3 to TBKEM: As promised, this game can easily be simulated by B, which
is an attacker in the strong IND-sTag-wCCA2 experiment for TBKEM (Def. 4.4 on
p.48). B works as follows:

B1(C?
1): output tag? ← C?

1 for the own attack on TBKEM

BTBKEM.wDecaps2 (PK,K?
b , C

?
2):

• set C? ← 〈C?
1 , C

?
2〉

• first run AKEM.Decaps
1 (PK)

• and then AKEM.Decaps
2 (K?

b , C
?)

• use A2’s output b′ as own guess

51

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

KEM.Decaps-oracle(C) for A1/2:
• parse 〈C1, C2〉 ← C

• set tag ← C1

• if C1 = C?
1 ∧ C2 = C?

2 : abort simulation and output random b′

• if C1 = C?
1 ∧ C2 6= C?

2 :
– phase 1: abort simulation and output random b′

– phase 2: return K ← TBKEM.Reject(PK, tag, C)
• if C1 6= C?

1 : return K ← TBKEM.wDecaps-oracle(tag, C)

B perfectly simulates Game 3 for A. The challenge K?
b and C? is distributed as

expected, where the intermediate values C?
1 , C

?
2 , K

?
0 , K

?
1 , b are computed by B’s en-

vironment, and tag? is chosen appropriately by B itself. The modified KEM.Decaps-
oracle works as expected, too. The first two cases reflect the modifications intro-
duced by Game 2 and 3, and in the third case, the answer is the correct decapsu-
lation of the ciphertext. B uses its TBKEM.wDecaps-oracle only with tag = C1 6=
C?

1 = tag?, and therefore, the oracle never aborts. B wins exactly if A does.

Remark: The proof above also gives IND-CCA1 security (Def. 2.3 on p.16) for
Core(TBKEM) from weaker preconditions. Recall that an IND-CCA1 experiment
is the same as an IND-CCA2 experiment, except that the KEM.Decaps oracle may
be used only in phase 1. Hence, for proving IND-CCA1 security, Game 3 in the
proof is not necessary. The uniqueness of C2 as well as the simulatable rejections
from the definition of partitioned TBKEM (Def. 4.2 on p.47) have only been needed
for the transition from Game 2 to Game 3. Consequently, IND-CCA1 security can
be obtained without these properties:

Corollary 4.6. If TBKEM has a split of ciphertexts, unpredictability of C1 (as in
Def. 4.2 on p.47), and is ε-strong-IND-sTag-wCCA1 secure (analoguesly to strong
IND-sTag-wCCA2 security; Def. 4.4 on p.48), then follows:

KEM := Core(TBKEM) is (ε+ qDecaps · ε1/2)-IND-CCA1 secure,

where ε1 is the upper bound for the C1-unpredictability Definition 4.2, and where
qDecaps is the number of the attacker’s oracle queries.

Any TBKEM can easily be transformed into a TBKEM with these two properties:
TBKEM.Encaps(PK, tag):
C1 ← {0, 1}λ
K,C2 ← TBKEM.Encaps(PK, tag)

TBKEM.Decaps(SK, tag, C):
〈C1, C2〉 ← C
K ← TBKEM.Decaps(SK, tag, C2)

Clearly, this fulfills the split property, as C1 does not depend on tag. Furthermore,
C1 is unpredictable, as any possible value occurs with probability 2−λ ∈ negl(λ).
Nonetheless, this looks very strange, as C1 is not used at all during Decaps. Setting
KEM := Core(TBKEM) gives C1 a meaningful interpretation:

52

4.3 The Hash-Based Transformation

KEM.Encaps(PK):
C1 ← {0, 1}λ
tag ← C1
K,C2 ← TBKEM.Encaps(PK, tag)

KEM.Decaps(SK, tag, C):
〈C1, C2〉 ← C
tag ← C1
K ← TBKEM.Decaps(SK, tag, C2)

I. e., in order to create an IND-CCA1 secure KEM from an IND-sTag-wCCA1 secure
TBKEM, simply do the following: Choose a random tag for every new encapsula-
tion, compute a ciphertext C under this tag, and send 〈tag, C〉 to the receiver.
Probably, this is, what Canetti et al. [CHK04, Acknowledgments] have meant with
their statement: “our techniques imply a conversion from weak IBE to ’lunchtime’
CCA1 security with essentially no overhead”.

4.3 The Hash-Based Transformation
As seen in the last section, the partition property (Def. 4.2 on p.47) together with
strong IND-sTag-wCCA2 security (Def. 4.4 on p.48) allows for very efficient trans-
formations from TBKEM to IND-CCA2 secure KEM. Unfortunately, for validation
of the stronger security notion, the security proof has to be examined carefully.
Even if a scheme has this property, it might not be as easy to prove this as it is for
BB1-TBKEM. Interestingly, there exists a transformation from normal to strong
IND-sTag-wCCA2 security introducing as overhead only a target collision resistant
hash function and one XOR computation.
The IND-sTag-wCCA2 experiment (Def. 2.5 on p.18) guarantees security if the

attacker chooses the tag? at the beginning of the experiment. It cannot depend on
any other values A will see later. In the strong IND-sTag-wCCA2 experiment this
independence is discarded: Knowing C?

1 could help an attacker A of TBKEM in se-
lecting an “easy” tag?. To cope with this, the following transformation implements
a “shuffle” of the tags. In the security simulate this will mix up the tags after A
has selected tag?. So, in fact, a random tag is attacked that is independent of C?

1 .

Construction 4.7. The hash-based transformation TBKEM := HB(TBKEM, H)
for a partitioned TBKEM and a hash function Hk : {0, 1}∗ → {0, 1}ˆ̀(λ) (§2.4.1 on
p.22) is defined as follows:

TBKEM.KeyGen(1λ) PK, SK ← TBKEM.KeyGen(1λ)
k ← {0, 1}`(λ)

h ← {0, 1}ˆ̀(λ)

PK, SK ← 〈PK, k, h〉, SK
TBKEM.Encaps1(PK) C1, σ ← TBKEM.Encaps1(PK)
TBKEM.Encaps2(PK, tag, σ) tag ← Hk(tag)⊕ h

K,C2 ← TBKEM.Encaps2(PK, tag, σ)
TBKEM.Decaps(SK, tag, C) tag ← Hk(tag)⊕ h

K ← TBKEM.Decaps(SK, tag, C)

53

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

This lifts the standard to strong IND-sTag-wCCA2 security (Def. 2.5 on p.18,
Def. 4.4 on p.48) by using the TCR-security (Def. 2.7 on p.22) of H.

Theorem 4.8. If TBKEM is ε-IND-sTag-wCCA2 and H is ε̂-TCR secure, then:

TBKEM := HB(TBKEM, H) is (ε+ ε̂/2)-strong-IND-sTag-wCCA2 secure.

Proof. The proof is quite simple: Let A be an attacker of TBKEM in the strong
IND-sTag-wCCA2 experiment. It has to be shown that its advantage is smaller
than ε = ε + ε̂/2. Therefore, an algorithm B is constructed to attack a randomly
chosen tag? in the underlying TBKEM. After A has chosen its target tag?, B can
use h to translate tag? (in TBKEM) into tag? (in TBKEM). One intermediate step
is needed to get rid of collisions in Hk.

Game 1 This is the strong IND-sTag-wCCA2 experiment for TBKEM.

Game 2 Any query of A to the TBKEM.wDecaps oracle for a tag with Hk(tag) =
Hk(tag?) will abort the experiment.

Game 1 to Game 2: This is completely analogous to the proof of Theorem 3.5
(p.32), where collisions in a hash function had to be removed. The result is:

|PrAGame 1[b = b′]− PrAGame 2[b = b′]| ≤ AdvH,BTCR(λ)/2 ≤ ε̂(λ)/2

Game 2 to TBKEM: This game can be easily simulated by an IND-sTag-wCCA2
attacker B for TBKEM. As attacker of the “normal” (non-strong) security, B1 first
has to choose a target tag? for TBKEM. Then B2 gets the public key PK and the
challenge key and ciphertext. On the other hand, A1 may use input C?

1 to select a
target tag? for TBKEM. B works as follows:

B1(1λ): output tag? ← {0, 1}ˆ̀(λ) for the own attack on TBKEM

BTBKEM.wDecaps2 (PK,K?
b , C

?):
• parse 〈C?

1 , C
?
2〉 ← C?

• run A1(C?
1) to determine tag?

• choose a hash key k ← {0, 1}`(λ)

• set h← Hk(tag?)⊕ tag?

• and PK ← 〈PK, k, h〉
• start ATBKEM.Decaps

2 (PK,K?
b , C

?
2)

• use A2’s output b′ as own guess

TBKEM.wDecaps-oracle(tag, C) for A2:
• if Hk(tag) = Hk(tag?) abort, else
• tag ← Hk(tag)⊕ h

(
6= Hk(tag?)⊕ h = tag

?
)

• K ← TBKEM.Decaps-oracle(tag, C)

54

4.4 Review of both Transformations

h is chosen as expected, since it is uniform in {0, 1}`(λ) and independent from any
other value of PK and tag?. The challenge is computed (by B’s environment)
as TBKEM.Encaps(PK, tag?). This is equivalent to TBKEM.Encaps(PK, tag?), as
tag

? = Hk(tag?) ⊕ h. In the same way, all answers of the TBKEM.wDecaps-oracle
fulfill A’s expectations. So B gives a perfect simulation and wins exactly if A wins:

|PrAGame 2[b = b′]− 1/2| = AdvTBKEM,B
IND-sTag-wCCA2(λ) ≤ ε(λ)

Adding both equations gives ε+ ε̂/2 as bound for AdvTBKEM,A
strong IND-sTag-wCCA2(λ).

4.4 Review of both Transformations
In this section, first the application of the core and hash-based transformation to
BB1-TBKEM is presented. Then, the general applicability of these transformations
to other schemes is briefly discussed. Finally, its applicability is compared to that
of the ACIK transformations.

Applying the Core Transformation to BB1-TBKEM:
The core transformation (Con. 4.3 on p.48) results from analysis of the relation
between BMW-KEM and BB1-TBKEM (Figure 4.1 on p.45). As a minimal require-
ment, it should be applicable to BB1-TBKEM and result exactly in BMW-KEM.
The first thing to check is whether BB1-TBKEM is partitioned (Def. 4.2 on p.47).

• The split of ciphertext is as follows:
PK1 consists of 〈p,G, g〉
Encaps1(PK1); s← Zp; σ ← s; C1 ← gs

Encaps2(PK, tag, σ); s← σ; C2 ←
(
g
Hk(tag)
1 · g3

)s
• The unpredictability of C1 stems from the fact that C1 is uniformly distributed

in G, since g is a generator of G and |G| = p. This gives ε1(λ) = 1
p
. Note,

that p is part of the output from BGGen(1λ) and (although not shown here)
grows exponentially in λ. This gives that ε1 ∈ negl(λ).

• The uniqueness of C2 is easy, too: Since g is a generator and C1 = gs, g and C1
uniquely determine s. As result, C2 is determined uniquely by the following
sequence of mappings: PK, tag, C1 7→ PK, tag, s 7→

(
g
Hk(tag)
1 · g3

)s
= C2.

• As any invalid ciphertext fails the validity check in the Decaps algorithm
ofBB1-TBKEM (compare Fact 3.3 on p.32), the output then is always ⊥.
This makes the Reject algorithm trivial: It simply returns ⊥ on any input.

Next, it has to be verified that BB1-TBKEM is not only standard but strong IND-
sID-wCCA2 secure (Def. 4.4 on p.48). As described before, this can be done by
looking at the proof of Theorem 4.1 (p.44) which is based on Theorem 3.2 (p.30).

55

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

One has to verify whether the simulator B is able to give attacker A the first part
of the challenge ciphertext C?

1 at the beginning of phase 1 instead of the beginning
of phase 2. This is clearly possible as B simply passes its input z as C?

1 to A.
Consequently, BB1-TBKEM is strong IND-sTag-wCCA2 secure.
The above considerations mean that the core transformation is applicable to

BB1-TBKEM. It is easy to see that Core(BB1-TBKEM) = BMW-KEM. Even the
resulting security bound for BMW-KEM is as in Theorem 3.8 (p.37).

Applying the Hash-Based Transformation to “non-strong” BB1-TBKEM:
What happens if someone is not willing to examine if a scheme’s proof of IND-
sTag-wCCA2 security already suffices to prove the strong variant? Or if a scheme
simply does not satisfy this stronger variant?
In this case, the hash-based transformation (Con. 4.7 on p.53) can be applied

to lift the standard to strong IND-sTag-wCCA2 security first, which then allows
the application of the core transformation. Fortunately, the overhead is very small.
Core(HB(BB1-TBKEM)) is quite similar to BMW-KEM. The public key would
be extended by a second hash key k̂ and the perturbation h ∈ {0, 1}`(λ). The
ciphertexts would look like

C = 〈C1, C2〉 =
〈
gs,
(
g
Hk

(
Hk̂(tag) ⊕ h

)
1 · g3

)s〉

and encapsulation/decapsulation would only involve one additional hash and XOR
computation introduced by the hash-based transformation.
But there is an interesting observation that allows to optimize this a little bit.

The hash-based transformation may also be applied to any TBKEM with a restricted
TagSpace 6= {0, 1}∗. The only constraint is that it must have a group structure,
e. g., TagSpace = (Zp,+). Then, H has to be a hash function mapping into
Zp instead of {0, 1}ˆ̀(λ), and the perturbation h has to be chosen from Zp. For
encapsulation and decapsulation, tag ← Hk(tag) ⊕ h ∈ {0, 1}ˆ̀(λ) is replaced by
tag ← Hk(tag) + h ∈ Zp.
There are many schemes which, like BB1-TBKEM, are defined with a restricted

TagSpace first and then extended to arbitrary tags (similar to Con. 3.4 on p.32).
This allows to apply the hash-based transformation and the core transformation di-
rectly to those restricted versions. For example, Core(HB(hfBB1-TBKEM)) does
look even more similar to BMW-KEM than Core(HB(BB1-TBKEM))—still with-
out requiring the hash-free version of BB1-TBKEM to be strong IND-sTag-wCCA2
secure. A ciphertext would look like

C = 〈C1, C2〉 =
〈
gs,
(
g
Hk(tag) + h
1 · g3

)s〉
This differs from BMW-KEM only in one addition in Zp. Particularly, there is no
need for a second hash-function and no weakening of the security bound!

56

4.4 Review of both Transformations

Applicability to other Schemes: The partition property is quite easy to check
and fulfilled by many schemes, e. g., [BF01, BB04, Wat05, BBG05, BW06, Kil06,
Kil07]. The same holds for the strong IND-sID-CPA security, although this is a
little more elaborate to verify—but not much! In the security proofs of almost all
these schemes, the simulator B simply passes one of its own input values as C1,
like in the proof of BB1-TBKEM. Furthermore, all are defined first with restricted
identity spaces Zp or {0, 1}n and afterwards extended to {0, 1}∗. Consequently, even
if someone does not accept their strong security, they can be efficiently transformed
by using the optimized version of the hash-based transformation as shown in the
previous paragraph. Three of these schemes are particularly interesting, as they
point out the advantage of basing the definitions on TBKEM instead of IBKEM:
Kiltz [Kil06] constructs an IND-sTag-wCCA2 secure TBE from algebraic prim-

itives which are currently not known to give IBE. He furthermore constructs an
IND-CCA2 secure KEM out of it using the same technique as for BMW-KEM. In
particular, again the security of the KEM has to be proven from scratch. The
relation between a TBKEM version of his TBE and the KEM can be perfectly
explained with the core transformation. This would not have been possible if the
core transformation had been defined only for IBKEM instead of TBKEM.
Another example is the IND-CCA2 secure KEM in [Kil07]. Using the core trans-

formation, the construction can be “reverse engineered”. The result is an IND-sTag-
wCCA2 secure TBKEM that may be seen of a generalization of BB1-TBKEM. Thus,
the original KEM can be interpreted as the result of applying the core transfor-
mation to the reverse engineered TBKEM. On the other hand, it does not seem
possible to interpret it as originating from an IBKEM.
Boneh and Boyen also have defined a second IBE [BB04, §5], called BB2-IBE.

The encryption algorithm is the same as for BB1-IBE but decryption is more effi-
cient. In the original version of [BMW05a, §4.4], the authors claim in a footnote
that their techniques to obtain BMW-KEM from BB1-IBE cannot be transferred to
obtain some KEM from BB2-IBE. Later in an updated version [BMW05b, §4.4],
they revoke this claim and note that the resulting KEM is surprisingly similar to
BMW-KEM. One benefit of the core transformation is that it explicitly points out
the requirements a scheme has to fulfill. Verifying these properties is less error-
prone than comparing the scheme to BB1-IBE and deciding whether “somehow”
the techniques to obtain BMW-KEM can be transferred. A second benefit of the
core transformation is that it can explain why the resulting KEMs for BB1-IBE
and BB2-IBE are so similar. In fact, the cause is not the core transformation—the
TBKEM versions of both schemes are already almost identical. This observation
would not have been possible if the core transformation was based on IBKEM.
There exist schemes that are not partitioned [Gen06, BGH07, Coc01, SK03]. Al-

though the core transformation applied to the first two schemes gives IND-CCA2
security, this cannot be concluded from the above theorems, as they do not have
simulatable rejections. The third scheme is very inefficient and thus not of inter-
est anyway. Interestingly, the fourth scheme is the only that even does not have
splittable ciphertexts, i. e., all parts of the ciphertext depend on ID (or tag in the

57

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

TBKEM version). This can easily be “repaired” but makes the result less efficient.
Furthermore, all schemes but the first are only secure in the random oracle model.
If on is willing to accept the heuristic security arguments of the random oracle
model, there are much more efficient constructions.

Applicability Compared to the ACIK Transformations: Last but not least, the
work of [ACIK07] (see §3.5 on p.38) shall be compared to the work in this thesis.
One very obvious difference is the use of IBKEM vs. TBKEM. The latter ap-

proach followed in this thesis is a little bit more general: It covers the IBKEM
setting due to the generic IBKEM-to-TBKEM transformation (§2.3 on p.19) but
broadens the applicability as described in the paragraph before. Nevertheless, the
approach of using TBKEM is not novel as it has already been suggested by Abe
et al. [ACIK07, §7.3]. In the following comparison, it is best to think of IND-sID-
CPA secure IBKEM and IND-sTag-wCCA2 secure TBKEM as the same things.
The definitions of ACIK-partitioned IBKEM (Def. 3.13 on p.39) and partitioned

TBKEM (Def. 4.2 on p.47) are almost the same. The independence property ofK in
ACIK-partitionedness is needed to avoid cyclic dependencies between CM ←M⊕K
and ID in Construction 3.15 (p.40). For constructing a KEM this is not necessary,
and thus it is not part of the partitionedness property defined here. On the other
hand, it is a not very restrictive property, as it is fulfilled by all the above mentioned
schemes except [BF01, Coc01, BGH07].
The rejection properties of both definitions are very similar, too. In fact, the

simulatable rejection property is more general than perfect $-rejection, but using
this more general version has already been remarked in [ACIK07].
The most notably difference between both definitions is the absence of the C1

unpredictability in ACIK-partitioned IBKEM. In fact, this is due to a slight flaw
in the security proofs of the ACIK transformations. By correctly guessing the
challenge ciphertext C? and asking for its decryption during phase 1, an attacker
can break their proof of security for both ACIK transformations. One possibility
to circumvent this flaw is adding the C1 unpredictability to the definition of ACIK-
partitioned IBKEM.
All in all, both definitions of partitionedness are quite similar. In particular,

for every ACIK-partitioned IBKEM, the result of the generic IBKEM-to-TBKEM
transformation (§2.3 on p.19) is a partitioned TBKEM. At least, if one assumes
that the C1 unpredictability is added to the definition of ACIK-partitioned IBKEM.
Strong IND-sTag-wCCA2 security (Def. 4.4 on p.48) is related to non-strong IND-

sTag-wCCA2 security (Def. 2.3 on p.16) in an analogue way as strong IND-aID-CPA
security (Def. 3.14 on p.40) is related to non-strong IND-aID-CPA security (Def. 2.4
on p.17). The main similarity of the strong versions that both give C?

1 to A already
in phase 1 instead of phase 2. The main difference is that ACIK version needs
adaptive-identity security, whereas in this thesis selective-tag security suffices. The
ACIK version also gives K?

b to A already in phase 1, but as for the independence
property of K this is not needed here.

58

4.4 Review of both Transformations

One can conclude that the definition of strong security given here is less demanding
than the ACIK version, as strong IND-aID-CPA security implies strong IND-sTag-
wCCA2 security (via the generic IBKEM-to-TBKEM transformation, as above).
Furthermore, this definition really is useful, as there are several schemes that are
strong IND-sTag-wCCA2 secure but do not have aID/aTag security. The effort
someone has to put into the verification whether a proof of standard security already
gives the strong version is comparable in the adaptive and selective setting.
All in all, the stronger version of security used in this thesis is neither “less

natural” than the ACIK version, nor “not easier than providing a direct proof for
the transformed KEM” (compare the quote on p.42). If the stronger needs of the
first ACIK transformation (Construction 3.15) are fulfilled, then it is preferable to
use this transformation and obtain very efficient PKE. In cases where this is not
given but the preconditions of the core transformation (Construction 4.3) are still
satisfied, the work of this thesis still allows very efficient transformations to KEM.

59

4 Efficient CCA2 Security from Special Tag-/Identity-Based KEM

60

5 CCA2 Security from Generic
Tag-/Identity-Based KEM

In the introduction it was claimed that both the CHK transformation and the con-
struction of BMW-KEM are based on the same paradigms. The core transformation
may be seen as the formalization of those paradigms used for BMW-KEM. Thus, it
is a self-evident idea to investigate the relationship between the CHK transforma-
tion and the core transformation. It turns out that the CHK transformation may
be seen as a composition of the core transformation and a second transformation
if the definition of partitioned TBKEM is slightly generalized. Section 5.1 presents
the basic construction and names problems that occur with the old definition. In
Section 5.2, the necessary generalizations are made, and the security of the core
transformation under those new circumstances is proven. Finally, in Section 5.3 the
construction from the first section is proven to fulfill the definition of the second
section.

5.1 The Signature-Based Transformation (Idea)
To accomplish the above goal, first (a TBKEM version of) the CHK transformation
(Con. 3.9 on p.37) is broken into two parts. The first one is the core transformation
(Con. 4.3 on p.48) and the remaining part has to lift an arbitrary TBKEM (§2.1.4
on p.13) into a partitioned TBKEM (Def. 4.2 on p.47) such that both combined
(syntactically) give the CHK transformation. This results in the following:

Construction 5.1. The signature-based transformation TBKEM := SB(TBKEM)
for an arbitrary TBKEM and a signature scheme Sig is defined as follows:

TBKEM.KeyGen(1λ) PK, SK ← TBKEM.KeyGen(1λ)
TBKEM.Encaps1(PK) VK, SigK ← Sig.KeyGen(1λ)

C1, σ ← VK, SigK
TBKEM.Encaps2(PK, tag, σ) SigK ← σ

K,C ← TBKEM.Encaps(PK, tag)
sig ← Sig.Sign(SigK,C)
C2 ← 〈C, sig〉

TBKEM.Decaps(SK, tag, C) 〈VK,C, sig〉 ← C

check Sig.Verify(VK,C, sig) ?= true
if not return K ← ⊥
K ← TBKEM.Decaps(SK, tag, C)

61

5 CCA2 Security from Generic Tag-/Identity-Based KEM

The TBKEM version of the CHK transformation turns arbitrary IND-sTag-wCCA2
secure (Def. 2.5 on p.18) TBKEM into IND-CCA2 secure (Def. 2.3 on p.16) KEM.
Furthermore, it can be syntactically split into the core transformation and the
signature-based transformation. Therefore, it is reasonable to hope that the signature-
based transformation lifts arbitrary IND-sTag-wCCA2 secure TBKEM to s strong
IND-sTag-wCCA2 secure partitioned TBKEM (Def. 4.2 on p.47 and Def. 4.4 on
p.48), i. e., that fulfills the prerequisites of the core transformation.
Unfortunately, at first glance, the signature-based construction does not seem to

fit the definition for partitioned TBKEM at all. There are problems with every
part of the definition, except the (quite trivial) split property:

• It is unclear if C1 = VK is unpredictable for arbitrary signature schemes.

• C2 = 〈C, sig〉 does not have the uniqueness property, as due to the random-
ness in TBKEM.Encaps and Sig.Sign TBKEM.Encaps2 is not deterministic. As
result, for fixed PK, tag, C1 there might be many different valid C2.

• It might not be possible to simulate the rejection of every invalid ciphertext.
Given a ciphertext C = 〈V K,C, sig〉 with a correct signature but an invalid
C, it is impossible to simulate the outcome of TBKEM.Decaps, unless TBKEM
has simulatable rejections, too.

• It might not even be possible to recognize every invalid ciphertext. This prob-
lem holds for the same class of invalid ciphertexts as above, unless TBKEM
has public verifiability, i. e., it is easy to tell whether C is valid or not.

The first point is the easiest. Indeed, it is easy to show that in a secure signature
scheme there cannot be a single VK that occurs with significant probability. For
the other problems, a closer look at the security proof of the core transformation
(Thm. 4.5 on p.49) shows that the properties are not needed in their full entirety.
The observations below will result in a slight generalization of the definition, i. e.,
any scheme fulfilling the old definition will also comply with the new one.
The uniqueness of C2 has been used in the proof step from Game 2 to Game 3.

It ensures that it is impossible for an attacker to modify the challenge ciphertext
C? = 〈C?

1 , C
?
2〉 into some different valid ciphertext C = 〈C?

1 , C2〉 and ask for the
decapsulation of C. For the above construction, this is not impossible but at
least computationally infeasible. The security of the signature makes it hard to
modify C? = 〈VK?, C?, sig?〉 into a pseudo-valid ciphertext C = 〈VK?, C, sig〉,
where pseudo-valid means that it is not necessarily valid but at least has a correct
signature. Clearly, this integrity of C2 (instead of uniqueness) already suffices.
The simulatable rejection property has been used in Game 3 in order to simulate

the decapsulation of all ciphertexts that have been recognized as invalid due to the
uniqueness of C2. If this uniqueness property is relaxed to integrity, it suffices if only
non-pseudo-valid ciphertexts (which are a subset of all non-valid ciphertexts) are
rejectable. In the above example, non-pseudo-valid ciphertexts are easily recognized
by checking the signature and rejected by outputting ⊥.

62

5.2 The Generalized Core Transformation

5.2 The Generalized Core Transformation
All the observations of the previous section lead to the following generalization of
the definition for partitioned TBKEM:

Definition 5.2 (replaces Def. 4.2 on p.47). A TBKEM (§2.1.4 on p.13) is parti-
tioned if it has the following properties:

• Split of ciphertext: The ciphertext C can be split into two parts, C = 〈C1, C2〉,
where the first part C1 only depends on the public key PK and not the tag.
Again, this allows to split Encaps into two algorithms Encaps1 and Encaps2.

• Unpredictability of C1: There is a negligible bound ε1(λ) such that

max
PK

max
C1

Pr[C?
1 ← Encaps1(PK) : C?

1 = C1] =: ε1(λ) ∈ negl(λ)

• Pseudo-valid ciphertexts: For all fixed PK, tag?, there is a denoted set of
pseudo-valid ciphertexts pv(PK, tag?) ⊇ C(PK, tag?). Also, an efficient algo-
rithm InPV(PK, tag?, C?

1 , C
?
2 , C2) exists that decides if 〈C?

1 , C2〉 ∈ pv(PK, tag?),
given that 〈C?

1 , C
?
2〉 ∈ pv(PK, tag?).

• Integrity of C2: There is a negligible ε2(λ) that bounds for any A the advantage
AdvTBKEM,A

C2-INT (λ) := Pr[ExpTBKEM,A
C2-INT (λ) = win] in the following experiment:

ExpTBKEM,A
C2-INT (λ):

PK, SK ← KeyGen(1λ)
C?

1 , σ
? ← Encaps1(PK)

tag? ← A1(C?
1)

K?, C?
2 ← Encaps2(PK, tag?, σ?)

C2 ← AwDecaps
2 (PK,K?, C?

2)
if 〈C?

1 , C2〉 ∈ pv(PK, tag?)
and C2 6= C?

2 then output win

• Simulatable rejection: There is an efficient algorithm Reject(PK, tag, C), that
has the same output distribution as Decaps(SK, tag, C) for any ciphertext
C /∈ pv(PK, tag). There is no requirement for the output distribution of
Reject on any input with C ∈ pv(PK, tag)!

Clearly, the old definition is a special case of the new one. To see this, one has
to set pv(PK, tag) := C(PK, tag). The uniqueness property implies for any fixed
PK, tag?, C?

1 that there is only one C?
2 such that 〈C?

1 , C
?
2〉 is valid, i. e., an element of

C(PK, tag?) = pv(PK, tag?). Thus, InPV can be implemented by testing if C2 = C?
2

holds. Furthermore, it is impossible to win the C2-INT experiment, since there is
no other correct solution C2 6= C?

2 . This gives ε2 := 0.
The next task is to show IND-CCA2 security (Def. 2.3 on p.16) of the core

transformation (Con. 4.3 on p.48) under these generalized circumstances.

63

5 CCA2 Security from Generic Tag-/Identity-Based KEM

Theorem 5.3. If TBKEM is partitioned (in the new sense of Definition 5.2) and
ε-strong-IND-sTag-wCCA2 secure (Def. 4.4 on p.48), then:

KEM := Core(TBKEM) is (ε+ qDecaps · ε1/2 + ε2/2)-IND-CCA2 secure,

where ε1, ε2 are the upper bounds for the C1 unpredictability and for the C2 integrity
in Definition 5.2, and where qDecaps is the number of A’s oracle queries.

Proof. The proof is basically the same as for Theorem 4.5 (p.49), except that the
modification of the KEM.Decaps oracle in Game 3 is slightly generalized, and the
difference between Game 2 and Game 3 (the newly introduced abort below) is
bounded with help of the C2 integrity.

Game 1 and Game 2: as in Theorem 4.5.

Game 3: The modified KEM.Decaps oracle for phase 2 works on input C as follows:
• parse 〈C?

1 , C
?
2〉 ← C? (C? is already determined in phase 2)

• parse 〈C1, C2〉 ← C

• set tag ← C1

• if C1 = C?
1 ∧ C2 = C?

2 :
abort the experiment

• if C1 = C?
1 ∧ C2 6= C?

2 ∧ InPV(PK, tag?, C?
1 , C

?
2 , C2):

abort the experiment
(This case did not exist in Game 3 of Theorem 4.5, as a

ciphertext with C1 = C?
1 but C2 6= C?

2 was invalid, there.)

• if C1 = C?
1 ∧ ¬InPV(PK, tag, C?

1 , C
?
2 , C2):
return K ← Reject(PK, tag, 〈C1, C2〉)

• if C1 6= C?
1 :

return K ← TBKEM.Decaps(SK, tag, C)

Game 2 and Game 3 differ if a pseudo-valid ciphertext 〈C?
1 , C2〉 6= 〈C?

1 , C
?
2〉 is

submitted to the Decaps oracle. Let this event be denoted as failure event F .
PrGame 3[F] is bounded by the success probability of an algorithm B that attacks
TBKEM in the C2-INT experiment (see Definition 5.2) and simulates Game 3 for
A as follows:

B1(PK1, C
?
1): output tag? ← C?

1

BTBKEM.wDecaps2 (PK,K?, C?
2):

• b← {0, 1}; K?
0 ← K?; K?

1 ← K(PK, tag?); C? ← 〈C?
1 , C

?
2〉

• start AKEM.Decaps(PK,K?
b , C

?)
• if B2 has not stopped during KEM.Decaps-oracle, then it

outputs C2 ← C?
2 as (invalid) solution in its own experiment.

64

5.3 The Signature-Based Transformation (Proof)

modified KEM.Decaps-oracle(C) for A:

• simulate this as defined in Game 3 using the TBKEM.Decaps-oracle
• if F happens (i. e., the second “if” in Game 3)

– prematurely stop the execution of A
– output C2 as (correct) solution for B’s own experiment

Clearly, B wins exactly if F happens. This ends the proof sketch.

5.3 The Signature-Based Transformation (Proof)
Now, a proof of partitionedness (Def. 5.2 on p.63) and strong IND-sTag-wCCA2
security (Def. 4.4 on p.48) for the signature-based transformation (Con. 5.1 on
p.61) finishes all steps to conclude the security of the (TBKEM version of) the
CHK transformation (Con. 3.9 on p.37) as corollary.
Theorem 5.4. If TBKEM is ε-IND-sTag-wCCA2 secure (Def. 2.5 on p.18) and Sig
is ε̂-SEU-OT secure (Def. 2.8 on p.23), then it follows that:

TBKEM := SB(TBKEM, Sig) is partitioned with ε1 :=
√
ε̂ and ε2 := ε̂

and furthermore is (ε+ ε̂/2)-strong-IND-sTag-wCCA2 secure.

where ε1, ε2 are the bounds for C1 unpredictability and C2 integrity.

Proof. The split of the ciphertext is already given in the construction. The set of
pseudo-valid ciphertexts is defined as: 〈V K,C, sig〉 ∈ pv(PK, tag) if and only if
Verify(V K,C, sig) = true. This makes the InPV and Reject algorithms trivial: The
former is the Verify algorithm and the latter always outputs ⊥.
Note that C1 = V K and Encaps1 = Sig.KeyGen. Because of this, the unpre-

dictable C1 property simply claims that there is no verification key which is output
with significant probability. Assume that there was a V K? that is output with
non-negligible probability ε1. Then consider the following attacker A: On input
V K it generates a new key pair V K, SigK and tests whether V K = V K. In that
case, the attacker forges a valid signature sig for an arbitrary message M using
SigK. This gives

AdvSig,A
SEU-OT(λ) = Pr[V K = V K] > Pr[V K = V K? ∧ V K = V K?] = (ε1(λ))2

The last step holds since A and its environment compute V K and V K indepen-
dently. By security of Sig it must hold that AdvSig,A

SEU-OT(λ) ≤ ε̂(λ) and therefore

ε1(λ) ≤
√
ε̂(λ)

The C2 integrity can easily be bounded by the security of Sig. Note that C2 =
〈C, sig〉 is in terms of Sig a pair of message and valid signature. Let A be an
attacker in the C2-INT experiment. An attacker B that uses A for an attack on
the SEU-OT security on Sig works as follows.

65

5 CCA2 Security from Generic Tag-/Identity-Based KEM

BSig.Sign(V K)

• set C?
1 ← V K

• start A1(PK1, C
?
1) to obtain tag?

• compute PK, SK ← TBKEM.KeyGen(1λ)
• compute K?, C? ← TBKEM.Encaps(PK)
• query sig? ← Sig.Sign-oracle(C?)
• set C?

2 ← 〈C?, sig?〉
• start ATBKEM.wDecaps

2 (PK,K?, C?
2)

• answer the TBKEM.wDecaps oracle as expected using SK
• eventually A2 outputs C2 = 〈C, sig〉—forward this value as own output

If A wins, then 〈C?
1 , C2〉 = 〈V K,C, sig〉 must be pseudo-valid, i. e., the signature is

valid, and 6= 〈V K,C?, sig?〉. Consequently, 〈C, sig〉 is a pair of message and valid
signature under the verification key V K and 6= 〈C?, sig?〉. This means that B wins
its own attack. By security of Sig it holds that

AdvTBKEM,A
C2-INT (λ) = AdvSig,B

SEU-OT(λ) ≤ ε̂(λ) = ε2(λ)

Finally, the strong IND-sTag-wCCA2 security of TBKEM has to be shown. This is
easy. For any attacker A of TBKEM, an attacker B of the (non-strong) IND-sTag-
wCCA2 security of TBKEM can be constructed that lets most of the work be done
by its own environment and only adds the signature parts. B works as follows:

B1(1λ):

• generate V K, SigK ← Sig.KeyGen(1λ)
• set C?

1 ← V K

• start A1(C?
1) to obtain tag? and output this value

BTBKEM.wDecaps2 (PK,K?b , C?):

• compute sig? ← Sig.Sign(SigK,C?)
• set C?

2 ← 〈C?, sig?〉
• start ATBKEM.wDecaps

2 (PK,K?
b , C

?
2)

(to answer A’s queries, B checks signatures and then uses its own oracle)
• output as guess whatever b′ is output by A2

Clearly, B gives a perfect simulation and wins, if A wins. This gives

AdvTBKEM,A
strong IND-sTag-wCCA2(λ) = AdvTBKEM,B

IND-sTag-wCCA2(λ) ≤ ε(λ) = ε(λ)

66

5.3 The Signature-Based Transformation (Proof)

Composing both theorems gives:

Corollary 5.5. For ε, ε̂ as before it holds that:

The (TBKEM version of) the CHK transformation is
(ε+ ε̂/2 + qDecaps ·

√
ε̂/2)-IND-CCA2 secure.

This is theoretically satisfying, but looser than possible (compare Thm. 3.10 on
p.38). The term qDecaps ·

√
ε̂ can be replaced by ε̂, although requiring yet another

change in the definition. The reason for this is that the C1 unpredictability demands
more than needed (but having the advantage of being very simple). Two changes
in this definition will give the desired results: The statistical bound is replaced by
a computational bound and furthermore, only the unpredictability of pseudo-valid
(instead of arbitrary) ciphertexts beginning with C1 is claimed.

Definition 5.6 (replaces the C1-unpredictability in Def. 5.2 on p.63). The experi-
ment of C1-unpredictability (C1-UNP) is defined as follows:

ExpTBKEM,A
C1-UNP (λ):

PK, SK ← KeyGen(1λ)
C?

1 , σ
? ← Encaps1(PK)

tag? ← A0(C?
1)

A1 may not access A0’s variables!
← AwDecaps,InPV

1 (PK)
if the InPV-oracle eventually has

returned true, then output win

The wDecaps oracle is as before. The InPV on input C1, C2, tag works as follows:

• if C1 = C?
1 and tag = tag?, then it returns whether 〈C1, C2〉 ∈ pv(PK, tag)

• else it returns “don’t know”

The advantage of A is defined as AdvTBKEM,A
C1-UNP (λ) := Pr[ExpTBKEM,A

C1-UNP (λ) = win].

Note that A wins if the InPV oracle has returned true. This only happens if a
pseudo-valid ciphertext beginning with C?

1 is submitted – i. e., A has “predicted”
such a ciphertext. The restriction that A1 may not access the variables of A0
makes this definition of unpredictability “compatible” with the previous. With this
even more generalized definition, one can prove something similar to Theorem 5.3
above, replacing qDecaps · ε1 by the security bound of ε̂1 := AdvTBKEM,A

C1-UNP (λ). For
the signature-based construction (Con. 5.1 on p.61) follows ε̂1 ≤ ε̂, where ε̂ bounds
the security of Sig. Combining this new unpredictability bound with the modified
theorem for the security of the signature-based construction this implies a much
tighter bound of ε+ ε̂ for Corollary 5.5.

67

5 CCA2 Security from Generic Tag-/Identity-Based KEM

68

6 Conclusion and Future Work
This chapter briefly concludes the main results of this thesis, points out its most
important contributions, and finally gives some pointers to possible future work.

6.1 Conclusion
The main goal of this thesis was to analyse the relationship between the IND-CCA2
secure BMW-KEM and the IND-sID-CPA secure BB1-IBE in order to find out the
specific properties of the latter that allow construction of the former. It has turned
out that the key idea shows up most clearly when instead comparing BMW-KEM
to an IND-sTag-wCCA2 secure TBKEM version of BB1-IBE. As any IBE can be
converted into such a TBKEM, this is no loss of generality.
The results of this investigation are additional structural requirements (parti-

tioned TBKEM) and a strengthened version of IND-sTag-wCCA2 security (strong-
IND-sTag-wCCA2) that admit the following two transformations:
The Core Transformation allows to turn any TBKEM that is partitioned and has

strong IND-sTag-wCCA2 security into an IND-CCA2 secure KEM. The re-
sulting KEM has the same efficiency as the original TBKEM. As expected,
BMW-KEM results from BB1-TBKEM by applying this transformation.

The Hash-Based Transformation lifts any TBKEM from the standard to strong
security variant. In combination with the core transformation, any partitioned
TBKEM that has (non-strong) IND-sTag-wCCA2 security can be turned into
an IND-CCA2 secure KEM. This introduces a very small computational over-
head in form of a hash function and an XOR computation, but does not
enlarge ciphertexts. In many cases, one can even omit the hash function.

The preconditions of both transformations are quite easy to verify and are satisfied
by many schemes. Thus, the conjecture of [ACIK07] that such a transformation
would not exist (or be “useless” due to strong requirements) has proven to be wrong.
The definition of partitioned TBKEM and the core transformation is quite similar

to the work of [ACIK07], and thus their novelty might be questioned. But the
following things, in my opinion, may be seen as significant contributions:
• the definition of strong IND-sTag-wCCA2 security and moreover the observa-

tion that this gentle strengthening of the security is fulfilled by many schemes

• the security proof for the core transformation; in particular as the proof gives
IND-CCA1 security from weaker preconditions as a corollary

69

6 Conclusion and Future Work

• the hash-based transformation as fallback solution if someone does not accept
the reasonableness of strong security (maybe the most important contribution)

Besides these two transformations that mostly investigate BMW-KEM, a third
transformation has been defined. This third transformation, in fact, is not a novel
construction, but stems from the observation that a slight generalization of the
definitions allows to view the CHK transformation as a composition of the core
transformation and the following:
The Signature-Based Transformation uses the techniques of the CHK transfor-

mation to turn any (non-strong) IND-sTag-wCCA2 secure (non-partitioned)
TBKEM into one that satisfies these additional properties. As expected, its
combination with the core transformation gives a TBKEM version of the CHK
transformation.

This last transformation justifies the claim that BMW-KEM and the CHK trans-
formation use the same techniques to obtain IND-CCA2 security. Indeed, the core
transformation may be seen as a formalization of the common underlying paradigm.

6.2 Future Work
Several questions arose during research for this thesis that seem to be worth a
deeper investigation. Some of these are stated briefly in the following:

Hierarchical IBE (HIBE): In an `-HIBE, users are arranged in a tree-like hier-
archy of depth `. Identities are vectors of up to ` binary strings. The techniques
presented here can be generalized to convert a CPA secure (`+1)-HIBE (or `-Tag-
HIBE) into a CCA2 secure `-HIBE. In particular, it suffices if the (`+1)-th level
(resp. the tag) is only sID/sTag secure. This can be used to explain the very
efficient Kiltz-Galindo-IBKEM [KG06] or the compact version of Kiltz-Vahlis-IBE
[KV08, §4.3.3] as an IBE (= 1-HIBE) that is constructed from a special 2-HIBE.

Observations on the Work of [ACIK07]: All transformations given in this thesis
have the core transformation in common. In contrast, the two transformations
of Abe et al. [ACIK07] are defined independently of each other. In the identity-
based setting it seems unlikely that their chameleon-hash-based construction can
be decomposed into their “core” transformation plus a new third transformation.
In the tag-based setting however, this is (at least syntactically) possible. The open
question is whether there exists a suitable generalization for partitioned TBKEM,
similar to that which allowed the signature-based transformation. Generally, it
would be nice to find more similarities between their work and mine.

Similar Security Notions: Variants of the selective-identity attack model have
been suggested [CS06]. It would be interesting to investigate whether the above
transformations can be transferred to this notion of security.

70

Bibliography
[ACG+06] Nuttapong Attrapadung, Yang Cui, David Galindo, Goichiro Hanaoka,

Ichiro Hasuo, Hideki Imai, Kanta Matsuura, Peng Yang, and Rui
Zhang. Relations among notions of security for identity based encryp-
tion schemes. In José R. Correa, Alejandro Hevia, and Marcos A. Kiwi,
editors, LATIN, volume 3887 of Lecture Notes in Computer Science,
pages 130–141. Springer, 2006.

[ACIK07] Masayuki Abe, Yang Cui, Hideki Imai, and Eike Kiltz. Efficient hybrid
encryption from ID-based encryption. Technical Report 23, Cryptology
ePrint Archive, 2007.

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint
signature and encryption. In Lars R. Knudsen, editor, EUROCRYPT,
volume 2332 of Lecture Notes in Computer Science, pages 83–107.
Springer, 2002.

[AGKS05] Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup.
Tag-KEM/DEM: A new framework for hybrid encryption and a new
analysis of Kurosawa-Desmedt KEM. In Ronald Cramer, editor, EU-
ROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages
128–146. Springer, 2005.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-
based encryption without random oracles. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes
in Computer Science, pages 223–238. Springer, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,
pages 440–456. Springer, 2005.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.
Relations among notions of security for public-key encryption schemes.
In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in
Computer Science, pages 26–45. Springer, 1998.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the Weil pairing. In Joe Kilian, editor, CRYPTO, volume 2139 of
Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

71

Bibliography

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In STOC, pages 103–112. ACM, 1988.

[BFMLS05] K. Bentahar, P. Farshim, J. Malone-Lee, and N.P. Smart. Generic
constructions of identity-based and certificateless KEMs. Technical
Report 58, Cryptology ePrint Archive, 2005.

[BGH07] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient iden-
tity based encryption without pairings. In FOCS, pages 647–657. IEEE
Computer Society, 2007.

[BK05] Dan Boneh and Jonathan Katz. Improved efficiency for CCA-
secure cryptosystems built using identity-based encryption. In Alfred
Menezes, editor, CT-RSA, volume 3376 of Lecture Notes in Computer
Science, pages 87–103. Springer, 2005.

[BMW05a] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen cipher-
text security from identity-based techniques. In Vĳay Atluri, Catherine
Meadows, and Ari Juels, editors, ACM Conference on Computer and
Communications Security, pages 320–329. ACM, 2005.

[BMW05b] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen cipher-
text security from identity-based techniques. Technical Report 288,
Cryptology ePrint Archive, 2005. Updated version of [BMW05a].

[BPR+08] Dan Boneh, Periklis Papakonstantinou, Charles Rackoff, Yevgeniy
Vahlis, and Brent Waters. On the impossibility of basing identity based
encryption on trapdoor permutations. To appear in FOCS, 2008.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM Conference on
Computer and Communications Security, pages 62–73, 1993.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. In Serge Vaude-
nay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer
Science, pages 409–426. Springer, 2006.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-
based encryption (without random oracles). In Cynthia Dwork, editor,
CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages
290–307. Springer, 2006.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure
public-key encryption scheme. In Eli Biham, editor, EUROCRYPT,
volume 2656 of Lecture Notes in Computer Science, pages 255–271.
Springer, 2003.

72

Bibliography

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext se-
curity from identity-based encryption. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in
Computer Science, pages 207–222. Springer, 2004.

[Coc01] Clifford Cocks. An identity based encryption scheme based on
quadratic residues. In Bahram Honary, editor, IMA Int. Conf., volume
2260 of Lecture Notes in Computer Science, pages 360–363. Springer,
2001.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a
paradigm for adaptive chosen ciphertext secure public-key encryption.
In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture
Notes in Computer Science, pages 45–64. Springer, 2002.

[CS04] Ronald Cramer and Victor Shoup. Design and analysis of practical
public-key encryption schemes secure against adaptive chosen cipher-
text attack. SIAM J. Comput., 33(1):167–226, 2004.

[CS06] Sanjit Chatterjee and Palash Sarkar. Generalization of the selective-
id security model for hibe protocols. In Moti Yung, Yevgeniy Dodis,
Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography,
volume 3958 of Lecture Notes in Computer Science, pages 241–256.
Springer, 2006.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22(6):644–654, Nov
1976.

[DHMR07] Vanesa Daza, Javier Herranz, Paz Morillo, and Carla Ràfols. Crypto-
graphic techniques for mobile ad-hoc networks. Computer Networks,
51(18):4938–4950, 2007.

[Ell87] James H. Ellis. The history of non-secret encryption. Tech-
nical report, Communication-Electronics Security Group (CESG),
1987. Kept confidentially until 1997: http://www.cesg.gov.uk/
site/publications/media/ellis.pdf.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security
of public-key encryption at minimum cost. In Hideki Imai and Yuliang
Zheng, editors, Public Key Cryptography, volume 1560 of Lecture Notes
in Computer Science, pages 53–68. Springer, 1999.

[Gal06] David Galindo. A separation between selective and full-identity se-
curity notions for identity-based encryption. In Marina L. Gavrilova,
Osvaldo Gervasi, Vipin Kumar, Chih Jeng Kenneth Tan, David Taniar,
Antonio Laganà, Youngsong Mun, and Hyunseung Choo, editors,

73

http://www.cesg.gov.uk/site/publications/media/ellis.pdf
http://www.cesg.gov.uk/site/publications/media/ellis.pdf

Bibliography

ICCSA (3), volume 3982 of Lecture Notes in Computer Science, pages
318–326. Springer, 2006.

[Gen06] Craig Gentry. Practical identity-based encryption without random
oracles. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 445–464. Springer, 2006.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Com-
put. Syst. Sci., 28(2):270–299, 1984.

[KG06] Eike Kiltz and David Galindo. Direct chosen-ciphertext secure
identity-based key encapsulation without random oracles. In
Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP,
volume 4058 of Lecture Notes in Computer Science, pages 336–347.
Springer, 2006.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In
Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes
in Computer Science, pages 581–600. Springer, 2006.

[Kil07] Eike Kiltz. Chosen-ciphertext secure key-encapsulation based on gap
hashed diffie-hellman. In Tatsuaki Okamoto and Xiaoyun Wang, edi-
tors, Public Key Cryptography, volume 4450 of Lecture Notes in Com-
puter Science, pages 282–297. Springer, 2007.

[KKA03] Aram Khalili, Jonathan Katz, andWilliam A. Arbaugh. Toward secure
key distribution in truly ad-hoc networks. In SAINT Workshops, pages
342–346. IEEE Computer Society, 2003.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-
raphy. Chapman & Hall/CRC, 2007.

[KV08] Eike Kiltz and Yevgeniy Vahlis. CCA2 secure IBE: Standard model
efficiency through authenticated symmetric encryption. In Tal Malkin,
editor, CT-RSA, volume 4964 of Lecture Notes in Computer Science,
pages 221–238. Springer, 2008.

[MBH03] Marco Casassa Mont, Pete Bramhall, and Keith Harrison. A flexible
role-based secure messaging service: Exploiting IBE technology for
privacy in health care. In DEXA Workshops, pages 432–437. IEEE
Computer Society, 2003.

[MRY04] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives
to non-malleability: Definitions, constructions, and applications. In
Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 171–190. Springer, 2004.

74

Bibliography

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In STOC, pages 33–43. ACM, 1989.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In STOC, pages 427–437. ACM,
1990.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In
G. R. Blakley and David Chaum, editors, CRYPTO, volume 196 of
Lecture Notes in Computer Science, pages 47–53. Springer, 1984.

[Sho02] Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002.

[SK03] Ryuichi Sakai and Masao Kasahara. ID based cryptosystems with pair-
ing on elliptic curve. Technical Report 54, Cryptology ePrint Archive,
2003.

[Wat05] Brent Waters. Efficient identity-based encryption without random or-
acles. volume 3494 of Lecture Notes in Computer Science, pages 114–
127. Springer, 2005.

[Zha07] Rui Zhang. Tweaking TBE/IBE to PKE transforms with chameleon
hash functions. In Jonathan Katz and Moti Yung, editors, ACNS,
volume 4521 of Lecture Notes in Computer Science, pages 323–339.
Springer, 2007.

75

	Introduction
	Public Key and Identity-Based Encryption
	Security Against Weak and Strong Attackers
	From Weak Identity-Based to Strong Public Key Encryption
	Related Work
	Contribution and Organization of this Thesis

	Basic Definitions and Concepts
	Encryption Schemes
	Security Definitions
	Relations Between the Encryption Schemes
	Other Cryptographic Primitives
	Bilinear Groups
	Reductionist Proofs and Game Playing Technique

	Review of Related Work
	Hash-Free BB1-IBKEM
	Full BB1-IBKEM
	BMWKEM
	The CHK Transformation
	BMWPKE and the ACIK Transformation

	Efficient CCA2 Security from Special Tag-/Identity-Based KEM
	Inspiration from BMWKEM
	The Core Transformation
	The Hash-Based Transformation
	Review of both Transformations

	CCA2 Security from Generic Tag-/Identity-Based KEM
	The Signature-Based Transformation (Idea)
	The Generalized Core Transformation
	The Signature-Based Transformation (Proof)

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

