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1 Introduction

The security of current cryptographic constructions is often based on the difficulty of
the Diffie-Hellman problem or one of its variants. The computational Diffie-Hellman
assumption states that given a generator g of a finite cyclic group (G, ·) and two elements
ga, gb ∈ G it is hard to compute the element gab. While this assumption is not generally
true for an arbitrary group, for some groups (e.g., some elliptic curve groups) it is widely
believed, but not proven, that it holds.

Because there are many cryptographic schemes that rely on such assumptions, it is
important to gain confidence in the belief that the underlying problem is indeed hard.
Since a proof in the standard model is unknown, other methods have to be applied.

The generic group model, as introduced by Shoup [Sho97], provides one of those meth-
ods (similar considerations have been made by Nechaev [Nec94]). Algorithms in the
generic group model have oracle access to group operations and group elements are
encoded by random bit-strings. Therefore, such generic algorithms are effectively pro-
hibited from taking advantage of any special properties of the group or its encoding. In
this model, proofs of Diffie-Hellman-related assumptions are feasible. However, those
results and their meaning for a concrete group need to be properly interpreted. Also,
there are some examples of published proofs in the generic group model that are subtly,
but seriously flawed, so careful examination of such proofs is necessary [KM07]. Still, it
is an often-used and helpful model to justify assumptions that a scheme relies on.

For security proofs in the generic group model, Boneh, Boyen and Goh [BBG05]
provide a useful framework. Their master argument can be used to bound the advantage
of generic algorithms in solving decisional problems related to Diffie-Hellman. Their
framework is designed for bilinear groups, so it is well-suited for proofs in pairing-based
cryptography.

However, there are recent assumptions in pairing-based cryptography that the Boneh,
Boyen, Goh framework cannot be directly applied to. An example for this is a con-
struction by Waters [Wat11] for a ciphertext-policy attribute-based encryption scheme.
In conventional public key cryptography, each message is encrypted for a single specific
recipient. In contrast, attribute-based encryption schemes allow a ciphertext to be de-
crypted by a set of people. This set of people is determined by attributes that the sender
may specify at encryption time.
Water’s construction is proven secure under the new and relatively strong decisional q-
parallel bilinear Diffie-Hellman exponent assumption (q-parallel BDHE ). This assump-
tion is not very well studied and again, a proof in the standard model is unknown. Here,
a proof in the generic group model is a good way to gain some confidence in their new
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1 Introduction

assumption. However, the original Boneh, Boyen, Goh framework does not apply to this
kind of problem.
To solve this, we provide an extension to the framework that covers a wide range of typi-
cal problems in pairing-based cryptography (such as the assumption by Waters) directly.

The thesis is structured as follows:
In Section 3, we discuss the generic group model, the limits of generic algorithms and
how proofs in the generic group model need to be interpreted.
Section 4 describes the Boneh, Boyen, Goh framework for security proofs in the generic
group model. We provide a detailed proof for their framework.
In Section 5, we provide an extension to the Boneh, Boyen, Goh framework that covers
a wider range of problems.
Finally, in Section 5.2, we show how our extension of the framework can be applied to
typical assumptions in pairing-based cryptography. Particularly, our extension can be
used for the q-parallel BDHE assumption [Wat11] and we prove that this assumption
holds generically in Section 5.2.1.
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2 Foundations and Notation

This thesis uses the following notation and basic definitions:

2.1 Notation

• N is the set of natural numbers (0 /∈ N) and N0 = N ∪ {0}.

• For n ∈ N we set Zn = Z/nZ, that is the ring of integers modulo n. If n is prime,
we also write Zn = Fn and in this case, Zn is a field.

• If R is a ring, R× is the set of units of R.

• For a commutative ring R, R[X1, . . . , Xn] is the ring with adjoined elements
X1, . . . , Xn:

R[X1, . . . , Xn] =


k∑
i=1

ai ·
n∏
j=1

X
bi,j
j

∣∣∣∣∣∣k ∈ N, ∀i∀j : ai ∈ R, bi,j ∈ N0


(i.e. a minimal superset of R that is a ring and contains {X1, . . . , Xn})
An important example is the (multivariate) polynomial ring over a field. Notice
that the adjoined elements may be related. For example, R[X,X−1] = R[X][X−1]
is a ring with adjoined X that has a multiplicative inverse for X. However, if not
declared otherwise, we assume X1, . . . , Xn to be n different variables.

• Let R,R′ be commutative rings with ring homomorphism φ : R→ R′ and
(r′1, . . . , r

′
n) ∈ (R′)n.

For f ∈ R[X1, . . . , Xn] (where the Xi may be related), we define f(r′) = f ′(r′)
where f ′ is the corresponding element in R′[X1, . . . , Xn] where the coefficients
were projected to R′ using φ. This means that polynomials in R can be evaluated
with elements of R′ which yields an element of R′.

• By convention, polynomial variables have upper-case names, ring elements have
lower-case names.

• Let R be a ring, f ∈ R[X1, . . . , Xn] a multivariate polynomial.
f can be written as f =

∑
(k1,...,kn)∈I σ(k1, . . . , kn)

∏n
i=1X

ki
i for some finite set

I ⊂ (N0)
n and σ : I → R.
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2 Foundations and Notation

The degree of f is

deg(f) = max

{
n∑
i=1

ki

∣∣∣∣∣ (k1, . . . , kn) ∈ I, σ(k1, . . . , kn) 6= 0

}

• Let A,B,C 6= ∅ be non-empty sets and f : A→ B, g : B → C two maps.

– For a ∈ A, b ∈ B we write a 7→ b if f(a) = b.

– g ◦ f : A→ C is the composite function of g and f .

– im(f) ⊆ B is the image of f .

• For a set S and n ∈ N0, S
n is the set of n-tuples over S.

S∗ =
⋃∞
i=0 S

i is the set of (finite) tuples over S.

• For a finite set S we write s
R←− S if s is a random variable that is uniformly

distributed over S.

• For a suitable map f and a random variable y, we write x← f(y) if x is a random
variable that takes on the value of f(y).

• An instance generator G is a probabilistic algorithm with unary input 1n (a string
of length n). Its output depends on the specific problem where it is used. In
general, G is used to randomly generate a group of order at least 2n. We write
X ← G(1n) if X is a random variable for G’s output.
We assume that for each n, G(1n) chooses from a finite set of groups.

• log is the logarithm to base 2.

2.2 Basic Definitions and Problems

In this section, we will introduce some important definitions and problems that are used
throughout this thesis.

For security proofs, we often want to show that an event happens with “very small”
probability (for example, an attacker can break the scheme only with negligible probability
with respect to some security parameter). To express this notion of negligible quantities
formally, we use the following definition.

Definition 1. A function f : N→ R is negligible if

∀c ∈ N ∃n0 ∈ N ∀n > n0 : f(n) < 1/nc
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2.2 Basic Definitions and Problems

Loosely speaking, a negligible function approaches 0 faster than the inverse of any
polynomial.

Throughout the thesis, we use the following well-known cryptographic problems.

Problem 2 (Discrete Logarithm). Let (G, ·) be a cyclic group with generator g ∈ G.
The Discrete Logarithm problem is:

Given g and h
R←− G, determine a ∈ Z such that ga = h.

The discrete logarithm problem is widely believed to be hard in certain groups, for
example in (Z×p , ·) for a large prime number p ∈ N. In other groups however, it is known
to be easy.
In (Zn,+), n ∈ N, it is trivial: Given a · g for a generator g (additively written), we can
simply multiply the input with g−1 to obtain a ∈ Zn.

A related problem is the Diffie-Hellman problem.

Problem 3 (Diffie-Hellman). Let (G, ·) be a cyclic group with generator g ∈ G.
The computational Diffie-Hellman problem is:

Given g and ga, gb
R←− G, compute ga·b.

The assumption that this problem is hard in certain groups is used in several crypto-
graphic constructions, for example, the Diffie-Hellman key exchange.
It is easy to see that if there is an efficient algorithm for the discrete logarithm problem,
then the Diffie-Hellman problem becomes easy: Given ga, gb we could efficiently deter-
mine b and then raise ga to the power of b in time that is logarithmic in the group order
(using square and multiply) to obtain ga·b as required.

An easier problem is the decisional Diffie-Hellman problem. In this variant, the al-
gorithm is asked to distinguish the solution to a computational Diffie-Hellman problem
ga·b from a random group element.

Problem 4 (Decisional Diffie-Hellman). Let (G, ·) be a cyclic group with generator
g ∈ G.
The decisional Diffie-Hellman problem is:

Given g and ga, gb
R←− G and an element T ∈ G, decide whether T = ga·b.

Obviously, if an algorithm can efficiently solve computational Diffie-Hellman then the
decisional variant is easy as well since one could simply compute the correct group
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2 Foundations and Notation

element and compare it to the one that was supplied.

2.3 Bilinear Groups

In pairing-based cryptography, the following definitions are relevant.

Definition 5 (Bilinear Map). A bilinear map between groups (G0, ·), (G1, ·) is a map

e : G0 ×G0 → G1

such that for all a, b, c ∈ G0

e(ab, c) = e(a, c) · e(b, c)

and
e(a, bc) = e(a, b) · e(a, c)

We say e is non-degenerate if im(e) 6= {1}.

Definition 6 (Bilinear Group (cf. Section 2.2 [BBG05])). Let (G0, ·) and (G1, ·) be
cyclic groups of prime order p and let g ∈ G0 be a generator.
Let e : G0 ×G0 → G1 be an efficiently computable non-degenerate bilinear map.

We call ((G0, ·), (G1, ·), e) a bilinear group of order p. We say that g ∈ G0 is a
generator of the bilinear group.
In this context, e is often called a pairing.

Observation 7. For a bilinear group ((G0, ·), (G1, ·), e) with generator g ∈ G0, it holds
that for all a, b ∈ Z

e(ga, gb) = e(g, g)ab

and that
e(g, g) 6= 1

Particularly, since G1 has prime order, e(g, g) is a generator of G1 and im(e) = G1.

In such bilinear groups (for example, elliptic curve groups with the Weil pairing), the
decisional Diffie-Hellman problem (Problem 4) is trivial:
For input g, ga, gb ∈ G0 and T = gc ∈ G0, we can base the decision on the values of
e(ga, gb) = e(g, g)a·b and e(g, gc) = e(g, g)c.
Since e(g, g) is a generator, e(g, g)a·b and e(g, g)c are equal if and only if a · b = c modulo
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2.4 Lemma of Schwartz-Zippel

group order. This is equivalent to gc = ga·b, which is what we need to decide.

However, a slightly altered version of the problem is believed to be hard even in (some)
bilinear groups.

Problem 8 (Decisional bilinear Diffie-Hellman). Let ((G0, ·), (G1, ·), e) be a bilinear
group with generator g ∈ G0.
The decisional bilinear Diffie-Hellman problem is:

Given g and ga, gb, gc
R←− G0 and an element T ∈ G1, decide whether T = e(g, g)a·b·c.

The corresponding computational problem is therefore believed to be hard as well.

Problem 9 (Computational bilinear Diffie-Hellman). Let ((G0, ·), (G1, ·), e) be a bilinear
group with generator g ∈ G0.
The computational bilinear Diffie-Hellman problem is:

Given g and ga, gb, gc
R←− G0, compute e(g, g)a·b·c.

2.4 Lemma of Schwartz-Zippel

In this section, we introduce a useful lemma that bounds the probability for multivariate
polynomials to vanish when evaluated for random values.

Lemma 10 (Schwartz-Zippel). Let F be a field, ∅ 6= S ⊆ F a finite subset, n ∈ N0,
f ∈ F [X1, . . . , Xn], f 6= 0.
Then

Pr[f(x1, . . . , xn) = 0] ≤ d/|S|

where d = deg(f) and the probability is over x1, . . . , xn
R←− S.

Proof. We will prove this by induction over the number of variables n.
For n = 0, the statement holds trivially, since f ∈ F \ {0}.
As another base case, let n = 1. This means that f ∈ F [X1] and consequently
Pr[f(x) = 0] ≤ d/|S| because any univariate polynomial f over a field has at most
d = deg(f) roots in F and there are |S| values to choose from for x.

For the inductive step, let n > 1 and we assume that the statement holds for polyno-
mials with fewer than n variables.
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2 Foundations and Notation

We write

f =
d∑
i=0

Xi
1fi

where fi ∈ F [X2, . . . , Xn]. Since f 6= 0, there is an index k where fk 6= 0 and fj = 0 for
all j > k.

It holds that d = deg(f) ≥ deg(Xk
1 · fk) = k + deg(fk) and therefore deg(fk) ≤ d− k.

Because fk is a polynomial in only n − 1 variables, it follows from the induction hy-
pothesis that Pr[fk(x2, . . . , xn) = 0] ≤ deg(fk)/|S| ≤ (d− k)/|S|.

Also, for any concrete x2, . . . , xn ∈ S consider

f ′ = f(X1, x2, . . . , xn) ∈ F [X1]

If 0 6= fk(x2, . . . , xn) ∈ F , then deg(f ′) = k as we chose k to be the greatest index in
f =

∑d
i=0X

i
1fi and by definition of f ′.

Consequently, since f ′ is a polynomial in one variable, the induction hypothesis implies
Pr[f ′(x1) = 0 | fk(x2, . . . , xn) 6= 0] ≤ deg(f ′)/|S| = k/|S|. By definition of f ′ it holds
that f ′(x1) = f(x1, x2, . . . , xn) and consequently
Pr[f(x1, . . . , xn) = 0 | fk(x2, . . . , xn) 6= 0] ≤ k/|S|

Using the statements above, we have

Pr[f(·) = 0]

= Pr[f(·) = 0 | fk(·) = 0] · Pr[fk(·) = 0] + Pr[f(·) = 0 | fk(·) 6= 0] · Pr[fk(·) 6= 0]

≤ Pr[fk(·) = 0] + Pr[f(·) = 0 | fk(·) 6= 0]

≤ (d− k)

|S|
+

k

|S|

=
d

|S|

Later in the thesis, we will introduce Lemma 23 which can be applied in a more
general situation than the Schwartz-Zippel lemma. Its proof will be similar to the proof
of Schwartz-Zippel given here.
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3 The Generic Group Model

In this section, we will introduce and discuss the generic group model. First, we will
introduce the generic group model in its original sense and discuss its properties. In
Section 3.2 we will introduce a version of the model for bilinear groups.

3.1 Original Definition

The central definition for the generic group model as introduced by Shoup [Sho97] is the
following:

Definition 11 (Generic Algorithms). Let (G,+) be a finite group and S ⊂ {0, 1}∗ a
finite set with |G| ≤ |S| <∞.
A generic algorithm A for G on S is a probabilistic algorithm such that

• A’s input is a tuple I ∈ im(σ)∗ for σ
R←− {σ : G→ S | σ injective}

• A has access to a dynamic encoding list L = (σ(x1), . . . , σ(xl)) ∈ S∗. This list is
initialized with I.

• A may query an oracle for group operations: A specifies two indices 1 ≤ i, j ≤ l
of the current encoding list L = (σ(x1), . . . , σ(xl)) and a sign bit. The oracle
then computes xl+1 = xi ± xj according to the sign-bit and appends σ(xl+1) to the
encoding list.

• A’s output is a bit-string.

We call S the set of (possible) encodings and σ an encoding function. The group G
encoded by a random σ is sometimes called a generic group. If the definition of S is
omitted, we assume it to be an arbitrary suitable set.

In summary, in the generic group model, algorithms have access to an oracle for group
operations on elements that are encoded by unique but random bit-strings. A generic
algorithm can gain information about the random encoding function σ only by querying
the oracle for group operations and it has no further input other than the encoded group
elements.

One way to imagine the way the oracle works internally is that it has access to an
encoding function σ (which is randomly chosen before the start of the algorithm) and

9



3 The Generic Group Model

to an internal list ((x1, σ(x1)), . . . , (xl, σ(xl))) of pairs of group elements with their re-
spective encodings, corresponding to the algorithm’s current encoding list. Whenever
a query is made for indices i, j on the encoding list, the oracle finds xi and xj in its
list and calculates xl+1 = xi ± xj in G according to the sign bit and evaluates σ(xl+1),
then it appends (xl+1, σ(xl+1)) to its internal list and σ(xl+1) to the generic algorithm’s
encoding list.
Alternatively, the oracle may not create a complete random encoding function σ at the
beginning, but rather make random choices whenever it is queried. In this case, it would
compute xl+1 = xi ± xj as usual, and then check in its list whether there is an index k
such that xk = xl+1 (meaning this particular group element xl+1 has already been en-
coded). In this case, the old encoding σ(xk) is used, otherwise a new random encoding
for xl+1 is chosen from S \ {σ(x1), . . . , σ(xl)}. Since an oracle cannot be accessed other
than by querying it, these two concepts are equivalent. It should be noted that queries
to the oracle are typically assumed to take only constant time for A.

The original definition used in [Sho97] only allows the group (Zn,+) to be abstracted
by the model. This is because it was originally used only to show limitations of generic
algorithms for discrete logarithms (Problem 2) and the Diffie-Hellman problem (Problem
3). Since both of these problems require cyclic groups and any cyclic group of order n
is isomorphic to (Zn,+), this definition is adequate for this purpose.
However, the original definition can be easily generalized for arbitrary finite groups (as
seen in Definition 11).

Each generic algorithm is specifically designed for a concrete group G and for a set of
possible encodings S and may treat G and S as known constants. However, since group
elements are encoded as random bit-strings, generic algorithms are effectively prevented
from using the structure of group elements’ encodings. As we will see, this also has
implications for the ability of generic algorithms to use certain properties of the group
G.

3.1.1 Limits of Generic Algorithms

Since a generic algorithm only sees random encodings of group elements, it cannot dis-
tinguish between two isomorphic finite groups. In this sense, the concrete group is
interchangeable. We present the following lemma which will express this formally.

Lemma 12. Let (G,+) and (G′,+) be two isomorphic finite groups with group isomor-
phism ϕ : G → G′ and let σ : G → S be a random injective encoding function for
S ⊂ {0, 1}∗, |G| = |G′| ≤ |S| <∞. We set σ′ = σ ◦ ϕ−1. Let x1, . . . , xk ∈ G.
Then for any generic algorithm A the following two scenarios are indistinguishable:

1. A’s input is (σ(x1), . . . , σ(xk)) and the oracle operates on G.

10



3.1 Original Definition

2. A’s input is (σ′(ϕ(x1)), . . . , σ
′(ϕ(xk))) and the oracle operates on G′.

Proof. First, we note that if σ is randomly chosen (with respect to a uniform distribu-
tion), then σ′ is also random and occurs with the same probability, since the mapping
with σ 7→ σ′ = σ ◦ ϕ−1 is a bijection between the respective sets of encoding functions.

The input for the algorithm in the first case is by definition (σ(x1), . . . , σ(xk)), in the
second case it is (σ′(ϕ(x1)), . . . , σ

′(ϕ(xk))). Because σ = σ′ ◦ϕ, the input is the same in
both cases.

Consequently, it suffices to show that at any step of the algorithm, the encoding list
is the same in scenario 1 as in scenario 2 (because that implies that the oracle behaves
exactly the same in each case).

Initially, the encoding list is given by the input to A. We have already seen that the
input is the same.

We consider a query to the oracle for an arbitrary current encoding list (with valid
entries, i.e. out of im(σ) which is equal to im(σ′)) and show that the result of the query
will be the same for both cases.
Let L be the encoding list before a query to the oracle. Since the list holds valid entries,
we can write L = (σ(y1), . . . , σ(yl)) = (σ′(z1), . . . , σ

′(zl)) for some y1, . . . , yl ∈ G and
z1, . . . , zl ∈ G′.
Given a sign bit and two indices 1 ≤ i, j ≤ l:

1. The oracle for G appends σ(yi ± yj) to the encoding list

2. The oracle for G′ appends σ′(zi ± zj) to the encoding list

By definition of σ′ and yi, zi, it holds that σ′(zi) = σ(ϕ−1(zi)) = σ(yi) and therefore
yi = ϕ−1(zi) (because σ is injective). Analogously, yj = ϕ−1(zj).
Therefore, holds that σ(yi± yj) = σ(ϕ−1(zi)±ϕ−1(zj)) = σ(ϕ−1(zi± zj)) = σ′(zi± zj),
i.e. the same encoding is appended in both cases.

Since the input and the oracle’s behavior is the same and σ and σ′ occur with the
same probability, the two scenarios are indistinguishable for A.

This allows an important insight into generic algorithms: Since a generic algorithm
has no way to determine which concrete group it is dealing with, it can only exploit
group properties that all isomorphic groups have in common (e.g., group order, order
of individual elements, identity element, properties like commutativity if applicable).
Another way to view this is: A generic algorithm works equally well for all isomorphic
groups.
In practice however, some problems may be hard in one group but easy in one that is
isomorphic to the first. One famous example for this is the discrete logarithm in (Z×p , ·)

11



3 The Generic Group Model

for a prime number p. (Z×p , ·) is isomorphic to (Zp−1,+), but as discussed for Problem
2, in (Z×p , ·) the discrete logarithm is widely believed to be hard, whereas in (Zp−1,+)
it is trivial.

3.1.2 Example for a Generic Algorithm

A good example for a generic algorithm is the baby-step giant-step algorithm that solves
the discrete logarithm problem for a group of order n in O(

√
n) time.

For a cyclic group G of order n, the input to the algorithm is a generator g ∈ G and
some element ga ∈ G. We set k = d

√
ne.

1. Compute a table of tuples (j, gj) ∈ N×G for 1 ≤ j < k.

2. For 1 ≤ i ≤ k, compute tmp = ga · (g−k)i ∈ G and check whether the table from
step 1 contains a tuple (j, tmp).
If it does, output i · k + j.

The algorithm is correct. When it outputs i · k + j, it holds that gi·k+j = gi·k · gj =
gi·k · ga−k·i = ga.
The algorithm always outputs a solution. This is because 0 ≤ a < n can be written as
a = i · k + j where 1 ≤ j < k and i ≤ k since k2 = d

√
ne2 ≥ n. All possible values for j

and i are checked in step 2.
The required time for step 1 is O(

√
n) (assuming constant time group operations). For

step 2 it is also O(
√
n). This can be achieved by multiplying the constant value of g−k

with the previously computed value of ga ·(g−k)i−1 and by using a hash table for constant
time lookup for group elements in the table.

As one can see, the algorithm only uses common properties of cyclic groups (G, ·)
of order n (or, in the terms of Section 3.1.1, groups that are isomorphic to (Zn,+)).
Namely, the group order is used to compute the necessary number of tuples in the table,
and the fact that the group is cyclic is needed for correctness. Also, the only actions
that depend on the encodings of group elements are group operations (multiplication,
inverse) which can be easily modeled as queries to an oracle. Furthermore, for baby-step
giant-step, the fact that group elements have a unique encoding can be used for fast
lookup (e.g., through hashing) to determine whether or not an element is present in the
lookup table. We note that the algorithm works for arbitrary cyclic groups (of some
known order n), just like any generic algorithm for Zn.

3.1.3 Usefulness of the Generic Group Model

It should be stressed that the generic group model is not meant to reflect or even ap-
proximate concrete groups that are used in practice. Encodings for concrete groups’
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elements are certainly not random but rather explicitly chosen to reflect the represented
element’s structure. This is necessary since in practice, group operations have to be
efficiently computable and this is greatly simplified by choosing a suitable structure for
the encodings of elements.

The generic group model is often compared to the random oracle model for hash func-
tions. There are certain similarities: They are both tools that can be used to abstract
from concrete mathematical objects to allow proofs of theorems that nobody succeeded
to prove in the standard model.
The random oracle models the intended (although idealized) behavior of a good hash
function. In contrast, generic groups are an idealization of groups only with respect to
a lack of structure and special properties. These are attributes not usually desirable in
concrete groups that are used for cryptographic constructions. This is a distinct differ-
ence in the intent of the respective models. Essentially, a random oracle models an ideal
hash function, but a generic group does not model an ideal group in a similar fashion.

Instead, the usefulness of the generic group model lies in the following observation:
If a cryptographic construction is proven secure in the generic group model, no generic
algorithm can efficiently attack that construction with high probability of success. In
other words, every efficient attacker with high probability of success needs to exploit
some property of the underlying group or its elements’ encodings.

Examples for this are the discrete logarithm and Diffie-Hellman. Both of these prob-
lems have been intensively studied and they are strongly believed to be hard in certain
groups but nobody has been successful in proving this. Using the generic group model,
one can at least show that for generic algorithms they are hard. Consequently, to attack
these problems one has to employ methods related to the concrete group. (And if such
an attack is found, the problem may still be hard in another group.)

If it is suspected that a certain group does not have any properties that would help
in solving a particular problem (like the discrete logarithm in elliptic curve groups), the
generic group model may be used to abstract from most of the group’s properties and
thereby make a proof feasible. However, this does not adequately replace a formal proof
and should be seen as a chance to at least show security against generic algorithms rather
than not being able to give any formal proof at all.

Another application of the generic group model is validating new and untested as-
sumptions. For example, Waters constructs a ciphertext-policy attribute-based encryp-
tion scheme in [Wat11]. Their most efficient construction relies on a new, relatively
strong assumption that they call the decisional q-parallel bilinear Diffie-Hellman expo-
nent assumption. Because it is similar to many other Diffie-Hellman related problems,
this new assumption would currently be difficult to show in the standard model. Here,
the generic group model serves as a first check that this new assumption is indeed rea-
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sonable. In Section 5.2.1, we will show that their assumption indeed holds generically.

In summary, it is important to understand that a proof of security in the generic group
model does not imply security for any concrete group. Nevertheless, in the absence of a
proof in the standard model, the generic group model is a useful tool to gain confidence
in one’s assumptions.

3.2 Generic Bilinear Groups

In this thesis, we are particularly concerned with bilinear groups.

Because the original definition of the generic group model is inadequate for bilinear
groups (a generic algorithm in the original sense cannot evaluate the bilinear map), we
now introduce generic bilinear groups. This definition is a natural extension of Shoup’s
generic group model (Definition 11).

Definition 13 (Generic Algorithms for Bilinear Groups). Let ((G0, ·), (G1, ·), e) be a
bilinear group of order p with generator g ∈ G0. Let S ⊂ {0, 1}∗ be a finite set, p ≤
|S| <∞.
A generic algorithm A for ((G0, ·), (G1, ·), e) and S is a probabilistic algorithm such that

• A’s input consists of I0 ∈ im(σ0)
∗ and I1 ∈ im(σ1)

∗ for σ0
R←− {σ : G0 → S |

σ injective} and σ1
R←− {σ : G1 → S | σ injective}.

• A has access to dynamic encodings lists: L0 = (σ0(x1), . . . , σ0(xk)) ∈ S∗ and
L1 = (σ1(y1), . . . , σ1(yl)) ∈ S∗ (for G0, G1 respectively). Initially, L0 = I0 and
L1 = I1.

• A may query an oracle for the following operations:

– Group operation in G0: A specifies two indices 1 ≤ i, j ≤ k of the current
encoding list L0 = (σ0(x1), . . . , σ0(xk)) and a sign bit. The oracle then com-
putes xk+1 = xi · xj or xk+1 = xi · x−1j according to the sign bit and appends
σ0(xk+1) to the encoding list L0.

– Group operation in G1: A specifies two indices 1 ≤ i, j ≤ l of the current en-
coding list L1 = (σ1(y1), . . . , σ1(yl)) and a sign bit. The oracle then computes
yl+1 = yi · yj or yl+1 = yi · y−1j according to the sign bit and appends σ1(yl+1)
to the encoding list L1.

– Bilinear map: A specifies two indices 1 ≤ i, j ≤ k from the current encoding
list L0 = (σ0(x1), . . . , σ0(xk)). The oracle then computes yl+1 = e(xi, xj) and
appends σ1(yl+1) to the encoding list L1.

• A’s output is a bit-string.
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A similar, but not completely equivalent model is used in [BBG05]. For an examination
of the differences consider Section 3.3.

To give an idea of the limits of generic algorithms for bilinear groups, we note that
a generic algorithm for a bilinear group ((G0, ·), (G1, ·), e) can only exploit properties of
this concrete bilinear group that all bilinear groups of the same order have in common.
This follows from the next lemma similar to Lemma 12:

Lemma 14. Let ((G0, ·), (G1, ·), e) be a bilinear group of prime order p with generator
g ∈ G0 and let ((G′0, ·), (G′1, ·), e′) also be a bilinear group of prime order p with generator
g′ ∈ G′0. Let σ0 : G0 → S and σ1 : G1 → S be random injective encoding functions for a
set S ⊂ {0, 1}∗ with p ≤ |S| <∞.
We define isomorphisms ϕ0 : G0 → G′0 and ϕ1 : G1 → G′1 through ϕ0(g) = g′ and
ϕ1(e(g, g)) = e′(g′, g′). We set σ′i = σi ◦ ϕ−1i : G′i → S for i ∈ {0, 1}.
Let x1, . . . , xn ∈ G0, y1, . . . , ym ∈ G1.

Then for any generic algorithm A the following two scenarios are indistinguishable:

1. A’s input is I0 = (σ0(x1), · · · , σ0(xn)), I1 = (σ1(y1), · · · , σ1(ym)) and the oracle
operates on ((G0, ·), (G1, ·), e)

2. A’s input is I ′0 = (σ′0(ϕ0(x1)), · · · , σ′0(ϕ0(xn))), I ′1 = (σ′1(ϕ1(y1)), · · · , σ′1(ϕ1(ym)))
and the oracle operates on ((G′0, ·), (G′1, ·), e′)

Proof. First, we note that Gi, G
′
i (i ∈ {0, 1}) are groups of prime order p and g, g′,

e(g, g), e′(g′, g′) are generators, therefore ϕ0, ϕ1 are well-defined isomorphisms. This also
implies that σ′0, σ

′
1 are (uniformly) random encoding functions.

Lemma 12 and its proof imply that for group operation queries, the encodings that
the oracle returns are the same in both cases.
It only remains to be shown that evaluation of the bilinear map by the oracle also returns
the same encoding as a result in both cases.

Let L0 = (σ0(y1), . . . , σ0(yl)) = (σ′0(z1), . . . , σ
′
0(zl)) be the current encoding list for

G0. Let 1 ≤ i, j ≤ l be two indices.

1. In the first case, the oracle appends σ1(e(yi, yj)) to the encoding list L1.

2. In the second case, the oracle appends σ′1(e
′(zi, zj)) to the encoding list L1.

Like in the proof of Lemma 12, it holds that yi = ϕ−10 (zi), yj = ϕ−10 (zj) by definition
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and injectivity of σ′0. Consequently:

σ′1(e
′(zi, zj)) = σ′1(e

′((g′)a, (g′)b))

= σ′1(e
′(g′, g′)ab)

= σ′1(ϕ1(e(g, g)ab))

= σ1(e(g, g)ab)

= σ1(e(ϕ
−1
0 ((g′)a), ϕ−10 ((g′)b)))

= σ1(e(ϕ
−1
0 (zi), ϕ

−1
0 (zj)))

= σ1(e(yi, yj))

for some a, b ∈ Z.

Since the input and the encoding lists are the same at any point in the algorithm and
the encoding functions occur with the same probability, a generic algorithm A cannot
distinguish between the two scenarios.

3.3 Generic Group Model as Understood by Boneh, Boyen and
Goh

Boneh, Boyen and Goh implicitly use a slight variation of the generic group model for
bilinear groups in their proof framework (Theorem A.2 [BBG05]). There is no formal
definition of the model in their paper. Their understanding is implied by their use of
the model throughout the proof framework. We will discuss the differences to Definition
13 here briefly.

In the variation of Boneh, Boyen and Goh [BBG05], a generic algorithm does not
supply two indices from an encoding list to the oracle for a computation, but rather
the encodings themselves. Hence, an algorithm may supply arbitrary elements of S to
the oracle (where S is the target set of the encoding function). This includes invalid
encodings (i.e. elements of S \ im(σ) for the encoding function σ : G → S), as well as
valid encodings (i.e. in im(σ)) that the algorithm does not have in its encoding list.
In this case, an algorithm can express queries that the oracle cannot answer adequately
because there is an invalid encoding involved. Of course, this could be implemented by
defining a special error value.
Successfully generating a random valid encoding is analogous to generating a random
group element. In the original definition, this can also be done (for cyclic groups (G, ·))
by choosing a random exponent r ∈ {1, . . . , |G|} and computing gr, which is possible
in O(log |G|) oracle queries using square and multiply. So in this sense, no significant
ability is added to an attacker by this modification of the model.
Also, it can be argued that by increasing the size of S, it can be made arbitrarily hard for
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an attacker to guess valid encodings. Indeed, the authors of [BBG05] use the same argu-
ment in their proof to omit the case that an algorithm might try to make a query with
an encoding not on its encoding list. Nevertheless, this change in the model complicates
proofs that rely on simulating an oracle. To be completely accurate when simulating a
generic group oracle, it would have to be taken into account that an algorithm may re-
quest operations on randomly guessed bit-strings. This might be nontrivial to implement
if the encoding functions are not completely known during the course of the algorithm,
but rather dynamically generated whenever the attacker queries the simulated oracle.
When the attacker specifies a bit-string from S that is not on the encoding list, the
simulation would have to decide randomly whether this bit-string is supposed to be a
valid encoding or not and which group element it should represent if applicable.

Another difference is that in Shoup’s original definition, a generic algorithm is specif-
ically designed for a certain group, whereas in [BBG05], the group order p is passed as
an argument to the algorithm. In practice, this should not be a meaningful restriction,
since an algorithm for a concrete p could most likely be easily generalized for arbitrary p.
Also, their proof does not rely on the fact that the algorithm is not specifically designed
for a certain p.

Lastly, as a minor difference, the target set S of the encoding functions σ0, σ1 in
[BBG05] is {0, 1}m for some sufficiently large m ∈ N, not an arbitrary finite subset of
{0, 1}∗ as in Shoup’s original definition. Since there are no restrictions on S other than
its cardinality, one may indeed assume without loss of generality that S = {0, 1}m (i.e.
all encodings have the same length).

In conclusion, Boneh, Boyen and Goh use a slight variation of the generic group model
that was introduced in Definition 13. For the most part, their changes do not significantly
alter the general notion of the model. Their framework and its proof also work for the
original model with very minor modifications.
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Boneh, Boyen and Goh [BBG05] developed a framework for proofs of Diffie-Hellman-
related problems in the generic group model. We will review and explain their framework
here.

4.1 The (P,Q,f)-Diffie-Hellman Problem

For a universal proof method of Diffie-Hellman-related problems in bilinear groups, we
define the (P,Q, f)-Diffie-Hellman problem (originally defined in [BBG05]), which covers
many of the Diffie-Hellman-related problems directly.

Problem 15. Let ((G0, ·), (G1, ·), e) be a bilinear group of prime order p with generator
g ∈ G0. Let s, n ∈ N and P,Q ∈ Fp[X1, . . . , Xn]s, i.e. each a sequence of s multivari-
ate polynomials over Fp. We write P = (p1, . . . , ps) and Q = (q1, . . . , qs) and require
p1 = q1 = 1. Let f ∈ Fp[X1, . . . , Xn] be a single polynomial.
The corresponding (computational) (P,Q, f)-Diffie-Hellman problem is defined as fol-
lows:

Given (
gp1(x1,...,xn), . . . , gps(x1,...,xn), e(g, g)q1(x1,...,xn), . . . , e(g, g)qs(x1,...,xn)

)
for x1, . . . , xn

R←− Fp, compute

e(g, g)f(x1,...,xn)

Notice that we have defined a set of problems. Algorithms for one specific (P,Q, f)-
Diffie-Hellman problem may treat P,Q, f and ((G0, ·), (G1, ·), e), p, g as known constants.

For an easier understanding, one can observe that P defines what elements of G0 are
supplied to the algorithm and Q analogously for G1. f defines what the algorithm is
supposed to compute.

Example 16 (Computational bilinear Diffie-Hellman). Suppose we set P = (1, X, Y, Z),
Q = (1, 1, 1, 1) ∈ Fp[X,Y, Z]4, f = XY Z ∈ Fp[X,Y, Z], then the corresponding (P,Q, f)-
Diffie-Hellman problem is:
Given g, gx, gy, gz (and e(g, g)) for a generator g ∈ G0 and some x, y, z ∈ Fp, com-
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pute e(g, g)xyz, which is essentially the computational bilinear Diffie-Hellman problem
(Problem 9)

For more general results, we consider a decisional variant of the problem.

Problem 17 (cf. Section A.2 [BBG05]). Let ((G0, ·), (G1, ·), e) be a bilinear group of
prime order p with generator g ∈ G0. Let s, n ∈ N, P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈
Fp[X1, . . . , Xn]s, p1 = q1 = 1 and f ∈ Fp[X1, . . . , Xn].
The corresponding decisional (P,Q, f)-Diffie-Hellman problem is defined as follows:

Given (
gp1(x1,...,xn), . . . , gps(x1,...,xn), e(g, g)q1(x1,...,xn), . . . , e(g, g)qs(x1,...,xn)

)
for x1, . . . , xn

R←− Fp,
and an element T ∈ G1, decide whether or not

T = e(g, g)f(x1,...,xn)

Definition 18 (cf. Section A.2 [BBG05]). In the situation of Problem 17, let
Ig(x1, . . . , xn) =

(
gp1(x1,...,xn), . . . , gps(x1,...,xn), e(g, g)q1(x1,...,xn), . . . , e(g, g)qs(x1,...,xn)

)
.

We say that a probabilistic algorithm A has advantage ε in solving the decisional (P,Q, f)-
Diffie-Hellman problem, if∣∣∣Pr[A(Ig(x1, . . . , xn), e(g, g)f(x1,...,xn)) = 0]− Pr[A(Ig(x1, . . . , xn), T ) = 0]

∣∣∣ > ε

where the probability is over x1, . . . , xn
R←− Fp, T

R←− G1 and A’s random bits.

Notice that any algorithm that can compute a solution to the (P,Q, f)-Diffie-Hellman
problem allows to easily solve the decisional variant. Therefore, any results on lower
runtime bounds for the decisional variant translate to the computational variant.

4.2 Independence of Polynomials

For certain P,Q, f , the (P,Q, f)-Diffie-Hellman problem is trivial to solve. For example,
consider P = (1, X, Y ), Q = (1, 1, 1), f = XY . To solve this, an algorithm can simply
use the bilinear map on gx and gy, since e(gx, gy) = e(g, g)xy = e(g, g)f(x,y). The follow-
ing definition deals with such cases.
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Definition 19 (cf. Definition A.1 [BBG05]). Let f ∈ Fp[X1, . . . , Xn], P = (p1, . . . , ps),
Q = (q1, . . . , qs) ∈ Fp[X1, . . . , Xn]s.

We say f is dependent on (P,Q), if there exist constants aij , bk ∈ Fp (for i, j, k ∈
{1, . . . , s}) such that

f =

s∑
i=1

s∑
j=1

aijpipj +

s∑
k=1

bkqk

f is independent of (P,Q) if it is not dependent on (P,Q)

Notice that if f is dependent on (P,Q), then the corresponding (P,Q, f)-Diffie-Hellman
problem is easy to solve generically, regardless of the actual x1, . . . , xn ∈ Fp. For
notational convenience in this paragraph, let h′ = h(x1, . . . , xn) for any polynomial
h ∈ Fp[X1, . . . , Xn] and x1, . . . , xn ∈ Fp.
Consider a (generic) algorithm that does the following:

• For all pairs (i, j) ∈ {1, . . . , s}2 compute e(gp
′
i , gp

′
j ) = e(g, g)p

′
ip

′
j using the given

gp
′
i , gp

′
j .

• Raise each element e(g, g)p
′
ip

′
j ∈ G1 from the previous step to the power of the

corresponding constant aij (obtaining e(g, g)aijp
′
ip

′
j ∈ G1).

• For all 1 ≤ k ≤ s, compute (e(g, g)q
′
k)bk ∈ G1 from the given e(g, g)q

′
k ∈ G1.

• Multiply the previous results (in G1) to obtain e(g, g)
∑s

i=1

∑s
j=1 aijp

′
ip

′
j+

∑s
k=1 bkq

′
k =

e(g, g)f
′

Using square and multiply, the exponentiation operations can each be done using at most
O(log p) group operations (where p is the order of the bilinear group). Consequently,
the algorithm solves the (P,Q, f)-Diffie-Hellman problem in only O((s2 + s) log p) time
(assuming constant time group operations).

As we will see in the following proof, f ’s independence of (P,Q) is not only neces-
sary, but also sufficient for generic security of the corresponding (P,Q, f)-Diffie-Hellman
problem.

4.3 Generic Security of the (P,Q,f)-Diffie-Hellman Problem

For the generic security of the (P,Q, f)-Diffie-Hellman problem we show the following
theorem that bounds the probability for success of a generic algorithm for a special de-
cision variant of the (P,Q, f)-Diffie-Hellman problem: The algorithm is given two group
elements, one of which is the correct solution (this variant differs from Problem 17.
Corollary 21 shows that this theorem indeed implies generic security for the decisional
(P,Q, f)-Diffie-Hellman problem). We are using Definition 13 for generic bilinear groups
instead of the understanding of the model of Boneh, Boyen and Goh. The differences
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are listed in Section 3.3. Essentially, the proof is still the same as the one in [BBG05],
but slightly adapted to our definition of generic groups and considerably more detailed.

Theorem 20 (cf. Theorem A.2 [BBG05]). Let p ∈ N be a prime number, ((G0, ·), (G1, ·), e)
a bilinear group of order p with generator g ∈ G0. Let S ⊂ {0, 1}∗ with p ≤ |S| <∞.
Further, let s, n ∈ N and P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ Fp[X1, . . . , Xn]s with p1 =
q1 = 1, f ∈ Fp[X1, . . . , Xn]. Let d = max{2 deg(pi),deg(qi), deg(f) | i ∈ {1, . . . , s}}.
We set

I(σ0, σ1;x1, . . . , xn, t0, t1) =

 σ0(g
p1(x1,...,xn)), . . . , σ0(g

ps(x1,...,xn)),

σ1(e(g, g)q1(x1,...,xn)), . . . , σ1(e(g, g)qs(x1,...,xn)),
σ1(e(g, g)t0), σ1(e(g, g)t1)


and call it the input vector

If f is independent of (P,Q), then for any generic algorithm A for ((G0, ·), (G1, ·), e)
and S that makes at most q queries to the oracle it holds that∣∣∣∣∣∣∣∣∣Pr

A (I(σ0, σ1;x1, . . . , xn, t0, t1)) = b :

x1, . . . , xn, y
R←− Fp,

b
R←− {0, 1},

tb ← f(x1, . . . , xn),
t1−b ← y

− 1

2

∣∣∣∣∣∣∣∣∣ ≤
(q + 2s+ 2)2 · d

4p

where the probability is over x1, . . . , xn, y
R←− Fp, b

R←− {0, 1}, σ0
R←− {σ : G0 → S |

σ injective}, σ1
R←− {σ : G1 → S | σ injective} and the random bits of A.

For this theorem, A is given the usual input and two (encoded) group elements
e(g, g)t0 , e(g, g)t1 ∈ G1, one of which is the element e(g, g)f(x1,...,xn) and the other is
randomly chosen. A must then distinguish the correct answer e(g, g)f(x1,...,xn) from the
random group element. Notice that if A could actually solve the computational version
of the (P,Q, f)-Diffie-Hellman problem, it could simply compute e(g, g)f(x1,...,xn) and
compare it to e(g, g)t0 and e(g, g)t1 for the decision.
The proposition is that the probability for an arbitrary generic algorithm A to output
the correct choice is close to 1

2 and therefore close to the probability one would achieve

by simply choosing b
R←− {0, 1} at random without computing anything.

As a slight change from [BBG05], we show a bound that is more tight by a factor of 1/2.

Proof. The idea of the proof is to consider an Algorithm B that simulates a generic group
oracle and answers A’s oracle queries. Analysis of the output of A when interacting with
B will provide the information needed to prove this theorem.

Unlike a proper oracle, B will not depend on the random values of x1, . . . , xn, y
R←−

Fp, b
R←− {0, 1} and do its computations on group elements. Instead, B will try to pro-
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vide an accurate simulation by playing along with polynomials where the polynomial
variables correspond to the unknown random values. Specifically, B will associate en-
codings with polynomials. WhenA requests an oracle operation, B will do a computation
on polynomials corresponding to the requested operation and will obtain another poly-
nomial as a result. If B never encountered this polynomial before, a random unique
encoding is generated for it, otherwise the previously issued encoding is returned.
The idea is that with high probability, B can provide an accurate simulation for A with-
out having to know the concrete random values for the input variables. If B’s simulation

is successful, then A’s guess b′ ∈ {0, 1} is independent of the actual solution b
R←− {0, 1}

(since b is not known to either A nor B) and in these cases, A only succeeds with prob-
ability 1/2. The main concern of the proof will be to bound the probability that B’s
simulation fails.
The proof is structured as follows: First, we will describe the initial setup and define how
B answers oracle queries. Then we will analyze under what circumstances B’s encoding
responses deviate from an oracle’s for a concrete input, then bound the probability for
this to happen. Finally, we will bound A’s success probability when it’s interacting with
a proper oracle.

Setup

First, we define two lists for B to maintain. Let L0 ∈ (Fp[X1, . . . , Xn] × S)∗ and L1 ∈
(Fp[X1, . . . , Xn, Y0, Y1] × S)∗ be two lists where each entry holds a polynomial and an
encoding. Initially, we set

L0 = ((p1, ξ0,1), . . . , (ps, ξ0,s))

and
L1 = ((q1, ξ1,1), . . . , (qs, ξ1,s), (qs+1, ξ1,s+1), (qs+2, ξ1,s+2))

with p1, . . . , ps as defined in P , q1, . . . , qs as defined in Q, qs+1 = Y0 and qs+2 = Y1 ∈
Fp[X1, . . . , Xn, Y0, Y1].
The ξ∗,∗ ∈ S values are random encodings subject to pk = pl ⇔ ξ0,k = ξ0,l for all
k, l ∈ {1, . . . , s} and qk = ql ⇔ ξ1,k = ξ1,l for all k, l ∈ {1, . . . , s+ 2}.
Over the course of B’s execution, the lists will be updated by appending new pairs.
We always write (pi, ξ0,i) for the ith entry of L0 and (qi, ξ1,i) for the ith entry of L1.
Furthermore, let τ0 be the length of L0 and τ1 the length of L1.

After this initial setup, B supplies the vector (ξ0,1, . . . , ξ0,s, ξ1,1, . . . , ξ1,s+2) to A as its
input.
Therefore, for i ∈ {1, . . . , s}, A associates the encoding ξ0,i with gpi(x1,...,xn) ∈ G0 and
ξ1,i with e(g, g)qi(x1,...,xn) ∈ G1, as well as ξ1,s+1 with e(g, g)t0 ∈ G1 and ξ1,s+2 with
e(g, g)t1 ∈ G1.

Our simulation B will associate the encodings with polynomials. The polynomial vari-
ables X1, . . . , Xn correspond to the random x1, . . . , xn ∈ Fp. Y0 and Y1 correspond to t0
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and t1 respectively. Notice that the concrete values for x1, . . . , xn, t0, t1 are not known
to B.

Consider this overview:

Encoding ξ0,i ξ1,i
Corresponding for B pi ∈ Fp[X1, . . . , Xn] qi ∈ Fp[X1, . . . , Xn, Y0, Y1]

Corresponding for A gpi(x1,...,xn) ∈ G0 e(g, g)qi(x1,...,xn,t0,t1) ∈ G1

Handling of Queries

A can query the simulated oracle for group operations in G0 and G1 and for the bilinear
map e. We will now define how B will respond to such requests.

• Group operation in G0: The algorithm A specifies two indices 1 ≤ i, j ≤ τ0 from
its G0 encoding list and a sign bit. Depending on the sign bit, A then expects
σ0(g

pi(x1,...,xn)±pj(x1,...,xn)) to be appended to its encoding list.
B computes pτ0+1 = pi ± pj ∈ Fp[X1, . . . , Xn] according to the sign bit.
If pτ0+1 = pl for an l ∈ {1, . . . , τ0}, we set ξ0,τ0+1 = ξ0,l. Otherwise, we set ξ0,τ0+1

to a new random encoding out of S \ {ξ0,1, . . . , ξ0,τ0}.
Finally, we append ξ0,τ0+1 to A’s encoding list for G0, and (pτ0+1, ξ0,τ0+1) to L0

(then τ0 is incremented).

• Group operation in G1: This is analogous to the group operation in G0:
Given two indices 1 ≤ i, j ≤ τ1 and a sign bit, B computes qτ1+1 = qi ± qj ∈
Fp[X1, . . . , Xn, Y0, Y1] according to the sign bit.
If qτ1+1 = ql for an l ∈ {1, . . . , τ1}, we set ξ1,τ1+1 = ξ1,l, otherwise we set ξ1,τ1+1 to
a new random bit-string out of S \ {ξ1,1, . . . , ξ1,τ1}
Finally, we append ξ1,τ1+1 to A’s encoding list for G1, and (qτ1+1, ξ1,τ1+1) to L1

(then τ1 is incremented).

• Bilinear map: A specifies two indices 1 ≤ i, j ≤ τ0 from its encoding list for G0.
It then expects σ1(e(g

pi(x1,...,xn), gpj(x1,...,xn))), which is equal to
σ1(e(g, g)pi(x1,...,xn)·pj(x1,...,xn)), to be appended to its encoding list.
B computes qτ1+1 = pi · pj ∈ Fp[X1, . . . , Xn] ⊆ Fp[X1, . . . , Xn, Y0, Y1].
If qτ1+1 = ql for some l ∈ {1, . . . , τ1}, we set ξ1,τ1+1 = ξ1,l, otherwise we set ξ1,τ1+1

to a new random encoding out of S \ {ξ1,1, . . . , ξ1,τ1}.
Finally, we append ξ1,τ1+1 to A’s encoding list for G1, and (qτ1+1, ξ1,τ1+1) to L1

(then τ1 is incremented).

24



4.3 Generic Security of the (P,Q,f)-Diffie-Hellman Problem

Without loss of generality, we assume that q+2s+2 ≤ |S| since otherwise q+2s+2 ≥ p
in which case the inequality stated in the theorem holds trivially. Consequently, the
operations above are well-defined and there are enough encodings in S for the 2s + 2
initial list entries and at most q queries by A.

We will use the following invariants about the lists L0 and L1: Let 1 ≤ i, i′ ≤ τ0 and
1 ≤ j, j′ ≤ τ1, then

• ξ0,i corresponds to gpi(x1,...,xn) ∈ G0 for A

• ξ1,j corresponds to e(g, g)qj(x1,...,xn,t0,t1) ∈ G1 for A

• ξ0,i = ξ0,i′ ⇔ pi = pi′ and ξ1,j = ξ1,j′ ⇔ qj = qj′

• pi can be written as
∑s

k=1 akpk for some ak ∈ Fp for k ∈ {1, . . . , s}.

• qj can be written as
∑s

k=1

∑s
l=1 aklpkpl+

∑s
u=1 buqu+c0Y0+c1Y1 for some akl, bu, c0,

c1 ∈ Fp for k, l, u ∈ {1, . . . , s}

Initially, these invariants hold by definition of the initial values of L0, L1. It is easy to
see that the operations above preserve the invariant.

After at most q queries, A terminates and returns a guess b′ ∈ {0, 1}.

Analysis of Simulation Failure

Now we analyze the circumstances under which the simulation provided by B deviates

from the behavior of an oracle for concrete values of x1, . . . , xn, y
R←− Fp and b

R←− {0, 1}.
Essentially, such a deviation might occur if B chooses to generate a new encoding for a
query because a polynomial is unequal to the others in the list. But when the polyno-
mial variables are substituted with their concrete x1, . . . , xn, y counterparts, this decision
might turn out wrong and may have caused B to supply two different encodings for the
same group element. The following considerations will express this formally and show
that this is the only source of errors in the simulation. We want to know for a concrete
execution of B whether there exist encoding functions such that an oracle with those
encoding functions would have supplied the same encodings as B has.

For this, we consider the encodings that B returned for the queries. Our invariants
state that for 1 ≤ i ≤ τ0 and 1 ≤ j ≤ τ1, A associates each encoding ξ0,i with gpi(x1,...,xn)

and ξ1,j with e(g, g)qj(x1,...,xn,t0,t1).
Therefore, the simulation was successful if and only if injective encoding functions σ0 :
G0 → S and σ1 : G1 → S exist with

σ0(g
pi(x1,...,xn)) = ξ0,i
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and
σ1(e(g, g)qj(x1,...,xn,t0,t1)) = ξ1,j

for all 1 ≤ i ≤ τ0 and 1 ≤ j ≤ τ1, because then a proper oracle with those encoding
functions would have supplied the same encodings to the algorithm for the input vector
I(σ0, σ1;x1, . . . , xn, t0, t1) as B did.
We can find such injective encoding functions if and only if

ξ0,i = ξ0,i′ ⇔ gpi(x1,...,xn) = gpi′ (x1,...,xn)

and (4.1)

ξ1,j = ξ1,j′ ⇔ e(g, g)qj(x1,...,xn,t0,t1) = e(g, g)qj′ (x1,...,xn,t0,t1)

for all 1 ≤ i, i′ ≤ τ0 and 1 ≤ j, j′ ≤ τ1.
This is because for such functions to exist, a group element must not have two different
encodings (i.e. two different images in S). Also, two different group elements must not
have the same encodings in order to satisfy injectivity. If these conditions are met, then
by setting the images of the group elements in L0, L1 to their encodings as required
and setting the other group elements to arbitrary values, preserving injectivity (which is
possible since we required |S| to be large enough), such encoding functions can be found.

Let 1 ≤ i, i′ ≤ τ0 and 1 ≤ j, j′ ≤ τ1. Because g and e(g, g) are generators, ϕ0 : Fp →
G0, a 7→ ga and ϕ1 : Fp → G1, a 7→ e(g, g)a are well-defined bijective maps. Therefore,
gpi(x1,...,xn) = gpi′ (x1,...,xn) ⇔ pi(x1, . . . , xn) = pi′(x1, . . . , xn) and e(g, g)qj(x1,...,xn,t0,t1) =
e(g, g)qj′ (x1,...,xn,t0,t1) ⇔ qj(x1, . . . , xn, t0, t1) = qj′(x1, . . . , xn, t0, t1).
Throughout the algorithm we have maintained the invariant that ξ0,i = ξ0,i′ ⇔ pi = pi′

and ξ0,j = ξ0,j′ ⇔ qj = qj′ . It follows that condition (4.1) is equivalent to the following:

pi = pi′ ⇔ pi(x1, . . . , xn) = pi′(x1, . . . , xn)

and (4.2)

qj = qj′ ⇔ qj(x1, . . . , xn, t0, t1) = qj′(x1, . . . , xn, t0, t1)

for all 1 ≤ i, i′ ≤ τ0 and 1 ≤ j, j′ ≤ τ1.

Now we substitute Yb with f(X1, . . . , Xn) in the polynomials qj ∈ Fp[X1, . . . , Xn, Y0, Y1],
1 ≤ j ≤ τ1 and call the results q′j ∈ Fp[X1, . . . , Xn, Y1−b]. Since by definition, tb =
f(x1, . . . , xn), we have that qj(x1, . . . , xn, t0, t1) = q′j(x1, . . . , xn, t1−b).
The intuition is that the substitution of Yb is needed for probability analysis later, since
the value of tb = f(x1, . . . , xn) is not uniformly distributed in Fp but determined by the
random x1, . . . , xn.

We will now show that qi = qj ⇔ q′i = q′j , i.e. the substitution does not introduce any
new equalities between polynomials.
Let 1 ≤ i, j ≤ τ1 be arbitrary indices.
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qi = qj ⇒ q′i = q′j follows immediately, as q′i and q′j are the results of a substitution. We
are left to show that q′i = q′j ⇒ qi = qj or, equivalently, qi 6= qj ⇒ q′i 6= q′j .

Let qi 6= qj . Because of our invariant, qi − qj can be written as

qi − qj =
s∑

k=1

s∑
l=1

aklpkpl +
s∑

u=1

buqu + c0Y0 + c1Y1

for some akl, bu, c0, c1 ∈ Fp for k, l, u ∈ {1, . . . , s}.
If cb = 0, then clearly qi− qj = q′i− q′j and since qi− qj 6= 0, it follows that q′i− q′j 6= 0.

Therefore, q′i 6= q′j .
Otherwise, we consider cb 6= 0. Assume q′i − q′j = 0, then we have

f = −c−1b

(
s∑

k=1

s∑
l=1

aklpkpl +

s∑
u=1

buqu + c1−bY1−b

)

Since Y1−b is not a variable in f ∈ F[X1, . . . , Xn], it follows that c1−b = 0 and therefore

f =

(
s∑

k=1

s∑
l=1

(−c−1b akl)pkpl +
s∑

u=1

(−c−1b bu)qu

)

This would violate our assumption that f is independent of (P,Q). Consequently, our as-
sumption that q′i−q′j = 0 leads to a contradiction. Thus, in this case q′i 6= q′j holds as well.

In conclusion, we have that qi = qj ⇔ q′i = q′j and that qj(x1, . . . , xn, t0, t1) =
q′j(x1, . . . , xn, t1−b) = q′j(x1, . . . , xn, y) (by definition of t1−b). We can now reformu-
late our previous condition:
The simulation was successful if and only if

pi = pi′ ⇔ pi(x1, . . . , xn) = pi′(x1, . . . , xn)

and

q′j = q′j′ ⇔ q′j(x1, . . . , xn, y) = q′j′(x1, . . . , xn, y)

for all 1 ≤ i, i′ ≤ τ0 and 1 ≤ j, j′ ≤ τ1.

Notice that pi = pi′ ⇒ pi(x1, . . . , xn) = pi′(x1, . . . , xn) and q′j = q′j′ ⇒ q′j(x1, . . . , xn, y)
= q′j′(x1, . . . , xn, y) hold trivially.

As a result, the simulation failed, if and only if

pi(x1, . . . , xn) = pi′(x1, . . . , xn), but pi 6= pi′

or

27



4 The Boneh, Boyen, Goh Framework

q′j(x1, . . . , xn, y) = q′j′(x1, . . . , xn, y), but q′j 6= q′j′

for any 1 ≤ i, i′ ≤ τ0, 1 ≤ j, j′ ≤ τ1.

Probability of Simulation Failure

We now bound the probability for B’s simulation to fail, i.e. for two unequal polynomials

in the lists L0, L1 to evaluate to the same value for x1, . . . , xn, y
R←− Fp.

First, for 1 ≤ i ≤ τ0 and 1 ≤ j ≤ τ1, the definition of d = max{2 deg(pk),deg(qk), deg(f) |
k ∈ {1, . . . , s}} and our invariants imply that

deg(pi) = deg

(
s∑

k=1

akpk

)
≤ max{deg(pk) | k ∈ {1, . . . , s}} ≤ d

(for appropriate ak ∈ Fp where k ∈ {1, . . . , s}) and that

deg(q′j) = deg

(
s∑

k=1

s∑
l=1

aklpkpl +

s∑
u=1

buqu + c1−bY1−b + cbf

)

≤ max{2 deg(pk),deg(qk),deg(f) | k ∈ {1, . . . , s}} = d

(for appropriate akl, bu, c0, c1 ∈ Fp where k, l, u ∈ {1, . . . , s}), using that deg(f) ≥ 1 as
f would be dependent on (P,Q) otherwise.

From this we can conclude that for 1 ≤ i, i′ ≤ τ0, 1 ≤ j, j′ ≤ τ1 with pi 6= pi′ and
q′j 6= q′j′

Pr[pi(x1, . . . , xn) = pj(x1, . . . , xn)] = Pr[(pi − pj)(x1, . . . , xn) = 0] ≤ d/p

Pr[q′j(x1, . . . , xn, y) = q′j′(x1, . . . , xn, y)] = Pr[(q′j − q′j′)(x1, . . . , xn, y) = 0] ≤ d/p

(for random x1, . . . , xn, y
R←− Fp) using that the polynomials’ degrees are at most d and

the lemma of Schwartz–Zippel (Lemma 10).

Initially, L0, L1 contained 2s + 2 entries combined. After at most q queries, each of
which adds exactly one entry to one of the lists, there are now at most q+ 2s+ 2 entries
in L0, L1 combined. This implies that there are less than

(
q+2s+2

2

)
pairs {pi, pi′} with

pi 6= pi′ and {q′j , q′j′} with q′j 6= q′j′ (1 ≤ i, i′ ≤ τ0, 1 ≤ j, j′ ≤ τ1). Each such pair
has a chance of at most d/p that the polynomials evaluate to the same value for the
random choice of x1, . . . , xn, y, which must happen at least once for B’s simulation to
fail. Therefore, let ’fail’ be the event that the simulation was not successful, then

Pr[fail] ≤
(
q + 2s+ 2

2

)
d

p
=

(q + 2s+ 2)! d

(q + 2s)! 2! p
≤ (q + 2s+ 2)2d

2p
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where the probability is over the random bits of A and of B and x1, . . . , xn, y
R←− Fp, b

R←−
{0, 1}.

Analysis of A’s Success Probability

Up until now, we only analyzed the experiment run by B and bounded the probability
that B fails to provide a simulation that conforms to an oracle’s behavior for random

values of x1, . . . , xn, y
R←− Fp, b

R←− {0, 1}.
The last step will be to use these findings to draw conclusions about A’s probability of
success when it interacts with an oracle.

First, we define a probability space that contains the random bits of A and B as well

as random variables x1, . . . , xn, y
R←− Fp, b

R←− {0, 1} and tb ← f(x1, . . . , xn), t1−b ← y.

Furthermore, let σ0 be a random encoding function such that σ0(g
pi(x1,...,xn)) = ξ0,i

for 1 ≤ i ≤ k0 where 1 ≤ k0 ≤ τ0 is the maximal index in the encoding list L0 such that
for all k, k′ ≤ k0: pk = pk′ ⇔ pk(x1, . . . , xn) = pk′(x1, . . . , xn) (that is the greatest index
where the simulation did not fail for x1, . . . , xn, y, b).
Similarly, let σ1 be a random encoding function such that σ1(e(g, g)qj(x1,...,xn,t0,t1)) = ξ1,j
for 1 ≤ j ≤ k0 where 1 ≤ k0 ≤ τ1 is the maximal index in the encoding list L1 such that
for all k, k′ ≤ k0: qk = qk′ ⇔ qk(x1, . . . , xn, t0, t1) = qk′(x1, . . . , xn, t0, t1). (cf. condition
(4.2) above).
Since B chooses the encodings ξ∗,∗ randomly during the simulation, σ0 and σ1 are uni-
formly distributed over the set of injective functions G0 → S and G1 → S respectively.

Let fail be the event that B’s simulation is not successful (as described in the analysis
of simulation failure).
We are interested in the values of two random variables:
Let b′ be the bit that A returns after interacting with B.
Let b′′ be the bit that A returns for input I(σ0, σ1;x1, . . . , xn, t0, t1) after interacting
with an oracle that issues encodings according to σ0, σ1 as chosen above.
Notice that b′ is completely determined by the random bits of A and B. b′′ is completely
determined by x1, . . . , xn, y, b, σ0, σ1 and A’s random bits.

It holds that 1/2 = Pr[b = b′] = Pr[b = b′ | ¬fail], because we choose b
R←− {0, 1}

independently of b′ and the event fail.
If B’s simulation is successful, i.e. event fail does not occur, then (and only then) the en-
codings issued by B conform to some encoding functions for the input that is determined
by x1, . . . , xn, y, b. In this case, σ0, σ1 as defined above are such encoding functions.
It follows that whenever event ¬fail occurs, B supplies the same encodings to A as an
oracle that issues encodings according to σ0, σ1. Since A’s output is only determined by
the supplied encodings (which are the same in both cases) and its random bits, we have
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that ¬fail implies b′ = b′′.

Formally, this further implies:

Pr[b = b′′ | ¬fail] = Pr[b = b′ | ¬fail] = 1/2

Hence,
Pr[b = b′′] = Pr[b = b′′ | ¬fail]Pr[¬fail] + Pr[b = b′′ | fail]Pr[fail]

≤ Pr[b = b′′ | ¬fail](1− Pr[fail]) + Pr[fail] = 1/2(1− Pr[fail]) + Pr[fail]

= 1/2 + Pr[fail]/2

and
Pr[b = b′′] = Pr[b = b′′ | ¬fail]Pr[¬fail] + Pr[b = b′′ | fail]Pr[fail]

≥ Pr[b = b′′ | ¬fail]Pr[¬fail] = 1/2(1− Pr[fail])

= 1/2− Pr[fail]/2

Finally, this implies

−Pr[fail]/2 ≤ Pr[b = b′′]− 1/2 ≤ Pr[fail]/2

⇒ |Pr[b = b′′]− 1/2| ≤ Pr[fail]/2 ≤ (q + 2s+ 2)2d

4p

Where b′′ is the value that A returns for input I(σ0, σ1;x1, . . . , xn, t0, t1) after in-
teracting with an oracle that uses the encoding functions σ0, σ1. The probability is

over σ0
R←− {σ : G0 → S | σ injective}, σ1

R←− {σ : G1 → S | σ injective} and

x1, . . . , xn, y
R←− Fp, b

R←− {0, 1} and the random bits of A as required.

The following corollary uses Theorem 20 to bound the advantage of generic algorithms
for the decisional (P,Q, f)-Diffie-Hellman problem (Definition 18).

Corollary 21. Let p ∈ N be a prime number, ((G0, ·), (G1, ·), e) a bilinear group of order
p with generator g ∈ G0. Let S ⊂ {0, 1}∗ with p ≤ |S| <∞
Let s, n ∈ N and P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ Fp[X1, . . . , Xn]s with p1 = q1 = 1,
f ∈ Fp[X1, . . . , Xn]. Let d = max{2 deg(pi), deg(qi),deg(f) | i ∈ {1, . . . , s}}.

If f is independent of (P,Q), then any generic algorithm A for ((G0, ·), (G1, ·), e) and

S that makes at most q oracle queries has at most advantage (q+2s+2)2·d
2p in solving the

(P,Q, f)-Diffie-Hellman problem (Definition 18).

Proof. For the proof, we construct an algorithm B that solves the problem described in
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Theorem 20 by using an algorithm A for the (P,Q, f)-Diffie-Hellman problem. Theorem
20 will then imply bounds that apply for A.

Let f be independent of (P,Q).
For notational convenience, let

I(σ0, σ1;x1, . . . , xn) =

(
σ0(g

p1(x1,...,xn)), . . . , σ0(g
ps(x1,...,xn)),

σ1(e(g, g)q1(x1,...,xn)), . . . , σ1(e(g, g)qs(x1,...,xn))

)
Let A be a generic algorithm for the decisional (P,Q, f)-Diffie-Hellman problem.

We write A(correct) = A(I(σ0, σ1;x1, . . . , xn), σ1(e(g, g)f(x1,...,xn))) and
A(random) = A(I(σ0, σ1;x1, . . . , xn), σ1(e(g, g)y)).

Consider an algorithm B that takes input I(σ0, σ1;x1, . . . , xn), σ1(e(g, g)t0), σ1(e(g, g)t1)
as in Theorem 20. B runs A with input I(σ0, σ1;x1, . . . , xn), σ1(e(g, g)t0) and returns
A’s output b′.

We bound the probability for B’s success:

Let b
R←− {0, 1}, x1, . . . , xn, y

R←− Fp, tb ← f(x1, . . . , xn), t1−b ← y.

Pr[b = b′] = Pr[b = b′ | b = 0]Pr[b = 0] + Pr[b = b′ | b = 1]Pr[b = 1]

= 1/2(Pr[b = b′ | b = 0] + Pr[b = b′ | b = 1])

If b = 0, then t0 = f(x1, . . . , xn). B supplies the correct solution to A. Here, B is
successful if and only if A returns 0. Therefore

Pr[b = b′ | b = 0] = Pr[A(correct) = 0]

If b = 1, then B supplies a random (encoded) group element to A. In this case, B is
successful if and only if A returns 1:

Pr[b = b′ | b = 1] = Pr[A(random) = 1]

= 1− Pr[A(random) = 0]

Consequently,

Pr[b = b′] = 1/2 ∗ (Pr[A(correct) = 0] + 1− Pr[A(random) = 0])

⇔Pr[b = b′]− 1/2 = 1/2(Pr[A(correct) = 0]− Pr[A(random) = 0])

⇒|Pr[b = b′]− 1/2| = 1/2 |Pr[A(correct) = 0]− Pr[A(random) = 0]|
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Theorem 20 implies that |Pr[b = b′]− 1/2| ≤ (q+2s+2)2·d
4p . It follows that

|Pr[A(correct) = 0]− Pr[A(random) = 0]| ≤ (q + 2s+ 2)2 · d
2p

where the probability is over x1, . . . , xn, y
R←− Zp, σ0, σ1 and A’s random bits.

4.4 Applications of the Framework

As discussed in [BBG05], the framework can be applied to many standard assumptions.
We shortly suggest how the framework can be used for the problems introduced in
Section 2 to show that they are hard for generic algorithms.

• Decisional Diffie-Hellman (Problem 4) using P = (1, 1, 1), Q = (1, A,B), f = A ·B.

• Decisional bilinear Diffie-Hellman (Problem 8) using P = (1, A,B,C), Q = (1, 1, 1, 1),
f = A ·B · C.
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5 Extending the Boneh, Boyen, Goh
Framework for Polynomials with Negative
Exponents

Some cryptographic assumptions cannot be proven directly using the framework of
[BBG05] (Section 4). One simple example for this is the decisional modified bilinear
Diffie-Hellman assumption (Definition 34). Loosely speaking, the assumption states that
given elements ga, gb, gc from a bilinear group it must be hard to distinguish e(g, g)a·b/c

from a random group element. To translate this problem into a (P,Q, f)-Diffie-Hellman
problem, f would have to be in the form A · B · C−1 which is not a proper polynomial
because of the negative exponent. Consequently, the Boneh, Boyen, Goh framework
cannot be applied.
Another example is the previously mentioned decisional q-parallel bilinear Diffie-Hellman
exponent problem (Problem 30). In this section, we extend the Boneh, Boyen, Goh frame-
work so that it can be applied in such cases where negative exponents are involved.

After that, we will show how the extended framework can be used to prove assumptions
such as the decisional q-parallel BDHE assumption in the generic group model (Section
5.2).

5.1 The Extension

First, we formally describe what is meant by “polynomials with negative exponents”
and define a degree function specifically devised for our purposes.

Definition 22. Let R be a commutative ring, n ∈ N, f ∈ R[X1, . . . , Xn][X−11 , . . . , X−1n ].

f can be written as f =
∑

(k1,...,kn)∈I σ(k1, . . . , kn)
∏n
i=1X

ki
i for some finite set I ⊂ Zn

and σ : I → R

If R is a field, f is called a Laurent polynomial in n variables. We define the degree
of f 6= 0 as

deg(f) = max

{
n∑
i=1

|ki|

∣∣∣∣∣ (k1, . . . , kn) ∈ I, σ(k1, . . . , kn) 6= 0

}

Notice that for f ∈ R[X1, . . . , Xn] ⊂ R[X1, . . . , Xn][X−11 , . . . , X−1n ], this is consistent
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with the usual definition of polynomial degrees. If there are variables with negative
exponents, they are counted according to their absolute value. Also notice that for any
Laurent polynomials g, h, it holds that deg(g · h) ≤ deg(g) + deg(h).

The extension of the Boneh, Boyen, Goh framework is possible because of the obser-
vation that the proof of Theorem 20 essentially only relies on the fact that the (P,Q, f)-
Diffie-Hellman problem description consists of proper polynomials when the lemma of
Schwartz-Zippel (Lemma 10) is invoked. As a replacement for the Schwartz-Zippel
lemma we present a new lemma that applies to Laurent polynomials.

Lemma 23. Let F be a field, S ⊆ F a finite subset with |S| > 1, n,m ∈ N0,
f ∈ F [X1, . . . , Xn, Y1, . . . , Ym][X−11 , . . . , X−1n ], f 6= 0.
Then

Pr[f(x1, . . . , xn, y1, . . . , ym) = 0] ≤ 2d/(|S| − 1)

where d = deg(f) and the probability is over x1, . . . , xn
R←− S \ {0}, y1, . . . , ym

R←− S.

Proof. Similar to Lemma 10, will prove this by induction over the number of variables
n+m.
For n+m = 0, the statement holds trivially, since f ∈ F \ {0}.
As another base case, let n + m = 1. If n = 0, then Lemma 10 implies Pr[f(y) = 0] ≤
d/|S| ≤ 2d/(|S| − 1).
If n = 1, then f ∈ F [X][X−1]. In this case, f · Xd ∈ F [X] is a polynomial of degree
at most 2d and therefore has at most 2d roots. Because every root of f is also a root
of f · Xd, there are at most 2d roots for f . It follow that Pr[f(x) = 0] ≤ 2d/(|S| − 1)
(there are at least |S \ {0}| ≥ |S| − 1 values to choose from for x).

For the inductive step, let n+m > 1 and we assume that the statement holds for any
Laurent polynomial with fewer than n+m variables.
If n = 0, then f ∈ F [Y1, . . . , Ym] and in this case, the lemma of Schwartz-Zippel (Lemma
10) directly implies the necessary statement: Pr[f(y1, . . . , ym) = 0] ≤ d/|S| < 2d/(|S| −
1).
If n > 0, we write

f =

d∑
i=−d

Xi
1fi

where fi ∈ F [X2, . . . , Xn, Y1, . . . , Ym][X−12 , . . . , X−1n ]. Since f 6= 0, there is an index k
where fk 6= 0 and fj = 0 for all j with |j| > |k|.

According to our definition of the degree, d = deg(f) ≥ deg(Xk
1 · fk) = |k| + deg(fk)

and therefore deg(fk) ≤ d− |k|.
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Because fk is a Laurent polynomial in only n + m − 1 variables, it follows from the
induction hypothesis that Pr[fk(x2, . . . , xn, y1, . . . , ym) = 0] ≤ 2 deg(fk)/(|S| − 1) ≤
2(d− |k|)/(|S| − 1).

Also, for any concrete x2, . . . , xn ∈ S \ {0}, y1, . . . , ym ∈ S consider

f ′ = f(X1, x2, . . . , xn, y1, . . . , ym) ∈ F [X1, X
−1
1 ]

If 0 6= fk(x2, . . . , xn, y1, . . . , ym) ∈ F , then deg(f ′) = |k| as we chose k to be the (abso-
lute) greatest index in f =

∑d
i=−dX

i
1fi and by definition of f ′.

Consequently, since f ′ is a Laurent polynomial in one variable, the induction hypoth-
esis implies Pr[f ′(x1) = 0 | fk(x2, . . . , xn, y1, . . . , ym) 6= 0] ≤ 2 deg(f ′)/(|S| − 1) =
2k/(|S| − 1). By definition of f ′ it follows that
Pr[f(x1, x2, . . . , xn, y1, . . . , ym) = 0 | fk(x2, . . . , xn, y1, . . . , ym) 6= 0] ≤ 2k/(|S| − 1)

Using the statements above, we have

Pr[f(·) = 0]

= Pr[f(·) = 0 | fk(·) = 0] · Pr[fk(·) = 0] + Pr[f(·) = 0 | fk(·) 6= 0] · Pr[fk(·) 6= 0]

≤ Pr[fk(·) = 0] + Pr[f(·) = 0 | fk(·) 6= 0]

≤ 2(d− k)

|S| − 1
+

2k

|S| − 1

=
2d

|S| − 1

We note that this bound is tight. For example, consider F = S = F3, f = X −X−1 ∈
F3[X,X

−1]. Since f(1) = 0 and f(2) = 0, we have that Pr[f(x) = 0] = 2/2 =
2 deg(f)/(|S| − 1) (probability over x ∈ S \ {0}).

Before we present the central theorem for our extension, we define the decisional
(P,Q, f)L-Diffie-Hellman problem which is similar to Problem 17 but allows Laurent
polynomials to be used in P,Q and for f .

Problem 24. Let ((G0, ·), (G1, ·), e) be a bilinear group of prime order p with generator
g ∈ G0. Let s, n ∈ N,
P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ (Fp[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ])s, p1 =
q1 = 1 and f ∈ Fp[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ].
The corresponding decisional (P,Q, f)L-Diffie-Hellman problem is defined as follows:
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5 Extending the Boneh, Boyen, Goh Framework for Polynomials with Negative Exponents

Given (
gp1(x,z), . . . , gps(x,z), e(g, g)q1(x,z), . . . , e(g, g)qs(x,z)

)
for x = (x1, . . . , xn)

R←− Fnp , z = (z1, . . . , zn)
R←− (Fp \ {0})n,

and an element T ∈ G1, decide whether or not

T = e(g, g)f(x1,...,xn)

The Laurent polynomial variables in this problem are divided into X1, . . . , Xn and
Z1, . . . , Zn. Variables that may appear inverted and therefore must not be evaluated
with 0 are represented by Z1, . . . , Zn. The variables that may be randomly picked from
complete Fp are represented by X1, . . . , Xn and those Laurent polynomial variables only
appear with nonnegative exponents.

Definition 25. In the situation of Problem 24, let
Ig(x, z) =

(
gp1(x,z), . . . , gps(x,z), e(g, g)q1(x,z), . . . , e(g, g)qs(x,z)

)
We say that a probabilistic algorithm A has advantage ε in solving the decisional (P,Q, f)L-
Diffie-Hellman problem, if∣∣∣Pr[A(Ig(x, z), e(g, g)f(x,z)) = 0]− Pr[A(Ig(x, z), T ) = 0]

∣∣∣ > ε

where the probability is over x = (x1, . . . , xn)
R←− Fnp , z = (z1, . . . , zn)

R←− (Fp \ {0})n,

T
R←− G1 and A’s random bits.

We now present the central theorem of the extended framework based on Theorem
20.

Theorem 26. Let p ∈ N be a prime number, ((G0, ·), (G1, ·), e) a bilinear group of order
p with generator g ∈ G0. Let S ⊂ {0, 1}∗ with p ≤ |S| <∞.
Further, let s, n ∈ N and
P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ (Fp[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ])s with
p1 = q1 = 1, f ∈ Fp[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ].
Let d = max{2 deg(pi),deg(qi), deg(f) | i ∈ {1, . . . , s}} (deg as in Definition 22).
We set

I
(
σ0, σ1;x, z, t0, t1

)
=

 σ0(g
p1(x,z)), . . . , σ0(g

ps(x,z)),

σ1(e(g, g)q1(x,z)), . . . , σ1(e(g, g)qs(x,z)),
σ1(e(g, g)t0), σ1(e(g, g)t1)


and call it the input vector
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If f is independent of (P,Q) (analogous to Definition 19), then for any probabilistic
generic algorithm A for ((G0, ·), (G1, ·), e) and S, that makes at most q queries to the
oracle it holds that∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A


I(σ0, σ1;
(x1, . . . , xn),
(z1, . . . , zn),

t0, t1)

 = b :

x1, . . . , xn, y
R←− Fp,

z1, . . . , zn
R←− Fp \ {0},

b
R←− {0, 1},

tb ← f(x1, . . . , xn),
t1−b ← y

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ (q + 2s+ 2)2 · d

2(p− 1)

where the probability is over x1, . . . , xn, y
R←− Fp, z1, . . . , zn

R←− Fp \ {0}, b
R←− {0, 1}, σ0

R←−
{σ : G0 → S | σ injective}, σ1

R←− {σ : G1 → S | σ injective} and the random bits of A.

Proof. With the help of Lemma 23, the proof for Theorem 20 is easily adapted to Lau-
rent polynomials.
The setup of B and its handling of queries are essentially the same (the variables
Z1, . . . , Zn need to be accounted for but can be treated exactly the same as X1, . . . , Xn in
the original proof). The algorithm B is still well-defined when using Laurent polynomials
as the only operations are multiplication, addition and comparison of (Laurent) polyno-
mials. The set of Laurent polynomials is a ring and this suffices for this stage of the proof.

The analysis of the circumstances under which B’s simulation fails does not cause
any problems when exercised with Laurent polynomials. It should be noted that the
substitution of Yb with f works as intended since Yb still only occurs with exponent 1.

When analyzing the probability for B’s simulation to fail, some statements need to be
reconsidered. First, for the degree of Laurent polynomials f, g (Definition 22) it does
not necessarily hold that deg(f · g) = deg(f) · deg(g). However, it is easy to see that
deg(f · g) ≤ deg(f) · deg(g). Consequently, the degrees of the Laurent polynomials pi, q

′
j

in the proof (from the encoding lists maintained by B) are still at most d when the new
definition of the degree function is applied.
Instead of the lemma of Schwartz-Zippel (which does not apply to Laurent polynomi-
als), we now need to apply Lemma 23 to bound the probability of two unequal Laurent
polynomials to evaluate to the same value:

For 1 ≤ i, i′ ≤ τ0, 1 ≤ j, j′ ≤ τ1 with pi 6= pi′ and q′j 6= q′j′

Pr[(pi − pj)(x1, . . . , xn, z1, . . . , zn) = 0] ≤ 2d/(p− 1)

and
Pr[(q′j − q′j′)(x1, . . . , xn, z1, . . . , zn, y) = 0] ≤ 2d/(p− 1)
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5 Extending the Boneh, Boyen, Goh Framework for Polynomials with Negative Exponents

(for random x1, . . . , xn, y
R←− Fp, z1, . . . , zn

R←− Fp \ {0}) using that the polynomials’ de-
grees are at most d and Lemma 23. (Also using that the set of Laurent polynomials
forms a ring and therefore for Laurent polynomials g, h: g = h ⇔ g − h = 0 (so that
Lemma 23 applies) and that evaluation of Laurent polynomials is still a ring homomor-
phism. Otherwise the probabilities above would not necessarily reflect the event that
two unequal polynomials evaluate to the same value.)

Since the bound provided by Lemma 23 is not the same as the one by Schwartz-Zippel,
the rest of the bounds need to be adapted. This results in

Pr[fail] ≤ (q + 2s+ 2)2 · 2d
2(p− 1)

and finally

|Pr[b = b′′]− 1/2| ≤ Pr[fail]/2 ≤ (q + 2s+ 2)2d

2(p− 1)

This allows a corollary similar to Corollary 21.

Corollary 27. Let p ∈ N be a prime number, ((G0, ·), (G1, ·), e) a bilinear group of order
p with generator g ∈ G0. Let S ⊂ {0, 1}∗ with p ≤ |S| <∞
Let s, n ∈ N and
P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ (Fp[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ])s with
p1 = q1 = 1, f ∈ Fp[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ].
Let d = max{2 deg(pi),deg(qi),deg(f) | i ∈ {1, . . . , s}} (deg as in Definition 22) and
ε > 0.

If f is independent of (P,Q), then any generic algorithm A for ((G0, ·), (G1, ·), e) and

S that makes at most q oracle queries has at most advantage (q+2s+2)2·d
p−1 in solving the

(P,Q, f)L-Diffie-Hellman problem (Definition 25).

Proof. Analogous to Corollary 21.

5.2 Applying the Extended Framework

We present a general argument for applying our findings above to typical assumptions.

For this, we first present a sufficient condition that in many (typical) cases allows to
show that f is independent of (P,Q).
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Lemma 28. Let p ∈ N be a prime number, s ∈ N and
A ⊂ Fp[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ] a set of (Laurent) monomials with coef-

ficient 1 (i.e. terms in the form Xi1
1 · . . . · Xin

n · Z
j1
1 · . . . · Z

jn
n where i1, . . . , in ∈

N0, j1, . . . , jn ∈ Z).

If P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ As and f is a (Laurent) monomial with coeffi-
cient 1, but f /∈ {p · p′ | p, p′ ∈ A ∪ {1}}, then f is independent of (P,Q).

Proof. Let B = {p · p′ | p, p′ ∈ A ∪ {1}}.
Then B ∪ {f} is a set of (Laurent) monomials with coefficient 1. Consequently, B ∪ {f}
is a set of linearly independent vectors over the F vector space of Laurent polynomials
over F .
Particularly, f cannot be written as a linear combination of the elements in B.

If f were dependent on (P,Q), then there would be aij , bk ∈ F (for i, j, k ∈ {1, . . . , s})
such that

f =
s∑
i=1

s∑
j=1

aijpipj +
s∑

k=1

bkqk

Since pi ·pj , qk ∈ B, this is a linear combination of f , which contradicts our assumptions.
Therefore, f must be independent of (P,Q).

We now present a convenient theorem to show (decisional) assumptions that are de-
fined asymptotically using the notion of negligible functions and a group generator G
(such as the q-parallel BDHE assumption (Definition 31)).
The (P,Q, f)L-Diffie-Hellman problem is defined for specific groups. In contrast, the
following theorem is concerned with asymptotic security where groups are generated by
an instance generator G according to a security parameter k.
Since the (P,Q, f)L-Diffie-Hellman problem is defined through Laurent polynomials over
Fp, we cannot base the problem description on (P,Q, f)L-Diffie-Hellman (as p is not con-
stant but randomly generated). We will base the problem description on terms over Z
instead and project them to Laurent polynomials over Fp using a homomorphism πp :
Z[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ]→ Fp[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ]
such that πp(a) = (a + pZ) ∈ Zp for a ∈ Z and πp(Xi) = Xi, πp(Zi) = Zi for
i ∈ {1, . . . , n}.

Theorem 29. Let s, n ∈ N and
P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ (Z[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ])s with
p1 = q1 = 1, f ∈ Z[X1, . . . , Xn, Z1, . . . , Zn][Z−11 , . . . , Z−1n ] such that for all prime num-
bers p ∈ N: πp(f) is independent of ((πp(p1), . . . , πp(pn)), (πp(q1), . . . , πp(qn))) (where πp
is the projection to Fp as discussed above).
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Let

Ig(σ0, σ1;x, z) =

(
σ0(g

p1(x,z)), . . . , σ0(g
ps(x,z)),

σ1(e(g, g)q1(x,z)), . . . , σ1(e(g, g)qs(x,z))

)
For all generic polynomial time algorithms A (in k) that output 0 or 1 there is a

negligible function negl such that for all k ∈ N:∣∣∣Pr[A(Ig(σ0, σ1;x, z), σ1(e(g, g)f(x,z))) = 0]− Pr[A(Ig(σ0, σ1;x, z), σ1(T )) = 0]
∣∣∣ < negl(k)

where the probabilities are over (((G0, ·), (G1, ·), e), p, g)← G(1k) where ((G0, ·), (G1, ·), e)
is a bilinear group of prime order p > 2k with generator g and σ0

R←− {σ : G0 →
S | σ injective}, σ1

R←− {σ : G1 → S | σ injective}, x = (x1, . . . , xn)
R←− Znp , z =

(z1, . . . , zn)
R←− (Zp \ {0})n, T

R←− G1 and the random bits of A.

Proof. Let d = max{2 deg(pi),deg(qi), deg(f) | i ∈ {1, . . . , s}} (degree as in Definition
22).
Let (qk)k∈N be a series where qk is an upper bound for the number of oracle queries
that A makes for security parameter k. Since A is a polynomial time algorithm in k, we
assume (qk)k∈N to be polynomial in k.

We set negl : N→ R, k 7→ (qk+2s+2)2·d
2k

which is a negligible function in k.

Let k ∈ N.∣∣∣Pr[A(Ig(σ0, σ1;x, z), σ1(e(g, g)f(x,z))) = 0]− Pr[A(Ig(σ0, σ1;x, z), σ1(T )) = 0]
∣∣∣

≤
∑

G=(((G0,·),(G1,·),e),p,g)

∣∣∣∣ Pr[A(Ig(σ0, σ1;x, z), σ1(e(g, g)f(x,z))) = 0 | G]
−Pr[A(Ig(σ0, σ1;x, z), σ1(T )) = 0 | G]

∣∣∣∣ · Pr[G]

(using the law of total probability and the triangle inequality)

<
∑

G=(((G0,·),(G1,·),e),p,g)

(qk + 2s+ 2)2 · d
p− 1

· Pr[G]

(using Corollary 27)

≤
∑

G=(((G0,·),(G1,·),e),p,g)

(qk + 2s+ 2)2 · d
2k

· Pr[G]

=
(qk + 2s+ 2)2 · d

2k

= negl(k)
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(where G = (((G0, ·), (G1, ·), e), p, g) is the event that G(1k) generates the correspond-
ing group of order p and generator g)

5.2.1 Generic Proof of the Decisional q-Parallel Bilinear Diffie-Hellman
Exponent Assumption

Using the extended framework and Theorem 29 we can now easily prove that the deci-
sional q-parallel BDHE assumption holds generically.

First, we formally state the problem and the assumption.

Problem 30 (cf. Section 2.4.1 [Wat11]). Let q ∈ N be a natural number. The (compu-
tational) q-parallel bilinear Diffie-Hellman exponent problem is:
Let (((G0, ·), (G1, ·), e), p, g)← G(1n) where ((G0, ·), (G1, ·), e) is a bilinear group of prime
order p with generator g ∈ G0.
Given ((G0, ·), (G1, ·), e), p and

{g, gs, gai , gs·bj , gai/bj , gal·s·bk/bj | 1 ≤ i ≤ 2q, i 6= q + 1, 1 ≤ j, k, l ≤ q, j 6= k}

for a, s
R←− Fp, b1, . . . , bq

R←− Fp \ {0}, compute

e(g, g)a
q+1s

We also call this problem the (computational) q-parallel BDHE problem.
In [Wat11] there is a slight error in Appendix E where the definition of P does not match
the original problem definition. Problem 30 is based on the description in Section 2.4.1
in [Wat11].

The assumption used by Waters in their construction [Wat11] is based on a decision
variant of Problem 30.

Definition 31 (cf. Definition 2.1 [Wat11]). In the situation of Problem 30 let

Ig(a, s, b1, . . . , bq) = {g, gs, gai , gs·bj , gai/bj , gal·s·bk/bj | 1 ≤ i ≤ 2q, i 6= q + 1, 1 ≤ j, k, l ≤
q, j 6= k}.
The decisional q-parallel bilinear Diffie-Hellman exponent assumption for G states:

For all polynomial time algorithms A that output 0 or 1 there is a negligible function
negl such that for all n ∈ N:∣∣∣Pr[A(Ig(a, s, b1, . . . , bq), e(g, g)a

q+1s) = 0]− Pr[A(Ig(a, s, b1, . . . , bq), T ) = 0]
∣∣∣ < negl(n)

where the probabilities are over (((G0, ·), (G1, ·), e), p, g)← G(1n), a, s
R←− Zp, b1, . . . , bq

R←−
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Zp \ {0}, T
R←− G1 and the random bits of A.

If Definition 31 holds then we say that no polynomial time algorithm (in n) has non-
negligible advantage in solving the decisional q-parallel BDHE problem.

In order to be able to apply the original framework, Waters [Wat11] (Appendix E)

suggests substituting the generator g with g
∏

j∈[1,q] bj . Roughly speaking, all of the terms
in P are multiplied with

∏
j Bj which results in proper polynomials. The original Boneh,

Boyen, Goh framework can then be applied to the modified problem.
Specifically, we would consider (P ′, Q′, f ′) corresponding to the problem with substituted

generator g
∏

j∈[1,q] bj (we shortly write B =
∏
j Bj):

P ′ is a tuple with components from

P ′set =

{
B,B · S,B ·Ai, B · S ·Bj , Ai ·B/Bj , Al ·Bk ·B/Bj

∣∣∣∣ 1 ≤ i ≤ 2q, i 6= q + 1,
1 ≤ j, k, l ≤ q, j 6= k

}
and Q′ = (B2, . . . , B2) and f ′ = B2 ·Aq+1 · S

However, their assumption (Definition 31) can be easily shown directly using our
extension to the framework.

For this, we first show that for (P,Q, f)L corresponding to the q-parallel BDHE as-
sumption, f is independent of (P,Q). This is greatly simplified by using Lemma 28.

Corollary 32. Let p ∈ N be a prime number and let q ∈ N.
Let P ∈ Fp[A,S,B1, . . . , Bq][B

−1
1 , . . . , B−1q ]q

3+q2+2q+1 be a tuple with components from

Pset = {1, S,Ai, S ·Bj , Ai ·B−1j , Al ·Bk ·B−1j | 1 ≤ i ≤ 2q, i 6= q+1, 1 ≤ j, k, l ≤ q, j 6= k}

and let Q = (1, . . . , 1) ∈ Fp[A,S,B1, . . . , Bq][B
−1
1 , . . . , B−1q ]q

3+q2+2q+1

Then f = Aq+1S is independent of (P,Q).

Proof. To apply Lemma 28 we only need to show that f is not the product of two terms
in Pset (since Q = (1, . . . , 1)).
Suppose p, p′ ∈ Pset with f = p · p′.
Then either p or p′ must contain the polynomial variable S. Without loss of generality,
p ∈ {S, S · Bj | 1 ≤ j ≤ q}. Therefore, p′ = f/p ∈ {Aq+1, Aq+1B−1j | 1 ≤ j ≤ q}.
But {Aq+1, Aq+1B−1j | 1 ≤ j ≤ q} ∩ Pset = ∅, therefore p′ /∈ Pset which contradicts our
assumption.
Lemma 28 implies that f is independent of (P,Q).
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Finally, we use Theorem 29 to show that the decisional q-parallel BDHE assumption
(Definition 31) holds generically.

Corollary 33 (decisional q-parallel BDHE assumption). Let q ∈ N be a natural number
and G an instance generator that generates bilinear groups of prime order p with p > 2n

when invoked with G(1n).

No generic polynomial time algorithm has non-negligible advantage in solving the q-
parallel BDHE problem with respect to G.

Proof. Let P ∈ Z[A,S,B1, . . . , Bq][B
−1
1 , . . . , B−1q ]q

3+q2+2q+1 be a tuple with components
from

Pset = {1, S,Ai, S ·Bj , Ai ·B−1j , Al ·Bk ·B−1j | 1 ≤ i ≤ 2q, i 6= q+1, 1 ≤ j, k, l ≤ q, j 6= k}

and let Q = (1, . . . , 1) ∈ Z[A,S,B1, . . . , Bq][B
−1
1 , . . . , B−1q ]q

3+q2+2q+1.

Corollary 32 implies that for all prime numbers p ∈ N, f is independent of (P,Q)
when the polynomials are projected into Fp.
Therefore, Theorem 29 supplies the necessary bound:

For all generic polynomial time algorithms A (in n) that output 0 or 1 there is a
negligible function negl such that for all n ∈ N:∣∣∣∣ Pr[A(Ig(σ0, σ1; a, s, b1, . . . , bq), σ1(e(g, g)a

q+1s)) = 0]
−Pr[A(Ig(σ0, σ1; a, s, b1, . . . , bq), σ1(T )) = 0]

∣∣∣∣ < negl(n)

where the probabilities are over (((G0, ·), (G1, ·), e), p, g) ← G(1n) and σ0
R←− {σ : G0 →

S | σ injective}, σ1
R←− {σ : G1 → S | σ injective}, a, s R←− Zp, b1, . . . , bq

R←− Zp \ {0}, T
R←−

G1 and the random bits of A.

5.2.2 Generic Proof of the Decisional Modified Bilinear Diffie-Hellman
Assumption

Another application of our extended framework is the decisional modified bilinear Diffie-
Hellman (MBDH) assumption [SW05].

Definition 34 (cf. Definition 3 [SW05]). The decisional modified bilinear Diffie-Hellman
assumption for an instance generator G states:

For all polynomial time algorithms A that output 0 or 1 there is a negligible function
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negl such that for all n ∈ N:∣∣∣Pr[A(g, ga, gb, gc, e(g, g)a·b/c) = 0]− Pr[A(g, ga, gb, gc, T ) = 0]
∣∣∣ < negl(n)

where the probabilities are over (((G0, ·), (G1, ·), e), p, g) ← G(1n), a, b
R←− Zp, c

R←− Zp \
{0}, T R←− G1 and the random bits of A.

If this definition holds we say that no polynomial time algorithm has non-negligible
advantage in solving the decisional MBDH problem.

In the generic group model, the assumption follows directly from Theorem 29.

Corollary 35. Let G be an instance generator that generates bilinear groups of prime
order p with p > 2n when invoked with G(1n).

No generic polynomial time algorithm has non-negligible advantage in solving the de-
cisional MBDH problem with respect to G.

Proof. We set P = (1, A,B,C), Q = (1, 1, 1, 1) ∈ (Z[A,B,C][C−1])4 and f = (A · B ·
C−1) ∈ Z[A,B,C][C−1].
Using Lemma 28 it is trivial to see that f is independent of (P,Q) when projected to
Fp for any prime number p (since f = A ·B ·C−1 cannot be written as a product of any
two terms in P ).
This allows us to apply Theorem 29 which directly implies the necessary statement:

For all generic polynomial time algorithms A (in n) that output 0 or 1 there is a
negligible function negl such that for all n ∈ N:∣∣∣∣ Pr[A(σ0(g), σ0(g

a), σ0(g
b), σ0(g

c), σ1(e(g, g)a·b/c)) = 0]
−Pr[A(σ0(g), σ0(g

a), σ0(g
b), σ0(g

c), σ1(T )) = 0]

∣∣∣∣ < negl(n)

where the probabilities are over (((G0, ·), (G1, ·), e), p, g)← G(1n) where ((G0, ·), (G1, ·), e)
is a bilinear group of prime order p > 2n with generator g and σ0

R←− {σ : G0 → S |
σ injective}, σ1

R←− {σ : G1 → S | σ injective}, a, b R←− Zp, c
R←− Zp \ {0}, T

R←− G1 and the
random bits of A.
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In this thesis, we discussed the generic group model as a formal way to ensure that
algorithms cannot exploit group specific or encoding specific properties. A central re-
sult in the discussion was the fact that generic algorithms cannot distinguish isomorphic
groups. This closely describes the limits of generic algorithms: They can only exploit
properties that all isomorphic groups have in common.
The Boneh, Boyen, Goh framework [BBG05] allows bounding the advantage of generic
algorithms for Diffie-Hellman related problems in bilinear groups. We provided a thor-
ough proof for their framework.
However, while this framework covers many typical assumptions directly, it does not ap-
ply to Diffie-Hellman problems where some exponents may appear inverted. An example
for this is the q-parallel bilinear Diffie-Hellman exponent assumption by Waters [Wat11].
We presented an extension to the original framework that can be applied to a wider range
of typical problems in pairing-based cryptography.
Finally, we used the extended framework to show that the assumption by Waters holds
generically.

As a result of these findings, we note that essentially, a decisional (P,Q, f)L-Diffie-
Hellman problem is hard for generic algorithms as soon as the element described by
f cannot be computed trivially using the supplied elements from the input (i.e. f is
independent of (P,Q)).
In other words: Diffie-Hellman exponent type problems (possibly in bilinear groups) are
either trivially and visibly insecure or they are immediately generically secure.

There are two ways to view this:
On the one hand, it seems that generic algorithms are quite restricted in their possibili-
ties and those restrictions are possibly far too severe to have any real-world implications.
Formally, this is true: Proofs in the generic group model explicitly do not imply security
for any concrete group. However, for many groups and problems, the best algorithms
that are currently known are actually generic algorithms. This especially holds for suit-
able elliptic curve groups. In this sense, the model allows to draw some conclusions
about real-world security.
On the other hand, this strong result allows researchers to postulate various Diffie-
Hellman related assumptions and immediately have some basic certainty about the as-
sumption’s validity. This means that they can more confidently create cryptographic
constructions that are not based on standard assumptions but on some (almost) ar-
bitrary variation of Diffie-Hellman. Of course, those assumptions may still be proven
insecure. But if an attack is found then an attacker must be using some property re-
lated to a specific group. It is therefore likely that an attack could be averted by simply
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6 Conclusion

changing the group that the system is based on.

For future improvements upon our findings we note that Theorem 26 can be easily
generalized for situations with a bilinear map G0×G1 → G2, where G0 is not necessarily
the same group as G1, using the same idea that Boneh, Boyen, Goh propose (Definition
A.4 [BBG05]). Our extension of the framework for Laurent polynomials is compatible
with this generalization.
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