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Abstract—We propose a diarization system, that estimates “who
spoke when” based on spatial information, to be used as a front-
end of a meeting transcription system running on the signals
gathered from an acoustic sensor network (ASN). Although the
spatial distribution of the microphones is advantageous, exploiting
the spatial diversity for diarization and signal enhancement is
challenging, because the microphones’ positions are typically
unknown, and the recorded signals are initially unsynchronized
in general. Here, we approach these issues by first blindly
synchronizing the signals and then estimating time differences of
arrival (TDOAs). The TDOA information is exploited to estimate
the speakers’ activity, even in the presence of multiple speakers
being simultaneously active. This speaker activity information
serves as a guide for a spatial mixture model, on which basis
the individual speaker’s signals are extracted via beamforming.
Finally, the extracted signals are forwarded to a speech recognizer.
Additionally, a novel initialization scheme for spatial mixture
models based on the TDOA estimates is proposed. Experiments
conducted on real recordings from the LibriWASN data set have
shown that our proposed system is advantageous compared to a
system using a spatial mixture model, which does not make use
of external diarization information.

Index Terms—Diarization, time difference of arrival, ad-hoc
acoustic sensor network, meeting transcription

I. INTRODUCTION

When transcribing a meeting, often not only the information
of what has been said is of interest but also the information
“who spoke when”, i.e., diarization information. Additionally,
diarization information can also be helpful for speech en-
hancement, e.g., using the guided source separation (GSS) [1]
framework. However, gathering diarization information is
a challenging task due to the highly dynamic nature of
spontaneous conversations with alternating silence and speech
regions, as well as overlapping speech from multiple speakers.

In particular, the segments with overlapping speech are
challenging for diarization. For example, the performance of
methods, that rely on spectro-temporal information, often tends
to degrade with an increasing amount of overlapping speech.
This especially holds for early diarization systems [2]. Although
nowadays diarization systems, like TS-VAD [3], are able to
cope much better with overlap, their performance is often still
negatively affected by overlap [4].

In a typical meeting scenario with multiple speakers sitting
around a table at spatially well separated, (quasi-)fixed positions
the information “when and at which position” a speaker is active
also reveals the diarization information. In such a scenario

spatial information can be a promising alternative to cope
with speech overlap. Typically, direction of arrival (DOA)
information, which is gathered using a compact microphone
array, is employed as source of spatial information [5]–[9].

Discriminating between two speakers based on DOA informa-
tion might be challenging, if the distance between the speakers
and the microphone array is large and the speakers sit close to
each other. The spatial diversity of an ASN comes in handy in
such situations by offering TDOA information, which allows
for a better distinction between those speakers. However, ASNs
are typically formed ad-hoc, e.g., by smartphones. Hence, the
microphone positions are generally unknown and the recorded
signals are typically asynchronous, which makes it difficult to
infer the speakers’ position from the TDOA estimates. In [10]
we approached these issues by using geometry calibration [11]
and a complex synchronization method [12], which maintains
the information about the microphones’ and speakers’ positions,
as preprocessing steps before diarization.

Here, a much simpler approach to synchronization is
employed, which however distorts the information about the
microphones’ and speakers’ positions by constant TDOA
offsets. Although, these distortions make it difficult to map
the TDOAs to the coordinates of the speakers’ positions
anymore, the TDOAs still uniquely represent the speakers’
positions. Hence, we propose to derive diarization information
by clustering estimates stemming from a multi-speaker TDOA
estimator, which delivers estimates at frame rate.

The resulting diarization information is used as a guide for
a spatial mixture model in the GSS framework, to force the
posterior probability to be zero when a speaker is inactive.
In experiments on the LibriWASN [13] data set we show
that the guided spatial mixture model is able to outperform a
blind spatial mixture model, which does not employ external
diarization information. Additionally, a time-frequency bin wise
initialization scheme for a spatial mixture-model based on the
TDOA estimates is proposed to speed up the convergence.

In the following we describe the considered meeting scenario
in Section II and give an overview of the meeting transcription
pipeline in Section III. Afterwards, the proposed TDOA-
based diarization system is introduced in Section IV, followed
by a description, how the diarization information and the
TDOA estimates can be employed to support source extraction,
in Section V. Experimental results are reported in Section VI.
Finally, conclusions are drawn in Section VII.



II. SCENARIO DESCRIPTION

In the following a meeting-like conversation of I speakers
is considered, which should be transcribed. It is assumed that
the speakers sit at spatially well separated, fixed but unknown
positions around a table. During the conversation, there are
periods in time without speech activity, periods in time with
a single speaker being active and a significant amount of
periods in time with two speakers being active at the same
time. On the table, M ≥ 4 microphones, forming an ad-hoc
ASN, are distributed, which are used to record the meeting.
The microphones are located at fixed but unknown positions.

Since the devices in an ad-hoc ASN are generally inde-
pendent of each other, the microphone signals are sampled
with slightly different sampling frequencies even though the
devices have the same nominal sampling rate. This introduces
a sampling rate offset (SRO) between the microphone signals.
Furthermore, the devices usually start their recordings at
different points in time, which causes a sampling time offset
(STO) between the microphone signals.

III. MEETING TRANSCRIPTION SYSTEM

The meeting transcription system, which will be considered
in the following, is depicted in Fig. 1. Firstly, the microphone
signals are synchronized w.r.t. a reference channel. To do so,
first the STOs are compensated for by a correlation-based
coarse synchronization [12], [14], which forces the TDOAs
between the signals to be close to zero at the beginning of
the recordings. Afterwards, the SROs are compensated for via
resampling [12]. The diarization information, which is gathered
from TDOA information, as well as the estimated TDOAs are
used to support the extraction of the single speakers’ signals
from the noisy and reverberant speech mixtures. Finally, the
extracted signals are transcribed.

IV. TDOA-BASED DIARIZATION

We here propose to cluster frame-wise TDOA estimates
as representation of the active speakers’ positions in order to
gather diarization information. Therefore, a TDOA estimator,
that is able to cope with overlapping speech, is introduced.

Synchronization

Spatial
Diarization

Guided Source
Separation

Beamforming

Speech
Recognition

So
ur

ce
E

xt
ra

ct
io

n

GCC-PhaT

Peak
Detection

TDOA
Combination

Speaker
Counting

TDOA
Clustering

Fig. 1. Meeting transcription pipeline

A. Effect of Asynchronous Recordings

In [12] it was shown that the TDOA τi,mm′ [ℓ] between the
m-th and the m′-th channel corresponds to a superposition of
the time difference of flight (TDOF) of the i-th speaker’s signal
between the m-th and the m′-th channel, a constant offset due
to the STO and a time-varying SRO-induced delay. Here, ℓ
denotes the time frame index. The TDOF is a characteristic
of the i-th speaker’s position relative to the microphones and,
thus, contains spatial information.

The coarse synchronization compensates not only for an STO
but rather for a combination of STO, SRO-induced delay and
TDOF. Due to this fact the TDOAs cannot be mapped to the
coordinates of the speakers’ positions anymore. However, the
coarse synchronization affects the TDOAs in form of a constant
value, which solely depends on the microphone pair. Thus, each
source position still can be uniquely represented by a vector
of all pairwise TDOAs τi=[τi,12, τi,13, . . . , τi,M−1M ]T after
synchronization.

B. Multi-Speaker TDOA Estimation

As a basis for diarization TDOA vectors are estimated
in each time frame (see right half of Fig. 1). To this end,
the generalized cross-correlation with phase transform (GCC-
PhaT) [15] gmm′(ℓ, λ), with λ being the time lag, is firstly
estimated for all microphone pairs. In order to get more robust
TDOA estimates, the GCC-PhaT gmm′(ℓ, λ) is averaged across
L consecutive time frames. Moreover, the GCC-PhaT is only
calculated on the basis of the frequency range from 125Hz
to 3.5 kHz, i.e., the frequency range for which speech has
significant power.

Since multiple speakers can be active within a time frame,
the C time lags λc, belonging to the C highest local maxima
of the GCC-PhaT gmm′(ℓ, λ), are considered as possible
TDOA candidates. Due to the fact that the direct path signal
corresponds to a delayed and attenuated version of the source
signal, only time lags λc, belonging to positive local maxima,
are considered as TDOA candidates [16]. Furthermore, the local
maximum has to be larger than twice the standard deviation
of the GCC-PhaT, which is calculated w.r.t. the time lag λ for
the ℓ-th time frame.

Afterwards, the pairwise TDOA candidates have to be
combined to form consistent TDOA vectors. All elements of a
consistent TDOA vector have to fulfill the cyclic consistency
condition, i.e., in case of three microphones m, n and o

τmn − τmo + τon ≤ τth, (1)
has to be fulfilled, where τth is a small value of a few samples.
Since we do not check for exact equality to zero in (1),
additional valid TDOA vectors, e.g., stemming from multi-
speaker ambiguities or echos, are possible. Here, we tackle this
issue by utilizing the fact that speaker positions of equal TDOA
lie on a hyperboloid and the speakers’ positions are associated
with the point of intersection of the hyperboloids belonging to
the different microphone pairs. Moving along the hyperboloid
of equal TDOA of one microphone pair, changes the points
of intersection so that the TDOAs of all other microphone



pairs have to change. Hence, at maximum one element is
allowed to be equal for two TDOA vectors. In case of multiple
TDOA vectors having more than one common element, only
the TDOA vector with the largest steered-response power with
phase transform (SRP-PhaT) is kept. Thereby, the SRP-PhaT
is efficiently computed from the previously calculated pairwise
GCC-PhaTs gmm′(ℓ, λ).

Finally, the number of speakers being active within a time
frame is determined. To decide whether there is speech, an
energy-based voice activity detection (VAD) is utilized. In case
of speech activity the TDOA vector with the largest SRP-PhaT
is considered to belong to an active speaker. In addition to that,
the SRP-PhaT is used to decide whether multiple speakers are
active. Additional TDOA vectors and, thus, additional speakers
for a time frame are considered if the corresponding SRP-PhaT
is larger than the mean of the largest SRP-PhaT value per
frame minus twice their standard deviation.

C. TDOA Clustering

Diarization information is gathered by clustering the es-
timated frame-wise TDOA vectors. First, temporally local
clusters, corresponding to speaker activity information approx-
imately at utterance-level, are formed. These temporally local
clusters are determined via a leader-follower clustering [17].
Thereby, the TDOA vector of the most recent frame within a
cluster becomes its new leader. The temporal locality of the
clusters is forced by considering only TDOA vectors which do
not lie more than 1 s in the past as possible leaders. We use
the maximum of the element-wise absolute difference between
two TDOA vectors as clustering metric.

Subsequently, a single-linkage clustering [18] is employed to
obtain the global diarization information from the temporally
local clusters. To this end, the temporally local clusters are
represented by the element-wise median of the TDOA vectors
of their cluster members and the mean-squared deviation (MSD)
between the TDOA vectors is used as clustering metric. The
clustering is aborted when the MSD is larger than a certain
threshold to address outlier TDOA vectors.

The final clustering result often contains more clusters than
there are speakers. These clusters mostly belong to TDOA
vectors which correspond to a combination of direct path
TDOAs and TDOAs of early reflections or a combination of
direct path TDOAs of multiple speakers. To mitigate these
influences, we first sort the estimated speakers’ activities by
the amount of frames with activity. If a cluster with a smaller
amount of activity intersects more than 50% with a cluster
with a larger amount of activity and more than one element
of the TDOA vectors of both clusters match each other (see
hyperboloild property of TDOA vectors described above), the
cluster with the smaller amount of activity is discarded. After
all, a dilation and an erosion filter are applied to the estimated
activities to smooth the activity estimates [19].

V. SOURCE EXTRACTION

As shown in Fig. 1 mask-based beamforming is utilized
to extract the single speakers’ signals. The masks, which are

used to calculate the beamformer coefficients, are estimated
via a spatial mixture model using the TDOA-based diarization
information as guide.

A. Guided Source Separation

A time-frequency mask for each speaker and an additional
mask for noise are estimated using GSS. In the GSS framework,
the TDOA-based diarization is employed to force the class
posterior probability of a spatial mixture model, i.e., the time-
frequency masks, to be zero when the corresponding speaker is
not active. In contrast to the original GSS method from [1] we
here use a complex Angular Central Gaussian Mixture Model
(cACGMM) [20] with time-dependent instead of frequency-
dependent mixture weights [21] as spatial mixture model. Since
the segmentation needed for GSS, which is given by the TDOA-
based diarization, may also contain segments whose length is
underestimated, a context of ±5 s and additional non-guided
Expectation Maximization (EM) iterations, that follow the
guided EM iterations, are utilized.

One way to employ the TDOA-based diarization information
for initialization of the spatial mixture model is to broadcast the
speakers’ activities over all frequencies as in the original im-
plementation of GSS. We here propose to utilize the estimated
TDOA vectors to derive an initial time-frequency mask for each
source. Therefore, a steering vector based minimum variance
distortionless response (MVDR) beamformer [22] per speaker
is derived from the TDOA vectors, assuming anechoic signal
propagation. The spatial covariance matrices (SCMs) of the
interference are calculated as sum of the outer products of the
steering vectors of all possibly interfering speakers. Afterwards
the MVDR beamformers are applied in the short-time Fourier
transform (STFT) domain. Assuming W-disjoint orthogonality
of speech [23] each time-frequency bin is assigned to the mask
of the active speaker whose beamformer has the largest output
power.

Finally, the method from [24] is used to identify the time-
frequency bins which are dominated by a single speaker: The
SCM of the microphone signals is estimated for each time-
frequency bin based on a short temporal and frequency context.
Afterwards, the ratio of the largest and the second-largest
eigenvalue of the SCMs is compared to a certain threshold. If
the largest eigenvalue is significantly larger than the second-
largest eigenvalue, the time-frequency bin is assumed to be
dominated by a single speaker. All time-frequency bins which
are not dominated by a single speaker are assigned to the initial
noise mask.

B. Beamforming

We utilize an MVDR beamformer in the formulation of [25],
[26] to extract the signals of the single speakers. Therefore, we
first re-segment the segments used for GSS based on the target
speakers’ activities, which are calculated from the estimated
prior probabilities of the spatial mixture model as described
in [19]. The beamforming coefficients are calculated for each
resulting segment, defined by continuous activity of the target



speaker, whose signal should be extracted. The SCM of the
target speaker is calculated via

Φi(k) =
1

|Ti|
∑
ℓ∈Ti

γ2
i (ℓ, k)·Y (ℓ, k)·Y H(ℓ, k), (2)

with Ti corresponding to the set of time frames, which belong
to the segment, γi(ℓ, k) being the time-frequency mask of
the target speaker and Y (ℓ, k) denoting the vector of stacked
STFTs of all microphone signals. The frequency bin index is
denoted by k.

Since the set of active interfering speakers typically varies
over time during a segment, we divide the segment into sub-
segments, whose boundaries are given by the change points of
the interfering speakers’ activities. For each subsegment new
beamformer coefficients are calculated based on the interference
SCM Φ̄i,b(k), which is estimated via

Φ̄i,b(k) =
1

|Ti,b|
∑

ℓ∈Ti,b

(1− γi(ℓ, k))
2·Y (ℓ, k)·Y H(ℓ, k). (3)

Here, b denotes the index of the subsegment and Ti,b the set
of time frames, which belong to the b-th subsegment. The
reference channel for beamforming is chosen such that the
expected signal-to-distortion ratio (SDR) of the sub-segment,
which exhibits the lowest expected SDR, is maximized [26].

VI. EXPERIMENTS

For the experiments we utilize the LibriWASN data set.
The LibriWASN data set consists of recordings of replayed
meetings with various overlap conditions, including no overlap
(0L & 0S) as well as 10% (OV10) to 40% (OV40) of speech
overlap. Moreover, the data set offers recordings from two
different rooms resulting in the subsets LibriWASN200 (rever-
beration time T60≈200ms) and LibriWASN800 (T60≈800ms
and computer fan noise in background). The meetings were
recorded by an ASN consisting of multiple smartphones and
Raspberry Pis, which were equipped with soundcards.

The system proposed in this contribution is completed by
the synchronization and automatic speech recognition (ASR)
building blocks from the reference system provided with

TABLE I
COMPARISON OF THE TIME FRAME WISE INITIALIZATION BY

BROADCASTING THE DIARIZATION INFORMATION ALONG ALL
FREQUENCIES (T-INIT) AND THE PROPOSED TIME-FREQUENCY BIN WISE

INITIALIZATION (TF-INIT) FOR DIFFERENT AMOUNTS OF GUIDED EM
ITERATIONS FOLLOWED BY ONE ADDITIONAL NON-GUIDED EM ITERATION.

THE SIGNALS OF THE SMARTPHONES (PIXEL6A, PIXEL6B, PIXEL7,
XIAOMI) FROM THE LIBRIWASN800 DATA SET ARE USED.

Guided Iter. Init. cpWER / %
0L 0S OV10 OV20 OV30 OV40 Avg.

1
T-Init 3.33 3.30 3.58 4.00 5.15 5.03 4.17

TF-Init 3.13 2.98 3.11 3.36 4.00 3.90 3.46

2
T-Init 3.36 3.10 3.37 3.56 4.41 4.28 3.74

TF-Init 3.11 2.93 3.18 3.41 3.88 3.76 3.42

5
T-Init 3.25 2.93 3.22 3.31 3.83 3.83 3.43

TF-Init 3.11 2.97 3.20 3.34 3.84 3.67 3.39

20
T-Init 3.11 2.96 3.20 3.33 3.91 3.66 3.40

TF-Init 3.10 2.94 3.18 3.35 3.88 3.62 3.38

TABLE II
COMPARISON OF THE BLIND SPATIAL MIXTURE MODEL FROM [13] AND
THE TDOA-BASED GSS SYSTEM. CLEAN DENOTES TRANSCRIBING THE

ORIGINAL LIBRISPEECH UTTERANCES, WHICH WERE REPLAYED TO
RECORD THE LIBRIWASN DATA SET.

D
at

a
se

t

D
ev

ic
es System cpWER / %

0L 0S OV10 OV20 OV30 OV40 Avg.

Clean 2.92 2.61 2.60 2.48 2.61 2.43 2.59

L
ib

ri
W

A
SN

2
0
0

P
ho

ne
s Blind 2.97 2.75 2.86 2.85 3.46 2.93 2.98

Guided 2.91 2.77 2.76 2.69 3.11 2.76 2.83

A
ll Blind 2.86 2.74 2.84 3.73 3.23 3.07 3.10

Guided 2.93 2.75 2.76 2.77 2.91 2.74 2.80

L
ib

ri
W

A
SN

8
0
0

P
ho

ne
s Blind 3.04 3.09 3.75 4.76 7.71 6.08 4.96

Guided 3.11 2.93 3.18 3.23 3.64 3.54 3.30

A
ll Blind 3.09 2.93 3.25 4.46 3.69 3.12 3.45

Guided 3.00 2.88 2.96 2.82 3.08 2.85 2.93

the LibriWASN data set in [13]. In order to measure the
meeting transcription performance, we employ the concatenated
minimum-permutation word error rate (cpWER) [27].

A. Time-Frequency Mask vs. Time Mask Initialization

The influence of the different initialization strategies for the
spatial mixture model, i.e., time frame wise initialization by
broadcasting the diarization information along all frequencies
(T-Init) and the proposed time-frequency bin wise initialization
(TF-Init), is shown in Table I. GSS with up to 20 guided EM
iterations followed by an additional non-guided EM iteration
is considered.

It can be seen that the proposed time-frequency bin wise
initialization is able to outperform the time frame wise initial-
ization. This especially holds for the subsets with more speech
overlap and when only a few EM iterations are used. Moreover,
it becomes obvious that the cpWER already converges after a
few EM iterations for the time-frequency bin wise initialization.
Significantly more EM iterations are needed for the time frame
wise initialization to end up at a similar performance as for
the time-frequency bin wise initialization.

B. Guided Source Separation vs. Blind Source Separation

Table II compares the meeting transcription performance
which can be reached with the proposed TDOA-based GSS
system to the performance which can be achieved with the
blind spatial mixture model of the LibriWASN reference
system from [13], which does not utilize external diarization
information. Furthermore, the initialization of the blind spatial
mixture model is not able to cope with overlapping speech and
the entire meeting is used at once to estimate the parameters
of the blind spatial mixture model. For a fair comparison, the
source extraction proposed in this contribution is adopted to the
baseline system. GSS uses five guided EM iterations followed
by five non-guided EM iterations. In order to investigate the
influence of the amount of available channels, we consider the
set Phones with four channels, stemming from smartphones



(Pixel6a, Pixel6b, Pixel7, Xiaomi) and the set all with seven
channels stemming from the smartphones and three additional
Raspberry Pis with soundcards (asnupb2, asnupb4, asnupb7).

In general, the TDOA-based GSS system is able to out-
perform the blind spatial mixture model. Thereby, the gap in
performance is larger under the more challenging conditions
of the LibriWASN800 data set with more reverberation and
noise. This especially holds for the sub sets with a larger
amount of speech overlap. In addition to that, it becomes
clear that the TDOA-based GSS-system profits from more
microphones although decent results can already be achieved
with the recordings of four smartphones.

VII. CONCLUSIONS

In this contribution we have shown that spatial information
in form of TDOA information is a powerful source for
diarization information when using an ad-hoc ASN in a
quite static scenario with spatially well separated speakers
like a typical meeting. Thereby, the benefits of the spatial
distribution predominate the challenges arising from the ad-hoc
nature of the ASN, e.g., unknown microphone positions and
asynchronous recordings. For gathering diarization information,
we proposed to cluster TDOA estimates from a mutli-speaker
TDOA estimator.

Experiments on real recordings have shown that source
extraction via mask-based beamforming benefits from the
derived diarization information and the TDOA estimates from
which the diarization information is derived. On the one
hand, a spatial mixture model, which utilizes the TDOA-based
diarization as guide, outperforms a blind spatial mixture model
with state-of-the-art initialization. On the other hand, a time-
frequency bin wise initialization based on the TDOA estimates
leads to a faster convergence of the spatial mixture model
compared to a conventional time frame wise initialization
scheme.
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