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ABSTRACT

In high performance computing environments, we observe an ongoing increase in the
available number of cores. For example, the current TOP500 list reveals that nine
clusters have more than 1 million cores. This development calls for re-emphasizing
performance (scalability) analysis and speedup laws as suggested in the literature
(e.g., Amdahl’s law and Gustafson’s law), with a focus on asymptotic performance.
Understanding speedup and efficiency issues of algorithmic parallelism is useful
for several purposes, including the optimization of system operations, temporal
predictions on the execution of a program, the analysis of asymptotic properties, and
the determination of speedup bounds. However, the literature is fragmented and shows
a large diversity and heterogeneity of speedup models and laws. These phenomena
make it challenging to obtain an overview of the models and their relationships, to
identify the determinants of performance in a given algorithmic and computational
context, and, finally, to determine the applicability of performance models and
laws to a particular parallel computing setting. In this work, I provide a generic
speedup (and thus also efficiency) model for homogeneous computing environments.
My approach generalizes many prominent models suggested in the literature and
allows showing that they can be considered special cases of a unifying approach.
The genericity of the unifying speedup model is achieved through parameterization.
Considering combinations of parameter ranges, I identify six different asymptotic
speedup cases and eight different asymptotic efficiency cases. Jointly applying these
speedup and efficiency cases, 1 derive eleven scalability cases, from which I build a
scalability typology. Researchers can draw upon my suggested typology to classify
their speedup model and to determine the asymptotic behavior when the number
of parallel processing units increases. Also, the description of two computational
experiments demonstrates the practical application of the model and the typology. In
addition, my results may be used and extended in future research to address various
extensions of my setting.

1. Introduction

Parallel computing has become increasingly important for solving hard computational problems in

a variety of scientific disciplines and industrial fields. The large diversity and deployment of parallel

computing across disciplines, including artificial intelligence, arts and humanities, computer science, digital
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agriculture, earth and environmental sciences, economics, engineering, health sciences, mathematics, and
natural sciences, is mirrored in usage statistics published by supercomputer clusters (e.g., [28, 23]). This
ongoing progress in computational sciences through parallelization has been fostered through the end of
exponential growth in single processor core performance [16] and the availability of high performance
computing (HPC) infrastructures, tools, libraries, and services as commodity goods offered by computing
centers of universities, public cloud providers, and open source communities. The development of parallel
computing has been accompanied by the study of its performance. Generally speaking, performance in
parallel computing refers to the behavior of a parallel computing system in processing specified tasks with
respect to the amount of resources, such as parallel computing units, that are used or available. It encompasses
a variety of metrics and concepts, including speedup, efficiency, load balancing, and communication
overhead, among others. Performance has also been studied as the amount of parallel computing resources
grows to infinity (asymptotic performance), resulting in a variety of speedup laws. For an introduction to
performance in parallel computing, see, for example, [18, ch. 5].

Beyond these developments, the number of cores available as parallel processing units has increased
substantially over the past years. While the statistics of the TOP500 list (as of June 2022) shows values of
35,339.2 (10th percentile), 67,328 (median), and 225,465.6 (90th percentile), the corresponding values of
the lists as of June 2017 and June 2012 amount to (16,545.6; 36,000; 119,808) and (6,776, 13,104; 37,036.8),
respectively [38]. In addition, in contrast to the lists of 2012 and 2017, which both include only one site with
more than 1 million cores, the current list shows that nine clusters have more than 1 million cores. This
enormous growth in the number of cores which are available for parallel processing calls for re-emphasizing
asymptotic performance analysis (e.g., [10, 3]) and speedup laws as suggested in the literature (e.g., Amdahl’s
law [4] and Gustafson’s law [19]).

In general, studying performance of algorithmic parallelism is useful for several purposes; these include
optimizing system operations via design-time and run-time management (e.g., [20, 44, 40, 43, 11]), making
temporal predictions on the execution of a program (e.g., [32, 1]), and analyzing asymptotic speedup and
efficiency properties as well as determining speedup and efficiency bounds (e.g., [35, 10]). In this article, I
focus on the two latter purposes, which have been addressed only rarely in the literature.

Analyzing performance of parallel algorithms is challenging as it needs to account for diversity in

several regards. For example, existing speedup models and laws make different assumptions with respect
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to the homogeneity/heterogeneity of parallel processing units, variations of workloads, and methodological
characteristics and application fields of algorithms (e.g., optimization, data analytics, simulation). This
heterogeneity has resulted in a landscape of many speedup models and laws, which, in turn, makes it difficult
to obtain an overview of the models and their relationships, to identify the determinants of performance in
a given algorithmic and computational context, and, finally, to determine the applicability of performance
models and laws to a particular parallel computing setting.

My focus lies on the development of a generic and unifying speedup and efficiency model for
homogeneous parallel computing environments. I consider a range of determinants of speedup covered in
the literature and prove that existing speedup laws can be derived from special cases of my model. My
model depends neither on specific system architectures, such as symmetric multiprocessing (SMP) systems
or graphics processing units (GPU), nor on software properties, such as critical regions; I rather perform
a theoretical analysis although I also conduct computational experiments to demonstrate the application of
the model. I further focus on the analysis of asymptotic properties of the suggested model to study speedup
and efficiency limits and bounds in the light of a computing future with an increasing number of parallel
processing units.

My results contribute to research on the performance (in terms of scalability) of computational
parallelization in homogeneous computing environments in several regards: (1) I suggest a generic speedup
and efficiency model which accounts for a variety of conditions under which parallelization occurs so that it
is broadly applicable. This wide scope allows conducting performance analysis in many of those cases which
are not covered by existing models and laws with restrictive assumptions. (2) I generalize the fragmented
landscape of speedup and efficiency models and results, and I provide a unifying speedup and efficiency
model which allows overcoming the perspective of conflicting speedup models by showing that these models
can be interpreted as special cases of a more universal model. (3) From my asymptotic analysis, I derive
a typology of scalability (speedup and efficiency), which researchers may use to classify their speedup
model and/or to determine the asymptotic behavior of their particular application. I also provide a theoretical
basis for explaining sublinear, linear and superlinear speedup and efficiency and for deriving speedup and
efficiency bounds in the presence of an enormous growth of the number of available parallel processing
units. (4) I demonstrate the practical application of the speedup and efficiency model and the typology with

computational experiments on matrix multiplication and lower-upper matrix decomposition. To sum up, I
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consolidate prior research on performance in homogeneous parallel computing environments and I provide
a theoretical understanding of quantitative effects of various determinants of asymptotic performance in
parallel computing.

The remainder of the article is structured as follows: In Section 2, I provide a brief overview of the
foundations of speedup and efficiency analysis in parallel computing. I proceed in Section 3 with the
suggestion of a generic speedup and efficiency model. In Section 4, I perform a mathematical analysis of
my model in order to determine theoretical speedup and efficiency limits. I describe the computational
experiments in Section 5. In Section 6, I discuss the application of the proposed model and scalability
typology, and I consider parallelization overhead. Finally, I provide conclusions of my research in Section

7.

2. Foundations of speedup and efficiency analysis

The main purpose of parallel computation is to take advantage of increased processing power to solve
problems faster or to achieve better solutions. The former goal is referred to as scalability, and scalability
measures fall into two main groups: speedup and efficiency. Speedup S(N) is defined as the ratio of
sequential computation time 7'(1) to parallel computation time T'(N) needed to process a task with given
workload when the parallel algorithm is executed on N parallel processing units (PUs) (e.g., cores in a

multicore processor architecture); i.e.,

S(N) := % T :N—- R €))

The sequential computation time 7'(1) can be measured differently, leading to different interpretations of
speedup [6]: When T'(1) refers to the fastest serial time achieved on any serial computer, speedup is denoted
as absolute. Alternatively, it may also refer to the time required to solve a problem with the parallel program
on one of the parallel PUs. This type of speedup is qualified as relative. In this work, I focus on relative
speedup.

As speedup relates the time required to process a given workload on a single PU to the time required
to process the same workload on N PUs, you need to determine this workload. It is usually divided into
two sub-workloads, the sequential workload and the parallelizable workload. While the former is inherently

sequential and necessarily needs to be executed on a single PU, the latter can be executed in parallel on
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several PUs. Independent of the number of available parallel PUs N, the time required to solve a task is
the sum of the time to handle the sequential workload and the time to handle the parallelizable workload
of the given task. When only a single PU is available, the time for the sequential workload s and for the
parallelizable workload p are usually normalized by setting s + p = 1; i.e., s and p represent the sequential
and the parallelizable fractions of the overall execution time.

For some applications, it is useful to consider a fixed workload (e.g., when solving an instance of an
optimization problem), which is independent of the number of parallel PUs (V) available, and then to analyze
how computation of the fixed workload on a single PU can be speeded up by using multiple PUs. Speedup
models of this type are referred to as fixed-size models, such as Amdahl’s law [4]. For other applications (e.g.,
when analyzing data), is more appropriate to use the availability of N PUs to solve tasks with workloads
which increase depending on N. Then, scalability analysis deals with investigating how computation of the
variable workload on one PU can be speeded up by using multiple PUs. Speedup models of that type are
referred to as scaled-size models, such as Gustafson’s law [19].

With varying number of PUs N, both the sequential and parallelizable workload may be considered
scalable. It is common in the literature to introduce two workload scaling functions f(-), g(:) with f,g :
N — R>9 for the sequential and parallelizable workload, respectively; i.e.; the (normalized) time to process
the sequential and the parallelizable workload on a single PU are s- f (V) and p-g(IN), respectively. Thus, the
(normalized) time to process the overall workload on a single PU amounts to s - f(IN) + p - g(N). Usually, it
is assumed that f(1) = g(1) = 1 so that T(1) = s+ p = 1 holds; however, my workload scaling functions do
not require to meet this assumption.! An example of using a scaling function for the sequential workload can
be found in the scaled speedup model suggested by Schmidt et al. [34, p. 31ff]. While scaling functions for
sequential workloads can be found only rarely, scaling functions for parallelizable workloads are much more
common; see, for example, the scale-sized speedup model of Gustafson [19], the memory-bound speedup
model of Sun and Ni [36, 37, 35], the generalized scaled speedup model of Juurlink and Meenderinck [22]
and the scaled speedup model of Schmidt et al. [34, p. 31ff]. A discussion of the relationship between problem

size and the number of PUs N can be found in [39, p. 32f].

IThe option to have values (1) # 1 and/or g(1) # 1 allows scaling both fractions s and p, which may be useful when an overall
workload to be executed on a machine A (with p + s = 1) is now executed on a different machine B on which the times to execute
the serial and the parallelizable workload are scaled at either the same or different rates.
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While the time required to process the sequential workload is independent of the number of PUs N,
the time required to process the parallelizable workload depends on N as this workload can be processed
in parallel. Usually, the parallelizable workload is considered to be equally distributed on N PUs, resulting
in the (normalized) time % to handle the parallelizable workload. However, there are tasks possible
when the time required to handle the parallelizable workload is affected due to its actual parallel execution;
for example, when a mathematical optimization problem, such as a mixed-inter linear program (MILP),
is solved with a parallelized branch-and-bound algorithm, then good bounds may be found early so that
the branch-and-bound tree does not grow as large as with the sequential execution of the branch-and-bound
algorithm. This effect may result in a denominator function which is not identical to N and allows explaining
superlinear speedup as it has been observed in the literature (e.g., [33, 13, 17]). I account for this effect with
a scaling function h(-), with A : N - R>0,

Finally, processing one single large task on several parallel PUs involves some sort of overhead, which
is often rooted in initialization, communication, and synchronization efforts [41, 21, 15]. I account for the
additional time required for these efforts with an overhead function z(-), z : N - R>?.

The abovementioned workloads and temporal effects are visualized in Figure 1. The resulting general

speedup equation is the given by

(1) s-fM)+p-g)
S(N) = = ,NeN 2

Note that the speedup equation given in (2) is a generalization of several well known speedup models,
including those used in Amdahl’s law [4] (set f(N) = g(N) = 1,A(N) = N, z(N) = 0), Gustafson’s law
[19] (set f(N) = 1,g(N) = h(N) = N,z(N) = 0), and the generalized scaled speedup model [22] (set
f(N)=1,g(N)= N, h(N)= N,z(N) = 0).

Based upon speedup S(N), efficiency E(N) relates speedup to the number of parallel PUs used to

achieve this speedup, and it is defined by

E(N)=S(N)= T  _ s-fM)+p-g) N eN 3)
N NI N (s f(N)+ 2N ()
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Figure 1: Workloads and temporal effects of parallelization

3. A generic speedup and efficiency model

Based upon the general speedup equation (2), I derive a generic speedup and efficiency model, which I
use in the remainder of this article to analyze its asymptotic behavior. The generic speedup model uses power
functions for f(-), g(-), A(-) and ignores any overhead induced through parallelization. The use of power
functions is widely adopted in the literature, included in many prominent speedup models [4, 19, 34, 37, 22]
and is based on the assumption that many algorithms have a polynomial complexity in terms of computation
and memory requirement [35, p. 184]. As I focus on the analysis of the asymptotic behavior, I always take the
highest degree term. The motivation for neglecting any parallelization overhead (i.e., z(N) = 0 VN € N),
as it is done in many, if not most speedup and efficiency models in the literature, is manifold: First, the
overhead is often unknown. Second, omitting an overhead term simplifies computations and provides a

basis for developing laws which include an overhead function z(N) # 0. Third, speedup and efficiency
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values determined without considering overhead represent upper bounds for practically achievable speedup
and efficiency values when overhead occurs.

I use the following power functions:

f(N) :=¢;N%Y g(N) :=¢,N% h(N) :=c, N%, CpiCecy >0, ap a0, 20  (4)

and yield the following generic speedup equation (for N > 1)°

. F(N)Y+p-o(N scc; N +p-c,- N% s-c,-N% +p-c,- N%
SNy = A )p~g(l;\7)g( ) _ 54 p.Cg.Nag _ f — g — )
Sf(N)+W+Z(N) s.cf.Naf.l_—c;'Nah S'Cf‘Nf-l'?'Ng h
and the following efficiency equation (for N > 1):
S(N s.c; N +p-c,- N%
E(N) = ( )= f g 6)

N S5 - cf . N(af+1) + Peg N(otg—ah+1)

o
The generic speedup equation given in (5) generalizes several well-known speedup equations and laws

suggested in the literature (see Table 1).

4. Theoretical speedup and efficiency limits
4.1. Asymptotic speedup
As I am interested in asymptotic speedup, I determine limits for N — oo. I rewrite the generic speedup

equation (5) as follows:

s-cp- NY prcg- N%
S(N) = - + - ™
S-Cy* Naf + 8. N(ag_ah) S-Cyg* Naf + 8. N(ag_ah)
f P f e
(- ~ 7/ . ~ 7/
) un

2The applicability of this speedup equation to N = 1 would require setting ¢, = 1. In order to allow using an arbitrary coefficient
in the power function A(-), I require N to be larger than 1.
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Table 1
Instantiations of generic speedup model

Parameter values

Speedup equation

Speedup model or law

cr=cg=cp=ap=lLa;=a,=0

cr=cg=cp=a,=ap=1La,=0

Ch=ah=1

cr=cg=c¢p=ap,=1la,=0

= =y =y = ey =00, =]

__ Sstp
S(N)_s+§
= sN
S(N) = s+p

s:cp-N® +p-cg- N8

S(N) =
(N) s-cf-Naf+p-cg-N(“g_])
.N%
N) = s+p

S(N) s+p-N(”g_l>

1

_ s+p-N2

S(N) = o

N2

Amdahl’s law [4]

Gustafson's law [19]

Scaled speedup model [34]

(under the assumption that the sequential
and parallel workloads are given by power
functions cr N% and ¢y N%, resp.)
Sun and Ni’s law [35, 36, 37]

(under the assumption that the parallel
workload is given by a power function
N%)

Generalized scaled speedup model [22]

For term (1), I yield the following limits (the proof can be obtained from equations (50)-(53) in Appendix

A):

1, ap > a, —ay (8)
N Cf 9
limy_ (I)=15.c +&,af—ag—ah 2
f (3
0, ap <a, —a (10)
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For term (II), I yield the following limits (the proof can be obtained from equations (54) - (62) in

Appendix A):

- p-e,
s o =ap,a,>0 11
s ¢, Ag = Ay Uy (11)

D¢ _ _

m, ag—af,ah—O (12)

T,
limy_ (IT) =4 0, ap <ay (13)
oo (B(N)), ay > ap,a,> 0,0, —a,—a; 20 14)
00 (O(N“)), a, > ay,a, > 0,0, —a, —a; <0 (15)
Chy A > ap 00, =0 (16)

Aggregating the above given limits for terms (I) and (II), yields the following limits for the speedup

given in equations (5) and (7):
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p-cg+1:p-cg+s-cf

o, =asa, >0 17
s-cy s-cy & fo7h an
(©O=ag—af<ah)
s-c p-c s-c/+p-c
f.c + g.c _ f ‘Cg’agzaf’ah:() (18)
. +[7_g S-C +[7_g S-C +P_g
S e T, T,
(©0=a,—a;=ap)
1+40=1, a, < ay (19)
limy_ o, S(N) =1 (®a,—a; <0)

oo (B(N™), ag > ap,a,>0,a, —a, —ay >0 (20)
(©0<ah§ag—af)

00 (O(N“™)), a, > ay,a, > 0,0, —a, —a; <0 (21)
(©0<ag—af<ah)

O+c,=cp, ag>as,a,=0 (22)

(®0=a,<a,—ay)

I now briefly discuss each of the six equations and refer to these as speedup cases; a visual illustration

of the speedup cases can be retrieved from Figure 2.

Case Ag: The speedup limit given in eq. (17) represents an upper bound for S(N) VN > 1 (see Appendix A)
and refers to situations in which the number N of available PUs affects the time required to address
the parallelizable workload (due to @, > 0). While the speedup limit holds for any c,,a; > 0, it
seems reasonable to assume that A(N) = ¢;, - N* > 1 holds as increasing the number of PUs from
N = 1to N > 1 should not lead to an increase of time required to execute the parallelizable workload.
However, the speedup limit in this case does not depend on the values of ¢, and a,,. Also, this case
assumes that the scaling functions f(N) = c¢,- N and g(N) = ¢, - N% = c, - N/ change the serial
and parallelizable workloads using the same factor N . It should be noticed that case A results in

Amdahl’s law [4] when setting ¢, = ¢, = ¢, = @, = 1,a; = a, = 0; then, the limit on speedup

g

amounts to % As the speedup model of Amdahl’s law is a special case of the memory-bound model
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superlinear sublinear

7
3 (ag-ap) ay ; :/
S, = 00| O(N @91 !
(case Eg) \ . 7 S =1 (case Cg)
R ]
_a ] 7
g ] / _ scftpeyg
] / S, = ——2 (case As)
] S"Cf
!
|
i
superlinear__ E
{]
]
S, =o0]| @(N{m:)) E
(case D) !
]
|
—1
sublinear —{
+p-
S = ¢y, (case Fg) S = % (case B)
Ch
S

» = S

Case Bg:

Figure 2: Overview of speedup limits

suggested in [36, 37] (Sun and Ni’s law) under the assumption that the parallelizable workload in the
memory-bound model is given by a power function N%, case Ag partly covers the abovementioned
model. This case also (partly) covers the scaled workload model of Schmidt et al. [34] under the
assumption that the sequential and parallelizable workloads are given by power functions ¢, - N/

and ¢, - N%, resp., with a, = a,.

The speedup limit given in eq. (18) represents an upper bound for S(N) VN > 1 (see Appendix A). It
refers to the same situation as described in case A ¢ with the modification that, here, N does not affect
the time required to address the parallelizable workload (due to a;, = 0); that time is rather modified
through a division by the scalar ¢,; i.e., when executing the parallelizable workload in parallel, the
corresponding time changes are determined by a constant factor a;,. It seems reasonable to assume that
¢, > 1 holds in this case (cmp. the analogeous discussion of case A g), with a resulting speedup limit of

limy_ . S(N) > 1. While case B seems not useful under the premise that the parallelizable workload
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is infinitely parallelizable, it becomes useful when this assumption is replaced by the expectation that
a given parallelizable workload can be executed in parallel only on a limited number N, PUs; then,
a; may represent this limitation. For a discussion of limited parallelization, see, for example, [12, p.

772ft] and [3, p. 141ff]).

When the increase of serial workload is asymptotically higher than that of parallelizable workload
(ay > a,), speedup converges against 1 (see eq. (19)) as a lower bound regardless of the values of ¢,
and a; i.e., in this case, any parallelization does not reduce the overall execution time asymptotically

"

due to the “dominant" increase of the serial workload. Case Cg (partly) covers the scaled workload
model of Schmidt et al. [34] under the assumption that the sequential and parallelizable workloads are

given by power functions ¢, - N% and ¢, - N%, resp., with a; < a,.

This case covers situations in which speedup is not limited and increases asymptotically with @(N %)
for (1) ag > ag, (i1) aj, > 0, and (iii) ag —ap = a (see eq. (20)); (i) ensures that the parallelizable
workload increases faster than the sequential workload, (ii) ensures that parallelization asymptotically
reduces the time required to execute the parallelizable workload, and (iii) ensures that the temporal
effect induced through the joint growth of the parallelizable workload and its actual parallel execution
(N@=%)) is not weaker than the temporal effect induced through the growth of the sequential
workload (N%). Depending on the value of a;,, speedup asymptotically grows sublinearly (0 < ), <
1), linearly (@), = 1), or superlinearly (a; > 1). It should be noticed that case D ¢ results in Gustafson’s
law [19] when setting ¢, = ¢, = ¢, = a; = a, = 1, a; = 0; then, the speedup asymptotically grows
linearly. Case D (partly) cover Sun and Ni’s law when setting ¢, = ¢, = ¢, = a, = L,ay =0,a, > 1
(under the assumption that the parallelizable workload in this model is given by a power function N %).
Finally, case D g (partly) covers the scaled workload model of Schmidt et al. [34] under the assumption
that the sequential and parallelizable workloads are given by power functions ¢, - N/ and ¢, - N%,
resp., with @, —a, > 1.

Interestingly, case D¢ may help explain superlinear speedup as is has been observed in research on

mathematical optimization (at least for a limited range of N) [30, 7, 33, 17], for example.

Similar to case Dg, case Eg refers to situations in which speedup is not limited and increases

asymptotically, but now with @(N =% for (i) a, > ay, (ii) @, > 0, and (iii) a, — a;, < a; (see
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eq. (21)). The conditions under which case E g differ from those in case D¢ only with regard to (iii);
i.e., here, the temporal effect induced through the joint growth of the parallelizable workload and its
actual parallel execution (N *%~%)) is weaker than the temporal effect induced through the growth of
the sequential workload (N*7). Now, the difference (ag —ay) determines the asymptotic growth of
speedup: it asymptotically grows sublinearly (0 < a, —a, < 1), linearly (a, —a, = 1), or superlinearly

((xg —ay > ).

Similarly to case Dyg, case E¢ (partly) includes speedup models and laws suggested in the literature:
Case Eg (partly) covers Sun and Ni’s law when setting ¢, = ¢, = ¢, = a, = 1, ay = 0, ¢, < 1 (under
the assumption that the parallelizable workload in this model is given by a power function N %). With
ag = %, Sun and Ni’s model becomes the “generalized scaled speedup" model suggested in [22]; thus,
case E ¢ also covers the generalized scaled speedup model. Finally, case E ¢ also (partly) includes the
model of Schmidt et al. [34] under the assumption that the sequential and parallelizable workloads are

given by power functions ¢, - N and ¢, - N%, resp., with 0 < a, — a; < 1); then, speedup grows

asymptotically sublinearly with @(N (% =%,

As case Dy, also case E ¢ may help explain superlinear speedup.

Case Fg: This case covers situations in which speedup converges to ¢;, for (i) ag > oy and (ii) a;, = 0 (see eq.
(22)). For ¢;, > 1, the limit ¢, is a lower bound; for ¢;, < 1, the limit ¢, is an upper bound. Condition
(i) ensures that the parallelizable workload increases faster than the sequential workload, and with
condition (ii) I assume that N does not affect the time required to address the parallelizable workload
(due to a;, = 0). As with case Bg, case Fg is useful with the expectation that a given parallelizable

workload can be executed in parallel only on a limited number N, of PUs.

4.2. Asymptotic efficiency
In order to determine theoretical efficiency limits, I proceed analogously to the determination of speedup

limits. I rewrite the generic efficiency equation (eq. (6)) as follows:

s-cpo N prc,- N%
E(N) = @D 1 7% oD (@, +1) o P ar(@g—ap+]) (23)
s-cp N +C—:-N“g“h s-cp- N +c—:-N“g“h
o ~ J/ o ~ J
a ar)
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For term (I’), I yield the following limit (see equations (63) - (65) in Appendix B):
. N _
]\}1_120(1 )y=0 (24)

For term (II’), I yield the following limits (the proof can be obtained from equations (66) - (78) in

Appendix B):
( 0, a>a,—1 (25)
(®a;—a;<1)
0, af=0a,-1,0<¢,<1 (26)
(©0§ah<ag—af= 1)
D¢
. +&,af=ag—l,ah=1 27
(a,—ay=a,=1)
p-c
Say=a,— lLa,>1 (28)
S'Cf
limpy oo (1) =4 (& ag—ay=1<a)
0, af<ag—1,0§ah<1 29)
(©0<a, <l <a,—ay)
Chs tp <y —lap =1 30)
(©1=ah<ag—af)
00 (ON%~ ™), a; <a,— L, > La,>a, —a, 31
(©1<ag—af<ah)
o ON“N), ay <ay—1,a,> 1,07 <a, —a, (32)
| (©1<ah§ag—af)
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superlinear sublinear
h v
Ep = 0] @(N(“g‘af‘l))
(case G) En =0 (case Ag)
—0g '
: En = % (case D)
superlinear — %
Eo = o0 | O(N (@1 For = s.cp'cﬂ-c (case C)
(case Hy) \_ e
e En =0 (case B;)
N
—< 1
sublinear
g2 Gg—1  ag ar
Ey = cp (case F) E,, =0 (case E;)
By = lim E(N)
Figure 3: Overview of efficiency limits
With lim_, . (I") = 0, I yield the following limits for efficiency equations (6) and (23):
: 1 ’ N ’
Jim E(N) = lim [CREICIBIE Jim (11) (33)

I now briefly discuss each of the eight equations and refer to these as (efficiency) cases; a visual
illustration of the efficiency cases can be retrieved from Figure 3 which, unsurprisingly, shows structural
similarities with the visual representation of speedup limits due to the relationship between efficiency and

speedup as given by E(N) = %

Case Ap: Theefficiency limit given in eq. (25) equals zero regardless of the value of «, and apparently represents
a lower bound for E(N) VN > 1. This case refers to a situation in which the increase of the serial
workload is asymptotically higher than that of a(n) (adjusted) parallelizable workload (adjusted based

upon a decrease of the number of PUs by 1) (a; > a, — 1).
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Case Bg:

Case Cp:

Case Dy:

Case E:

Case Fg:

Case G:

Speedup and efficiency of computational parallelization

The efficiency limit given in eq. (26) equals zero when the value of @, is upper bounded by 1. Again,
it apparently represents a lower bound for E(N) VN > 1. This case refers to a situation in which the
ratio of the increases of serial workload and adjusted parallelizable workload converges against the
constant E—g and in which the increase of time reduction of executing the parallelizable workload is
sublinear in N (a; < 1).

The efficiency limit given in eq. (27) describes a situation that differs from that in case By, only in that
the increase of time reduction of executing the parallelizable workload is now linear in N (a;, = 1).

Then, the limit of efficiency is given by a constant larger than O assuming that the parallelizable

workload is positive (p > 0).

The efficiency limit given in eq. (28) describes a situation that differs from that in case By only in
that the increase of time reduction of executing the parallelizable workload is now superlinear in N
(ay, > 1). Despite this increase of time reduction and due to the relatively large increase of the serial
workload compared to that of the parallelizable workload (a; = a, — 1), the limit of efficiency is still

given by a constant (larger than 0) assuming that the parallelizable workload is positive (p > 0).

The efficiency limit given in eq. (29) describes a situation that is similar to that of case Bp. While
@, < 1 holds again, the (adjusted and the non-adjusted) parallelizable workload grows faster than
the serial workload (e, < a, — 1). However, as the increase of time reduction of executing the

4

parallelizable workload is sublinear in N (a; < 1), efficiency converges against 0.

In contrast to case E g, the efficiency limit given in eq. (30) describes a situation in which the increase
of time reduction of executing the parallelizable workload is linear in N (a;, = 1). Then, efficiency

asymptotically equals a constant larger than 0 (assuming p > 0).

One situation in which efficiency is unbounded is described in eq. (31), where the (adjusted and the
non-adjusted) parallelizable workload grows faster than the serial workload (a, < a, — 1) and the
increase of time reduction of executing the parallelizable workload is superlinear in N (a;, > 1).
When also a; > a, —aj, holds, efficiency grows asymptotically with @(N %%/ =1 i.e., the asymptotic
growth does not depend on a,. Fora, —a, > 1,a,—a, = l and a, —a, < 1, efficiency is superlinear,

linear and sublinear, respectively.
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Case H: A second situation in which efficiency is unbounded is described in eq. (32), where the (adjusted and
the non-adjusted) parallelizable workload grows faster than the serial workload (e, < @, — 1) and
the increase of time reduction of executing the parallelizable workload is superlinear in N (a;, > 1).
When also a; < a, — @), holds, efficiency grows asymptotically with (N a1y i.e., the asymptotic
growth does now depend on «,. For aj, > 1, @, = 1 and 0 < a;, < 1, efficiency is superlinear, linear

and sublinear, respectively.

4.3. Asymptotic scalability

In the previous subsections, I identify speedup cases and efficiency cases. Now, 1 consider speedup
cases and efficiency cases jointly, which results in various speedup-efficiency cases. I refer to these cases as
scalability cases, which are defined by both speedup and efficiency limits (see Table 2 and Figure 4). I assign
to each scalability case a scalability type, which describes both speedup (as first parameter) and efficiency

(as second parameter), using the following semantics:

e f,,v,: fixed values which depend on the reduced parallel workload scaling function i

® oo, unbounded and monotonically increasing; the extent of increase depends on workload scaling

functions f and g

® BireVsfa fixed values which depend on the sequential part s (note: p = 1 — s) and the workload

scaling functions f and g

® B ran Vs fah fixed values which depend on the sequential part s (note: p = 1 — s), the workload

scaling functions f and g, and the reduced parallel workload scaling function A

e oo,: unbounded and monotonically increasing; the extent of increase depends on reduced parallel

workload scaling function A

Each scalability type refers to exactly one scalability case and set of conditions (see Table 2).
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Figure 4: Overview of scalability cases

For the discussion of speedup, efficiency and scalability results derived in the preceding section, I
recall the meaning of parameters a;, @, and a;, since their values determine the (speedup, efficiency and
scalability) case of a particular parallel algorithm: The parameters a , a, and a;, affect the serial workload,
the parallelizable workload and the actual reduction of parallelizable workload through parallelization,
respectively, depending on the number of PUs N;; they are given by f(N) := ¢,N%, g(N) := ¢,N%
and A(N) = ¢, N, respectively. I also recall the abovementioned speedup and efficiency equations:

s-c;-NY +p-c,- N%

S(N) = see eq. (5
(N) s.cf.Naf+"cﬁ.N<ag-ah>( q. (5))
h

By o S NT AP N
= see €q.
S - cf . N(af+l) + ﬂ . N(ag_ah+l) d

Ch

I now discuss each of the eleven scalability cases A g to Kg.. As the definition of scalability cases (and

types) is based upon combinations of speedup cases and efficiency cases, the characteristics of scalability
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cases (and types) can be derived from the above descriptions of the characteristics of speedup and efficiency

cases.

Case Agc:

Case Bgc:

Case Cg:

Case Dg:

With speedup case Cg, the increase of serial workload is asymptotically higher than that of paralleliz-
able workload (as > a,). Then, speedup converges against 1. Case Cg induces efficiency case Ay so
that the resulting asymptotic efficiency equals 0. The scalability type is (1, 0). Overall, parallelization

does not scale at all and parallelization efforts do not make much sense.

With speedup case Ag, the scaling functions f and g change the serial and parallelizable workloads
using the same factor N with possibly different values ¢, and c,; furthermore, case Ag refers
to situations in which the number N of available PUs affects the time required to address the
parallelizable workload (due to a, > 0). Then, speedup converges against a constant f ,, =
secp+H(1=s)-c

- £ > 1. Speedup case A g leads to efficiency case Ay; i.e., efficiency converges against zero.
<r

Scalability case B¢, which refers to scalability type (8

5. 7.¢ 0), includes Amdahl’s law [4] and partly

Sun and Ni’s law [36, 37] (see the discusssion of speedup case Ag).

This scalability case is similar to the scalability case Bg- and differs from it only as «; equals
zero; i.e., N does not affect the time required to address the parallelizable workload. With speedup
case Bg and resulting efficiency case A, the associated scalability type is (f; ; , 5, 0), with speedup

scp+(l=s)-c

_ . . .
Bs.gan = I As discussed above, speedup case By, and thus scalability case Cg, are not

‘h

useful under the premise that the parallelizable workload is infinitely parallelizable, but it becomes
useful when a given parallelizable workload can be executed in parallel only on a limited number of

PUs.

Scalability case D g, which corresponds to scalability type (f,,/0), includes speedup case F, in which
the parallelizable workload increases faster than the sequential workload (@, > «,) and N does not
affect the time required to address the parallelizable workload (a;, = 0). Then, speedup converges to
¢,- When speedup case Fg applies, either efficiency case E or By applies with efficency converging
towards zero in both cases. As with scalability case Cg, case D g is useful with the expectation that

a given parallelizable workload can be executed in parallel only on a limited number of PUs.
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Case Eg:

Case Fgc:

Case Gg(:

Case Hg(:

Speedup and efficiency of computational parallelization
This scalability case refers to a situation in which (i) the parallelizable workload increases at least one
magnitude faster than the sequential workload (ag 2 ay + 1) and (ii) the number of available PUs
affects the time required to address the parallelizable workload with unlimited and sublinear growth
(0 < @ < 1). This scalability case is linked to speedup case D¢ and one of the efficiency cases E or
B, resulting to scalability type (c0,, 0). Case E g involves a speedup growth of @(N *#); i.e., speedup
convergence is determined by the reduced parallel workload scaling function A. Due to the condition

a;, < 1, this growth is sublinearly in N and efficiency converges towards zero.

This case describes to a situation in which the parallelizable workload increases more than one
magnitude faster than the sequential workload (a, > a,+1) and the number of available PUs affects the
time required to address the parallelizable workload with superlinear growth (1 < a;, < (ag -« f))).
Under such conditions, speedup case Dg and efficiency case Hp apply, resulting in the scalability
type (o0, 00;,), where both speedup and efficiency are unlimited, speedup grows superlinearly with
O(N %), and efficiency grows sublinearly (when 1 < a;, < 2), linearly (when @), = 2), or superlinearly

(when 2 < ap).

This scalability case describes a situation in which the parallelizable workload increases one magni-

tude faster than the sequential workload (ag =a;+1) and the number of available PUs affects the time

required to address the parallelizable workload with linear growth (a;, = 1). Under such conditions,

speedup case Dg and efficiency case C apply, resulting in the scalability type (oo, ¥, ;4 4), Where

speedup is unlimited and grows linearly and where efficiency converges against a constant y that
ey

depends upon functions f, g, h and upon s (v, s, = T
oS 25 S'Cf —
‘h

Scalability case G g covers Gustafson’s law [19], where a, = a;, = 1, a, = 0. It also (partly) covers

the model of Schmidt et al. [34].

Scalability case H g~ differs from scalability case Gg- only in the regard that the parallelizable
workload increases more than one magnitude faster than the sequential workload (a, > a; + 1).

Similiar to case G ¢, the scalability type is (o0, ¥,,) but here y,, is set to ¢, (efficiency case Fg).

Analogously to scalability case G g, also case H g (partly) covers the model of Schmidt et al. [34].
In addition, case H g also (partly) covers Sun and Ni’s law when ¢, = ¢, = ¢, = 1 holds and when

the parallelizable workload in this model is given by a power function N%.
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Case Ig:

Case Jgc:

Case Kg:

Speedup and efficiency of computational parallelization
This scalability case applies when (i) the parallelizable workload increases at least one magnitude
faster than the sequential workload (ag>a,+1) and (ii) the number of available PUs affects the time
required to address the parallelizable workload with unlimited and superlinear growth (1 < a, —a, <
a;,). Under these conditions, speedup case E g and efficiency case G apply, leading to scalability type

(00 ¢, 00 ,); 1.€., both speedup and efficiency are unbounded and grow superlinearly.

The conditions under which this case apply differ from those of case I ¢, in that the parallelizable
workload increases less than one magnitude faster than the sequential workload (0 < a, —a, < 1).
Then, speedup case Eg and efficiency case A apply, leading to scalability type (oo ., 0); i.e., while

speedup is unbounded and grow sublinearly, efficiency converges against zero.

With ay = 0, a;, = 1, it partly covers Sun and Ni’s law, and with a; = 0, a, = % a, = 1, it covers the

speedup model of Juurlink and Meenderinck [22].

When (i) the parallelizable workload increases one magnitude faster than the sequential workload
(ag =as+ 1) and (ii) the number of available PUs affects the time required to address the parallelizable
workload with unlimited and superlinear growth (1 < ), scalability case K g applies with speedup
case Eg and efficiency case D; then, speedup is unlimited and grows linearly, efficiency converges

against a constant y = %, and scalability type (oo ., 7, r ) applies.
<, 8 0s.f,

5. Computational experiments

I demonstrate the application of the generic speedup and efficiency model and the scalability typology

with two computational experiments. The first experiment targets strong scalability and performs parallel

matrix multiplication with fixed workload (in terms of matrix sizes) in the Amdahl setting. The second

experiment is more sophisticated and targets lower-upper (LU) decomposition as factorization of a matrix as

the product of a lower triangular matrix and an upper triangular matrix; here I consider a variable workload

(scaled-size model) that increases with the number of available PPUs. Both types of tasks occur in many

problems in numerical analysis and linear algebra. The description of these experiments is intended to

illustrate the proposed model and to give examples of how the polynomial functions of the generic speedup

and efficiency model can be determined in practice.
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I'ran all experiments on a compute node (2x AMD Milan 7763, 2.45 GHz, up to 3.5 GHz, 2x 64 cores, 256
GiB main memory) of the HPC cluster NOCTUAZ2 provided by the Paderborn Center for Parallel Computing
of Paderborn University®. The source code was written in C++, using the OpenMP application programming

interface for parallelization, and compiled with GCC (version 12.2.0)*.

5.1. Parallel matrix multiplication with fixed workload
I perform parallel matrix multiplication without any optimization, i.e. rows and columns of the first

and second matrices are multiplied in pairs (scalar product). In my speedup and efficiency model I set

¢p =¢ =c¢, =ap = l,ay = a, = 0. This setting results in the following speedup and efficiency
equations:
S(N) = — =, E(N)= —— (34)
s+ %’ N-s+p

This instantiation of the generic speedup and efficiency model corresponds to scalability class Bg
and scalability type (f; s, = 1/s,0) (see Table 2); i.e., asymptotic speedup and asymptotic efficiency are
given by 1/s and 0, respectively. I set the sizes of the two integer matrices A and B to [1.28 - 10'°,300] and
[200, 1.28-10'°], respectively, and initialized both matrices with random values in the interval [—1000, 1000].
The large sizes of the matrices are motivated by the fact that parallelization may then be useful. I also set
the number of rows to a multiple of the maximum number of cores available on the target machine (128), to
allow an equal distribution of the parallelizable workload when 128 (or lower powers of 2) cores are used.
This justifies setting A(N) := N. I determined the sequential and parallelizable workloads s = 0.023595
and p = 0.976405, respectively, by executing the code on a single core. Not surprisingly, in a matrix
multiplication setting, the serial workload is quite small. Note, however, that even for a value as low as
s = 0.023595, the speedup is limited by 1/s =~ 42.

Figure 5a shows that the theoretical speedup, which considers the existence of a serial part s > 0 but
ignores any computational overhead induced by parallelization, converges to the speedup limit given by
1/s ~ 42. The computational speedup, given by T'(1)/T(N) for any N, shows the actual speedup achieved.
The gap between the two speedup lines is due to the overhead of parallelization. Figure 5b shows both

the theoretical and the computational efficiency, defined as the ratios of the above speedup values and the

Shttps://pc2.uni-paderborn.de/hpc-services/available-systems/noctua2
“I used the following compiler options: -march=native -m64 -fPIC -O3 -fopenmp
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Figure 5: Computational results of matrix multiplication with a fixed workload

number of parallel PUs N. While the decrease of the theoretical efficiency and its convergence to 0 is due
to the presence of a serial part s > 0, the gap between the two efficiency curves is, as in the speedup case,
due to the computational overhead induced by parallelization. The data for this experiment can be found in

Table 4 in Appendix C.1.

5.2. Parallel LU decomposition with variable workload

I perform LU decomposition of an matrix without pivoting. A description of the algorithm is shown in
Figure 6. The LU decomposition algorithm is only partially parallel. The outer loop (iteration over i) cannot
be parallelized, since computations in iteration i (i > 1) require computations in iteration (i — 1) to be
completed. In contrast, the inner loops (iterating over j and /) allow parallelization. In my implementation,
the first inner loop (iteration over j) is parallelized. To account for variable workload, I assume that the
number of rows in the matrix A grows linearly with the number of PPUs.".

As in the first experiment, I assume that the serial workload remains constant as the number of PPUs
varies; i.e.,  assume f(N) =1 (IN > 1). However, unlike the setting in the first experiment, the workload
size now depends on the number of parallel PPUs N i.e., one must determine an appropriate polynomial
function g(N) = ¢ - N % It is also reasonable to assume that the parallelizable workload p - g(N') cannot

be partitioned into N independent sub-workloads of equal size as the number of iterations in the j-loop is

>Obviously, the size of A in terms of the number of entries grows quadratically with the number of available PPUs.
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1. Input: A € N3 N :=(1,2,...}
2. L « identity matrix I,

3. U+« A

4., fori=1toz—-1do

5. for j=i+1tozdo

6. L;; < &

i
fori=i+1tozdo
Ui, <U;;—L;; XU,

9. end for
10. for/l=1toido
1. U, <0
12. end for
13. end for
14. end for
15. Output: LLU e N*** A=L.-U

Figure 6: LU decomposition algorithm (without pivoting)

usually not a multiple of the number of available PPUs; i.e., the workload is not “perfectly” parallelizable and
one needs to determine an appropriate polynomial function A(N) = ¢, - N%. I use analytical and numerical
approaches to determine g and A.

To determine g, I first determine the number of (basic) calculations §(z) (as performed in lines 6, 8, and
11 of the LU decomposition algorithm shown above) as a function of the number of matrix rows z. As shown

in Appendix C.2, one obtains
8(2) == (22 —2) (35)

Assuming that a calculation requires 7, units of computation time, the execution of (lines 4-14 of) the LU
decomposition algorithm requires g(z) - ¢, units of computation time. As I assume that the number of
rows/columns z of the matrix A (“problem size”) grows linearly with the number of PPUs N, z is given

by z = z; - N, where z, is the number of rows when only a single processing unit is available. This leads to

§(z2)=§(N,z) = §(z; - N)= 2 ((2,- N’ =(z,- N)) = 2 (2] - N’ =z, - N) (36)

1
3

W | =
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For N =1 we get
R 1,5
mLzo=§(q—z0, (37)

which is the number of calculations when only a single processor is available (i.e., N = 1). I can now

determine a normalized workload scaling function §zl given by

. 3. N3 3 3
N.z z;-N°—z;-N z z
8(N,zy) % Yt ,w_31 - N = O(N?) (38)

81, zy) z?—zl z?—zl z] — 21

g, (N) 1=

Note that g is normalized as EZI (1) = 1. For the analysis of the asymptotic speedup, I do not need to consider

the linear term any further, so I use as workload scaling function

7
g, (N) = - N’ (39)

3
z] — 73

Using the generic representation of the parallel workload scaling function g(N) = ¢, - N%, [ get ¢, =

g
z?/ (z? —z;) and a, =3.

I now determine the scaling function s, which describes the extent to which the execution time of the
parallelizable workload p-g, (V) can theoretically be reduced by parallelization. While the outer loop cannot
be parallelized (see explanation above), the first inner loop (iteration over variable j) can be parallelized
because the computations in the iterations do not affect each other. Assuming that this loop is parallelized,
(z — i) iterations can be executed in parallel, foreachi = 1,...,(z—1). Suppose z = 128 and N = 64 PPUs
are available. Then, for example, in the 63th iteration of the outer loop (i = 63), (z —i) = 65 iterations of the
first inner loop (j = 64, ..., 128) can be distributed to N = 64 PPUs. While 64 of the 65 iterations can be
distributed evenly across N = 64 PPUs, the remaining iteration is executed on a single PPU while the other
63 PPUs remain idle. Obviously, the time required to execute the workload of this iteration of the outer loop
is not divided by the number of available PPUs N = 64. Therefore, A(N) < N (N > 1).

The proof of equation (35) (see Appendix C.2) makes use of the fact that the number of calculations of

the parallelizable part is given by

z—1

§(2)=Z[(Z—i)-(z—i+1)]- (40)
i=1
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Note that parallelizing the first inner loop means that (z — i) blocks (of (z — i + 1) calculations each) can be
executed in parallel by N PPUs. Following my explanations of parallelization above, using N PPUs requires
a computation time equal to the computation time required in a serial execution for §,,,,..4(2) calculations,

with

z—1 .
greduced(z)z Z [[(z];l)] ’(Z_i+1) . (4])
i=1

Assuming again that z = N - z;, then the computation time of the parallelizable workload executed on a

single PPU is reduced by using N PPUs by the factor (z) = h(N, z,) given by

A A & g(N,
N, z)) = h(z) = — §z)  _ _ 8(N,zy) '
greduced(z) greduced(N’ Zl)

(42)

Since it is difficult to find a closed-form expression of §,,;,..4 and to derive the function / from it analytically,
one could use a statistical approach to derive, for a given z;, a polynomial function A(N, z;) = ¢;,- N% (¢}, >
0, @, > 0) that approximates h. For z, € {107, i € {2,3,4,5}}, Tables 5-8 in Appendix C.2 show data points
for N = 2, i € {1,...20}. Note that z, is the number of rows/columns of the matrix to be decomposed
when only a single PU is available, and that ¢, and a;, must be determined depending on z;.

The computations show that for any value of z,, the value of (N, z,) is close to N. It is reasonable to
assume that, for any z;, as N goes to infinity, (A(N, z;) — N) converges to 0, or (h(N, z,)/ N) converges
to 1, although I do not prove this here. However, from an asymptotic point of view, for any z; and any
¢, > 0,a, <1,h(N,z) =cy,- N would converge to 0. Therefore, I do not need to do a statistical analysis
here and set ¢, = a;, = 1;1.e., A(N,z;) = h(N) = N.

In summary, the scaling functions for the given LU decomposition algorithm are given by

F(N) =1 (c; = 1,a, =0) 43)
Z3 Z3
8., (N)=— N <cg= 3 : ,ag=3)
Zi — 2] Zi — 2]
h(N):N (Ch=ah=1),
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which yields as speedup equation (cmp. equation (5))

S+p3—1N3
S, (N) = ‘
s+p._1.N2

3
21—z

(44)

Based on the proposed scalability typology shown in Table 2, the LU decomposition algorithm is
of scalability case H g, with scalability type (oo, 7,); the speedup increases asymptotically with @(V)
(lim N—>oo(Sz1 (N) — N) = 0) and the efficiency converges to ¢, = 1. Note that these results do not depend
on the value of z;.

In the computational experiment, I initialize the matrix to be decomposed with (random and integer)
values in the interval [1, 1000] to avoid any numerical problems, since the LU decomposition does not
involve any pivoting. I set z; := 100; thus, the number of rows and columns of the matrix to be decomposed
isgivenby z=N -z, =100- N (N = 1,2,4,...,128). The first experiments showed that, contrary to the
theoretical analysis, the speedup tends to converge to 1 with increasing values of N. This effect is due to
the phenomenon that the amount of work done in the parallel region (lines 6-12 in the pseudocode shown in
Figure 6) is small relative to the overhead of creating and managing threads. To avoid this effect, I extended
the LU decomposition algorithm to decompose a set of m matrices A, (d =1, ..., m) of equal size; this can
be easily implemented by running the code in lines 6-12 for each of the m matrices, so that the workload in the
parallel region increases by a factor of m. Note that from a theoretical point of view, this modification does not
affect the speedup and efficiency bounds, while it allows to demonstrate the speedup increase with increasing
values of N in computational experiments. A second problem arose when determining the sequential and
parallelizable fractions of the total execution time s and p, respectively: since the matrix size (in terms of
the number of rows/columns) grows linearly with N, and the number of computations to be performed in
the LU decomposition algorithm grows asymptotically with ®(n?) (see equation (38)), the matrices to be
decomposed become large. When only a single PU is used, the matrix to be decomposed must be relatively
small in order to perform the experiments in a reasonable amount of time. As a consequence, the total
execution time for decomposing a (100 X 100) matrix is small (11 ms), so the serial time s is 0 when traced
computationally, since the numerical accuracy is too low. However, when s is close to 0, it hardly affects

the theoretical (serial and parallel) computation times and speedups (see equation (44)); it also does not
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affect the speedup and efficiency bounds. Since in every parallel program at least a small part of the code is

executed serially, I set s := 0.01.

(a) Speedup (b) Efficiency
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Figure 7: Computational results of LU matrix decomposition with variable workload

Figure 7 shows the speedup and efficiency achieved in the computational experiment. As suggested by
the theoretical analysis, the speedup increases linearly and the efficiency is close to 1 (using up to N = 32
threads). Since both the serial and parallel execution times are relatively small (see the figures in Table
9 in Appendix C.2), the computational speedup seems to be slightly above the theoretical speedup (for
N = 2,4,8,16) due to numerical problems in determining execution times on the cluster with sufficient
accuracy. For N = 64 the speedup still increases, but at a much lower rate (speedup = 46) with an efficiency
of about 0.72; for N = 128 the speedup even decreases (speedup = 26.61) with an efficiency of about
0.21. It seems reasonable to expect that for N > 128 both speedup and efficiency decrease further. I did
not investigate these effects because the computing node available for the experiments has a maximum of
128 cores. Obviously, and as expected, for an empirically large number of PPUs, theoretical speedup and
efficiency bounds become much looser for computations. Therefore, in the next section, I discuss how the
impact of parallelization overhead can be taken into account in future research when looking for tighter

bounds.
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6. Discussion

6.1. Application of model and typology

The scalability typology developed in the previous section allows researchers to determine the limits of
speedup and efficiency of their applications and the extent to which computational parallelization scales for
their needs. They also support researchers regarding their decision of how many parallel PUs to use in the
presence of economic budget constraints. My typology shown in Table 2 provides a more comprehensive
picture of scalability in homogeneous computing environments than speedup laws suggested in the literature
(shown in Table 1), thereby widening the scope of applying scalability insights. At the same time, my
typology includes all of the abovementioned speedup laws as illustrated in Table 3. In particular, Amdahl’s
law and Gustafson’s law are consistent with our classification. These laws have been discussed in the literature
as two different types of scaling: strong scaling focuses on the “Amdahl setting”, where the total problem
size remains fixed as more processors are added, and the goal is to run the same problem size faster. In
contrast, weak scaling focuses on the “Gustafson setting”, where the problem size per processor remains
fixed as more processors are added, the total problem size is linear in the number of processors used, and the
goal is to run larger problems in the same amount of time [5].

A key issue for researchers is the assignment of their particular application to a scalability type, which
requires determining the sequential workload s and the power functions f, g, & (see Definition 4). In order

to determine s, a straightforward approach is to execute the application on a single PU and measure the

tseq

+t

seq T " par

execution times 7, ans 7, of the sequential and parallelizable workloads, resp., leading to s = and
p = 1 —s. T used this approach in the two computational experiments. As the second experiment shows, this
approach can lead to inaccurate results when the total execution time is small and numerical problems occur.
As Table 2 shows, the value of s affects speedup and efficiency bounds in some scalability cases. Under
such circumstances, it may be helpful to use “safe” lower and upper bounds on s, and to define intervals of
speedup and efficiency bounds.

The determination of the power functions f, g and 4 can be much more challenging, depending on the
algorithm used. While in the first experiment the functions could be determined straightforward, the second
experiment shows that analytical, numerical and statistical approaches may be required to obtain reliable

estimates of the functions. The application of such approaches may become quite tedious or even impossible

due to the complexity of the parallelized algorithm. In this case, researchers are advised to use computational
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Table 3
Scalability types of speedup models suggested in the literature
Speedup model Scalability case | Scalability type Conditions
Amdahl’s law [4] Bgce Bsjg= %,0) cr=cg=cp=ap=1l,ay,=a,=0
Gustafson's law [19] Gse (00p, Vs fen=1=9) | ¢cy=c,=chp=a,=ay=1,a;,=0
; T
Generalized  scaled Jsc (oof’g,O) Cp=cg=cp=ay = l,af =0, ag =3
speedup model [22]
Sun and Ni's law Bgc Bypg =10 cr=c,=cp=ay=1la,=0,a,=0
(36, 37]
GSC (ooh,}/s’f’g’h=1—s) Cf=cg=ch=ah=l,af=0,ag=l
Hgc (c0p, 7, =1) cr=cg=cp=ap,=1la,=0,a,>1
Jsc (004 4,0) cr=cg=cp=ap,=1lLa;,=0,0<a, <1
Scaled speedup Agc (1,0) cp=ap=1la,—a; <0
model [34]
Bgc (Bs,r.6-0) cp=ap=la,—a;=0
Gsc (004, Vs, f.g.n) cp=ap=1la,—a,=1
HSC (ooh,yh=l) ch=ah=1,(xg—txf>1
JSC (OOf’g,O) Ch=ah=1,0<ag—af<1

experiments to determine the functions. These issues limit the practical applicability and usefulness of the
proposed model.

If the application involves data processing and analysis, the amount of data to be processed, and thus the
parallelizable workload given by p - g(IN), should be relatively easy to determine. Also, it seems reasonable
to expect that the parallelizable workload can be almost equally distributed across the available PPUs
(h(N) =~ N), unless the data processing requires taking into account data dependencies. In contrast, in
numerical algorithms, which can be as simple as LU matrix decomposition as used in the second experiment,
the determination of the functions g and 4 can become quite complicated. Also, in an optimization context,
such as solving an instance of a mixed-integer linear program to optimality with a branch-and-bound

algorithm, both the parallelizable workload p - g(IN) and the effect of parallelization expressed by A(N)
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may depend not only on N, which could be related to the size of the (optimization) problem instance to
be solved, but also on the instance itself. For example, while some instances of a given problem may show
(sub)linear speedup, other instances of the same size may benefit from superlinear speedup (see, for example,

[33D).

6.2. Consideration of parallelization overhead

In the speedup and efficiency equations (5)-(6) and the resulting analysis, any overhead due to
parallelization has been omitted for a variety of reasons. However, as can be seen from the results of the
second computational experiment and widely acknowledged in the literature, parallelization overhead can
cause large scalability degradation and have a significantly large impact on speedup and efficiency. Thus, the
bounds may become loose.

Overhead can be caused by several phenomena, including the existence of critical regions (exclusive
access for only one process), inter-process communication, the creation and management of threads, and
sequential-to-parallel synchronization due to data exchange [41]. Such phenomena can be analyzed by
considering an overhead function in the determination of parallel execution times, which are likely to depend,
among other factors, on the number of parallel PUs.

In the literature, several ways of incorporating overhead functions into execution time evaluation have
been proposed. One option is to include an additive overhead term in the speedup and efficiency functions
(e.g., [15, 21, 29]); an alternative approach is to use a multiplicative term (coefficient function) to account
for the increased workload of parallel execution due to parallelization overhead (e.g., [14, 36, 21]). Although
I focus here on additive overhead functions, the key concepts, opportunities, and challenges for considering
parallelization overhead also apply to multiplicative functions.

Our general speedup and efficiency equations ( 2)-( 3) already account for additive overhead with
the term z(NN). Assuming that parallelization overhead can also be determined by a polynomial function
zZ(N) :=c¢, - N*% (c, > 0,a, > 0), my generic speedup and efficiency equations (5)-(6) would have to be
changed to

scp N +p-c,- N%

S(N) = e (45)
s-cp- NY + C—hg - N@=) ¢ . N
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and

s-c; N +p-c,- N%

E(N) = (46)

S - Cf . N(af+l) + ﬂ . N(ag_ah+l) + cZ . Na’z‘l'] ’

Ch

respectively.

In the study of Flatt and Kennedy [15], the authors suggest that an additive (and continuous) overhead
function should satisfy some mathematical assumptions. Under these assumptions, some theoretical results
can be derived. One important result is that when Amdahl’s setting is extended to include overhead, the
speedup has a unique maximum at N > 1. In Appendix D, I list the assumptions and prove that any

polynomial overhead function z(N) = ¢, - N*% — ¢, (c,,a, > 0, N > 1) satisfies all assumptions, so

z
that the above result holds for modified equation (45) in the Amdahl setting, if we exclude the case @, = 0
and allow the expansion of z(NV) by subtracting the constant c,. Flatt and Kennedy [15] also gives theoretical
bounds on the (scaled) speedup with increasing problem size.

Huang et al. [21] also suggest using an additive overhead function under the Amdahl setting that accounts
for the data transmission overhead in multi-core environments. They propose using an overhead function
z(i) = f; + %, where i is the number of communication links of a single core, and f; and g, are the sequential
and parallel parts of the transmission, respectively. Applying their extended Amdahl model to a setting with
area constraints [20], they look for zero points of the speedup derivative to identify the optimal speedup.

A key conclusion from these findings is that if an additive overhead function is considered in parallel
execution time and performance analysis, then functions for execution time, speedup, and efficiency may
become non-monotonous, and as a consequence, the determination of limits and bounds with asymptotic
analysis needs to be replaced or complemented by an analysis of extreme points; i.e., an analysis that accounts
for parallelization overhead should determine the optimal number of PPUs for a given metric such as parallel
execution time, speedup, and efficiency. This approach would not only lead to better predictions, but would
also immediately lead to a suggestion of the appropriate number of parallel PUs to choose. Using my general
speedup and efficiency equations (2)-( 3), this would lead to solving the optimization problems (47)-(49) for
execution time, speedup, and efficiency, respectively.

p-8&(N)

NeN h(N)

min <s S f(N) + + z(N)> A7)
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max S(N) = max | —>— /D +r -8 (48)
NeN N

eN| . rg(N)
s+ f(N)+ ) + z(N)

max E(N) = max s S +p-&d) (49)
NeN Ne

-2(N)
N-(s- f(N)+ ",f(—N) + z(N))

2

The determination of an additive overhead function z should take into account the (architecture of the)
parallel system, including the speed of the cores, the size and structure of the caches, and the operating
system [8]. Also, it should consider the roots of the parallelization overhead. For example, Flatt and Kennedy
[15] suggest using different overhead functions for i) scheduling in shared memory multiprocessors using
critical regions, ii) synchronization in an array of processors arranged as a k-cube, and iii) synchronization
in an array of processors connected by a logarithmic network. Additive terms were also used to account for
the overhead associated with data preparation, communication, and synchronization [24, 3, 29, 41, 21].

In summary, a performance analysis that takes into account parallelization overhead needs to consider
the root(s) of the parallelization overhead and the parallel system architecture applicable in a given context
to determine the mathematical structure of the overhead function, its mathematical embedding in the
computation of execution times (additive, multiplicative, etc.). From a methodological perspective, it
requires searching for extreme points due to possible non-monotonicity of execution times, speedup and

efficiency functions.

7. Conclusion

In this work, I provide a generic speedup (and thus also efficiency) model, which generalizes many
prominent models suggested in the literature and allows showing that they can be considered special cases
with different assumptions of a unifying approach. The genericity of the speedup model is achieved through
parameterization. Considering combinations of parameter ranges, I identify six different asymptotic speedup
cases and eight different asymptotic efficiency cases; these cases include sublinear, linear and superlinear
speedup and efficiency. Based upon the identified speedup and efficiency cases, I derive eleven different

scalability cases and types, to which instantiations of my generic speedup (and efficiency) model may lead.
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Researchers can draw upon my suggested typology to classify their speedup model and/or to determine the
asymptotic scalability of their application when the number of PPUs increases. Also, the description of two
computational experiments demonstrates the practical application of the model and the typology.

My theoretical analysis is based upon several assumptions which are common in the literature (e.g.,
[37]). First, I assume that the overall workload only contains two parts, a sequential part and a perfectly
parallelizable part, which can be executed in parallel on all available PPUs. In practice, the latter condition
may not always hold but even then my speedup and efficiency results are useful as they can be used as upper
bounds of achievable speedup and efficiency. Alternative models that do not require the above dichotomy
distinction have been proposed in the literature, including parallelism/span-and-work models, multiple-
fraction models, and roofline models (e.g., [12, p. 772ft], [3, p. 141ff]), [9]). Future theoretical analysis
of speedup and efficiency limits may consider those types of models.

Second, while my generic speedup model includes a function for parallelization overhead, I assume that
this overhead is negligible and omit this function from my analysis. However, I admit that parallelization
overhead may cause large scalability degradation [21] and have considerably large effects on speedup and
efficiency.

A discussion of the implications and research avenues for accounting for parallelization overhead is
provided in Section 6.2. Future research can build on these ideas to obtain tighter bounds on speedup and
efficiency, and to derive recommendations for the optimal choice of the number of PPUs to use.

Third, in my analysis I focus on homogeneous parallel computing environments. I acknowledge that,
in modern parallel computing environments, parallel processing units are not necessarily equally potential
in their computing capabilities and that a substantial body of literature on speedup in such heterogeneous
computing environments exist; see, for example, the surveys on heterogeneous multicore environments of
Al-Babtain et al. [2] and Al-hayanni et al. [3]. Many works suggest extensions of Amdahl’s law, Gustafson’s
law and/or Sun and Ni’s Law for such environments (e.g., [20, 22, 42, 31, 45, 26, 25]). Studies on speedup
and efficiency properties of architecture-dependent laws are particularly helpful for the design of multi-core
environments. Future work may extend my generic speedup model by concepts of different types of PPUs
as suggested in the literature and adapt my theoretical analysis to heterogeneous settings.

Finally, merging the two abovementioned research streams leads to the consideration of speedup

and efficiency in heterogeneous parallel computing environments under the consideration of overhead
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(functions). My model and theoretical analysis may be extended in both regards, drawing on prior work.
For example, Huang et al. [21] suggest an extension of Amdahl’s law and Gustafson’s law in architecture-
specific multi-core settings by considering communication overhead and area constraints; Pei et al. [29]
extend Amdahl’s law for heterogeneous multicore processors with the consideration of overhead through
data preparation; and Morad et al. [27] analyze overhead as a result of synchronization, communication and
coherence costs based upon Amdahl’s model for asymmetric cluster chip multiprocessors.

With the suggestion of a generic and unifying speedup (and efficiency) model and its asymptotic analysis,
I hope to provide a theoretical basis for and typology of scalability of parallel algorithms in homogeneous
computing environments. Future research can draw upon and extend my research results to address various

extensions of my setting.
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A. Calculations of speedup limits

We rewrite (I) as follows:

s-cf-N"‘f s-cy

()=

and obtain

S.cf.Naf_i_&.N(ag_ah) B S.cf_l_ﬁ.Nag_ah_af
Ch Ch

Las>a, —a,

S'Cf dAr=0aA, —
p'cg’ f_ g h

Cn

s~cf+

O,af <a, —a,

(50

61y

(52)

(53)

It should be noticed that, in contrast to the limits in equations (51) and (52), which show upper bounds,

the limit in equation (53) represents a lower bound.

We rewrite (II) as follows:

' p . Cg
ar>a
- pc, O f g
s Nas—ay) 8
c + N
N“ P
pc, & _ s =a
11 = £ =2 peg 20 g
( ) S'C/-'Naf+%~N(“g_“h) S - cf + N
p- cg . N(ag_af)
. , 0, <
s-cy + peg cp - N(ag—ah—af) f g
L Ch

For equation (54), we obtain

fiman =0

af>ag

(54)

(35)

(56)

7
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For equation (55), we obtain

p-c
£ ay =ag,a,>0 (58)
N Cf
llmN_)oo(II) = p-c
g ar=a,a,=0 59)
p.cg s f - Yg» h —
S Cf + —
Ch
For equation (56), we obtain
. prcg N .
]\171_1)110o —g e =00 (O(N)), ay <ag ap>0,a, —a,—a; 20 (60)
N(ag—ah—af) ch

p-cg- N@=ap)

limy_ (I1) =1 lim =00 (O(N™)), a; < ag, @, > 0,0, —a, —ay <0 (61)

N—co S - cf + ﬂ . N(ag_ah_af)
Ch
D-cg
scp PCy
N@ ) ¢y

lim

Hm =cp, ap <ag,a, =0 (62)

It should be noticed that, in contrast to the limits in equations (58), (59) and (62), which show upper

bounds, the limit in equation (57) represents a lower bound.

B. Calculations of efficiency limits

O,ag—ah—af+1>0 (63)
. . s-Cc
limy_(I") = limy_ SA(:/-~N+IE~]\;("E7“’17"/H) =30, ¢, —ay —a;+1=0 (64)
<h
0, ap —ap —a,+1<0 (65)

It should be noticed that the limits in equations (63) to (65) all show lower bounds.
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We rewrite (I1") as follows:

preg N 1 | 66
< - L > 1, Z -
. PRy rR— Q< a ay ap > a, —a, (66)
Ch
(ap—1)
pc, N p-c,-N
(II,) = e .N(aerl)_fﬂ.N(“g_“h‘H) =X ﬁ’ af < ag - l,ah > 1,af < ag — ap (67)
f ch W ?
D¢
, else (68)
s-c, - N@—atD) ¢ P NaD)]
f Ch
and obtain
0, af>ag—1,05ahsl (69)
0, af>ag—1,ah> 1 (70)
0, af=ag—l,0§ah§1 71
D¢
. +ﬂ,af=ag—1,ah=1 (72)
S Cf o
p-c
Sap=ag— La,>1 (73)
limy_, (11" =1 S-¢r
0, ar<a,-1,0<a,<1 74)
Chs Ay <@g —lap =1 (75)
0 (ON% ™), ay <a, - La,>la;>a, —a, (76)
00 (ON™™Y), a; <a,— 1,0, > La, =a, —a, 7
o ON“N), ay <ay—1,a,> 1,07 <a, —a, (78)

It should be noticed that the limits in equations (69) to (74) all show lower bounds while the limit in

equation (75) is an upper bound.

C. Computational experiments

C.1. Experiment 1: Parallel matrix multiplication with fixed workload
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Table 4
Computational results of matrix multiplication with fixed size of all matrices
i S(N) E(N)

N- | T(N) fin ms} Theor. Comp. Theor. Comp.
1 1,529,020 - - - -
2 953,760 1.953898 | 1.603150 | 0.976949 | 0.801575
4 493,262 3.735577 | 3.099813 | 0.933894 | 0.774953
8 270,447 6.865980 | 5.653677 | 0.858248 | 0.706710

16 163,341 11.817493 | 9.360908 | 0.738593 | 0.585057

32 100,269 18.481672 | 15.249180 | 0.577552 | 0.476537

64 74,392 25.739145 | 20.553555 | 0.402174 | 0.321149

128 64,154 32.027504 | 23.833588 | 0.250215 | 0.186200

C.2. Experiment 2: Parallel LU decomposition with variable workload

Using the algorithm shown in Figure 6, I determine the number of calculations along the outer loop that

iterates over the variable i. In the first iteration (i = 1), the elements L U= 2 ... z) and the elements U il

(j,I = 2...z) are calculated and assigned, for a total of (z — 1) - z calculations. Similarly, in the second

iteration (i = 2), the elements L;, (j = 3...z) and the elements U, (j,! = 3... z) are calculated and

assigned; i.e., a total of (z — 2) - (z — 1) calculations are required. In general, in iteration i, the number of

required calculations equals (z — i) - (z — i + 1). This yields

z—1 z—1

8(z) = Z[(Z—i)'(z—i+1)]=2[zz—z-i+z—z-i+i2—i]
i=1 i=1

z—1 z

-1 z—1 z—1
= Y |2+z+i-(mz—z=D+] =) [Z+2]+ D [(2z-1)-i]+ )
1 i=1 i=1

i=1 i=
z—1 z—1
= (z—1)-(z2+z)—(2z+1)-Zi+2i2
i=1 i=1
z-(z—1)+z-(z—1)'(2z—l)

= z3+z2—zz—z—(22+1)-

2 6
3 z-(z=1)-[2z-1)-3-2z+1)]
= z —z+ 5
2 _5). (=47 — 2 _ 5. (=27 —
_ Z3_Z+(z z) - (—4z 4)=23_z+(2 z)-(-2z-2)
6 3
—2z3 +2
= 23_Z+(Z3—+Z)=Z3—Z—§Z3+%Z=%Z3+%Z=%(Z3—z
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Table 5
Data points of LR decomposition (z; =100)

i N =2 z 8(N, zy) SreducedN-21) | h(N.z;) | h(N.z))/N
1 2 200 2.6666e + 06 | 1.33835¢ + 06 1.99245 0.996227
2 4 400 2.13332e + 07 | 5.3634e + 06 3.97755 0.994388
3 8 800 1.70666e + 08 | 2.14733e + 07 7.94784 0.99348
4 16 1,600 1.36533e + 09 | 8.59323e + 07 15.8885 0.993029
5 32 3,200 1.09227e + 10 | 3.43807e + 08 31.7697 0.992805
6 64 6,400 8.73813e + 10 | 1.37538e + 09 63.5323 0.992693
7 128 12,800 6.99051e + 11 | 5.50185¢ + 09 127.057 0.992636
8 256 25,600 5.59241e+ 12 | 2.2008e + 10 254.108 0.992608
9 512 51,200 4.47392¢ + 13 | 8.80333¢ + 10 508.208 0.992594
10 1024 102,400 3.57914e + 14 | 3.52136e + 11 1016.41 0.992587
11 2048 204, 800 2.86331e+ 15 | 1.40855¢ + 12 2032.81 0.992584
12 4096 409, 600 2.29065¢ + 16 | 5.6342¢ + 12 4065.62 0.992582
13 8192 819,200 1.83252e + 17 | 2.25368e + 13 8131.23 0.992581
14 16384 1.6384e + 06 | 1.46602¢ + 18 | 9.01473e + 13 16262.4 0.992581
15 32768 3.2768¢ + 06 | 1.17281e + 19 | 3.60589¢ + 14 32524.9 0.992581
16 65536 6.5536e + 06 | 9.3825¢+ 19 | 1.44236e + 15 65049.8 0.992581
17 131072 1.31072e 4+ 07 7.506e + 20 5.76943e + 15 130100 0.992581
18 262144 2.62144e + 07 | 6.0048¢ +21 | 2.30777e+ 16 260199 0.99258
19 524288 5.24288e + 07 | 4.80384e +22 | 9.23109¢ + 16 520398 0.99258
20 | 1.04858¢ + 06 | 1.04858e + 08 | 3.84307e +23 | 3.69243¢ + 17 | 1.0408e + 06 0.99258

In the context of determining the scaling function A, the Tables 5-8 show data points of N, §(N, z;),

8 roduced N> 21), (N, z,), and (R(N, z;)/ N) for various values of the number of rows/columns (z;) of the

input matrix.
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Table 6
Data points of LR decomposition (z; =1,000)
i N =2 z 8(N,z)) 8roduced(N»Z1) h(N,z,) h(N,z,)/N
1 2 2,000 2.66667¢ + 09 | 1.33383¢ + 09 1.99925 0.999625
2 4 4,000 2.13333¢ 4+ 10 | 5.33633e + 09 3.99775 0.999438
3 8 8,000 1.70667e + 11 | 2.13473e + 10 7.99475 0.999344
4 16 16,000 1.36533e + 12 | 8.53933¢ + 10 15.9888 0.999297
5 32 32,000 1.09227e + 13 | 3.4158le+ 11 31.9768 0.999274
6 64 64,000 8.73813e + 13 | 1.36634e + 12 63.9528 0.999262
7 128 128,000 6.99051e + 14 | 5.4654e + 12 127.905 0.999257
8 256 256,000 5.59241e+ 15 | 2.18616e + 13 255.809 0.999254
9 512 512,000 4.47392e + 16 | 8.74467¢ + 13 511.617 0.999252
10 1024 1.024e + 06 3.57914e + 17 | 3.49787e + 14 1023.23 0.999252
11 2048 2.048¢ + 06 | 2.86331e+ 18 | 1.39915¢ + 15 2046.47 0.999251
12 4096 4.096¢ + 06 2.29065¢ + 19 | 5.5966e + 15 4092.93 0.999251
13 8192 8.192¢ + 06 | 1.83252¢ +20 | 2.23864e + 16 8185.86 0.999251
14 16384 1.6384e + 07 | 1.46602¢ +21 | 8.95456e + 16 16371.7 0.999251
15 32768 3.2768¢ + 07 | 1.17281e +22 | 3.58182¢ + 17 327435 0.999251
16 65536 6.5536e + 07 9.3825e +22 | 1.43273e+ 18 65486.9 0.999251
17 131072 1.31072¢ + 08 | 7.506e+23 | 5.73092e¢ + 18 130974 0.999251
18 262144 2.62144e + 08 | 6.0048e +24 | 2.29237e+ 19 261948 0.999251
19 524288 5.24288e + 08 | 4.80384e +25 | 9.16947e + 19 523895 0.999251
20 | 1.04858¢ 4+ 06 | 1.04858e + 09 | 3.84307e +26 | 3.66779¢ + 20 | 1.04779¢ + 06 0.999251
Table 7
Data points of LR decomposition (z; =10,000)
i N =2 z S(N.z) | SrequeedN.2)) | h(N,z)) | h(N,z))/N
1 2 20,000 2.66667e + 12 | 1.33338e + 12 1.99992 0.999962
2 4 40,000 2.13333¢ + 13 | 5.33363e + 12 3.99978 0.999944
3 8 80,000 1.70667e + 14 | 2.13347e + 13 7.99948 0.999934
4 16 160, 000 1.36533¢ + 15 | 8.53393e + 13 15.9989 0.99993
5 32 320,000 1.09227¢ + 16 | 3.41358e + 14 31.9977 0.999927
6 64 640, 000 8.73813e + 16 | 1.36543e + 15 63.9953 0.999926
7 128 1.28e 4 06 6.99051e 4+ 17 | 5.46174e + 15 127.99 0.999926
8 256 2.56¢ + 06 5.59241e+ 18 | 2.1847e + 16 255.981 0.999925
9 512 5.12e + 06 4.47392e + 19 | 8.73879¢ + 16 511.962 0.999925
10 1024 1.024e +07 | 3.57914e +20 | 3.49552¢ + 17 1023.92 0.999925
11 2048 2.048e 4+ 07 2.86331e+21 | 1.39821e + 18 2047.85 0.999925
12 4096 4.096e +07 | 2.29065e 422 | 5.59282¢ + 18 4095.69 0.999925
13 8192 8.192e 4+ 07 1.83252e + 23 | 2.23713e + 19 8191.39 0.999925
14 16384 1.6384e + 08 | 1.46602¢ + 24 | 8.94852¢ + 19 16382.8 0.999925
15 32768 3.2768e +08 | 1.17281le+25 | 3.57941e + 20 32765.5 0.999925
16 65536 6.5536e +08 | 9.3825¢+25 | 1.43176e+21 65531.1 0.999925
17 131072 1.31072e + 09 7.506e + 26 5.72705¢e + 21 131062 0.999925
18 262144 2.62144e 4+ 09 | 6.0048e 427 | 2.29082¢ + 22 262124 0.999925
19 524288 5.24288e + 09 | 4.80384¢ +28 | 9.16328e + 22 524249 0.999925
20 | 1.04858e +06 | 1.04858e+ 10 | 3.84307¢ +29 | 3.66531e+23 | 1.0485¢ +06 | 0.999925
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Data points of LR decomposition (z; =100,000)
i N=2 z 8(N.z) | &reauceaN.z) | h(N.z)) | h(N.z))/N
1 2 200, 000 2.66667¢ + 15 | 1.33334e + 15 1.99999 0.999996
2 4 400, 000 2.13333e¢ 4+ 16 | 5.33336¢ + 15 3.99998 0.999994
3 8 800, 000 1.70667e + 17 | 2.13335¢ + 16 7.99995 0.999993
4 16 1.6e + 06 1.36533¢ + 18 | 8.53339¢ + 16 15.9999 0.999993
5 32 3.2e + 06 1.09227¢ + 19 | 3.41336e + 17 31.9998 0.999993
6 64 6.4e + 06 8.73813¢ + 19 | 1.36534¢ + 18 63.9995 0.999993
7 128 1.28¢ + 07 6.99051e + 20 | 5.46137¢ + 18 127.999 0.999993
8 256 2.56e + 07 5.59241e + 21 | 2.18455e + 19 255.998 0.999993
9 512 5.12¢ + 07 4.47392¢ +22 | 8.7382¢ + 19 511.996 0.999993
10 1024 1.024e + 08 3.57914e + 23 | 3.49528e + 20 1023.99 0.999993
11 2048 2.048¢ +08 | 2.86331e+24 | 1.39811e + 21 2047.98 0.999993
12 4096 4.096¢ + 08 2.29065¢ + 25 | 5.59245e + 21 4095.97 0.999993
13 8192 8.192¢ + 08 | 1.83252¢ +26 | 2.23698¢ + 22 8191.94 0.999993
14 16384 1.6384e + 09 | 1.46602¢ + 27 | 8.94792¢ + 22 16383.9 0.999993
15 32768 3.2768¢+09 | 1.17281e +28 | 3.57917e + 23 32767.8 0.999993
16 65536 6.5536¢ + 09 9.3825¢ + 28 1.43167¢ + 24 65535.5 0.999993
17 131072 1.31072¢ + 10 | 7.506e +29 | 5.72667¢ + 24 131071 0.999993
18 262144 2.62144e 4+ 10 | 6.0048e + 30 | 2.29067¢ + 25 262142 0.999992
19 524288 5.24288e + 10 | 4.80384¢ + 31 | 9.16267¢ + 25 524284 0.999993
20 | 1.04858¢ + 06 | 1.04858¢ + 11 | 3.84307¢ + 32 | 3.66507¢ +26 | 1.04857¢+06 | 0.999993
Table 9
Computational results of LU matrix decomposition with variable size of matrices
i S(N) E(N)
N P)PUs | T(N
#(P)PUs (N) {inms] Theor. Comp. Theor. Comp.
1 1 2 - - - -
1 21
2 5 10 1.997481 2.100000 | 0.998741 | 1.050000
1 167
4 2 35 3.998107 4771429 | 0.999527 | 1.192857
1 1,053
8 5 T 7.998896 9.486486 | 0.999862 | 1.185811
1 10,255
16 15.999408 | 17.293423 | 0.999963 | 1.080839
16 593
1 94,539
32 31.999695 | 31.628973 | 0.999990 | 0.988405
32 2,989
1 1
64 831,699 63.999844 | 46.016323 | 0.999998 | 0.719005
64 18,074
1 5,383,229
128 127.999924 | 26.609865 | 0.999999 | 0.207890
128 202,302

#(P)PUs: number of (parallel) processing units.
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D. Mathematical requirements on overhead functions [15]

Flatt and Kennedy [15] formulate the following five requirements on a parallelization overhead function
z:R->R:

1. zis continuous and twice differentiable with respect to N.

2. z(1)=0

3. Z/(N) >0 VN >1

4. N-Z'/(N)+2-zZ/(N)>0 VN >1

5. There exists N; > 1 such that z(N;) = 1.

Lemma D.1. Each function z(N) :=c,- N% —c, with c,, a, > 0 meets the above requirements for N > 1.

Proof. 1 prove any of the five conditions separately:

1. z is apparently continuous and twice differentiable with z/(N) = ¢, - a, - N%~! and z//(N) =
c,-a,-(a,—1)- N%2 Va,c,>0

2.z)=c,- 1% —-¢c,=0 Va,c,>0

3. Z(N)=c,-a,- N~'>0  Va,c,>0 VN2>1

4. N-Z"(N)+2-Z/(N)=N-c,-a,-(a,— 1) N:24+2.c,-a,- N =c,-a, - (a,+1)- N="1 >

0 Va,c,>0 VN 2>1
1
5. Setting 2(Ny) = 1 leads toc, - N —¢, = 1 & N = = o N, = (—“) >1  Ve,a,>0

z Cz

O]
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