
Machine learning of continuous and discrete
variational ODEs with convergence

guarantee and uncertainty quantification

Christian Offen
Paderborn University, Department of Mathematics

Warburger Str. 100, 33098 Paderborn, Germany

christian.offen@uni-paderborn.de

February 18, 2025

The article introduces a method to learn dynamical systems that are gov-
erned by Euler–Lagrange equations from data. The method is based on
Gaussian process regression and identifies continuous or discrete Lagrangians
and is, therefore, structure preserving by design. A rigorous proof of conver-
gence as the distance between observation data points converges to zero is
provided. Next to convergence guarantees, the method allows for quantifi-
cation of model uncertainty, which can provide a basis of adaptive sampling
techniques. We provide efficient uncertainty quantification of any observable
that is linear in the Lagrangian, including of Hamiltonian functions (energy)
and symplectic structures, which is of interest in the context of system iden-
tification. The article overcomes major practical and theoretical difficulties
related to the ill-posedness of the identification task of (discrete) Lagrangians
through a careful design of geometric regularisation strategies and through an
exploit of a relation to convex minimisation problems in reproducing kernel
Hilbert spaces.

1. Introduction

The identification of models of dynamical systems from data is an important task in
machine learning with applications in engineering, physics, and molecular biology. Data-
driven models are required when explicit descriptions for the equations of motions of dy-
namical systems are either not known or analytic descriptions are too computationally
complex for large scale simulations. This contribution focuses on structure-preserving
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machine learning of dynamical systems based on Gaussian process regression and Gaus-
sian fields. The framework allows for a rigorous convergence analysis and numerically
efficient uncertainty estimation. The proposed method is a Lagrangian-based data-
driven model. Let us briefly contrast the approach to Hamiltonian data-driven models
and other Lagrangian-based models.

Hamiltonian data-driven models Physics-based, data-driven modelling aims to exploit
prior physical or geometric knowledge when developing data-driven surrogate models of
dynamical systems. Recent activities have developed methods to learn Hamiltonian
systems, i.e. systems of the form

ż = J−1∇H(z), J =

(
0d×d −1d×d
1d×d 0d×d

)
H : R2d → R2d (Hamiltonian),

or port-Hamiltonian systems from data by approximating the Hamiltonian, pseudo-
, or port-Hamiltonian structure by neural networks or Gaussian processes [25, 21, 7,
43, 41, 17]. Additionally, Lie group symmetries are identified in [18]. Alternatively, the
symplectic flow map of Hamiltonian systems can be approximated [50, 11, 29]. The data-
driven identification of interaction-based agent systems in [23, 31] or general Hamiltonian
systems in [28] employ similar statistical learning methods as in this article but in the
context of Hamiltonian systems. In contrast to the variational models considered in this
article, Hamiltonian data-driven models mostly require prior knowledge of the symplectic
phase space structure and observations of position and momenta, while the proposed
Lagrangian-based methods only require observations of positions. Symplectic structures
and Hamiltonians, however, can be derived from a Lagrangian model in a post-processing
step. Approaches based on identifying symplectic structures or canonical coordinates
from data together with a Hamiltonian have been considered, for instance, in [7, 13].
However, these do not provide a systematic discussion of uncertainty quantification or
regularisation of this ill-posed inverse problem.

Continuous Lagrangian data-driven models Similarly to Hamiltonian data-driven mod-
els, variational principles for dynamical systems have been identified from data by iden-
tifying a Lagrangian function of the system [16, 37, 22, 30]. We refer to [34, 4] for an
introduction to Lagrangian mechanics. To recall briefly, a dynamical system is governed
by a variational principle or a least action principle, if motions constitute critical points
of an action functional. In case of an autonomous first-order time-dependent system,
the action functional is of the form

S(x) =

∫ t1

t0

L(x(t), ẋ(t))dt, (1)

where x : [t0, t1] → Rd is a curve with derivative denoted by ẋ. The function L is
a Lagrangian. A function x : [t0, t1] → Rd is a solution or motion if the action S is
stationary at x for all variations δx : [t0, t1]→ Rd that fix the endpoints t0, t1. Regularity
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assumptions on L and x provided, this is equivalent to the condition that x fulfils the
Euler-Lagrange equations

EL(L)(x(t), ẋ(t), ẍ(t)) = 0, t ∈ (t0, t1) (2)

with

EL(L) =
d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
=

∂2L

∂ẋ∂ẋ
ẍ+

∂2L

∂ẋ∂x
ẋ− ∂L

∂x
. (3)

Here, ∂2L
∂ẋ∂ẋ =

(
∂2L

∂ẋk∂ẋl

)d
k,l=1

, ∂2L
∂ẋ∂x =

(
∂2L

∂ẋk∂xl

)d
k,l=1

refer to d × d-dimensional blocks of

the Hessian of L and ∂L
∂x denotes the gradient. Details may be found in [24, 51], for

instance.
In the data-driven context, L is sought as a function of x = (x, ẋ) such that (3) is

fulfilled at observed data points D = {(x, ẋ, ẍ)}Mj=1. Once L is known, (2) can be solved
with a numerical method such as a variational integrator [35].

Discrete Lagrangian data-driven models Instead of learning continuous variational
principles, in [46] Qin proposes to learn discrete Lagrangian theories by approximating
discrete Lagrangians. In discrete Lagrangian theories, motions x(t) are described at
discrete, equidistant times t0 < t1 < . . . < tN by a sequence of snapshots x = (xk)

N
k=0 ⊂

Rd. The motions constitute stationary points of a discrete action functional

Sd(x) =
N∑
k=1

Ld(xk−1, xk)

with respect to discrete variations of the interior points x1, . . . , xN−1. In other words,
x is a solution of the discrete field theory if ∂Sd

∂xk
(x) = 0 for all 1 ≤ k < N . This is

equivalent to the discrete Euler–Lagrange equation

DEL(Ld)(xk−1, xk, xk+1) = 0, 1 ≤ k < N (4)

with
DEL(Ld)(xk−1, xk, xk+1) = ∇2Ld(xk−1, xk) +∇1Ld(xk, xk+1). (5)

Here ∇1Ld and ∇2Ld denote the partial derivatives with respect to the first or second
component of Ld, respectively. Details on discrete mechanics can be found in [35].

For the identification of discrete Lagrangians from data, training data D = {x(tk)}k
consists of snapshots of motions of the dynamical system at discrete time-steps tk. This
needs to be contrasted to training of continuous Lagrangians which requires observations
of first and second order derivatives of solutions, i.e. data of the form x̂ = (x, ẋ, ẍ).

The class of discrete Lagrangian systems is expressive enough to describe motions of
continuous Lagrangian systems on bounded open subsets of Rd at the snapshot times
(tk)k exactly, i.e. without discretisation error, provided the step-size ∆t = tk+1 − tk is
small enough, see [35, §1.6]. Thus, identifying Ld instead of L is fully justified from a
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modelling viewpoint. In case a continuous Lagrangian is required for system identifica-
tion tasks or highly accurate predictions of velocity data, in the article [37] the author
provides a method based on Vermeeren’s variational backward error analysis [56] to re-
cover continuous Lagrangians from data-driven discrete Lagrangians as a power series
in the step-size of the time-grid.

Ambiguity of Lagrangians The data-driven identification of a continuous or discrete
Lagrangian density is an ill-defined inverse problem as many different Lagrangian den-
sities can yield equations of motions with the same set of solutions. This provides a
challenge in a machine learning context and can lead to badly conditioned identified
models that amplify errors [37]. In [42, 40] the author develops regularisation strategies
that optimise numerical conditioning of the learnt theory, when the Lagrangian density
is modelled as a neural network. The present article relates to Gaussian fields to allow
for efficient uncertainty quantification and a theoretical convergence analysis.

Novelty The article

1. introduces a method to learn continuous and discrete Lagrangians from data based
on Gaussian process regression with a rigorous convergence analysis as the distance
between data points converges to zero.

2. Moreover, the article systematically discusses the ambiguity or Lagrangians and
regularisation strategies for kernel-based learning methods for Lagrangians.

3. Furthermore, the article provides a statistical framework that allows for efficient
uncertainty quantification of any linear observable of the dynamical system, such
as Hamiltonian functions (energy) or symplectic structure, for instance. The un-
certainty quantification does not require sampling but only to solve linear systems
of equations.

This needs to be contrasted to aforementioned methods of the literature for learning
Lagrangians, for which convergence guarantees are not provided or which do not provide
uncertainty quantification of linear observables. Moreover, in the literature discussions
on removing ambiguity of Lagrangians in data-driven identification are mostly absent:
its necessity is sometimes avoided by assuming that torques are observed [22], an explicit
mechanical ansatz is used [2]. In other works regularisation is done implicitly without
discussion [16], ad hoc as in the author’s prior work [37], or relates to neural networks
[30, 42, 40] only.

Methodologically, the method of the present article stands in the context of meshless
collocation methods [52] for solving linear partial differential equations since it solves (3)
for L. It overcomes the major technical difficulty to prove convergence even though the
Lagrangian density is not unique even after regularisation. For this, the article exploits
a relation between posterior means of Gaussian processes and constraint optimisation
problems in reproducing kernel Hilbert spaces that was presented in a game theory
context by Owhadi and Scovel in [44] and was employed to solve well-posed partial
differential equations using Gaussian Processes in [12].
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Outline The article proceeds as follows: Section 2 continues the review of continu-
ous and discrete variational principles that was started in the introduction. Moreover,
it presents symplectic structure and Hamiltonians as linear observables of Lagrangian
systems and it reviews the ambiguity of Lagrangians. Section 3 introduces methods to
regularise the inverse problem of finding Lagrangian densities given dynamical data. In
Section 4 we briefly review reproducing kernel Hilbert spaces and aspects of Gaussian
fields. A more detailed discussion of the underlying theoretical concepts is provided in
Appendix A. The section proceeds with an introduction of our method to learn con-
tinuous and discrete Lagrangians and to provide uncertainty quantifications for linear
observables. Section 5 contains numerical experiments including identification of a La-
grangian and Hamiltonian for the coupled harmonic oscillator and convergence tests.
Section 6 provides a theoretical convergence analysis of the method including a proof
of the method’s convergence. Additionally, convergence rates are derived. The article
concludes with a summary in Section 7.

2. Background - Lagrangian dynamics

2.1. Continuous Lagrangian theories

2.1.1. Definition of associated Hamiltonian and symplectic structure

Let us continue our review of Lagrangian dynamics to fix notations and to explain the
ambiguity that is inherent in the inverse problem of identifying (discrete) Lagrangians
to observed motions. We postpone a provision of a more detailed functional analytic
settings to the convergence analysis of Section 6 and refer to the literature on variational
calculus [24, 51] for details.

We consider the Hamiltonian to a Lagrangian defined via

Ham(L)(x, ẋ) = ẋ>
∂L

∂ẋ
(x, ẋ)− L(x, ẋ). (6)

Here ẋ> denotes the transpose of ẋ ∈ Rd. The Hamiltonian Ham(L) is conserved along
solutions of (2). Moreover, we consider the symplectic structure related to L which is
given as the closed differential 2-form

Sympl(L) =
d∑
s=1

dxs ∧ d

(
∂L

∂ẋs

)
=

d∑
s,r=1

∂2L

∂xr∂ẋs
dxs ∧ dxr +

∂2L

∂ẋr∂ẋs
dxs ∧ dẋr. (7)

When ∂2L
∂ẋ∂ẋ is invertible everywhere, then the differential form Sympl(L) is non-degenerate

and, therefore, a symplectic form.1 As an aside, the motions (2) can be described as
Hamiltonian motions to the Hamiltonian Ham(L) and symplectic structure Sympl(L).
Moreover, we consider the induced momenta

Mm(L)(x, ẋ) =
∂L

∂ẋ
(x, ẋ). (8)

1Sympl(L) is the pull-back of the canonical symplectic form
∑d
s=1 dqs ∧ dps under the Legendre trans-

form TRd → T ∗Rd, (x, ẋ) 7→ (q, p) = (x, ∂L
∂ẋ

(x, ẋ)).
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Additionally, we consider the induced Liouville volume form given as the dth exterior
power of Sympl(L)

Vol(L) =
1

d!
(Sympl(L))d = det

(
∂2L

∂ẋr∂ẋs

)
dx1 ∧ dẋ1 ∧ . . . ∧ dxd ∧ dẋd. (9)

It will be of significance later that EL, Ham, Sympl, Mm are linear in the Lagrangian
L, while Vol is not.

Example 1 Consider a mechanical Lagrangian L(x, ẋ) = 1
2 ẋ
>Mẋ− V (x) for a contin-

uously differentiable potential V : Rd → R and a symmetric, positive definite matrix M
(mass matrix). The equations of motions are 0 = EL(L)(x, ẋ, ẍ) = ẍ + ∇V (x), where
∇V = ∂V

∂x denotes the gradient of V . The conjugate momentum is p := Mm(L)(x, ẋ) =
Mẋ. The Hamiltonian function is H(x, p) = Ham(L)(x,M−1p) = 1

2p
>M−1p + V (x).

The symplectic form is ω = Symp(L) =
∑d

s=1 dxs ∧ dps. In the frame induced by the
coordinates (x, p) of the phase space the symplectic form is represented by the block
matrix

J =

(
0n×n −1n×n
1n×n 0n×n

)
.

Here 0n×n and 1n×n denote the zero and the identity matrix of size n× n, respectively.
In the coordinates (x, p), the equations of motions are Hamilton’s equations in their
standard form (

ẋ
ṗ

)
= J−1∇H(x, p) =

(
M−1p
−∇V (x)

)
The volume form Vol(L) = det(M)dx1∧dẋ1∧ . . .∧dxd∧dẋd = dx1∧dp1∧ . . .∧dxd∧dpd

is the standard Euclidean volume form on the phase space. 2

2.1.2. Ambiguity of Lagrangian densities

The ambiguity of Lagrangians in the description of variational dynamical systems has
been the subject of various articles in theoretical physics including [27, 33, 32]. La-
grangians can be ambiguous in two different ways:

1. Lagrangians L and L̃ can yield the same Euler–Lagrange operator (3) up to rescal-
ing, i.e.

ρEL(L) = EL(L̃), ρ ∈ R \ {0}

and, therefore, the same Euler–Lagrange equations (2) up to rescaling. We call L
and L̃ (gauge-) equivalent. For equivalent Lagrangians L, L̃ there exists ρ ∈ R\{0},
c ∈ R such that L̃− ρL− c is a total derivative

L̃− ρL− c = dtF
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for a continuously differentiable function F : Rd → R, where

dtF (x, ẋ) = ẋ>∇F (x) =
d∑
s=1

ẋs
∂F

∂xs
(x) (10)

(See, e.g. [24].) We have restricted ourselves to autonomous Lagrangians.

2. More generally, two Lagrangians L and L̃ can yield the same set of solutions x, i.e.

EL(L)(x(t), ẋ(t)), ẍ(t)) = 0 ⇐⇒ EL(L̃)(x(t), ẋ(t)), ẍ(t)) = 0

for all regular curves x : [t0, t1] → Rd even when they are not equivalent in the
sense of Item 1. In such a case, L̃ is called an alternative Lagrangian to L.

Example 2 (Affine linear motions) For any twice differentiable g : Rd → R
with nowhere degenerate Hessian matrix Hess(g), the Lagrangian L(x, ẋ) = g(ẋ)
describes affine linear motions in Rd:

0 = EL(L) = Hess(g)(ẋ)ẍ. 2

In general, the existence of alternative Lagrangian densities is related to additional
geometric structure and conserved quantities of the system [27, 33, 32, 10]. This arti-
cle mainly considers ambiguities by equivalence, which are exhibited by all variational
systems.

Lemma 1 Let L be a Lagrangian depending on (x, ẋ). Consider a continuously differ-
entiable F : Rd → R, ρ ∈ R, c ∈ R, and L̃ = ρL+ dtF + c. We have

EL(L̃) = ρEL(L)

Mm(L̃) = ρMm(L) +∇F
Sympl(L̃) = ρSympl(L)

Vol(L̃) = ρdVol(L)

Ham(L̃) = ρHam(L)− c

Here ∇F denotes the gradient of F . Moreover, if ρ 6= 0 then{
(x, ẋ) : det

(
∂2L

∂ẋ∂ẋ

)
(x, ẋ) 6= 0

}
=

{
(x, ẋ) : det

(
∂2L̃

∂ẋ∂ẋ

)
(x, ẋ) 6= 0

}
. (11)

2

Proof The transformation rules of EL, Mm, Sympl, Vol, and Ham are obtained by a
direct computation. The assertion (11) follows from the transformation rule for Vol or

directly by observing that ∂2L̃
∂ẋ∂ẋ = ρ ∂2L

∂ẋ∂ẋ . �

The following Corollary is a restatement of (11).

Corollary 1 The set where a Lagrangian L is non-degenerate, i.e. where ∂2L
∂ẋ∂ẋ is in-

vertible, is invariant under equivalence. 2
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2.2. Discrete Lagrangian systems

2.2.1. Associated symplectic structure

In analogy to the continuous case (Section 2.1.1) we define associated data to a discrete
Lagrangian density Ld : Rd×Rd → R following definitions in discrete variational calculus
[35]. The quantities

Mm−(Ld)(xj , xj+1) = −∇1Ld(xj , xj+1)

Mm+(Ld)(xj−1, xj) = ∇2Ld(xj−1, xj)

relate to discrete conjugate momenta at time tj . On motions x = (xk)
N
k=0 that fulfil (4),

Mm−(xk, xk+1) and Mm+(xk−1, xk) coincide for all 1 ≤ k < N . Moreover, denoting the
coordinate of the domain of definition Rd × Rd of Ld by (x0, x1) we define the 2-form

Sympl(Ld) =

d∑
r,s=1

∂2Ld
∂xs1∂x

r
0

dxs1 ∧ dxr0 (12)

and its dth exterior power normalised by 1
d!

Vol(Ld) = det

(
∂2Ld
∂x1∂x0

)
dx1

1 ∧ dx1
0 ∧ . . . ∧ dxd1 ∧ dxd0. (13)

When ∂2Ld
∂x1∂x0

is non-degenerate everywhere, then Sympl(Ld) is a symplectic form and

Vol(Ld) its induced volume form on the discrete phase space Rd×Rd. Sympl(Ld) is called
discrete Lagrangian symplectic form in [35, §1.3.2]. (For consistency with the continuous
theory Section 2.1.1 our sign convention differs from [35, §1.3.2]. A derivation can be
found in Appendix C.)

2.3. Ambiguity of discrete Lagrangians

In analogy to Section 2.1.2, if Ld is a discrete Lagrangian and L̃d(x0, x1) = ρLd(x0, x1)+
F (x1)− F (x0) + c for c ∈ R, ρ ∈ R \ {0}, and continuously differentiable F , then

ρDEL(Ld) = DEL(L̃d)

and Ld and L̃d are called (gauge-) equivalent. Non-equivalent discrete Lagrangians such
that the discrete Euler–Lagrange equations (4) have the same solutions are called alter-
native discrete Lagrangians.

The analogy of Lemma 1 for discrete Lagrangians is as follows.

Lemma 2 Let Ld be a discrete Lagrangian depending on (x0, x1). Consider a con-
tinuously differentiable F : Rd → R, ρ ∈ R, c ∈ R, and L̃d = ρLd + ∆tF + c with

8



∆tF (x0, x1) = F (x1)− F (x0). We have

DEL(L̃d) = ρDEL(Ld)

Mm−(L̃d)(x0, x1) = ρMm−(Ld)(x0, x1) +∇F (x0)

Mm+(L̃d)(x0, x1) = ρMm+(Ld)(x0, x1) +∇F (x1)

Sympl(L̃d) = ρSympl(Ld)

Vol(L̃d) = ρdVol(Ld)

Here ∇F denotes the gradient of F . Moreover, if ρ 6= 0 then{
(x0, x1) : det

(
∂2Ld
∂x0∂x1

)
(x0, x1) 6= 0

}
=

{
(x0, x1) : det

(
∂2L̃d
∂x0∂x1

)
(x0, x1) 6= 0

}
.

2

Proof The transformation rules of EL, Mm±, Sympl, Vol are obtained by a direct
computation. The assertion about invariance of non-degenerate points follows from the
transformation rule of Vol. �

3. Regularisation

In the machine learning framework that we will introduce in Section 4, we will employ
regularisation conditions to safeguard us from finding degenerate solutions to the inverse
problem of identifying a Lagrangian to given motions. Extreme instances of degenerate
solutions are Null-Lagrangians, for which EL(L) ≡ 0. These are consistent with any
dynamics but cannot discriminate curves that are not motions.

The following section serves two goals:

• We justify that the employed regularisation conditions are covered by the ambigu-
ities presented in Section 2. Therefore, imposing these on L does not restrict the
generality of the ansatz. We will also refer to these as normalisation conditions as
we will impose that these are fulfilled exactly by the data-driven model.

• The normalisation conditions (together with the system’s motions) do not de-
termine the Lagrangian uniquely. However, they guarantee that the sought La-
grangian is non-degenerate, provided that there are no true degenerate Lagrangians.
Furthermore, we show that the normalisation conditions determine the symplec-
tic structure Sym(L), the Hamiltonian Ham(L), and the Euler–Lagrange operator
EL(L) of the system uniquely, provided that no true alternative Lagrangians exist.
In the context of uncertainty quantification, this implies that any ambiguity in the
representation of the model L does not contribute to uncertainty in the Hamil-
tonian, the symplectic structure, or the equations of motions. This justifies the
approach towards uncertainty quantification in the article.

A reader mostly interested in the machine learning setting can skip ahead to Section 4.
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3.1. Preparation of the regularisation strategy

Proposition 1 Let xb = (xb, ẋb) ∈ TRd ∼= Rd × Rd, L̊ a Lagrangian, and x̂τ =
(xτ , ẋτ , ẍτ ) ∈ (Rd)3 with EL(L̊)(x̂τ ) 6= 0.2 Let cb ∈ R, pb ∈ Rd, cτ 6= 0. Then there
exists a Lagrangian L such that L is equivalent to L̊ and

L(xb) = cb, Mm(L)(xb) =
∂L

∂ẋ
(xb) = pb, (EL(L)(x̂τ ))k = cτ , (14)

where 1 ≤ k ≤ d is any index for which the kth component of EL(L̊)(x̂τ ) is not zero. 2

Proof Let c̊b = L̊(xb), p̊b = Mm(L̊)(xb), c̊τ = (EL(L̊)(x̂τ ))k (k th component). We set

ρ =
cτ
c̊τ
, F (x) = x>(pb − ρp̊b), c = cb − ẋ>b (pb − ρp̊b)− ρc̊b.

Now the Lagrangian L = ρL̊+ dtF + c is equivalent to L̊ and fulfils (14). �

While the equivalent Lagrangian L constructed in Proposition 1 is always non-degenerate
if L̊ is non-degenerate (by Lemma 1), this is not necessarily true for all Lagrangians gov-
erning the motions even when restricting to those that fulfil (14): indeed, in Example 2 of
affine linear motions governed by L̊(x, ẋ) = ẋ2, we can choose g such that L(x, ẋ) = g(ẋ)
has degenerate points at any points. However, when we exclude systems with alternative
Lagrangians, then we have the following Proposition.

Proposition 2 Let L̊ be a Lagrangian that is non-degenerate on some non-empty, con-
nected set O ⊂ TRd ∼= Rd × Rd. When no alternative Lagrangian to L̊ exists, then any
Lagrangian L with the property

EL(L̊)(x(t), ẋ(t), ẍ(t)) = 0 =⇒ EL(L)(x(t), ẋ(t), ẍ(t)) = 0

on O × Rd is either a null-Lagrangian (i.e. EL(L) ≡ 0) or is non-degenerate on O. 2

Proof As no alternative Lagrangian exists, there must be ρ, c ∈ R and F : Rd → R
such that on O

L = ρL̊+ dtF + c.

If L is not a null-Lagrangian on O, there must be x̂ ∈ O × Rd with EL(L)(x̂) 6= 0. Let
1 ≤ k ≤ d such that (EL(L)(x̂))k 6= 0. By Lemma 1

0 6= (EL(L)(x̂))k = ρ(EL(L̊)(x̂))k.

Thus ρ 6= 0. Non-degeneracy on O follows from Vol(L) = ρdVol(L̊). �

2This means that x̂τ = (xτ , ẋτ , ẍτ ) is any point that does not correspond to a motion of the dynamical
system described by L̊. For instance, when (xτ , ẋτ ) is an equilibrium point of the dynamics then we
can chose any ẍτ 6= 0. The assumption excludes trivial Lagrangians such as L̊ ≡ 0.

10



Remark 1 Under genericity assumptions on the dynamics with d ≥ 2, no alternative
Lagrangians exist [27]. If a generic dynamical system is governed by a non-degenerate
Lagrangian, then any Lagrangian L with EL(L) = 0 on all motions that is non-degenerate
anywhere, is non-degenerate everywhere. 2

Refer to Proposition 11 of Appendix B for an alternative normalisation strategy for
Lagrangians based on normalising symplectic volume. It is comparable to techniques
developed in [42] for neural network models of Lagrangians.

The following Proposition implies that the Euler–Lagrange operator (and thus the
representation of the equation of motions) and the Hamiltonian and symplectic structure
are uniquely determined when the normalisation condition (14) is fulfilled, provided that
no alternative Lagrangians exist.

Proposition 3 Let L̊ be a Lagrangian on TRd with (14) for some xb = (xb, ẋb) ∈ TRd,
1 ≤ k ≤ d, cb ∈ R, pb ∈ Rd, cτ ∈ R \ {0}. Then for any Lagrangian L with (14) that is
equivalent to L̊ we have

EL(L) = EL(L̊), Ham(L) = Ham(L̊), Sym(L) = Sym(L̊). 2

Proof L is of the form L = ρL̊ + dtF + c. The last condition of (14) implies ρ = 1.
Thus EL(L) = EL(L̊) and Sym(L) = Sym(L̊) by Lemma 1. With ρ = 1 and the first
two conditions (14) we have

Ham(L)(xb) = ẋ>b pb − cb = Ham(L̊)(xb).

Then Ham(L) = Ham(L̊) follows by Lemma 1. �

For discrete Lagrangians, we have the following analogy to Proposition 1.

Proposition 4 Let xb = (x0b, x1b) ∈ (Rd)2, x̂τ = (x0τ , x1τ , x2τ ) ∈ (Rd)3 and L̊d a
discrete Lagrangian with DEL(Ld)(x̂b) 6= 0. Let cb ∈ R, pb ∈ Rd, cτ ∈ R \ {0}. There
exists a discrete Lagrangian Ld such that Ld is equivalent to L̊d and

Ld(xb) = cb, Mm+(Ld)(xb) = pb, (DEL(Ld)(x̂τ ))k = cτ , (15)

where 1 ≤ k ≤ d can be chosen as any index for which the component of DEL(x̂b) is not
zero. 2

Proof Let c̊b = L̊d(xb), p̊b = Mm+(L̊d)(xb), c̊τ = (DEL(L̊d)(x̂b))k. We set

ρ =
cτ
c̊τ
, F (x) = x>(pb − ρp̊b), c = cb − ρc̊b − (x1b − x0b)

>(pb − ρp̊b).

Now the Lagrangian Ld = ρL̊d + ∆tF + c is equivalent to Ld and fulfils (15). �

Remark 2 A statement similar to Proposition 4 holds true with Mm− replacing Mm+.
Moreover, a statement in analogy to Proposition 2 can be obtained with discrete quan-
tities replacing their continuous counterparts. The details shall not be spelled out in
this context. Moreover, an alternative normalisation strategy based on regularising the
discrete symplectic volume is provided in Proposition 12 in Appendix B, where it is also
compared to regularisation strategies in the neural network context of [42]. 2
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3.2. Utilisation in a data-driven context

In the following section, we will consider the inverse problem of inferring a Lagrangian
or discrete Lagrangian from motion data. For this, we will augment the inverse problem
by normalisation conditions (14) or (15), respectively, for values of cb ∈ R, pb ∈ Rd,
and cτ ∈ R \ {0}. Proposition 1 or Proposition 4 show that this augmentation does not
restrict the generality of the ansatz. Although the conditions together with the true
dynamics do not determine the (discrete) Lagrangian uniquely, they do determine the
Euler–Lagrange operator EL(L) as well as the Hamiltonian and symplectic structure,
provided that the true dynamical system does not admit alternative Lagrangians. When
only limited data is observed, there is some uncertainty in the equations of motions
EL(L) = 0, the Hamiltonian, symplectic structure, or any linear observable in L that
we want to quantify. The normalisation conditions eliminate any artificial uncertainty
stemming from an ambiguous representation of the model.

Moreover, when all true Lagrangians are non-degenerate, so is the sought Lagrangian
in the augmented inverse problem (Proposition 2). Thus, the normalisation conditions
safeguard us from inferring degenerate Lagrangians that are consistent with the observed
motion data but fail to discriminate non-motions.

4. Data-driven method

4.1. Bayesian learning of continuous Lagrangians

In the following, we present a framework for learning a continuous Lagrangian from
observations of a dynamical system.

Let Ω ⊂ TRd ∼= Rd × Rd be an open, bounded subset. Our goal is to identify a
Lagrangian L : Ω → R based on observations x̂ = (x, ẍ) = (x, ẋ, ẍ) ∈ Ω × Rd for which
EL(L)(x̂) = 0 on all observations x̂ such that the dynamics (2) to L approximate the
dynamics of an unknown true Lagrangian Lref : Ω→ R. We interpret this task as seeking
a solution to the Euler–Lagrange equation (2) that we interpret as a partial differential
equation for L. We follow a Bayesian approach proposed in [12] and assume a Gaussian
field (see Appendix A for definitions) as a prior for L that we condition on fulfilling
the Euler–Lagrange equation (2) on the data points and on regularisation conditions
to obtain a posterior distribution for L. Even though in contrast to [12] our partial
differential equation is highly ill-posed, we prove in Section 6 that the posterior mean
converges against a true Lagrangian of the motions in the infinite data limit.

4.1.1. RKHS set-up and Gaussian fields

We consider the following set-up that makes use of the theory of reproducing kernel
Hilbert spaces (RKHS). Refer to [14, 44] for background material.

Consider a symmetric function K : Ω × Ω → R. Assume that K is positive definite,
i.e. for all finite subsets {x(j)}Mj=1 ⊂ Ω the matrix (K(x(i), x(j)))Mi,j=1 is positive definite.
´K is called kernel.

12



Consider the reproducing kernel Hilbert space (RKHS) U to K, i.e. consider the inner
product space

Ů =

L =

n∑
j=1

αjK(x(j), ·) | αj ∈ R, n ∈ N0, x
(j) ∈ Ω


with inner product defined as the linear extension of

〈K(x, ·),K(y, ·)〉 = K(x, y).

Then the Hilbert space U is obtained as the topological closure of Ů with respect to
〈·, ·〉. We denote the dual space of U by U∗. We define the map

K : U∗ → U, Φ 7→ K(Φ) with K(Φ)(x) = Φ(K(x, ·)). (16)

The map K : U∗ → U is linear, bijective, and symmetric, i.e. Ψ(K(Φ)) = Φ(K(Ψ)) for
Φ,Ψ ∈ U∗, and positive, i.e. Φ(K(Φ)) > 0 for Φ ∈ U∗ \ {0}.

Consider the canonical Gaussian field3 ξ ∈ N (0,K) on U , which is a weak random
variable with the following properties:

• For all φ ∈ U∗, φ(ξ) ∼ N (0, φ(K(φ))) is a centred Gaussian random variable.

• Moreover, for any finite collection Φ = (Φ1, . . . ,Φn) with Φj ∈ U∗ for 1 ≤ j ≤ n,
the random variable Φ(ξ)= (Φ1(ξ), . . . ,Φn(ξ)) is multivariate-normally distributed
Φ(ξ) ∈ N (0, κ) with covariance matrix given as κ = (Φi(K(Φj)))

n
i,j=1.

See Appendix A for a formal definition of Gaussian fields and existence statements
recalled from [44].

4.1.2. Data

Assume we observe distinct data points x̂(j) = (x(j), ẍ(j)) = (x(j), ẋ(j), ẍ(j)) ∈ Ω × Rd,
j = 1, . . . ,M of Lagrangian motions. Define ELx̂(j) : U → Rd as

ELx̂(j)(L) = EL(L)(x̂(j)) =
∂2L(x(j))

∂x∂ẋ
ẍ(j) +

∂2L(x(j))

∂x∂x
ẋ(j) − ∂L(x(j))

∂x

for 1 ≤ j ≤M . Furthermore, let xb = (xb, ẋb) ∈ Ω and consider Mmxb : U → Rd defined
as

Mmxb(L) = Mm(L)(xb) =
∂L

∂ẋ
(xb).

Moreover, let evxb : U → R with

evxb(L) = L(xb)

3The notion of a Gaussian field differs slightly from the notion of a Gaussian process [15, Def.3]. See
[45, §3.5-§4, paragraph 1] for further explanation. However, the literature refers to methods that
solve pdes using the concept of Gaussian fields as Gaussian processes based methods (e.g. [12, 6]).
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denote the evaluation functional. Collect these functionals in a linear map ΦM
b : U →

(Rd)M × Rd × R
ΦM
b = (ELx̂(1) , . . . ,ELx̂(M) ,Mmxb , evxb). (17)

For constants cb ∈ R, pb ∈ Rd let

yMb = (0, . . . , 0︸ ︷︷ ︸
M times

, pb, cb) ∈ (Rd)M × Rd × R.

Interpretation: When ΦM
b (L) = yMb for some L ∈ U , then L is consistent with the dy-

namical data and fulfils the normalisation conditions Mm(L)(xb) = pb, L(xb) = cb. The
condition (EL(L)(xb))k = cτ of Proposition 1 is left out due to practical considerations
that will be discussed later – see Remark 5.

4.1.3. Lagrangian as a conditional mean of Gaussian fields

Let us introduce the formulas required to infer a Lagrangian from data and predict
uncertainty in the identified equations of motions and other linear observables such
as Hamiltonian or symplectic structure. We postpone to Section 6 a more detailed
derivation and a justification of applicability of the theory of Gaussian fields, such as
the boundedness of certain operators. The following considers the noise-free case. We
will make use of the following assumptions that are fulfilled when the observed system
is governed by the Euler–Lagrange equations to a non-degenerate Lagrangian L ∈ C2(Ω)
and when K is the square exponential kernel K(x, y) = exp(−‖x− y‖2/l), l > 0 and Ω
is a locally Lipschitz domain (Remark 8):

Assumption 1 Assume that

{L ∈ C2(Ω) |ΦM
b (L) = yMb } ∩ U 6= ∅

and that the RKHS U to kernel K embeds continuously into C2(Ω). Let K be four times
continuously differentiable.

By general theory recalled in Appendix A, the posterior distribution of the canonical
Gaussian field ξ conditioned on the bounded4 linear constraint ΦM

b (L) = yMb is again a
Gaussian field ξM = N (L,KΦMb

). It is characterised by the conditional mean L and the
conditional covariance operator KΦMb

. To compute L and KΦMb
, define the symmetric

matrix

Θ ∈ R((M+1)d+1)×((M+1)d+1), Θk,l = (ΦM
b )kK(ΦM

b )l, 1 ≤ k, l ≤ (M + 1)d+ 1,

where (ΦM
b )k, (ΦM

b )l refer to the kth or lth component of ΦM
b , respectively. In block

matrix form, Θ can be written as

Θ =

(EL1
x̂(j)EL2

x̂(i)K)ij (EL1
x̂(j)Mm2

xb
K)j (EL1

x̂(j)ev2
xb
K)j

(Mm1
xb

EL2
x̂(i)K)i Mm1

xb
Mm2

xb
K Mm1

xb
ev2
xb
K

(ev1
xb

EL2
x̂(i)K)i ev1

xb
Mm2

xb
K K(xb, xb).

 (18)

4ΦMb : C2(Ω)→ R(M+1)d+1 is bounded (Section 6.1.2).
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The upper indices 1, 2 of the operator indicate their action on the first or second com-
ponent of the kernel K : Ω× Ω→ R, i.e.

EL1
x̂(j)EL2

x̂(i)K = ELx̂(j)

(
x 7→ ELx̂(i)(y 7→ K(x, y))

)
∈ R

with analogous conventions for Mm and ev. Furthermore, we use the convention that
when an operator EL, Mm, or ev is applied to functions with several components their
application are understood component-wise. With

KΦM
b (x) =

(
ELx̂(1)K(·, x), . . . ELx̂(M)K(·, x), MmxbK(·, x), K(xb, x)

)>
the conditional mean L of the posterior process ξM is given as

L = yMb
>

Θ†KΦM
b , (19)

where Θ† denotes the pseudo-inverse of Θ. The conditional covariance operatorKΦMb
: U∗ →

U is given by

ψKΦMb
φ = ψKφ− (ψKΦM

b
>

)Θ†(ΦM
b Kφ) (20)

for any ψ, φ ∈ U∗. Here

ψKΦMb
φ = ψ1φ2K

ψKΦM
b
>

=
(
ψ1EL2

x̂(2)K, . . . ψ1EL2
x̂(n)K, ψ1Mm2

xb
K, ψ1K(·, xb)

)
ΦM
b Kφ =

(
EL1

x̂(2)φ
2K, . . . EL1

x̂(n)φ
2K, Mm1

xb
φ2K φ2K(xb, ·)

)>
.

Again, the upper indices 1, 2 of the linear functionals φ, ψ ∈ U∗ denote actions on the
first or second component of K, respectively.

The expressions yMb
>

Θ† and Θ†(ΦM
b Kφ) in (19) and (20), respectively, are least-square

solutions to the linear systems

Θz = yMb and ΘZ = ΦM
b Kφ (21)

for z and Z. It is argued in Appendix A.2 and Appendix A.3 that these systems are
solvable and that (19) and (25) are valid. Moreover, Θ†(ΦM

b Kφ) and Θ†(ΦM
b Kφ) can be

substituted by any solution to the linear systems above without changing L in (19) or
ψKΦMb

φ in (20).

Remark 3 (Computational aspects) The size of the linear systems (21) scales lin-
early with the number of data points and the dimension of the state-space. Thus the
numerical complexity of solving the linear systems scales approximately cubically, when
a direct method is used. The growth in computational complexity is typical for Gaussian
process or kernel-based methods [49]. To tackle this, various approaches exist such as
using kernels of finite band-width to promote sparsity of Θ, importance sampling, and
sparse Gaussian processes which are based on identifying inducing variables [55, 47]. An
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efficient method to approximate Cholesky factors of covariance matrices was presented
in [53]. Moreover, a diagonal regularisation technique involving an adaptive nudging
term can be found in [12, Appendix A] in the context of solving pdes with Gaussian pro-
cesses. A more specialised approach is [54]. In our numerical experiments (Section 5)
we do not employ any specialised algorithm but use the command factorize of the
package Julia/LinearAlgebra [8] on Θ. Depending on the degeneracy of the symmetric
matrix Θ, factorize computes a Cholesky decomposition or a factorisation based on
the Bunch-Kaufman algorithm [5, 9]. The factors are then stored and used whenever
solving linear systems involving Θ. 2

Remark 4 (Equivalent minimisation problem) The conditional mean L of (19)
can alternatively be characterised as the minimiser of the following convex optimisa-
tion problem

L = arg min
L̃∈U,ΦMb (L̃)=yMb

‖L̃‖U , (22)

where ‖L̃‖U denotes the reproducing kernel Hilbert space norm. (See Theorem 8 in Ap-
pendix A.) This will play an important role in the convergence proof in Section 6. Besides
the exploit for convergence proofs, formulation (22) could be used for the computation
of the conditional stochastic processes for non-linear observations and normalisation
conditions such as in the alternative regularisation of Appendix B using techniques of
[12]. 2

Remark 5 (Further normalisation) For consistency with Proposition 1, one may
add cτ ∈ R \ {0} to yMb and the normalising condition (EL(x̂τ ))k to ΦM

b for x̂τ =
(xτ , ẋτ , ẍτ ) that is not a motion and k ∈ {1, . . . , d}. While it is realistic to assume
knowledge of a data point x̂τ that is not a motion (e.g. x̂ = (x(1), ẍ(1) + 1) in systems
with non-degenerate true Lagrangian), fixing an index k a priori may cause a restriction
as to which Lagrangians can be approximated or cause poor scaling of the posterior
process. Thus, we propose to leave out this condition in the definition of the posterior
process. One may rather verify cτ 6= 0 a posteriori to check validity of the assumptions
of Proposition 1. Moreover, Appendix B discusses an alternative normalisation based on
symplectic volume forms. It can be compared to approaches to learn Lagrangians with
neural networks [42]. 2

4.1.4. Application

The conditional mean L (19) of the posterior Gaussian process ξ|ΦMb (L)=yMb
serves as an

approximation to a true Lagrangian, from which approximations of geometric structures
such as symplectic structure and Hamiltonians can be derived. Moreover, uncertainties
of a linear observables ψ ∈ U∗ can be quantified as the variance of ψ(ξ|ΦMb (L)=yMb

),

which can be computed as ψKΦMb
ψ using (20). In the numerical experiments, standard

deviations will be computed for the random variables Ham(ξ|ΦMb (L)=yMb
)(x) for x ∈ Ω

and for EL(ξ|ΦMb (L)=yMb
)(x̂(t)), where x̂ = (x, ẋ, ẍ) is a motion of the approximate system

to L.
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4.2. Gaussian fields for discrete Lagrangians

The data-driven framework for learning of discrete Lagrangians is in close analogy to
the presented framework for continuous Lagrangians. Instead of repeating the discus-
sion, we explain the required modifications and reinterpretations in the following. A
rigorous discussion and justification of the applicability of the theory of Gaussian fields
is postponed to Section 6.2.

In the setting of discrete Lagrangians, Ω ⊂ Rd × Rd is an open, bounded subset con-
taining elements denoted by x = (x0, x1). Observed data corresponds to a collection

of M triples of snapshots x̂(j) = (x
(j)
0 , x

(j)
1 , x

(j)
2 ) of motions of a variational dynamical

system, where (x
(j)
0 , x

(j)
1 ) ∈ Ω and (x

(j)
1 , x

(j)
2 ) ∈ Ω for all j. The snapshot time (dis-

cretisation parameter) ∆t > 0 is constant (also see Figure 7). The goal is to identify a
discrete Lagrangian Ld : Ω→ R such that discrete motions that fulfil the discrete Euler-
Lagrange equations DEL(Ld) = 0 approximate true motions. When a system is governed
by a non-degenerate continuous Lagrangian L, then there exists a discrete Lagrangian
Ld that exactly governs the discretised dynamics [35].

Consider a twice countinuously differentiable kernel K : Ω × Ω → R with RKHS U .
We consider the following assumptions that are fulfilled when the observed system is
governed by the Euler–Lagrange equations to a non-degenerate Lagrangian L ∈ C1(Ω)
and when K is the square exponential kernel K(x, y) = exp(−‖x− y‖2/l), l > 0 and Ω
is a locally Lipschitz domain:

Assumption 2 Assume that

{Ld ∈ C1(Ω) |ΦM
b (L) = yMb } ∩ U 6= ∅

and that the RKHS U to kernel K embeds continuously into C1(Ω). Let K be twice
continuously differentiable.

With the reinterpretation of Ω and of training data points x̂(j) we can follow the
framework for continuous Lagrangians replacing EL by DEL and Mm by Mm− (or
Mm+). In particular, this leads to

ΦM
b = (DELx̂(1) , . . . ,DELx̂(M) ,Mm−xb , evxb).

(cf. (17)) and

Θ =

(DEL1
x̂(j)DEL2

x̂(i)K)ij (DEL1
x̂(j)Mm−

2
xb
K)j (DEL1

x̂(j)ev2
xb
K)j

(Mm−
1
xb

DEL2
x̂(i)K)i Mm−

1
xb

Mm−
2
xb
K Mm−

1
xb

ev2
xb
K

(ev1
xb

DEL2
x̂(i)K)i ev1

xb
Mm−

2
xb
K K(xb, xb).

 (23)

(cf. (18)) and an a conditioned process that is a Gaussian process N (L,KΦMb
) with

posterior mean

Ld = yMb
>

Θ†KΦM
b (24)
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(cf. (19)). Again, the upper index 1, 2 of the operators DEL, Mm−, ev denote on which
input element of K they act. The conditional covariance operator KΦMb

: U∗ → U is

defined for any ψ, φ ∈ U∗ by

ψKΦMb
φ = ψKφ− (ψKΦM

b
>

)Θ†(ΦM
b Kφ). (25)

Here

ψKΦMb
φ = ψ1φ2K

ψKΦM
b
>

=
(
ψ1DEL2

x̂(2)K, . . . ψ1DEL2
x̂(n)K, ψ1Mm−

2
xb
K, ψ1K(·, x)

)
ΦM
b Kφ =

(
DEL1

x̂(2)φ
2K . . . DEL1

x̂(n)φ
2K Mm−

1
xb
φ2K φ2K(x, ·)

)>
.

To obtain (24) and (25) we have (as in the continuous case) applied general theory
as recalled in Proposition 8 in Appendix A.2. Indeed, conditions for the applicability of
Proposition 8 are verified in Proposition 10 (Appendix A.2).

5. Numerical experiments

5.1. Continuous Lagrangians

Consider dynamical data x̂(j) = (x(j), ẋ(j), ẍ(j)), j = 1, . . . ,M of the coupled harmonic
oscillator Lref : TR2 → R with

Lref(x, ẋ) =
1

2
‖ẋ‖2 − 1

2
‖x‖2 + αx0x1, x = (x0, x1) ∈ R2, (x, ẋ) ∈ TR2 (26)

with coupling constant α = 0.1. Here x(j) = (x(j), ẋ(j)), j = 1, . . . ,M are the first M
elements of a Halton sequence in the hypercube Ω = [−1, 1]4 ⊂ TR2. We use radial basis
functions K(x, y) = exp

(
−1

2(x− y)2
)

as a kernel function in all experiments. For M ∈ N
we obtain a posteriori Gaussian processes denoted by ξM ∈ N (LM ,KM ) modelling
Lagrangians for the dynamical system. We present experiments with M ∈ {80, 300}. In
the following var refers to the variance of a random variable (applied component wise
when the random variable is Rd-valued). Moreover, Accx(LM ) refers to the solution of
EL(LM )(x, ẍ) = 0 for ẍ ∈ R2.

Figure 1 displays the location of training data in Ω projected to the (x0, x1)-plane.
Figure 2 compares the variances of ELx̂(ξM ) for M = 80, 300 for points of the form
x̂ = (x, ẍ) with x = (x0, x1, 0, 0) ∈ Ω and x = (x0, 0, ẋ0, 0) ∈ Ω with ẍ = Accx(LM ).
One observes that the variance decreases as more data points are used. This experi-
ments suggests that the method can be used in combination with an adaptive sampling
technique to sample new data points in regions of high model uncertainty. However, for
consistency, our data points are related to a Halton sequence.

Figure 3 shows a motion computed by solving5 EL(LM ) = 0 with initial data x =
(0.2, 0.1, 0, 0) on the time interval [0, 100]. In the plots of the first row, colours indicate

5Computations were performed using DifferentialEquations.jl[48]. Comparison with a trajectory com-
puted using the variational midpoint rule [35] (step-size h = 0.01) shows a maximal difference in the
x-component smaller than 3.5× 10−4 (M = 300) along the trajectory.
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Figure 1: Training data points projected to the (x0, x1)-plane of ξ80 (left) and ξ300 (right).

Figure 2: Plots of variances log10(‖var(EL(ξM ))‖) for M = 80 (two left plots) and M =
300 (two right plots) over (x0, x1, 0, 0)-plane and (x0, 0, ẋ0, 0)-plane. (Ranges
of colourbars vary.)

the norm of the variance of EL(ξM ) along the computed trajectories. For M = 300 the
trajectory is close to the reference solution while largely different for M = 80. This
is consistent with the lower variance for M = 300 compared to the experiment with
M = 80. The plots of the dynamics of L300 (bottom row of Figure 3) show divergence
of the computed motion from the reference solution towards the end of the time interval
building up to a difference in x0 component of about 0.1 at t = 100. (We will see
later that a discrete model model performs better in this experiment.) However, the
qualitative features of the motion are captured.

Figure 4 shows the Hamiltonian HM = Ham(LM ) as well as HM ± 0.2σHM . Here
σHM denotes the standard deviation

√
varHam(ξM ). We observe a clear decrease of the

standard deviation as M increases from 80 to 300.
Figure 5 displays the error in the prediction of ẍ for points x = (x0, x1, 0, 0) ∈ Ω and

x = (x0, 0, ẋ0, 0) ∈ Ω. As the magnitudes of errors vary widely, log10 is applied before
plotting, i.e. we show the quantity

log10 ‖Accx(LM )−Accx(Lref)‖R2 .

One sees a clear decrease in error as M is increased from 80 to 300.
Figure 6 shows a convergence plot for the relative error in predicted acceleration errAcc,

i.e. of

errAcc(x) =
‖Accx(LM )−Accx(Lref)‖Rd

‖Accx(Lref)‖Rd
.

The data for the plot in Figure 6 was computed for the 1d harmonic oscillator Lref(x) =
1
2 ẋ

2 − 1
2x

2 with (x, ẋ) ∈ [−1, 1]2 in quadruple precision. For each M ∈ {21, 22, . . . , 26}
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Figure 3: Top row: motion of ξ80 (left) and ξ300 (right) with variance ‖var(EL(ξM ))‖
encoded as colours (ranges of colourbars vary). Bottom row: motions of ξ300

compared to reference.

Figure 4: Mean of Hamiltonian Ham(ξ80), Ham(ξ300) over (x0, 0, ẋ0, 0) plus/minus 20%
standard deviation.
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Figure 5: log10 norm of error of predicted acceleration ẍ for Acc(ξM ) over x0, x1 plane
and x0, ẋ0 plane for M = 80 (left two plots) and M = 300 (right two plots).
(The ranges of colourbars vary.)

Figure 6: Convergence of Acc(LM ) to true acceleration data.

the error errAcc(x) was evaluated on a uniform mesh with 10×11 mesh points in [−1, 1]×
[−1, 1] ∈ TR. The plot shows the discrete Lp error (p = 1, 2,∞). We can see convergence
with errors levelling out due to round-off errors at approximately 10−11. Moreover, as M
increases, higher and higher convergence rates become dominant before round-off errors
dominate. Indeed, our analysis on convergence rates (Section 6.3) will show that thanks
to smoothness of the kernel and the reference Lagrangian, arbitrarily high convergence
rates occur in the asymptotic regime M →∞ (Corollary 3).

5.2. Discrete Lagrangian

Now we consider dynamical data x̂(j) = (x
(j)
0 , x

(j)
1 , x

(j)
2 ) where x

(j)
0 , x

(j)
1 , x

(j)
2 are snap-

shots of true trajectories at times t, t + h, t + 2h, respectively, with j = 1, . . . ,M .
Here h = 0.1 and, again, M ∈ {80, 300}. For data generation, we consider data
(x, p) ∈ [−1, 1]4 ⊂ T ∗R2 from a Halton sequence from where we integrate Lref from [0, 3h]
using the 2nd order accurate variational midpoint rule [35] with step-size hinternal = h/10.
These dynamics are considered as true for the purpose of this experiment. Training data
is visualised in Figure 7.

Figure 8 (in analogy to Figure 2) shows how variance decreases as more data points
become available. For the plots, (x0, p0) ∈ T ∗R2 are used to compute x̂ = (x0, x1, x2)
using Lref . Here p refers to the conjugate momentum of Lref . The plots display heatmaps
of log10(‖var(DELx̂(ξM ))‖).

Figure 9 shows a motion for t ∈ [0, 100] of ξ300 with same initial data as in Figure 3.
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Figure 7: Training data. Each line connects snapshots points that constitute a training
data point x̂. Left: M = 80, right: M = 300.

Figure 8: Plots of variances log10(‖var(EL(ξM ))‖) for M = 80 (left two plots) and
M = 300 (right two plots) over (x, pref) = (x0, x1, 0, 0)-plane and (x, pref) =
(x0, 0, p0

ref , 0)-plane. (Ranges of colourbars vary.)

With a maximal error in absolute norm smaller than 0.00043 it is visually indistinguish-
able from the true motion. In the plot to the left, data for ẋ0 was approximated to
second order accuracy in h with the central finite differences method.

Comparing Figure 9 and Figure 3, it is interesting to observe that with the same
amount of data the discrete model performs better than the continuous model for pre-
dicting motions.

Reproducibility Source code of the experiments can be found at https://github.com/
Christian-Offen/Lagrangian_GP.

6. Convergence Analysis

This section contains a theoretical convergence analysis of the considered methods. In
Sections 6.1 and 6.2 convergence theorems for regular continuous Lagrangians (Theo-
rem 1) and discrete Lagrangians (Theorem 2) in the infinite-data limit are provided
as observations become topologically dense, i.e. as the maximal distance between data
points converges to zero. Moreover, the convergence rates of continuous and discrete
Lagrangian models are analysed in Section 6.3.
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Figure 9: The motion of ξ300 and the true motion are indistinguishable.

6.1. Convergence of continuous Lagrangian models

6.1.1. Convergence theorem (continuous, temporal evolution)

Theorem 1 Let Ω ⊂ TRd ∼= Rd×Rd be an open, bounded non-empty domain. Consider
a sequence of observations ΩE

0 = {(x(j), ẋ(j), ẍ(j))}j ⊂ Ω × Rd of a dynamical system
governed by the Euler–Lagrange equation of an (unknown) non-degenerate Lagrangian
Lref ∈ C2(Ω) (definition of C2(Ω) below). Assume that {(x(j), ẋ(j))}j ⊂ Ω is topologically
dense. Let K be a 4-times continuously differentiable kernel on Ω, xb ∈ Ω, rb ∈ R, pb ∈ R
and assume that Lref is contained in the reproducing kernel Hilbert space (U, ‖ · ‖U ) to
K and fulfils the normalisation condition

ΦN (Lref) = (pb, rb) with ΦN (L) =

(
∂L

∂ẋ
(xb), L(xb)

)
. (27)

Assume that U embeds continuously into C2(Ω). Let ξ ∈ N (0,K) be a canonical Gaussian
process on U (see Section 4.1.1). Then the sequence of conditional means L(j) of ξ
conditioned on the first j observations and the normalisation conditions

EL(ξ)(x(i), ẋ(i), ẍ(i)) = 0 (∀i ≤ j), ΦN (ξ) = (pb, rb) (28)

converges in ‖ · ‖U and in ‖ · ‖C2(Ω) to a Lagrangian L(∞) ∈ U that is

• consistent with the normalisation ΦN (L(∞)) = (pb, rb)

• consistent with the dynamics, i.e. EL(L(∞))(x̂) for all x̂ = (x, ẋ, ẍ) with (x, ẋ) ∈ Ω
and EL(Lref)(x̂) = 0.

• Moreover, L(∞) is the unique minimiser of ‖ ·‖U among all Lagrangians with these
properties. 2

Remark 6 If rb = 0 and pb = 0, then the sequence L(j) is constantly zero with limit
L(∞) ≡ 0. It is necessary to set (rb, pb) 6= (0, 0) to approximate a non-degenerate
Lagrangian. 2
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Remark 7 The regularity assumptions of the kernel (four times continuously differen-
tiable) is required for the interpretation of L(j) as a conditional mean of a Gaussian
process and for its convenient computation. It can be relaxed to the condition that

∂|α|+|β|K(x,y)

(∂x1)α1 ...(∂xd)αd∂(y1)β1 ...(∂yd)βd
for |α|, |β| ≤ 2, x, y ∈ Ω exists and is continuous on Ω.

Here |α| = α1 + . . .+ αd, |β| = β1 + . . .+ βd. 2

6.1.2. Formal setting and proof (continuous, temporal evolution)

Let Ω ⊂ TRd be an open, bounded, non-empty domain. Following notion of [1], we
consider the space of m-times continuously differentiable functions that extend to the
topological closure Ω

Cm(Ω,Rk) = {f ∈ Cm(Ω,Rk) | ∂αf extends continuously to Ω ∀|α| ≤ m}, m ∈ N0.

Here ∂αf = ∂|α|f
(∂x1)α1 ...(∂xd)αd∂(ẋ1)α̇1 ...(∂ẋd)α̇d

denotes the partial derivative with respect to

coordinates x = (x, ẋ) = (x1, . . . , xd, ẋ1, . . . , ẋd) for a multi-index α = (α1, . . . , αd, α̇1, . . . , α̇d)
with |α| = α1 + . . .+ αd + α̇1 + . . .+ α̇d. The space is equipped with the norm

‖f‖Cm(Ω,Rk) = max
0≤|α|≤m

sup
x∈Ω
‖∂αf(x)‖. (29)

Here ‖∂αf(x)‖ denotes the Euclidean norm on Rk for |α| = 1 or an induced operator
norm for |α| > 1. The space Cm(Ω,Rk) is a Banach space [1, § 4]. We will use the
shorthand Cm(Ω) = Cm(Ω,R1).

Assume that on a dense, countable subset Ω0 = {x(j) = (x(j), ẋ(j))}∞j=1 ⊂ Ω we have

observations of acceleration data ẍ(j) of a dynamical system generated by an (a priori
unknown) Lagrangian Lref ∈ C2(Ω), which is non-degenerate, i.e. for all (x, ẋ) ∈ Ω the

matrix ∂2Lref
∂ẋ∂ẋ (x, ẋ) is invertible, and the induced function gref ∈ C0(Ω,Rd) with

gref(x, ẋ) =

(
∂2Lref

∂ẋ∂ẋ
(x, ẋ)

)−1(
∂Lref

∂x
(x, ẋ)− ∂2Lref

∂x∂ẋ
(x, ẋ) · ẋ

)
(30)

recovers ẍ(j) = gref(x
(j)) = gref(x

(j), ẋ(j)).

Lemma 3 The linear functional Φ(∞) : C2(Ω)→ C0(Ω,Rd) with

Φ(∞)(L)(x, ẋ) = EL(L)(x, ẋ, gref(x, ẋ))

=
∂2L

∂ẋ∂ẋ
(x, ẋ) · gref(x, ẋ) +

∂2L

∂x∂ẋ
(x, ẋ) · ẋ− ∂L

∂x
(x, ẋ)

(31)

is bounded. 2

Proof A direct application of the triangle inequality shows

‖Φ(∞)(L)‖C0(Ω,Rd) ≤

(
‖gref‖C0(Ω,Rd) + sup

(x,ẋ)∈Ω
‖ẋ‖+ 1

)
‖L‖

C2(Ω)
.

�
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Since for each x the evaluation functional evx : f 7→ f(x) on C0(Ω,Rd) is bounded, the
following functions constitute bounded linear functionals for j ∈ N:

Φj : C2(Ω)→ Rd, Φj(L) = Φ(∞)(L)(x(j))

Φ(j) : C2(Ω)→ (Rd)j , Φ(j) = (Φ1, . . . ,Φj).

For a reference point xb ∈ Ω and for pb ∈ Rd, rb ∈ R we define the bounded linear
functional

ΦN : C2(Ω)→ Rd+1, ΦN (L) =

(
∂L

∂ẋ
(xb), L(xb)

)
, (32)

related to our normalisation condition, the shorthands Φ
(k)
b = (Φ1, . . . ,Φk,ΦN ) and

Φ
(∞)
b = (Φ(∞),ΦN ), and the data

y(k) = (0, . . . , 0, pb, rb) ∈ (Rd)k × Rd × R

y(∞) = (0, pb, rb) ∈ C0(Ω,Rd)× Rd × R.

Assumption 3 Assume that there is a Hilbert space U with continuous embedding U ↪→
C2(Ω) such that

{L ∈ C2(Ω) |Φ(∞)
b (L) = y(∞)} ∩ U 6= ∅.

In other words, U is assumed to contain a Lagrangian consistent with the normalisation
and underlying dynamics.

The affine linear subspaces

A(j) = {L ∈ U |Φ(j)
b (L) = y(j)} (j ∈ N)

A(∞) = {L ∈ U |Φ(∞)
b (L) = y(∞)}

are closed and non empty in U by Assumption 3 and by the boundedness of Φ
(j)
b and Φ

(∞)
b

on U ↪→ C2(Ω). Therefore, the following minimisation constitute convex optimisation
problems on B with unique minima in A(j) or A(∞), respectively:

L(j) = arg min
L∈A(j)

‖L‖U

L(∞) = arg min
L∈A(∞)

‖L‖U .
(33)

Here ‖ · ‖U denotes the norm in U .

Remark 8 To an open, non-empty set X ⊂ Rd, m ∈ N ∪ {0} denote by Wm,2(X) =
Wm(X) the Sobolev space

Wm(X) = {u ∈ L2(X) | ∀α ∈ Nd, |α| ≤ m, ∂αu ∈ L2(X)},
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with Sobolev norm

‖u‖Wm =

√√√√ ∑
|α|≤m

∫
X

(∂αu(x))2dx

where L2(X) denotes the space of square integrable functions on X. Here the derivative
∂αu is meant in a distributional sense [1]. In the machine learning setting, U is the
reproducing kernel Hilbert space related to a kernel K : Ω×Ω→ R. Assume the domain
of Ω is locally Lipschitz. When K is the squared exponential kernel, for instance, its
reproducing kernel Hilbert space embeds into any Sobolev space Wm(Ω) (m > 1) [14,
Thm.4.48]. In particular , it embeds into Wm(Ω) with m > 2 + d/2, which is embedded
into C2(Ω) by the Sobolev embedding theorem [1, §4]. The element Lj from (33) coincides

with the conditional mean of the Gaussian process ξ conditioned on Φ
(j)
b (ξ) = y(j)

(Remark 4). 2

Proposition 5 The minima L(j) converge to L(∞) in the norm ‖ · ‖U and, thus, in
‖ · ‖C2(Ω). 2

Proof The sequence of affine spaces A(1) ⊇ A(2) ⊇ A(3) ⊇ . . . is monotonously decreas-
ing and A(∞) ⊆

⋂∞
j=1A

(j). Therefore, the sequence L(j) is monotonously increasing and
its norm ‖L(j)‖U is bounded from above by ‖L(∞)‖U . Since U is reflexive, there exists a

subsequence (L(ji))i∈N that weakly converges to some L†(∞) ∈ U . (This follows from the

Banach-Alaoglu theorem and the Eberlein-Šmulian theorem [19].) By the weak lower
semi-continuity of the norm, we obtain

‖L†(∞)‖U ≤ lim inf
i→∞

‖L(ji)‖U ≤ ‖L(∞)‖U . (34)

Lemma 4 The weak limit L†(∞) of (L(ji))i∈N is contained in A(∞). 2

Before providing the proof of Lemma 4, we show how this allows us to complete the
proof of Proposition 5.

As L†(∞) ∈ A
(∞), we have ‖L(∞)‖U ≤ ‖L

†
(∞)‖U since L(∞) is the global minimiser of

the minimisation problem of (33). Together with (34) we conclude ‖L†(∞)‖U = ‖L(∞)‖U
and, by the uniqueness of the minimiser L(∞), the equality L†(∞) = L(∞). Thus, we have
proved weak convergence L(ji) ⇀ L(∞).

Together with the lower semi-continuity of the norm, and since L(ji) is monotonously
increasing and bounded by ‖L(∞)‖U , we have

‖L(∞)‖U ≤ lim inf
i→∞

‖L(ji)‖U ≤ lim sup
i→∞

‖L(ji)‖U ≤ ‖L(∞)‖U

such that limi→∞ ‖L(ji)‖U = ‖L(∞)‖U . Together with L(ji) ⇀ L(∞) we conclude strong
convergence L(ji) → L(∞) in the Hilbert space U .

The particular weakly convergent subsequence (L(ji))i∈N of (L(j))j was arbitrary.
Thus, any weakly convergent subsequence of (L(j))j converges strongly against L(∞).
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It follows that any subsequence of (L(j))j has a subsequence that converges to L(∞).
This implies that the whole series (L(j))j converges to L(∞).

It remains to prove Lemma 4.

Proof (Lemma 4) Let x ∈ Ω. As the sequence Ω0 = (x(m))∞m=1 is dense in Ω, there
exists a subsequence (x(ml))∞l=1 converging to x. We have

Φ
(∞)
b (L†(∞))(x) = lim

l→∞
Φ

(∞)
b (L†(∞))(x

(ml)) (35)

= lim
l→∞

lim
i→∞

Φ
(∞)
b (L(ji))(x

(ml))︸ ︷︷ ︸
(∗)
= 0

= 0. (36)

For this, in (35) we use that Φ
(∞)
b (L†(∞)) ∈ C

0(Ω). Equality in (36) follows because each

projection to a component of Φ
(∞)
b (·)(x(ml)) : U → Rd × Rd+1 constitutes a bounded

linear functional on U and the sequence (L(ji))i∈N converges weakly to L†(∞). Finally,

equality (∗) holds because for each l there exists N ∈ N such that jN ≥ ml and then for

all i ≥ N we have Φ
(∞)
b (L(ji))(x

(ml)) = 0.

From Φ
(∞)
b (L†(∞))(x) = 0 for all x ∈ Ω we conclude L†(∞) ∈ A

(∞). �

This completes the proof of Proposition 5. �

Now we can easily prove Theorem 1:

Proof (Theorem 1) By Theorem 8 of Appendix A.2 (also see Remark 4) the con-
ditional means computed in (19) coincide with the unique minimisers of the problems
(33). Indeed, the assumption of Theorem 8 on y = yMb is verified in Proposition 9 of
Appendix A.3. Theorem 1 is, therefore, a direct consequence of Proposition 5. �

6.2. Convergence of discrete Lagrangian models

6.2.1. Statement of convergence theorem (discrete, temporal evolution)

Theorem 2 Let Ωa,Ωb ⊂ Rd × Rd be open, bounded, non-empty domains. Let Ω =
Ωa ∪ Ωb. Consider a sequence of observations

Ω̂0 = {x̂(j) = (x0
(j), x1

(j), x2
(j))}∞j=1

of a discrete dynamical system with (not explicitly known) globally Lipschitz continuous
discrete flow map g : Ωa → Ωb related to a discrete Lagrangian Lref

d ∈ C1(Ω), i.e.

• g(x
(j)
0 , x

(j)
1 ) = (x

(j)
1 , x

(j)
2 ) for all j ∈ N,

• DEL(Lref
d )(x0, g(x0, x1)) = 0 for all (x0, x1) ∈ Ωa,

• ∇1,2L
ref
d (x1, x2) ∈ Rd×d is invertible for all (x1, x2) ∈ Ωb.
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Assume that {(x0
(j), x1

(j))}∞j=1 is dense in Ωa. Let K be a twice continuously differ-

entiable kernel on Ω, ub ∈ Ω, rb ∈ R, pb ∈ R and assume that Lref
d is contained in the

reproducing kernel Hilbert space (U, ‖ · ‖U ) to K and fulfils the normalisation condition

ΦN (Lref
d ) = (pb, rb) with ΦN (Ld) = (−∇2Ld(ub), Ld(ub)) (37)

and that U embeds continuously into C1(Ω). Let ξ ∈ N (0,K) be a centred Gaussian
random variable over U . Then the sequence of conditional means Ld,(j) of ξ conditioned
on the first j observations and the normalisation conditions

DEL(ξ)(x̂(i)) = 0 (∀i ≤ j), ΦN (ξ) = (pb, rb) (38)

converges in ‖ · ‖U and in ‖ · ‖C1(Ω) to a Lagrangian Ld,(∞) ∈ U that is

• consistent with the normalisation ΦN (Ld,(∞)) = (pb, rb)

• consistent with the dynamics, i.e. DEL(Ld,(∞))(x̂) = 0 for all x̂ = (x0, x1, x2) with

(x0, x1) ∈ Ωa,(x1, x2) ∈ Ωb and DEL(Lref
d )(x̂) = 0.

• Moreover, Ld is the unique minimizer of ‖ · ‖U among all discrete Lagrangians in
U with the properties above. 2

Remark 9 The regularity assumption of K (twice continuously differentiable) is needed
for the interpretation of Ld,(j) as a conditional mean of a Gaussian process and for a
convenient computation of Ld,(j). However, the proof will show that a relaxation to
continuous differentiability is possible. 2

6.2.2. Formal setting and proof (discrete, temporal evolution)

Let Ωa,Ωb ⊂ Rd × Rd be open, bounded, non-empty domains, let Ω = Ωa ∪ Ωb. Let
Ω̂ = {(x0, x1, x2) | (x0, x1) ∈ Ωa, (x1, x2) ∈ Ωb} and let

Ω̂0 = {(x(j)
0 , x

(j)
1 , x

(j)
2 )}∞j=1 ⊂ Ω̂ with (x

(j)
0 , x

(j)
1 ) ∈ Ωa, (x

(j)
1 , x

(j)
2 ) ∈ Ωb for all j ∈ N.

Assume that {(x(j)
0 , x

(j)
1 )}∞j=1 is dense in Ωa.

Remark 10 (Interpretation of Ω̂0) The set Ω̂0 corresponds to a collection of obser-
vation data in the infinite data limit. It can be obtained as a collection of three consec-
utive snapshots of motions of the dynamical system that we observe and for which we
seek to learn a discrete Lagrangian. In a typical scenario where Lref

d : Rd × Rd → R is
the exact discrete Lagrangian to some underlying continuous Lagrangian, the motions
leave the diagonal of Rd × Rd invariant. It is sensible to consider Ωa and Ωb that are
neighbourhoods of compact sections of the diagonal in Rd × Rd. 2
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We consider the discrete Lagrangian operator

DEL: C1(Ω)→ C0(Ω̂,Rd)
DEL(Ld)(x0, x1, x2) = ∇2Ld(x0, x1) +∇1Ld(x1, x2).

(39)

Here ∇jLd denotes the partial derivatives with respect to the jth input argument of Ld.

Assume that the observations Ω̂0 = {(x(j)
0 , x

(j)
1 , x

(j)
2 )}∞j=1 correspond to a discrete

Lagrangian dynamical system governed by Lref
d ∈ C1(Ω) with globally Lipschitz contin-

uous flow map g : Ωa → Ωb, i.e. DEL(Lref
d )(x0, g(x0, x1)) = 0 for all (x0, x1) ∈ Ωa and

g(x
(j)
0 , x

(j)
1 ) = (x

(j)
1 , x

(j)
2 ) for all j ∈ N.

Lemma 5 The linear functional Φ(∞) : C1(Ω)→ C0(Ωa,Rd) with

Φ(∞)(Ld)(x0, x1) = DEL(Ld)(x0, x1, g(x0, x1)) (40)

is bounded. 2

Proof Indeed, g extends to a globally Lipschitz continuous map g : Ωa → Ωb such that
Φ(∞) : C1(Ω) → C0(Ωa,Rd) is a well-defined map between Banach spaces defined via
(40). Let ‖Ld‖C1(Ω) ≤ 1. In particular,

sup
(x0,x1)∈Ωa

‖∇2Ld(x0, x1)‖ ≤ 1 and sup
(x1,x2)∈Ωb

‖∇2Ld(x1, x2)‖ ≤ 1. (41)

Therefore, by the triangle inequality

sup
(x0,x1)∈Ωa

DEL(Ld)(x0, g(x0, x1)) ≤ 1 + sup
(x0,x1)∈Ωa

‖∇2Ld(g(x0, x1))‖

≤ 1 + sup
(x1,x2)∈Ωb

‖∇2Ld(x1, x2)‖ ≤ 2.
(42)

�

We can now proceed in direct analogy to the continuous setting (Section 6.1.2) with
L replaced by Ld and the functional ΦN of (32) (normalisation conditions) replaced by
the corresponding functional for discrete Lagrangians. The details are provided in the
following.

Since for each x the evaluation functional evx : f 7→ f(x) on C0(Ωa,Rd) is bounded,
the following functions constitute bounded linear functionals for j ∈ N:

Φj : C1(Ω)→ Rd, Φj(Ld) = Φ(∞)(Ld)(x
(j))

Φ(j) : C1(Ω)→ (Rd)j , Φ(j) = (Φ1, . . . ,Φj).

For a reference point xb ∈ Ω and for pb ∈ Rd, rb ∈ R we define the bounded linear
functional

ΦN : C1(Ω)→ Rd+1, ΦN (L) = (−∇1Ld(xb), Ld(xb)) , (43)
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related to our normalisation condition for discrete Lagrangians. We will further use the

shorthands Φ
(k)
b = (Φ1, . . . ,Φk,ΦN ) and Φ

(∞)
b = (Φ(∞),ΦN ), and define

y(k) = (0, . . . , 0, pb, rb) ∈ (Rd)k × Rd × R

y(∞) = (0, pb, rb) ∈ C0(Ω,Rd)× Rd × R.

In analogy to Assumption 3 we consider the following assumption.

Assumption 4 Assume that there is a Hilbert space U with continuous embedding U ↪→
C1(Ω) such that

{Ld ∈ C1(Ω) |Φ(∞)
b (Ld) = y(∞)} ∩ U 6= ∅.

In other words, U is assumed to contain a Lagrangian consistent with the normalisation
and underlying dynamics.

The affine linear subspaces

A(j) = {Ld ∈ U |Φ
(j)
b (Ld) = y(j)} (j ∈ N)

A(∞) = {Ld ∈ U |Φ
(∞)
b (Ld) = y(∞)}

are closed in U and not empty by Assumption 4. Therefore, the following extremisation
problems constitute convex optimisation problems on U with unique minima in A(j) or
A(∞), respectively:

Ld(j) = arg min
Ld∈A(j)

‖Ld‖U

Ld(∞) = arg min
Ld∈A(∞)

‖Ld‖U .
(44)

Here ‖ · ‖U denotes the norm in U .

Proposition 6 The minima Ld(j) converge to Ld(∞) in the norm ‖ · ‖U and, thus, in
‖ · ‖C1(Ω). 2

Proof The proof is in complete analogy to Proposition 5. �

Proof (Theorem 2) An application of Theorem 8 (Appendix A.2) to the components
of ΦM

b considered as elements of the dual to the RKHS U shows that the unique minimis-
ers Ld(j) in (44) are the conditional means (24) considered in Theorem 2. Notice that

the assumption of Theorem 8 on y = yMb is fulfilled, see Proposition 10 (Appendix A.3).
Thus, Theorem 2 follows from Proposition 6. �

6.3. Convergence rates of continuous and discrete Lagrangian models

Let L(M) denote the Lagrangian inferred from M observations as in Theorem 1 and
let L(∞) denote the limit as the observations densely fill a compact set. We analyse
how fast the learned equations of motions EL(L(M)) = 0 converge to the true equations
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of motions EL(L(∞)) = 0 as the distance between observation data points converges
to zero. We will show that the extrapolation error ‖EL(L(M))(x, ẋ, ẍ)‖ for (x, ẋ, ẍ) an
observation of the true dynamical system can be bounded. The bound tends to zero as
hr, where h relates to the maximal distance between data points and r is related to the
smoothness of the true dynamics and the kernel. Provided that the observation data fill
the space at least as efficiently as uniform meshes, the bound tends to zero as M−

r
2d ,

where M is the number of observation points.
Away from degenerate points, the Euler–Lagrange equations implicitly define an accel-

eration field that expresses ẍ in terms of (x, ẋ) such that EL(L(M))(x, ẋ, ẍ) = 0. Roughly
speaking, we will show that away from critical points, the convergence rate of the learned
acceleration field to the true acceleration field is hr (or M−

r
2d for uniform meshes) as

well. Moreover, analogous statements will be shown for discrete Lagrangian models.

6.3.1. Preliminaries: interpolation and smoothening theory

Our proofs make use of statements from interpolation and smoothening theory [3, 36, 57].
Let us recall notions and results that are relevant in our context.

Definition 1 (fill distance) To Ω ⊂ Rd′ and a finite subset Ω0 ⊂ Ω we define the fill
distance h of Ω0 in Ω as

hΩ0 = dist(Ω0,Ω) = sup
x0∈Ω0

min
x∈Ω
‖x0 − x‖.

2

The fill distance of Ω0 in Ω coincides with the Hausdorff distance between the sets Ω0

and Ω.

Example 3 (Fill distance of uniform mesh and of Halton sequence) When Ω ⊂
Rd′ is a d′-dimensional cube and Ω0 is a uniform mesh with mesh width ∆x then
hΩ0 =

√
d′∆x/2. If Ω0 contains M points,

hΩ0 =

√
d′

2( d′√M − 1)
.

Figure 10 shows the fill distance hΩ0 when Ω0 is an equidistant uniform mesh on a d′-
dimensional cube Ω and when Ω0 is a Halton sequence with the same number of elements.
Here 2hΩ0 corresponds to the maximal distance between any two points in Ω0 ∪ ∂Ω. It
illustrates that in low dimensions Halton sequences reduce the fill distance roughly at a
similar rate as uniform meshes. 2

In our analysis we will make use of the following theorem from interpolation and
smoothening theory.

Theorem 3 (Sobolev bounds) Let Ω ⊂ Rd′ be a bounded domain with a Lipschitz
continuous boundary. Let r > 1

2d
′. Then there exist constants δr, Cr > 0 (depending

on Ω and r) such that for any finite Ω0 ⊂ Ω with hΩ0 ≤ δr, for any u ∈ W r(Ω) with
u|Ω0 ≡ 0, and for any l = 0, . . . , r

‖u‖W l(Ω) ≤ Cr(hΩ0)r−l‖u‖W r(Ω). 2
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Figure 10: Max. distance between any two points in Ω0∪∂Ω for Ω = [0, 1]d, d = 1, 2, and
Ω0 a uniform mesh or a Halton sequence with M elements. (See Example 3.)

In the theorem’s statement, W r(Ω) = W r,2(Ω) denotes the Sobolev space (defined in
Remark 8). u is continuous by the Sobolev embedding theorem [1, §4]. u|Ω0 denotes the
restriction of the function u to the set Ω0.

Proof This is a special case of [3, Cor. 4.1]. �

6.3.2. Convergence rates for continuous Lagrangian models

We will analyse the convergence rates of the inferred equations of motions and the
acceleration field to true equations of motions and the true acceleration field as the fill-
distance of observations converges to zero. This will, in particular, provide a theoretical
explanation of the numerically observed convergence behaviour in Figure 5.

Assumption 5 (Underlying system and RKHS) Assume Ω ⊂ R2d is open, bounded
and has locally Lipschitz boundary. Consider a kernel K : Ω×Ω→ R such that the RKHS
U embeds continuously into the Sobolev space6 W r+2(Ω) for r > 2 + d. Assume that the
true acceleration ẍ can be described by a function gref : Ω→ Rd with gref ∈ (W r(Ω))d.

When Assumption 5 holds, then by the Sobolev embedding theorem [1, §4], W r+2(Ω)
embeds continuously into C4(Ω). Therefore, the kernel K necessarily fulfils sufficient
smoothness properties such that for pb ∈ Rd, cb ∈ R, xb ∈ Ω we can define to any finite
subset Ω0 = {(x, ẋ)}Mj=1 ⊂ Ω a Lagrangian LΩ0 ∈ U by (19).

Consider data-driven equations of motions EL(LΩ0)(x, ẋ, ẍ) = 0 inferred from finitely
many observations (x(j), ẋ(j), ẍ(j)) with Ω0 = {(x(j), ẋ(j))}j . The following Theorem
provides a bound on the extrapolation error EL(LΩ0)(x, ẋ, ẍ) on observations (x, ẋ, ẍ) of
the true system.

Theorem 4 (Convergence rates for equations of motion) Let Assumption 5 hold.
For pb ∈ Rd, cb ∈ R, xb ∈ Ω assume there exists a Lagrangian Lref ∈ U consistent with
the normalization (27) and the dynamics, i.e. EL(Lref)(x, gref(x)) = 0, for all x ∈ Ω.

6See Remark 8 for a definition.
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Denote by kΦ
∞(L)(x) = kEL(L)(x, gref(x)) for L ∈ U , x ∈ Ω the kth component of

EL(L)(x, gref(x)) (k = 1, . . . , d).
Then there exist constants δr, Cr > 0 such that for all finite Ω0 ⊂ Ω with hΩ0 =

dist(Ω0,Ω) < δr and for all l = 0, 1, . . . , r, k = 1, . . . , d

‖kΦ∞(LΩ0)‖W l(Ω) ≤ Crhr−lΩ0
‖Lref‖U . 2

Proof All components kΦ
∞ of the map Φ∞ : U → (W r(Ω))d have bounded operator

norm: For any L ∈ U and any k = 1, . . . , d

kΦ
(∞)(L) =

d∑
i=1

∂2L

∂ẋk∂ẋi
· giref +

∂2L

∂x∂ẋk
· ẋi − ∂L

∂xk
.

In the above formula, ẋi needs to be interpreted as the projection map sending a point
(x, ẋ) ∈ Ω to the component ẋi. Using the triangle inequality and the Cauchy-Schwarz
inequality on the Hilbert space W r(Ω) we have

‖kΦ(∞)(L)‖W r(Ω) ≤
d∑
i=1

(∥∥∥∥ ∂2L

∂ẋk∂ẋi
· giref

∥∥∥∥
W r(Ω)

+

∥∥∥∥ ∂2L

∂xi∂ẋk
· ẋi
∥∥∥∥
W r(Ω)

)
+

∥∥∥∥ ∂L∂xk
∥∥∥∥
W r(Ω)

≤
d∑
i=1

(∥∥∥∥ ∂2L

∂ẋk∂ẋi

∥∥∥∥
W r(Ω)

∥∥giref

∥∥
W r(Ω)

+

∥∥∥∥ ∂2L

∂xi∂ẋk

∥∥∥∥
W r(Ω)

∥∥ẋi∥∥
W r(Ω)

)

+

∥∥∥∥ ∂L∂xk
∥∥∥∥
W r(Ω)

≤ ‖L‖W r+2(Ω)

(
1 +

d∑
i=1

(
∥∥giref

∥∥
W r(Ω)

+
∥∥ẋi∥∥

W r(Ω)
)

)

As the embedding U ↪→ W r+2(Ω) is continuous, there exists cr > 0 such that
‖L‖W r+2(Ω) ≤ cr‖L‖U . Thus, kΦ

∞ : U →W r(Ω) has bounded operator norm ‖kΦ∞‖U,W r(Ω).

By Theorem 3 there exist δr > 0, C̃r > 0 such that for all finite Ω0 ⊂ Ω (defining LΩ0)
with hΩ0 < δr and all l = 0, . . . , r

‖kΦ∞(LΩ0)‖W l(Ω) ≤ C̃rhr−l‖kΦ∞(LΩ0)‖W r(Ω).

As by Remark 4, LΩ0 ∈ U minimizes the RKHS-norm while fulfilling the normalisation
condition (27) and Φ∞(LΩ0)(x) = 0 for all x ∈ Ω0. As Lref ∈ U fulfils (27) and the
stricter condition Φ∞(Lref)(x) = 0 for all x ∈ Ω, we have ‖LΩ0‖U ≤ ‖Lref‖U . Therefore,
combining all estimates, we arrive at

‖kΦ∞(LΩ0)‖W l(Ω) ≤ C̃rhr−l‖kΦ∞(LΩ0)‖W r(Ω)

≤ C̃rhr−l‖kΦ∞‖U,W r(Ω)‖LΩ0‖U
≤ C̃rhr−l‖kΦ∞‖U,W r(Ω)‖Lref‖U .

This proves the claim. �
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As by Example 3, when observations are obtained over a sequence of uniform meshes
in Ω ⊂ R2d then the convergence rate predicted in Theorem 4 is M−

r
2d , where M is the

number of observations.
When the dynamics and the kernel are smooth, then Theorem 4 can be applied for

any r. However, we expect that the constants δr, Cr grow with r. Thus, higher and
higher convergence rates become dominant as the fill distance hΩ0 decreases. This is
discussed in the following Corollary.

Corollary 2 (Convergence rates equations of motions, Gaussian kernel) Let Ω ⊂
Rd open, bounded with locally Lipschitz boundary and K : Ω × Ω → R the squared ex-
ponential kernel. Assume the observed acceleration field gref : Ω → Rd is smooth and
all derivatives are bounded on Ω. For pb ∈ Rd, cb ∈ R, xb ∈ Ω assume there exists a
Lagrangian Lref ∈ U consistent with the normalization (27) and the dynamics. Then for
all r ∈ N there exist Cr, δr > 0 such that for all finite subsets Ω0 ⊂ Ω (defining LΩ0)
with hΩ0 < δr and for all l = 0, . . . , r

‖x 7→ kEL(LΩ0)(x, gref(x))‖W l(Ω) ≤ Crhr−lΩ0
‖Lref‖U

for any component k = 1, . . . , d. 2

Proof As K is the squared exponential kernel, its reproducing kernel Hilbert space U
embeds continuously into any Sobolev space Wm(Ω) (m > 1) [14, Thm.4.48]. Thus,
Assumption 5 is fulfilled for any r > 2 + d. Therefore, for r > 2 + d statement follows
by Theorem 4. For r ≤ 2 + d the statement can be deduced from the statement with
r = 3 + d for a sufficiently small 0 < δr < δ3+d and sufficiently large Cr > C3+d. �

For a Lagrangian L ∈ C2(Ω) at non-degenerate points, i.e. where the matrix ∂2L
∂ẋ∂ẋ is

invertible, we can define the acceleration field

g(L)(x) =

(
∂2L

∂ẋ∂ẋ
(x)

)−1(
∂L

∂x
(x, ẋ)− ∂2L

∂x∂ẋ
(x, ẋ) · ẋ

)
.

It fulfils EL(L)(x, g(L)(x)) = 0. We have the following pointwise convergence result of
the acceleration field.

Corollary 3 (Convergence rates of acceleration field) Under the assumptions of
Theorem 4, consider a sequence (x(j))∞j=1 ⊂ Ω defining a dense subset of Ω. Consider
the Lagrangians L(j), L(∞) characterised in Theorem 1. Assume L(∞) is non-degenerate

at x ∈ Ω. Let Ωk
0 := {x(j)}kj=1. Then there exist J ∈ N, Cr > 0 such that for all k > J

‖g(L(k))(x)− gref(x)‖ ≤ Cr(hΩk0
)r.

2

Again, as by Example 3, when the observations are obtained over uniform meshes in
Ω ⊂ R2d, then the convergence rate predicted in Corollary 3 is M−

r
2d , where M is the

number of samples.
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Proof The Lagrangian L(∞) is non-degenerate at x, i.e. all eigenvalues of the sym-

metric matrix
∂2L(∞)

∂ẋ∂ẋ (x) are non-zero. Let λ be the eigenvalue closest to 0. Since the
Lagrangians L(j) converge to L(∞) in ‖ · ‖C2(Ω), there exists J1 such that for all k > J1

the eigenvalue λj of
∂2L(j)

∂ẋ∂ẋ (x) closest to zero fulfils |λj − λ| < |λ|
2 . As

Ω1
0 ⊂ Ω2

0 ⊂ . . . ⊂
∞⋃
j=1

Ωj
0 ⊂ Ω

and
⋃∞
j=1 Ωj

0 is dense in the compact set Ω, we have h
Ωj0
→ 0. By Theorem 4 and

U ⊂ C(Ω), there exists J2 ∈ N, C > 0 such that for all k > J2

‖EL(L(k))(x, gref(x))‖ ≤ Chr
Ωk0
,

where the norm ‖L(∞)‖U has been absorbed in the constant C. For k > J := max(J1, J2)
we have

C(hΩk0
)r ≥ ‖EL(L(k))(x, gref(x))− EL(L(k))(x, g(L(k))(x))︸ ︷︷ ︸

=0

‖

=

∥∥∥∥∥∂2L(k)

∂ẋ∂ẋ
(x)(gref(x)− g(L(k))(x))

∥∥∥∥∥
≥ |λ|

2

∥∥gref(x)− g(L(k))(x)
∥∥

This proves the claim. �

The result is consistent with our numerical experiment presented in Figure 5: as the
reference Lagrangian and the kernel in the experiment are smooth, Corollary 3 applies
for any r ∈ N. This confirms our observation that as the number of observation points
M increases (and hΩ0 shrinks as visualised in Figure 10), higher and higher convergence
rates become dominant until round-off errors become dominant.

6.3.3. Convergence rates of discrete Lagrangian models

We now turn to discrete Lagrangian models. For preparation, we prove the following
Cauchy-Schwarz-type inequality.

Lemma 6 Let Ω ⊂ R2d an open, non-empty, bounded domain with Lipschitz boundary.
Let r > d and g : Ω→ Ω ⊂ R2d with g ∈ (W r(Ω))2d. Then there exists Cg > 0 such that
for all f ∈W r(Ω)

‖f ◦ g‖W r−d−1(Ω) ≤ Cg‖f‖W r(Ω). 2
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Proof Denote coordinates of Ω by z1, . . . , z2d. Let f, g ∈W r(Ω) and let s ≤ r− d− 1.
For m > d the Sobolev embedding Wm(Ω) ⊂ C(Ω) holds. Therefore, the derivatives

∂αf = ∂|α|f
(z1)α1 ...(z2d)α2d

of f fulfil ∂αf ∈ C(Ω) for all multi-indices α with |α| ≤ s. More-

over, each component of ∂αg with |α| ≤ s lies in L2(Ω).
A multivariate version of the Faá di Bruno formula [26] shows

∂α(f ◦ g) =
∑
π

(∂α(π)f) ◦ g · gπ,

where π runs through the set of partitions of the unordered |α|-tuple (multi-set)

{1, . . . , 1︸ ︷︷ ︸
α1 times

, . . . , 2d, . . . , 2d︸ ︷︷ ︸
α2d times

}

and defines multi-indices α(π) for derivatives with |α(π)| ≤ s.
The expression gπ consists of products of derivatives of g of order less than or equal to

s. For each π the norm ‖gπ‖L2(Ω) can, therefore, be bounded by a repeated application

of the Cauchy inequality in L2(Ω). Moreover, ∂α(π)f ∈ C(Ω). As W r−i(Ω) ⊂ C(Ω) for
all i ≤ s, ‖∂α(f ◦ g)‖L2(Ω) is bounded in terms of ‖f‖W r(Ω) and a g dependent constant
Cg > 0. �

Proposition 7 Let Ω ⊂ R2d an open, non-empty, bounded domain with Lipschitz bound-
ary. Let r > d and gref ∈ (W r(Ω))d. Consider the map Φ(∞) defined by

Φ(∞)(Ld)(x) = DEL(Ld)(x, gref(x)).

The map Φ(∞) considered as a linear operator Φ(∞) : W r+1(Ω) → (W r−d−1(Ω))d is
bounded. 2

Proof Let k ∈ {1, . . . , d} and let k(·) denote the kth component of a function. For
(x0, x1) ∈ Ω define g(x0, x1) = (x1, gref(x0, x1)). We have g ∈ (W r(Ω))2d. Let Ld ∈
W r+1(Ω). Let f = k(∇1Ld). We have f ∈W r(Ω).

Now ‖k(Φ(∞))(Ld)‖W r−d−1 can be bounded in terms of ‖Ld‖W r+1 using Lemma 6:

‖k(Φ(∞))(Ld)‖W r−d−1 ≤ ‖k(∇2Ld)‖W r−d−1 + ‖f ◦ g‖W r−d−1

≤ ‖Ld‖W r + Cg‖f‖W r

≤ ‖Ld‖W r+1 + Cg‖Ld‖W r+1 = (1 + Cg)‖Ld‖W r+1

for a gref dependent constant Cg > 0. �

Assumption 6 Let Ω ⊂ R2d an open, non-empty, bounded domain with locally Lipschitz
boundary. Consider a kernel K : Ω×Ω→ R such that the RKHS U embeds continuously
into the Sobolev space W r+1(Ω) for r > 2d+ 1. Assume that the true discrete dynamical
system (x0, x1) 7→ (x1, x2) on Ω can be described by a map gref : Ω → Ω with gref ∈
(W r(Ω))d, where x2 = gref(x0, x1).
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Remark 11 (Stricter smoothness assumption) Comparing Assumption 6 and As-
sumption 5, the smoothness assumptions on the dynamics and on the RKHS U appear
to be stricter for discrete Lagrangian models than for continuous models. This is related
to the requirement that the target space of Φ(∞) (Proposition 7) embeds into C(Ω) to
apply smoothening theory (Theorem 3). 2

When Assumption 6 holds, then by the Sobolev embedding theorem [1, §4], W r+1(Ω)
embeds continuously into C2+d(Ω) ⊂ C2(Ω). Therefore, the kernel K necessarily fulfils
sufficient smoothness properties such that for pb ∈ Rd, cb ∈ R, xb ∈ Ω we can define to
any finite subset Ω0 = {(x0, x1)}Mj=1 ⊂ Ω a Lagrangian Ld,Ω0 ∈ U by (24).

The following Theorem provides a bound on the extrapolation error DEL(Ld,Ω0)(x0, x1, x2)
on observations (x0, x1, x2) of the true system, when Ld,Ω0 is inferred from finitely many
observations. Theorem 5 corresponds to Theorem 4, which relates to continuous La-
grangian models.

Theorem 5 Under Assumption 6, assume that for pb ∈ Rd, cb ∈ R, xb ∈ Ω there exists
a discrete Lagrangian Lref

d consistent with the normalisation (37) and the dynamics, i.e.
DEL(Lref

d )(x, gref(x)) = 0 for all x ∈ Ω. Denote by kΦ
∞(Ld)(x) = kDEL(Ld)(x, gref(x))

for Ld ∈ U , x ∈ Ω the kth component of DEL(Ld)(x, gref(x)) (k = 1, . . . , d).
Then there exist constants δr, Cr > 0 such that for all finite Ω0 ⊂ Ω (defining Ld,Ω0)

with hΩ0 = dist(Ω0,Ω) < δr and for all l = 0, 1, . . . , r − d− 1, k = 1, . . . , d

‖kΦ∞(Ld,Ω0)‖W l(Ω) ≤ Crhr−d−1−l
Ω0

‖Lref
d ‖U . 2

Proof Let Cr,Φ > 0 be a bound for the operator norm of Φ(∞) : W r+1(Ω)→ (W r−d−1(Ω))d

(see Proposition 7). As r > 2d + 1, by Theorem 3 there exists δr, Cr > 0 such that for
all finite subsets Ω0 ⊂ Ω (defining Ld,Ω0) with hΩ0 ≤ δr and for all l = 0, . . . , r − d − 1
we have

‖Φ(∞)(Ld,Ω0)‖W l(Ω) ≤ C̃r(hΩ0)r−d−1−l‖Φ(∞)(Ld,Ω0)‖W r−d−1(Ω)

≤ C̃r(hΩ0)r−d−1−lCr,Φ‖Ld,Ω0‖W r+1(Ω)

≤ C̃r(hΩ0)r−d−1−lCr,Φc̃‖Ld,Ω0‖U ,

where c̃ is related to the embedding U ⊂W r+1. Discrete Lagrangians obtained via (24)
fulfil a minimisation principle as explained in the proof of Theorem 2 (in direct analogy to
Remark 4, which is formulated for continuous Lagrangians). Thus ‖Ld,Ω0‖U ≤ ‖Lref

d ‖U .
This completes the proof. �

For Ld ∈ C1(Ω), (x∗0, x
∗
1), (x∗1, x

∗
2) ∈ Ω with DEL(Ld)(x

∗
0, x
∗
1, x
∗
2) = 0 and∇1,2Ld(x

∗
1, x
∗
2) =

∂2Ld
∂x1∂x2

(x∗1, x
∗
2) invertible, the triple (x∗0, x

∗
1, x
∗
2) is called non-degenerate motion segment

of Ld. By the implicit function theorem we can define a unique continuous map g on a
connected open neighbourhood O of (Ld, (x

∗
0, x
∗
1)) ∈ C1(Ω)× Ω with g(Ld)(x

∗
0, x
∗
1) = x∗2

and
DEL(Ld)(x, g(Ld)(x)) = 0 ∀(Ld, x) ∈ O.
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The map g(Ld) is the discrete evolution rule of the discrete dynamical system defined
by the Lagrangian Ld.

We have the following pointwise convergence result.

Corollary 4 (Convergence rates discrete evolution rule) In the setting of The-
orem 2 assume Ω = Ωa = Ωb and that Assumption 6 is fulfilled in addition. Let
x∗ = (x∗0, x

∗
1), (x∗1, x

∗
2) ∈ Ω with x∗2 = gref(x) be a nondegenerate motion sequence of

the limit Lagrangian Ld,(∞) defined in Theorem 2. Denote Ωk
0 := {x(j)}kj=1. Then there

exist K ∈ N, Cr > 0 such that for all k > K the discrete evolution g(Ld,(k))(x
∗) can be

defined with g(Ld,(k))(x
∗)→ x∗2 and

‖g(Ld,(k))(x
∗)− gref(x

∗)‖ ≤ Cr(hΩk0
)r−d−1. 2

Proof By Theorem 2, Ld,(k) converges to Ld,(∞) in the RKHS U , which is continuously

embedded into C2(Ω) by Assumption 6. Therefore and by the non-degeneracy properties
of Ld,(∞), there exists a neighbourhood O of gref(x

∗), an index K ∈ N, and δ > 0 such
that for all k > K and all x ∈ O each row and each column vector of ∇1,2Ld,(k)(x) =
∂2Ld,(k)

∂x1∂x2 (x) have norm at least δ > 0. We can assume O to be convex and K so large
that for all k > K the line segment between g(Ld,(k))(x

∗) and g(Ld,(∞))(x
∗) is contained

in O.
Let j ∈ {1, . . . , d} denote an index. Again, we denote the component of a function by

a lower-left-aligned index. By Theorem 5 (with l = 0) there exists C̃r > 0 such that for
all k > K

C̃r(hΩk0
)r−d−1 ≥ ‖jDEL(Ld,(k))(x

∗, gref(x
∗))‖

= ‖jDEL(Ld,(k))(x
∗, gref(x

∗))− jDEL(Ld,(k))(x
∗, g(Ld,(k))(x

∗))︸ ︷︷ ︸
=0

‖

= ‖j∇1Ld,(k)(x
∗
1, gref(x

∗))− j∇1Ld,(k)(x
∗
1, g(Ld,(k))(x

∗))‖
= ‖∇2(j∇1)Ld,(k)(x

∗
1, x
′)>(gref(x

∗)− g(Ld,(k))(x
∗))‖

≥ δ‖gref(x
∗)− g(Ld,(k))(x

∗))‖.

Above, x′ lies on the line segment between g(Ld,(k))(x
∗) and g(Ld,(∞))(x

∗). Its existence
is guaranteed by the intermediate value theorem. The expression ∇2(j∇1)Ld,(k) denotes
the gradient of j∇1Ld,(k) with respect to the second input slot of Ld,(k). The last in-
equality holds true since the norm of each row and each column of ∇1,2Ld,(k)(x

∗, x′) is

bounded from below by δ > 0. Thus the theorem follows with Cr = C̃r
δ . �

7. Summary

We have introduced a method to learn general continuous Lagrangians and discrete La-
grangians from observational data of dynamical systems that are governed by variational
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ordinary differential equations. The method is based on kernel-based, meshless colloca-
tion methods for solving partial differential equations [52]. In our context, collocation
methods are used to solve the Euler–Lagrange equations that we interpret as a partial dif-
ferential equations for a Lagrangian function L, or discrete Lagrangian Ld, respectively.
Additionally, the use of Gaussian processes gives access to a statistical framework that
allows for a quantification of the model uncertainty of the identified dynamical system.
This could be used for adaptive sampling of data points. Uncertainty quantification can
be efficiently computed for any quantity that is linear in the Lagrangian, such as the
Hamiltonian or symplectic structure of the system, which is of relevance in the context
of system identification. We prove the convergence of the methods to a true Lagrangian
and prove convergence rates for the inferred equations of motion, acceleration fields, and
evolution rules as the maximal distance of observation data points converges to zero.

The article overcomes the major difficulty that Lagrangians are not uniquely deter-
mined by a system’s motions and the presence of degenerate solutions to the Euler–
Lagrange equations. This is tackled by a careful consideration of regularisation condi-
tions that reduce the gauge freedom of Lagrangians but do not restrict the generality
of the ansatz. Our method profits from implicit regularisation that can be understood
as an extremisation of a reproducing kernel Hilbert space norm, based on techniques
of game theory [44]. This interpretation as convex optimisation problems is the key
ingredient that allows us to provide a rigorous proof of convergence of the method as
the maximal distance of observation data points converges to zero.

In [38] we have extended the method to dynamical systems governed by variational
partial differential equations. Another direction of research is to adapt the method to
dynamical systems with low regularity such as systems with collisions and to incorporate
noise models into our statistical framework. Furthermore, a combination with detection
methods for Lie group variational symmetries [18, 30] or with detection methods of
travelling waves [40, 42] is of interest. This may allow for a quantitative analysis of the
interplay of symmetry assumptions and model uncertainty.
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Appendices

A. Gaussian fields

A.1. Definitions

We recall from [44] definitions and properties of Gaussian fields and their interpretation
as weak random variables.

Definition 2 Let V be a topological vector space and V ∗ its topological dual. A linear
operator T : V ∗ → V is positive symmetric if ψ(Tφ) = φ(Tψ) for all φ, ψ ∈ V ∗ and
φ(Tφ) ≥ 0 for all φ ∈ V ∗. 2

Let (B, ‖·‖B) be a separable Banach space with quadratic norm ‖·‖B, i.e. there exists
a linear, positive symmetric, bijection Q : B∗ → B such that ‖u‖B = (Q−1u)(u). Even
though this implies that B is a Hilbert space, the Banach space terminology is used
as the dual pairing of B∗ and B does not coincide with the inner product pairing via
the Riesz representation theorem. Moreover, as any positive symmetric linear operator
B∗ → B is automatically continuous [44, Prop. 11.2], Q : B∗ → B is continuous.

Definition 3 ([44, Def. 17.3]) Let T : B∗ → B be a positive symmetric linear opera-
tor, u ∈ B, (A,Σ,P) a probability space with P a Borel measure, and H ⊂ L2(A,Σ,P)
a linear subspace such that each X ∈ H is a Gaussian random variable. A linear map

ξ : B∗ → H ⊂ L2(A,Σ,P)

is a Gaussian field with mean u and covariance operator T if for each φ ∈ B∗ the
random variable ξ(φ) is normally distributed with mean φ(u) and covariance φ(Tφ), i.e.
ξ(φ) ∼ N (φ(u), φ(Tφ)). We denote such a field by ξ ∼ N (u, T ). When u = 0, then we
say ξ is a centred Gaussian field. 2

Remark 12 (Notation) Consider a Gaussian field ξ ∼ N (u, T ), ξ : B∗ → L2(A,Σ,P)
as in Definition 3. The Gaussian field ξ post-composed with evaluation at ω ∈ A
is a linear map ξ(·)(ω) : B∗ → R, which is an element in the algebraic dual to B∗.
Strictly speaking, the map ω 7→ ξ(·)(ω) cannot be interpreted as a B-valued random
variable because it takes values in the algebraic dual to B∗ but not necessarily in the
topological dual B∗∗ ∼= B because ξ : B∗ → L2(A,Σ,P) might not be bounded. However,
ω 7→ ξ(·)(ω) admits the interpretation as a weak B-valued random variable [44, §17.4]
and we say that ξ is a Gaussian field on B.

For φ ∈ B∗ we define φ(ξ) := ξ(φ), which is the notation used in Sections 4 to 6. 2

Theorem 6 ([44, Thm. 17.4]) To any u ∈ B and symmetric positive covariance op-
erator T a Gaussian field ξ ∼ N (u, T ) exists. 2

Lemma 7 Let ξ ∼ N (u, T ) for u ∈ B and a positive symmetric operator T : B∗ → B.
Then for φ, ψ ∈ B∗ the covariance of ξ(φ) and ξ(ψ) is given as

cov(ξ(ψ), ξ(φ)) = E[(ξ(ψ)− ψ(u))(ξ(φ)− φ(u))] = ψTφ. 2
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Proof As covariances are invariant under shifts, without loss of generality we may
assume u = 0. We have

(ψ + φ)T (ψ + φ) = cov(ξ(ψ + φ), ξ(ψ + φ)) = E[ξ(ψ + φ)ξ(ψ + φ)]

= E[ξ(ψ)ξ(ψ) + 2ξ(ψ)ξ(φ) + ξ(φ)ξ(φ)]

= ψTψ + 2cov(ξ(ψ), ξ(φ)) + φTφ

It follows that cov(ξ(ψ), ξ(φ)) = ψTφ. �

A.2. Conditional expectation and variance

Let ξ ∼ N (u, T ) be a Gaussian field with covariance operator T and let φ, φ1, . . . , φm ∈
B∗. Let Φ = (φ1, . . . , φm) and denote ξ(Φ) = (ξ(φ1), . . . , ξ(φm)), Φ(u) = (φ1(u), . . . , φm(u)),
Θ = (φiTφj)

m
i,j=1 ∈ Rm×m, Θ0 = (φTφj)

m
j=1 ∈ Rm, Θ0

0 = φTφ. Using Lemma 7, the

joint distribution of (ξ(φ), ξ(Φ)) : A → Rm+1 is given as(
ξ(φ)
ξ(Φ)

)
∼ N

((
φ(u)
Φ(u)

)
,

(
Θ0

0 Θ>0
Θ0 Θ

))
.

We have ξ(Φ) − Φ(u) ∈ range(Θ) almost surely [20, Prop. 2.7]. Here range(Θ) denotes
the span of the columns of Θ. Let y ∈ Φ(u) + range(Θ). Let the expression Θ† denote
the Penrose pseudo-inverse of Θ. Using Θ>0 = Θ>0 Θ†Θ [20, Prop.2.16], the two linear
systems of equations

Θz = y − Φ(u) and ΘZ = Θ0, (45)

are solvable.

Proposition 8 ([20, Prop. 3.13]) The conditional distribution of ξ(φ) given ξ(Φ) = y
is given as

ξ(φ)|ξ(Φ) = y ∼ N (φ(u) + Θ>0 Θ†(y − Φ(u)),Θ0
0 −Θ>0 Θ†Θ0). 2

Remark 13 The expressions Θ†(y − Φ(u)) and Θ†Θ0 denote the (column-wise) least
square solutions to (45). However, since null(Θ) ⊆ null(Θ>0 ) [20, Prop. 2.16] any solution
to (45) will yield the same conditional distribution. 2

Remark 14 As by the existence result (Theorem 6), the function φ 7→ ξ(φ)|ξ(Φ) = y
can be interpreted as a Gaussian field with ξ ∼ N (u, T ) with mean

u = u+ (TΦ)>Θ†(y − Φ(u)) ∈ B, with TΦ = (Tφ1, . . . , Tφm)

and covariance given by the positive symmetric operator T : B∗ → B (in the sense of
Definition 2)

T = T − (TΦ)>Θ†(TΦ).

For an interpretation of ξ as an orthogonal projection of ξ and a measure theoretic
discussion, we refer to [44]. 2
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The following statements are helpful to characterize conditional means of Gaussian
fields by an extremization principle.

Theorem 7 ([44, Thm. 12.5]) Let φ1, . . . , φm ∈ B∗ be linearly independent. Define

Θ ∈ Rm×m by it elements Θi,j = φi(Qφj). Denote Φ =
(
φ1, . . . , φm

)> ∈ (B∗)m and

QΦ =
(
Qφ1, . . . , Qφm

)> ∈ Bm. Then Θ is invertible and for any y ∈ Rm

Ψ = y>Θ−1QΦ =

m∑
i,j=1

yi(Θ
−1)i,jQφj

is the minimizer of the convex optimization problem

Ψ = arg min
{Ψ∈B |Φ(Ψ)=y}

‖Ψ‖B.
2

We weaken the assumptions of Theorem 7 slightly.

Theorem 8 Let φ1, . . . , φm ∈ B∗. Define Θ ∈ Rm×m by Θi,j = φi(Qφj). Denote Φ =(
φ1, . . . , φm

)> ∈ (B∗)m and QΦ =
(
Qφ1, . . . , Qφm

)> ∈ Bm. For any y ∈ range(Φ: B →
Rm)

Ψ = y>Θ†QΦ =

m∑
i,j=1

yi(Θ
†)i,jQφj

is the minimizer of the convex optimization problem

Ψ = arg min
{Ψ∈B |Φ(Ψ)=y}

‖Ψ‖B.
2

Proof In preparation of the argument we first proof the following Lemma

Lemma 8 We have

ker(Θ: Rm → Rm) ⊆ ker(Rm → B, x 7→ x>QΦ). 2

Proof The proof is inspired by [20, Prop. 2.16]. Let φ ∈ B∗. As the bijection Q is
positive symmetric, the following matrix is symmetric, positive semi-definite

Σ =

(
φQφ φ(QΦ)>

Φ>Qφ Φ>QΦ

)
∈ R(m+1)×(m+1)

Therefore, for any x ∈ ker Θ = ker Φ>QΦ, α, β ∈ R we have

0 ≤
(
β αx>

)
Σ

(
β
αx

)
= β2φQφ+ 2αβφ(QΦ)>x

As this holds for all α, β ∈ R we conclude φ((QΦ)>x) = 0. Since B is a Hilbert space
and φ((QΦ)>x) = 0 holds for all φ ∈ B∗ we conclude (QΦ)>x = 0. �
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Let {φ̃j}m̃j=1 ⊂ B∗ be a basis for the linear span span{φj}mj=1 (m̃ ≤ m). The basis

elements define the vector Φ̃ =
(
φ̃1, . . . , φ̃m̃

)> ∈ (B∗)m̃. By linear independence of

φ̃j , for k = 1, . . . ,m there exist unique αkj ∈ R (j = 1, . . . , m̃) with

φk =
m̃∑
j=1

αkjφ̃j .

This defines a unique matrix A = (αij) ∈ Rm×m̃ with Φ = AΦ̃ with linearly independent
columns. Moreover, the matrix Θ̃ ∈ Rm̃×m̃ defined by Θ̃i,j = φ̃i(Q(φ̃j)) is invertible.

Since Φ̃ : B → Rm̃ is surjective,

range(Φ: B → Rm) = range(A ◦ Φ̃ : B → Rm) = range(A : Rm̃ → Rm).

Let y ∈ range(Φ) = range(A). Define ỹ = A†y and z̃ = Θ̃−1ỹ. As A has linearly
independent columns, it is an isomorphism onto range(A) such that for any Ψ ∈ B we
have

(A ◦ Φ̃)(Ψ) = Φ(Ψ) = y = Aỹ

⇐⇒ Φ̃(Ψ) = ỹ.

Thus, the following minima coincide

arg min
{Ψ∈B |Φ(Ψ)=y}

‖Ψ‖B = arg min
{Ψ∈B | Φ̃(Ψ)=ỹ}

‖Ψ‖B.

By Theorem 7 this minimum coincides with Ψ̃ = z̃>QΦ̃. To complete the proof of the
theorem, it remains to prove the following Lemma.

Lemma 9 Consider the linear system Θz = y for z ∈ Rm. Then Θz = y is solvable
and for any solution z

Ψ = z>QΦ and Ψ̃ = z̃>QΦ̃

coincide. 2

Proof Let z̃ be the solution to Θ̃z̃ = ỹ and set Ψ̃ = z̃>QΦ̃. Using linearity of Q, we
have

Ψ̃ = z̃>QΦ̃ = z̃>QA†Φ = ((A†)>z̃)>QΦ = z>QΦ

with z := (A†)>z̃. We have

A†Θz = A†Θ(A†)>z̃ = Θ̃z̃ = ỹ = A†y.

As A†A = Idm̃, the restriction A†|range(A) : range(A) → Rm̃ is an isomorphism. There-

fore, as y ∈ range(A) it follows that z = (A†)>z̃ solves the linear system

Θz = y. (46)
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For any other solution z ∈ Rm of (46) it holds that

z − z ∈ ker Θ ⊆ ker((ΘΦ)> : Rm → R), �

where the inclusion holds by Lemma 8. Therefore, Ψ̃ = z̃>QΦ = z>QΦ = z>QΦ = Ψ.�

This completes the proof of Theorem 8.

A.3. Applicability of Proposition 8 in Section 4

To apply Proposition 8 in Section 4.1.3, we need to verify yMb ∈ range(Θ).

Proposition 9 Employing notation of Section 4, Assumption 1 implies yMb ∈ range(Θ).2

Proof Denote the components of ΦM
b by φ1, . . . , φM ∈ U∗, where M = Md+d+1. Let

{φ̃j}M̃j=1 ⊂ U∗ be a basis for the linear span span{φj}Mj=1 (M̃ ≤M). The basis elements

define the vector Φ̃ =
(
φ̃1, . . . , φ̃M̃

)> ∈ (U∗)M̃ . By the linear independence of φ̃j , for

k = 1, . . . ,M there exist unique αkj ∈ R (j = 1, . . . , M̃) with

φk =
M̃∑
j=1

αkjφ̃j .

This defines a unique matrix A = (αij) ∈ RM×M̃ with ΦM
b = AΦ̃ with linearly indepen-

dent columns. Define Θ̃ ∈ RM̃×M̃ by Θ̃i,j = φ̃i(K(φ̃j)). Recall that Θi,j = φi(K(φj))

defines Θ ∈ RM×M .

Lemma 10 We have
Θ = AΘ̃A>. 2

Proof Using linearity of K : U∗ → U ,

Θi,j = φi(K(φj)) =
M̃∑
k=1

αikφ̃k

K
 M̃∑
s=1

αjsφ̃s


=

M̃∑
k,s=1

αikαjsφ̃k(K(φ̃s)) =

M̃∑
k,s=1

αikΘ̃k,sαjs. �

The matrix Θ̃ is invertible by construction. (Indeed, we could have chosen φ̃j such

that Θ̃ is the identity matrix.) Moreover, A is injective such that A> : RM → RM̃ is

surjective. Therefore, by Lemma 10, range(Θ) = range(A). Viewing ΦM
b : U → RM ,

Φ̃ : U → RM̃ , A : RM̃ → RM as linear maps,

range(ΦM
b : U → RM ) = range(A ◦ Φ̃ : U → RM ) ⊂ range(A) = range(Θ). �

Assumption 1 implies yMb ∈ range(ΦM
b ). Therefore, yMb ∈ range(Θ).
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In the setting of discrete Lagrangians, an application of Proposition 8 is justified as
by the following Proposition.

Proposition 10 Employing notation of Section 4.2, Assumption 2 implies yMb ∈ range(Θ).2

Proof The proof follows in complete analogy to Proposition 9. �

B. Alternative regularisation

The following proposition justifies an alternative regularisation strategy. As it involves
non-linear conditions, we prefer the regularisation strategy presented in the main body of
the document. However, it is presented here for comparison with regularisation strategies
for learning of Lagrangian densities using neural networks [42].

Proposition 11 Let xb = (xb, ẋb) ∈ TRd ∼= Rd ×Rd and L̊ a Lagrangian with ∂L̊
∂ẋ∂ẋ(xb)

non-degenerate. Let cb ∈ R, pb ∈ Rd, cω > 0. There exists a Lagrangian L such that L
is equivalent to L̊ and

L(xb) = cb, Mm(L)(xb) =
∂L

∂ẋ
(xb) = pb, Nω(L)(xb) =

∣∣∣∣det

(
∂2L

∂ẋ∂ẋ
(xb)

)∣∣∣∣ = cω.

(47)

2

Proof Let c̊b = L̊(xb), p̊b = Mm(L̊)(xb), c̊ω = Nω(L̊)(xb). The quantity c̊ω is not zero

since ∂L̊
∂ẋ∂ẋ(xb) is non-degenerate. We set

ρ = d

√∣∣∣∣cωc̊ω
∣∣∣∣, F (x) = x>(pb − ρp̊b), c = cb − ẋ>b (pb − ρp̊b)− ρc̊b.

Now the Lagrangian L = ρL̊+ dtF + c is equivalent to L̊ and fulfils (14). �

The condition Nω(L)(xb) = cω > 0 may be compared to the regularisation strategies
for training Lagrangians modelled as neural networks in [42]: denoting observation data
by x̂(j) = (x(j), ẋ(j), ẍ(j)), in [42] (transferred to our continuous ode setting) parametrises
L as a neural network and considers the minimisation of a loss function function ` =
`data + `reg with data consistency term

`data =
∑
j

‖EL(L)(x̂(j))‖2

and with regularisation term `reg that maximises the regularity of the Lagrangian at
data points x̂(j) = (x(j), ẋ(j), ẍ(j))

`reg =
∑∥∥∥∥∥

(
∂2L

∂ẋ∂ẋ
(x(j), ẋ(j))

)−1
∥∥∥∥∥ .

The corresponding statement for discrete Lagrangians is as follows.
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Proposition 12 Let xb = (x0b, x1b) ∈ Rd × Rd and L̊d a discrete Lagrangian with
Mm−(xb) non-degenerate. Let cb ∈ R, pb ∈ Rd, cω > 0. There exists a discrete La-
grangian Ld such that Ld is equivalent to L̊d and

Ld(xb) = cb, Mm−(Ld)(xb) = pb, N−ω (Ld)(xb) =

∣∣∣∣det

(
∂2Ld
∂x0∂x1

(xb)

)∣∣∣∣ = cω. (48)

2

Proof Let c̊b = L̊d(xb), p̊b = Mm−(L̊d)(xb), c̊ω = N−ω (L̊d)(xb). The quantity c̊ω is not

zero since ∂L̊d
∂x0∂x1

(xb) is non-degenerate. We set

ρ = d

√∣∣∣∣cωc̊ω
∣∣∣∣, F (x) = x>(pb − ρp̊b), c = cb − ρc̊b − (x1b − x0b)

>(pb − ρp̊b).

Now the Lagrangian Ld = ρL̊d + ∆tF + c is equivalent to Ld and fulfils (48). �

Again, the condition N−ω (L)(xb) = cω > 0 may be compared to the regularisation
strategies for training discrete Lagrangians modelled as neural networks in [42]: denoting

observation data by x̂(j) = (x
(j)
0 , x

(j)
1 , x

(j)
2 ), in [42] (when transferred to our discrete ode

setting) parametrises Ld as a neural network and considers the minimisation of a loss
function function ` = `data + `reg with data consistency term

`data =
∑
j

‖DEL(Ld)(x̂
(j))‖2

and with regularisation term `reg that maximises the regularity of the Lagrangian at

data points x̂(j) = (x
(j)
0 , x

(j)
1 , x

(j)
2 ):

`reg =
∑∥∥∥∥∥

(
∂2L

∂x0∂x1
(x

(j)
0 , x

(j)
1 )

)−1
∥∥∥∥∥ .

C. Derivation of symplectic structure induced by discrete
Lagrangians

Denote the coordinate of the domain of definition Rd × Rd of a discrete Lagrangian Ld
by (x0, x1). Consider the two discrete Legendre transforms Φ± : Rd × Rd → T ∗Rd [35]
with

Φ−(x0, x1) = (x0,−
∂L

∂x0
(x0, x1)) Φ+(x0, x1) = (x1,

∂L

∂x1
(x0, x1)).

When we pullback the canonical symplectic structure
∑d

k=1 dqk ∧ dpk on T ∗Rd to the
discrete phase space Rd × Rd with Φ± we obtain
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Sympl−(Ld) =
d∑
s=1

dxs0 ∧ d

(
−∂Ld
∂xs0

)
=

d∑
r,s=1

− ∂2Ld
∂xs0∂x

r
0

dxs0 ∧ dxr0 −
∂2Ld
∂xs0∂x

r
1

dxs0 ∧ dxr1

=

d∑
r,s=1

− ∂2Ld
∂xs0∂x

r
1

dxs0 ∧ dxr1

Sympl+(Ld) =
d∑
s=1

dxs1 ∧ d

(
∂Ld
∂xs1

)
=

d∑
r,s=1

∂2Ld
∂xs1∂x

r
0

dxs1 ∧ dxr0 +
∂2Ld
∂xs1∂x

r
1

dxs1 ∧ dxr1

=
d∑

r,s=1

∂2Ld
∂xs1∂x

r
0

dxs1 ∧ dxr0

We see Sympl−(Ld) = Sympl+(Ld).
The 2-form corresponds to the notion of a discrete Lagrangian symplectic form in [35,

§1.3.2].
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Hamiltonian systems from data. Chaos, 29(12):121107, dec 2019. doi:10.1063/1.
5128231.

47

https://doi.org/10.1016/S0079-8169(03)80006-5
https://simdl.github.io/files/49.pdf
https://simdl.github.io/files/49.pdf
https://doi.org/10.1007/s00211-007-0092-z
http://dx.doi.org/10.1007/978-1-4757-2063-1_10
http://dx.doi.org/10.1007/978-1-4757-2063-1_10
https://doi.org/10.1007/978-1-4757-2063-1_10
https://doi.org/10.1145/355694.355697
https://arxiv.org/abs/2305.04962
https://doi.org/10.1063/1.5128231
https://doi.org/10.1063/1.5128231


[8] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh
approach to numerical computing. SIAM review, 59(1):65–98, 2017. doi:10.1137/
141000671.

[9] James R. Bunch and Linda Kaufman. Some stable methods for calculating inertia
and solving symmetric linear systems. Mathematics of Computation, 31(137):163–
179, 1977. doi:10.2307/2005787.
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[17] Marco David and Florian Méhats. Symplectic learning for Hamiltonian neural net-
works. Journal of Computational Physics, 494:112495, 2023. doi:10.1016/j.jcp.
2023.112495.

[18] Eva Dierkes, Christian Offen, Sina Ober-Blöbaum, and Kathrin Flaßkamp. Hamil-
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