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ABSTRACT

The use of renewable energies strengthens decarbonization strategies. To integrate volatile renewable
sources, energy systems require grid expansion, storage capabilities, or flexible consumption. This
study focuses on industries that adapt production to real-time energy markets, offering flexible
consumption to the grid. Flexible production considers not only traditional goals like minimizing
production time, but also minimizing energy costs and emissions, thereby enhancing the sustainability
of businesses. However, existing research focuses on single goals, neglects the combination of
makespan, energy costs, and emissions, or assumes constant or periodic tariffs instead of a dynamic
energy market. We present a novel memetic NSGA-III to minimize makespan, energy cost, and emis-
sions, integrating real energy market data, and allowing manufacturers to adapt energy consumption
to current grid conditions. Evaluating it with benchmark instances from literature and real energy
market data, we explore the trade-offs between objectives, showcasing potential savings in energy
costs and emissions on estimated Pareto fronts.

Keywords OR in Energy · Sustainable Production · Green Flexible Job Shop Scheduling ·Memetic NSGA-III

1 Introduction

Renewable energy is a key solution to the challenge of climate change. However, traditional energy systems face high
penetration of volatile renewable energy sources and face new challenges in terms of power quality, reliability, or
power system reliability (Basit et al. 2020). To support the integration of renewable energy sources, energy systems
need grid expansion, storage capabilities, or flexible loads. In the context of flexible loads, consumers are encouraged
to shift energy demand away from peak times to relieve grid load and toward periods of high renewable generation,
promoting sustainable energy consumption. For manufacturing industries as large energy consumers, flexible loads
offer a high potential for cost savings (Keller et al. 2017). Additionally, the sustainability of energy production can
also be considered. Instead of pricing emitted emissions through CO2 taxes and thus implicitly incorporating them
into energy costs, it can be beneficial to explicitly account for emissions in production planning. This allows focused
attention on a company’s carbon footprint, which is advantageous for reasons such as anticipating or responding
to regulatory pressures, attracting environmentally conscious customers, and maintaining legitimacy with external
stakeholders (Dahlmann et al. 2019). This work focuses on the challenge manufacturers face in aligning their production
schedule with fluctuations in energy prices and emissions of the energy market.

In the energy market, there are three classic types of energy tariffs: (1) fixed energy tariffs with constant energy prices,
(2) time-of-use (TOU) tariffs, where energy prices are divided into several time periods (e.g., on-peak and off-peak
prices), and (3) real-time pricing (RTP) tariffs, where the cost of electricity consumption is based on the electricity
exchange and changes at least every hour. The latter allows manufacturers to align their production with the energy
market, respond to price signals, adapt flexibly to the needs of the power system, and thereby reduce energy cost and
emissions (Finn & Fitzpatrick 2014).
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In the field of operations research, classical scheduling problems prioritize economic factors such as the schedule’s
makespan. Green Job Shop Scheduling Problems are an extension of classical scheduling problems, incorporating
resource and environmental aspects (Li & Wang 2022). As we show in Section 2, recent research places different
focuses on economic goals such as the makespan or energy costs and ecological goals such as emissions. To the best of
our knowledge, no research has combined the minimization of makespan, energy cost, and emissions while considering
RTP tariffs. However, integrating these factors is essential for production planners to accurately calculate the potential
reductions in energy costs and emissions achievable through improved production flexibility.

In this work, we focus on the effects of flexible production by exploring the research question: How do scheduling
decisions that prioritize one objective — makespan, energy cost, or emissions — affect the others? Our contributions
include (1) the formulation of a Flexible Job Shop Scheduling Problem (FJSP) with dynamic energy cost and emissions,
(2) developing a memetic algorithm based on the Non-Dominated Sorting Algorithm III (NSGA-III), and (3) conducting
computational experiments to evaluate the trade-offs among makespan, energy costs, and emissions. In our study,
we continue the work of Burmeister et al. (2023), who formulate a model for the bicriteria FJSP with respect to
makespan and energy cost and present a memetic NSGA-II as a solution approach. Our mathematical model extends
this framework to include emissions as a third objective. Additionally, our memetic NSGA-III enhances the existing
memetic NSGA-II, enabling the calculation of multi-objective schedules aimed at minimizing makespan, energy
cost, and emissions. This extension allows us to evaluate trade-offs among all three objectives in our computational
experiments and quantify potential savings for practitioners.

As a solution approach, we opt for memetic NSGA-III due to its ability to represent schedules in a three-dimensional
Pareto front, allowing decision-makers to balance trade-offs and select solutions based on their preferences. It also leads
to favorable results in similar FJSP problems (Sang & Tan 2022, Wu et al. 2021) and has already been used to optimize
schedules with respect to energy-related goals (Sun et al. 2021). A notable aspect of our study is the evaluation of the
scheduling problem using real energy costs and emissions data from the German energy market.

The remainder of this paper is organized as follows. Section 2 presents recent research in the area of green scheduling.
Section 3 introduces the mathematical model, for which we present a memetic NSGA-III in Section 4. Section 5 shows
our computational experiments and discusses our results. Section 6 summarizes our results and recommends directions
for future research.

2 Recent research

In this section, we present research related to energy cost- and emission-aware scheduling. We discuss the respective
objectives and solution approaches presented in the literature.

A schedule can be designed to minimize makespan, emissions, energy cost, or a combination of these. In order
to take ecological and economic goals into account, one approach is to minimize makespan while limiting energy
consumption (Carlucci et al. 2021). Energy consumption can also be minimized as an objective, but is still independent
of the underlying energy mix and its costs and emissions (Lu et al. 2021, Sun et al. 2021). Wang et al. (2020) incorporate
an economic view of energy consumption and minimize the makespan and energy costs. They divide a day into several
periods with different energy prices based on a TOU tariff. A more detailed consideration of dynamic prices with RTP
tariffs can be found in Abikarram et al. (2019) and Fazli Khalaf & Wang (2018). They consider hourly-changing prices
but neglect a minimization of the emissions and the makespan of the production schedule. Burmeister et al. (2023)
present a model for bicriteria optimization of makespan and energy cost, considering an RTP tariff.

Due to the NP-hard complexity of Job Shop Scheduling Problems (Garey et al. 1976), many studies favor metaheuristics
over exact solution methods, allowing fast adaptation to fluctuating prices and emissions. Schulz et al. (2019) use
a multiphase iterated local search algorithm to determine a Pareto front regarding makespan, total energy costs and
peak load. Most studies on energy-efficient scheduling reviewed in Gao et al. (2020) employ swarm intelligence and
evolutionary algorithms. Dong & Ye (2022) design an improved hybrid salp swarm and NSGA-III algorithm to reduce
carbon emissions and energy costs under the TOU tariff. Lu et al. (2021) and Wang et al. (2020) apply a multi-objective
Genetic Algorithm, while Burmeister et al. (2023) and Sun et al. (2021) use multi-objective evolutionary metaheuristics
for fast computation.

Recent research has focused on several areas of green scheduling. However, the reviewed works that include energy
costs and emissions neglect the real-time energy market, while studies related to real-time energy markets do not include
emissions. We aim to fill this research gap by combining economic and environmental perspectives, taking into account
a dynamic energy market.
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3 Mathematical model

In this section, we present the mathematical optimization model for the multi-objective FJSP with the objectives of
minimizing makespan, energy cost, and emissions. The model is based on the research conducted by Burmeister et al.
(2023), which we extend to take into account emissions. Table 1 presents the notation for the mathematical model. The
set J = {1, ..., µ} contains µ jobs to be processed, each of which is divided into vi operations Oi = {(i, 1), ..., (i, vi)}.
The operations of a job must be processed in sequence. The set O =

⋃
i∈J Oi contains all operations. For each operation,

τijk specifies the duration with which an operation (i, j) can be processed on machine k ∈M . Supplementary, ηijkt
and ζijkt contain the energy cost and emissions for processing operation (i, j) on machine k ∈M beginning at time
t ∈ T .

Table 1: Notation for the math. formulation

Notation Description Notation Description
Sets Variables
J Jobs, i ∈ J cmax Maximum makespan
O Operations, O =

⋃
i∈J

Oi, psum Sum of all energy cost

Oi = {(i, 1), ..., (i, νi)} esum Sum of all emissions
M Machines, k ∈M sijk Start time of operation (i, j)
T Time steps, t ∈ T on machine k
Parameters cijk End time of operation (i, j)
L A large number on machine k
τijk Processing time of operation

(i, j) on machine k
xijk Binary indicator, 1 iff operation

(i, j) is allocated on machine k
ηijkt Energy cost for processing oper-

ation (i, j) on machine k when
starting at time t

yiji′j′k Binary indicator, 1 iff operation
(i, j) is predecessor of operation
(i′, j′) on machine k

ζijkt Energy emissions for processing
operation (i, j) on machine k
when starting at time t

pijkt Binary indicator, 1 iff operation
(i, j) starts on machine k at time t

Objective function 1 minimizes the variables cmax, psum, and esum, which represent the maximum makespan, the sum
of all energy cost, and the sum of all emissions, respectively. Constraint 2 reflects the final completion time across
all operations (i, j) ∈ O and machines k ∈ M . Constraints 3 and 4 sum the energy cost ηijkt and emissions ζijkt,
respectively, for all operations (i, j) ∈ O on all machines k ∈M at all time steps t ∈ T .

Constraints 5 to 10 are based on the MILP formulation for the general FJSP of Özgüven et al. (2010). They ensure
that each operation is assigned to exactly one machine (Constraint 5), that operations of a job can only start if
previously required operations have been completed (Constraints 6 to 8), and that operations of a machine cannot
overlap (Constraints 9 and 10).

To consider the energy consumption in the model, we add a link from the allocation of the operations to their individual
energy consumption: Constraint 11 forces the sum over binary indicators pijkt over all time steps t to be one, if
operation (i, j) is assigned to machine k. Constraints 12 and 13 ensure that the binary indicator pijkt is set to one for
the time t at which the operation (i, j) starts.

The model is composed of binary and continuous variables. Together with convex and linear constraints, it is classified
as an MILP.
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min (cmax, psum, esum) (1)
s.t. cmax ≥ cijk ∀i, j, k (2)

psum ≥
∑

i,j,k,t ηijktpijkt (3)

esum ≥
∑

i,j,k,t ζijktpijkt (4)∑
k xijk = 1 ∀i, j (5)

sijk + cijk ≤ xijkL ∀i, j, k (6)
cijk ≥ sijk + τijk − (1− xijk)L ∀i, j, k (7)∑

k sijk ≥
∑

k ci,j−1,k ∀i, j (8)
sijk ≥ ci′j′k − yiji′j′kL ∀i, j, i′, j′, k (9)
si′j′k ≥ cijk − (1− yiji′j′k)L ∀i, j, i′, j′, k (10)
xijk =

∑
t pijkt ∀i, j, k (11)

sijk − t ≥ −(1− pijkt)L ∀i, j, k, t (12)
sijk − t ≤ (1− pijkt)L ∀i, j, k, t (13)
cmax, psum, esum, sijk, cijk ∈ R+,

xijk, yiji′j′k, pijkt ∈ {0, 1} ∀i, j, i′, j′, k, t (14)

4 The memetic NSGA-III

In this section, we present the memetic NSGA-III for solving the green multi-objective FJSP. We divide the section
into two parts, first introducing the representation of solutions in genotypes and phenotypes in Subsection 4.3, before
explaining the algorithm of the memetic NSGA-III in Subsection 4.4.

4.1 Representation of solutions

The NSGA-III is an evolutionary algorithm and describes solutions as individuals of a population that evolve over
multiple generations. To represent solutions as individuals, we follow a decoder-based approach that encodes solutions
as genotypes and uses phenotypes for decoding. We base our genotype on the work of Dai et al. (2019), who choose a
bipartite gene string for the sequence of operations and their machine assignment, and Burmeister et al. (2023), who
choose a tripartite gene string for the additional representation of the maximum allowable energy cost per operation.
To account for emissions, we extend latter approach and add a fourth gene string to this representation to indicate the
maximum allowable emissions per operation. Fig. 3 shows an example genotype for three jobs to be assigned to two
machines.

3 3 223 22 1 121 43 5 54351 1 2 2 11
Machine genesSequence genes Energy cost genes

51 1 4344 1
Emissions genes

Figure 1: Example genotype for solution encoding

Fig. 4 illustrates the representation of the genotype on Fig. 3. The allocation of operations to the machines is plotted as
a Gantt chart, with time steps noted on the x-axis and machines on the left y-axis. On the right y-axis are the energy cost
values, shown as a dashed line, and the emissions values, shown as a dotted line. Energy cost are given in e/MWh and
emissions are given in grams of carbon dioxide equivalent (gCO2eq) per kWh. The sequence gene string specifies the
order in which the jobs are placed, while the machine gene string reflects the machine to be selected. Thus, operation
(1,1) is first assigned to machine 2. The operation is scheduled at the first possible time that satisfies both the associated
maximum allowable energy cost of the energy cost gene string and the emissions of the emissions gene string. This
means that operation (1,1) is scheduled at the first time that costs less than or equal to 1 e and less than or equal to
4 gCO2eq, which is time step 4.

All jobs are scheduled in the order specified by the sequence gene string. If the time horizon considered is not sufficient
to place an operation, e.g., because the allowed energy cost or emissions are too high, either the time horizon can
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Figure 2: Representation of the example genotype as a phenotype

be extended or the energy cost and emissions can be reduced. While the former tends to produce long schedules
with favorable energy cost and emissions, the latter tends to produce fast and expensive schedules. To avoid bias and
promote population diversification, we alternate the approach in each generation. Overall, the genotype and phenotype
can represent any sequence of operations on any combination of machines, energy cost, and emissions, resulting in a
complete representation of the solution space.

4.2 Algorithm

In this section, we present the memetic NSGA-III for solving the green multi-objective FJSP. We divide the section into
two parts, first introducing the representation of solutions in genotypes and phenotypes in Section 4.3, before explaining
the algorithm of memetic NSGA-III in Section 4.4.

4.3 Representation of solutions

The NSGA-III is an evolutionary algorithm and represents solutions as individuals of a population that evolve over
multiple generations. To represent solutions as individuals, we follow a decoder-based approach that encodes solutions
as genotypes and uses phenotypes for decoding. We base our genotype on the work of Dai et al. (2019), who choose a
bipartite gene string for the sequence of operations and their machine assignment, and Burmeister et al. (2023), who
choose a tripartite gene string for the additional representation of the maximum allowable energy cost per operation. To
account for emissions, we extend the latter approach and add a fourth gene string to this representation to indicate the
maximum allowable emissions per operation.

Figure 3 shows an example genotype for three jobs to be assigned to two machines. The genotype is divided into four
strings of genes, representing the sequence in which operations are allocated, the machine allocation, the tolerated
energy costs, and the tolerated emissions. Genes linked to jobs 1, 2, and 3 are highlighted in gray, blue, and white,
respectively. Each section has a length corresponding to the total number of operations. For decoding the genotype in
Figure 3 as a schedule, Figure 4 illustrates the phenotype. The allocation of operations to the machines is plotted as a
Gantt chart, with time steps noted on the x-axis and machines on the left y-axis. On the right y-axis are the energy cost
values, shown as a dashed line, and the emissions values, shown as a dotted line. Energy cost is given in e/MWh and
emissions are given in grams of carbon dioxide equivalent (gCO2eq) per kWh. The sequence gene string specifies the
order in which the jobs are placed, while the machine gene string reflects the machine to be selected. Thus, operation
(1,1) is first assigned to machine 2. The operation is scheduled at the first possible time that satisfies both the associated
maximum allowable energy cost of the energy cost gene string and the emissions of the emissions gene string. This

3 3 223 22 1 121 43 5 54351 1 2 2 11
Machine genesSequence genes Energy cost genes

51 1 4344 1
Emissions genes

Figure 3: Example genotype for solution encoding based on Burmeister et al. (2023)
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means that operation (1,1) is scheduled at the first time that costs less than or equal to 1 e and less than or equal to
4 gCO2eq, which is time step 4.

1

2

0 1 4 6 8 10

5

4

3

2

1

M
ac

hi
ne

En
er

gy
 c

os
t (

€)
Em

is
si

on
s (

gC
O

₂e
q)

Time

Job 1

Job 2

Job 3

Energy cost

2 3 5 7 9 Emissions

Figure 4: Representation of the example genotype as a phenotype based on Burmeister et al. (2023)

All jobs are scheduled in the order specified by the sequence gene string. If the time horizon considered is not sufficient
to place an operation, e.g., because the allowed energy cost or emissions are too high, either the time horizon can
be extended or the energy cost and emissions can be reduced. While the former tends to produce long schedules
with favorable energy cost and emissions, the latter tends to produce fast and expensive schedules. To avoid bias and
promote population diversification, we alternate the approach in each generation. Overall, the genotype and phenotype
can represent any sequence of operations on any combination of machines, energy cost, and emissions, resulting in a
complete representation of the solution space.

4.4 Algorithm

In this section, we explain our memetic NSGA-III. We base the algorithm on the NSGA-III (Deb & Jain 2014), which
uses a similar framework to its predecessor NSGA-II (Deb et al. 2002) while providing better diversity.

The NSGA-III is outlined in Algorithm 1. For a population Pt of size N , NSGA-III generates an equally sized next
generation Pt+1 using recombination and mutation operators: For recombination, we use a two-point crossover to
intensify the search in the solution space and to find better individuals based on existing ones. From two parents, the
genes of the gene strings are swapped between two different random positions. The same positions for swapping are
chosen for all gene strings. By swapping, the gene strings remain feasible for machine assignment, energy cost, and
emissions. In the case of the sequence gene string, swapping may cause an infeasibility, e.g., if a job is no longer
listed in the number of its operations. In this case, the defective children are repaired by replacing excess jobs with
missing ones. For mutation, the algorithm randomly modifies gene strings by performing one of the following changes:
swapping two genes within the sequence gene string, reassigning a gene in the machine gene string, or assigning new
values to either the energy cost gene string or the emission gene string.

We extend NSGA-III to a memetic algorithm and adopt local refinement from Burmeister et al. (2023). In their local
refinement, a greedy approach improves solutions by adjusting the values of the gene strings for energy cost, ensuring
that lower energy cost are achieved without increasing the makespan. We extend this approach to include emissions as
shown in Figure 5. (1) First, it sorts all operations of the parent, based on their energy consumption, in descending
order into a queue L. (2) Second, it calculates the lower and upper feasible start times lcij and ucij for each operation
(i, j) ∈ O based on the duration of previous and subsequent operations of the job for both children c ∈ {1, 2}. (3) Third,
the greedy procedure selects the operation with the highest energy consumption, and (4) fourth, schedules the selected
operation at the time of the cheapest energy cost (4a) and emissions (4b), respectively. (5) Fifth, it adjusts the earliest
possible start and end times of the operations that are still to be sorted, and (6) dequeues the current operation from L.
The procedure repeats steps (3) and (4) successively for the next operation until all operations in L have been scheduled.

After recombination, mutation, and local refinement, the resulting set Rt is sorted into several non-dominated fronts
as described in Deb & Jain (2014). Algorithm 1 performs a non-dominated sort of individuals on different fronts
and successively adds the individuals of Fi to the set St until their cardinality is greater than or equal to the desired
population size N . If |St| = N , the next generation Pt+1 inherits all individuals from St. Otherwise, all previous fronts
except the last front Fi are added to the new generation. To decide which k individuals remaining in Fi are included in
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Algorithm 1 Pseudocode of the memetic NSGA-III based on Deb & Jain (2014)
Require: Population Pt, Population size N
St = ∅, i = 1
Rt ← Pt ∪ RECOMBINATION+MUTATION(Pt)
Rt ← LOCALREFINEMENT(Rt)
(F1, F2, ...) = NON-DOMINATED-SORT(Rt)
repeat

St = St ∪ Fi and i← i+ 1
until |St| ≥ N
if |St| = N then

Pt+1 ← St

else
Pt+1 ←

⋃i−1
j=1 Fj

k ← N − |Pt+1| ▷ Remaining space in Pt+1

Zr ← NORMALIZATION(St)
ASSOCIATION(Zr, St)
Pt+1 ← Pt+1 ∪ NICHING(Fi, k)

 empty?

 Operations sorted by
energy consumption in descending order

Operation 

Schedule  at energy cost-minimal time
between  and  for child Dequeue 

yes
no

(1)

(3)

(4a) (6)

Update  and  for previous and
subsequent operations

(5)

Calculate  and  for all operations
 for children 

(2)

Schedule  at emission-minimal time
between   and  for child (4b)

Figure 5: Greedy local refinement

Pt+1, the algorithm performs (1) normalization, (2) association, and (3) niching. The three procedures are explained in
detail in Deb & Jain (2014) and are briefly outlined below: (1) First, the three values of the objective function of all
individuals in St are normalized. (2) Then, the algorithm creates reference points Zf and associates each individual
from St with its nearest reference point. (3) Finally, the niching procedure successively adds the individuals from Fi to
Pt+1 with which the fewest individuals are associated. Niching ends when k individuals have been added to the new
generation Pt+1, so |Pt+1| = N holds. The memetic NSGA-III iterates until a termination criterion (e.g., generation or
runtime limit) is satisfied. The first front F1 of the last generation is then the estimate of the Pareto front.

5 Computational experiments

In this section, we present the computational experiments. Section 5.1 describes the experimental setup of scheduling
problems in the presence of real-world energy market data. Sections 5.2 to 5.4 present the results and discuss the
pairwise relationship of the objective function values, i.e., the relationship between makespan and energy cost, makespan
and emissions, and energy cost and emissions. Section 5.5 formulates implications.

5.1 Instances and experimental setting

For the computational experiments, we use the benchmark set of Brandimarte (1993). Table 2 shows the set that
contains 15 instances for the FJSP with jobs and their respective operations as well as machines, making it suitable for
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emulating production schedules. We select a 15-minute duration for each time step. Thus, a schedule covers multiple
periods with varying energy prices and emissions.

Table 2: Benchmark instances by Brandimarte (1993)

Instance Jobs Machines Operations
per job

Operations
in total

Time steps
per operation

mk01 10 6 5-7 55 1-7
mk02 10 6 5-7 58 1-7
mk03 15 8 10 150 1-20
mk04 15 8 3-10 90 1-10
mk05 15 4 5-10 106 5-10
mk06 10 10 15 150 1-10
mk07 20 5 5 100 1-20
mk08 20 10 5-10 225 5-20
mk09 20 10 10-15 240 5-20
mk10 20 15 10-15 240 5-20
mk11 30 5 5-8 179 10-30
mk12 30 10 5-10 193 10-30
mk13 30 10 5-10 231 10-30
mk14 30 15 8-12 277 10-30
mk15 30 15 8-12 284 10-30

For consideration of energy consumption, we add an energy demand of 500 i
|J| kW for each operation of job i ∈ J , this

means the demands of the operations range up to 500 kW. We enrich the instances with real data from the German
energy market published by the Federal Network Agency Germany (2024). Figure 6 shows both electricity prices
from the German wholesale market and emission values in hourly resolution from February 1st to June 30th, 2022.
Energy prices are determined by the European Energy Exchange. Emission values are based on lifecycle emissions per
generation technology, as outlined in Schlömer et al. (2014). The Pearson correlation coefficient for energy prices and
energy emissions is 0.72.

Feb 1, 2022 Mar 1, 2022 Apr 1, 2022 May 1, 2022 Jun 1, 2022
0

200

400

600

0
100
200
300
400
500
600 Energy Cost

Emissions

Time

€/
M

W
h

gC
O

₂e
q

Figure 6: Electricity prices and emissions of the German energy market Federal Network Agency Germany (2024)

For parameterization, we follow the settings of Burmeister et al. (2023). We limit the runtime to 45 minutes to reflect
the flexibility to respond to hourly price changes in the energy market. The memetic NSGA-III is implemented in C#
10 within the .NET 6 software framework. The problem is solved on a Red Hat Enterprise Linux 8.5 (Oopta) operating
system with an Intel Xeon Gold 6148 CPU, 20x2.4GHz, and 190 GByte main memory.

5.2 Relation of makespan to energy cost

In this section, we focus on the relationship between makespan and energy cost without considering emissions. The
first three columns of Table 3 show the instance, the minimum makespan found by the memetic NSGA-III, and the
associated energy cost. The remaining columns show the percentage of energy cost that can be saved by increasing the
makespan.

A 5% makespan increase saves between 0.1% (mk02) to 14.6% (mk07) of energy cost across all instances. For a 20%
makespan increase, the savings range from 2.2% (mk02 and mk14) to 30.4% (mk13). For increases in makespan of
50% and 75%, the energy cost remain stagnant for instances mk03, mk05, mk08, mk11, mk12, and mk14, showing no
further improvements. For other instances, energy cost continues to decrease, achieving savings of up to 45.0% (mk06).
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At a 75% makespan increase, instances mk06 and mk04 show the highest energy cost savings with 49.3% and 51.7%,
while instances mk03 and mk14 show the lowest savings (2.5% and 2.2%).

The average savings in energy cost are 5.86%, 12.31%, 18.89%, and 22.35% for makespan increases of 5%, 20%, 50%,
and 75%, respectively. The results indicate that small increases in makespan are more efficient for energy cost savings,
as the relative increase in savings surpasses the increase in makespan for 9 out of 15 instances. However, efficiency
decreases with larger increases in makespan. With a 20% increase in makespan, the savings in energy cost exceed the
20% mark in 2 out of 15 instances. Savings with an increase in makespan of 50% and 75% are below 50% and 75%,
respectively, for all instances.

5.3 Relation of makespan to emissions

Table 4 shows the results of the reduction in emissions with increasing makespan and follows the structure of Table 3. A
5% makespan increase saves between 0.4% (mk02) and 10.5% (mk13) of the emissions. With a 20% makespan increase,
the savings range from 1.0% (mk14) to 19.1% (mk13). For makespan increases of 50% and 75%, the emissions remain
constant for the instances mk03, mk05, mk07, mk08, mk11, and mk14. Other instances show emissions savings of up
to 23.7% (mk15) and 24.1% (mk09) with makespan increases of 50% and 75%, respectively.

The average emissions savings are 4.08%, 8.11%, 11.05%, and 12.59% for relative makespan increases of 5%, 20%,
50%, and 75%, respectively. Again, the most efficient savings are observed for smaller instances. For a 5% makespan
increase, the relative increase in savings exceeds the increase in makespan for 6 of 15 instances.

The emissions savings are lower than the energy cost savings in Table 3. This can be attributed to the fact that the
market values of the emissions have a positive value range, while the energy cost may have negative values. As a result,
the algorithm has fewer opportunities to schedule jobs with high energy demands at favorable times when considering
emissions.

5.4 Relation of energy cost to emissions

Table 5 shows the results of the emissions savings as energy cost increase without considering the makespan. It is
structured similarly to Table 3 and 4. For instance mk02, the absolute value of the energy cost was used because the
instance has few jobs that are processed for negative energy cost.

A 5% energy cost increase saves between 0.7% (mk08) and 5.6% (mk06) of emissions. For increases in energy costs of
20, 50 and 75%, the maximum savings are 8.6 (mk06), 12.1 (mk06), and 14.2% (mk02), respectively, and the minimum
savings are 1.4% (mk08). Except for the 5.6% reduction in emissions for a 5% deterioration in energy cost for the mk07
instance, the relative savings are less than the relative deterioration in all other cases. The average emissions savings are
1.89%, 4.52%, 5.92%, and 6.74% for relative energy cost increases of 5%, 20%, 50%, and 75%, respectively.

5.5 Implications

In this section, we draw implications from the results. Figure 7 summarizes the medians of the percentage savings in
energy costs when increasing the makespan (solid line), emissions when increasing the makespan (dashed line), and
emissions when increasing the energy cost (dotted line). The error bars show the minimum and maximum values.

Table 3: Energy cost savings (in %) with increase in makespan

min Increase of ms1 (%) min Increase of ms1 (%)
Inst. ms1 ec2 5 20 50 75 Inst. ms1 ec2 5 20 50 75
mk01 42 3965 2.0 6.5 17.0 22.3 mk09 341 45041 5.5 16.7 32.5 38.6
mk02 29 3204 0.1 2.2 2.3 3.1 mk10 263 40158 7.0 10.2 16.1 26.3
mk03 204 13954 1.7 2.5 2.5 2.5 mk11 621 41038 8.6 10.1 10.1 10.1
mk04 66 6943 0.7 7.7 26.5 51.7 mk12 524 49137 7.7 18.6 18.6 18.6
mk05 174 11791 5.0 6.9 6.9 6.9 mk13 457 71059 11.8 30.4 36.7 36.7
mk06 77 7988 3.7 15.9 45.0 49.3 mk14 694 63382 2.2 2.2 2.2 2.2
mk07 144 10658 14.6 15.9 15.9 15.9 mk15 429 89821 8.4 24.3 36.6 36.6
mk08 523 37481 8.9 14.5 14.5 14.5
1 Makespan (time steps), 2 Energy cost (e)
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Table 4: Emissions savings (in %) with increase in makespan

min Increase of ms1 (%) min Increase of ms1 (%)
Inst. ms1 em2 5 20 50 75 Inst. ms1 em2 5 20 50 75
mk01 42 5.215 1.3 5.4 12.7 17.7 mk09 341 68.240 3.4 11.8 20.4 24.1
mk02 29 4.627 0.4 2.2 3.7 5.3 mk10 263 61.328 5.0 7.6 13.4 21.2
mk03 204 24.257 2.9 2.9 2.9 2.9 mk11 621 73.575 4.7 5.6 5.6 5.6
mk04 66 9.370 1.0 7.9 14.9 17.0 mk12 524 83.272 5.7 10.4 10.7 10.7
mk05 174 18.303 3.5 3.6 3.6 3.6 mk13 457 109.633 10.5 19.1 23.1 23.1
mk06 77 10.436 3.2 11.2 14.7 17.6 mk14 694 118.605 1.0 1.0 1.0 1.0
mk07 144 17.517 6.3 7.1 7.1 7.1 mk15 429 139.310 6.9 17.6 23.7 23.7
mk08 523 64.146 5.4 8.3 8.3 8.3
1 Makespan (time steps), 2 Emissions (tons of CO2eq)
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Figure 7: Minimum, mean and maximum savings

First, extending the makespan can lead to savings in energy costs and emissions. The percentage values observed in
Figure 7 indicate disproportionately high average savings in energy costs when the makespan increases by 5%. In
contrast, increases in makespan beyond 5% and reductions in emissions show lower percentage savings compared to the
initial increase in makespan. Energy costs show a higher savings potential than emissions, as the energy market can have
negative prices, while emissions cannot be negative. Although an increase in makespan results in a disproportionately
low increase in the percentage of savings in energy costs and emissions, the absolute savings remain considerable. This
is because the underlying absolute energy costs range between e3,204 and e89,821, and emission values range from
4.63 to 139.31 tons of CO2eq. We advise decision-makers to consider the benefits of enhancing production flexibility
for potential savings.

Table 5: Emissions savings (in %) with increase in energy cost

min Increase of ec1 (%) min Increase of ec1 (%)
Inst. ec1 em2 5 20 50 75 Inst. ec1 em2 5 20 50 75
mk01 5 3.249 0.3 1.7 5.4 6.2 mk09 10170 45.452 2.0 5.7 6.1 6.1
mk023 -2 3.098 2.1 6.6 9.4 14.2 mk10 7182 40.082 1.8 5.0 6.7 7.3
mk03 1282 17.464 1.3 6.6 8.1 9.7 mk11 18933 60.929 1.4 2.5 2.5 2.5
mk04 71 6.343 1.6 5.7 8.0 8.9 mk12 16571 62.976 1.0 2.7 2.8 2.8
mk05 838 13.940 2.2 4.0 5.2 6.6 mk13 22309 74.076 3.4 3.6 3.6 3.6
mk06 132 7.506 0.2 8.6 12.1 13.5 mk14 32770 100.836 1.4 2.2 2.2 2.2
mk07 668 13.517 5.6 6.9 10.7 11.5 mk15 29438 93.441 3.3 4.6 4.6 4.6
mk08 13019 48.015 0.7 1.4 1.4 1.4
1 Energy cost (e), 2 Emissions (tons of CO2eq), 3 Since the value is negative, we use

the absolute value for the percentage increase.
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Second, opting for an increase in energy cost to reduce emissions is less effective than increasing makespan. The
average emission reductions achieved by creating time flexibility with a longer makespan is higher than that resulting
from the acceptance of higher energy cost for the purchase of renewable energy. If decision-makers are unable to
consider an increase in makespan (e.g., due to deadlines), it may still be attractive for manufacturers to balance higher
energy costs against emissions savings. Additional costs for reducing or avoiding emissions could be incorporated into
adjusted product pricing, thereby promoting sustainable production without extending the makespan.

6 Conclusion

Our study addresses the challenge of managing flexible loads in manufacturing industries, with the aim of optimizing
schedules with respect to makespan, energy cost, and emissions. Drawing from existing literature, we introduce a
linear optimization model for a Green FJSP and develop a memetic NSGA-III approach as a three-objective solution
method. Evaluating our method on benchmark instances enriched with real energy market data from Germany, we
analyze potential savings in energy costs and emissions. This helps production planners assess the benefits of flexible
production planning adapted to the energy market. We find that even a small extension of the makespan can lead to
substantial savings in energy costs and emissions, with potential savings in energy costs being higher than those in
emissions. In addition, emissions can be reduced at the expense of higher energy costs. However, while the potential
savings from increased makespan are significant, they do not match the extent of savings achievable through flexible
production. Our findings underscore the importance of considering the interplay between the considered objectives to
strengthen sustainable production planning in manufacturing companies.

Based on the limitations and findings of this study, we advise avenues for further research. First, we recommend
comparing the solutions obtained from our approach with those of other state-of-the-art methods. Given that this
work focuses on exploring trade-offs between objectives, our results currently serve as lower bounds for potential
savings, suggesting that improved solutions may also be possible. In future statistical analysis, solution quality could be
examined by assessing differences in efficiency and solution quality, as well as calculating an optimality gap.

Second, we recommend extending our approach to account for data uncertainty, as the current model assumes
deterministic knowledge of energy costs and emissions. In a dynamic variant, schedules could be developed using
energy market data and forecasts, allowing real-time adjustments to accommodate evolving grid conditions and
renewable energy availability. Investigating a dynamic model would provide insights into how decision-makers can
adapt to fluctuations in the energy market.

Third, we recommend that our approach be analyzed on real production data. While we use real energy market data
combined with scheduling problems from a benchmark set to analyze savings potentials for different-sized problem
cases, we also recommend evaluating our approach with production orders from a real manufacturer. In this way, our
goal is to achieve a better understanding of the trade-off between makespan, energy cost, and emissions.
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