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Abstract: Samples of dielectric optical waveguides of rib or strip type in thin-film lithium niobate
(TFLN) technology are characterized with respect to their optical loss using the Fabry-Pérot
method. Attributing the losses mainly to sidewall roughness, we employ a simple perturbational
procedure, based on rigorously computed mode profiles of idealized channels, to estimate the
attenuation for waveguides with different cross sections. A single fit parameter suffices for an
adequate modelling of the effect of the waveguide geometry on the loss levels.
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1. Introduction

Integrated photonics fosters the development of high-performance devices that are scalable,
energy-efficient, and have a small-footprint by integrating various passive and active optical
components onto a single platform. This can improve the performance and stability of optical
systems for data communication, sensing, imaging, and quantum information processing. Driven
by these applications, thin-film lithium niobate (TFLN) / lithium niobate on insulator (LNOI)
has emerged as a strong material platform because of its high non-linearity and electro-optic
properties [1]. The high modal confinement of thin-film lithium niobate waveguides allows for
compact devices with small bend radii [2]. Moreover, LNOI is a suitable candidate for efficient
non-linear devices [2–6] and fast electro-optic modulators [7–12].

Low-loss waveguide channels can be expected to be highly relevant for future high-performance
photonic devices. Concerning the LNOI platform, the unstructured thin-film material has intrinsic
losses (0.2 dB/m [13]) that are somewhat higher than the levels for bulk lithium niobate, probably
as a consequence of the ion implantation damage incurred during fabrication [13]. Structured
channels made from these thin-film slabs exhibit even higher attenuation, mostly caused by rough
sidewalls. To mitigate this effect, the device can be clad with materials such as SiO2 to reduce
the refractive index contrast, the roughness can be lowered by tuning the fabrication process,
or the overlap of the optical mode with the sidewalls can be reduced by accepting multi-mode
waveguide geometries [14]. Using these approaches a lowest propagation loss of 1 dB/m around
1550 nm has been demonstrated in 2023 [15]. Low losses are deemed to be essential in particular
in contexts of quantum optics [16], single photon processing [17], or optical quantum computing
[18]. Understanding the limitations of these systems is essential and therefore also techniques to
model and estimate optical losses are important in these fields.

Among the various sources of loss that impact the functioning of integrated photonic circuits,
the roughness of dielectric interfaces, and the irregular, extrinsic scattering of optical power
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effected by it [19], is perhaps the most elusive, the least amenable to direct theoretical modelling.
While early approaches [20,21] derive approximate analytical expressions for the scattering
loss caused by irregularities at the core interfaces of slab waveguides (1-D cross sections, TE
polarization/waves), later also channel waveguides with 2-D cross sections were considered
[22]. Here the studies include rectangular strips with corrugated (strictly vertical) sidewalls,
with results for waveguides in Si/SiO2-technology [23] and for TE- and TM-like modes of
Si3N4/SiO2 waveguides [24]. Beyond a largely analytical, approximate treatment [22] based
on results [20] for slab waveguides, the actual scattering has been modelled by volume current
methods [24–27] on the basis of numerically computed modes of the idealized channels, also for
strip waveguides with a lateral photonic crystal “cladding” [25], and for rib waveguides with
inhomogeneous external layering, then on the basis of rigorous finite element solutions for the
external scattered fields [26]. Further, coupled-mode techniques are employed, for rectangular
channels in a homogeneous background and coupling to forward and backward traveling guided
and radiation modes [28,29]. While the models mentioned before consider a roughness in “one
dimension” only, such as the randomly longitudinally varying lateral position of an otherwise
strictly vertical channel sidewall (random grooves), a more recent study derives loss estimates
for “two-dimensional” roughness (random dust), restricted to rectangular strip waveguides in a
homogeneous exterior [27].

Typically, these approaches require a statistical description of the sidewall roughness, obtained
e.g. by atomic force microscopy (AFM) [28] or scanning electron microscopy (SEM) [30], in
the form of an exponential or Gaussian autocorrelation function, with the correlation length
and the the mean square deviation from a flat surface as characterizing parameters. For specific
geometries of waveguide core and exterior, and given the mostly numerically computed modes of
the ideal, smooth channels, the models then predict modal attenuation constants and loss levels.

A common finding is that the loss coefficients are proportional to the square of the difference
between the permittivity levels of the media at both sides of the rough interfaces. Selection of
these media is closely related to the choice of a particular technological platform. Also, the
attenuation is proportional to the strength of the roughness, the mean square deviation from the
flat surface. Assuming that one aims at low losses, fabrication procedures need to be tuned to
produce surfaces as smooth as possible. Further, the models roughly agree that the attenuation
constant of any specific mode is proportional to the square of the relative electric field strengths
of its normalized profile at the interfaces in question. This last observation forms the basis for
the procedure that we discuss in this paper.

Initially, we are faced with the following task: Given a few measurements for typical,
practically relevant TFLN waveguides, modal loss levels for comparable waveguides with
different cross section geometry are to be estimated. With slanted sidewalls, anisotropic core,
and inhomogeneous layered exterior, our samples do not fit any of the sophisticated models
mentioned before. Adaptation might be possible, but will probably be expensive in terms of both
analytical and computational overhead. Further, beyond images of waveguide cross sections,
no experimental characterization of the actual statistical sidewall corrugation of our samples is
directly available.

Hence, as a more pragmatic approach, we loosely follow the arguments of Ref. [31]. The
surface roughness is represented by thin lossy layers at the waveguide sidewalls. Imaginary
parts of refractive indices, or permittivity, respectively, are introduced as fit parameters. In
place of iterated modal analysis of the resulting waveguides with local complex permittivity, we
apply perturbation theory [32] to simplify the fit procedure, and to predict modal attenuation
coefficients. The perturbational expressions are in line with the notion that the losses are driven
by the squared local modal electric field strength.

Our respective procedure for the estimation of losses due to sidewall surface roughness, and
its results, are discussed in Sections 5 and 6. In previous Sections 2 – 4, we introduce our sample
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parameters, add a few more general remarks on the optical losses, and report on the fabrication
and characterization.

2. Waveguide samples

Trapezoidal TFLN waveguides of rib or strip type are considered, with cross sections as introduced
in Fig. 1, for guided wave propagation at vacuum wavelength λ = 1.55 µm. Isotropic silicon-oxide
substrate/buffer and cladding layers with refractive indices ns = nc = 1.45, and an air cover
(na = 1.0) enclose the anisotropic lithium niobate (LN) core layer with permittivity ϵ̂f.

x

ns

ǫ̂f

na

d

θ
dc

t

c nc

w

y

Fig. 1. Potentially lossy LNOI waveguide, cross section. Cartesian coordinates x, y span the
cross section plane, with the x-axis oriented perpendicular to the substrate. The z-axis (not
shown) indicates the propagation direction. Media, parameters: substrate refractive index ns,
core permittivity ϵ̂f, cladding refractive index nc, cover refractive index na. Dimensions:
waveguide top-width w, core film thickness t, etching depth d, cladding thickness c, sidewall
angle θ.

The LNOI waveguides are prepared in the “X-cut, Y-propagation”-configuration. Referring to
the coordinates of Fig. 1, the core medium is characterized by a relative permittivity ϵ̂f of the
form [33]

ϵ̂f =

⎛⎜⎜⎜⎜⎝

n2
o 0 0

0 n2
e 0

0 0 n2
o

⎞⎟⎟⎟⎟⎠
, (1)

with ordinary and extraordinary refractive indices no = 2.1836 and ne = 2.1220. Here we
adopt data from measurements of LN thin-film properties [33,34], for the target wavelength
λ = 1.55 µm.

Four waveguide samples are available, two of which are rib waveguides with a partly etched
core layer, the other two are fully etched strip waveguides, in both cases with channels of different
widths. The layer stacks differ in core and cladding thickness. Table 1(a) collects the respective
geometrical parameters.

The samples are supported by a further lithium niobate layer, the actual substrate (“handle”),
beneath the 2 µm thick lower oxide buffer. A simple complex slab waveguide solver [35] can
be used for a rough estimate of any leakage incurred: With the material parameters (ne and no
averaged) and thicknesses of the central layer stacks of our samples, and a substrate refractive
index of ≈ 2.2 (bulk LN), one obtains attenuation constants that are orders of magnitude below
the levels observed for the channels (Table 1(b)). We conclude that the oxide buffer isolates the
guiding region sufficiently from the substrate. For the further discussion, the oxide can thus be
regarded half-infinite, as indicated in Fig. 1.
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Table 1. (a) Waveguide samples, parameters according to Fig. 1: film thickness t , etching depth d ,
top width of the rib w , cladding thickness c, and sidewall angle θ. (b) Loss measurements and loss
estimates, data per sample ID and measured polarization. Rows: polarization ratio Π (Eq. (9)), modal

effective index Neff, estimated loss parameter ϵ ′′, and measured and estimated losses L and
attenuation coefficients α. Procedure identifiers: (M): measurements, (S): simulations, (E):

estimates, for a roughness layer of thickness s = 20 nm, ϵ ′′ = 0.0194.

(a) LNOI . . . 600b13 600b29 450b14(1) 450b14(2)

t [ nm] 600 600 450 450

d [ nm] 150 150 450 450

w [ µm] 1.0 1.3 1.7 1.1

c [ nm] 150 150 600 600

θ [ ◦] 60 60 56 56

(a) LNOI . . . 600b13 600b29 450b14(1) 450b14(2)

𝑡 [ nm] 600 600 450 450

𝑑 [ nm] 150 150 450 450

𝑤 [ µm] 1.0 1.3 1.7 1.1

𝑐 [ nm] 150 150 600 600

𝜃 [ ◦] 60 60 56 56

(b) LNOI . . . 600b13 600b29 450b14(1) 450b14(1) 450b14(2) 450b14(2)

(M) TE TE TE TM TE TM

Π (S) 1.00 1.00 1.00 0.39 1.00 0.04

𝑁eff (S) 1.91967 1.92647 1.85828 1.78819 1.83836 1.76598

𝜖 ′′ [10−2] (M,S) 1.8 ± 0.4 2.0 ± 0.2 2.3 ± 0.3 2.1 ± 0.3 1.7 ± 0.2 2.3 ± 0.3

𝛼/𝑘 [10−5] (M) 1.38 ± 0.27 1.09 ± 0.11 1.46 ± 0.18 2.58 ± 0.39 2.43 ± 0.22 2.66 ± 0.31

(E) 1.48 1.08 1.22 2.34 2.81 2.24

𝐿 [ dB/cm] (M) 4.85 ± 0.95 3.83 ± 0.38 5.13 ± 0.65 9.07 ± 1.39 8.57 ± 0.79 9.36 ± 1.08

(E) 5.21 3.79 4.29 8.25 9.89 7.87

Table 1. (a) Waveguide samples, parameters according to Fig. 1: film thickness 𝑡,
etching depth 𝑑, top width of the rib 𝑤, cladding thickness 𝑐, and sidewall angle 𝜃.
(b) Loss measurements and loss estimates, data per sample ID and measured polarization.
Rows: polarization ratioΠ (Eq. (9)), modal effective index 𝑁eff, estimated loss parameter
𝜖 ′′, and measured and estimated losses 𝐿 and attenuation coefficients 𝛼. Procedure
identifiers: (M): measurements, (S): simulations, (E): estimates, for a roughness layer
of thickness 𝑠 = 20 nm, 𝜖 ′′ = 0.0194.
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(b) LNOI . . . 600b13 600b29 450b14(1) 450b14(1) 450b14(2) 450b14(2)

(M) TE TE TE TM TE TM

Π (S) 1.00 1.00 1.00 0.39 1.00 0.04

Neff (S) 1.91967 1.92647 1.85828 1.78819 1.83836 1.76598

ϵ ′′ [10−2] (M,S) 1.8 ± 0.4 2.0 ± 0.2 2.3 ± 0.3 2.1 ± 0.3 1.7 ± 0.2 2.3 ± 0.3

α/k [10−5] (M) 1.38 ± 0.27 1.09 ± 0.11 1.46 ± 0.18 2.58 ± 0.39 2.43 ± 0.22 2.66 ± 0.31

(E) 1.48 1.08 1.22 2.34 2.81 2.24

L [ dB/cm] (M) 4.85 ± 0.95 3.83 ± 0.38 5.13 ± 0.65 9.07 ± 1.39 8.57 ± 0.79 9.36 ± 1.08

(E) 5.21 3.79 4.29 8.25 9.89 7.87

3. Propagation losses

For the theoretical considerations in this paper, we adopt a frequency domain description. All
electromagnetic fields are assumed to vary periodically in time ∼ exp iωt with angular frequency
ω = kc = 2πc/λ, for vacuum wavenumber k, wavelength λ, and vacuum speed of light c.

This concerns potentially lossy guided modes supported by the channels, with a dependence
of the optical fields on the propagation distance z of the form ∼ exp(−i(β − iα)z), with real phase
propagation constant β and real attenuation constant α. For the propagation of a single guided
mode, the local optical power carried by that mode varies as ∼ exp(−2αz). Over a distance z, the
power loss l in decibel units is l = −10 log10(exp (−2αz)), such that the attenuation constant can
be expressed in terms of the loss per distance as α = 0.05 ln(10) l/z. Measured loss values L are
available in units of dB/cm, which thus translate to attenuation constants as

α = 0.05 ln(10)L. (2)

It might be tempting to compare the modal losses with the values observed for plane wave
propagation through a potentially lossy (isotropic) bulk medium with complex refractive index
n = n′ − in′′, for real n′, n′′. In that case the optical fields depend on propagation distance z
as ∼ exp(−ikn′z) exp(−kn′′z); the losses in power L per distance translate to imaginary parts of
refractive indices as n′′ = ln(10)/(40π) λ L ≈ 0.01832 λ L. In this context we like to emphasize
that the losses associated with some bulk medium do not establish a lower limit for modal losses
of waveguides with a core made from this medium. Even for an idealized, perfectly smooth
waveguide, modal losses can well be lower or (slightly) higher than the bulk losses associated
with the waveguide core medium [36,37]. Roughly, this can be realized as follows: On the one
hand, the guided wave travels only partly through the lossy core, and partly through the adjoining
media with potentially lower attenuation (see e.g. the mode profiles in Fig. 4). On the other hand,
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the light path associated with the guided wave propagation in the core is longer than the path for
a plane wave propagating straight along the waveguide axis.

Anyway, the LiNbO3 core medium of the present waveguides can be associated with low bulk
losses of about 0.2 dB/m only, related to a plane wave attenuation constant kn′′ with n′′ = 6 ·10−9

[13,38]. Likewise, the measurements on non-structured LNOI samples in [33,34] do not indicate
any loss levels that would be significant when compared to the values in Table 1(b). We can
therefore reasonably assume that the losses as observed for our samples are introduced in the
subsequent channel structuring process. In Section 5, we attribute the attenuation exclusively
to roughness-induced scattering at the slanted sidewalls of the LN strip (cf. Figure 5), as the
dominant effect. Clearly, this must be regarded as a simplifying assumption. Other, probably
smaller, contributions, not covered by our model, can be expected from the bulk attenuation of
the cladding medium, from irregularities at the horizontal “top” LN/SiO2 and SiO2/air interfaces,
and from the slanted outer SiO2/air interfaces. The latter are formed by chemical deposition,
and are therefore smooth when compared to the LN/SiO2 boundary, which is defined by particle
bombardment. Further, the relative modal field strength is much lower at the outer than at the
inner slanted interfaces (see the profiles in Figs. 4 and 7).

Lateral leakage [39] should perhaps be mentioned here as another potential source of
propagation loss, for straight waveguides of rib type similar to samples LNOI600b13 and
LNOI600b29. This can occur for “nearly-guided” modes in regimes of shallow etching or narrow
channels, and is typically encountered for TM polarization. Note that a rigorous theoretical
assessment based on the properties of slab modes guided by the external lateral layer stacks should
certainly include the core anisotropy. Our numerical analysis of the (idealized) samples, however,
predicts that both support strictly guided modes with TE- as well as TM-like polarization (cf.
Fig. 6(a)).

4. Sample preparation and loss measurements

The waveguides are fabricated by a physical dry etching process with an etching mask consisting
of SiO2 produced via a lift-off process [40]. Therefore, on the cleaned sample we apply a photo
resist and structure it by using a laser lithography system (Heidelberg Instruments DWL 66+).
As a next step, we develop the sample and deposit SiO2 on top of it via a sputtering process
(Prevac Sputtering system 518). After the lift off process, we etch the structure given by the SiO2
etching mask in the LN thin-film via a dry etching process with a pure Argon plasma (Oxford
Instruments Plasmalab System 100). We apply a SiO2 cladding layer on top and prepare the
end-facet of each sample by chemo-mechanical polishing (cf. Ref. [41] for a similar procedure).
All investigated samples are produced with roughly the same process such that it can be assumed
that the loss-generating surface roughness is comparable.

To characterize the samples we apply the Fabry-Pérot method [42]. The waveguide segments
are regarded as Fabry-Pérot resonators in which the polished end-facets act as mirrors. The setup
for this measurement is depicted in Fig. 2. It consists of a tunable CW-laser at 1550 nm (Santec
TSL-550) which is fiber-coupled. A fiber polarization controller is used to set the polarization.
With a lens the light is coupled to free-space and two mirrors guide the light towards the sample.
Aspheric lenses then couple the light into and out of the sample. Afterwards the transmission is
measured with a power sensor (Thorlabs Powermeter PM400 and S122C/S132C).

All measured waveguides have a length between 7 and 8 mm. Their end-facet reflectivity is
calculated [43] using the FDTD solver of Lumerical. To determine the losses, a wavelength scan
from 1550 nm to 1550.5 nm in 3 pm steps is performed, and the transmitted intensity is measured,
without a discrimination of polarization. The change in the wavelength effects a change of the
resonance condition of the Fabry-Pérot resonator. This leads to constructive and destructive
interference of the light, and oscillations in the transmitted power can be observed (see Fig. 3).
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Fig. 2. Setup for the Fabry-Pérot loss measurement.

Losses are then calculated from the contrast of these oscillations, the end-facet reflectivity, and
the length of the samples.
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Fig. 3. Measured intensity as a function of the wavelength from an LNOI waveguide sample.
The wavelength change leads to oscillations by varying the resonance conditions. From
these the losses can be estimated by calculating the contrast.

This procedure leads to the values for losses (row L (M)) and attenuation constants (row
α/k (M)) as listed in Table 1(b). Results for TM polarization are not available for samples
LNOI600b13 and LNOI600b29. According to Fig. 6(a), both channels should support guided
TM-like modes. These, however, are “only just guided” fields close to cutoff, with rather wide,
laterally weakly confined profiles, where almost all parameters that enter the simulations could
easily affect the guidance prediction. Respective loss measurements for TM polarization have
not been conclusive.

5. Loss modelling

Our estimation procedure is based on the lossless guided modes of the idealized waveguides,
with smooth dielectric interfaces. We apply the finite-element solver included in the JCMwave
software suite [44] to compute propagation constants β = kNeff, effective indices Neff, and
vectorial mode profiles with electric parts E and magnetic parts H. The solver operates on
a computational window (x, y) ∈ [−2, 2] × [−Y , Y] µm, where Y = 3 µm if w ≤ 1.7 µm, and
Y = w/2 + 2.15 µm otherwise, for waveguides with a top width w, with boundary conditions
of PEC type at the top and bottom boundaries, and transparent conditions at the left and right
boundaries of the domain. Adaptive mesh refinement and a symmetry condition at y = 0 are
enabled (cf. Fig. 1). For our samples, we obtain the profiles shown in Fig. 4; Table 1(b) lists the
associated effective indices.

In line with the recipes from Ref. [31] we assume that the scattering losses originate from thin
layers at the waveguide sidewalls. Somewhat arbitrarily, we choose a shape as shown in Fig. 5,
with a thickness s = 20 nm, if not specified otherwise. In these regions, indicated by the symbol
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Fig. 4. Modes supported by the four sample waveguides, lowest order profiles with dominant
polarization as indicated; the absolute square |E|2 of the optical electric field associated with
the modes is shown.

□ in the following arguments, the local permittivity ϵ̂f is modified by some “small” contribution
δϵ̂ that represents the roughness. δϵ̂ , or variables that define this quantity, will be considered as
fit parameters.

x

y

s

Fig. 5. Modelling of surface roughness: Layers of thickness s at the rib sidewalls (“inside”
the rib, shaped as illustrated) are assumed to consist of a material with complex permittivity
that differs from the core value.

Other choices for the region □ are possible and can be made plausible, such as a parallelogram
that includes part of the top interface of the LN rib, or a region that extends further downwards
into the lateral LN slab, to model potential detritus-filled grooves left by the etching process next
to the rib. In any case, the perturbation is meant to probe the modal field “at the rib sidewalls”;
modestly different definitions of that region can be expected to have only very minor influence on
the predictions of attenuation and loss, just as shown later for the thickness parameter s.

Next, standard perturbational expressions [32] are applied to predict the effect of the lossy
region. Assuming that the profile E, H of a particular mode with propagation constant β
supported by a waveguide with permittivity ϵ̂ is an adequate approximation of the modal solution
for the waveguide with permittivity ϵ̂ + δϵ̂ , the respective mode propagates through the perturbed
waveguide with a propagation constant β + δβ, where, in first order, the difference δβ is given
through the integral

δβ =
ωϵ0
4P

∫∫
E∗·δϵ̂E dx dy with P =

1
2

Re
∫∫ (︂

E∗
xHy − E∗

yHx

)︂
dx dy . (3)

Here the modal power P normalizes the profile.
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The waveguides are potentially attenuating. We therefore choose a perturbation

δϵ̂(x, y) =
⎧⎪⎪⎨
⎪⎪⎩

−iϵ ′′1, for (x, y) ∈ □,

0 elsewhere,
(4)

parameterized by the local imaginary part ϵ ′′ of the permittivity, with unit matrix 1. Then,
according to Eq. (3), the propagation constant of the mode in the lossy waveguide is β − iα, with
an attenuation constant

α = Q ϵ ′′ with Q =
ωϵ0
4P

∫∫
□
|E|2 dx dy . (5)

The integral ratio (“overlap”) Q represents the relative squared field strength of the mode
profiles at the sidewalls. Obviously, Q changes with the mode and waveguide under consideration.
On the basis of numerically computed mode profiles, discretized on a suitably dense mesh, the
values Q are evaluated by Gaussian quadrature [45]; modal symmetry can be exploited.

Now we consider briefly the loss parameters associated with the individual measurements.
Having computed the overlaps Qm on the basis of the profiles of Fig. 4, values ϵ ′′m are estimated
as ratios ϵ ′′m = αm/Qm, where the loss levels for measurements m are translated to attenuation
coefficients αm by Eq. (2). Despite the differences between the samples, Table 1 (row ϵ ′′
(M,S)) shows an excellent agreement of the values ϵ ′′m determined for the separate measurements.
Apparently, the simple perturbational model captures adequately the influence of the waveguide
geometry, and of the modal field shape, including polarization, on the sidewall scattering losses.

Obviously, the values obtained for the loss parameters ϵ ′′m obtained in this way depend on
the chosen thickness s of the imagined roughness layer. As long as s is sufficiently small (the
layer is meant to probe electric fields “at the interface”), such that the field variation over s
can be neglected for the integral, both Q and the estimate 1/ϵ ′′m are roughly proportional to
s. The dependence cancels in Eq. (5). We checked this explicitly for the six measurements;
for s ∈ {10, 40} nm, (αm/Qm)s/(20 nm) deviates by no more that 0.0016 from the values for
s = 20 nm in the table. Any attenuation coefficients estimated with these values should thus be
reasonably independent from the particular values of s.

In order to characterize the roughness properties of the waveguide sidewalls, a single best value
ϵ ′′ for our fit parameter is required. The measured loss levels and the related attenuation coefficients
αm come with error margins ∆αm. We thus apply a procedure for “weighted least squares” or
“χ-square” fitting [45]. Minimizing the weighted error D(ϵ ′′) = ∑︁

m(αm − Qmϵ
′′)2/∆α2

m leads to
the recipe

ϵ ′′ =
(︂∑︂

m

1
∆α2

m
αmQm

)︂/︂ (︂∑︂
m

1
∆α2

m
Q2

m

)︂
(6)

for determining ϵ ′′. Here the sums run over all measurements m. Equation (6) can be viewed as
a weighted mean of the individual loss parameters ϵ ′′m ,

ϵ ′′ =
(︂∑︂

m
wmϵ

′′
m

)︂/︂ (︂∑︂
m

wm

)︂
, (7)

with weights wm = Q2
m/∆α2

m, a related weighted standard deviation ∆ϵ ′′, and weighted variance

(∆ϵ ′′)2 =
(︂∑︂

m
wm(ϵ ′′m − ϵ ′′)2

)︂/︂ (︂M − 1
M

∑︂
m

wm

)︂
. (8)

Here M is the number of data points. The mode profile overlaps Qm (Eq. (5)), for a roughness
layer thickness s = 20 nm, and the measured attenuation constants αm and error margins ∆αm
from Table 1 (row α/k (M)), lead to values ϵ ′′ = 0.0194 and ∆ϵ ′′ = 0.0027 for our loss parameter.
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For a benchmark, we then re-estimate the losses and attenuation coefficients for all measure-
ments, using the perturbational integrals (5) with this optimum ϵ ′′. The respective results in
Table 1 (labels (E)) show a satisfying agreement with the actual measurement data (labels (M)).

6. Loss estimates

Given the former measurements and estimation procedure, loss levels can be predicted for
waveguides with different but reasonably similar geometries. Assuming a left-right mirror
symmetric structure and fixed media properties, Fig. 1 introduces in total five geometrical
parameters, all of which must be expected to affect the scattering losses in the one or other
way, in principle. Among these, the “thickness-related” parameters (here c, t, d, and partly also
θ) are linked to the processes of layer deposition (LN cutting) and etching, and are therefore
typically chosen once for an entire chip or wafer, with values potentially limited by a foundry
or multi-project-wafer run, if applicable. Contrarily, the waveguide top width w can be easily
and rather arbitrarily adjusted through the definition of the etching masks. Hence we focus on
variations of w as the most tangible parameter, with the other quantities as given by our samples.
Obviously, it is assumed that the same fabrication processes are applied, such that one can expect
comparable surface roughness. Figures 6(b) and 6(d) show respective estimates for waveguide
configurations of varying widths. For each w, numerical mode analysis yields effective indices
Neff and mode profiles for potentially several guided modes. For each of these, the profiles then
serve to compute overlaps Q, and, through Eq. (5), separate attenuation coefficients and loss
levels.

The effective indices are limited, at large widths w, by the levels of effective indices of the
fundamental 1-D modes supported by multilayer slab waveguides with the layer stack of the core
region of the present channels. According to Eq. (1), in the LN layer the ordinary refractive
index no is relevant for TM slab modes with predominantly x-oriented electric fields. Likewise,
y-polarized TE slab modes are governed by the extraordinary refractive index ne. Figures 6(a)
and 6(c) show respective upper limiting levels for the effective indices [46]. Lower limits are
given, for the ribs in Fig. 6(a, b), by the fundamental slab mode of the outer, thinner layer stack,
or, for the strip waveguides in Fig. 6(c, d), by the refractive index of the substrate (buffer) layer.

The figures include additional attributes of the modal solutions. The waveguides in question
are mirror symmetric with respect to the central x-z-plane at y = 0 (cf. Fig. 1). All modes
supported by these are of a specific parity; their electromagnetic field components show a specific
symmetry. Table 2 summarizes these properties, and associates the parity class with standard
mode identifiers, for the present case of “vertically single mode”, slab-like waveguides. Modes
that differ in parity can be degenerate; the respective curves Neff vs. w in Figs. 6(a) and 6(c) can
cross. Modes that share the same parity class cannot be degenerate; the associated curves “repel”
each other. The panels of Fig. 6 show the modal parity through different marker symbols.

Table 2. Classes of modal parity, symmetry of field profile
components (even: +, odd: −), and associated mode identifiers

Ex Ey Ez Hx Hy Hz

SYM − + − + − + TE00, TM01, TE02, TM03, . . .

ASY + − + − + − TM00, TE01, TM02, TE03, . . .

Further, the present waveguides support hybrid modes that are more or less well polarized in
either TE- (y) or TM-direction (x, z). As a means to quantify the polarization, we have computed
ratios

Π =
(︂
− Re

∫∫
E∗

yHx dx dy
)︂/︂ (︂

Re
∫∫ (︂

E∗
xHy − E∗

yHx

)︂
dx dy

)︂
(9)
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Fig. 6. Simulations of lossy LNOI waveguides according to Fig. 1 and Table 1, effective
indices Neff (a, c) and modal loss L (b, d) of guided modes as a function of waveguide
top width w. Marker color indicates the polarization character Π (Eq. (9), blue: TE-like,
black: TM-like, red: intermediate); SYM/ASY modal parity (cf. Table 1) is distinguished
by circle/triangle symbols that make up the marker lines. (a, b): Rib waveguides with the
parameters of Table 1(a), columns LNOI600b13, b29. Bold markers show the measured loss
data, incl. error, for the samples LNOI600b13 (circle) and LNOI600b29 (diamond). (c, d):
Strip waveguides with the parameters of Table 1(a), columns LNOI450b14. Bold markers
concern the measurements LNOI450b14(1) TE (circle), LNOI450b14(1) TM (square),
LNOI450b14(2) TE (diamond), and LNOI450b14(2) TM (triangle).

for each mode with vectorial electromagnetic profile E, H. A “pure TE” field (Ex = 0) would be
characterized by Π = 1, while a “pure TM” field (Hx = 0) is assigned a value Π = 0. Note that Π
is not strictly limited to the range [0, 1]. Respective data has been color-coded into Fig. 6. While
most configurations support modes that are of dominant TE- or TM- polarization, in Figs. 6(a)
and 6(c) one observes pronouncedly hybrid, not clearly TE- or TM-polarized modes near the
avoided crossings, where curves associated with modes of equal parity repel each other.

Concerning the loss, Figs. 6(b) and 6(d) show the following trends. For each individual mode
one observes a decrease of loss with growing w, due to a reduction of the relative field strength
of the widening profile at the channel sidewalls. Unfortunately, in general there are no optimum
widths with lowest loss. For a waveguide with a specific width w, one of the modes with the
strongest confinement, i.e. one of the two lowest order modes, show the lowest losses; for the
present structures this is mostly the TM-like mode. Exceptions from these general trends can be
seen at the very onset of some of the modal curves. Examples are local loss maxima seen for the
first order TE-like mode beyond w = 1.4 µm in Fig. 6(a, b), or the sequence for the hybrid modes
for w beyond 2.7 µm, 3.8 µm, 4 µm in Fig. 6(c, d). Here the mode field changes, with growing w,
from a wide-spread wave with correspondingly lower relative field strength at the sidewall, to a
properly confined profile. Another exception are the regions with strong modal hybridization,
such as around the TM measurement for sample LNOI450b14(1) in Fig. 6(c, d). Along with the
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effective indices, also the loss curves change between polarization-related branches, leading to
intermediate loss levels.

This last feature is seen also for the TM measurements for sample LNOI450b14(1). The
waveguide supports lowest order modes TM00 and TE01 of parity class ASY with close effective
indices. Both modes are pronouncedly hybrid, with polarization ratios Π = 0.39 (TM00, cf.
Table 1(b)) and Π = 0.61 (TE01). Figure 7 shows the electric parts of the related mode profiles.
This explains the slightly irregular appearance, when compared to the other modes, of the TM
profile of sample LNOI450b14(1) in Fig. 4(e). Also the rather different TE and TM losses
measured for sample LNOI450b14(1), in light of much closer levels for sample LNOI450b14(2),
can be understood in this way.
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Fig. 7. Vectorial profiles of the two lowest order modes with symmetry class ASY of sample
LNOI450b14(1); the Cartesian components Ex, Ey, and Ez of the electric field are shown.
The phase of the profiles has been adjusted such that Ex and Ey become real, while Ez is
imaginary. Color levels are comparable between panels in each row.

Assuming that the facet of sample LNOI450b14(1) is illuminated by a focused, left-right
symmetric TM (x-) polarized wave, both modes of Fig. 7 will be excited with amplitudes of
similar magnitude, with a phase such that their Ex components add, while the Ey components
interfere destructively. When these modes propagate along the channel with slightly different
propagation constants, their relative phase changes. At some distance, the phase is such that
components Ex cancel partly, while there is constructive interference for Ey. One thus expects
an interference pattern that leads to substantial polarization conversion, with a characteristic
half-beat length Lc = λ/(2∆Neff) ≈ 74 µm. Here ∆Neff is the difference between the two effective
indices. Thus, the experiment LNOI450b14(1) TM probably involved both modes, for which our
estimations predict close loss levels. Perhaps these mechanisms could explain the rather large
uncertainty of the measurement.

7. Concluding remarks

Based on a few measurements of propagation loss for practically relevant TFLN / LNOI channel
waveguides, and assuming that the loss can be attributed to roughness induced scattering from
the waveguide sidewalls, we have established a simple perturbational model that predicts loss
levels for waveguides with different shapes. The technique requires the rigorous numerical mode
analysis of the channels with their anisotropic cores. Specifically, we have looked at the width
dependence of effective indices and attenuation constants of hybrid guided modes supported by
potentially multimode TFLN rib and strip waveguides in an X-cut, Y-propagation configuration.
Regimes with nearly degenerate, pronouncedly hybrid modes can be identified, where alongside
the anti-crossing of effective indices also the attenuation curves cross, leading to otherwise
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unexpected higher levels. We expect that the simple estimation procedure can aid the design of
TFLN-based integrated photonic circuits in all areas where optical losses are of relevance.

Among the configurations considered, low attenuation can be expected for channels with small
relative modal field strengths at the sidewalls, i.e. for the fundamental modes in wide, slab-like
waveguides. This applies to channels of both rib (Fig. 6(a, b)) and strip form (Fig. 6(c, d)), where,
as a trend, the levels for the less-confining rib waveguides are a little lower. Unfortunately this
then leads to highly multimode channels that are not compatible with many device concepts.
Hence, in general, the design objective “low loss” cannot be used on its own, say for the selection
of a basic waveguide cross section, but will have to be traded off versus other targets in a design
process for the entire integrated circuit.

While our model captures adequately the decline of optical power carried by particular
guided modes, it does not distinguish between conversion of power to other co-propagating
guided modes, of the same or different polarization, where possible (symmetry constraints),
to counter-propagating guided modes, or to non-guided, radiated fields of whatever direction
and polarization (the actual radiation losses). According to standard expressions from coupled
mode theory [32,47], and in line with respective loss models [28,29], all these effects should in
principle be driven by the squared local optical electric field at the sidewalls (attributed to both
modes involved, where applicable, though), and as such be covered roughly by our perturbational
expressions.

On the one hand, further measurements, for samples prepared in a uniform way, would be
desirable to strengthen the experimental basis. Then perhaps extended loss models could become
meaningful that take a dependence on sidewall orientation, local field polarization, or external
layering into account. Within the present formalism, this “anisotropy” could be implemented
through a non-scalar, diagonal (polarization) or non-diagonal (sidewall angle) perturbational loss
tensor in place of the present scalar expression (4).

On the other hand, in principle just one measurement suffices to fit the single free parameter
ϵ ′′ involved in the simpler isotropic model. With that, one could predict curves like the ones in
Figs. 6(b, d), with an uncertainty as given by the differences of the values in row ϵ ′′ of Table 1.
According to Eq. (5), however, the dependence on waveguide geometry on the attenuation
coefficients α is given entirely by the purely numerically determined modal overlaps Q. Hence,
by accepting the underlying perturbational model one could even theoretically assess the trends
in the influence of the waveguide shape on the propagation loss for an unknown waveguide
configuration, without any measurements at all.
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