
Turning Aacks into Advantages:
Evading HTTP Censorship with HTTP Request Smuggling

Philipp Müller
Paderborn University

mail@pmueller.dev

Niklas Niere
Paderborn University

niklas.niere@upb.de

Felix Lange
Paderborn University

felix.lange@upb.de

Juraj Somorovsky
Paderborn University

juraj.somorovsky@upb.de

ABSTRACT

Many countries limit their residents’ access to various websites. As

a substantial number of these websites do not support TLS encryp-

tion, censorship of unencrypted HTTP requests remains prevalent.

Accordingly, circumvention techniques can and have been found

for the HTTP protocol. In this paper, we infer novel circumvention

techniques on the HTTP layer from a web security vulnerability

by utilizing HTTP request smuggling (HRS). To demonstrate the

viability of our techniques, we collected various test vectors from

previous work about HRS and evaluated them on popular web

servers and censors in China, Russia, and Iran. Our ndings show

that HRS can be successfully employed as a censorship circumven-

tion technique against multiple censors and web servers. We also

discover a standard-compliant circumvention technique in Russia,

unusually inconsistent censorship in China, and an implementa-

tion bug in Iran. The results of this work imply that censorship

circumvention techniques can successfully be constructed from ex-

isting vulnerabilities. We conjecture that this implication provides

insights to the censorship circumvention community beyond the

viability of specic techniques presented in this work.

KEYWORDS

http, censorship, request smuggling, censorship circumvention

1 INTRODUCTION

Governments around the world block access to certain websites for

their residents [44]. While website encryption with TLS [18, 54]

provides some protection against censorship eorts, the SNI ex-

tension [20] still leaks the hostname. This allows potential censors

to analyze the SNI extension and block the trac before the TLS-

encrypted channel to the website is built [55]. While using TLS is

nowadays state-of-the-art from a security perspective, many web-

sites still oer plain HTTP, often in conjunction with TLS [32].

Even when websites support only TLS, they often redirect clients’

HTTP trac to HTTPS websites. This culminates in a consider-

able number of plain HTTP requests. Cloudare Radar reports that

16 % of requests originating in China are transmitted over plain

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Free and Open Communications on the Internet 2024 (2), 42–53

© 2024 Copyright held by the owner/author(s).

HTTP [16]. These HTTP requests are analyzed by censors world-

wide [9, 28, 36, 44]. As long as clients send HTTP requests that are

intercepted by censors, HTTP censorship remains an important

stepping stone toward circumventing censors.

Censors mainly lter HTTP requests by analyzing the domain

contained in their Host header [28, 44]. Using Deep Packet Inspec-

tion (DPI), censors isolate the HTTP layer of received network

packets, identify potential Host headers, and extract the domain

name. Circumventions of this process commonly follow one of two

avenues. First, obfuscating the domain or the Host header prevents

the censor from extracting a domain name [28]. Second, invalidat-

ing the TCP state prevents the censor from recognizing or ltering

any HTTP packets [10]. Both techniques modify an already present

HTTP request and attempt to pass it through the censor.

In this work, we create novel circumvention techniques against

Host header-based censorship from a web security vulnerability.

Specically, we utilize the knowledge of HTTP request smuggling

(HRS) to create ambiguously dened HTTP requests that circum-

vent censors. Such an ambiguously dened HTTP request is de-

picted in Figure 1. The request contains a second—smuggled—HTTP

request and two dierentiating length elds that encompass either

the rst or both requests, respectively. A smuggled request that is

normally censored and missed by the censor but interpreted by the

web server constitutes a successful circumvention technique.

GET / HTTP/1.1

Host: example.com

Content-Length: 50

Transfer-Encoding: chunked

0

GET / HTTP/1.1

Host: censored.org

Figure 1: Example of a smuggled request. The Content-

Length header indicates a single request; the Transfer-

Encoding header indicates two requests.

Contributions. In our paper, we construct novel censorship cir-

cumvention techniques from HRS vectors based on current work in

the eld. To determine the viability of our test vectors, our analysis

was twofold. First, we evaluated the acceptance rate of our test

vectors on popular local web servers, CDNs, and randomly chosen

42



Evading HTTP Censorship with HTTP Request Smuggling Free and Open Communications on the Internet 2024 (2)

domains from the CitizenLab test-lists repository [14]. Second, we

analyzed censors’ behavior on our test vectors using vantage points

in China, Russia, and Iran. Our evaluation of local web servers

and CDNs revealed numerous request smuggling opportunities in

web servers and CDNs. Our analysis of censors yielded numerous

successful circumvention strategies. We combined the results of

both analyses and extracted strategies that circumvent censors and

are accepted by widely used web servers. Through further analysis,

we detected a general standard-compliant circumvention technique

for the censor in Russia, inconsistencies in the censorship behavior

of China’s Great Firewall, and an implementation bug in Iran’s cen-

sor. Most importantly, we show that a vulnerability can be directly

transformed into censorship circumvention techniques.

2 BACKGROUND AND RELATED WORK

In this section, we introduce HTTP request smuggling, outline cen-

sorship practices of governments worldwide, and discuss current

countermeasures and measurement platforms.

2.1 HTTP Request Smuggling (HRS)

HRS is a web security vulnerability that utilizes discrepancies in

the HTTP parsers of at least two systems in a frontend-backend

conguration. Specically, HRS is possible if the frontend and back-

end servers consider dierent bounds for the same HTTP message.

In this case, an attacker can hide—smuggle—bytes in the bounds

of the rst HTTP message which are interpreted by one system

and missed by the other. To achieve this behavior, the attacker

ambiguously denes the bounds of the HTTP message through

HTTP headers: usually, the Transfer-Encoding (TE) header and the

Content-Length (CL) header [23].

HTTP Headers. The Content-Length header explicitly denes

the number of bytes  contained in the body of the HTTP request

through Content-Length: . The Transfer-Encoding header spec-

ies the encoding, which is applied to the message body. For HRS,

the chunked encoding (Transfer-Encoding: chunked) is relevant.

It indicates that the body is streamed in a series of chunks. Each

chunk begins with the hexadecimal length of itself, followed by the

chunk data. A chunk of length zero terminates the body. Figure 2

depicts the correct usage of both headers for the same HTTP mes-

sage. Notably, while these headers are used for transferring data

in the HTTP body (e.g., in HTTP POST requests), their usage in

HTTP GET requests is allowed.

POST /path HTTP/1.1

Host: example.com

Content-Length: 15

example-content

POST /path HTTP/1.1

Host: example.com

Transfer-Encoding: chunked

9

example-c

6

ontent

0

Figure 2: POST request with correct usage of Content-Length

and Transfer-Encoding headers.

HTTP Request Smuggling Research. HRS was rst presented by

Linhart et al. [43] in 2005. Linhart et al. successfully attacked web

servers and middleboxes threefold: with two Content-Length (CL)

headers, two Transfer-Encoding (TE) headers, and a combination

of both. In 2019, Kettle [38] discovered that many servers were re-

silient against same-header smuggling attacks but introduced new

HRS attacks that contain a combination of the CL and TE header.

In the following years, new attack vectors have been discovered

manually by Klein [40] and through fuzzing by Jabiyev et al. [34].

defparam [17] implemented a tool that gathers known test vectors

and automatically detects HRS vulnerabilities in web server im-

plementations. In our work, we gather test vectors from previous

work [17, 34, 38, 40] and utilize them to construct novel censorship

circumvention techniques.

Kettle [39] and Emil Lerner [21] discovered further HRS attacks

against HTTP/2. We did not consider their vectors as browsers only

support HTTP/2 in conjunction with TLS [27] and changes to the

HTTP headers in this scenario are invisible to the censor.

Attack Example. To execute an HRS attack, an attacker includes

both headers in a single HTTP request such that they indicate

dierent message bounds. Figure 1 displays an example of an HRS

attack attempt in which the second HTTP request, depicted after

the dotted line, is smuggled alongside the rst HTTP request. The

CL header eld of the rst request in line 3 denes a body size of

50 bytes: the body contains the highlighted bytes and the second

request is not parsed as a second HTTP request. The TE header

eld in line 4 denes a chunked encoding: the body contains only

an empty chunk and the second HTTP request is parsed as such.

Therefore, the amount of HTTP requests this message contains

depends on which header is accepted by a parser. The standard

forbids the presence of both headers and species that the TE header

takes precedence [23, 46]. The works we discussed above still found

HRS vulnerabilities, especially by invalidating either header. In

this paper, we draw on test vectors that invalidate either header to

circumvent HTTP censorship.

2.2 Censorship

Network censorship is widely used by many countries and has been

revealed by numerous analyses [3–6, 26, 45, 50, 52, 60, 64, 67]. Some

countries maintain their censorship infrastructure themselves [62]

while others delegate this task to local Internet Service Providers

(ISPs) [63]. In both cases, middleboxes either block IPs directly or

use DPI to scan packets for domain names or other keywords they

want to censor. To interrupt a connection, middleboxes drop pack-

ets [61, 63] or inject additional malicious packets such as wrong

DNS responses [4, 31, 51], or TCP RST packets [15, 42] into the con-

nection. Some middleboxes also employ residual censorship: they

block innocuous packets for some time after a previous packet trig-

gered censorship behavior [8]. Various platforms such as OONI [25],

CensoredPlanet [56], and GFWatch [30] collect censorship measure-

ments around the world and make them freely accessible. Similarly,

various censorship circumvention tools implement a wide range of

circumvention techniques [13, 29, 37, 41, 48, 58, 66]. We refer to the

comprehensive work of Master and Garman [44] for an overview

of countries and techniques involved in global censorship eorts.

43



Free and Open Communications on the Internet 2024 (2) Philipp Müller, Niklas Niere, Felix Lange, and Juraj Somorovsky

Censors Analyzed in this Work. In our work, we analyzed censors

in China, Russia, and Iran. China’s censor — the Great Firewall

of China (GFW) — is arguably the most researched censor [4, 10–

12, 15, 22, 28, 31, 44, 61, 62]. The GFWmaintains an infrastructure of

state-owned middleboxes [62] which analyze the content of HTTP

packets [28] and forcibly interrupt connections by injecting three

TCP RST packets [10, 12]—immediately and residually [8, 11]. Un-

til 2020, Russia maintained a centralized blocklist but delegated

censorship implementation to its ISPs [53]. In 2021, Russia further

centralized its censorship by mandating ISPs to build dedicated cen-

sorship devices into their networks [63, 64]. These so-called TSPU

devices intercept connections by setting the RST ag in packets

or dropping them altogether [63]. As of 2021, TSPU devices did

not trigger on HTTP packets [65]. HTTP censorship in Iran was

rst detected by Aryan et al. [5] in 2013. They found that Iran’s

censor injects an HTTP block page to tear down connections. In

2020, Bock et al. [9] detected an additional Iranian censor which

restricts ports 53 (DNS), 80 (HTTP), and 443 (HTTPS) to these

protocols and also uses residual censorship [8]. This makes Iran’s

censor comparably strict in that they only allow trac on these

well-known ports which their censorship system can analyze. We

analyzed the censors of China, Russia, and Iran in this work as they

censor HTTP, are well-researched, and undergo frequent changes.

Censorship Circumvention. The censors we analyzed and other

censors focus on the Host header and request path elds of HTTP

requests [5, 10, 36, 67]. Accordingly, the obfuscation of these elds

to a censor is paramount for a successful circumvention of HTTP

censorship and has been successfully achieved by previous work.

Bock et al. [10] found numerous HTTP censorship circumventions

by manipulating packet elds on the TCP layer; this invalidates

the reduced TCP state of the censor such that it lets the packets

pass. Manipulations on the TCP layer have the benet of applying

to other application layer protocols as well. On the other hand,

they usually require elevated privileges which might not be eas-

ily achievable on some devices and it has been shown that the

GFW xed at least one circumvention over time [47]. Jermyn and

Weaver [35] and Harrity et al. [28] present many circumvention

techniques that confuse censors by modifying the HTTP headers

of censored requests. While we considered similar modications in

our evaluations, we did not apply them to censored resources di-

rectly. Instead, we modify a crafted request containing the censored

request in its body.

In their paper, Harrity et al. [28] relate their methodology to HRS

by drawing similarities between their fuzzing approaches. How-

ever, they claim that the objective of censorship circumvention—

modifying a request such that it passes the censor—diers from

the objective of HRS: hiding a second request alongside the rst.

We argue that censorship circumvention and HRS can follow the

same objective by hiding a censored request in a second uncensored

request and smuggling it past the censor.

3 TURNING HRS ATTACKS INTO
CENSORSHIP CIRCUMVENTIONS

Our major observation is that HRS attacks are conceptually similar

to censorship circumvention attacks on censors between a client

censored.org

GET / HTTP/1.1

Host: example.com

CL: 50

TE: chunked

body

GET / HTTP/1.1

Host: example.com

CL: 50

TE: chunked

GET / HTTP/1.1

Host: censored.org

HTTP/1.1 XXX ERROR

HTTP/1.1 200 OK

Client Censor

Figure 3: HRS attack on a frontend/censor. The

Content-Length and Transfer-Encoding headers are short-

ened for readability.

and a server. Consider the smuggling vector in Figure 1. A cen-

sor that interprets the CL header parses the second request as the

body of the rst request. Subsequently, it would only analyze the

harmless Host header of the rst message and not censor the mes-

sage. Should the web server interpret the TE header of the rst

request, it would interpret both requests separately and return the

censored resource alongside the uncensored one. If the web server

does not host the uncensored resource, it might also return an error

alongside the censored request. Figure 3 depicts a successful cen-

sorship circumvention using HRS. Note, that a stateful censor could

match the number of HTTP requests and HTTP responses and

drop additional HTTP responses. We did not identify this behavior

from censors in this work and this case could be accommodated by

sending an additional dummy request. In summary, we postulate

that HRS can be used to circumvent censorship as long as parsing

ambiguities between censors and web servers exist. In the follow-

ing, we present our analyses of various HRS vectors and show that

censorship circumvention using HRS is possible.

4 METHODOLOGY

In this section, we dene the structure of our test vectors and

describe our evaluation process. As the censors that we analyze

employ dierent censorship mechanisms, we accommodated our

scans accordingly.

4.1 Test Vectors

To circumvent censorship, we attempt to smuggle a censored HTTP

request alongside an uncensored one through the censor. Accord-

ingly, each of our test vectors consists of two consequent HTTP

requests. The rst request always has exactly one CL and one TE

header in this order. One header sets the bounds of the rst request

behind the second request, attempting to confuse the censor; the

other header sets the bounds of the rst request before the second

request, attempting to be accepted by the web server. A test vector

is then a modication of either the TE or CL header by strategies

such as injecting a new line (\n) in the corresponding header. We

split the test vectors into four types: CL*/TE, TE*/CL, CL/TE*, and

44



Evading HTTP Censorship with HTTP Request Smuggling Free and Open Communications on the Internet 2024 (2)

TE/CL*. The rst value indicates the header that sets the message

bounds after the second request, eectively hiding the second re-

quest. The second value indicates the header that sets the message

bounds after the rst request, revealing the second request. Our

test vectors modify one of these headers which is indicated by the

asterisk (*).

Figure 1 depicts a ground truth test vector without modications

in which the CL header sets the bounds after the second request,

confusing the censor. The type of this test vector is CL/TE. Modi-

fying the CL header would result in type CL*/TE while modifying

the TE header would result in type CL/TE*. For each modication,

we created up to four vectors—one for each type. These test vectors

dier in which header the modication is applied to and which

bounds each header indicates. Notably, not all modications can be

applied to both headers such as insertions that specically target

the chunked keyword of the TE header. Overall, we generated 4,488

unique test vectors from 1,138 modications. All our test vectors

are taken from previous HRS work (cf. Section 2). This way we

directly transform a web security vulnerability into a censorship

circumvention technique.

4.2 Web Server Acceptance

Successful test vectors bypass the censor and elicit a correct re-

sponse from the targeted web server (cf. Figure 3). Specically, the

web server has to send two responses of which the last one must in-

dicate a success. To test web servers’ acceptance of our test vectors

we analyzed which test vectors elicit two responses from common

web servers and recorded the HTTP status codes. We consider a

test vector to be accepted by a web server if the web server sends

two HTTP responses and if the status code of the second response

is either 200 Success or 3XX Redirect. Overall, we evaluated 50

dierent web servers: local web servers, CDNs, and hosts taken

from the CitizenLab test lists for China, Iran, Russia, and the global

list [14]. This diverse set of web servers aims to nd a balance

between popular technologies and web servers that are directly

impacted by censorship. We performed our evaluation of live web

servers on 5th November, 2023. Below, we outline how we decided

on web servers for each category.

Local Web Servers. To scan local web servers, we decided to use

the most popular web server versions according to W3Tech[59]. As

of 26th August, 2023, W3Tech identied Apache and Nginx to have

the highest market share followed by Cloudare Server. As local

web servers, we decided to test the four versions with the highest

market share of Apache and Nginx as well as the latest version at

the point of our evaluations. These were Apache versions 2.2.15,

2.4.6, 2.4.29, 2.4.41, and 2.4.57-latest and Nginx versions 1.14, 1.18,

1.21, 1.22, and 1.25.2-latest respectively.

CDNs. As popular CDNs to scan, we selected Akamai, Amazon,

Cloudare, and Fastly. For each of these CDNs, we selected ve

popular websites with the help of Hunter Web Services [33]. We

veried the hosts with a Who-is-Lookup of their IP address and

checked that the Autonomous System Number (ASN) belongs to

that CDN before adding them to our targets. We refer to Appendix A

for the selection of websites for each CDN.

CitizenLab List Domains. Additionally, we also evaluated our test

vectors on websites that are directly impacted by censorship. For

this, we randomly selected ve hosts from the CitizenLab test lists

for China, Iran, Russia, and the global test list, respectively [14].

We list all domains in Appendix A.

4.3 Censor Scans

After evaluating our test vectors on web servers, we determined

which test vectors successfully circumvent censorship. For this,

we considered every vector that was accepted by at least one web

server as described in Section 4.2. This reduces the amount of test

vectors we have to evaluate against censors while ensuring that any

circumvention technique we nd is also accepted by web servers.

Additionally, we considered a ground truth vector that consists of

a single plain HTTP GET request. We evaluated each accepted test

vector against censors in China (Zhengzhou), Russia (Moscow), and

Iran (Mashhad). Specically, we sent our test vectors from a vantage

point inside the country to a control server located in Germany

and recorded the ensuing network behavior. We sent our messages

to a control server rather than an existing web server to gain more

control over connection errors, lower the chance of additional IP

censorship, and prevent unnecessary load on real-life applications.

We also used dierent authentic User-Agent headers during our

evaluations to lower the chance of our request being ngerprinted.

We provide further details such as the vendor and autonomous

system number (ASN) of our vantage points in Appendix B.

For each country, we selected two censored and two uncensored

websites. The censored websites were taken from the respective

CitizenLab test list [14] while the uncensored websites are either

government websites or popular websites such as qq.com in China.

We manually veried that HTTP requests including these domains

were censored.While some of these domains do not support HTTP—

or redirect to HTTPS—we could utilize them to trigger and evaluate

censorship in the respective countries. We refer to Section 4.2 for

our evaluation of web server support for our test vectors. In our

censor evaluation, we applied each of the four domains to each test

vector: the Host header of the second—smuggled—request in the

test vector was set to the censored domain while the Host header

of the rst request was always set to an uncensored domain. Our

ground truth vector, which consists of only one HTTP GET request,

contained only the censored domain. We randomized the order of

our test vectors and sent them 10 times each to our control server

which answers every request with static bytes. We saved the possi-

ble server responses next to network information such as possible

TCP RSTs, timeouts, and block pages. We manually triggered and

identied block pages, categorized the server responses, and auto-

matically detected them in our evaluations based on the observed

status codes: 403 or 307. We conducted all of the censor scans in

March and April 2024. In the following paragraphs, we outline

the censorship mechanism of each country and our corresponding

evaluation methodology.

China. For China, we selected freetibet.org/ andwww.uyghurnet.

org/ as censored websites. In a preliminary scan, we discovered

that censorship in China happens consistently through injected

TCP RST packets after receiving the initial HTTP request. This

aligns with previous research [28]. Therefore, we considered a test

45



Free and Open Communications on the Internet 2024 (2) Philipp Müller, Niklas Niere, Felix Lange, and Juraj Somorovsky

vector blocked in China if it triggers a TCP RST. Next to direct cen-

sorship through TCP RST injection, we also encountered residual

censorship of 60–90 seconds on the triple (source IP, destination IP,

destination port). This also aligns with previous research [8]. To

avoid classifying uncensored test vectors as censored due to resid-

ual censorship, we connected to 1000 dierent destination ports on

our control server and waited at least 120 seconds before reusing a

destination port. Specically, we selected ports 10,000–10,999 for

which we ascertained the described HTTP censorship behavior in

a previous scan.

Iran. For Iran, we selected gaytoday.com and twitter.com as cen-

sored websites. In a preliminary scan, we discovered that censorship

in Iran happens very consistently through injected HTTP block

pages. Therefore, we considered a test vector blocked in Iran if it

triggers an HTTP block page. Since we observed no residual cen-

sorship in Iran, we could perform the whole scan on destination

port 80, mimicking real HTTP trac. We want to point out that we

could not reproduce the residual censorship on port 80 encountered

in previous work [8].

Russia. For Russia, we selected eurasia.amnesty.org and www.

mdif.org as censored websites. In a preliminary scan, we discovered

inconsistent censorship behavior in Russia. When sending censored

requests to our control server, the rate of requests that would trigger

a block page varied considerably. We also noticed that the same

requests did not trigger a block page but were droppedwhenwe sent

them to another server. We attribute this inconsistent censorship

behavior to upstream ISPs which are triggered depending on the

network path of our packets. This aligns with the results of Bhaskar

and Pearce [7]. We also infer that we did not encounter censorship

by the newly developed TSPU devices [63]; these devices may still

ignore HTTP trac altogether, as in 2021 [65]. In the end, we

considered a test vector to be blocked when it triggered an HTTP

block page. Since we observed no residual censorship in Russia, we

performed our scan on destination port 80.

5 RESULTS

In this section, we present and interpret the results of our evalu-

ations. We also analyze web servers’ behavior regarding our test

vectors and show that HRS can be used to circumvent censorship.

5.1 Web Server Evaluation

Of our 4,488 test vectors, 2,015 were accepted by at least one web

server. As described in Section 4, we consider a test vector accepted

if it elicits two responses from the web server, and if the last re-

sponse is either a 200 Success or a 3XX Redirect. Table 1 depicts the

acceptance rate of web servers for each of our test vector types (cf.

Section 4.1). Test vectors of the CL*/TE type are most successful

followed by test vectors of the TE*/CL type. The high acceptance

rates of the CL*/TE and TE*/CL types in comparison to the CL/TE*

and TE/CL* types indicate that web servers largely prefer to in-

terpret the unaltered headers. We did not detect any web server

accepting and interpreting an altered CL header. We attribute this

to the corresponding RFCs [23, 24, 46] which assign precedence

to the TE header. Overall, web servers accepted 44.9% of our test

vectors with a profound preference for test vectors for which they

could accept the unaltered header. For these vectors to circumvent

censorship, the censor has to interpret the altered header. Below,

we provide a more detailed overview of the acceptance rates of our

test vectors by specic web servers.

Table 1: Number of test vectors which we successfully evalu-

ated on web servers ordered by test vector type.

Vector Type Evaluated Accepted

CL*/TE 1,114 1,103 (99.0%)

TE*/CL 1,130 859 (76.0%)

CL/TE* 1,130 53 (4.7%)

TE/CL* 1,114 0 (0.0%)

Total 4,488 2,015 (44.9%)

Local Servers. We locally evaluated our test vectors on ve ver-

sions of Apache and Nginx; the results are depicted in Table 2

and Table 3, respectively. Both vendors show a decline in accepted

test vectors for newer versions. Specically, no TE/CL* or CL/TE*

vectors are accepted by the latest Apache and Nginx versions we

evaluated. We attribute this to HRS countermeasures implemented

in Apache 2.4.25 [1], Apache 2.4.52 [2], and Nginx 1.21.1 [19]. The

few CL*/TE and TE*/CL headers Apache 2.4.57 accepts invalidate

the corresponding header heavily through symbol injections such

as \ffContent-Length. In comparison, Nginx accepted a consid-

erable amount of our test vectors. The latest version we evaluated,

Nginx 1.25.2, accepted 1,315 vectors in total. Overall, newer Apache

versions are much stricter in their acceptance of HRS vectors than

newer Nginx versions. We disclosed our ndings to Apache and

Nginx. Neither intends to change their implementation’s behavior

in future versions.

Table 2: Successful test vectors on Apache versions ordered

by test vector type.

Vector Type Accepted by Apache Version

2.2.15 2.4.6 2.4.29 2.4.41 2.4.57

CL*/TE 1,101 1,101 156 156 5

TE*/CL 841 841 6 6 6

CL/TE* 41 41 20 20 0

TE/CL* 0 0 0 0 0

Total 1,983 1,983 182 182 11

CDNs and CitizenLab list. During our evaluation of CDNs and

domains from the CitizenLab list, we encountered various web

server implementations. Many web server implementations were

closed-source implementations by the respective CDN while some

were an Apache or Nginx version, an Nginx derivative [49, 57], or

other closed-source implementations. Table 4 lists all web servers

that we could identify with a Server header and the number of test

vectors they accepted. CDNs largely dismissed our test vectors, with

Cloudare and Amazon’s Elastic Load Balancing (awselb) being

exceptions. Interestingly, Amazon’s awselb accepted some of our

test vectors while Amazon’s other web server Cloudfront accepted

46



Evading HTTP Censorship with HTTP Request Smuggling Free and Open Communications on the Internet 2024 (2)

Table 3: Successful test vectors on Nginx ordered by test vec-

tor type.

Vector Type Accepted by Nginx Version

1.14 1.18 1.21 1.22 1.25.2

CL*/TE 859 859 657 657 657

TE*/CL 837 836 658 658 658

CL/TE* 29 28 0 0 0

TE/CL* 0 0 0 0 0

Total 1,725 1,723 1,315 1,315 1,315

none. Most of the non-CDN web servers we discovered accepted

an identical or similar set of test vectors as the Nginx versions we

evaluated. We suspect that these libraries are built from Nginx;

OpenResty and Taobao also state so on their websites [49, 57].

Through similar sets of accepted test vectors, we could also identify

web servers with outdated Nginx or Nginx-derivative versions and

notied their owners. In summary, the web server implementations

of CDNs were stricter than the web server implementations by non-

CDNs; mainly because many web servers are using either Nginx or

one of its derivatives.

Notably, many websites we evaluated redirect HTTP trac to an

HTTPS port. Acceptance of our test vectors by these web servers

still indicates a general acceptance of our test vectors by HTTP

implementations used in the wild.

Table 4: Test vectors on CDNs and web servers that resulted

in two responses during CitizenLab list evaluation.

Vendor Web Server Two Responses

Cloudare Cloudarea 1,653–1,677b

Amazon awselb/2.0a 470

Amazon Cloudfront 0

Akamai GHost 0

Fastly Varnish 0

Taobao Tengine 1,725

Open Source Caddy 1,316

Open Source Prometheus 1,315

OpenResty openresty 1,315

a Second response is a redirect.
b Cloudare servers accepted between 1,653 and

1,677 test vectors across 5 domains. We attribute

this to dierent deployments or connection issues.

5.2 Censor Evaluation

We evaluated all test vectors that were accepted by at least one web

server on censors in China, Iran, and Russia. Of these 2,015 test

vectors, 19 circumvented the censor in China and 254 circumvented

the censor in Iran. Interestingly, all of our test vectors successfully

evaded censorship on our Russian vantage point. We discuss the

censorship behavior on our vantage points in Russia and China

below. The censorship behavior of Iran is discussed together with

the strategies we discovered in Section 5.3.

Table 5 depicts a selection of test vectors that were accepted by

at least one web server and circumvented at least one censor. We

group these test vectors by their type (cf. Section 4.1) and categories

which we describe in Section 5.3. Overall, test vectors of the TE*/CL

and CL*/TE types are most successful as web servers accept 0 and

53 test vectors from the TE/CL* and CL/TE* types, respectively.

None of the test vectors that were accepted by the latest Nginx

and Apache versions circumvented censorship in China or Iran;

we discuss this limitation in Section 6. Our test vectors were still

evaluated positively on other widely used versions of Apache and

Nginx, CDNs, and domains from the CitizenLab list. We consider

this positive for the viability of HRS for censorship circumvention

and stress the importance of testing live servers in conjunction

with local web servers for censorship research.

Russia. As mentioned above, all of our test vectors successfully

circumvented the censorship at our vantage point in Russia. We

conrmed this behavior through the manual execution of our test

vectors. After conrmation of our results, we analyzed the censor-

ship behavior from our vantage point in Russia further. We found

that the censor always analyzed only the rst HTTP packet of the

rst TCP segment in a TCP stream. The censor never blocked a

second HTTP request either as part of the same TCP packet or in a

dierent TCP packet. Thus, all our test vectors circumvented the

censorship at our vantage point in Russia as the censor never ana-

lyzed the second—smuggled—HTTP request. We suspect that the

censor we encountered is stateful and assumes that the Host header

does not change during a TCP connection. Thus, the censor is cir-

cumventable with a standard-compliant circumvention technique.

Additionally, coalescing multiple application layer packets into a

single TCP segment is an interesting technique that opposes the

well-known fragmentation of a single application layer packet over

multiple TCP segments. We see this as an additional hint towards

advanced fragmentation techniques that coalesce and fragment

network packets over multiple network layers as is possible for TLS

or QUIC.

China. In China, most of our test vectors either circumvented

the GFW without triggering TCP RST injection or were censored

with TCP RSTs such that the answer did not reach our vantage

point in any case. For 13 of our test vectors, the behavior was

more mixed: we encountered TCP RSTs on some executions and

the correct server answer on others. We executed an additional

scan with all test vectors and evaluated the behavior of the GFW

with 100 executions on each test vector and both censored domains.

This scan reproduced the behavior we saw in our rst scan on

the same test vectors: a subset of our test vectors circumvents

the GFW with a rate between 10% and 35%. We suspect that we

encountered two parts of the GFW’s infrastructure which employ

dierent mechanisms for its HTTP censorship. This behavior is

peculiar for the GFW which is usually considered consistent in its

censorship behavior. We suggest a future analysis of the consistency

of the GFW’s censorship.

47



Free and Open Communications on the Internet 2024 (2) Philipp Müller, Niklas Niere, Felix Lange, and Juraj Somorovsky

5.3 Strategies

Below, we describe and discuss the strategies depicted in Table 5.

Double Colon. The double colon strategy consists of test vectors

that inject another double colon in the modied header after the

existing one. Interestingly, this strategy was successful in Iran for

CL*/TE and CL/TE*. We suspect that the censor does not accept this

format and that the CL*/TE test vector falls into the same category

as Wrapping which we explain below. This strategy also worked

for two to four Apache versions and some of the domains on the

CitizenLab list for Russia and China.

White-space Injection. This strategy consists of injecting white

space in the modied header. The injection of white space is done

through injecting line breaks (\0d or \0a), tabs, or spaces. Accord-

ing to the standard, tabs and spaces are allowed, however, line

breaks are not. Iran’s censor accepted the modied header with

tabs and spaces in the CL*/TE and TE*/CL case, which makes Iran’s

censor circumventable with a standard-compliant circumvention

technique. China’s censor was stricter and did not accept tabs and

spaces at all. In some cases, the GFW seems to prefer the CL header

when tabs or spaces are injected into the TE header. Inserting tabs

and spaces was successful for older Apache and Nginx versions,

CDNs, and many servers from the CitizenLab lists. Neither Iran

nor China accepts headers with injected line feeds (\0a) but Iran

accepts TE headers with injected carriage returns (\0d). Further

analysis showed that Iran ignores carriage returns (\0d) in header

names but fails to parse a header if the header name contains a

line feed (\0a). Inserted line breaks were mostly accepted by old

Apache versions and Cloudare.

Letter Case. The letter case strategy changes the case of all or

some letters to upper case. In some instances, this led the GFW

to ignore the TE header and interpret the CL header instead. We

suspect that some parts of the GFW rely on the correct case of

the headers. Changing the case of letters in the header name is

standard-compliant as header names are case-insensitive. Many

Apache and Nginx versions, aws, and servers from the CitizenLab

lists preferred the other header.

Wrapping. The wrapping strategy wraps the value of the modi-

ed header with extra bytes. This strategy was very successful in

Iran for the CL*/TE type. At rst, we suspected that Iran’s censor

ignored symbols it could not parse when interpreting the value of

the CL header. When we tried to verify this behavior, we recognized

that we could not circumvent Iranian censorship by invalidating

the CL header if no TE header was present. The CL header was

ignored and the second request was blocked. The presence of the

TE header was required for the Iranian censor to ignore the second

request. We stress that while the presence was required, the Iranian

censor did not interpret it as it would have recognized and blocked

the second request; it did so when the value of the CL header was a

valid integer. Overall, Iran’s censor failed to interpret the TE header

when a CL header with an invalid value was present. We conclude

that the Iranian censor gracefully handles invalid values for the

CL header and attempts to parse the following HTTP packets. The

same invalid value in the CL headers seems to let the censor fail

and pass the following trac when it interprets the TE header.

We suspect an implementation bug in Iran’s censor which only

becomes apparent through the interplay of its CL and TE header

parsing. The GFW sometimes accepted the CL header when it was

ended by an additional line feed (\0a) or when it was ended by two

line feeds and an additional header. The acceptance of test vectors

in the Wrapping category by web servers varied, with some being

accepted by newer Apache versions.

Invalid Header. This strategy invalidates the header name. For

example, this can be done by injecting an additional Unicode char-

acter. As a result, the header itself becomes invalid, which leads

to many web servers accepting the request because they cannot

parse the modied header. All test vectors that were accepted by

the newest Apache and Nginx versions are of this type; they treat

the modied CL or TE header as an unknown header and no HRS

countermeasures are undertaken. This strategy was only successful

in Russia where all of our test vectors were successful, as discussed

above. The reason for this is that a censor would normally have to

parse the modied header correctly, which it is unable to do for an

invalid header name.

Double-Header. All censors accepted a test vector with two TE

headers instead of one of which only the last indicates a chunked

encoding. As the vector has the TE*/CL type censors still interpret

the chunked encoding when multiple TE headers are present and

do not fall back to the CL header. This test vector was accepted

by Nginx 1.14 and some servers from the CitizenLab lists. The

standard-compliant way to indicate multiple encodings is in a list

of the same TE header.

6 LIMITATIONS

As HRS is a security vulnerability, many web servers have patched

their implementations to be less accepting of known HRS vectors.

Still, we showed the viability of HRS as a censorship circumven-

tion technique on commonly used web server implementations and

public web servers. Furthermore, the test vectors we used in our

evaluations were all taken from previous work about HRS. We sug-

gest that a large-scale analysis of web servers and vantage points,

using more test vectors, will produce more censorship circumven-

tion techniques that complement the techniques we describe in this

work. We consider a fuzz-style approach as in the work of Jabiyev

et al. [34] promising. Finally, we evaluated censorship from specic

vantage points. Our results might not apply to other vantage points

in specic countries.

7 ETHICAL CONSIDERATIONS

We designed our methodology with a minimal impact on web

servers, clients, and residents in the countries we evaluated. Like

previous work [10, 28, 42], we used vantage points for our cen-

sorship scans; we sent all requests from these vantage points to

another vantage point in Germany. We did not use or send requests

to machines owned by third parties. The evaluations of Apache

and Nginx were executed on local machines. Only our evaluations

of CDNs and domains on the CitizenLab list imposed trac on

their respective web servers. To each, we sent around 45,000 HTTP

requests which we consider a negligible number for a publicly

accessible web server.

48



Evading HTTP Censorship with HTTP Request Smuggling Free and Open Communications on the Internet 2024 (2)

Table 5: Selection of test vectors that circumvented censorship and were accepted by web servers. =successful, ⃝=partially

successful, –=unsuccessful. Successful test vectors circumvented censorship with both censored domains in the Host header. In

China, partially successful test vectors circumvented the GFW in some but not all of its executions. For the CitizenLab lists, a

test vector is counted as successful if it is accepted by at least one of the ve domains. <len> stands for the correct length value

until the end of the second request. Injected ASCII values are represented by their hex values in the format \[value]. Notably,

the presented vectors are always applied to the general HRS structure, depicted in Figure 1.

Type Category Vector
Censors Apache 2.X.X Nginx 1.XX CDN CitizenLab

CN IR RU 2.15 4.6 4.29 4.41 4.57 14 18 21 22 25.2 CF1 aws2 IR RU CN GL

CL*/TE

Double Colon Content-Length:: <len> –       – – – – – – – – –   –

White-Space

Injection

Content-Length\20: <len>\20 –     – – –   – – –   –   

Content-Length\09: <len>\09 –     – – –   – – –   –   

Wrapping

Content-Length: ’<len>’ –       – – – – – – – – –   –

Content-Length:\20<len>\20 –       –   – – – –  –   

Content-Length: <len>\20\0aX: X –     – – –   – – – –  –   

Content-Length: <len>\u00FF\0aX: X† –     – – – – – – – – – – – – – –

Content-Length:\0b <len> –     – – – – – – – – – – – – – –

Content-Length: <len>\0a\0aX: X ⃝   – – – – – – – – – –    –  

Content-Length: <len>\0a ⃝   – – – – – – – – – –  – – – – –

Invalid Header
Content-Encoding: <len> – –                 

\u00FFContent-Length: <len>\u00FF† – –    – – –       –    

TE*/CL

Double Header
Transfer-Encoding: identity\0d\0a

Transfer-Encoding: chunked
   – – – – –  – – – – –  –   –

White-Space

Injection

\20Transfer-Encoding: chunked\20 –   – – – – –   – – –   –   

\09Transfer-Encoding: chunked\09 –   – – – – –   – – –   –   

Transfer-Encoding\0d: chunked\0d –     – – – – – – – – – – – – – –

Invalid Header

Content-Encoding: chunked – –                 

\u00FFTransfer-Encoding: chunked\u00FF† – –    – – –       –    

Transfer_Encoding: chunked – –            –     

CL/TE*

Letter Case
TRANSFER-ENCODING: CHUNKED ⃝ –      –   – – – –  –   

TrAnSFer-EnCODinG: cHuNkeD ⃝ –      –   – – – –  –   

Double Colon Transfer-Encoding:: chunked –   – –   – – – – – – – – –   –

White-Space

Injection

Transfer-Encoding\20: chunked\20 ⃝ –    – – – – – – – – – – – – – –

Transfer-Encoding\09: chunked\09 ⃝ –    – – – – – – – – – – – – – –

Transfer-Encoding:\0a chunked ⃝ –    – – – – – – – – – – – – – –

\0aTransfer-Encoding: chunked\0a    – – – – – – – – – –  – – – – –

1 Cloudare
2 awselb/2.0
† The extended ASCII character \u00FF is UTF-8 encoded to \xc3\xbf.

We also believe that our research is more benecial to the cen-

sorship circumvention community than it is to censors. To the best

of our knowledge, HRS has not been discovered as a censorship

circumvention technique by the community and can complement

currently used techniques. While censors might be able to x their

implementations, they would have to allocate resources for that

process. We also want to emphasize the general contribution of our

work: we showed that a web security vulnerability can be turned

into a censorship circumvention technique.

8 CONCLUSIONS

In this paper, we presented novel censorship circumvention tech-

niques, transferred from a web security vulnerability. We success-

fully evaded censorship in Iran, China, and Russia and showed that

web servers accept our requests. For at least one vantage point in

Russia, we could also identify an additional standard-compliant

censorship circumvention technique. Furthermore, we detected

inconsistencies in China’s GFW and an implementation bug in

Iran’s censor. We provide our code and data on GitHub1 to promote

reproducibility. This repository also contains a proof-of-concept

that circumvents censorship in Iran with one of our test vectors.

We project that HRS can be applied by proxies to smuggle clients’

requests and implemented in tools such as Geneva to nd advanced

circumvention techniques that incorporate HRS. The direct deriva-

tion of censorship circumvention techniques from an attack is a

novel approach to censorship circumvention and we suggest that it

applies to other vulnerabilities. We hope our ndings aid aected

people and incite new research around the similarities between

vulnerabilities and censorship circumvention techniques.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.

Niklas Niere and Felix Lange were supported by the German Federal

Ministry of Education and Research (BMBF) through the project

KoTeBi (16KlS1556K).

1https://github.com/UPB-SysSec/SmugglingCircumventionResults

49



Free and Open Communications on the Internet 2024 (2) Philipp Müller, Niklas Niere, Felix Lange, and Juraj Somorovsky

REFERENCES
[1] 2017. CVE-2016-8743. https://nvd.nist.gov/vuln/detail/CVE-2016-8743
[2] 2023. CVE-2022-22720. https://nvd.nist.gov/vuln/detail/CVE-2022-22720
[3] Chaabane Abdelberi, Terence Chen, Mathieu Cunche, Emiliano De Cristofaro,

Arik Friedman, and Mohamed Ali Kâafar. 2014. Censorship in the Wild: An-
alyzing Internet Filtering in Syria. In Proceedings of the 2014 Internet Mea-
surement Conference, IMC 2014, Vancouver, BC, Canada, November 5-7, 2014,
Carey Williamson, Aditya Akella, and Nina Taft (Eds.). ACM, 285–298. https:
//doi.org/10.1145/2663716.2663720

[4] Anonymous. 2014. Towards a Comprehensive Picture of the Great Firewall’s DNS
Censorship. In 4th USENIX Workshop on Free and Open Communications on the
Internet, FOCI ’14, San Diego, CA, USA, August 18, 2014, Jedidiah R. Crandall and
Vern Paxson (Eds.). USENIX Association. https://www.usenix.org/conference/
foci14/workshop-program/presentation/anonymous

[5] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. 2013. Internet Censorship
in Iran: A First Look. In 3rd USENIX Workshop on Free and Open Communications
on the Internet, FOCI ’13, Washington, D.C., USA, August 13, 2013, Jedidiah R.
Crandall and Joss Wright (Eds.). USENIX Association. https://www.usenix.org/
conference/foci13/workshop-program/presentation/aryan

[6] Guy Baron and Gareth Hall. 2015. Access online: Internet governance and image
in Cuba. Bulletin of Latin American Research 34, 3 (2015), 340–355.

[7] Abhishek Bhaskar and Paul Pearce. 2022. Many Roads Lead To Rome: How
Packet Headers Inuence DNS Censorship Measurement. In USENIX Security
Symposium. USENIX. https://www.usenix.org/system/les/sec22-bhaskar.pdf

[8] Kevin Bock, Pranav Bharadwaj, Jasraj Singh, and Dave Levin. 2021. Your Censor
is My Censor: Weaponizing Censorship Infrastructure for Availability Attacks.
In IEEE Security and Privacy Workshops, SP Workshops 2021, San Francisco, CA,
USA, May 27, 2021. IEEE, 398–409. https://doi.org/10.1109/SPW53761.2021.00059

[9] Kevin Bock, Yair Fax, Kyle Reese, Jasraj Singh, and Dave Levin. 2020. Detecting
and Evading Censorship-in-Depth: A Case Study of Iran’s Protocol Whitelister. In
10th USENIXWorkshop on Free and Open Communications on the Internet (FOCI 20).
USENIX Association. https://www.usenix.org/conference/foci20/presentation/
bock

[10] Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. 2019. Geneva: Evolving
Censorship Evasion Strategies. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, November 11-
15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz
(Eds.). ACM, 2199–2214. https://doi.org/10.1145/3319535.3363189

[11] Kevin Bock, iyouport, Anonymous, Louis-Henri Merino, David Field, Amir
Houmansadr, and Dave Levin. 2020. Exposing and Circumventing China’s Cen-
sorship of ESNI. https://gfw.report/blog/gfw_esni_blocking/en/

[12] Kevin Bock, Gabriel Naval, Kyle Reese, and Dave Levin. 2021. Even censors have
a backup: Examining china’s double https censorship middleboxes. In Proceedings
of the ACM SIGCOMM 2021 Workshop on Free and Open Communications on the
Internet. 1–7.

[13] bol van. 2023. zapret. https://github.com/bol-van/zapret
[14] CitizenLab. 2024. CitizenLab Lists. https://github.com/citizenlab/test-lists/tree/

master/lists
[15] Richard Clayton, Steven J Murdoch, and Robert NM Watson. 2006. Ignoring the

great rewall of china. In International Workshop on Privacy Enhancing Technolo-
gies. Springer, 20–35.

[16] Cloudare. 2024. Cloudare Radar - Adoption & Usage in China. https://radar.
cloudare.com/adoption-and-usage/cn

[17] defparam. 2021. Smuggler. https://github.com/defparam/smuggler
[18] Tim Dierks and Eric Rescorla. 2008. RFC 5246: The transport layer security (TLS)

protocol version 1.2.
[19] Maxim Dounin. 2021. Nginx, commit a6c109fea5c13b8aa13ed95ca00a64d62601042b.

https://github.com/nginx/nginx/commit/a6c109f
[20] D Eastlake 3rd. 2011. RFC 6066: Transport Layer Security (TLS) Extensions:

Extension Denitions.
[21] Emil Lerner. 2023. http2smugl. https://github.com/neex/http2smugl
[22] Roya Ensa, Philipp Winter, Abdullah Mueen, and Jedidiah R. Crandall. 2015.

Analyzing the Great Firewall of China Over Space and Time. Proc. Priv. Enhancing
Technol. 2015, 1 (2015), 61–76. https://doi.org/10.1515/popets-2015-0005

[23] Roy T. Fielding, Mark Nottingham, and Julian Reschke. 2022. HTTP/1.1. RFC
9112. https://doi.org/10.17487/RFC9112

[24] Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230. https://doi.org/10.17487/RFC7230

[25] Arturo Filasto and Jacob Appelbaum. 2012. OONI: open observatory of network
interference.. In FOCI.

[26] Genevieve Gebhart and Tadayoshi Kohno. 2017. Internet Censorship in Thai-
land: User Practices and Potential Threats. In 2017 IEEE European Symposium on
Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. IEEE, 417–432.
https://doi.org/10.1109/EuroSP.2017.50

[27] IETF HTTP Working Group. 2015. HTTP/2 Frequently Asked Questions. https:
//http2.github.io/faq/

[28] Michael Harrity, Kevin Bock, Frederick Sell, and Dave Levin. 2022. GET /out:
Automated Discovery of Application-Layer Censorship Evasion Strategies. In
31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 465–483. https://www.usenix.org/conference/usenixsecurity22/
presentation/harrity

[29] Sadegh Hayeri. 2022. {GreenTunnel}. https://github.com/SadeghHayeri/
GreenTunnel

[30] NP. Hoang, AA. Niaki, J. Dalek, J. Knockel, P. Lin, B. Marczak, M. Crete-Nishihata,
P. Gill, and M. Polychronakis. 2021. How Great is the Great Firewall? Mea-
suring China’s DNS Censorship. In 30th USENIX Security Symposium. USENIX
Association, 3381–3398. https://www.usenix.org/conference/usenixsecurity21/
presentation/hoang

[31] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jerey Knockel,
Pellaeon Lin, Bill Marczak, Masashi Crete-Nishihata, Phillipa Gill, and Michalis
Polychronakis. 2021. How Great is the Great Firewall? Measuring China’s DNS
Censorship. In 30th USENIX Security Symposium, USENIX Security 2021, August 11-
13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 3381–
3398. https://www.usenix.org/conference/usenixsecurity21/presentation/hoang

[32] Troy Hunt. 2024. Why Not HTTPS? https://whynohttps.com/
[33] Hunter. 2023. TechLookup - List Websites by Technologies - Hunter. https:

//hunter.io/techlookup
[34] Bahruz Jabiyev, Steven Sprecher, Kaan Onarlioglu, and Engin Kirda. 2021. T-Reqs:

HTTP Request Smuggling with Dierential Fuzzing. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security. 1805–1820.

[35] Jill Jermyn and Nicholas Weaver. 2017. Autosonda: Discovering Rules and
Triggers of Censorship Devices. https://www.usenix.org/conference/foci17/
workshop-program/presentation/jermyn

[36] Lin Jin, Shuai Hao, Haining Wang, and Chase Cotton. 2021. Understanding the
Practices of Global Censorship through Accurate, End-to-End Measurements.
Proc. ACM Meas. Anal. Comput. Syst. 5, 3, Article 43 (dec 2021), 25 pages. https:
//doi.org/10.1145/3491055

[37] JonSnowWhite. 2023. DPYProxy. https://github.com/UPB-SysSec/DPYProxy
[38] James Kettle. 2019. HTTP Desync Attacks: Request Smuggling Reborn. https:

//portswigger.net/research/http-desync-attacks-request-smuggling-reborn
[39] James Kettle. 2021. HTTP/2: The Sequel is Always Worse. https://portswigger.

net/research/http2
[40] Amit Klein. 2020. Http Request Smuggling in 2020–New Variants, New Defenses

and New Challenges. Black Hat Briengs USA 8 (2020).
[41] krlvm. 2022. {PowerTunnel}. https://github.com/krlvm/PowerTunnel
[42] Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan Niaki,

David Chones, Phillipa Gill, and Alan Mislove. 2017. lib• erate,(n) a library for
exposing (trac-classication) rules and avoiding them eciently. In Proceedings
of the 2017 Internet Measurement Conference. 128–141.

[43] Chaim Linhart, Ronen Heled, Amit Klein, and Steve Orrin. 2005. Http Request
Smuggling.

[44] Alexander Master and Christina Garman. 2023. A Worldwide View of Nation-
state Internet Censorship. Free and Open Communications on the Internet (2023).

[45] Zubair Nabi. 2013. The Anatomy of Web Censorship in Pakistan. In 3rd USENIX
Workshop on Free and Open Communications on the Internet, FOCI ’13, Washington,
D.C., USA, August 13, 2013, Jedidiah R. Crandall and Joss Wright (Eds.). USENIX
Association. https://www.usenix.org/conference/foci13/workshop-program/
presentation/nabi

[46] Henrik Nielsen, Jerey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys,
Paul J. Leach, and Tim Berners-Lee. 1999. RFC 2616: Hypertext Transfer Protocol
– HTTP/1.1.

[47] Niklas Niere, Sven Hebrok, Juraj Somorovsky, and Robert Merget. 2023. Poster:
Circumventing the GFW with TLS Record Fragmentation. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security. 3528–
3530.

[48] nomoresat. 2021. {DPI Tunnel for Android}. https://github.com/nomoresat/
DPITunnel-android

[49] OpenResty. 2024. OpenResty - Open Source. https://openresty.org/en/
[50] Ramakrishna Padmanabhan, Arturo Filastò, Maria Xynou, Ram Sundara Raman,

Kennedy Middleton, Mingwei Zhang, Doug Madory, Molly Roberts, and Alberto
Dainotti. 2021. A multi-perspective view of Internet censorship in Myanmar. In
Proceedings of the ACM SIGCOMM 2021 Workshop on Free and Open Communica-
tions on the Internet. 27–36.

[51] Paul Pearce, Ben Jones, Frank Li, Roya Ensa, Nick Feamster, Nick Weaver, and
Vern Paxson. 2017. Global measurement of {DNS} manipulation. In 26th USENIX
Security Symposium (USENIX Security 17). 307–323.

[52] Ram Sundara Raman, Leonid Evdokimov, Eric Wustrow, J. Alex Halderman, and
Roya Ensa. 2020. Investigating Large Scale HTTPS Interception in Kazakhstan.
In IMC ’20: ACM Internet Measurement Conference, Virtual Event, USA, October
27-29, 2020. ACM, 125–132. https://doi.org/10.1145/3419394.3423665

[53] Reethika Ramesh, Ram Sundara Raman, Matthew Bernhard, Victor Ongkowijaya,
Leonid Evdokimov, Anne Edmundson, Steven Sprecher, Muhammad Ikram, and
Roya Ensa. 2020. Decentralized control: A case study of russia. In Network and
Distributed Systems Security (NDSS) Symposium 2020.

50



Evading HTTP Censorship with HTTP Request Smuggling Free and Open Communications on the Internet 2024 (2)

[54] Eric Rescorla. 2018. Rfc 8446: The transport layer security (tls) protocol version
1.3.

[55] Kushagra Singh, Gurshabad Grover, and Varun Bansal. 2020. How India censors
the web. In Proceedings of the 12th ACM Conference on Web Science. 21–28.

[56] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls, and Roya Ensa. 2020.
Censored Planet: An Internet-Wide, Longitudinal Censorship Observatory. In In
ACM SIGSAC Conference on Computer and Communications Security (CCS).

[57] Taobao. 2024. The Tengine Web Server. https://tengine.taobao.org/
[58] ValdikSS. 2022. GoodbyeDPI — Deep Packet Inspection circumvention utility. https:

//github.com/ValdikSS/GoodbyeDPI
[59] W3Techs. 2023. Usage Statistics and Market Share of Web Servers. https:

//w3techs.com/technologies/overview/web_server
[60] Ben Wagner. 2014. The politics of internet ltering: The United Kingdom and

Germany in a comparative perspective. Politics 34, 1 (2014), 58–71.
[61] Philipp Winter and Jedidiah R Crandall. 2012. The Great Firewall of China: How

it blocks Tor and why it is hard to pinpoint. Login: The Usenix Magazine 37, 6
(2012), 42–50.

[62] Xueyang Xu, Zhuoqing Morley Mao, and J. Alex Halderman. 2011. Internet
Censorship in China: Where Does the Filtering Occur?. In Passive and Active
Measurement - 12th International Conference, PAM 2011, Atlanta, GA, USA, March
20-22, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6579), Neil Spring
and George F. Riley (Eds.). Springer, 133–142. https://doi.org/10.1007/978-3-642-
19260-9_14

[63] Diwen Xue, Benjamin Mixon-Baca, ValdikSS, Anna Ablove, Beau Kujath, Je-
didiah R. Crandall, and Roya Ensa. 2022. TSPU: Russia’s decentralized cen-
sorship system. In Proceedings of the 22nd ACM Internet Measurement Con-
ference, IMC 2022, Nice, France, October 25-27, 2022, Chadi Barakat, Cristel
Pelsser, Theophilus A. Benson, and David R. Chones (Eds.). ACM, 179–194.
https://doi.org/10.1145/3517745.3561461

[64] Diwen Xue, Reethika Ramesh, Valdik S. S, Leonid Evdokimov, Andrey Viktorov,
Arham Jain, Eric Wustrow, Simone Basso, and Roya Ensa. 2021. Throttling
Twitter: an emerging censorship technique in Russia. In IMC ’21: ACM Internet
Measurement Conference, Virtual Event, USA, November 2-4, 2021, Dave Levin,
Alan Mislove, Johanna Amann, and Matthew Luckie (Eds.). ACM, 435–443. https:
//doi.org/10.1145/3487552.3487858

[65] Diwen Xue, Reethika Ramesh, Valdik S. S, Leonid Evdokimov, Andrey Viktorov,
Arham Jain, Eric Wustrow, Simone Basso, and Roya Ensa. 2021. Throttling
Twitter: an emerging censorship technique in Russia. In IMC ’21: ACM Internet
Measurement Conference, Virtual Event, USA, November 2-4, 2021, Dave Levin,
Alan Mislove, Johanna Amann, and Matthew Luckie (Eds.). ACM, 435–443. https:
//doi.org/10.1145/3487552.3487858

[66] xvzc. 2023. {SpoofDPI}. https://github.com/xvzc/SpoofDPI
[67] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar Sharma,

and Sambuddho Chakravarty. 2018. Where The Light Gets In: Analyzing Web
Censorship Mechanisms in India. In Proceedings of the Internet Measurement
Conference 2018, IMC 2018, Boston, MA, USA, October 31 - November 02, 2018.
ACM, 252–264. https://dl.acm.org/citation.cfm?id=3278555

51



Free and Open Communications on the Internet 2024 (2) Philipp Müller, Niklas Niere, Felix Lange, and Juraj Somorovsky

A VECTOR VIABILITY

Table 6: Targets for our vector viability scan

Category Targets

Apache 2.2.15 2.4.6 2.4.29 2.4.41 2.4.57-latest

Nginx 1.14 1.18 1.21 1.22 1.25.2-latest

Akamai akamai.com united.com starwars.com amd.com ikea.com

Amazon redhat.com sony.com ickr.com rakuten.com eventbrite.com

Cloudare tinyurl.com creativecommons.org w3.org cloudare.com vimeo.com

Fastly† tomsguide.com giphy.com techradar.com behance.net usatoday.com

Global CL data.worldbank.org www.nmrc.org www.hackhull.com www.sbc.net instinctmagazine.com

China CL www.redcross.org.cn clb.org.hk www.grandlisboahotels.com www.president.gov.tw www.sohu.com

Iran CL www.funpatogh.com www.dwturkce.com parsget.com www.aparat.com zezito.ir

Russia CL zezito.ir nr2.com.ua www.wonderzine.com www.sotnik-tv.com perevedem.ru

†We erroneously scanned stackoverow.com and behance.com for Fastly when they were hosted on Cloudare and Amazon respectively. We

considered the result of these scans for Cloudare and Amazon instead and evaluated two alternative websites for Fastly instead.

52



Evading HTTP Censorship with HTTP Request Smuggling Free and Open Communications on the Internet 2024 (2)

B SERVER SPECIFICATIONS

Table 7: Specication of the server in China.

Country: Zhengzhou. China

Autonomous System Number: 4837

Vendor: China VPS Hosting

URL: https://chinavpshosting.com/

ISP: CHINA UNICOM (state-owned)

Table 8: Specication of the server in Russia.

Country: Moscow, Russia

Autonomous System Number: 50867

Vendor: Server Wala

URL: https://serverwala.cloud/

ISP: HOSTKEY B.V. (private)

Table 9: Specication of the server in Iran.

Country: Mashhad, Iran

Autonomous System Number: 201295

Vendor: Avanetco

URL: https://www.avanetco.com/

ISP: Shabakeh Ertebatat Artak Towseeh PJSC (private)

Table 10: Specication of the server in Germany.

Country: Berlin, Germany

Autonomous System Number: 201295

Vendor: IONOS

URL: https://www.ionos.de/

Internet Service Provider: IONOS SE (private)

53


