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We introduce a method based on Gaussian process regression to identify
discrete variational principles from observed solutions of a field theory. The
method is based on the data-based identification of a discrete Lagrangian
density. It is a geometric machine learning technique in the sense that
the variational structure of the true field theory is reflected in the data-
driven model by design. We provide a rigorous convergence statement of
the method. The proof circumvents challenges posed by the ambiguity of
discrete Lagrangian densities in the inverse problem of variational calculus.
Moreover, our method can be used to quantify model uncertainty in the equa-
tions of motions and any linear observable of the discrete field theory. This
is illustrated on the example of the discrete wave equation and Schrödinger
equation. The article constitutes an extension of our previous article for the
data-driven identification of (discrete) Lagrangians for variational dynamics
from an ode setting to the setting of discrete pdes.

1. Introduction

Partial differential equations that can be derived from variational principles (field theo-
ries) take a prominent role in physics, molecular biology, and engineering, for instance,
as they describe wave phenomena, evolution of plasma dynamics, electro-magnetism,
fluid dynamics, and quantum mechanical processes. Examples include the Korteweg–De
Vries (KdV) equation, the shallow wave equation, and the Schrödinger equation.

In this context, data-driven technology has been used to obtain solutions to field theo-
ries [13] as well as to discover governing equations from observed solutions [29, 26]. This
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article falls into the latter category. We propose to identify an action functional for a
field theory by identifying a discrete Lagrangian density based on Gaussian process re-
gression. We do not assume any prior knowledge of the specific form of the Lagrangian.
Central novelty of the article is the provision of a rigorous convergence theory for the
proposed method. Moreover, Lagrangian descriptions of field theories are highly am-
biguous [12, 17, 16]. This has practical implications for our machine learning framework
that we discuss systematically and account for in the convergence theory. Furthermore,
we provide systematic uncertainty quantification of linear observables of the data-driven
system. The article can be seen as an extension of our article [24] from the context of
ordinary differential equations to a partial differential equations’ context.

Continuous Lagrangian data-driven models A dynamical system is governed by a
variational principle or a least action principle, if motions constitute critical points of
an action functional. In case of an autonomous first-order field theory in the space of
Rn, the action functional is of the form

S(u) =

∫
L(u(t), ut1 , . . . , utn)dt1 . . . dtn, (1)

where u is a scalar field and utk = ∂u
∂tk

denote its derivatives (k = 1, . . . , n). The function
L is referred to as a Lagrangian density of the field theory. In the special case of n = 1 the
function L is called Lagrangian. A function u : Rn → R is a solution of the field theory
if for any bounded, open domainM⊂ Rn with Lebesgue measurable boundary ∂M the
action S is stationary at u|M for all variations δu : M→ R that fix ∂M. This is (under
regularity assumptions) equivalent to the condition that u fulfils the Euler-Lagrange
equations EL(u) = 0, where

EL(u) =

n∑
k=1

∂

∂tk

(
∂L

∂utk

)
− ∂L

∂u
=

n∑
k,l=1

(
∂2L

∂utk∂utl
utk,tl

)
− ∂L

∂u
. (2)

Here, utk,tl = ∂2u
∂tk∂tl

. Details may be found in [11, 32], for instance.
In the data-driven context, L is sought as a function of u and its gradient such that

(2) is fulfilled at observed data points

D =
{

(u(t(j)), (utk(t(j)))nk=1, (utk,tl(t
(j)))nk,l=1)

}M

j=1

where t(j) ∈ Rn for 1 ≤ j ≤ M . Once L is known, EL(u) = 0 can be solved with a
numerical method such as a variational integrator [20].

In the special case of Lagrangian odes (n = 1), several methods have been developed
for the data-driven identification of a Lagrangian [9, 23, 10, 14, 24].

Discrete Lagrangian data-driven models Instead of learning continuous variational
principles, in [29] Qin proposes to learn discrete field theories by approximating dis-
crete Lagrangian densities. Here training data consists of solutions of the field theory
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observed over discrete spacetime locations, i.e. D = {u(t(j))}j , where t(j) takes values
in a temporal-spatial mesh. This needs to be contrasted with the identification of a
continuous model for a Lagrangian density which requires observations of derivatives of
first and second order of solutions.

(i,j)(i,j-1) (i,j+1)

(i+1,j)(i+1,j-1)

(i-1,j) (i-1,j+1)

Figure 1: Stencil of (4)

In case of a temporal-spatial mesh on R2 (n = 2) with
coordinates (t, x), functions over the mesh (discrete fields)
can be represented by the collection of their values uij at mesh
points with indices (i, j). An example of a discrete Lagrangian
density is the three-point Lagrangian Ld(uij , u

i+1
j , uij+1). A

corresponding discrete action is defined as the (formal) sum

S∆({uij}) =
∑
i,j

Ld(uij , u
i+1
j , uij+1)∆t∆x, (3)

where (∆t,∆x) are the discretisation parameters of the mesh.
The application of a discrete variational principle yields the
discrete Euler–Lagrange equation

∂

∂uij

(
Ld(uij , u

i+1
j , uij+1) + Ld(ui−1

j , uij , u
i−1
j+1) + Ld(uij−1, u

i+1
j−1, u

i
j)
)

= 0 (4)

which corresponds to ∂
∂uk

l

S∆({uij}) = 0 for all interior meshpoints ukl . The

discrete Euler–Lagrange equation constitutes a seven-point stencil which relates
values of a discrete field over seven mesh-points as visualised in Figure 1.
Another example is the four-point Lagrangian density Ld(uij , u

i+1
j , uij+1, u

i+1
j+1). It yields

the discrete Euler–Lagrange equation

∂

∂uij

(
Ld(uij , u

i+1
j , uij+1, u

i+1
j+1) + Ld(ui−1

j , uij , u
i−1
j+1, u

i
j+1)

+Ld(uij−1, u
i+1
j−1, u

i
j , u

i+1
j ) + Ld(ui−1

j−1, u
i
j−1, u

i−1
j , uij)

)
= 0.

(5)

This constitutes a nine-point stencil (Figure 2). We refer to [19] for details on discrete
variational calculus. Three-point and four-point Lagrangian densities for discrete field
theories over a temporal-spatial mesh will be the main examples in this article.

(i,j)(i,j-1) (i,j+1)

(i+1,j)(i+1,j-1) (i+1,j+1)

(i-1,j)(i-1,j-1) (i-1,j+1)

Figure 2: Stencil of (5)

Ambiguity of Lagrangian densities and data-driven identi-
fication The data-driven identification of a continuous or a
discrete Lagrangian density is an ill-defined inverse problem
as many different Lagrangian densities can yield equations of
motions with the same set of solutions [12, 17, 16]. In the
context of neural network based learning methods, the au-
thor develops regularisation strategies that optimise numeri-
cal conditioning of the learnt theory in [26, 25]. The present
article will provide normalisation conditions suitable for the
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context of learning Lagrangian densities with Gaussian pro-
cesses.

The proposed method can be contrasted to operator learning (e.g. [15]), which aims
to learn an operator that can reconstruct solutions of pdes from boundary data. Other
approach aim to identify an explicit, analytic form of the governing pde via sparse re-
gression based on a dictionary of possible expressions [35, 33]. Furthermore, the method
can be contrasted to methods based on model order reduction that seek a latent space
on which the dynamics can be described by an ode that can be identified from data
or derived from additional knowledge about a full order model. Structure-preserving
approaches include [39, 37, 38, 1, 21].

Our method exploits the temporal-spatial locality of partial differential equations by
learning a comparatively low dimensional object, a discrete Lagrangian density, that
can recover a discrete pde. The discrete pde can subsequently be solved for unseen
boundary conditions by propagating data via the stencil defined by the discrete Euler–
Lagrange equation. Moreover, our method preserves the temporal-spatial variational
structure of the problem, which is related to multisymplectic conservation laws. In
combination with variational symmetries variational structure is related to conservation
laws via Noether’s theorem [18]. Furthermore, preservation of local variational structure
in machine learning approaches can be beneficial for the detection of travelling wave
solutions [26, 25].

Novelty of article The article constitutes an extension of [24] from ordinary differential
equations to partial differential equations.

1. We introduce a method based on Gaussian process regression to learn discrete
Lagrangian densities from temporal-spatial data.

2. We formulate and prove a convergence theorem as the distance of data points tends
to zero.

3. The article systematically discusses the ambiguity of Lagrangian densities and
normalisation strategies for kernel-based machine learning methods.

4. Moreover, a statistical framework for a quantification of model uncertainty of any
linear observable of the learnt field theory is provided.

Our method may be contrasted to the aforementioned approaches in the literature
for learning Lagrangian densities, which mainly focus on ordinary differential equations
(potentially in combination with model order reduction) or on less geometric approaches
such as operator learning. Moreover, ambiguity of sought Lagrangians is often circum-
vented in the literature by making a less general ansatz for the form of the Lagrangian
(e.g. [2]). Additionally, convergence guarantees are typically not provided and model un-
certainty quantification of linear observables is not discussed systematically, especially
in the presence of model ambiguity (e.g. [9]).
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Interpreting a discrete Euler–Lagrange equation, such as (4) or (5), as a partial differ-
ential equation for Ld, the methodology of our method can be viewed in the context of
meshless collocation methods [34] for linear partial differential equations. However, in
contrast to approaches such as [6], solutions for Ld of discrete Euler–Lagrange equations
are highly ambiguous, which is a major technical difficulty that the article overcomes.
Indeed, for this, we employ techniques presented by Owhadi and Scovel in [28] to relate
posterior means of Gaussian processes to constraint optimisation problems in reproduc-
ing kernel Hilbert spaces.

Outline In Section 2 the article continues the review of variational principles for dis-
crete field theories and discusses the ambiguity of discrete Lagrangian densities for the
description of field theories. The analogous discussion for continuous theories is provided
in Appendix A, for comparison. Section 2, furthermore, provides some observations that
justify that our normalisation strategy does not restrict the generality of the ansatz.
After a brief review of the notion of reproducing kernel Hilbert spaces and Gaussian
processes, Section 3 introduces our method to identify Lagrangian densities from dis-
crete temporal-spatial data with the possibility to quantify model uncertainty of linear
observables. Section 4 contains numerical experiments including the identification of a
discrete Lagrangian density for the discrete wave equation and the Schrödinger equation.
Section 5 contains a statement of convergence guarantees for the method. The article
concludes with a summary and concluding remarks in Section 6.

As additional material, Appendix B relates the convergence statement of Section 5 to
the convergence analysis for temporal discrete Lagrangians presented in [24].

2. Lagrangian dynamics

In the following we continue our review of discrete Lagrangian dynamics for field theories.
Here we focus our discussion on the three-point Lagrangian and four-point Lagrangian
on a temporal-spatial mesh as introduced in Section 1. The discussion can be expanded
to other discrete Lagrangian densities that are obtained by applying quadrature formulas
to exact discrete Lagrangian densities as defined in Section II.B of [26]. For details on
discrete variational calculus we refer to [19]. An analogous discussion for continuous
theories can be found in Appendix A for comparison.

2.1. Discrete Euler–Lagrange equation

As motivated in Section 1 (see (4) and (5)), we define the discrete Euler–Lagrange
operator for three-point Lagrangians by

DEL(Ld)(u) = ∇1Ld(u, u+, u+) +∇2Ld(u−, u, u−+) +∇3Ld(u−, u
+
−, u) (6)

and for four-point Lagrangians by

DEL(Ld)(u) = ∇1Ld(u, u+, u+, u
+
+) +∇2Ld(u−, u, u−+, u+)

+∇3Ld(u−, u
+
−, u, u

+) +∇4Ld(u−−, u−, u
−, u).

(7)
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Here u = (u, u+, u+, u
−, u−+, u−, u

+
−) ∈ (Rd)7 for three-point Lagrangians and u =

(u, u+, u+, u
+
+, u

−, u−+, u−, u
+
−, u

−
−) ∈ (Rd)9 for four-point Lagrangians. The expression

∇jLd denotes the gradient of Ld with respect to the jth input argument. The discrete
Euler–Lagrange equation is

DEL(Ld)(u) = 0 (8)

for all stencils u that are contained in the mesh.

2.2. Ambiguity of discrete Lagrangian densities

The remainder of Section 2 prepares a justification that our normalisation strategy in
the data-driven framework of Section 3 does not restrict the generality of the ansatz.
Readers mostly interested in the data-driven aspects may skip directly to Section 3.

Discrete Lagrangian densities can be ambiguous in two different ways:

1. Discrete Lagrangian densities Ld and L̃d yield the same discrete Euler–Lagrange
operator up to rescaling, i.e.

DEL(Ld) = ρ ·DEL(L̃d), ρ ∈ R \ {0} (9)

if
Ld − ρL̃d − c = divtF,

for c ∈ R and a discrete divergence divtF . For three-point Lagrangians Ld(a, b, c)
discrete divergence takes the form

divtF (a, b, c) = F1(a)− F1(b) + F2(a)− F2(c) + F3(b)− F3(c)

with continuously differentiable function F = (F1, F2, F3). These terms are tele-
scopic in the action Sd (3). For four-point Lagrangians Ld(a, b, c, d) a discrete
divergence takes the form

divtF (a, b, c, d) = F1(a)− F1(b) + F2(a)− F2(c) + F3(a)− F3(d)

+ F4(b)− F4(c) + F5(b)− F5(d) + F6(c)− F6(d)

with continuously continuously differentiable function F = (F1, F2, F3, F4, F5, F6).
Two Lagrangians L and L̃ with (9) are called (gauge-) equivalent.

2. Even when two discrete Lagrangian densities Ld and L̃d are not equivalent, they
can yield the same set of solutions, i.e.

DEL(Ld)(u) = 0 ⇐⇒ DEL(L̃d)(u) = 0,

where u denotes stencil data. In that case L̃d is called an alternative Lagrangian
density to Ld.
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2.3. Normalisation of discrete Lagrangian densities

In the data-driven framework for learning discrete Lagrangian densities that we will
introduce in a subsequent section, we will employ strategies to prevent degenerate solu-
tions of discrete Lagrangians that fail to discriminate non-motions. An extreme example
are Null-Lagrangians, for which DEL(Ld) ≡ 0.

To a four-point discrete Lagrangian density Ld define Mm+(Ld) by

Mm+(Ld)(u) = ∇2Ld(u−, u, u−+, u+) +∇4Ld(u−−, u−, u
−, u)

Mm−(Ld)(u) = −∇1Ld(u, u+, u+, u
+
+)−∇3Ld(u−, u

+
−, u, u

+).
(10)

for elements of nine-point stencils u = (u, u+, u+, u
−, u−+, u−, u

+
−) ∈ (Rd)9. Considering

discrete three-point Lagrangian densities as four-point Lagrangian densities with trivial
dependence on the fourth component, the definitions extend to three-point Lagrangian
densities.

Remark 1 (Interpretation) The expression Mm+(Ld) and Mm−(Ld) can be viewed
as a component of a conjugate momentum: to a discrete four-point Lagrangian density
Ld consider the Lagrangian

Ld,∆x(U i, U i+1) =
∑
j

Ld(uij , u
i+1
j , uij+1, u

i+1
j+1), (11)

where U i = (uij)j . The discrete Lagrangian describes the temporal motion of the system
via the discrete Euler–Lagrangian equation for ordinary differential equations

0 = ∇U i

(
Ld,∆x(U i−1, U i) + Ld,∆x(U i, U i+1)

)
.

Associated discrete conjugate momenta are defined by P i
+ = ∇U iLd,∆x(U i−1, U i) and

P i
− = −∇U iLd,∆x(U i, U i+1). Indeed, the jth component is given as

(P i
+)j = ∇2Ld(ui−1

j , uij , u
i−1
j+1, u

i
j+1) +∇4Ld(ui−1

j−1, u
i
j−1, u

i−1
j , uij)

(P i
−)j = −∇1Ld(uij , u

i+1
j , uij+1, u

i+1
j+1)−∇3Ld(uij−1, u

i+1
j−1, u

i
j , u

i+1
j ). 2

Proposition 1 Let ub = (u, u+, u+, u
−, u−+, u−, u

+
−) ∈ (Rd)9 be a stencil and L̊d be a

discrete four-point Lagrangian. To any cb ∈ R, pb ∈ Rd there exists an equivalent
discrete Lagrangian Ld with

Ld(u, u+, u+, u
+
+) = cb, Mm−(Ld)(ub) = pb. 2

Proof Let c̊b = L̊d(u, u+, u+, u
+
+), p̊b = Mm−(L̊d)(ub), F = (F1, 0, 0, 0, 0, 0) with

F1(u) = (p̊b − pb)>u, and c = cb − c̊b + (p̊b − pb)(u+ − u). The Lagrangian

Ld = L̊d + divtF + c

is equivalent to L̊d and fulfils the conditions (1). �

Remark 2 An analogous statement holds with Mm+ replacing Mm− in Proposition 1.2
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3. Data-driven framework

Consider an open and bounded domain Ω ⊂ (Rd)q (q ∈ N) on which an (a priori unkown)
discrete Lagrangian density Lref

d : Ω → R defines true motions via DEL(Lref
d )(u) = 0.

Based on the observation of stencil data u for which DEL(Lref
d )(u) = 0, our goal is

to approximate a Lagrangian density Ld : Ω → R such that DEL(Lref
d )(u) = 0 ⇐⇒

DEL(Ld)(u) = 0 for all stencils u ∈ Ω.
For this, we will model Ld as a Gaussian Process over Ω and compute the posterior

process of Ld conditioned on DEL(Ld)(u) = 0 for all observed stencil data u. To prevent
learning a degenerate Ld (such as Null-Lagrangians) we will, furthermore, condition on
additional normalisation conditions as motivated by Proposition 1.

For this, we briefly introduce our set-up making use of a reproducing kernel Hilbert-
space (RKHS) setting. We will then proceed to the computation of the posterior process.
We refer the reader to [8, 27] for an introduction and further information.

3.1. Reproducing kernel Hilbert spaces – Set-up

Consider a continuously differentiable function K : Ω × Ω → R. Assume that K is a
positive-definite kernel, i.e. K(x, y) = K(y, x) for x, y ∈ Ω (symmetry) and the matrix
(K(x(i), x(j)))Mi,j=1 is positive definite for all finite subsets {x(i)}Mi=1 ⊂ Ω.

To define the reproducing kernel Hilbert space U toK, consider the set {K(x(j), ·) | x(j) ∈
Ω} and its linear span Ů . An inner product on Ů is provided by the linear extension of
〈·, ·〉 defined by

〈K(x, ·),K(y, ·)〉 = K(x, y).

The reproducing kernel Hilbert space U is now obtained as the completion of Ů with
respect to 〈·, ·〉.

An identification of the dual space U∗ and U is given by the bijective, linear, symmetric
map K : U∗ → U defined by K(Φ)(x) = Φ(K(x, ·)).

Let ξ ∈ N (0,K) be the canonical Gaussian process on U , i.e. ξ : A → U is a random
variable (where A is a probability space) with E(ξ) = 0 (zero mean) and covariance
operator K as introduced above. This means that for Φ = (Φ1, . . . ,Φm) ∈ (U∗)m

(m ∈ N) the random variable Φ(ξ) on Rm is multivariate-normally distributed with
covariance matrix given by κ = (Φi(K(Φj)))

m
i,j=1, i.e. Φ(ξ) ∈ N (0, κ).

3.2. Computation of the posterior Gaussian Process

In case we are seeking a three-point discrete Lagrangian density, let us assume we are
given stencil data

u(k) = (u(k), u(k)+
, u(k)

+, u
(k)−, u(k)−

+, u
(k)
−u

(k)+

−) ∈ (Rd)7

for k = 1, . . . ,M such that the sub-triples are elements of Ω, i.e. (u(k), u(k)+
, u(k)

+),

(u(k)−, u(k), u(k)−
+), (u(k)

−, u
(k)+
−, u

(k)) ∈ Ω.
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In case a four-point discrete Lagrangian density is sought, we consider stencil data of
the form

u(k) = (u(k), u(k)+
, u(k)

+, u
(k)+

+, u
(k)−, u(k)−

+, u
(k)
−, u

(k)+

−, u
(k)−
−) ∈ (Rd)9

for k = 1, . . . ,M such that the sub-quadruples are elements of Ω, i.e. (u(k), u(k)+
, u(k)

+, u
(k)+

+),

(u(k)−, u(k), u(k)−
+, u

(k)
+), (u(k)

−, u
(k)+
−, u

(k), u(k)+
), (u(k)−

−, u
(k)
−, u

(k)−, u(k)) ∈ Ω.
Moreover, consider an additional stencil ub ∈ (Rd)7 or ub ∈ (Rd)9, respectively, for

which the sub-triples (sub-quadruples) are elements of Ω and values pb ∈ Rd, cb ∈ R to
which we define yMb := (0, . . . , 0, pb, cb) ∈ (Rd)M × Rd × R.

Moreover, let ΦM
b : U → (Rd)M × Rd × R be defined as

ΦM
b = (DELu(1) , . . . ,DELu(M) ,Mm−ub , evub), (12)

where for Ld ∈ U

DELu(k)(Ld) := DEL(Ld)(u(k)), 1 ≤ k ≤M
Mm−ub(Ld) := Mm−(Ld)(ub)

evub(Ld) := Ld(ub, u
+
b , ub+, ub

+
+) or evub(Ld) := Ld(ub, u

+
b , ub+)

with Mm− as defined in (10).
The conditional process ξM := ξ|{ΦM

b (ξ) = yMb } is again a Gaussian process ξM ∈
N (LM

d ,KΦM
b

) since ΦM
b is linear. Thus, ξM is fully defined by the conditional mean

LM
d ∈ U and conditional covariance operator KΦM

b
: U∗ → U . These can be computed

using general theory [27, Cor. 17.12] as follows.
Define the symmetric, matrix Θ ∈ R(M+1)d×(M+1)d as

Θ =

(DEL1
u(j)

DEL2
u(i)
K)ij (DEL1

u(j)
Mm−

2
ub
K)j (DEL1

u(j)
ev2

ub
K)j

(Mm−
1
ub

DEL2
u(i)
K)i Mm−

1
ub

Mm−
2
ub
K Mm−

1
ub

ev2
ub
K

(ev1
ub

DEL2
u(i)
K)i ev1

ub
Mm−

2
ub
K ev1

ub
ev2

ub
K.

 (13)

The upper index 1, 2 of the operators DEL, Mm−, ev denote on which input element of
K they act, i.e.

DEL1
u(j)

DEL2
u(i)
K = DELu(j)(a 7→ DELu(i)(b 7→ K(a, b))),

for instance. Moreover, we have used the convention that operators are applied component-
wise to vectors of functions.

The Gaussian process ξM ∈ N (Ld,KΦM
b

) has conditional mean

Ld = yMb
>
θ−1KΦM

b . (14)

The conditional covariance operator KΦM
b

: U∗ → U is defined for any ψ, φ ∈ U∗ by

ψKΦM
b
φ = ψKφ− (ψKΦM

b
>

)θ−1(ΦM
b Kφ). (15)
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Here

ψKΦM
b
φ = ψ1φ2K

ψKΦM
b
>

=
(
ψ1DEL2

u(2)
K, . . . ψ1DEL2

u(M)K, ψ1Mm−
2
ub
K, ψ1K(·, ub)

)
ΦM
b Kφ =

(
DEL1

u(2)
φ2K . . . DEL1

u(M)φ
2K Mm−

1
ub
φ2K φ2K(ub, ·)

)>
.

Remark 1 (Normalisation) We would like that the discrete Euler–Lagrange equation
(8) to a data-driven discrete Lagrangian density uniquely defines a solution over the
temporal-spatial mesh for suitable boundary data. This is referred to as non-degeneracy
of the Lagrangian density. (The exact notion depends on the type of boundary value
problem.) The normalisation condition (Mm−ub(ξ), evub(ξ)) = (pb, cb) is compatible with

the true motions defined by Lref
d as the normalisation condition is fully covered by gauge

freedom as proved in Proposition 1. Moreover, as by [28, Thm 12.5], the conditional
mean Ld can be characterised as the minimiser of the convex optimisation problem

Ld = argminΦM
b (L̃d)=yMb

‖L̃d‖U , (16)

where U is the reproducing kernel Hilbert space to the kernel K. Even though the
normalisation does not guarantee any non-degeneracy of the conditional mean Ld, we
will see in the numerical examples that the condition pb 6= 0, cb 6= 0 causes well-behaved
discrete Lagrangian densities for the prediction of new solutions to the field theory from
unseen training data. Intuitively, discrete Lagrangians Ld with artificial degeneracies
do not happen to constitute minimisers of (16) in practise unless the degeneracies are
forced by the true underlying field theory. 2

Remark 2 (Computational aspects) The evaluation of the posterior mean Ld or co-
variance operator KΦM

b
involves solving large linear systems of equations, see (14),(15).

While we will employ standard libraries in the numerical experiments, we refer to the lit-
erature on computational methods for Gaussian process regression for various approaches
such as [30, 36, 7]. 2

4. Numerical experiments

In this section, we apply the method of Section 3 to observational data of the discrete
wave equation and a discrete Schrödinger equation. Similar experiments have been
performed in [26] for neural network based methods.

4.1. Discrete wave equation

4.1.1. True model and training data generation

On the temporal-spatial domain Ω = [0, 0.5]× [0, 1] with coordinates (t, x) and periodic
boundary conditions in space, consider a uniform mesh with discretisation parameters
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Figure 3: Complete training data set for wave equation experiment. (Only these two
samples.)

∆t = 1/40, ∆x = 1/20 and the following discrete Lagrangian

Lref
d (u, u+, u+) =

1

2

(
u+ − u

∆t

)2

− 1

2

(
u+ − u

∆x

)2

− V (u), with V (u) =
1

2
u2.

The discrete Euler–Lagrange equations

0 = DEL(Lref
d )(u) =

u− − 2u+ u+

∆t2
− u− − 2u+ u+

∆x2
+∇V (u) (17)

is the discrete wave equation and can be viewed as a discrete version of the continuous
wave equation ∂2u

∂t2
− ∂2u

∂x2 + ∇V (u) = 0. To obtain training data, we sample N0 = 2
initial conditions consisting of discrete spatial data U0 = (u0

j )j and discrete conjugate

momentum data P 0
− = (p0

j )j at t = 0. The initial data are then propagated in time by
forming the temporal Lagrangian density Ld,∆x defined in (11). Then standard methods
in variational integration [20] are used: in the first step, P 0

− = −∇U0Ld,∆x(U0, U1) is
solved for U1. Then U i+1 is computed from U i and U i−1 by solving the discrete Euler–
Lagrange equation DEL(Lref

d,∆x)(U i−1, U i, U i+1) = 0 numerically for U i+1 (i ≥ 1). The
discrete Euler–Lagrange operator DEL for temporal Lagrangians is given as

DEL(Ld,∆x)(U i−1, U i, U i+1) =
∂

∂U i

(
Ld,∆x(U i−1, U i) + Ld,∆x(U i, U i+1)

)
. (18)

The two samples are plotted in Figure 3. These two solutions contain M = 760 seven-
point stencils U = (u(k))Mk=1 (N0 times number of interior mesh points).

4.1.2. Predictions from unseen initial data (Extrapolation)

With the base stencil ub = 0 ∈ R7, normalisation constants cb = 1, pb = 1, and kernel
K(x, y) = exp(−1/2‖x − y‖2), the stencil data U defines a posterior Gaussian process
ξM ∈ N (LM

d ,KΦM
b

) (Section 3.2).

Figure 4 shows that the mean LM
d of the posterior process can successfully be used

to predict solutions of the discrete wave equation from the unseen initial data u(0, x) =

11



Figure 4: Wave equation experiment. Predicted solution from initial data at t = 0
with LM

d (left) matches reference (centre) to high accuracy. Right: Standard
deviation of the Gaussian variable DEL(ξM ) along predicted solution.

− cos(2πx), u(∆t, x) = − cos(2πx) via forward propagation with DEL(LM
d,∆x) = 0. The

discrete l2-norm of the error is smaller than 0.0222.
To quantify model uncertainty along the predicted solution, we consider at each in-

terior mesh point (i∆t, j∆x) the stencil u(i,j) centred at (i∆t, j∆x). The standard
deviation σ of the Gaussian random variable DELu(i,j)(ξ

M ) can be computed using the
conditional covariance operator KΦM

b
as follows

σ(DELu(i,j)(ξ
M )) =

√
ψKΦM

b
φ, with ψ = φ = DELu(i,j) . (19)

Here ψKΦM
b
φ is computed as explained in (15). The plot to the right of Figure 4 displays

the values of σ(DELu(i,j)(ξ
M )) at all interior mesh points (i, j). This shows areas of very

low and slightly increased model uncertainty and can be interpreted as an estimation of
the local error.

4.1.3. Prediction of travelling waves (Extrapolation)

The functional equation

u(t−∆t, x)− 2u(t, x) + u(t+ ∆t, x)

∆t2

− u(t, x−∆x)− 2u(t, x) + u(t, x+ ∆x)

∆x2
+ u(t, x) = 0

to a continuous interpolation of (17) admits travelling wave solutions uTW(t, x) =
fTW(s) = a1 sin(κs) + a2 cos(κs), s = x − ct, κ = 2πk (k ∈ Z, a1, a2 ∈ R), where
the wave speed c is a real solution to

cos(κc∆t) = 1− ∆t2

2
+

∆t2

∆x2
(cos(k∆x)− 1)

(see [26, Example 11]). Figure 5 shows a repetition of the experiment of Figure 4 for the
initial data of a travelling wave uTW(0, x), uTW(∆t, x). An upward trend of the ridge

12



Figure 5: Wave equation experiment. Predicted solution from travelling wave initial
data at t = 0 with LM

d (left) matches reference (centre) to high accuracy but
with an upward trend of the ridge. Right: Standard deviation of the Gaussian
variable DEL(ξM ) along predicted solution. For better visualisation, log10 is
applied before plotting a heat map.

can be observed. The discrete l2-norm of the error is smaller than 0.067 (time interval
[0, 0.375]). In the heatmap of the standard deviation (right plot), for better visualisation,
the logarithm (basis 10) is applied to the data before plotting. The upward trend of the
ridge is reflected in a higher model uncertainty at later times.

The experiments demonstrate that the learned model can extrapolate to unseen initial
data and that enough information is contained in the stencil data of the two observed
fields (Figure 3) to predict travelling waves to high accuracy. This is remarkable as
the training data-set does not contain travelling waves. Indeed, the global behaviour of
the two fields in the training data set (3)) is quite different from the global behaviour of
travelling waves. However, as the considered technique for identification of the dynamical
system and the method to predict solutions relies on local dependencies, extrapolation
to solutions with different global behaviour is possible.

4.2. Discrete Schrödinger equation

4.2.1. True model and training data generation

Let Ω = [0, 0.14]×[0, 1] be a temporal-spatial domain with coordinates (t, x) and periodic
boundary conditions in x. On the domain consider a uniform mesh that is periodic in
space with mesh parameters (∆t,∆x). To a smooth potential V : R → R consider the
discrete Lagrangian

Lref
d (u, u+, u+, u

+
+) = u>cntrJu∆t − ‖u∆x‖2 − V (‖ucntr‖2)

with

J =

(
0 −1
1 0

)
,

ucntr =
1

4
(u+ u+ + u+ + u+

+),

u∆t =
1

2∆t
((u+

+ − u+) + (u+ − u)),

u∆x =
1

2∆x
((u+

+ − u+) + (u+ − u)).

13



The discrete Lagrangian yields the following discrete Euler–Lagrange equation

0 = DEL(Lref
d )(u) = 2Ju∆t,cntr + 2u∆x2 − 2

(
V ′(‖ucntr‖2)ucntr

)
cntr

⇐⇒ Ju∆t,cntr = u∆x2 −
(
V ′(‖ucntr‖2)ucntr

)
cntr

(20)

where we have used the notation

u∆t,cntr =
1

8∆t
((u+

+ − u+
−) + 2(u+ − u−) + (u−+ − u−−))

u∆x2 =
1

4∆x2
((u+

+ − 2u+ + u+
−) + 2(u+ − 2u+ u−) + (u−+ − 2u− + u−−))(

g(u, u+,−u+, u
+
+)
)

cntr
=

1

4
(evaluate + shift− + shift− + shift−−)

(
g, (u, u+, u+, u

+
+)
)
.

Above, the operator shift evaluates g on shifted input arguments. The shift occurs in the
temporal or spatial direction as indicated by its indices. The discrete Euler–Lagrange
equation (20) constitutes a discrete version of the continuous Schrödinger equation

~i
∂

∂t
Ψ =

(
− ∂2

∂x2
+ V ′(|Ψ|2)

)
Ψ, (21)

which in real coordinates u = (Re(Ψ), Im(Ψ))> reads

~J
∂

∂t
u =

(
− ∂2

∂x2
+ V ′(‖u‖2)

)
u. (22)

(The Plank constant is set to ~ = 1.) Equation (22) may be interpreted as a continuous
analogue to (20). For the purpose of the numerical experiments, the discrete equation
(20) is regarded as the true field theory. We may refer to the first component of u as
real part, and to the second component as imaginary part.

In the experiments, V (r) = r, ∆t = 7/400, ∆x = 1/10 (9×10 mesh points). To obtain
training data, we sample N0 = 30 initial spatial data at time t = 0 and integrate forward
in time using variational integration techniques as explained in Section 4.1. However,
the momentum P 0 is not sampled but computed from U0 exploiting the special structure
of Lref

d (refer to [26, II B.3] for details).
The first and third plot of Figure 6 display real and imaginary part of an instance of

a training sample. These solutions constitute training data U = (u(k))Mk=1 consisting of
M = 2100 nine-point stencils (one stencil per interior mesh point per sample). With the

base stencil ub = 0 ∈ (R2)9, normalisation constants cb = 1, pb =
(
1, 1

)>
, and kernel

K(x, y) = exp(−1/2‖x − y‖2), the stencil data U defines a posterior Gaussian process
ξM ∈ N (LM

d ,KΦM
b

) (see Section 3.2).

4.2.2. Recovery of training data from initial values

Neglecting effects of finite-precision arithmetic and assuming non-degeneracy, by con-
struction, training data can be reproduced exactly from initial data at t = 0,∆t by form-
ing the temporal Lagrangian LM

d,∆x and forward propagation in time using DEL(LM
d,∆x) =

14



Figure 6: Schrödinger equation experiment. Recovery of training data from initial values
at t = 0,∆t by the learned model. From left to right: real part of training
data, real part of predicted field, imaginary part of training data, imaginary
part of predicted field.

0. Moreover, the model uncertainty σ(DELu(ξ
M )) at stencils u in the training data U is

zero in exact arithmetic. This is confirmed in the numerical experiment in Figure 6. The
discrete l2 norm of reference and predicted field is smaller than 1.1e− 9. The maximal
value of each component of σ(DELu(ξ

M )) is smaller than 1.45e− 7 for u ∈ U.

4.2.3. Extrapolation

Moreover, Figure 7 shows that the trained model can successfully predict motions from
unseen initial data that was sampled from the same distribution as the training data.
The discrete l2 norm of the error is smaller 3.9e− 3. Model uncertainty along the com-
puted field is quantified as the component-wise standard deviation of DELu(i,j)(ξ

M ) and
visualised in Figure 7 displaying an increase in uncertainty as the solution is propagated
forward in time.

Reproducibility

Computations have been performed in Julia [3] using packages NLsolve.jl (part of the
Optim.jl project [22]) and ForwardDiff.jl [31], among others. The source code of the
experiments can be found at https://github.com/Christian-Offen/Lagrangian_GP_
PDE.

5. Convergence Analysis

In this section, we will state and prove convergence results for the considered method
to learn discrete Lagrangian densities from temporal-spatial data. For notational con-
venience, the statement (Theorem 1) is formulated for three-point Lagrangian densities
related to a 1+1-dimensional temporal-spatial dynamical systems. However, Theorem 1
and its proof extend in a straight forward manner to other types of discrete Lagrangian
densities such as the four-point Lagrangian densities employed in the numerical exper-
iment of Section 4.2 or, more generally, for the class of discrete Lagrangian densities

15

https://github.com/Christian-Offen/Lagrangian_GP_PDE
https://github.com/Christian-Offen/Lagrangian_GP_PDE


Figure 7: Schrödinger equation experiment. From left to right: true solution (not part of
training data), predicted solution, standard deviation of DEL(ξM ) at stencils
of the predicted solution. First row refers to real part, second row to imaginary
parts of the fields.
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described in Section II.B of [26].
Additionally, Appendix B extracts a statement about temporal discrete Lagrangians

as a special case of the presented theory and relates the statement to the discussion in
our article on (temporal) Lagrangian identification [24].

5.1. Statement of convergence theorem

Theorem 1 Let Ω ⊂ Rd × Rd × Rd be open, bounded, non-empty domains. For u =
(u, u+, u+, u

−, u−+, u−, u
+
−) ∈ (Rd)7 consider the projections pr1(u) = (u, u+, u+), pr2(u) =

(u−, u, u−+), pr3(u) = (u−, u
+
−, u). Consider a sequence of observations

Ω0 = {u(j) = (u(j), u+(j)
, u+

(j), u−
(j)
, u−+

(j)
, u−

(j), u+
−

(j)
)}∞j=1 ⊂

3⋂
l=1

pr−1
l (Ω)

of a dynamical system governed by the discrete Euler–Lagrange equation of an (unknown)
discrete Lagrangian density Lref

d ∈ C1(Ω), i.e. DEL(Lref
d )(u) = 0 for all u ∈ Ω0. Let

K ∈ C1(Ω×Ω) be a continuously differentiable kernel on Ω, ub ∈ Ω, rb ∈ R, pb ∈ R and
assume that Lref

d is contained in the reproducing kernel Hilbert space B to K and fulfils
the normalisation condition

Φb(L
ref
d ) = (pb, rb) with Φb(Ld) = (∇2Ld(ub), Ld(ub)) (23)

and that B embeds continuously into C1(Ω). Let ξ ∈ N (0,K) be a canonical Gaussian
random variable over B. Then the sequence of conditional means Ld,(j) of ξ conditioned
on the first j observations and the normalisation conditions

DEL(ξ)(u(i)) = 0 (∀i ≤ j), ΦN (ξ) = (pb, rb) (24)

converges in the reproducing kernel Hilbert space norm ‖ · ‖B and in the uniform norm
of the space of differentiable functions ‖ · ‖C1(Ω) to a Lagrangian Ld,(∞) ∈ B that is

• consistent with the normalisation Φb(Ld,(∞)) = (pb, rb)

• consistent with the dynamics, i.e. DEL(Ld,(∞))(u) = 0 for all u ∈ Ω0

• and Ld,(∞) minimizes ‖ · ‖B among all discrete Lagrangian densities with the prop-
erties above. 2

Remark 3 By addition of null-Lagrangian densities (see Proposition 1) Lref
d can be

assumed to fulfil the normalisation condition (23) without loss of generality. However, it
is stated in this form to assume compatibility with the reproducing kernel Hilbert space
B. 2

Remark 4 It makes sense to consider observations Ω0 in Theorem 1 that densely fill a
sufficiently large space, i.e. Ω ⊂ prk(Ω0) for k = 1, 2, 3, such that the dynamics on all of
Ω is covered. 2
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5.2. Setting and proof of Theorem 1

Let Ω ⊂ Rd × Rd × Rd be an open, bounded, non-empty domain. For data u =
(u, u+, u+, u

−, u−+, u−, u
+
−) ∈ (Rd)7 define the projections pr1(u) = (u, u+, u+), pr2(u) =

(u−, u, u−+), pr3(u) = (u−, u
+
−, u). To a discrete Lagrangian Lref

d ∈ C1(Ω) consider the set
of admissible stencil data

Ω̂pre =
{
u = (u, u+, u+, u

−, u−+, u−, u
+
−)
∣∣∣DEL(Lref

d )(u) = 0, prk(u) ∈ Ω, k = 1, 2, 3
}
.

The set Ω̂pre is closed in (Rd)7.

Remark 3 In degenerate/symmetric situations, Ω̂pre can contain additional stencils

that do not relate to discrete fields: for instance, for Lref
d (u, u+, u+) = (u+−u)2

2∆t2
− (u+−u)2

2∆x2

the discrete Euler–Lagrange equation DEL(Lref
d )(u) = 0 is a five-point stencil only relat-

ing u, u+, u−, u+, u− rather than a seven-point stencil relating u, u+, u+, u
−, u−+, u−, u

+
−.

Thus (u, u+, u+, u
−, r1, u−, r2) ∈ Ωpre for all r1, r2 ∈ R whenever

u− − 2u+ u+

∆t2
− u− − 2u+ u+

∆x2
= 0.

To cover the case where training data stencils are collected from observed discrete fields,
we will, therefore, proof the statement for observations that are dense in some closed
subset Ω̂ of Ω̂pre. 2

Let Ω0 = {u(j)}∞j=1 ⊂ Ω̂pre be a sequence and Ω̂ := Ω0 ⊂ Ω̂pre (topological closures in

Ω̂pre and (Rd)7 coincide). The discrete Lagrangian operator DEL constitutes a bounded
linear operator

Φ∞ : C1(Ω)→ C0(Ω̂,Rd), Ld 7→ DEL(Ld).

Since for each u the evaluation functional evu : f 7→ f(u) on C0(Ω̂,Rd) is bounded, the
following functions constitute bounded linear functionals for j ∈ N:

Φj : C1(Ω)→ Rd, Φj(Ld) = Φ(∞)(Ld)(u(j))

Φ(j) : C1(Ω)→ (Rd)j , Φ(j) = (Φ1, . . . ,Φj).

For a reference point ub ∈ Ω and for pb ∈ Rd, rb ∈ R we define the bounded linear
functional

Φb : C1(Ω)→ Rd+1, Φb(L) = (∇2Ld(ub), Ld(ub)) , (25)

related to our normalisation condition on the local momentum Mm+ for seven-point
Lagrangians (Section 2.3). Here ∇2Ld denotes the derivative with respect to the second
component of Ld. We will further use the shorthands

Φ
(k)
b = (Φ1, . . . ,Φk,Φb) and Φ

(∞)
b = (Φ(∞),Φb),
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and define

y(k) = (0, . . . , 0, pb, rb) ∈ (Rd)k × Rd × R

y(∞) = (0, pb, rb) ∈ C0(Ω,Rd)× Rd × R.

Consider the following assumption.

Assumption 1 Assume that there is a reflexive, uniformly convex Banach space B with
continuous embedding B ↪→ C1(Ω) such that

{Ld ∈ C1(Ω) |Φ(∞)
b (Ld) = y(∞)} ∩B 6= ∅

In other words, B is assumed to contain a Lagrangian consistent with the normalisation
and the underlying dynamics.

The affine linear subspace

A(j) = {Ld ∈ B |Φ
(j)
b (Ld) = y(j)} (j ∈ N)

A(∞) = {Ld ∈ B |Φ
(∞)
b (Ld) = y(∞)}

are closed in B and not empty by Assumption 1. Therefore, the following minimisations
constitute convex optimisation problems on B with unique minima in A(j) or A(∞),
respectively:

Ld(j) = arg min
Ld∈A(j)

‖Ld‖B

Ld(∞) = arg min
Ld∈A(∞)

‖Ld‖B
(26)

Here ‖ · ‖B denotes the norm in B.

Proposition 2 The minima Ld(j) converge to Ld(∞) in the norm ‖ · ‖B and, thus, in
‖ · ‖C1(Ω). 2

Proof The proof consists of the following steps and follows the same strategy as in the
case of temporal Lagrangians [24]. We will prove:

1. The sequence (Ld(j))j has a weakly convergent subsequence.

2. The weak limit L†d(∞) is contained in A(∞).

3. L†d(∞) coincides with Ld(∞).

4. The whole sequence (Ld(j))j converges weakly against Ld(∞).

5. The norms ‖Ld(j)‖B converge to ‖Ld(∞)‖B.

6. Step 4 and 5 imply that the sequence (Ld(j))j converges strongly against Ld(∞).
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Step 1. The sequence of affine spaces A(1) ⊇ A(2) ⊇ A(2) ⊇ . . . decreases monotonously.
Moreover, ∅ 6= A(∞) ⊆

⋂∞
j=1A

(j). It follows that the norms ‖Ld(j)‖B increase monotonously.
The sequence is bounded by ‖Ld(∞)‖B. By reflexivity of B, we find a weakly convergent

subsequence (Ld(ji))i∈N (see [4, Theorem 3.18]). Let Lji ⇀ L†d(∞) denote the weak limit
in B. We have

‖L†d(∞)‖B ≤ lim inf
i→∞

‖Ld(ji)‖B ≤ ‖Ld(∞)‖B (27)

by the weak lower semi-continuity of the norm.
Step 2. We show L†d(∞) ∈ A

(∞).

Let u ∈ Ω̂. As the sequence Ω0 = (u(m))∞m=1 is dense in Ω̂, there exists a subsequence
(u(ml))∞l=1 converging to u.

For each l there is N such that jN ≥ ml. For i ≥ N it holds that Φ
(∞)
b (Ld(ji))(u

(ml)) =
0. Therefore, for each l

lim
i→∞

Φ
(∞)
b (Ld(ji))(u

(ml)) = 0.

For each l the linear operator Φ
(∞)
b (·)(u(ml)) : B → Rd×Rd+1 into the finite-dimensional

space Rd × Rd+1 is bounded. By the weak convergence Ld(ji) ⇀ L†d(∞) we have

Φ
(∞)
b (L†d(∞))(u

(ml)) = lim
i→∞

Φ
(∞)
b (Ld(ji))(u

(ml)) = 0.

By continuity Φ
(∞)
b (L†d(∞)) ∈ C

0(Ω), we have

Φ
(∞)
b (L†d(∞))(u) = lim

l→∞
Φ

(∞)
b (L†d(∞))(u

(ml)) = 0.

As this holds for all u ∈ Ω̂ we conclude L†d(∞) ∈ A
(∞).

Step 3. As L†d(∞) ∈ A(∞) by Step 2, we have ‖L†d(∞)‖B ≥ ‖Ld(∞)‖B since Ld(∞)

is the unique minimiser of the minimisation problem of (26). Together with (27) we

conclude ‖L†d(∞)‖B = ‖Ld(∞)‖B. By uniqueness of the minimiser Ld(∞) this implies

L†d(∞) = Ld(∞). It follows that Ld(ji) converges weakly to Ld(∞).
Step 4. The choice of a weakly convergent subsequence of Ld(j) in Step 1 was arbitrary.

Thus any subsequence of Ld(j) has a weakly convergent subsequence and any weakly
convergent subsequence has weak limit Ld(∞). It follows that the whole series Ld(j)

converges weakly to the unique weak limit Ld(∞).
Step 5. As Ld(j) ⇀ Ld(∞), and ‖Ld(j)‖B ≤ ‖Ld(∞)‖B, and by the weak lower semi-

continuity of the norm

‖Ld(∞)‖B ≤ lim inf
j→∞

‖Ld(j)‖B ≤ lim sup
j→∞

‖Ld(j)‖B ≤ ‖Ld(∞)‖B.

Therefore
lim
j→∞

‖Ld(j)‖B = ‖Ld(∞)‖B. (28)

Step 6. As B is uniformly convex, by [4, Prop. 3.32] weak convergence Ld(j) ⇀ L†d(∞)

together with (28) implies strong convergence limj→∞ Ld(j) = Ld(∞). �
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Proof (Theorem 1) By [28, Thm 12.5] the unique minimisers Ld(j) in (26) coincide
with the conditional means considered in Theorem 1. Moreover, reproducing kernel
Hilbert spaces are uniformly convex, reflexive Banach spaces. Thus the statement follows
directly from Proposition 2. �

6. Summary and further directions

We have introduced a method based on Gaussian Process regression to obtain data-
driven models of discrete Lagrangian densities that define discrete field theories. The
data consists of discrete observations of fields of the true field theory, which we decompose
into stencil data U for the discrete Euler–Lagrange equation of a discrete Lagrangian
density. A canonical Gaussian process ξ modelling a discrete Lagrangian density is
conditioned to fulfil the discrete Euler–Lagrange equation DELu(ξ) = 0 on all observed
stencils u ∈ U. As these conditions are linear in ξ, the posterior process is Gaussian as
well and the conditional mean and the conditional covariance operator can be explicitly
computed. To avoid degeneracies of the posterior processes, we further condition the
process on non-triviality conditions. We show that this does not restrict the generality
of our ansatz. Next to providing a method to predict solutions to field theories, we
use the statistical framework of Gaussian process regression to obtain a quantification
of model uncertainty of the learned discrete Euler–Lagrange equations and any linear
observable in the conditioned Gaussian process. Our method is structure-preserving
in the sense that the learned discrete field theories are guaranteed to fulfil a discrete
variational principle by construction. To illustrate the method, we provide numerical
examples based on the wave equation and the Schrödinger equation.

The method can be interpreted as a meshless collocation method [34] for solving the
discrete Euler–Lagrange equation for the discrete Lagrangian Ld. Overcoming the am-
biguity of discrete Lagrangian densities (gauge freedom), we provide a statement that
guarantees convergence of the posterior means to a true discrete Lagrangian density as
the distance of data points converges to zero. For this, the proof exploits a charac-
terisation of posterior means as minimisers of a reproducing kernel Hilbert space norm
constrained by the observations [28].

In future work, it is of interest to prove convergence rates for the provided method and
to develop efficient computational methods for evaluations of the machine-learned theory
in high-dimensional, large data-regimes. Moreover, techniques of this article can be
combined with Lie group based methods to learn symmetric representations of (discrete)
temporal Lagrangians (such as [14]) which may be extended to Lagrangian densities and
temporal-spatial symmetries. These are of interest for the data-driven identification of
conservation laws and the detection of structurally simple solutions such as travelling
[25, 26]. Furthermore, rather than learning of one specific variational formulation to a
field theory, learning of alternative (i.e. non-gauge equivalent) variational formulations is
of interest for system identification as alternative variational formulations allow for the
derivation of a series of conservation laws [12, 17, 16, 5]. Finally and more generally, it
is of interest to obtain a fundamental understanding of the interplay between geometric
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prior knowledge, data requirements, and model uncertainty to clarify the role of geometry
in machine learning.
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Appendices

A. Continuous Lagrangian theories

Let us review of continuous Euler–Lagrange dynamics. For details and a more formal
treatment we refer to Section 5 and the literature on variational calculus [11, 32].

A.1. The Euler–Lagrange equations for continuous theories

The Euler–Lagrange operator for a first order field theory on Rn or subsets of Rn with
coordinate t = (t1, . . . , tn) and Rd-valued field u = (u1, . . . , un) is given as

EL(L)r((us)s, (u
s
tk

)s,k, (u
s
tl,tk

)s,l,k)

=
n∑

k=1

∂

∂tk

(
∂L

∂urtk

)
− ∂L

∂ur

=
n∑

k,l=1

d∑
s=1

(
∂2L

∂urtk∂u
s
tl

ustk,tl

)
+

n∑
k=1

d∑
s=1

(
∂2L

∂urtk∂u
s
ustl

)
− ∂L

∂ur

(29)

for r = 1, . . . , d. The Euler–Lagrange equation

EL(L)

(
u(t),

∂u

∂tk
(t),

∂u

∂tk∂tl
(t)

)
= 0 (30)

constitutes a system of d partial differential equations. Here we use the convention
EL(L) = (EL(L)1, . . . ,EL(L)d). Unless degenerate, the equations are of second order.
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In case n = 1 the equation simplifies to the following set of second order ordinary
differential equation:

0 = EL(L)(u, ut, utt) =
∂2L

∂u∂ut
ut +

∂2L

∂ut∂ut
utt −

∂L

∂u
. (31)

Here the first and second summand denote matrix vector multiplications and ∂L
∂u denotes

the gradient of L with respect to u.

A.2. Ambiguity of Lagrangian densities

Lagrangian densities can be ambiguous in two different ways:

1. Lagrangians L and L̃ can yield the same Euler–Lagrange operator up to rescaling,
i.e.

EL(L) = ρ · EL(L̃), ρ ∈ R \ {0}

and, therefore, the same Euler–Lagrange equations up to rescaling. We call L and
L̃ (gauge-) equivalent. For equivalent Lagrangians L, L̃ there exists ρ ∈ R \ {0},
c ∈ R such that L− ρL̃− c is a total divergence

L− ρL̃− c = divtF

for a continuously differentiable function F = (F 1, . . . , Fn), where

divtF (u, (utk)k) =
d∑

s=1

n∑
k=1

ustk
∂F j

∂us
(u). (32)

(We have restricted ourselves to autonomous Lagrangians.) This may be seen
by noting that for the corresponding action functionals S and S̃ the difference
S(u) − ρS(u) is an integral over the boundary ∂M if u : M→ Rd. However, the
considered variations fix ∂M and, thus, do not influence the stationarity of a field
u [11].

2. Even when two Lagrangians L and L̃ are not equivalent, they can yield the same
set of solutions u, i.e.

∀u : M→ Rd : EL(L)(u(t)) = 0 ⇐⇒ EL(L̃)(u(t)) = 0,

where M⊆ Rn is the domain of the field theory. Here

u(t) =

(
u(t),

(
∂u(t)

∂tk

)
k

,

(
∂2u(t)

∂tk∂tl

)
k,l

)

denotes the second jet extension of a field u. In that case L̃ is called an alternative
Lagrangian density to L.
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Example 1 (Affine linear motions) For any twice differentiable g : Rd → R
with nowhere degenerate Hessian matrix Hess(g), the Lagrangian L(u, ut) = g(ut)
describes affine linear motions in Rd:

0 = EL(L) = Hess(g)(ut)utt. 2

In general, the existence of alternative Lagrangian densities is related to additional
geometric structure and conserved quantities of the system [12, 17, 16, 5]. Gauge equiv-
alence, however, is exhibited by all variational systems.

B. Alternative convergence statement for discrete Lagrangians

Theorem 1 provides a blueprint for convergence results for various types of discrete
Lagrangians. In Theorem 2 below we reformulate Theorem 1 for discrete temporal
Lagrangians. Discrete temporal Lagrangians have already been considered separately in
[24]. We will then relate the statement of [24] and Theorem 2.

Theorem 2 Let Ω ⊂ Rd × Rd be open, bounded, non-empty domains. Consider a se-
quence of observations

Ω0 = {u(j) = (u−
(j)
, u(j), u+(j)

)}∞j=1

of a dynamical system governed by the discrete Euler–Lagrange equation of an (unknown)
discrete Lagrangian density Lref

d ∈ C1(Ω), i.e.

Ω0 ⊂ Ω̂ =

{
u = (u−, u, u+)

∣∣∣∣DEL(Lref
d )(u) = 0,

(u, u+) ∈ Ω

(u−, u) ∈ Ω

}
.

Assume Ω ⊂ pr−Ω0 and Ω ⊂ pr+Ω0 with pr−(u−, u, u+) = (u−, u) and pr+(u−, u, u+) =
(u, u+). Let K ∈ C1(Ω × Ω) be a kernel on Ω, ub ∈ Ω, rb ∈ R, pb ∈ R and assume
that Lref

d is contained in the reproducing kernel Hilbert space B to K and fulfils the
normalisation condition

Φb(L
ref
d ) = (pb, rb) with Φb(Ld) = (−∇2Ld(ub), Ld(ub)) (33)

and that B embeds continuously into C1(Ω). Let ξ ∈ N (0,K) be a canonical Gaussian
random variable over B. Then the sequence of posterior means Ld,(j) of the Gaussian
field ξ conditioned on the first j observations and the normalisation conditions

DEL(ξ)(u(i)) = 0 (∀i ≤ j), Φb(ξ) = (pb, rb) (34)

converges in the reproducing kernel Hilbert space norm ‖ · ‖B and in the uniform norm
of the space of differentiable functions ‖ · ‖C1(Ω) to a Lagrangian Ld,(∞) ∈ B that is

• consistent with the normalisation Φb(Ld,(∞)) = (pb, rb)
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• consistent with the dynamics, i.e. DEL(Ld,(∞))(u) = 0 for all u ∈ Ω0

• and it minimizes ‖ · ‖B among discrete Lagrangians with the above properties. 2

Proof The proof of Theorem 1 can be adapted easily. �

In comparison to [24, Theorem 2], Theorem 2 requires Ω = Ωa = Ωb (slightly more
restrictive). Under the assumptions that a globally Lipschitz continuous discrete flow

map g exists governing the observed dynamical system, any dense set {(x(j)
0 , x

(j)
1 )}∞j=1 ⊂

Ωa gives rise to a dense, countable set of observations

Ω0 = {(x(j)
0 , g(x

(j)
0 , x

(j)
1 ))} ⊂ Ω̂

where Ω̂ = {(x0, g(x0, x1)) | (x0, x1) ∈ Ω}. Hence, [24, Theorem 2] follows from Theo-
rem 2 in case Ωa = Ωb.

References

[1] Christine Allen-Blanchette, Sushant Veer, Anirudha Majumdar, and Naomi Ehrich
Leonard. LagNetViP: A Lagrangian neural network for video prediction (AAAI
2020 symposium on physics guided ai), 2020. doi:10.48550/ARXIV.2010.12932.

[2] Takehiro Aoshima, Takashi Matsubara, and Takaharu Yaguchi. Deep discrete-time
lagrangian mechanics. ICLR SimDL, 5 2021. URL: https://simdl.github.io/
files/49.pdf.

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh
approach to numerical computing. SIAM review, 59(1):65–98, 2017. doi:10.1137/
141000671.

[4] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differen-
tial Equations. Springer New York, New York, NY, 2011. doi:10.1007/

978-0-387-70914-7.

[5] J F Carinena and L A Ibort. Non-noether constants of motion. Journal of Physics
A: Mathematical and General, 16(1):1, 1 1983. doi:10.1088/0305-4470/16/1/010.

[6] Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. Solving
and learning nonlinear pdes with Gaussian processes. Journal of Computational
Physics, 447:110668, 2021. doi:10.1016/j.jcp.2021.110668.

[7] Yifan Chen, Houman Owhadi, and Florian Schäfer. Sparse Cholesky factorization
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