Parallel Branch-and-Price Algorithms for the Single
Machine Total Weighted Tardiness Scheduling Problem
with Sequence-Dependent Setup Times

Philipp Speckenmeyer®*, Constanze Hilmer?, Gerhard Rauchecker?,
Guido Schryen®

¢ Warburger Str. 100, 33098 Paderborn, Germany
b Unaffiliated, n/a, Germany

Abstract

Scheduling problems occur in a broad range of real-world application fields and
have attracted a huge set of research articles. However, there is only little
research on exact algorithms for scheduling problems, many of which are NP-
hard in the strong sense. We investigate the problem on a single machine with a
total weighted tardiness objective function and sequence-dependent setup times.
First, we adopt a serial branch-and-price algorithm from the literature and
present a modified branching strategy and a primal heuristic. Second, we use the
potential of parallel computing architectures by presenting two parallel versions
of the branch-and-price algorithm. Third, we conduct extensive computational
experiments to show that our parallelization approaches provide substantial
parallel speedups on well-known benchmark instances from the literature. We
further observe that the parallel speedups achieved by our parallel algorithms
are very robust among all tested instances.

Keywords: single machine scheduling, weighted tardiness, sequence-dependent
setup times, branch-and-price algorithm, dynamic programming,

shared-memory parallelization

*Corresponding author

Preprint submitted to Computers & Operations Research August 15, 202/



20

25

30

1. Introduction

In this study, a single machine scheduling problem with sequence-dependent
setup times and a total weighted tardiness objective function is examined. This
scheduling problem can be classified as 1 | STsq | Y- w;T; in the established
a | B | v notation by |Graham et al| (1979)). We refer to this problem as the
Weighted Tardiness Scheduling Problem with Sequence-Dependent Setup Times
(WTSDS). The scheduling problem 1 || Y w,T; without setup times is already
NP-hard in the strong sense (Tasgetiren et al., 2009; Lawler, |1977). Since it is a
special case of WTSDS (by setting all setup times to zero), WT'SDS is strongly
NP-hard as well.

Problem WTSDS can be described as follows: a set of jobs has to be pro-
cessed without disruption by a single machine, which can only process one job
at a time. Each job has a processing time, a due date and a weight. For ev-
ery pair of jobs, processed in direct succession on the machine, a setup time is
incurred. Since these setup times depend on both jobs, they are called sequence-
dependent. When the completion time of a job is later than its due date, it is
called tardy, with the tardiness set to the time elapsed between the due date
and the time of completion. The goal of WTSDS is to find a feasible schedule
with minimum total weighted tardiness.

There already exist many studies addressing the WTSDS, see |Allahverdi
et al.| (1999, [2008), and |Allahverdi (2015)) for an overview. However, only a
few articles present exact algorithms for WTSDS or one of its generalizations,
see Section [2] for details. Since none of these papers report optimal solutions
to large (e.g., more than 100 jobs) WTSDS instances, such instances are still
computationally intractable.

In our paper, we adopt a serial branch-and-price (b&p) algorithm — a special
kind of a branch-and-bound (b&b) algorithm where linear relaxations are solved
by column generation — which was originally proposed by [Lopes and de Car-
valho| (2007) for a generalization of WTSDS — and present a modified branching

strategy which exploits problem specific sequencing information obtained from



35

40

45

50

the column generation process. We also develop a primal heuristic in order to
derive feasible schedules from the fractional solutions of the linear relaxations.
Using this sequential b&p algorithm, we present two parallelization approaches
to utilize the computing power of modern parallel hardware (Hager and Wellein|
2010). The scalability of our parallel algorithms (and limits thereof) is tested us-
ing established benchmark instances introduced by |Cicirello| (2003]), |Gagné et al.
(2002) as well as [Rubin and Ragatz (1995]). Our computational experiments
show that the proposed parallelization strategies provide substantial speedups
with very little variations for the instances mentioned above.

Unlike most studies that parallelize b&b algorithms by concurrently solving
nodes in the b&b tree, our study focuses on using CPU cores to parallelize the
column generation process in individual b&b nodes, which has not been studied
for the underlying problem. Gaining insight into the computational behavior of
this type of algorithmic parallelization is valuable for a joint application of both
parallelization approaches in future research, not only for the studied problem
WTSDS, but also for its extensions.

The remainder of this paper is structured as follows. In Section[2] we provide
a comprehensive overview of literature on machine scheduling as well as parallel
branch-and-x (b&x) and dynamic programming algorithmsﬂ The mathemati-
cal formulation of WTSDS is proposed in Section [3] In Section[d] a serial b&p
algorithm for the WTSDS is presented. Then, we introduce two parallelization
strategies for the b&p algorithm in Section [5| Detailed computational experi-
ments of the proposed parallel algorithms are presented and discussed in Section

[l Finally, Section [7] concludes.

1The latter is used to solve the so called pricing problem during column generation in our

b&p algorithms.



55

60

65

70

75

80

2. Literature Review

2.1. Machine Scheduling

Various types of machine scheduling problems have been studied by nu-

merous authors. Comprehensive reviews covering machine scheduling problems

with setup times were composed by |Allahverdi et al.| (1999, [2008) and |Allahverdi|
(2015)). Using the three-field notation « | 8 | v by |Graham et al.| (1979), we

focus on scheduling problems on single machines (« = 1) and parallel machines
(o = P for identical machines, a = @ for uniform machines and « = R for unre-
lated machines) with sequence-dependent setup times (8 = STyq), and objective
functions 7 that are at least as general as the total weighted tardiness.

There exist a variety of (meta-)heuristic approaches for these problems,

among them Ant Colony Optimization (Liao and Juan, [2007; Anghinolfi and|
2008)), Evolutionary Algorithms (Xu et al) [2014b), Iterated Local
Search (Subramanian et al., |2014; Xu et al., [2014a; Subramanian and Farias,
2017)), Scatter Search (Bozejko| [2010; /Guo and Tang, 2015) and Variable Neigh-
bourhood Search (Chenl [2019; Nogueira et al.| [2022)). [Kramer and Subramanian|

provide an overview of solution approaches for various earliness-tardiness
scheduling problems, including WTSDS. Although (meta-)heuristic approaches
are often able to produce high-quality solutions, they generally don’t come with
any guarantee of finding optimal solutions — let alone proving their optimality.
Especially since proving optimality often times takes up most of the running
time for b&b algorithms (tailing-off ), a comparison regarding running-times
would be skewed. Hence, we focus on exact algorithms in the following.

, Balakrishnan et al.| (1999), Zhu and Heady| (2000), and |Akyol and Bay-|
considered the total weighted earliness-tardiness objective function
(- wiEj 4+ > wiT;), which coincides with the total weighted tardiness when

all earliness weights w/ are set to zero. Balakrishnan et al(1999) modeled the

problem Q [ STsq | 3 wjiEj + 3 wT}, while Zhu and Heady] (2000) and |Akyol

and Bayhan| (2008) addressed the problem R | STsq | Y w)E; + 3 wiT; by

Mized-Integer Programs (MIPs). The former two were able to solve instances



85

90

95

100

105

110

with up to 12 (9 respectively) jobs and 3 machines using a commercial solver.
The latter were also not able to solve larger instances with their exact algorithm
based on artificial neural networks.

Lin and Hsieh (2014) present a MIP model for R | STsq | > w;T; and

use a commercial solver to solve instances with up to 12 jobs on 3 machines.

[Tavakkoli-Moghaddam and Aramon-Bajestani (2009), [Lopes and de Carvalho|

(2007), and [Lopes et al.| (2014) solved the same scheduling problem by presenting

b&b and b&p algorithms based on MIP formulations. The former were capable
of solving instances with up to 10 jobs and 4 machines, while the latter two
were able to solve larger instances with up to 150 (180 respectively) jobs and
50 machines within slightly more than one hour (four hours respectively).

Regarding WTSDS, |Tanaka and Arakil (2013) implemented an exact algo-

rithm capable of solving instances with up to 85 jobs within a maximum of

34 days, while [Nogueira et al|(2019) proposed several MIP formulations which

were used to solve instances with up to 20 jobs within one hour.
considered the problem without weights, 1 | STsq | > 7}, and developed
an exact algorithm able to solve instances with up to 45 jobs within half an
hour.

In addition to the paucity of research on exact algorithms for machine
scheduling problems, none of the exact approaches cited in this Section ex-

ploits the opportunities of parallel computation. In our paper, we address both

of these issues by adopting the algorithm of [Lopes and de Carvalho| (2007)

for WTSDS, modifying its branching strategy, developing a primal heuristic
to obtain upper bounds more frequently, and presenting and computationally

evaluating parallelized versions of the adapted algorithm.

2.2. Parallel Branch-and-X Algorithms

Parallel b&x algorithms have been applied to various types of problems.

The list of considered problem types comprises assignment problems (Galea and;
(2011)), graph theory problems (e.g., |Christou and Vassilaras| (2013))),

knapsack problems (e.g., [Ismail et al. (2014))), mixed integer linear programs




115

120

125

130

135

140

145

(e.g., |Carvajal et al| (2014)), stochastic optimization problems (e.g.,
(2017)), and traveling salesman problems (e.g.,(Ozden et al|(2017)). Fur-
thermore, flow shop scheduling problems (e.g., [Chakroun et al| (2013alb)), job
shop scheduling problems (e.g.,|Adel et al.| (2016); [AitZai and Boudhar| (2013)),
parallel machine scheduling problems (Rauchecker and Schryen| (2015} [2018))
and the problem 1 || . T; are considered; for a comprehensive

overview of the application of parallel b&x algorithms to optimization problems,

see (2020)).

According to the framework for parallel optimization in operations research

introduced by (2020)), there are three types of parallelization strategies

for b&x algorithms. These are based on the taxonomy of |Crainic and Toulouse|

(2003) and |Gendron and Crainic| (1994). In the first strategy, which is based

on domain decomposition, the solution space is split, and the partitions are ex-
plored concurrently, which for b&x algorithms means that multiple active nodes
of the b&Db tree are explored simultaneously. For this concept, in-
troduced the term coarse-grained intra-algorithm parallelism. In coarse-grained
inter-algorithm parallelism, the second strategy, the solution space is not de-
composed, but multiple b&x procedures are executed concurrently on the same
solution space. In the third strategy, which calls fine-grained
intra-algorithm parallelism, only a small, predefined part of the algorithm is
parallelized when exploring a local region. Hence, this is also called a low-level
strategy. This entails that the computation of an operation at a single b&b

node is executed in parallel.

[Rauchecker and Schryen| (2015) implemented a fine-grained intra-algorithm

parallelization strategy in which solving the pricing problem and the branching

decision is parallelized. |Chakroun et al.| (2013b)) chose the same parallelization

strategy by computing the lower bound of each node of the tree in parallel on

graphics processing units (GPUs). |Carvajal et al.| (2014) chose a coarse-grained

inter-algorithm parallelization strategy. They execute several configurations of
a solver in parallel, each applying a b&b procedure on the same mixed-integer

linear programming problem while sharing information with each other.



150

155

160

165

170

175

In all other studies on parallel b&x algorithms (based on the review by
)7 a coarse-grained intra-algorithm parallelization strategy is re-
alized (e.g., Aldasoro et al| (2017), Christou and Vassilaras| (2013)), Ismail et al.|
(2014), |Ozden et al. (2017), and Rauchecker and Schryen| (2018)). This is the

most natural, since most straightforward, way to parallelize b&x algorithms

(Schryenl [2020). |Galea and Le Cun| (2011) combined the coarse-grained with

a fine-grained intra-algorithm parallelization strategy in a hybrid approach. In
their article, the computation of the lower bound is vectorized and then paral-
lelized by means of single instruction, multiple data (SIMD) instructions.
also implemented a two-level parallelization on a GPU. On the one
hand, the computation of the lower bound at each node is executed in parallel,
on the other hand, multiple nodes are explored in parallel. These examples also
show that fine-grained and coarse-grained intra-algorithm parallelism are not
mutually exclusive and can be combined in hybrid approaches.

Regarding scheduling problems, there appears a high diversity of paralleliza-

tion strategies. (Chakroun et al. (2013Db)) and |[Rauchecker and Schryen| (2015)) use

a fine-grained intra-algorithm parallelization strategy for a flow shop scheduling
problem and a parallel machine scheduling problem, respectively.
let al| (2013al), |Chakroun and Melab| (2015)), |Gmys et al.| (2016 [2017), Mezmaz,
let al| (2014), and [Vu and Derbell (2016) apply coarse-grained intra-algorithm

parallelization to flow shop scheduling problems. [AitZai and Boudhar (2013)

and [Rauchecker and Schryen| (2018)) also present coarse-grained intra-algorithm

parallelization strategies for a job shop scheduling problem and a parallel ma-

chine scheduling problem, respectively. Finally, [Adel et al] (2016) introduce a

hybrid approach of coarse-grained and fine-grained intra-algorithm paralleliza-
tion for a job shop scheduling problem.

In our paper, we apply a fine-grained intra-algorithm parallelization to the
(single) machine scheduling problem WTSDS by parallelizing the processing of
linear relaxations at the b&p tree nodes. In particular, we parallelize the dy-
namic programming algorithm, which is the most time-consuming part of the

column generation procedure used to solve the linear relaxations. As this en-



180

185

190

195

200

tails solving a kind of shortest path problem, this approach is not limited to
the problem WTSDS, but could be adapted to a variety of other algorithms
for optimization problems that involve solving a similar dynamic programming
problem. Acknowledging that parallelizing b&x algorithms through a coarse-
grained intra-algorithm parallelization by solving nodes of the b&b tree con-
currently is the most studied approach, we focus in this work on fine-grained
intra-algorithm parallelization. Once the individual effects of the fine-grained
parallelization are analyzed, without interfering effects such as early pruning of
b&b nodes due to processing them in parallel, a hybridization can be approached

in future research.

2.8. Parallel Dynamic Programming Algorithms

Parallel dynamic programming (DP) algorithms have also been applied to

numerous types of problem. [Kumar et al.| (2011), |Stivala et al.| (2010), and
use parallel DP to solve graph theory problems while Boyer et al|
(2012), Rashid et al.| (2010), and again |Stivala et al.[(2010) apply parallel DP to
knapsack problems. [Aldasoro et al|(2015) and Rauchecker and Schryen| (2015)

present parallel DP algorithms for a stochastic optimization problem and a

parallel machine scheduling problem, respectively. Applications of parallel DP

to several other problem types are presented by Boschetti et al| (2016), Dias|
let al.| (2013]), [Maleki et al.| (2016)), and |Tan et al.| (2009).

The only approach for using parallel DP as part of a column generation pro-

cedure is presented by Rauchecker and Schryen| (2015)) for a parallel machine

scheduling problem. In their parallelization, the solution space is divided into
independent subproblems, each corresponding to exactly one of the parallel ma-
chines, which are solved in parallel. This strategy is not applicable to WTSDS
since there is only a single machine in WTSDS. Consequently, we present a new
parallel DP approach for executing the column generation procedure in our b&p

algorithm in parallel.



205

210

3. Decision Support Model

To present a decision support model for WTSDS, we rely on [Lopes and
de Carvalho| (2007, who investigate a generalization of WTSDS. Let {1,...,n}
be a set of jobs which must be processed by the single machine. For each job
J € {1,...,n}, the due date is denoted by d;, the processing time by p;, and
its weight by w;. We denote the setup times between two jobs i and j by s;;.
A feasible schedule w = (j1,...,4r), with 0 < h < n, is a tuple of pairwise
different jobs ji,...,jn and represents the order in which the jobs are processed
on the machine. We denote the set of all feasible schedules by 2. The parameter
aj, € {0,1} indicates whether job j is contained in schedule w. Furthermore,
the weighted tardiness of a schedule w, which is formalized at the end of this
section in equation , is denoted by T,,. For each schedule w € € we introduce
a binary decision variable z, which equals 1 if w is operated and 0 otherwise.

Consequently, WTSDS can be formulated as a binary linear program:

min Z T, - x, (1)

we

st Y ajwe=1 Vi=1..n (2)
we
d oz, <1 (3)
weN
z, € {0,1} weN (4)

The objective function represents the total weighted tardiness. Con-
straints ensure that each job is processed exactly once, while constraint
guarantees that at most one schedule w € 2 is allowed on the machine.

The weighted tardiness T, of a schedule w = (j1,...,jx) € Q is defined as

h

T, = Zmax{C’jg —d;,, 0} wj, (5)
£=1

where C;, denotes the completion time of job j,. Then Cj, = soj, + pj,, where
s0; represents the initial setup time to process job j first, and C; = Cj, _, +

8§, _1j. +Dpj, forall 2 <r < h.



215

220

225

4. A Serial Branch-And-Price Algorithm

The model presented in the previous section can be solved by a b&p algo-
rithm. A generic description of this type of algorithm, first conceptualized by
Barnhart et al.| (1998)), is presented in Algorithm

Algorithm 1 B&p algorithm (Barnhart et al., [1998)
1: Solve linear relaxation of root node using column generation

2: Initialize set of active nodes

3: repeat

4:  Select an active node

5. Branch on selected node

6:  Solve new nodes’ relaxations using column generation
7. Update set of active nodes

8: until set of active nodes is empty

In the first step of the algorithm (line7 the linear relaxation of the root node
is solved by column generation, which is described in Section 4.2} Regarding
WTSDS instances, the root node of the b&b tree corresponds to the problem
modeled in 7, where constraints are relaxed to 0 < z, < 1 for all
w € Q (actually, x,, > 0 suffices due to constraint ) If the optimal solution
of the root node relaxation is integer, an optimal solution for WTSDS has been
found. Otherwise, the set of active nodes is initialized with the root node (line
).

After initializing the set of active nodes, lines are repeated until there
are no more active nodes left. First, one of the active nodes is selected to be
branched on. Branching creates two child nodes that are added to the set of
active nodes while the parent node is removed. The node selection (line
and the corresponding branching strategy (line |5)) are specified in Section

The next step is to solve the child nodes, again using column generation (line

230 @ Based on their optimal solutions, the set of active nodes of the b&b tree

is updated (line . In the course of the update, an active node is declared as

10



235

240

245

250

inactive in three cases. First, if the selected node’s relaxation is not feasible, or
second, if it has an integer optimal solution. The first case cannot happen for
our algorithm, since all columns are inherited from the parent node, but those
which become infeasible due to branching are heavily penalized in the objective
function. Regarding the third case, note that in a minimization problem, the
optimal solution of a node’s relaxation constitutes a lower bound on its optimal
integer solution. Therefore, third, a node is declared as inactive if the solution
value of the node’s relaxation is greater than the value of the best known integer
solution found so far in the tree, which is called pruning (or fathoming).

Once there are no active nodes left, the current best integer solution is also

the optimal solution for the WTSDS instance.

4.1. Node Selection and Branching Strategy

For node selection, we apply best-first search, where the active node with
the lowest lower bound is selected to be explored next. For branching on a
selected node, we follow an established approach, see for example (Chen and
Powell (1999) or |Akker et al.[(1999)), and introduce branching decision variables
Xij, which are defined as

Xij = Z Oijw - Ty < 1 (6)
we

for every i = 0,...,n and j = 1,...,n, where &;j, € {0,1} indicates whether
job 7 is processed immediately before job j in schedule w while (z,)weq is an
optimal solution of the selected node’s relaxation. Hereby, doj., is defined as 1
if 7 has no predecessor i in schedule w because j is the first job processed in
w, and 0 otherwise. In case z,, is binary for all schedules w € €2, X;; indicates
whether job i is processed immediately before job j or not. Accordingly, Xo;
indicates whether job j is processed first or not. Note that a;, € {0.1} in
and d;;, € {0,1} in (@ will be relaxed to aj,,dij, € N to significantly reduce
the state space of the dynamic programming procedure during the pricing phase

(Lopes and de Carvalho, [2007)).

11



255

260

265

270

The branching strategy we use is a modified version of most-fractional branch-
ing (abbreviated by MF). While in MF a variable with a value closest to 0.5 is
selected, we also use problem-specific information. Our strategy for selecting a

branching edge therefore consists of two steps. First, we determine a set A of

the ntl)

55— edges (i,7) with the lowest values for |X;; — 0.5]. In other words,

these are the edges with the 1% most fractional values of X;;. Second, from this
set, we select the edge (i*,7*) with the lowest average weighted position over
all feasible schedules w, calculated by
(¢*,7%) = arg min Z ,, - position,;,, (7)
(i,5)€A wed
as we want to branch on an edge which is scheduled preferably early in the

most promising schedules. Note that for position,;,, we only consider the first

w
occurrence of an edge (7,7) in a schedule w; a discussion of why there may be
more than one occurrence is provided in Section The variable X;« ;- is the
one that we branch on.

By branching on X;-;-, job ordering restrictions are set for the two child
nodes of the node that we branch on. In the first child node, X;-;« is set to
1. This implies that only schedules in which job ¢* is processed immediately
before j* are permitted in this node. In the second child node, X;- ;- is set to 0,
which means that only schedules with job ¢* not being processed directly before
j* are feasible for this node. For both child nodes, the set of allowed schedules
is modified according to the imposed restrictions. Therefore, each node of the
b&b tree represents a problem following the structure of model —, only
each with its node-specific set of schedules . In the following, we denote these
sets by Q C O, where each w € Q complies with every branching decision that

led to the selected node.

4.2. Column Generation Process

In this Section, we detail the column generation procedure used to solve the
linear relaxations of the b&b nodes (lines 1 and 6 in Algorithm. All algorithms

in this Section are adopted unchanged from [Lopes and de Carvalho| (2007). As

12



noted above, b&b node relaxations all have the same structure — only differing
25 by node-specific sets of feasible schedules Q — and can therefore be solved by a

single column generation procedure, which we present in Algorithm [2}

Algorithm 2 Column Generation Procedure
1: repeat

2:  Solve a restricted form of the original LP called the restricted LP consi-
dering only a (typically small) subset of variables
3:  Solve the pricing problem for the restricted LP:

3.1: Let (m,0) denote the optimal dual solution of the restricted LP, i.e.,
7; is the dual variable corresponding to job j in constraints and o

is the dual variable corresponding to constraint .

3.2: Determine if there is any variable, i.e., column, z,, in the original LP

that has a negative reduced cost
n
ry =Ty, — Z aj,T; — O (8)
j=1

4:  Add the variable z,, with the least reduced cost to the restricted LP if
the least reduced cost

r* =minr, = min{ T, — E ajuT; — O 9)

weN weN =1

is negative, i.e., r* <0
5. until there are no more variables with negative reduced cost, i.e., an optimal

solution is found

The linear relaxation of a b&b node is referred to as the original LP. By
considering only a small subset of variables, the original LP is initially scaled
down to a so-called restricted LP (line 2). To build the initial restricted LP

20 of a node in the first execution of line 2, an initial set of variables is required.
For the root node, this initial set can be generated by any WTSDS heuristic.
We use the solution heuristic suggested by |Lee et al.,| (1997)) for our algorithm.

For all other nodes, the initial set is inherited from the parent node. Note

13



285

290

295

300

305

310

that branching on an edge (i*.5*) creates two child nodes, in one of which the
job i* is prohibited from directly preceding job j*. The way the edge was
calculated in , this leads to at least one infeasible schedule w, where z,, > 0
holds in the solution of the parent node. To ensure a feasible linear program,
schedules which become infeasible must still be accessible in the next iteration
when the child node is processed. Otherwise, the dual variables needed in the
pricing problem (see line |3|in Algorithm [2)) cannot be computed. Hence, these
schedules must not be removed from the problem immediately, but are penalized
in the objective function by a sufficiently large value instead. Note that the
alternative of introducing an artificial schedule & containing all jobs also adds
the corresponding coefficients a5 to the model, which affects the computation
of the dual variables 7; and could ultimately have an impact on the column
generation process. Since infeasible columns are only added to model in one
more iteration, the size of the LP is not an issue.

After that, in line 3, the so-called pricing problem is solved, which corre-
sponds to identifying the variable (i.e., column) z,, with the least reduced cost.
The pricing problem is solved by dynamic programming, which is described later
in Algorithm [3} In line 4, the variable x,, with the least reduced cost (if nega-
tive) is added to the restricted LP. If there are no more columns with negative
reduced costs, the optimal solution obtained for the restricted LP also serves as
an optimal solution for the original LP and thus for the linear relaxation of the
processed b&b node.

To solve the pricing problem in line 3 of Algorithm [2| a dynamic program-
ming algorithm, which is described in Algorithm [3] is used. For this algorithm
to be viable, we have to allow for cyclic schedules, where jobs may be processed
more than once in the same schedule w € 2. This reduces the state space of the
dynamic programming algorithm for the pricing problem from exponential to
pseudo-polynomial size, since only the immediate predecessor of each job needs
to be remembered. This entails that aj,, and ;. for jobs ¢ and j in a schedule
w are no longer necessarily binary for linear relaxations of the WTSDS. Note

that this does not affect the optimal solution of an WTSDS instance, since the

14



315

320

325

330

Algorithm 3 Solving the Pricing Problem

1: Initialize f(t,j) = oo for each time ¢ < 0, and job j.
. Initialize f(0,0) := —o and f(¢,0) = oo for each time 0 # ¢ < T.
3: For each time 1 <t < T, and job j, set

N

f(t,j) = rg%)n f(t — Sij — pj,i) + max{t — dj7 O}UJJ — ;. (].0)
z J

4: The minimum reduced cost under the value T is defined as

T = t:rg)lj?}jj:rgi{}m f(t, 7). (11)

exactly-once processing of each job is ensured by constraints .

The set of all possible predecessors of job j, denoted by P;, differs for each
node as it depends on node-specific ordering restrictions imposed by the branch-
ing strategy. We define f(¢,j) for a time ¢ € Z and a job j as the minimum
reduced cost of a variable x,,, where job j is completed at time ¢ as the last
job being processed in schedule w. For each variable z,,, reduced costs f(t, )
for all jobs j at all times ¢ < T (with an upper bound T on the makespan of
an integer optimal solution of the current node) are calculated recursively to
identify the minimum reduced cost. Based on that, the corresponding schedule
with minimum reduced cost under the time limit T can be constructed reversely.

Furthermore, we implement two methods for enhancing the efficiency. On
the one hand, we start with a low value of T and successively adjust the time
limit until there are no more variables with negative reduced costs for two
consecutive values of T'. On the other hand, we significantly reduce the solution
space of the pricing problem by considering only so-called decreasing reduced
cost schedules under certain conditions and by preventing generated schedules
from containing sequences of the form (4, 7,4) (so called 2-cycles). For details,

see |[Lopes and de Carvalho| (2007)).

15



335

340

345

350

355

4.3. Primal Heuristic

After the column generation process terminates, the resulting solution of the
restricted problem (z,)weq is fractional for most nodes of the b&b tree. Addi-
tionally, since we allow cyclic schedules to be generated, there will be infeasible
schedules w in the solution of the LP; i.e., x, > 0 holds for such schedules.
To illustrate that this phenomenon, consider an instance with jobs 1,2, 3,4 and
suppose the schedules w; = (1,2,1,2) and wy = (3,4, 3,4) have been generated.
We can confirm that ., = x,, = % is feasible for the relaxation of the set
partitioning model 7. Although both of these schedules are infeasible for
the original problem, they still contain sequencing information because their
columns were generated based on their corresponding reduced costs. Thus, w;
and wy indicate that it’s favorable to have jobs 2 and 4 directly succeed jobs 1
and 3.

This sequence information has already been used in Section to select the
branching edge and stored in the variables X;; from Equation @ We construct
a feasible schedule by iteratively using the largest values of Xj;; i.e., we start
with the (artificial) job, set ¢ = 0, schedule

j= argmax X (12)
k unscheduled
next and continue this way with j as the next ¢ until all jobs are sequenced or
the maximum value of X;; is zero. In the latter case, there are jobs left which
have not been scheduled yet (as would be the case in the example above), and
the remaining jobs are appended to the sequence in ascending order of their
(weighted) due dates (EDD rule).

Since the X;; values have already been computed prior to the primal heuris-
tic, the above procedure is very efficient in terms of additional computation
time. Thus, we follow the idea of |Atakan et al| (2017) to extend the primal
heuristic by a simple local search procedure. We start by iteratively considering
all possible swaps of two jobs in our sequence until the best swap among them
does not lead to any improvement of the current schedule’s objective value (2-

opt). We then apply the same procedure with three jobs at a time (3-opt). This

16



360

365

370

375

380

extension is applied whenever the primal heuristic described above generates a
solution which is at most 10% worse than the upper bound found so far by the
b&b algorithm, or whenever an improving integer solution is found. With these
restrictions, preliminary experiments showed that only a few improvements are
made each time, and thus there is no need to set a tight iteration limit for the
two extensions in order to reduce computation time.

When abbreviations are used to refer to an algorithm, if the primal heuristic

is applied, it is indicated by the suffix “PH”.

5. Parallelization of the Serial Branch-And-Price Algorithm

In this section, we present our parallelization strategies for the serial b&p
algorithm presented in Section We use fine-grained intra-algorithm paral-
lelization, see Section [2] by solving the linear relaxations of individual b&p tree
nodes in parallel (lines 1 and 6 in Algorithm . This corresponds to paralleliz-
ing the column generation procedure (Algorithm . We identified the dynamic
programming (Algorithm as the most time-consuming part of the column
generation procedure, and therefore this part is chosen for parallelizationﬂ

The crucial part of dynamic programming is to calculate f(¢,7) for all time
slots 1 <t < T and for all jobs 0 < 57 <n. Fixing 1 <ty < T and using parallel
threads to calculate f(to, j) simultaneously for all jobs j proved to be inefficient
in our pretests. Therefore, we use each parallel thread for calculating all values
f(t,0), f(t,1),..., f(t,n) for several 1 < ¢ < T. However, there are data depen-
dencies between the values f(¢,j) and f(¢¥,;’) for different time slots ¢,¢ and
jobs 7, 7', as we can see from the definition in equation . Hence, parallel dy-

namic programming may be obstructed by waiting times. Therefore, reducing

2The other non-trivial part of the column generation procedure is the repeated solving
of restricted LPs. This can be easily parallelized by off-the-shelf solvers. However, we did
not observe any substantial benefit from using solver parallelization (probably because the
restricted LPs are too small for effective parallelization), and therefore we do not follow this

approach in our paper.

17



385

390

395

400

waiting times to a minimum constitutes the prime challenge in parallelizing our
dynamic programming algorithm.

Also, these dependencies lead to an instance-specific number of threads
where we can expect to observe little positive (or even negative) effects from
using additional threads. For an instance of WTSDS, let T = max; j Sij + pj
be the maximum amount of time that can elapse before another job can be
processed, and let us assume that we use at least T + 1 threads. In this sce-
nario, the thread processing the latest time slot is exclusively accessing time
slots which are all still being processed by other threads and therefore contain
missing entries. This phenomenon is evaluated and discussed in Section [6}

We introduce two versions of parallel dynamic programming, which we ex-
plain in below. Both versions are implemented using the OpenMP shared-
memory programming paradigm (OpenMP] 2015), which allows code to be
executed in parallel on multiple shared-memory threads using the statement
#pragma omp parallel for. We use this pragma to parallelize the outer loop
t=0,...,T of dynamic programming on multiple OpenMP threads.

The first version is shown in Algorithm [] and performs what we refer to
as strict parallel dynamic programming (s-pdp). Whenever the reduced cost
f(t — si; — pj,4) for any possible predecessor i of job j is not available at the
time when the calculations for job j at the time ¢ are trying to access the value,

s-pdp waits for it to become available before continuing, as shown in lines 5-7

of Algorithm

3Due to potential synchronization delays, simply waiting for the values to become available
is not economical. In OpenMP, a thread uses a cache where it temporarily holds data from
the shared memory. For efficiency reasons, consistency between this temporary cache and the
shared memory is not always given (Hoffmann and Lienhart, 2008} p.109). Therefore, in many
cases, the required values may be already calculated, but may just not yet be accessible due
to a lack of synchronization. Consequently, if a thread determines that a shared variable value
required for its calculations is not yet available, it first updates its cache to ensure that its
cached values are up-to-date. An update of the required data can be initiated by a so-called

flush directive, which synchronizes a thread’s cache and the shared memory.

18



Algorithm 4 Strict Parallel Dynamic Programming (s-pdp)

1: #pragma omp parallel for
2: fort=20,...,7 do
3: for j=1,...,N do

4: for i € P; do

5 while f(t — s;; — pj,1) is not available do

6: flush f(t — sij — pj, %)

7: read f(t — si; —pj, 1)

8: write f(t,7) = minsep, f(t = sij — p;, i) + max{t — d;,0}w; —m;

In our second version, dynamic programming is executed on parallel threads

w5 without verifying the values of shared variables. We refer to this as loose parallel
dynamic programming (l-pdp), which is described in Algorithm [5] In the case
that the reduced cost f(t — s;; — p;,%) is not yet available, calculations are still
continued using the default value for f(t—s;; —pj;,¢) set in line 1. Consequently,

the values for f(t,j) returned by l-pdp may be incorrect.

Algorithm 5 Loose Parallel Dynamic Programming (1-pdp)
1 f(t,j) =00 VO<t<TandV1<j<N

2: #pragma omp parallel for
3: fort=0,...,7 do
4: for j=1,...,N do

5: for i € P; do
6: read f(t — si; —pj, 1)
7: write f(t, ) = miniep, f(t — sij — pj, 1) + max{t — d;, 0}w; — 7;
410 Based on these two versions of parallel dynamic programming, we imple-

mented two exact parallel b&p algorithms, which are explained below:

e Strict Parallel Branch-and-Price (SPBP): Use s-pdp to solve the pricing
problem during column generation (line 3 of Algorithm .

e Hybrid Parallel Branch-and-Price (HPBP): Use I-dpd to solve the pricing

19



415

420

425

430

435

440

problem during column generation (line 3 of Algorithm . If more than
one thread is used and when there is no more column with negative reduced
cost according to [-dpd, permanently switch to s-pdp to solve the pricing

problem during column generation (line 3 of Algorithm .

Since s-pdp and [-pdp coincide when using a single OpenMP thread, both
SPBP and HPBP coincide with the serial b&p algorithm from Section [ when

executed on a single OpenMP thread (serial execution).

6. Computational Experiments

In this section, we specify the design of our experiments and discuss the
results and findings from their execution. First, Section describes the com-
putational environment in which the experiments were conducted and introduces
the benchmark instances used to evaluate our algorithms. Next, an initial set
of experiments to analyze our serial algorithm and its features is discussed in
Section [6.2] An important goal of this section is to identify the best perform-
ing combination of features in our algorithms, for which the computationally
expensive parallel execution will be evaluated next. The following Section [6.3.1
details the in-depth experiments conducted to evaluate the performance bene-
fits obtained from our two parallelization approaches. Finally, we discuss and
compare the scalability of our two parallelization strategies in [6.3.2] analyzing

which and how the different facets of our algorithm affect it.

6.1. HPC Environment and Benchmark Instances

The experiments are conducted on the Linux-based HPC cluster Noctua 2 of
the Paderborn Center for Parallel Computing (PC?) at Paderborn University.
We used a two-socket AMD Milan 7763 shared-memory system with 64 cores per
socket, a clock speed of 2.45 GHz per core, and a total of 256 GB main memory.
The upper bound on the running time (wall time) for a single compute task
executed on the cluster is 21 days (or 504 hours). The b&p algorithms are
coded in C++ and compiled by the g++ (v12.2.0) compiler with optimization flag

20



445

450

455

460

465

-03. To solve the restricted linear programs during column generation (line 2
of Algorithm , we use the Gurobi 10.0.3 API. The parallelization on shared
memory is based on OpenMP 4.5.

Three established benchmark sets from the literature are used to evaluate
the proposed parallel algorithms: First, the algorithms are tested on the 120
benchmark instances from [Cicirello| (2003) and [Cicirello| (2009)f} which are of

problem type 1 | STsq | > w;T;. Each instance consists of 60 jobs with pro-
cessing times p; and weights w; generated from the integer uniform distribution
between 50 and 150, and 0 and 10, respectively. The due dates d; and setup
times s;; are characterized by the three parameters 7, R and 7, which define
the tightness and the range of the due dates, as well as the size of the average

setup time with respect to the size of the average processing time.

(2003) and |Cicirello| (2009) created twelve combinations of parameter settings

and generated 10 instances for each combination. In the following, we refer to
the benchmark set of Cicirello| (2003)) and |Cicirello| (2009) as the Cicirello set.

. Second and third, we apply our algorithms to the benchmark sets from Rubin|
and Ragatz| (1995) and |Gagné et al] (2002) F[These benchmark instances are of

type 1 | STyq | > T;. Our algorithms are applicable to this kind of problem

by defining the weights for all jobs as one. [Rubin and Ragatz (1995))’s set

comprises 32 instances with 15, 25, 35 and 45 jobs while Gagné et al| (2002))’s

set comprises 32 instances with 55, 65, 75 and 85 jobs. In both sets, processing
times are normally distributed with a mean of 100, and setup times are uniformly
distributed between 0 and 20. Furthermore, the instances are characterized by
the parameters processing time variance, tardiness factor, and due dates range,
which build eight possible parameter settings. We refer to the benchmark sets
of Rubin and Ragatz| (1995)) and |Gagné et al. (2002)) as the Rubin set and the

Gagné set, respectively.

4https://www.cicirello.org/datasets/wtsds/| (last accessed 07/15/24)

Shttp://www.uqac.ca/portfolio/carolinegagne/recherche/ordonnancement_n_

travaux/| (last accessed 07/15/24)

21


https://www.cicirello.org/datasets/wtsds/
http://www.uqac.ca/portfolio/carolinegagne/recherche/ordonnancement_n_travaux/
http://www.uqac.ca/portfolio/carolinegagne/recherche/ordonnancement_n_travaux/

470

475

480

485

6.2. Serial Performance

In this section, we evaluate the performance of our serial algorithms, in par-
ticular, we investigate which benefits regarding running times are gained from
the modified branching strategy and the primal heuristic introduced in Sections
and For this series of experiments, we consider all four combinations
of the two features in the algorithm. The versions examined are summarized in

Table [II

Table 1: Tested versions of our serial algorithms

Acronym Primal Branching Strategy
Heuristic

SPBP-PH v modified

SPBP modified

MF-SPBP-PH v most-fractional

MF-SPBP most-fractional

SPBP Gt ict Parallel Branch-and-Price
PH Primal Heuristic

MF Most-Fractional Branching

We apply the algorithms to all instances from the three instance sets and set
a time limit of one hour. Table [2] shows the number of instances solved within
the time limit for SPBP-PH, SPBP. MF-SPBP-PH and MF-SPBP. Detailed
running times for all instances that were solved within one hour by at least one
version of the algorithm are given in From the Rubin set, both
versions using the modified branching strategy, SPBP-PH and SPBP, solved 29
instances, while MF-SPBP-PH and MF-SPBP, using most-fractional branching,
both solved 27 of the instances. For the Gagné set, all four versions of the
algorithm solved the same 14 instances within the time limit. As for the Cicirello
instances, the differences are more distinctive, with 53, 45, 27, and 25 instances
solved by the algorithms, respectively.

From these numbers, we can see that each of the two features individually

22



490

495

500

505

Table 2: Solved instances within the first hour for SPBP-PH, SPBP, MF-SPBP-PH and MF-
SPBP

#solved SPBP-PH SPBP MF-SPBP-PH MF-SPBP (total)
Rubin 29 29 27 27 (32)
Gagné 14 14 14 14 (32)
Cicirello 53 45 27 25 (120)
total 96 88 69 66 (184)

has a positive effect on the total number of instances solved within the time
limit, and thus both features enhance the performance of the serial algorithm.
In addition, the branching strategy affects the benefits gained from the primal
heuristic, with 8 more instances solved with the modified strategy compared
to two instance when most-fractional branching is applied. Since both features
are from the serial portion of our algorithm, all further experiments will be
performed with both the modified branching strategy and the primal heuristic.

Before proceeding to the parallelization of the two identified algorithms,
another parameter we analyzed is the number of columns per iteration (i.e., per
call of the dynamic programming algorithm) to be added to the restricted LP.
In Line 9 of Algorithm [2] only a single column with minimal reduced costs is
selected, whereas in fact often more than one negative reduced cost schedule may
be computed in a single call to the DP algorithm. Especially in the early stages
of the b&b procedure, this can cause the same column to be generated again in
a subsequent iteration if it was not added to the restricted LP because another
column was generated at the time with even lower reduced costs. Preliminary
tests with up to ten columns per iteration showed that (up to) four columns per
iteration resulted in a robust trade-off between saving calls to the DP algorithm
without inflating the size of the restricted LP. This number was used in all

experiments, including those discussed above.

23



510

515

520

525

530

535

6.3. Parallel Performance

The focus of this section is on the parallelization of our algorithms; i.e., we
study the impact of the number of threads used during column generation for
both the strict and hybrid approaches. In Section[6.3.1} we discuss the results of
the experiments in terms of solved instances, before analyzing our algorithms in
terms of speedup; i.e., the benefit gained from using additional computational
resources, in Section [6.3.2}

Due to the results discussed in Section [6.2] we consider the algorithm using
both the modified branching strategy and the primal heuristic, that is, algo-
rithms SPBP-PH and HPBP-PH. The former algorithm uses the strict strategy
in dynamic programming, where threads wait for missing values to become ac-
cessible before continuing with the next calculation. The latter uses the hybrid
strategy, where missing values are ignored for as long as possible before switch-
ing to the strict mode. Both algorithms are executed on all instances of the
three benchmark sets, using th € {1,2,4, 8, 16,32, 64,128} threads for up to 504
hours (21 days).

To compare our results with other exact methods, we use as reference data

the algorithm used of Tanaka and Araki| (2013). Another exact algorithm worth

mentioning is from a study by |[Sewell et al| (2012). The authors addressed the

problem without tardiness weights in the objective function. Using their Branch-
and-Bound-and-Remember (BB&R) algorithm, they were able to solve most
instances of the Rubin set and some of the Gagné set within 30 minutes. Since
they did not consider weights, the authors also did not apply their algorithm
to the Cicirello set, and the reported results were not superior to those of the
former study, we will only report results from the former study for comparison.
Since the theiraforementioned study is the only one in the literature to report
(provably) optimal solutions for most larger instances (up to 85 jobs), their
algorithm can be considered the state-of-the-art in exact solution methods for
WTSDS. Due to improvements in hardware performance since the release of
their study, we re-ran their program with the same settings as in their study,

but on the same hardware as we used to run our experiments (remark: we did

24



540

545

550

Table 3: Solved instances over time using 1 and 64 threads in HPBP-PH

Timelimit (h) (Tanaka™)
Set #instances #threads
1 12 48 504 (336 h)
1 29 29 31 32
Rubin 32 (32)
64 29 31 32 32
1 14 21 26 30
Gagné 32 (29)
64 21 2t 30 31
1 53 99 107 116
Cicirello 120 (118)
64 97 111 117 117

HPBP-PH Hyhrid Parallel Branch-and-Price with Primal Heuristic

not use the preprocessed instances Nos. 1-40 of the Cicirello set to run our
two algorithms). Although, we could not run the very long jobs (30 days and
longer), since all running times are down by up to more than 50% (with very
few exceptions), we use these results as reference in all following tables (in this

Section, marked with a “*”). For details on the re-enacted experiments and the

individual running times, see

6.3.1. Impact of Parallelization

The performance results for our two algorithms HPBP-PH and SPBP-PH in
terms of solved instances are presented in Tables [3]and [ respectively. For each
set of benchmark instances, the tables show the total number of instances in the
set and the number of instances that our algorithms were able to solve within one
hour, twelve hours, two days (48 hours) and 21 days (504 hours). These numbers
are shown for the algorithms running in serial mode (one thread) and using 64
parallel threads. The last column in both tables shows the number of instances

solved by the algorithm from Tanaka and Arakil (2013)) for comparisonﬂ We

SNote, that for instance 751 from the Gagné set and instance No. 7 from the Cicirello set,

HPBP-PH on a single thread took more than 14 days (336 hours) to prove optimality. The

25



555

560

565

570

Table 4: Solved instances over time using 1 and 64 threads in SPBP-PH

Timelimit (h) (Tanaka™)
Set #instances #threads
1 12 48 504 (336 h)
1 29 29 31 32
Rubin 32 (32)
64 29 31 32 32
1 14 21 26 30
Gagné 32 (29)
64 20 26 30 31
1 53 98 107 116
Cicirello 120 (118)
64 95 111 116 117

SPBP-PH Grict Parallel Branch-and-Price with Primal Heuristic

choose the 64-thread version as a representative because this version of the
algorithms achieves the best overall performance. The complete data for all
numbers of threads considered, as well as detailed running times for all instances
(including the state-of-the-art running times from Tanaka and Araki| (2013) for
comparison) are provided in Since the one-hour runs already
showed a massive performance degradation, runs with 128 threads were excluded
for all further experiments to reduce the computational quota (just the final
execution of our experiments alone consumed about 3 million CPU hours).

Using 64 threads, HPBP-PH solved all 32 instances of the Rubin set within
48 hours, all instances but problem 855 of the 32 instances in the Gagné set, and
117 of the 120 instances in the Cicirello set within 21 days to proven optimality.
Absolute results for SPBP-PH are comparable. For a closer comparison of
the two versions, another measure of performance is discussed in the following
section.

For the remaining three instances from the Cicrello set, Nos. 8, 18, and 24,

we used 128 GB of RAM which didn’t suffice. Since this limit was reached in

same is true for instance 751 from the Gagné set when SPBP-PH was run on a single thread.

26



575

580

585

590

595

600

less than a week of computing time, we didn’t attempt to run them again, even
with the available maximum of 256 GB.

We see that for both algorithms, as the number of threads increases, more
instances can be solved as well. While using 64 threads results in the same
number of solved instances as using 32 threads, running the algorithms with
128 threads actually shows a performance degradation with 10 fewer solved
instances from the Cicirello set within the first hour (87 compared to 97 using
64 threads). As mentioned in Section [5] this effect is to be expected, with the
values of setup plus processing time (s;; +p;) averaging at 148 for the Cicirello,
108 for the Gagné and 104 for the Rubin instances. The same effects are reflected
in the following speedup analysis.

For the three instance sets, [Tanaka and Araki (2013) solved all instances to
proven optimality within 34 days, except for the instances designated as 851 and
855 from the Gagné set. We were able to solve instance 851 to proven optimality
within seven hours using 64 threads (3.5 days in serial execution), showing that
the aforementioned authors had found the optimal solution with an objective
value of 360. While we can see that their algorithm still has considerably lower
overall running times (especially for the Cicirello instances), this shows how
difficult it is to compare two b&b algorithms that use different approaches to
compute bounds. As for instance 855, we were not able to prove optimality
within 21 days, but found a solution with an objective value of 256 (current
lower bound of 253.263), which was also found by |[Sewell et al.| (2012) and Xu
et al.| (2014b|) using a BB&R and hybrid evolutionary algorithm, respectively.

In comparison to [Tanaka and Arakil (2013) and our exact algorithms, |Chen
(2019) was able to find the optimal solution for 119 out of the 120 instances
from the Cicirello set within 1500 seconds using their Iterated Population Based
VND (IPBVND) heuristic. Within a time limit of 100 seconds, IPBVND found
all 32 optimal solutions from the Rubin set and 27 solutions from the Gagné
set. Using a relaxed time limit of 80.000 seconds, IPBVND also found three of
the remaining five best known solutions from the latter set. This shows that

heuristic methods can be effective in computing excellent solutions that exact

27



605

610

615

620

625

630

methods take much longer to obtain. On the other hand, heuristics rely on the
results from exact methods to perform such analyses, and in many cases include
randomized features. For example, this is also the case for IPBVND, where
the reported solution value is the best one obtained from multiple runs of the
algorithm. Although |Chenl(2019) evaluates the robustness of computed solution
values among multiple executions of the algorithm, the fact that a single run
can produce suboptimal solutions shows that exact methods are still necessary

and cannot be discarded.

6.3.2. Speedup Analysis

To compare our two parallelization strategies, in this section we analyze the
scalability of both approaches. We first introduce an established metric used
for this task and discuss the results, before examining the various aspects that
lead to the observed effects.

To evaluate the potential from parallelization for algorithms SPBP-PH and
HPBP-PH, we use established scalability metrics, namely the parallel speedup
and the parallel efficiency (Hager and Wellein, [2010, p.120ff). Parallel speedup
on R threads is defined as the ratio of the time to execute the parallel algorithm
on one thread to the time to execute the parallel algorithm on R threads, which
is called a relative speedup (Barr and Hickman, 1993)). Parallel efficiency on
R threads is defined as the parallel speedup on R threads normalized to the
number of threads R.

The median parallel speedups for the three benchmark sets are shown in
Figure [l The left subfigures (a), (¢) and (e) show the speedups of dynamic
programming (purely parallel part), while the right subfigures (b), (d) and (f)
show the overall speedups of the parallel b&p algorithms. The dotted lines
represent the so-called linear speedup; i.e., a speedup of R on R threads, which
corresponds to an efficiency of 100%. contains figures for the
corresponding parallel efficiencies, as well as the underlying median and average
parallel speedup data and their respective standard deviations, also visualized

as box plots.

28



Figure 1: Median parallel speedups

649 S HpeppH 64 e wpaprn
SPBP-PH SPBP-PH
32 4 linear / 32 4 linear
16 - / 16
[=1% (=%
S S
E / E
i 8 ; b
& / &
a4 :
| //
1 T T T T T T

threads

threads

(a) Parallel speedup DP (Cicirello) (b) Overall parallel speedup (Ci-
cirello)
641 e veappH 541 5 weappu
SPBP-PH SPBP-PH
32 4 linear 32 4 linear
16 | 16
o o
E E
T 8 T 8
v W |
& =3 N
4 44
24 24
1 : . ; : : 1 : : : : :
1 2 4 8 16 32 o4 1 2 4 8 16 32 64
threads threads

(c) Parallel speedup DP (Rubin)

(d) Overall parallel speedup (Rubin)

64

641 S reepp —= HPBP-PH
SPBP-PH SPBP-PH
32 linear 3 linear
16 16 4
o o
3 3 -
b 8 3 81 A
& &
4 4
24 24
14 , : : 14 , : . .
1 2 4 8 16 32 64 1 2 4 8 16 32 64
threads threads

(e) Parallel speedup DP (Gagné)

(f) Overall parallel speedup (Gagné)

29



635

640

645

650

655

660

As can be seen in Figures [l (a), (c) and (e), the median parallel speedup of
the dynamic programming part in HPBP-PH is almost linear for all benchmark
sets up to 16 threads. For 32 and 64 threads, the speedup still increases but
not nearly as linear as before. Although the speedup values for the dynamic
programming parallelization of SPBP-PH are similar to those of HPBP-PH,
they are consistently lower. This is due to the high number of calls to the
expensive flush directive and the time spent waiting for shared variable values
to become available. As shown in a corresponding table in for
our three benchmark sets, the waiting condition is entered on average 76, 182
and 107 times more often in SPBP-PH than in HPBP-PH, respectively. On the
other hand, if enough threads are used, too many values will still be missing
when accessed, and HPBP-PH will quickly switch to s-pdp mode when no more
negative reduced cost columns are found. For the three instance sets considered,
this is not yet the case for 128 threads, but the increase in running times for
almost all instances compared to 32 and 64 threads clearly indicates that this is
the limit for the scalability of our parallelization. The observed running times
suggest that peak performance is achieved in the range of 16-32 threads for most
instances from the Rubin and Gagné sets, and 32-64 threads for the Cicirello
set.

The overall parallel speedups shown in Figures [1| (b), (d) and (f) are signif-
icantly lower than the parallel speedups of the dynamic programming part in
both SPBP-PH and HPBP-PH. This is due to a non-vanishing serial part, which
comprises anything but dynamic programming, and in particular the solution
of restricted LPs by Gurobi during column generation (Algorithm. Note that
using Amdahl’s law to provide upper bounds on possible speedups based on the
fraction of the serial part (Amdahl, [1967) is not meaningful for our algorithms,
since we have observed that the shares in total running time of both the serial
and the parallel parts are not constant when different numbers of threads are

usedE]For the Gagné and Rubin instances, the curve of the overall speedup for

"The dynamic programming algorithm (i.e., the parallel part of the b&p algorithms) is

30



665

670

675

680

685

both versions becomes almost stagnant using 64 threads (see Figures|l| (d) and
(f)); i.e., using more computing resources not only brings no benefit, but may
even become detrimental.

Further, we observe that, for the Rubin and Gagné sets, the speedups vary
only slightly over all instances considered when 16 or fewer threads are used,
while for HPBP-PH, the numbers for the Cicirello set can vary significantly
when 16 or more threads are used. The difference in this case can also be
seen in a much higher average speedup compared to the median (however, this
indicates, that outliers are mostly positive, even though they are the product
of coincidentally generating good schedules in a few cases). With the exception
of the Cicirello set running HPBP-PH with 8 or more threads, the observed
standard deviations are consistently below 1.14 even for 16 threads. We see
a different picture for 32 and 64 threads. Here, we even observe a standard
deviation of up to 41.33 from the average (overall) speedup of 12.57 for HPBP-
PH applied to the Cicirello set, which is considerably high. This also indicates
that the scalability of the algorithm is highly dependent on the solved instance,
and using too many threads leads to unpredictable behavior (see Footnote @
These effects are noticeably stronger for HPBP-PH compared to SPBP-PH.
The detailed numbers can also be derived from Also, for SPBP-
PH, when the number of threads is held constant, the average and median
speedup values are similar for the Gagné and Cicirello instances, and slightly
lower for the Rubin set, which consists of small instances (45 jobs and fewer). For
instances with fewer jobs, threads guickly finish computing all entries from the
timeslots in the DP matrix to which they were initially assigned. Thus, during

dynamic programming, new timeslots are assigned to threads more frequently to

executed several times during the b&p algorithms. In addition, it cannot be guaranteed
that the same set of columns is generated by the b&p algorithms if different numbers of
threads are used. Therefore, the serial part of the b&p algorithms (i.e., everything except
dynamic programming) is also affected when, for example, more/less columns are generated

on a different number of threads.

31



690

695

700

705

710

process the corresponding entries, so the overhead of parallelization is greater,
which affects the measured speedup. Regarding HPBP-PH, similar values can
be observed across the three sets for up to 8 threads, but variation increases for
the Cicirello set. when 16 or more parallel threads are used.

In summary, the application of our two proposed parallel b&p algorithms
(HPBP-PH and SPBP-PH) yields substantial speedups that are robust over all
sets of benchmark instances up to an instance-specific number of threads. The
observed speedup values of the dynamic programming algorithms are similar
when the number of threads used is below the limit mentioned above, although
they are consistently larger for HPBP-PH compared to SPBP-PH. When us-
ing more threads than the aforementioned limit of about 32, the speedups for
SPBP-PH are significantly lower compared to HPBP-PH when applied to larger
instances, but the standard deviation also increases for the latter version of the
algorithm. Since these speedups (for dynamic programming) are reflected in
the observed overall speedups (and outliers are mostly on the positive side),

HPBP-PH is superior to SPBP-PH with respect to all benchmark sets tested.

7. Conclusion

In this study, we introduce, implement, and evaluate two exact parallel b&p
algorithms (refered to as HPBP-PH and SPBP-PH) for the 1 | ST,q | > w;T}
scheduling problem, developed from a serial b&p algorithm we adopted from
Lopes and de Carvalho| (2007) with a modified branching strategy and an added
primal heuristic. For both algorithms, we applied a fine-grained intra-algorithm
parallelization strategy by executing the dynamic programming part, which is
used to solve the pricing problem during column generation, on up to 128 paral-
lel threads. Before conducting extensive experiments regarding the parallelized
part of our algorithms, we verified that the branching strategy and the primal
heuristic, both designed to improve the performance of the serial part of the
algorithm, allowed us to solve additional instances even within tight time lim-

its. Our computational experiments on established benchmark instances from

32



715

720

725

730

735

740

Cicirello| (2003), (Gagné et al.| (2002)) and Rubin and Ragatz (1995) allowed us to
identify an instance-specific limit of threads for which both parallel algorithms
achieve substantial speedups with very little variation between instances within
the aforementioned benchmark sets. For experiments where this limit is not
exceeded, we observe an almost linear speedup for the dynamic programming
algorithm in both versions of the algorithm, while the corresponding speedup in
SPBP-PH is slightly lower. Also, speedups for SPBP-PH degraded noticeably
faster when the number of threads used exceeded the limit. This results in a
higher parallelization potential for HPBP-PH compared to SPBP-PH, and thus
the former outperforms the latter on all of our benchmark sets tested.

There are limitations to our approach that can be addressed in future work.
First, the fine-grained intra-algorithm strategy of our parallelization efforts al-
lows parallelizing the processing of individual nodes of the b&p tree, but still re-
quires sequential processing of the nodes. Parallelizing this processing through
coarse-grained intra-algorithm parallelization would allow exploiting this ad-
ditional speedup potential. When both parallelization strategies are applied
jointly, a hybrid parallelization strategy emerges. One possible design of such
a hybrid approach is to solve different nodes of the b&p tree simultaneously
on different processes, while multiple threads on each process are used to solve
the respective b&p node in parallel (e.g., by our parallel dynamic programming
algorithms). Second, the observed lower bounds develop more slowly compared
to the upper bounds during the execution of the algorithms for most instances.
Some acceleration techniques could be implemented and tested, such as dom-
inance rules. While we discarded this idea due to the massive impact on the
running time for each call to the dynamic programming algorithm, there may
be a strategy that is worth the overhead. Third, the primal heuristic used in our
algorithm accounts for less than 0.1% of the total running time. Using a more
sophisticated procedure could lead to a higher frequency of finding improving

upper bounds, even when a tight time limit is invoked.

33



745

750

755

760

765

Acknowledgements

The authors gratefully acknowledge the funding of this project by computing
time provided by the Paderborn Center for Parallel Computing (PC2). We also
thank the authors of [Tanaka and Araki| (2013)) for providing us with information

and their algorithm.

References

Adel, D., Bendjoudi, A., El Baz, D., Abdelhakim, A.Z., 2016. GPU-based two
level parallel B&B for the blocking job shop scheduling problem. Applied Soft
Computing , 747-755.

AitZai, A., Boudhar, M., 2013. Parallel branch-and-bound and parallel pso algo-
rithms for job shop scheduling problem with blocking. International Journal

of Operational Research 16, 14-37.

Akker, JM.V.D., Hoogeveen, J.A., Velde, S.L.V.D., 1999. Parallel ma-
chine scheduling by column generation. Operations Research 47, 862—
872.  URL: http://dx.doi.org/10.1287/opre.47.6.862, doij10.1287/
opre.47.6.862.

Akyol, D.E., Bayhan, G.M., 2008. Multi-machine earliness and tardiness
scheduling problem: an interconnected neural network approach. The
International Journal of Advanced Manufacturing Technology 37, 576—
588. URL: https://doi.org/10.1007/s00170-007-0993-0, doij10.1007/
s00170-007-0993-0.

Aldasoro, U., Escudero, L.F., Merino, M., Monge, J.F., Perez, G., 2015. On
parallelization of a stochastic dynamic programming algorithm for solving
large-scale mixed 0-1 problems under uncertainty. Top 23, 703-742. doi:10.
1007/s11750-014-0359-3.

34


http://dx.doi.org/10.1287/opre.47.6.862
http://dx.doi.org/10.1287/opre.47.6.862
http://dx.doi.org/10.1287/opre.47.6.862
http://dx.doi.org/10.1287/opre.47.6.862
https://doi.org/10.1007/s00170-007-0993-0
http://dx.doi.org/10.1007/s00170-007-0993-0
http://dx.doi.org/10.1007/s00170-007-0993-0
http://dx.doi.org/10.1007/s00170-007-0993-0
http://dx.doi.org/10.1007/s11750-014-0359-3
http://dx.doi.org/10.1007/s11750-014-0359-3
http://dx.doi.org/10.1007/s11750-014-0359-3

770

775

780

785

790

795

Aldasoro, U., Escudero, L.F., Merino, M., Perez, G., 2017. A parallel branch-
and-fix coordination based matheuristic algorithm for solving large sized mul-
tistage stochastic mixed 0-1 problems. European Journal of Operational Re-

search 258, 590-606. doii10.1016/j.ejor.2016.08.072.

Allahverdi, A., 2015. The third comprehensive survey on scheduling prob-
lems with setup times/costs. European Journal of Operational Research 246,
345 — 378. URL: http://www.sciencedirect.com/science/article/pii/

S0377221715002763), doi:https://doi.org/10.1016/j.ejor.2015.04.004.

Allahverdi, A., Gupta, J.N., Aldowaisan, T., 1999. A review
of scheduling research involving setup considerations. Omega 27,
219 - 239. URL: http://www.sciencedirect.com/science/article/
pii/S0305048398000425, doithttps://doi.org/10.1016/50305-0483(98)
00042-5.

Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y., 2008. A sur-
vey of scheduling problems with setup times or costs. European
Journal of Operational Research 187, 985 — 1032. URL: http:
//www.sciencedirect.com/science/article/pii/S0377221706008174,
doichttps://doi.org/10.1016/j.ejor.2006.06.060.

Amdahl, G.M., 1967. Validity of the single processor approach to achieving
large scale computing capabilities, in: Proceedings of the April 18-20, 1967,

spring joint computer conference, pp. 483-485.

Anghinolfi, D., Paolucci, M., 2008. A new ant colony optimization approach for
the single machine total weighted tardiness scheduling problem. International

Journal of Operations Research 5, 44-60.

Atakan, S., Biilbiil, K., Noyan, N., 2017. Minimizing value-at-risk in single-
machine scheduling. Annals of Operations Research 248, 25-73.

Balakrishnan, N., Kanet, J.J., Sridharan, V., 1999. Early/tardy schedul-

ing with sequence dependent setups on wuniform parallel machines.

35


http://dx.doi.org/10.1016/j.ejor.2016.08.072
http://www.sciencedirect.com/science/article/pii/S0377221715002763
http://www.sciencedirect.com/science/article/pii/S0377221715002763
http://www.sciencedirect.com/science/article/pii/S0377221715002763
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2015.04.004
http://www.sciencedirect.com/science/article/pii/S0305048398000425
http://www.sciencedirect.com/science/article/pii/S0305048398000425
http://www.sciencedirect.com/science/article/pii/S0305048398000425
http://dx.doi.org/https://doi.org/10.1016/S0305-0483(98)00042-5
http://dx.doi.org/https://doi.org/10.1016/S0305-0483(98)00042-5
http://dx.doi.org/https://doi.org/10.1016/S0305-0483(98)00042-5
http://www.sciencedirect.com/science/article/pii/S0377221706008174
http://www.sciencedirect.com/science/article/pii/S0377221706008174
http://www.sciencedirect.com/science/article/pii/S0377221706008174
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2006.06.060

800

805

810

815

820

Computers & Operations Research 26, 127 — 141. URL: http:
//www.sciencedirect.com/science/article/pii/S0305054898000513,
doithttps://doi.org/10.1016/350305-0548(98) 00051-3|

Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance,
P.H., 1998. Branch-and-price: Column generation for solving huge integer
programs. Oper. Res. 46, 316-329. URL: http://dx.doi.org/10.1287/
opre.46.3.316, doi:10.1287/opre.46.3.316.

Barr, R.S., Hickman, B.L., 1993. Feature article - reporting computational
experiments with parallel algorithms: Issues, measures, and experts’ opinions.

INFORMS Journal on Computing 5, 2—-18.

Boschetti, M.A., Maniezzo, V., Strappaveccia, F., 2016. Using GPU comput-
ing for solving the two-dimensional guillotine cutting problem. INFORMS
Journal on Computing 28, 540-552. doii10.1287/ijoc.2016.0693.

Boyer, V., El Baz, D., Elkihel, M., 2012. Solving knapsack problems on GPU.
Computers & Operations Research 39, 42-47.

Bozejko, W., 2010. Parallel path relinking method for the single machine to-
tal weighted tardiness problem with sequence-dependent setups. Journal of
Intelligent Manufacturing 21, 777-785. URL: https://doi.org/10.1007/
5$10845-009-0253-2, doi;10.1007/s10845-009-0253-2.

Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., Shao, Y., 2014.
Using diversification, communication and parallelism to solve mixed-integer
linear programs. Operations Research Letters 42, 186-189. doi:10.1016/j.
orl.2013.12.012.

Chakroun, I., Melab, N., 2015. Towards a heterogeneous and adaptive parallel
branch-and-bound algorithm. Journal of Computer and System Sciences 81,

72-84.

36


http://www.sciencedirect.com/science/article/pii/S0305054898000513
http://www.sciencedirect.com/science/article/pii/S0305054898000513
http://www.sciencedirect.com/science/article/pii/S0305054898000513
http://dx.doi.org/https://doi.org/10.1016/S0305-0548(98)00051-3
http://dx.doi.org/10.1287/opre.46.3.316
http://dx.doi.org/10.1287/opre.46.3.316
http://dx.doi.org/10.1287/opre.46.3.316
http://dx.doi.org/10.1287/opre.46.3.316
http://dx.doi.org/10.1287/ijoc.2016.0693
https://doi.org/10.1007/s10845-009-0253-2
https://doi.org/10.1007/s10845-009-0253-2
https://doi.org/10.1007/s10845-009-0253-2
http://dx.doi.org/10.1007/s10845-009-0253-2
http://dx.doi.org/10.1016/j.orl.2013.12.012
http://dx.doi.org/10.1016/j.orl.2013.12.012
http://dx.doi.org/10.1016/j.orl.2013.12.012

825

830

835

840

845

850

Chakroun, I., Melab, N., Mezmaz, M., Tuyttens, D., 2013a. Combining multi-
core and gpu computing for solving combinatorial optimization problems.

Journal of Parallel and Distributed Computing 73, 1563-1577.

Chakroun, 1., Mezmaz, M., Melab, N., Bendjoudi, A., 2013b. Reducing thread
divergence in a GPU-accelerated branch-and-bound algorithm. Concurrency
and Computation-practice & Experience 25, 1121-1136. doii10.1002/cpe.
2931.

Chen, C.L., 2019. ITterated population-based vnd algorithms for single-machine
scheduling with sequence-dependent setup times. Soft Computing 23, 3627—
3641.

Chen, Z.L., Powell, W.B., 1999. Solving parallel machine scheduling problems
by column generation. INFORMS Journal on Computing 11, 78-94. URL:
http://dx.doi.org/10.1287/ijoc.11.1.78, d0ii10.1287/ijoc.11.1.78.

Christou, I.T., Vassilaras, S., 2013. A parallel hybrid greedy branch and bound
scheme for the maximum distance-2 matching problem. Computers & Oper-

ations Research 40, 2387-2397. do0ij10.1016/j.cor.2013.04.009.

Cicirello, V.A., 2003. Weighted Tardiness Scheduling with Sequence-Dependent
Setups: A Benchmark Library. Technical Report. Intelligent Coordina-
tion and Logistics Laboratory, Robotics Institute, Carnegie Mellon Univer-
sity. Pittsburgh, PA. URL: https://www.cicirello.org/publications/

wtsbenchmarks.pdf.

Cicirello, V.A., 2009. Weighted tardiness scheduling with sequence-
dependent setups: A benchmark problem for soft computing, in:
Applications of Soft Computing: Updating the State of the Art,
Springer. pp. 189-198. URL: https://www.cicirello.org/publications/
ApplicationsOfSoftComputing.pdf.

Crainic, T.G., Toulouse, M., 2003. Parallel strategies for meta-heuristics, in:

Handbook of metaheuristics. Springer, Boston, MA, pp. 475-513.

37


http://dx.doi.org/10.1002/cpe.2931
http://dx.doi.org/10.1002/cpe.2931
http://dx.doi.org/10.1002/cpe.2931
http://dx.doi.org/10.1287/ijoc.11.1.78
http://dx.doi.org/10.1287/ijoc.11.1.78
http://dx.doi.org/10.1016/j.cor.2013.04.009
https://www.cicirello.org/publications/wtsbenchmarks.pdf
https://www.cicirello.org/publications/wtsbenchmarks.pdf
https://www.cicirello.org/publications/wtsbenchmarks.pdf
https://www.cicirello.org/publications/ApplicationsOfSoftComputing.pdf
https://www.cicirello.org/publications/ApplicationsOfSoftComputing.pdf
https://www.cicirello.org/publications/ApplicationsOfSoftComputing.pdf

855

860

865

870

875

Dias, B.H., Tomim, M.A., Marques Marcato, A.L., Ramos, T.P., Brandi, R.B.S.,
Da Silva Junior, I.C., Passos Filho, J.A., 2013. Parallel computing applied
to the stochastic dynamic programming for long term operation planning of
hydrothermal power systems. European Journal of Operational Research 229,

212-222. doii10.1016/j.ejor.2013.02.024.

Gagné, C., Price, W.L., Gravel, M., 2002. Comparing an aco algorithm with
other heuristics for the single machine scheduling problem with sequence-
dependent setup times. Journal of the Operational Research Society 53, 895—
906. URL: https://doi.org/10.1057/palgrave.jors.2601390, doij10.
1057 /palgrave. jors.2601390.

Galea, F., Le Cun, B., 2011. A parallel exact solver for the three-index quadratic
assignment problem, in: Proceedings of the 2011 IEEE International Sympo-
sium on Parallel and Distributed Processing Workshops and PhD Forum, pp.
1940-1949.

Gendron, B., Crainic, T.G., 1994. Parallel branch-and-branch algorithms: sur-
vey and synthesis. Operations Research 42, 1042-1066.

Gmys, J., Mezmaz, M., Melab, N., Tuyttens, D., 2016. A gpu-based branch-
and-bound algorithm using integer—vector-matrix data structure. Parallel

Computing 59, 119-139.

Gmys, J., Mezmaz, M., Melab, N., Tuyttens, D., 2017. Ivm-based paral-
lel branch-and-bound using hierarchical work stealing on multi-gpu systems.

Concurrency and Computation: Practice and Experience 29, e4019.

Graham, R., Lawler, E., Lenstra, J., Kan, A., 1979. Optimization
and approximation in deterministic sequencing and scheduling: a sur-
vey, in: Hammer, P., Johnson, E., Korte, B. (Eds.), Discrete Opti-
mization II. Elsevier. volume 5 of Annals of Discrete Mathematics, pp.
287 — 326. URL: http://www.sciencedirect.com/science/article/
pii/S016750600870356X, doithttps://doi.org/10.1016/S0167-5060(08)
70356-X.

38


http://dx.doi.org/10.1016/j.ejor.2013.02.024
https://doi.org/10.1057/palgrave.jors.2601390
http://dx.doi.org/10.1057/palgrave.jors.2601390
http://dx.doi.org/10.1057/palgrave.jors.2601390
http://dx.doi.org/10.1057/palgrave.jors.2601390
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X

880

885

890

895

900

905

Guo, Q., Tang, L., 2015. An improved scatter search algorithm for
the single machine total weighted tardiness scheduling problem with
sequence-dependent setup times. Applied Soft Computing 29, 184
— 195.  URL: http://www.sciencedirect.com/science/article/pii/
S1568494614006747), doithttps://doi.org/10.1016/j.asoc.2014.12.030.

Hager, G., Wellein, G., 2010. Introduction to High Performance Computing for
Scientists and Engineers. CRC Press.

Hoffmann, S., Lienhart, R., 2008. OpenMP - Eine Einfiihrung in die parallele
Programmierung mit C/C++. Springer-Verlag Berlin Heidelberg. doi:10.
1007/978-3-540-73123-8|

Ismail, M.M., Abd El-Raoof, O., Abd El-Wahed, W.F., 2014. A parallel branch
and bound algorithm for solving large scale integer programming problems.
Applied Mathematics & Information Sciences 8, 1691-1698. doif10.12785/
amis/080425.

Kramer, A., Subramanian, A., 2019. A unified heuristic and an annotated

bibliography for a large class of earliness—tardiness scheduling problems.

Kumar, S., Misra, A., Tomar, R.S., 2011. A modified parallel approach to sin-
gle source shortest path problem for massively dense graphs using CUDA, in:
Proceedings of the 2nd International Conference on Computer and Commu-

nication Technology (ICCCT), pp. 635-639.

Lawler, E.L., 1977. A “pseudopolynomial” algorithm for sequenc-
ing jobs to minimize total tardiness, in: Hammer, P.; Johnson,
E., Korte, B., Nemhauser, G. (Eds.), Studies in Integer Program-
ming. Elsevier. volume 1 of Annals of Discrete Mathematics, pp.
331 — 342. URL: http://www.sciencedirect.com/science/article/
pii/S0167506008707428, doihttps://doi.org/10.1016/S0167-5060(08)
70742-8.

39


http://www.sciencedirect.com/science/article/pii/S1568494614006747
http://www.sciencedirect.com/science/article/pii/S1568494614006747
http://www.sciencedirect.com/science/article/pii/S1568494614006747
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2014.12.030
http://dx.doi.org/10.1007/978-3-540-73123-8
http://dx.doi.org/10.1007/978-3-540-73123-8
http://dx.doi.org/10.1007/978-3-540-73123-8
http://dx.doi.org/10.12785/amis/080425
http://dx.doi.org/10.12785/amis/080425
http://dx.doi.org/10.12785/amis/080425
http://www.sciencedirect.com/science/article/pii/S0167506008707428
http://www.sciencedirect.com/science/article/pii/S0167506008707428
http://www.sciencedirect.com/science/article/pii/S0167506008707428
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70742-8
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70742-8
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70742-8

910

915

920

925

930

Lee, Y.H., Bhaskaran, K., Pinedo, M., 1997. A heuristic to minimize the total
weighted tardiness with sequence-dependent setups. IIE Transactions 29, 45—
52.

Liao, C.J., Juan, H.C., 2007. An ant colony optimization for single-machine tar-
diness scheduling with sequence-dependent setups. Computers & Operations
Research 34, 1899 — 1909. URL: http://www.sciencedirect.com/science/
article/pii/S0305054805002467, doichttps://doi.org/10.1016/j.cor.
2005.07.020.

Lin, Y.K., Hsieh, F.Y., 2014. Unrelated parallel machine scheduling with setup
times and ready times. International Journal of Production Research 52,

1200-1214.

Lopes, M., Alvelos, F., Lopes, H., 2014. Improving branch-and-price for paral-
lel machine scheduling, in: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre,
C., Rocha, J.G., Falcdo, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (Eds.),
Computational Science and Its Applications — ICCSA 2014, Springer Inter-
national Publishing, Cham. pp. 290-300.

Lopes, M.J.P., de Carvalho, J.V., 2007. A branch-and-price algo-
rithm for scheduling parallel machines with sequence dependent setup
times. European Journal of Operational Research 176, 1508 -
1527. URL: http://www.sciencedirect.com/science/article/pii/
S0377221705008738,, doi:https://doi.org/10.1016/j.ejor.2005.11.001.

Maleki, S., Musuvathi, M., Mytkowicz, T., 2016. Efficient parallelization using
rank convergence in dynamic programming algorithms. Communications of

the ACM 59, 85-92. doi:10.1145/2983553.

Mezmaz, M., Leroy, R., Melab, N., Tuyttens, D., 2014. A multi-core parallel
branch-and-bound algorithm using factorial number system, in: Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, IEEE. pp.
1203-1212.

40


http://www.sciencedirect.com/science/article/pii/S0305054805002467
http://www.sciencedirect.com/science/article/pii/S0305054805002467
http://www.sciencedirect.com/science/article/pii/S0305054805002467
http://dx.doi.org/https://doi.org/10.1016/j.cor.2005.07.020
http://dx.doi.org/https://doi.org/10.1016/j.cor.2005.07.020
http://dx.doi.org/https://doi.org/10.1016/j.cor.2005.07.020
http://www.sciencedirect.com/science/article/pii/S0377221705008738
http://www.sciencedirect.com/science/article/pii/S0377221705008738
http://www.sciencedirect.com/science/article/pii/S0377221705008738
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.11.001
http://dx.doi.org/10.1145/2983553

935

940

945

950

955

960

Nogueira, T.H., Carvalho, C.R.V.d., Ravetti, M.G., Souza, M.C.d., 2019. Anal-
ysis of mixed integer programming formulations for single machine scheduling
problems with sequence dependent setup times and release dates. Pesquisa

Operacional 39, 109-154.

Nogueira, T.H., Ramalhinho, H.L., de Carvalho, C.R., Gomez Ravetti, M.,
2022. A hybrid vns-lagrangean heuristic framework applied on single machine
scheduling problem with sequence-dependent setup times, release dates and

due dates. Optimization Letters , 1-20.

OpenMP, 2015. Openmp application program interface version 4.5. retrieved
september 12, 2017. URL: http://www.openmp.org/wp-content/uploads/
openmp-4.5.pdf.

Ozden, S.G., Smith, A.E., Gue, K.R., 2017. Solving large batches of traveling
salesman problems with parallel and distributed computing. Computers &

Operations Research 85, 87-96. doi:10.1016/j.cor.2017.04.001.

Rashid, H., Novoa, C., Qasem, A., 2010. An evaluation of parallel knapsack
algorithms on multicore architectures., in: Proceedings of the 2010 Interna-

tional Conference on Scientific Computing, pp. 230-235.

Rauchecker, G., Schryen, G., 2015. High-Performance Computing for Schedul-
ing Decision Support: A Parallel Depth-First Search Heuristic, in: Proceed-
ings of the 26th Australasian Conference on Information Systems (Adelaide,

Australia), p. 1-13.

Rauchecker, G., Schryen, G., 2018. Using high performance computing for
unrelated parallel machine scheduling with sequence-dependent setup times:
Development and computational evaluation of a parallel branch-and-price al-
gorithm. Computers & Operations Research (published online) doithttps:
//doi.org/10.1016/j.cor.2018.12.020.

Rubin, P.A., Ragatz, G.L., 1995. Scheduling in a sequence depen-

dent setup environment with genetic search. Computers & Oper-

41


http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://dx.doi.org/10.1016/j.cor.2017.04.001
http://dx.doi.org/https://doi.org/10.1016/j.cor.2018.12.020
http://dx.doi.org/https://doi.org/10.1016/j.cor.2018.12.020
http://dx.doi.org/https://doi.org/10.1016/j.cor.2018.12.020

965

970

975

980

985

ations Research 22, 85 - 99. URL: http://www.sciencedirect.
com/science/article/pii/0305054893E0021K, doichttps://doi.org/10.
1016/0305-0548 (93)E0021-K.

Schryen, G., 2020. Parallel computational optimization in operations research:
A new integrative framework, literature review and research directions. Eu-

ropean Journal of Operational Research 287, 1-18.

Sewell, E.C., Sauppe, J.J., Morrison, D.R., Jacobson, S.H., Kao, G.K., 2012.
A bb&r algorithm for minimizing total tardiness on a single machine with
sequence dependent setup times. Journal of Global Optimization 54, 791—

812.

Stivala, A., Stuckey, P.J., Garcia De La Banda, M., Hermenegildo, M., Wirth,
A., 2010. Lock-free parallel dynamic programming. Journal of Parallel and

Distributed Computing 70, 839-848. do0i:10.1016/j.jpdc.2010.01.004.

Subramanian, A., Battarra, M., Potts, C.N., 2014. An iterated local search
heuristic for the single machine total weighted tardiness scheduling problem
with sequence-dependent setup times. International Journal of Production

Research 52, 2729-2742.

Subramanian, A., Farias, K., 2017. Efficient local search limitation strategy for
single machine total weighted tardiness scheduling with sequence-dependent
setup times. Computers & Operations Research 79, 190 — 206. URL: http:
//www.sciencedirect.com/science/article/pii/S0305054816302568.

Tan, G., Sun, N., Gao, G.R., 2009. Improving performance of dynamic program-
ming via parallelism and locality on multicore architectures. IEEE Transac-
tions on Parallel and Distributed Systems 20, 261-274. doi:10.1109/TPDS.
2008.78.

Tanaka, S., Araki, M., 2013. An exact algorithm for the single-machine
total weighted tardiness problem with sequence-dependent setup times.

Computers & Operations Research 40, 344 - 352. URL: http:

42


http://www.sciencedirect.com/science/article/pii/0305054893E0021K
http://www.sciencedirect.com/science/article/pii/0305054893E0021K
http://www.sciencedirect.com/science/article/pii/0305054893E0021K
http://dx.doi.org/https://doi.org/10.1016/0305-0548(93)E0021-K
http://dx.doi.org/https://doi.org/10.1016/0305-0548(93)E0021-K
http://dx.doi.org/https://doi.org/10.1016/0305-0548(93)E0021-K
http://dx.doi.org/10.1016/j.jpdc.2010.01.004
http://www.sciencedirect.com/science/article/pii/S0305054816302568
http://www.sciencedirect.com/science/article/pii/S0305054816302568
http://www.sciencedirect.com/science/article/pii/S0305054816302568
http://dx.doi.org/10.1109/TPDS.2008.78
http://dx.doi.org/10.1109/TPDS.2008.78
http://dx.doi.org/10.1109/TPDS.2008.78
http://www.sciencedirect.com/science/article/pii/S0305054812001499
http://www.sciencedirect.com/science/article/pii/S0305054812001499
http://www.sciencedirect.com/science/article/pii/S0305054812001499

995

1000

1005

1010

1015

//www.sciencedirect.com/science/article/pii/S0305054812001499,
doithttps://doi.org/10.1016/j.cor.2012.07.004.

Tasgetiren, M.F., Pan, Q.K., Liang, Y.C., 2009. A discrete differential evolu-
tion algorithm for the single machine total weighted tardiness problem with
sequence dependent setup times. Computers & Operations Research 36, 1900
— 1915. URL: http://www.sciencedirect.com/science/article/pii/
50305054808001135) doi:https://doi.org/10.1016/j.cor.2008.06.007.

Tavakkoli-Moghaddam, R., Aramon-Bajestani, M., 2009. A novel b and b al-
gorithm for a unrelated parallel machine scheduling problem to minimize the

total weighted tardiness. International Journal of Engineering 22(3), 269-286.

Tran, Q.N., 2010. Designing efficient many-core parallel algorithms for all-
pairs shortest-paths using CUDA, in: Proceedings of the 7th International
Conference on Information Technology: New Generations (ITNG), pp. 7-12.

Vu, T.T., Derbel, B., 2016. Parallel branch-and-bound in multi-core multi-
cpu multi-gpu heterogeneous environments. Future Generation Computer

Systems 56, 95-109.

Wodecki, M., 2008. A branch-and-bound parallel algorithm for single-machine
total weighted tardiness problem. The International Journal of Advanced

Manufacturing Technology 37, 996-1004.

Xu, H., Li, Z., Cheng, T., 2014a. Iterated local search for single-
machine scheduling with sequence-dependent setup times to minimize to-
tal weighted tardiness. Journal of Scheduling 17, 271-287. doi:10.1007/
s10951-013-0351-z.

Xu, H., Lii, Z., Yin, A., Shen, L., Buscher, U., 2014b. A study of hy-
brid evolutionary algorithms for single machine scheduling problem with
sequence-dependent setup times. Computers & Operations Research 50,
47 — 60. URL: http://www.sciencedirect.com/science/article/pii/
50305054814001002,, doichttps://doi.org/10.1016/j.cor.2014.04.009.

43


http://www.sciencedirect.com/science/article/pii/S0305054812001499
http://www.sciencedirect.com/science/article/pii/S0305054812001499
http://dx.doi.org/https://doi.org/10.1016/j.cor.2012.07.004
http://www.sciencedirect.com/science/article/pii/S0305054808001135
http://www.sciencedirect.com/science/article/pii/S0305054808001135
http://www.sciencedirect.com/science/article/pii/S0305054808001135
http://dx.doi.org/https://doi.org/10.1016/j.cor.2008.06.007
http://dx.doi.org/10.1007/s10951-013-0351-z
http://dx.doi.org/10.1007/s10951-013-0351-z
http://dx.doi.org/10.1007/s10951-013-0351-z
http://www.sciencedirect.com/science/article/pii/S0305054814001002
http://www.sciencedirect.com/science/article/pii/S0305054814001002
http://www.sciencedirect.com/science/article/pii/S0305054814001002
http://dx.doi.org/https://doi.org/10.1016/j.cor.2014.04.009

Zhu, Z., Heady, R.B., 2000. Minimizing the sum of earliness/tardiness
1020 in multi-machine scheduling: a mixed integer programming approach.
Computers & Industrial Engineering 38, 297 — 305. URL: http:
//www.sciencedirect.com/science/article/pii/S0360835200000486,
doithttps://doi.org/10.1016/50360-8352(00) 00048-6.

44


http://www.sciencedirect.com/science/article/pii/S0360835200000486
http://www.sciencedirect.com/science/article/pii/S0360835200000486
http://www.sciencedirect.com/science/article/pii/S0360835200000486
http://dx.doi.org/https://doi.org/10.1016/S0360-8352(00)00048-6

1025

1030

1035

1040

1045

1050

Appendix A. Detailed Running times

This section of the appendix provides detailed results of the experiments
discussed in Section [G} contains data for HPBP-PH. For the
parallelization experiments in[6.3.1} Table [A1]shows a summary of the number
of solved instances over increasing time limits for different numbers of threads,
while Tables [A] and give the detailed running times of the algo-
rithm using up to 64 threads for the instances from the Rubin, Gagné, and

Cicirello sets, respectively. For each instance (“ins” column), the second and

third columns of the tables show the objective value found by |Tanaka and Araki|

(2013)) and the computation time to find that value. The fourth column shows

the objective value found by our algorithm, followed by seven columns (the “t_i”
columns) with the computation times needed to solve the instance when using
up to 64 threads. Whenever the time limit was exceeded and optimality was
not proved, it is indicated by a dash.

For the sake of completeness, Tables[A-3] [AT5] and [A-7]list the instances and
running times of each benchmark set using 128 threads, only if they were solved
within one hour. As discussed in [6] no further experiments were run with 128
threads due to a significant performance degradation in this setting.

[Appendix_A.2|contains the same tables as[Appendix A.1] only for algorithm
SPBP-PH.

Finally, shows additional statistics for the experiments con-
sidering the different serial versions of the algorithms compared in Section [6.2]
Tables — summarize statistics for each benchmark set, such as the
number of instances solved within one hour for all versions considered, with
additional information on the averages of the number of b&b-nodes used, the
time taken to solve a single b&b-node, the number of columns generated, and
the number of columns generated per node. The specific values used to calcu-
late the above averages are given in the following tables - For each
instance solved to optimality within the time limit by at least one serial version

of the algorithm, they show the running times, the number of b&b nodes, and



the number of columns generated for all versions.

wss  Appendiz A.1. Hybrid Parallel Branch-and-Price with primal heuristic

Table A.1: Solved instances over time in HPBP-PH
Timelimit (h)

Set #instances  #threads
1 12 48 504
1 29 29 31 32
2 29 31 31 32
4 29 31 32 32
Rubin 32 8 29 31 32 32
16 29 31 32 32
32 29 31 32 32
64 29 31 32 32
1 14 21 26 30
2 15 22 27 31
4 16 23 27 31
Gagné 32 8 19 24 27 31
16 20 23 28 31
32 20 26 30 31
64 21 27 30 31
1 53 99 107 116
2 65 103 110 117
4 73 105 111 117
Cicirello 120 8 84 109 111 117
16 92 111 115 117
32 93 111 116 117
64 97 111 117 117




6€°0 020 79°0 9%°0 0€°0 9%°0 6L°0 0 00 0 0
00 90°0 c0°0 c0°0 10°0 100 c0°0 0 €00 0 v0S
66°C 19°C 10°€ S0'¥ 19°9 60°6 60°GT L6V'E  v0'e  L6V'E  €0S
900 €00 700 70°0 c0°0 c0'0 10°0 0 00 0 oS
971 €0C 8LC 6LF 60°G 008 9G°€T 19¢ 60°C 192 10S
8T°0 €10 €0 LE0 €e'0 Ge0 9G°0 099G 680 099G 80F
0T'T €a'1 VLT 06'T 9T'e 19°¢ 67°G 1981 870 T98°T L0V
010 12°0 010 ce0 ero 610 1€°0 0 000 0 907
90°0 110 G0°0 80°0 €00 90°0 L00 0 000 0 07
eLT ¢8°0 610 610 09°0 9¢°0 er o L90°T 0 L90°T  FOF
820 710 910 69'T 020 920 970 8TV'E €50 8IV'e €O
92°0 €10 020 860 €10 020 1€°0 0 000 0 iz
€20 8€°0 LT0 L0€ €e0 670 9L°0 06 €0 06 0¥
797 ce 917} 871 7 (! I} JS9QTIMO  ewry  989( sut
speary# Uy unt Hd-dddH eyRUR],
soouR)s

-ul urqny I0j speaiy) 19a0 HJ-JdSJH sewr) Sumuny :g'y o[qe],



82°9L ¢G'29 020 L¥06 6T THT 696G 90" 10¥ 90g'CT  OV'IL  90T'ST 0L
8T'6.% 16°6€¢ 9%°60¥ 9¢°60¥ 1200 6T°97C 1 16°2€8°C 9069 9€°C¢ 9099z €0L
700 c0°0 c0°0 200 10°0 c0°0 €0°0 0 600 0 0L
0T7LE0T  08'9%9°TT  06'9L8°0T 0T LL6'FT  OFIEETFE  0F'08€'GE  09°L€C'6S L6 GG67 L6 10
€008 05°9¢ eI 1e 0€'8€ LELS VT'L6 98991 ceL'y c6ce  CELV 809
07°0€ 87°€€ 69°6€ €G°8F L8TL 08121 VL'91G 696'cT  09LT  696CT  L09
09°'¢ e8'1 18°T 0% LT8 119 9T°0T 0 00 0 909
0F'0ET'CT  0P'289'8T  08'FS6'CT  OTFIT'6T  09FL9€E  06FFV'OV  09'186'€9  8TT LG€T 83T €09
€0°6¢ A2 LT LY 80°6¢ c8'68 GR'6CT L6°9LT ¢60°'6T  €L°Gc  T60'6T 709
88°7¢€ Ve 11°2S 78°G9 €0°60T LO'T8T ¢L'9ze L8GLT  LE'8T  L8G'LT €09
L0€ 61°¢ 9L¢ 0% 69'TT LL0T 6T 61 0 00 0 209
raege LT VL6 €9°Cl 08°€¢ 6L0€ 976 A4 €L el 109
96°0 0.0 G8°0 6T'T A 4 8T GT6'T 78'¢ GI6‘T 809
S er'e €60 S0'¥ 9T'L 97'8 voet Sda)) ¢ovy  <ee’l  L0S
660 0T'1 91’1 65T 6£°C 1¢°¢ V6T 0 c00 0 90
7973 ce 917} 871 7 (! I} J89QTIMO  ewry  989q sut
speary# Yy unt Hd-dddH eyeuR],

(Wquy H-dFdH souy Sumumy - *uoo) _m_ oIqeL,



PZ'eST  S0L TT68G  L0L GO0 90L C9€6 FOL TH'ESE  €0L
€00  20L TEES 809 0TLG L09 0L'G 909 €699 F09 STO0L €09
12 09 LS. T09 99T S80S F9€ L0 €TE 905 8¢0  G0S
C0°0  F0S €T €0% SO0 20 €F'E  T0S T€0  S0F 19 LOF
L0 90F ¢I'0 GOV 880  FOF TIg0 €0F 020 gOF 190  T0F
8CT™% SW  8gI}  Sul  §ZIT}  SW  8gly SW  §Z[) SWl  §gT}  Sul

(2€ 30 6G) NOY T UIYILM POA[OS SOOURISUI UIQNY 10§ SPRAIy 87T UHM H-dIdH Sour} Suruny :¢'y o[qRL,

8L°92 T8°T6 68°G0T 80°02T SL¥IC 8ePIE 8G°L€S 08¢ LL°66  L08'CC  S0L

1€°20€ 0€°€0¢ idaday v'e9¢ ¥€°C16 TeereT 18°81LC 6SL'CC  TETS  68L'€T  L0L

¥0°0 200 200 100 200 200 200 0 01°0 0 90L

0£°€09°0F  0F°09¢'CS  0L°29G°09  0S'€I9FL  OT'6TLL6  00°06LFCT  00025°9LC  00% 87668 00T G0.

7971 A 9171 879 ! A 1% 1s9qIno  ourry 189( sut
speaIyjF# qiam unt fJ-d9JdH4 eeUR],

(Wquy H-dFdH souy Sumumy - *uoo) _m_ oIqeL,



€086 IT°LeT 7S 88T 6179 00°€6¥ L7078 PrOvS'T 0 gLeee 0 659
€€°069'T L6'C6L'T GT'CST'C GE'616°C c9'LEIT CVv6L L 0€'ce8'eT 10€'7€ 99 18¢  T0€7€ 799
GG 0TT'L 02'L€9°0T  09'GS8'TT  0€°L88CT  000SC'61  06FI¥'GE 0%°00€9G 00S°LS 08'¢9%  00S°LG €99
€0°0 L0°0 €00 ¢0°0 €0°0 200 €0°0 0 cz0 0 s9
61°G8L 6€20L IT°€06 8T 0TE'T 16°69€°C 79093 8T'768'L Lve LT'86C'C  LVC 159
£L'¢eg 6662 08°2€€ G9'1CY LL'6TT'T LGL90°T G%'800°C T.8'6T 898  T.8'6T 84S
0T'8TE0T  OT'0YS'TT  0T'GE8'CT  09760°0c  0L°0TE€'8C  08'T0V'8F 06'LGT°T8 €I8'¢e  T6°0FT  €I8'GE  LGG
€0°0 L00 €00 c0°0 c0°0 c0°0 700 0 8T°0 0 956G
96°Ge 667 966 1L°2L €9°0C1 711G 96°99¢ 0 LT0 0 GGG
LL°€S L€'89 €968 8T T€ET v.'20¢ €2°60€ 8€LES €99FT  L8'LLT  €S9FT  ¥GG
90'96€ GL'ToV €6°06.L 92'196 08'6GG°T 8€'80G°C T968T' T 8670V  FOTIT 8670V €4S
€0°0 ST°0 70°0 10°0 L0°0 20’0 20’0 0 LT0 0 2SS
KA L6°29 €5°€0T 69701 16081 88°GCE 69'18¢ €81 €0°9TT €8I 169
7979 ce 917 81 7 (! ! JsoqTImo - owry 380q sut
speariz im unt Hd-dddH eyeuR],
soouR)s

-ur guSer) 10j spealy} 10a0 HI-dGdJH sewr) Surauny 'y o[qe],



009€G°6T  0T'¥FL'€C  0TTI6°LC  08°036°L&  OL'SPS'6S  09°C099°'86 00'86S°0LT  TV0'6L VOLLT'T TVO'6L  ¥G8
0€°962°9¢  09°CI8TE  0€T90°LE  0TF86'8L  0T'0TI'GS  00698°CIT  009%€0ST  L6F'L6 TT6ITT L6V'L6 €S8
L00 €0°0 90°0 €00 G0°0 €0°0 €0°0 0 19°0 0 a8
0L'91¢°'0c  00°L5LFe€  0€89T°9F  08°G6L'FS  OF'T1S0°L9  009GL°0LT  00°.88°€6c  09€  — €9¢ a8
00'T€9'T G6'T16'T 06'G9%'C €9'9€0°¢ 136957 78¥8EL 00°280°€T 6EE'8E  6G7L86  6EE'8E  8GL
00°08T'GPT  00°¢8E'8ET  00°TGLTLT  00FI6°C0C  00°TO8°9TE  00°GPL'SPS  00°06T°C66  GE9'6S €€TPL  GE9'6G  LGL
L0°0 90°0 700 €00 €0°0 c0'0 200 0 S0 0 952
G0'¥ I8¢ 09°'8 9221 79y 08°C 8608 0 170 0 459
0T'IF0'Ce  09°TF9'€E  09°€0T'FE  OF'SST'6¢  OF'148°6S  0T1°120°96 00°L7€'T9T  00T'Ge G888  00T'Ge  ¥GL
7078¢e 09°€L6°G 1€°657°9 09°60% "L 0S°660°€T  08°G92°0% 09°0LT'S¢E PPGLL  G6'GOG  FPGLL  €CL
90°0 700 €00 €00 c0°0 €0°0 €0°0 0 770 0 (4)
0098L°GZT  00°00F'0VT  00°GLS'66T  00°0L9°09% 00°€LLTST  00°69C°66L  00°0TLFELT GG - & 162
TL€8T'T €T°092'C €4'292°C cLeEr'e 9¢°0L0°G c0'8re's 0Z'ST9VT VIT'LZ €999F  PIT'LC 899
69T8T'C €V EV0T 08°G69°C e 1987 70899 09°GTeTT 0T°9%6°0% G68'FSG  TL'E€SC  G68FS LS9
G0°0 G0°0 700 70°0 c0°0 20’0 €0°0 0 620 0 959
7979 o€ 917} 871 7 (! ! 189q Mo owry 380q sut
spear)# Yy unt Hd-dddH eyeuR],
(puSen) HA-dddH souwr Sumuuny - “juod) [ y| el




€10 968 €1°0 298 L9'T0CC 8SL €10 9G6. €L'€c GGL ¢T0 457
LOTLOT LS9 L00 999 TT68C GG9  €6°098°T F¥G9 010 T%9 €T'869 89S
90°0 969  T¥'66 999  07'9¢t ¥4g  €€7¢C08 €46 900 ¢899 8LLST T14¢
8¢ sut  8¢l™3 sul  RgI™} sut - 8¢l™? sut  g¢l™3 sut  8gl'3  sul

(g€ 30 8T) NOY T UIYILM POA[OS S9OURYSUI QUTRY) 10§ SPROI) §ZT UM HA-dIdH SOU} Suruny :¢'y oqRL,

00°289°98¢  00°2€T968  00°LSF'80¢  00°0TS98F  00'F6F'6SL  000TH'L6TT — 6ELTL  SYLIS'T  6ELTL  8S8
0£°999°96  00°82Z‘60T  00°€69‘681  002E82LT  00°706'GL6  002LZ00¢  00LEEE€S6 11028  TFP6ST  T10°L8 LG8
40 L0°0 L0°0 200 700 €00 200 0 £€9°0 0 968
— — — — — — — 9%z - 092 668
797} ze 917 CR! ! ! T ¥9qmo oy 3sq sut
speoI}# M unt Hd-ddH eeue],
(puSen) HA-dddH souwr Sumuuny - “juod) [ y| el




00°€LT'00T 00'869°9TT 00 TLRFFT 00T60°69T 00°L63°LSC 00°0L9°€HF 00767708  F06°C 19°c5L'8  V06°E €1
VLLG G168 787¢€ c6'6G €108 QLI 88'6£¢ 0 70 0 4
06'€98°L9  0€°980°68  OF'8IL'96 00°€6S'9ET 00°0FL'G6T 007L0'TSE  00°63C°LS9  G8L'C  9T'186'Ch  G8L'C 1
00'88Z°6¢T 008 TET 00'TEF'LGT 00'8FLTIT 00°LLE®FE 00F8E68E  00°61CTLI  OVL'T 7L€88'8  OPLT 01
6z'0Ts'9 T0'788°9 166658 0S'TP9'IT  06'T0E'6T  0G TISTTE 0¥ 715’8 099°G €evel 099°G 6
— — — — — 00T 7G'G0T 00T 8
00'I8T'6TT 00°LSF'6ST 00°6£8°GST 00'8GE°L3C 00'TP8'9LE  00°8€9°G89  00°0EF'GEC'T  LIT'E Ly'ees'e L9g'e L
76°€V6°T GO0FE'T T7°009°T I6'6VI'c LT IVL'C GT'OST'¥ V¥ LT0'L c65'9 98991 c65°'9 9
06'865°cc  08°CF6'€c  09°L19°6%  0F'060°6€  09°T90°0L  00'TFS'E€IT 0096981  ¥SO'F L€°0S€°c S0V G
Ce8LY'E  EVVIO'E  6€°9L6€  €T'TG0T  T9L6V'9  8L'BST6 07'6€5°CT 998°G 08°621 998G 1
OT'TIELT  09°0VE'6T  0G0T0FC  06'966C¢  0L'GC0TS  09°GLT96 007LICIT  06€°T L0"68S 06€°T €
0€°LVF'0T L6687  €C€TT'L 96°€5L'6 0LT0E' LT 00'TGLLT 0€°288°9¥ V6L LOVLY'T  T6LT é
00°G9S'FET  00°LEG'99T  00°T98°GIT  00°GIE'GLT 00°685°€SC 00 TPE'8TF  00°0S0°8€L  €CF 8666 €gy I
7971 ce 91} 871 v ! I} JsoqrImo - owry 180q sut
speaIyi#f Yim unt Hd-dddH eyeuR],
Soourjsul

O[[eIDI) I0J Spealy} 19a0 HI-dOdJH sewr) Suruuny :9'y o[qe],



11°8¢eT GLL9 1118 9G¥ T 06'8%% AAaEs L2196 0 070 0 8%
SN 8L°GL €L701 96621 16681 LE°G1E v.'€99 0 V€0 0 Lg
Ly ee 10°L€ L8°CT 99°€9 8C 76 evoCT €1°66¢ 0 €20 0 9%
8T €Y V.64 TL6L 6281 675e1 82'91¢ e1a8¢ 0 1€°0 0 g
— — — — — — — &) - 19L Ve
ero €00 700 €00 200 ¢0°0 c0°0 0 LT°0 0 €2
L8°9¢ Ice €5 LY €0'19 6516 6L7CT 65°CLT 0 €20 0 (&
JARSS 60°L¢€ €9°LY AR 7.'G6 $%'90% G9'78% 0 020 0 1C
9F'8¥E'e  TI960LT  9LT09'G  06FEVL  0€LO9TT  OFTLGTIC 09'60L°GE LGLT gT91¢ LSLT 0T
€8°GV1 7968 Ve L2S'e 18'99L°C 200Se'y  STLII'S 0£°296°CT 0 NS 0 61
— — — — — — — 192 - €L 8T
€0°cy Ve 1L c6'€6 60°62T 09°¢1% 967 87°GL9 0 08°68T°T 0 LT
€E°6CLV  T89E8'G  T®'G6EL  09°09F0T  OVOLF'ST  0T'C8T'GE 00°€LT LS G8C'¢ 67'70¢ G8T'e 91
TL°931°c  €LSTI'C €9'9T0°¢ 0907 €80299  0€010°CT 052302 Vel 8L°967 Vel a1
07’ T09°9T  00G0T°'0c  0€C6V'9%  08°9L6°L&  0L'88T'G9  00FIZ0CT  009€0°L0%  SLO'C 1L6es'e  GL0'C i
7971 o€ 91} 81 7 ) ! JsoqTImo - owry 380q sut
spearyizf Yim unt Hd-dddH eyeuR],

(o[ HA-dLdH o) Suruuny - 4u0) |9 y

9l9eL

10



69°08¢ 61°LG7 eT T 96°G¥8 VE€0L0°T T9'8LLT 6T°961°€¢ 0TE'SPT 9608 0TE'SPT  €F
VCVIT'T I6'080°T  6€803'T  89°969'T  F8'6S6'T 12°680°¢ 9L7€0°G L87'LG  69°GT L8V°LG oy
LT 61 e8'Ve o€ 0TGP L0'T9 G6°G0T 03 68T c01'69  90°ce c01°69 v
LL6C ce'8e L9'8Y 1678 1€°911 61T°T1C 10°LL€ 0 070 0 1)7%
ARES GoEY 6567 80°90T 8T TIT 12°80¢ GT0LE 0 8%°0 0 6€
700 700 cT0 010 ero 8T°0 8T°0 0 8€°0 0 8¢
IC19v'e  0€°11¢ 6£°GLT CLTIVY 0669 €2'8CC'T 8T°90T°C 0 68°G6¢ 0 L€
92°0€ GL9€ L0'6G cLTL S A7A 61881 9z '€ve 0 770 0 9¢
80°0 700 €01 80°0 €T0 61°0 910 0 L¥0 0 ge
60°0 70°0 90°0 60°0 ce 0 120 8T°0 0 070 0 Ve
65 1¥ L9°C¥ P1°6L L8708 9T'9LT 16°€€C 957 0 870 0 €e
707 €5°901 0€'7¢ 1ges VLGIT 8L'70¢ 7709 0 870 0 48
9€'89 €e€ee LETY LE70L 0L°0TT 16281 00'92€ 0 cr'0 0 1€
7688 €€°02T 1€°09¢ 8F°CTE 6L70€ VLTLOT LLT88'T 0 e8'L 0 0€
78'L¢€ 88'8€ 06°'0% 0G°6L 05681 08'991 61'16¢ 0 €20 0 6
7971 o€ 91} 81 7 ) ! JsoqTImo - owry 380q sut
spearyizf Yim unt Hd-dddH eyeuR],

(OIPIOY) HA-ddH sowr) Suruuny - *1u00) (9| dqeL,

11



0SFPILT  09°€ES'8T  09°€ET'€C  01'98C¢'8C  OV'79S°LE€  0TTE0'89 007SP0TT  goe'sh  T€GEeT cTe'ay 8¢
LV6F8'T  8LLIT'C  GL6PS'T  79e9T’e T9'8PES 97L0g'8 0T' €671 VIG'€9  TT'L6 v16°€9 LS
G6'298'c  09'661°¢  GO'TST¥  69°0T8'S 06'T€0°0T  06'CG8°LT 07°90¢°cE 688'F7L 60702l 688'FL 9¢
86'T€ 67 1¥ €V’ Ly 6129 GO'6TT ¢6°90% 7S°00% GIET9  L0°80T GIE Y9 qq
09'€09'c  ST'299°Cc  GL89T'E  FOTIFFY  €LT69°L  0€0€ETI 00'192°2¢ 608°8TT  €970T 608°8TT %9
£6'¢89 09'1L¢G 79 LIL €9°0L6 PTIEI'T  68°69L°C €L7L667 8%8 76911 7878 €g
gT90T'T 1€°95C°T TT'665'T GR'CTH'C 19°268°¢  97°00€'L 0006T°CT Gr0'e6  G9°LIT ar0'c6 s
60°TIC'T  ¥8CSTT 670671 G9'796'T  06LCT'C  86'GLT'G 1€°L0S°6 80C'6V  ¥8'16 802 6 I¢
1.'806 G626 06'690°T  6L°09¢°T  SETWL'T  ¥9'1CH'C 0T'S70V ¢60'1e 669 g60°1E 0
6L°L1C 6S°L0¢ 69°7EC LO'TTE 18'88¢ G5'029 G6°070°T 6¥7'LL  8€°6¢ 677 LL 67
PIP86'C  0G'GBT'E  €C'8E6'E  €E'8GE'G  9L°968'8  0€L6SOT 0L'909°LC cI9v9  0L°G0T e19'79 8F
08°6E7'T  LOFIFT  LET99'T caTee’c  ¥6L08'CT  V6'IS6T 09'950°8 €98°cL 619 £68°CL Ly
€7'96c'c  08°98¢'c  GLL9G'T  €T66VE  FIOVET  LT€6TL 09°LET°TT VILTE  S0F¢ VIL'TE 97
POTECT  9GLCFT  €STLLT  0€°08¢C  L0LL0E GT'80S°G G0 LET'S GE6'8G 86708 GE6'8S 57
¢8°06¥ 8¢'12¢ 87°GLS 99°2€. £€'868 GO LEE'T 60°0€3°C 991°¢e 08¢ 991°ce 4
7971 o€ 91} 81 7 ) ! JsoqTImo - owry 3s0q sur
spearyizf Yim unt Hd-dddH eyeuR],

(OIPIOY) HA-ddH sowr) Suruuny - *1u00) (9| dqeL,

12



€eTe9’L  99°€98°6  06'€STOT  OT'FLE'CT  0T'€09°6T  0¥'0TS‘GE 0L'GEE'LG G8L'%C 67’16 G8L'8T €L
98'28¢'T  €L'66S'T  66'LIT'C  TIP'9GE'€  GE6VE'S  TE'6L0°6 07'€70°LT 98C'€y 87’89 98C‘€ L
I7'9L0°T €TELT'T 8T 6871 C96LIC e LLV'E  FO'GELD 05°903'TT LO0'GFT  TT°96 LOOCFT 1L
€G°9LT 9L°€LT 61°20% 03'GLE L0'6€€ VLTS 16°126 c01'cL  699¢ c01'CL 0L
0V’ IP9'e  GGE8L'E  G0'0SE'®  8L°90S'8  0£'600CT  06°G88°LT 06'€17'8C QIT'TL  €0'GY QIT'TL 69
eTv9¢ €6'10€ €TIES 02'0€9 07’168 LTV8LT TTL8TC 0212 66'GC 021°2¢ 89
€g¢1E 9T'LLE 0€L1€ VL 'GTy GTTLS L6°G06 L8'067'T 06£°6c  €6'9¢ 06€°6% L9
ET9ET'T 00649 8T'LT9 G6'0TO'T  0T'€TIS'T ST70S'T GT'9LG°C G89°6G  I8'LI G896 99
6G°G8T 89°L61 €0'63¢ €1°268 96'96¢ 17629 772801 969°92T 80TV 969°0¢T 99
9L°LL0'T GLOTT'T 0L°186 6G80T'T 6L T1ST'T c0v93'c 8T°€GL'E ¢LG'T6  V6°6€ cLS'T6 79
L9'1GG 80 F¥ ¥ 6G°80S €8'708 €1°GL6 79°629'T €1°€86'C L1€'6L  TT€EE IARE)) €9
09'067'6¢  02°095'8¢  0S°00€'CE 0679068  08FELTS  09°LET9L 00°LT¥9TT  69L7F  T€'LE 69LTY 29
0T'G6T 84°00¢ €0'8¢€¢ 16'78¢ 09'2%9 G9°€€6 €e°GTLT 916'GL TV’ 9T6°GL 19
97°L60'G  LVOTV'G 0L98%'9  T6'78G‘S 00 TS8'CT  0ETIT €T 09°L2S'cy G9L'09  €TLET €9.'09 09
LET6LT  09°200C  STC9E'c  0CF8E'€  0€LGT°G 99818 07" €687 1 666°0S 6706 6660 65
7971 o€ 91} 81 7 ) ! JsoqTImo - owry 380q sut
spearyizf Yim unt Hd-dddH eyeuR],

(OIPIOY) HA-ddH sowr) Suruuny - *1u00) (9| dqeL,

13



8L°0€9C  TLT96'T  6€8¢F'c  80'TI6I'E  €9°91¢9 650016 06°,30°9T 98T°CEV 7409 981°¢cey 88
ay'e8c’9  L6°066 0T'STV'IC  OT'TEH'8c  00'668°€T  OF'F8S‘1SG 09'620°LL TGS'86E  96°L¥ 16G'86¢ L8
61°8€T 8G"€ST G6°G8T 8E°LVE 9vLE 76°L99 6T TGT'T LIF'19¢  F1'89 LIV 19 98
LT99T'e  €T'806'€  GO'CS6T  €F°E0S9  0G'T6L0T  09'I8T'6T 0L'TV6'€E 99L7SG  8ETL 99.76¢ <8
CY6LI'T  LSTCT'T  TL9LGT I7'Ge9'T  €9999'C  0£909F €9°910°9 0L9°62¢ 699 0L9°6c¢ 78
8G'E€ELT 19'8C9°c  €7'980°€  86'L6E'€  676C6°L  S8TIIS 02'€0€°9T TGL'8GY  1G°T TaL'8ey €8
LG T160°T 06°626 9L°€LG'T ¢L'296'C 01°¢59'c  LT'91C'L 07"€96°0T 6,760V G199 6.7'607 T8
88°09 LEIVT 8€'1CT 6G°€91 69°L2€ £6'80¢ ervis GeY'E8E  €1°0€ Ger'ese 18
grL90'T  98°L99°T  CE9IT'e  €8'999'C  6TT19¢'S 70Tl 09°LEV'GT LGT'ST  €L'9L LGT'8T 08
L0°€SC 10°6.¢ c0'1€E VEGLY eI LLY 132351 96°G9T°C 666 F7TT  TT0L 666 7T 6L
6501 16757 €3°08S 60°6.8 6S°GIT'T  TI'0L3'C L6'TISH'E COV'6T  99°6L cov'61 8L
C998C'T  EVEIF'T  6L88L'T  9T'0¥V8'T  FIFIOT  66°L6G°9 0L7L98°TT LI8'TE  8¥'78 LI8'TE L2
€T°G0L'T  €LT1€6'C  TEVIS'E  LTL8EWY  TLEI6'9  0€THVIT 002661 GGG'eS  GLGL qelafde 9L
GT'1GE 67°L8¢ 01°6S¥ 0T°€19 c0'ves 809261 GL0ST'C c09'Te  LG'LL c09'1¢ Gl
66'G0c'c  80°66C'€  LE'TI6'E  9%°8I6T  €0°689°L  08'T0V'CI 0T'T0L°0C LLL6C  TTEL L1168 VL
7971 o€ 91} 81 7 ) ! JsoqTImo - owry 389 sur
spearyizf Yim unt Hd-dddH eyeuR],

(o[ HA-dLdH o) Suruuny - 4u0) |9 y

9l9eL

14



9% LLY €L°67S G9'78G 12°688 67'€E0'T  GTI88'C LL'6VE'C c09'8LE  TO'9F c09'8L¢ €01
19°LLSG 8T164 G9T9 02'0L0'T  99°62€'T 16°C6L°T 68'6£9°C TLE'T6Y  G0°GS gLe'ey  ¢ot1
98°L9¢ 0L'8V¥ 0,21 8C'679 TT'0E6 9¢°L8T'T 98'8€3'C 066'CGE  LT1°8¢G 066'cSe 10T
LTTLY 61°07€ 18°L07 L6289 GL'TG8 9€°62€'T €G'89€°C 9eLTEY 86708 9eL 1€V 00T
€7°601 07521 92°0ST 00°03¢ GR'eLE 08'81¢ L9°G56 QIC'€9¢ 13901 RIG'€9E 66
€1°L91 e8'8TI €9°6GT 79°29¢ 09'8LE €L'89. 88°€CT'T T8G'0TE €306 T8G'0TE 86
€V 67C 06'8G¢ 18°LE¥ ceees 17°2€6 68°9¢7'1 €7°L0S°C 065°L0V  06°C6 065°L0V L6
92081 9L°€GT GE 681 €9'16¢ 90°08% 69289 IS AAA {F'GST  0G°6L /¥F'CSy 96
£€'966 €9°998°T IT°99T°'c  6F'GPL'T  8F'8G0T  6LL8T9 00°LT0TT 9g6'91¢  0T'T0T 9z6°91¢ 66
0F'1€3'e  00°CPF'60S  T6'60L°C  9L9F8F  08'€6V'€T 00030 FFS'T — I76°06¢  0€'86 I76'c6¢ 76
6€°TLY'E  TOECTT 99678 €0°60T'C  66°0.6'8  80°09C'C G8'€06'6 €TVe0r  ©96el €ereor €6
09'096 67°0L6 0P 79€'T  996¥S'T  STIVET  L9°99G'E 697559 eST'T9E  9€°€0T ee1'19¢ 6
VL9621 LT'9CE'T  96'GS6 84°060°C  OL¥EV'T  6LOLLC 62°613'G €€6'68€ 8689 £€6'6€ 16
8C'LE6'E  0G°90S°G  GE6S6'C  TCTLRY  8G'TISL  0€8LTTI 06'628'7C €590V 2679¢ €59°10V 06
00T¢¢'T  9€'9¥S'c  09°GP9'T G0'63¢'€ 600617 €189 0€'76S°0T ¢60°0TF  G8°9F g60'0Tvy 68
7971 o€ 91} 81 7 ) ! JsoqTImo - owry 389 sur
spearyizf Yim unt Hd-dddH eyeuR],

(OIPIOY) HA-ddH sowr) Suruuny - *1u00) (9| dqeL,

15



91'625 0L°9TE9T  L8'LVL 0F7'G9%°0T  09°€0T'F8  00°0€6'TVT  00°GS9'TEC  6FL'6VE  €C'C9 67L6VE  STT
L9062 GLIT'T  0STEF'T  96'8I8'T  €T'L8LC  €G'GT6°C 89TEY'S 078°00S¢  TLLIT 078'c0S  LTT
0¢'evs 766€9 c6°CIL 86906 07 €€€'T 86°663'C 067LL'E 109°0€S  68°L0T 109°06S 91T
¢8'8I0'T  ©98ST'T 96V’ T L9FI0C  19'8¢T'€  T1CT8S'G 0S°gve'01 068°9¢7  8G'GTT 068957  GTT
L5°0g6 79697 96'19G ST TIL €7'880°T TL'€08'T $9°00¢°€¢ VLV'E9Y LT LOT VLV'EOY  VIT
76°696 8L'T.8 VCITO'T  L8°€LET  L9TE9T  9FTEr'E 8¢°60G°G 679°65C  86°L0T 679°65¢ €11
T6°0LT 9L°92¢ L6°0T¥ GG €99 8T°€T0'T 80°0TLT 60°8ET'E 0TT'L9¢ 90°FTT 0TT'L9¢ ¢IT
20'96S 0T'€7S 0€'60L 6€°296 L9°€96'T  98°€ER0'E 9G°98%°G celieve €L 101 geleve 111
78607 ETTIPE'T  T8'T6L 0T'CLE'T  T6'86LT  98'88G°EC 99'768°G 69L°8TF €909 69L°8TF  OTT
00289'6E¢  09°€T0°LE  T9€TE'T 0G°I8€C9  00°LECOST  00°0L0°€LE  00°C6SCEF  TOO'ETV  L6'FG V00'€TV 60T
eV'€6g L1668 LLcve €5°07¢ 07666 GOTLT'T 19°LV1'C €6L°097  0€°6€ €6L°097 80T
612G €7°05¢ 8G°GRE LGPIG 82069 96'148 LLGVI'T 99L°2Ge 1€ 99L°¢G¢  L0T
LO'9TL €6'69.L Gz'508 LETVEO'T  OL'GIST  6T1ETT L9°ars'e 6LE7SY 819G 6LETST 90T
¢L0e8 87°60. €L°508 08'868 VEST9T  L0LOT'T GT'€0S°E 90807 19T 908057  G0T
G6'0ST'T  GRGPE'T  LETEST  8LTER'T  09°€99C  €F'CI9E LE7231°9 €96°LG¢ L0799 €96°L5¢  T0T
7971 o€ 91} 81 7 ) ! JsoqTImo - owry 380q sut
spearyizf Yim unt Hd-dddH eyeuR],

(OIPIOY) HA-ddH sowr) Suruuny - *1u00) (9| dqeL,

16



LTIV R€°0GT 16°00g TT°L¥C 67°86¢ 7¥°8LL PPLVCT €81°96¢  ¢L¥8 €81°06¢ 02T

€8 L0L 29°¢LL PP EOT‘T RE'CLS'T €9°¢eS'e ¥2 097 iG] 9%0'¢LS  SL'TITI 9%0‘'¢LS 61T

7973 ey 917} 873 i ¢} 1% js9q mo oy 189( sut
spearyi# yum unt g4-dddH eeuR],

(o1PILT) HA-dddH Sowr) Surunyy - *yuod)

9V

9l9eL

17



¥99¢c 03T  6¢°CS0'T  6IT LI9ET'T LIT €7616  9TT
PRTICT GIT 90°0SE'T FIT 6F9€¢'T €IT 1L0eS¢  ¢IT €6°T1€0°T TIT &FI199'T 0TI
IG08F'T 60T 68l 80T L&¥Ee  LOT 6T°990°T 90T 80'GTOT GOT TOGPS'T  TOT
LOFOT'T  €0T L€€96  ©OT GLgh. 10T €109 00T CE€08T 66  G9L6T 86
06°'68% L6  €TLIT 96  LE90LT €6  LTLVLT €6 LTL0LC C6  SE9VCT 16
VE'9€9'T 68 LT'T9¢ 98 69'8¥C’T ¥8  16°G9G'c €8  €9'60°'C I8  8V'I6 18
LT'Z6S'T 08  ¥9'8¥€ 6L  GLL6L 8L  €TE6LT LL  TTWES  GL  ¥6'T89T Tl
60°GPS'T  TL  €9¢8¢ 0L  G0GI9 89 L6°L6S L9 gT'e9E 99 0€°TIFE 99
GTLLE'T P9 66'66L €9 g0'6%e 19  LT°L6SC 6G  8QT'GCI'E L& G099 G
6L°06€'€ TS G8860'T €S L9°€T0T ¢S 66'GEST IS 99'T8S’T 0§ TSEIE  6F
6L°8€€'c LV 90'TET'E 9v  6CCeET SV VLTS8 VP LE&TL9 € €9TVET TP
L9°9¢ IS A A WS 0F  0€1L 6 020 8e  L9°0%EC L& €979 9¢
€e0 (S Al Ve GTEL €6 9078 ce 9906 € 99F%vc o€
2008 6c L1091 8¢  GT'SET L& 9¢0IT 9%  6L06T  S¢ 010 €g
9¢'T0T ¢ GL'69 c  LS76 6T ©€0TT LT 086Ic &I  G0G9v'c 9
8C17) sur - 8gl} sur - 8gI ) sur - 8gl™} sur - 8gI ) sur - 8gl™} sur

(0GT JO L8) INOY T UIYIIM POA[OS SIDURISUI O[[PIDL) 10J SPEOIY 87T UHm H-dddH sewr Suruuny 14y olqel,

18



Appendiz A.2. Strict Parallel Branch-and-Price with primal heuristic

Table A.8: Solved instances over time in SPBP-PH

Timelimit (h)

Set #instances Fthreads
1 12 48 504
1 29 29 31 32
2 29 30 31 32
4 29 31 32 32
Rubin 32 8 29 31 32 32
16 29 31 32 32
32 29 31 32 32
64 29 31 32 32
1 14 21 26 30
2 15 22 26 31
4 16 23 27 31
Gagné 32 8 19 25 27 31
16 20 24 28 31
32 20 26 30 31
64 20 26 30 31
1 53 98 107 116
2 61 103 110 117
4 74 106 110 117
Cicirello 120 8 84 108 111 117
16 91 110 115 117
32 94 110 116 117
64 95 111 116 117

19



750 910 8T°0 LT0 820 8G°0 6L°0 0 00 0 0
L0°0 €0°0 c0°0 10°0 c0°0 100 10°0 0 €00 0 v0S
65°C c9°C Cry 67'F 009 LO°0T 90°GT L6V'E  v0'e  L6V'E  €0S
L00 00 700 c0°0 10°0 90°0 10°0 0 00 0 oS
LG ce'T /T’ 60°€ /TG €68 veet 19¢ 60°C 19¢ 10
€20 LT0 9T°0 910 92°0 770 660 099G 680 099G 80F
0L'T I6'T g1 18T e 8L'¢ Ly'g 1981 870 T98°T L0V
61°0 80°0 €T’ 9T°0 LT0 120 650 0 000 0 907
¢1°0 AN €0°0 80°0 110 90°0 80°0 0 000 0 07
910 010 €10 020 920 ev o ev'0 L90°T 0 L90°T  FOF
60°0 110 AN ez’0 LZ0 9¢°0 ¢r'0 8TV'E €50 8IV'e €O
750 L6°0 010 8T°0 910 650 €0 0 000 0 iz
8T°0 v20 €r'0 09°0 LE0 19°0 L8°0 06 €0 06 0¥
797 ce 917} 871 7 (! I} JS9QTIMO  ewry  989( sut
speaI)# im unt Hd-dddsS eyRUR],
soouR)s

-ur uiquy I0j spesIy) I0a0 HJ-JgdJS seuwr Suruuny :6'Vy o[qel

20



662G 17°29 SN 1876 [AR4Y 9%°99% 9¢'LT¥ 90T OV'IL  903'GT 0L
€6'82¢ L€'88¢ 619 AR 90°€V6 COLLE'T 86'C9T'C 9069z 9€T¢  90S°9¢  €0L
6070 70°0 c0°0 90°0 10°0 10°0 10°0 0 600 0 0L
GO'9LL L L7688 0G'8L9°TT  08°CIT9T  09°60¥'cc  0L'90€'L&  OT'€ET'09 L6 GG67 L6 10
¢1'9¢ 12°8% IRES 16°6€ L0°€9 87801 LLELT ceL'Y c6'ce  TELT 809
11°ee VY €LY 620G 6776 0G'8€ET 88'L1T 696'CT  09°LT  696CT 209
08T L6'T ese L€ 68°'F 619 00°0T 0 00 0 909
0L°29T'TT  09°€S€'CT  08'LPS'ST  08'9L0°0%  0T'960°L&  0L0TECF  06°086'G9  8T¢ LG€T 83T €09
erLe 8¢9 1616 19°19 00°9TT LV'9LT €0°6L% €60'6T  €L°GC  T60'6T  ¥09
69TV Ve'8y 967G 8689 €0°0€T 6TL6T ¢gTIE L8GLT  LE'8T  L8G'LT €09
ere 81CT 8L€ 7 80'8 €11 9¢°LT 0 00 0 209
199 €6°GT 696 €811 1L°81 esve 6L°€S el X59) 4 109
0L°0 8T'T G8°0 L0'T eee 89'C 9Ty GT6'T 78'¢ GI6‘T 809
e0'e 8€'€ 60°¢ 9¢°¢ 20'S 87'8 76°C1 Sday) 4y Gge'L  L0S
c'1 c0'1 LT'T L9T 16°C eTe iR 0 00 0 90
7973 ce 917} 871 7 (! I} J89QTIMO  ewry  989q sut
speaIi# YIm unt Hd-ddds eyeuR],

(mquy H-dfds soum Surmumy - o) _o,.|<_ oIqeL,

21



67'6FT 80L 06GeL LOL 010  90L L9201 F0L €8°0LG €0L
010 20L €6'LF 809 6TLC 109 L8F 909 €©G99  F09 GE69 €09
LT9  g09 6€TT  T09 SFT 806 889  L0S @ZE€ 908 790 GO
010 F$0¢ GLF €S 010  @0S 8&F 108 €50  SOF 20¢  LOF
LZ0  90F 620  COF FFO  FOP @€0 €0V €0  c0F FFO 1OV
8¢T™d SWl  8gT™y  SW  §gT}  SWl 8Ty SWL 8Ty SUl  §gT}  SuI

(2€ 30 6g) INOY T UIYIIM POA[OS SOOURISUI UIQNY 10§ SPROI) 87T UNM HA-dddS sown) Suruuny 01’y o[qel

) LTS8 00°66 61°GTT €661 07 67€ GL'9GG L08°GC  LL66  L0S‘TC S0

LG°6€€ €r'9LE 7S 697 €0°965 PE960'T  FE6LOT  TTTLLG  68L°€C  TE€TS  6SL'€C  LOL

L0°0 200 200 100 100 100 100 0 010 0 90.

0G°GF6'F9  09FFT6F  0G'86T°GS  0€'L6L'GL  00°GSF'GOT  00°L60°L8T  00°890°CLZ 007 87°66S¢ 00 =)

797 7€ 9T 871 7 ! ! j9qTmMo  oumy  389q sut
SpeOI)F# IM unl Hd-dddS wRUe],

(mquy H-dfds soum Surmumy - o) _o,.|<_ oIqeL,

22



96°'TCT €L70CT L8°CTC 9%°28¢ LT°20¢ 17°C56 6C°69G°T 0 gLeee 0 659
G9'88G‘T ST 0L8'T 8L'TCV'T 8€'6L0E 69°L9T°G 98'70L'8 0T €07 71 10€'7€ 99 18¢  T0€7€ 799
€6'0E€'8 0€'99T°0T  0F'29¢°0T  00°€8S¥T  0€61€TC  08°903'9€ 0L'968°GS 00S°LS 08'¢9%  00S°LG €99
80°0 ¢0°0 110 ¢0°0 10°0 r&dl| 200 0 Al 0 s9
167909 G6'VIL 8ETV6T'T 96°€87°T 80°€LS°C GE9G6'y LO€9T'8 Lve LT'86C'C  LVC 159
8T'€9V L8°T0€ 65TV 8E THY e1'689 e IVI‘T 89'TG8‘T T.8'6T 898  T.8'6T 84S
08°221°0T  O08'€LF'CT  00°9PE€FT 039261 0T’ TIPC0E  0LTR9°€S 0S I8V 18 €I8'¢e  T6°0FT  €I8'GE  LGG
80°0 700 €00 c0°0 c0°0 cc0 10°0 0 8T°0 0 956G
8G'€Y 80'8¥ Ge09 c9°GL 89'TET 92°92¢ 12°68€ 0 LT0 0 GGG
eL19 09'1L c1'96 98'8T1 0€°20¢ €7°6€¢ L1796 €99FT  L8'LLT  €S9FT  ¥GG
L8'TLG G6'G79 02'068 8T'9€0°T 08'229°T Ly'eeL’s 0S'790°G 8670V  FOTIT 8670V €4S
80°0 €0°0 c0°0 10°0 10°0 10°0 10°0 0 LT0 0 2SS
L0'6¥ €36 cvo8 9TeTT L1°93¢ €9'8C¢ 17768 €81 €0°9TT €8I 169
7979 ce 917 81 7 (! ! JsoqTImo - owry 380q sut
speari# im unt Hd-d4ds eyeuR],
soouR)s

-ur 9uder) I0j SpeaIy) I0A0 HJ-JIJS sewr) Suruuny :11°V o[qe],

23



0L'G6T'6T  08°€VC'9C  0€TIETE  06'CLV' IV  09°65S°CL  00'8TO'TIT  00'9LV'ILT  TV0'6L VOLLT'T TVO'6L  ¥G8
0L°GRT'LE  OF'PEV'ST  0F'90€°GE  OF'689°L& 0978809  0F'€€9°66 00'89G'8YT  L6V'L6 CC'61C'C L6F'L6 €98
L00 90°0 70°0 60°0 c0°0 ¢z0 200 0 19°0 0 S8
07'c07'6c 092809 09°€L5'ch  0L°GE6'99  00°€C9'€IT  00F79€'8LT  00°€IE€T6C  09€  — €9¢ a8
9L'1G9°T L8'GGR'T 9L°21€C 8C'G6T'E 96'029'F 612808 09'8TL'ET 6EE'8E  6G7L86  6EE'8E  8GL
00'7GL°92T  00°290°CFT  00°9LT'IST  00¥S6'TPG  00'8LS'EVE 00092909  00°G98°F86  GE9'6G €€ TIVL  G€9'6G  LGL
60°0 €0°0 LT0 870 c0°0 750 200 0 S0 0 952
oL’ 79'L 1€°6 el €3°6C 9z'8¥ 0628 0 170 0 459
0L°G7C'9¢  0T'668°LC  OLTET'9e  OF'TL9OF  09°CIE69  008ET'Gel  00°E€PPLST  00T'Ge G288  00T'GE  ¥GL
9e'TV6'Y GL'809°G €2'8CL9 €LVIT'6 00F7TI0FT  06°GCTTT 0€°086°8¢ VPSLL  G6'99G  TRGLL  €GL
60°0 700 80°0 90°0 c0°0 020 €0°0 0 770 0 (4)
00°LFT'0ET  00°629°8ST  00°908°€%¢  00'FZT0ZE  00°9L9°I8F  00'8T6'€88  00°0ST'09%'T  G3C - & 162
9z'07E'C ITTIV'C TLT7L6'C 64'18¢G'E Ly 1GE'S 98°CLT'6 0L°€0T°GT VIT'LZ €999F  PIT'LC 899
IG018‘T 1G'LST°C 02'896°C 7S L86°C 79°2L0°L 08°2S¥7'CT 01°12%'1% G68'FSG  TL'E€SC  G68FS LS9
80°0 c0°0 700 €00 L0°0 r&dll| 200 0 620 0 959
7979 o€ 917} 871 7 (! ! JsoqTImo - owry 380q sut
speari# im unt Hd-d4ds eyeuR],
(pusen HJ-ddds sowr surmuny - Juod) 11"y o[qRL,

24



G000 948

600 ©%8 TT'L69C 8GL TT°0 9G6L  ¥6°G1 ggL  1T°0 g9l T9019°¢  L99
0T°'0 999 06°€6¢ 669 0,625t ¥99 110 ¢G99 6£99¢°T  TG9 98'8TG 864
IT°0 999 T19°0¢T Gag  GLLTI 76g  91°606 €99 110 ¢8G  LCVIT 196
8¢l™} sut QeI sut - 8¢l™? sut 8¢} sut  Qgl™? sut - 8¢l™? sut

(g€ Jo 61) MOY T UI3Lm POA[OS SEdURISUT QUSRY) 10] SPRAIY 87T UMM Hd-dddS soumr) Suruuny g1’y o[qeL

00°28299¢  00°S€S‘STS  00°890°€29  00°STITGL9  00°€0L'€F6  000S1°C89'T — 6SLFL 89 LIS'T 6ELFL  SSS
01T°€06'66  00°8SC‘FIT  00°GSO°LFT  00FLF'60C 00FPG'0IE  00°S6£°69S 00°CEE'TE6 110°28 TIF¥6ST TI0°L8 LS8
80°0 €00 7070 G0°0 200 €z0 200 0 €9°0 0 968
— — — — — — 962 - 09% GG8
7971 A 9171 ! 73 ! ! 4S9 IMo oy 189( sut
speaIjF yyum unt gJ-d9d4S eeuR],
(suSen) HI-dddS sowr} Surnuny - “yuod) |11 V| o[qRl,

25



00°0€T'CTT  00'TIL'€CT  00°9LL'6FT 00FT0'88T  00°L9'89¢ 00°CL6IST  00FEF'LLL  F06'C 19'¢cL's  ¥06'€C €1
€L°6C 18°6% eI ey L6°GT LT'8L LE6VT 097 0 70 0 4
0T'LGL°€9  0€TLV'EL  0T°990°'G66  00FCI'EFT  00°067°€0C 00C9ETIE  00°€68°CH9  G8L°C 9z'156'Cy  98L°C T
009LT°€CT  00°CY6°€ET  00°0TS'6ST  00°0LZ'G8T  00°99%°2SG 00008707  00'780°699  OPL'T 7L€88'8  OFL'T 01
96'67<'6 95TV’ L 0L'G60°6 06'908°€T  09°290°Tc  08'T1S9¢ 0€°L6€'8G 099°C S A 099°G 6
— — — — — — — 00T 7G0T 00T 8
00'8TP'€ET  00°LT'0ST  00FFT'T6T  00°GPET9C 00 T60°88€  00°L6€°L89  00°0FG'L6T'T  L9T'€ Ly'ges'e  L9T'e L
92'88¢C'T T8E6E'T 19°69G°T 89°L86'T 76766°C G9°99¢'y L6°LOT L 2659 98991 c65°'9 9
07'9LT°Cc  08'S¥6'Gc  0T°'1S9'TE  OF'E9P'6€  0G°00S°69  00°CLORIT  00°9F€'L8T  FS0'F  LE0SE'T  FS0'F G
G0'9€6'C 18°9z¢'¢ VE'€0S'e 0T'S8T'¥ 65129 LET6L'6 00°020°ST 998°G 08'621T 998G 1
0L'8G0°8T  OF'L88'6T  0L'8EE'ST  08'9¢6'F€  09°LLF'T9 00726001  00°LOS'T9T  06€'T L0'68¢ 06€'T €
eI TIPS 8GTET'Y GY'T8’L OT'LPF'0T  0€'8€T°LT  09°09¢°0€ 0T €2E 9 76LT LOVLY'T  V6LT é
00°2G0°GET  00°990°T¥T  00'FEL'TLT  00'TSE'€0C  00°€60°0L5  00°C90°FEF  00°6I8FIL €S 8G'€6 57 I
7973 o€ 917} 871 7 (! I} Js9qTImo - owry 380q sut
speaIi# YIm unt Hd-ddds eyRUR],
Soourisul

O[[9IIO1)) 10} Spealy) IoA0 HJ-JgJS sewr) Sumuuny :¢1'Vy o[qe],

26



99°29 16°69 16°98 CeTIl ce €8l 95°62¢ 16°69G 0 070 0 8%
0229 G7001 16°€6 9L'9T1 €€°061 LE'€ee €9°9L5 0 V€0 0 Lz
16°¢¢ L0 06°G¥ 059G 6566 GLL9T 6¢'80€ 0 €50 0 9%
19°16 6€°0L 7369 10°8L 97 1€T 77 €T 1811V 0 1€°0 0 Gg
— — — — — — — 8.8 - 19L %4
¢0°0 G0°0 €0°0 10°0 10°0 200 10°0 0 LT0 0 €2
AR c6'ce 097 92°69 68°96 LOF9T 68'16% 0 €50 0 (&
L9VE iy €e'9v 98°69 GL'L6 8C0LT 65°50€ 0 020 0 1C
61°102°G I7'6E6'Y T7'G9L'G ey'19g'8 0TTLE'CT  0T'998°TC 08'93C°LE LSLT gT91¢ LSLT 0
GT'698°T 98790°C TLSVV'C cears’e LLT0SY 16'GTG'S 0S°€T8'CT 0 7€ 0 61
— — — — — — — 192 - €L 8T
cv'L9 08°GL 08701 09221 12°€38 90°90% 6L°€0L 0 08°68T°T 0 LT
79'€96'7 TEEVL'S LT9€9°L 08'8PI'GT  0T'CS8'8T  0C'C9¢E'8E 02'93C LS GeT'e 67'70G G8T'e 91
76°9.3°C 60°8€5°C Ve 60T°C TLST'S VL1999 0£°9€0°CT 0€°CLT'TT Vel 8L°96¥ Vel a1
08°0T9°LT  0L°€09°0¢  0TTET'SG  0€L80°L¢&  OT'TIL'89  00°LET'9ET  00°T69°90¢  GLO'C 1L°685°e  GLOC VI
7973 ce 917} 871 7 (! I} Js9q Mo - owry 380q sut
speaIi# YIm unt Hd-ddds eyRUR],

(O[RIPI) HA-dgdS sowy Summuny - 3uod)|e1°y]

9l9eL

27



eI LTy 88°99% €6°19G 0S°0TL 89'TGT T 8G€06'T LY8VT'E 0TE'CPT  GG08 01e'SvT  €F
09°2V0°T c6'61C'T c6'7ET T gTThi'l 08'L£0°C 1€T8T'¢ €9'80.L°¢ L8V'LG 696V L8V°LG oy
687G 18°C% ¢e'1E 79°07 76°C9 GGGTT €6°L6T c01'69  90°Ce c01°69 v
e Le 7S67 7108 7€'89 GV LIT 9L71% LY 16€ 0 070 0 1)7%
co'ee L68€ L0°GS ¢8G9 GO'GTT 01’11 0G°88¢ 0 87°0 0 6€
€0 ¢T°0 LT0 90°0 G0°0 110 910 0 8€°0 0 8¢
8C €61 86'7G¢ 10°G5¢ 00°98¢ ¢8'%99 €V'€CT'T 97" LET'T 0 68°G6S 0 L€
9¥'ce €9°0F LGSy 7S 6S 1L°€0T cee61 16705 0 770 0 9¢
80°0 89°0 80°0 ero G0°0 110 9T°0 0 L¥0 0 ge
90°0 90°0 60°0 L0°0 90°0 110 8T°0 0 070 0 Ve
GLLE 63 LY 7€'6S 179 65621 erere €9'1EY 0 870 0 €e
87°9¢ 06T €896 L6°69 99°¢11 6£°01G 0L99¢ 0 87°0 0 4
88'8C 69°L€ LT Ly 00°LS L9°'86 00°L8T v eee 0 S7°0 0 1€
LG'T68 GLTe G447 68°GT T cL'9L9 LYOVTT C8'698'T 0 99) 0 0€
e8'LE 90°0% S8 €64 0996 GOTLT 74°00€ 0 €20 0 6
7973 ce 917} 871 7 (! I} 189q Mo dwry 380q sut
speaI)# Yim unt Hd-dddS eyRUR],

(O[RIPI) HA-dgdS sowy Summuny - 3uod)|e1°y]

9l9eL

28



OF'P8Y'9T  06'C0G°LT  09°96T°CC  0L'€EELT  0£'906°0F  09°68€°0L 00'TESOTT  Toe'sh  T1€GeT cTe'ay 8¢
797900°C LTELT'T LT'129°C 07'68¢°¢ LY'8TLG 6L'818°8 09'€€9°GT VIG'€9  TT'L6 v16°€9 LS
0£76L°C 0€£763'¢ 9 Ver'y 86°09L'9 0Z'8TS'0T  0S°890°6T 0€' 107 7€ 688'FL  60°CCT 688'FL 9¢
veTe co'LE 1L°6¥ 67°CL 61°0CT 16°8€¢ 80°00F GIET9 L0801 GIE Y9 qq
16°0V7'C 67'769°C ereLe'e 94°¢¥8'G ay'L30°8 00°LLO‘€T 00'TEV'VET 608°8TT  €9°70T 608°8TT %9
€9°61¢ TL78S 6T°LE8 18°620°T T€T99°T 90'696°C 20'969°¢ w878 76911 7878 €g
L6°92T°T L6°00€'T 6€°€8LT 00'€2€C €0'870'F LLTEV L 09'8TG°CT ar0'e6  G9LTT ar0'c6 s
09°LTT'T 69°L9C°T 18'89¢°T 65 TV0°C €L9.Lg'e 13°€V8'9 0970701 80767  ¥8'16 802 6 I¢
G6°L66 1G'8S6 8T'661°T GLTET'T LE969°T e8V19°C AN T60'TE  GG'6S g60°1E 0
80°66T L6°0T¢ e 6€T L1°G8¢ LE°60F 1G°L89 187201 6V LL  8E€6S 677 LL 67
€9°G88°C eroee’e 9761 00°€0%'9 02°L69°0T  0T'L99°LT 09°G8S 63 CI9v9  0LG0T e19'79 8F
€T1GET 98 LTV'T VI 1091 76°'100°C 6€°056°C Gz'991°¢ €6°09€'8 €48°cL  GE€'T9 £68°CL Ly
GG'0VE'T GT'TSET 09'8L9°C 67 €TT'E €T°G9¢ Y gLTIE L 097G 1T VILTE 80 VIL'TE 97
07°GeS'T 98°VLLT €1°6G8°'T 79°G13'C A4S 10°€L9°¢G 09°CIT'6 GE6'8G  86°08 GE6'8G 97
LT'6LS 00'91¢ 18°264 6G°GL9 cL€e6 0T TLE'T LL9LT'G 991°Ce 08¢ 991°ce 4
7973 ce 917} 871 7 (! I} Js9q Mo - owry 3s0q sur
speaI)# Yim unt Hd-dddS eyRUR],

(OPIDL) HA-dFdS sowr) Supmuny - 4uod) g1y 9[qe,

29



V6'61€8 19°086°8 08°¢PL°0T  007SC'9T 0T TI¥FP'GC  097€9°9¢ 0€'€08°LS GRL'8C  6V'16 GRL'8T €L
06°007'T 796691 00'€38'C TLLG0°E LETLT'G 19°665°6 08'T%9°LT 98¢y  8T'89 98C‘€ gL
70 LV0'T 078251 L9°L9G°T I8'TVEC 91°¢09°¢ 897469 0€°€60°CT LOOGFT  TT°96 LOOCFT 1L
c8'891 eV 681 01°20¢ 29'88¢ 9€°08¢ GG 965 06668 c01'eL  699¢ c01'CL 0L
64'€98°8 VL'GT9V TGC6T'8 0Z'0P9‘TT  08'98L°CT  0T'G6V'ST 0L'L08°6¢ SIT'TL  €0'GY 8TT‘TL 69
88'7€€E 96°0T€ 00'TLE 86'9€¢G G49) LOTIET 6T°T80°C 0213 66°GC 021°2¢ 89
69°8LC VL 068 07"62¢ 9¢-98¢ G794 00°LV6 LOTVI'T 06£'6c  €6'9C 06£'6C L9
€0°64¢ VLGS L8°629 80°€EL 65'8T0°T 95°0€9°T Ce8ST'T G89°6G  T8'LI G89°6S 99
08°€0¢ 1700 V2T 6.°08¢ 86907 7€°80L 02'890°T 969°92T 80TV 969°0¢T 99
c5'9¢L 1€°6£6 €C'168 08°690°T 0L90G'T 68°€€T'C €9°697'F ¢LG'T6  V6°6€ cLS'T6 79
ce €0 68'8C¥ 1L°GT¢G 81°999 05°€20°T 0G'9LLT L9'T98°C Lre'eL  TTeE IARE)) €9
00'69S°LC  09'86L°6c  0€'6G€'Ce  0LLSE'6E  0V'865'0F  0€°CL6'6L 00°CL8'LIT  69LFV  1€°L€ 69L 7Y 29
96°€81 erele V2 64T 96'€T¢ 71695 07'2¢S0°T 89'269°1 916'GL TV’ 9T6°GL 19
TT'1L6°9 9¢°L8G°G V2 8T’ L 0SFPIT'IT  000€CFT  0G°9857¢ 0T 'LV 6¢ G9L'09 €T LET €9.'09 09
GR'ERL'T 09'286°'T 8L'86¥'C L8'T1C'E 79°0€5°G 90°crL'8 07'88L°GT 666'05 676 6660 65
7973 ce 917} 871 7 (! I} Js9q Mo - owry 380q sut
speaIi# YIm unt Hd-ddds eyRUR],

(OPIDL) HA-dFdS sowr) Supmuny - 4uod) g1y 9[qe,

30



€2°698°T 6.790°C V9 TIVE'C 7E'648'e 828699 07'8GT 0T 08'L3L°9T 98T°€Ey 7409 981°¢cey 88
06'6IT°'6T  02'9.0°0c  09°199'CC  060¢6'Lc  0L'L9E'0V  06'96L°€S 08°C9L LL 1GG'86E  96°L¥ 166'86¢ L8
9T ¥V 16°€91 ¢9'20g 98°6.¢ GG 6L 67769 09 TIST'T LIF'19¢  #1'89 LIV 19 98
89'98¢°¢ €L°008'y 0L'88T°G V1°LEL'L 0T'78C'TT  00'885°0C 0L'89L°GE 99L7GG  8ETL 99.76¢ <8
8L°06€'T T€°LG€°T LE706G'T L8°CI8'T GC'199°C 92'916'¢ 181899 0L9°62¢ 699 0L9°62¢ 78
G0'80G°C VI'TLLT GE'6ST'E IT9€EG 18°€2€'9 18°¢L8°6 06'96L°9T TGL'8SY TGV TaL'8ey €8
€1°65T°C GTeIv'T 80°0L5°C 84°690°¢ 09°0€7'y e 0v0°L 02'G0L'TT 6.7'607  C1°99 6.7'607 T8
00761 9€'661 L1138 78°04¢ 9¢'18¢ oL L6V 00°L€L GeY'E8E  €1°0€ Ger'ese 18
8L°00G°T PR TI6LT 6£'G61°C L8°GTV'E 09'600°G 6T'TT0'6 0Z'786°GT LST'ST  €L'9L LGT'8T 08
17°G¥e V0'6L¢C 17'9%¢ €0°09% 61°CV8 GLTRT'T 17°L31°C 666 FTT  TI0L 666 7T 6L
1291V GO €9¥ ST7LS L8°07L C6T9E'T €7'870°C 6G'8LEE COV'6T  99°6L cov'61 8L
L' L8T'T LO6TV'T L8°L0S'T 0€°26€°C VO'EI6'E L8°006°9 0S'937'CT LI8'TE 87’78 LI8'TE L2
LL'8TLE 66'070°C 96'095°€ ARSI 8G'€66'0 OT'FLLTT 0%'LLS 0T gge'es  GLGL qelafde 9L
0T°9L€ €9°€6¢ L2997 V2 066 I8°108 T0°0TG'T 16'86€°C c09'Tc  LG'LL c09'1¢ Gl
LLVLO'E 89°07¢€'€ €1°286°¢ ¥G'GGL%9 72 069°L 0S716°CT 0,022t LLL6T  TTEL LLL'6C 2
7973 ce 917} 871 7 (! [ Js9q Mo - owry 389 sut
speaIi# YIm unt Hd-ddds eyRUR],

(OPIDL) HA-dFdS sowr) Supmuny - 4uod) g1y 9[qe,

31



L9790 66'7€S 6029 029G ¢G'646 V6'LEV'T 19°632°C c09'8LE  T0O9F c09'8L¢ €01
G9'€95 8¥'68¢ 86'€99 8G'9€8 8G°960°T 8E'9L9°T SV'709°C TLS'T6Y  G0'GS gLe'e6y 201
CT'LVY vavov 9¢°9¢¢ 0Z'L19 9¢°6.8 Trece't A AN 066'CGE  LT1°8G 066'cSe 10T
ervIe 0S°97€ L¥'GT 82°92¢ 9T'€18 Vo TLET €6'C0€C 9eL 1€V 86708 9eL 1€V 00T
ET'8TI 79°621 76'2CT 8C'6€¢C erece 00'7¥S L8326 RIC'€9€ 13901 RIG'€9E 66
87011 86°CC1 8T'LGT L8°TET ANEYS G879 PREIT'T T8G°0cS  €T06 geae'0cs 86
NS 12°99¢ 96°¢vv rANIIAS €9°788 65781 68'GTSC 065°L0V  T6°C6 065°L0V L6
ce IVl P1°9GT 68°66T 29°'18¢ oy8Ty €L°60L 651201 /FF'CSY 0961 /¥F'CSy 96
LOTSS'T 06'€06'T 68°038°C T6'998°C €6'992°¢ 0€'8TT L 06'200°CT 926°91S  0C'T0T 9z6°91¢ 66
00°928°F7LS  00°6STTE9  006LF'6T9 00L8L6L9 00°9L°T€E6  00°090°LTF'T — I76'ce€  0£°86 I76'cee 76
1008’1 79095 7G96G°T L6°L86'T CE68T°E 10°L87'C 06'7LE°0T €Cre0v ¢4 ael €ereor €6
c0'c16 69286 8L°01C'T TOLLY'T L8'€ET'T 66'€L0V 8T'TTT L eST'19e  9€°€0T ee1'19¢ 6
18°16L 659498 82'€20°T 08°02¢'T GRI6LT G9'LE6'T 9% L6V'G €€6'6E€ 8689 £€6'6€ 16
¢6'003'S 87" LIV'G €TVLE' 90°189°L OV’ LVF'IT  OF'8TE'CT 0T'8L8'€T €99'T0V  L679G €99°T0V 06
€L°8ET'C 6T°01S'C GG'8LL'T e0'1LE'E LV'66L°G GT0eT'L 0502501 g60'0TV  G8°9F g60'0Tvy 68
7973 ce 917} 871 7 (! I} Js9q Mo - owry 389 sur
speaIi# YIm unt Hd-ddds eyRUR],

(OPIDL) HA-dFdS sowr) Supmuny - 4uod) g1y 9[qe,

32



0T°GL8F7E  0T°CP0'SE  0S°9FF'ch  00FLI'GS  0L'1SE'C6  00°TOLLPT  O0'TTT'IEG  6VL'6VE  €T'C9 67L6VE  STT
TLTIT'T L9°2TT'T L8T8V'T €2°006°T 80'GT6°C T9'8E6'T 99'500°6 078°C0S  TL'LIT 078'c0S  LTT
80°0L¢ 16°129 GI'1EL 16°G26 CevLE'T LIVLT'C 60 1LV 109°06S  68°L0T 109°06S 91T
08'800°T L9CVT'T cO' 197’1 CT'I86'T €6'165°¢C 9G°GT8'G 09°'L¥8°01 068957  8G'GTT 068957  GTT
€9'87¥ eCVLY 9%°6LG 67°GEL LRTET'T 80°036°T 16°G9T°¢ VLV'EOY LT L0T VLV'EOY  VIT
G6'6€8 9¢'288 6TT70°T 0L°€TET 789L6'T TOLY'E Gr'eLE’9 679°65C  86°L0T 679°65¢ €11
8T°16¢ 01°82¢ c6'eEy 69066 8€°G00°'T 08°T6L'T €9'613°C 0TT'L9¢  90°FTT 0TT'L9¢ ¢IT
8L'T8¥ cv'8SS 0L'97L 6€°€10°T 86'80L'T GgI0T'E 18°€61°9 eeL'ere €L 101 geleve 111
09°€S7'T 007291 86'€8L‘T 60°970°C Ve 1L9C GTVTCV 20’6659 69L°8TF 2909 69L°8TF  OTT
I8°918°T 0T°GOF'09  00°€S6°GST  00'8TL'GIT  00FTGL0E 00FFL'R8C  00°LEV'LTV  FOO'€TV  L6TS V00'€TV 60T
¢e 19 €T'76¢ 88'8GE 16°G9% €58V 18°€3e'T 9% EVT'C €6L°097  0€°6¢ €6L°097 80T
6€°29¢ co ave 7S 78¢ 65°0S¥ 26'609 1€°2L6 [ANdat 99L.°¢5e  TE€TY 99L°¢G¢  L0T
90789 76'GTL 19828 90'950°T TTLIV'T 66'€TV'C 96°006°€¢ 6LETEY 819G 6LETST 90T
97"60L ARSS) c8'GGL G6°950°'T 090071 EV'8LT'C 6£°957'¢ 908'07  T19°T¥ 908'0S%  SOT
T9°LVE'T ceE0V'T 0€'69G°T 86°0€6'T 7L70S°C 0T'TL8'E 9L°GL8'9 €96°L59¢  L0°9¢G €96°L5¢  T0T
7973 ce 917} 871 7 (! I} Js9q Mo - owry 380q sut
speaIi# YIm unt Hd-ddds eyRUR],

(OPIDL) HA-dFdS sowr) Supmuny - 4uod) g1y 9[qe,

33



90°9¢T G0'€ST 187261 18°€5¢ 0S' 71V 09°TEL GO'SFC'T €]T°06E  SL'¥8 €81°06¢ 02T

dalses 19°9G6 9¢°¢1T'T 9% 079°T G8'G99°C PP LCT'S ]¢'168'] 9%0'¢LS  SL'1TI 9%0'¢LS 61T

979 e 9171 873 i ! 1% Jsoq o  owry 1s9q sur
speaayi# Yam unt HJ-44dsS eRUR],

(O[RIPI) HA-dgdS sowy Summuny - 3uod)|e1°y]

9l9eL

34



8V 70z 0l GI'96¢'T 61T 90°GL0°C LIT ¥L'GTL  9TT G9LLLT CIT 9L8FS  FII
PI'GEO'T  €IT 69267 ©IT 66°9F0°T TIT 1I8°68T'c OIT TO0FV9  SOT ¥8Lgh  LOT
19926 90T 6C°LeS'T GOT 62'8EL'T FOT LS9TO'T €0T FL'8EL  TOT GI'CI6 10T
OTFIF 00T €1°00c 66 090, 86  0F'¢eS L6 ¢6'00c 96  1ST19€°C 66
9LV86'T €6  OT'FIC'T @6  FF8¥8 16  F&80F'E€ 68  P9F0S'E 88 €678 98
V0Ty'c ¥8  68°09¢ I8  8LTES’T 08  66'C¢F 6L ¥G9Z9 8L ¥I'T00T LL
8T°09G  GL  90°LET'C oL ¥TGLOT 1L 0I'8WG 0L  68°CLL 89 €SIV L9
LETV8 99  GT'€8C €9 G6°0L0T F9  98°88L €9  T6LEE 19 L6C08C 6
08°€0€'e L& GT'IG ¢G  0€6I0'T €%  T10T00T @& 06'€L9°T TG  €0°86S°T 0S
gLees 67 TISSPI'C Ly TT60T'S  9F  LE6PIC  SF CETLOT R LT'908  €F
LS6VLT  oF 970¢ W 1€76 07 L8'€L 68 FI0 gE  LE®TF L€
L8769 9¢  0T0 ¢e 80 Ve TLI8 € 198L ¢e  c0vs 1€
L6089 08  0F'€6 6c 6T9LT 8¢  GTL6T L& 6V90T 9  FLIGT ST
010 €c  06'88 ¢c  L0€cl  Te GLGPT LT 6L°CS ¢r LO6LIC 9
8C17) sur - QpITY sur - QgI™} sur - Qpl™} sur - Qgl™} sur - QpI™} sut

(0ZT 3O ¥8) dNOY SUO UMM POA[OS SIOURYSUI O[[OIIOL)) 10J SPEIIY} 8T UM Hd-dfdS sour) Suruny H1'y oqeL,

35



Appendiz A.3. Comparison of serial versions of the algorithm

Table A.15: Statistics for the four algorithms on Rubin instances solved within one hour in

serial execution (means taken over instances solved by all four versions)

Algorithm SPHP+PH SPHP MF-SPHP-PH MF-SPHP

#solved

#b&b-nodes ()
time per node (@)
#columns (&)
)

(
(
(
(

#columns per node (&

29 29 27 27
13 20 19 24
3.20 3.06 2.96 2.89
1905 2084 2586 2714
o1 59 92 96

Table A.16: Statistics for the four algorithms on Gagné instances solved within one hour in

serial execution (means taken over instances solved by all four versions)

Algorithm SPHP+PH SPHP MF-SPHP-PH MF-SPHP

#solved

#b&b-nodes (&

6]

(2)
time per node (&)
#columns (&)

(2)

#columns per node (&

14 14 14 14
11 21 13 22
18.26  17.92 18.70 18.46
2813 3293 3463 3856
94 100 102 107

Table A.17: Statistics for the four algorithms on Cicirello instances solved within one hour in

serial execution (means taken over instances solved by all three versions)

Algorithm SPHP+PH SPHP MF-SPHP-PH MF-SPHP

#solved

#b&b-nodes (@)
time per node (&)
#columns ()

(2)

#columns per node (&

53 45 27 25
63 70 79 79
19.35  22.05 12.12 14.27
4524 5343 4806 4916
98 99 39 10

36



€ee 1 07 €ce I STy €ee 1 617 €ce 1 9T’V 78°€ GI6'T 809
GLO'T L 6€°CT GLO'T L LVeT 82O'T L 6L°CT 820‘T L 76°CT a7 6ge'L  L0S
vOO'T LV vZ'9 865 62 V6V 0v8 ag 879 ove €2 G667 200 0 909
€08 L€ 89°'¢ (4 I 16°0 929 172 VLY (4] 1 6.0 200 0 G09S
4 I €0°0 4 T 700 4 T €00 4 1 100 €00 0 709
09T 6 €e’LT 09T 6 XAV S a7 A O 16'L1 CET'T 6 90°ST v0'e L6¥'e €09
4 I 100 4 I 100 4 1 100 4 1 100 100 0 209
ges S 09°0T  g€8 g 90T  6L0'T L LTET 6.0T L veer 60°C 19¢ 105
42 1 0.0 47! I 190 44! 1 6g 0 7! 1 Gg'0 a8'0 099°c  80%
09Z‘T LT 90'¥ 0921 L1 16°¢ 8LLT LT 8Y'g 8LLT LT Ly 870 198°T  LO¥
799 € 16T 6 I v€0 1€9 € i 6 1 62°0 000 0 90¥
44 6¢ 070 1€ T €10 L3¢ £ 070 1€ 1 80°0 00°0 0 SO¥
621 I Lv'0 621 I 170 621 1 ey 621 1 €7°0 70 290‘T WOV
91T 1 €70 911 I 87°0 911 1 97°0 911 1 S0 €8°0 8IF'e  €0F
629 € 71 (414 6 76°0 (197 qT 91’1 86 € €0 00°0 0 oo
08g € GL°0 08¢ € 7.0 0€% € 18°0 0€2 € 180 1€°0 06 0¥
S[00# sopou  euwl) S[00# sopou#  owI} S[00# sopou#  ouwIy S[OO# sopou#  owI} oury Tea sur
dHJS- AN Hd-dHJS- AN dHdJS Hd+dHJS eqRUR],

soouRlsUI UIqny uo

Suryouriq [euoljoeIj-jsowr Suisn pue o1isunay [ewld pue AS9j3el)s Juryouriq

MOU SUISN W}LIOS[e 97} I0J S}NSSI UOIINIAXD [RLISS Jo uostredwo)) :RT1'Y d[L],

37



cov'6 1€ T6'C99  CIV6 1€ 01299 L£8°L  1¢ €4°LES Le8°L 1t GL°9GS LL°66 208C¢  80L
— — — — — — 9%ty 161 16'7€LC  T9%'ch 161 TT°TLLC 2838 68L°€C  L0L
(é I 10°0 (e I 10°0 e T 10°0 (e 1 10°0 01°0 0 90L
€CT 1T €F 67'88L €3I €F 69608 865G 1T 19'66¢€ 865°c  1C 9¢°LT¥ 0¥’ 1L 90%°GT  ¥0L
— — — — — — 8LLTE €€ 06'TCT'c  8LLCE  €€1 8609T°C  9€°CS 909z €0L
e 1 10°0 e I €0°0 e 1 €0°0 e 1 10°0 60°0 0 2oL
196°¢ 11 I7'GeT  9.3'¢ 6 8T'6TT T%9'F &I 12°€9T 2e9v 41 LLELT T6°CE TeLy 809
€8C'¢S 12 ¥2'99T  €8C'¢S 12 LOVLT  SPP9 €C 76702 Svr'9 €T 88°L1¢ 09°LT 696CT 209
18T 69 6ccc  1S¢T 19 L9186 CET'T 69 61 1% 514 00°0T €00 0 909
68971 611 17°687  689F%T 611 8T L6V  ¥66'L 19 08°79% ¥66°'L 19 €0°6.L¢ €L°6C 26061 %09
TeLVT 68 60C8V  TELVI 68 79687  ¥86'8 &g GLV68 ¥86'8  G¢ GGIIE 1€°81 18G°LT €09
LI9T 19 125c  VIFT  GS 96°'1c  60F‘T 19 S0°0% 786 |57 9¢°LT €00 0 209
6€0C L €C'19 6€0c L VL9 1€2'€ 11 8166 ovL‘T S 6L'€S 1€°L 4 109
S[0O# sopou  owl) S[00# sopou#  owl} S[00# sopou#  euwry S[OOF# sopou#  owI} oy Tea sur
dHJAS- AN Hd-dHJS-AN dHdS Hd+dHJS eRUR],

(urqny uostredwod [eLIdg - .pcoov_wﬂ.m_ o[qeT,

38



m 1 200 4 1 L0°0 4 1 G0°0 m 1 200 €9°0 0 998
m 1 200 4 1 €0°0 4 1 €0°0 4 1 200 19°0 0 (4]
m I 200 4 1 200 4 1 L0°0 4 1 200 cs0 0 9¢.,
GL8's  ovl LL°69S 1L T G0°08 080°L  6¥I 02°709 99¢ 6 06°L8 17°0 0 GG
4 I 700 4 1 200 4 1 200 4 1 €0°0 70 0 49
4 I 200 4 1 €0°0 4 1 700 4 1 200 62°0 0 959
990'6T 1€ €LL86'C 99061 1€ 09'8€T'e  0C€6 61 TLTVS'T  02E6 61 60°69G°T TL'GSE 0O GQ9
m 1 200 4 1 S0°0 4 1 200 m 1 200 erall] 0 299
69L°TT 6T LEPRST  69LTT 61 07'28¢‘T  €2S'eT  1¢ 99°L28°T  €CS'el  1¢ 89'TG8‘T  89'8%C  T.86T  8S¢
N I 200 4 1 200 4 1 200 4 1 100 81°0 0 98¢
qco0'9 18 67°61¢ 6g0'9 18 90°€T¢ 699 69 v2°69€ 699 69 12°68¢ 130 0 Gqg
697'c 4T G8'169 697'c gl L€°289 Leey 11 87°GES Leey 11 L1°99S L8LLT  €S9VT  V9S
4 1 200 4 1 S0°0 4 1 200 4 1 100 LT0 0 (444
99L'e €T 29°'8€9 99L'¢ €T 2e 079 vav's 11 69'7LS vev's 1T 19765 €C9TT €81 16¢
S[0O# sopou  owIl S[0OF# Sopou#  owI} S[00# sopou#  euwry S[OOF# sopou#  ewI} oy Tea surt
JdHJS- AN HJ-dHJS-AN dHdS Hd+dHJS eyRUR],

soour)sul guder) uo (JgJS-JIN) Sulyoueiq [RUOIIORIJ-ISOW JUISN pue

onsumey [ewid (JgdS) moyys/(HJ-ddds) ysm A8erens Surgpuerq mou

Sursn wyjrIoSe 9y} I0J SHMSAI UOIINIAXS [eLIdS Jo uostredwo) :GI'Y ORI,

39



e T 910 (e 1 91°0 (e I 8T°0 (é I 910 Lv'0 0 ag
e 1 8T°0 (é 1 020 (e T 8T°0 (é 1 8T°0 0¥°0 0 Ve
ves'e 16T TL 688 7e8'e 16T 1€°9v¢ ove'e G6 LE°8TV Lov'e €6 €9'TEY 870 0 €€
168'¢ €eT 1€°62¢ 168'¢ €cT 0€°92¢ 290y 10T G€'0G€ 290V 10T 0L°99¢ 870 0 (44
1.8'€ 6T 66'€62 1L8'€ 621 00'16¢ g6e'e 101 16'8€€ 178°'C 68 ANSSS S7°0 0 1€
€988 €L 0S°00L €98‘s €L 88°0L9 L.8'Tc 101 ¥6°L£0°C  ¥0T'0C 68 78°698°T ¢G8'L 0 0€
I8¢ GIT 2900%S 128G GIT 78°€VE 6cv'y €11 €L°88C 8Ly TII 7¢"00€ €20 0 62
0.6 €0T 16'8LS 0.6 €0T 64799 ¥09°'L 6L G0°99¢ L8T°L  LL 19°699 070 0 8¢
ges’L 66 9%°GGS €IG'L 16 7€°9€S ¥e6'9  LL 78°€09 9009 29 €9°9LG v€°0 0 1g
G187 g€l 05°20¢ SISV g€l 79°00€ 098F7  LIT 76°90€ 678‘c 90T 62°80€ €20 0 9C
8G9 €TIT TeTLE 8GT‘9 €11 G0'69¢ 68%'CT  €L1 80'8L9 €Le's L6 1211V 1€°0 0 Ge
e 1 100 e 1 10°0 e 1 10°0 e 1 100 LT0 0 €
6c19  1€1 T 68¢ 6c19  1€1 £1°68¢ oLy 111 81°68¢ 199 66 68°16¢ €20 0 (&4
189 1el GV 68€ 9900 61T VL8LE T0L% 01 GT°L0€ as8'e €6 69°20¢ 020 0 12
10006 L91 91°680°T 100C¢ 19T ¥6'TLO'T  — — — — — — 7€ 0 61
— — — 9ge € VoL L€68 LS TC80T'T  98%'% 68 6L°€0L 08'68T°T 0 L1
6ge‘e  CTIT 8T'EVT 6g¢e'e G1T 1L°TVE 612‘¢ GoT V2 67T 7€6'C 66 09752 170 0 4
S[00F# Sopou#  ouwI) S[00# sopou#  ewry S[OOF# sopou#  owI} S[O0# Sopou#  owI} owry rea surt
dHJS-AN Hd-dHJS-AN dHdJS Hd+dHJS eRUR],

seouR)sUL O[[a101) U0 (JJS-AIN) Sulyoueiq [eUOIIORY-1SOW JUISN pue

onsumay Tewtid (Jgds) moynm/(HJ-dddS) ym ASeqerjs Suryouelq mou

Sursn wyIrIo8[e 9Y) I0J SHMSSI UOINIAXS [eLIdS Jo uosuredwo) :0g'V o[BI

40



— — — — — ¥Z8CT 67 76'696'C 1188 12 7' L81C  TT°0L 666'FTIT 6L
— — — — — — — — gg6'el TV 69°8L€'C  99°6L ToV'61 8L
— — — — — 798%T g€ 18°GET'e  8EL'0T 6T 19'86€'C  LG'LL 209'1c G
vi6°'e €I 16°L68 7656 11 66018 186’9 €I 6£°€66 goT'9 11 06°€68 69°9¢ coT'sL 0L
— — — — — ¥OTLT  6¢ 91°'190°c  ¥9T'LT  6€ 61°'180°C  66'9% 0e1'ce 89
— — — — — TL'6T 1€ 29°069°c  09%'0T 61 LOTVP'T  €6'9¢ 06£6c L9
eI'TT €¢ 60°€68°c ¢TI €€ T8'668C  LFP99T 1T 60°LEV'T  LP9OT 11 TE8SV'T  I8'LI a89°6¢ 99
— — — — — — ¥0€'6 61 GR'EEV'T  99L9 €1 02'890°T  80°T¥ 969°0¢T 99
— — — — — 8IT'1Z 1% 16'7€8c  SIT'IE 1¥ 19'198°c  1T1°€E JARH) €9
— — — — — 60T%T 1€ GTTI6'T  TEECT  6¢ 89°C69°T TV I¥ 916¢L 19
0er'c ¢ L8°89¥ vIe'T ¢ G8'88% 81‘c L 0T°€€S 6L'T G 80°00¥ L0°'80T qrevy9  Gg
— — — — — 9L5'8T 60 18°.78c  9e8'9  <I I8'7C0'T  8€'6S 6V7'LL 67
— — — 786G TS 6C7IV'E  60LTC GG 89°CTT'C  €00'9T €€ LL9LT'T 08¢ 9916 TV
— — — — — V61 6L 8G'€LT'C  G0L'0T  TL L8'8FTE  GG08 0Te‘SYT  €F
R4 € ¥0'26¢ 67T T 82961 967 G €9°0LY 6S7'T 1 €6'L61 90°¢¢ 2o1‘69 3%
88z'c 611 81°¢0€ 88z'c 611 $1°00€ 0z8'es 101 10°TLE 0z8'es 101 L7168 0%°0 0 1)
gee'y  €el 78'2TE gee' v €el 06°€T€ 80s‘c 16 61°€8¢ cor'e 18 09°88¢ 8%°0 0 6€
e 1 910 (e 1 81°0 (é T L1°0 (é 1 910 8¢°0 0 8¢
— — — — — 6VS'GT  6S GLVET'C  67S'ST 69 9V LET'T  68°G69 0 L€
8SV'y g€l ereve 6ve'vT g€l €2°6€¢ vIg'e 20T LT°0VE ver'e 10T 12°09¢€ 70 0 9€
S[00F# Sopou#  ouwl) S[00# sopou#  ewry S[OO# sopou#  owI} S[O0# Sopou#  owI} owry rea sur
dHdS AN Hd-dHJS- AN dHdS Hd+dHJS eRUR],

(ofpoatory) uostredwod [eLIog - .pcoov_om.m_ o[qer,

41



— — — — — — 29e'eT €% 90°069'c  96%'c €1 G987C'T  €L78 €81°96¢ 0TI
— — — — — — — — — 9L9°€T L€ 16'G9T°C  L3'L0T TLY'E9Y  FIT
— — — — — — 0ev9T €9 89'89G°€  6LEFT LG €9°615°e  90FIT 0TT'L9¢  GII
— — — — — — €L6'TT 1T 78'TIT'T  €L6TVT 1T 9T'eVI'T  0€°68 €6L°09% 80T
— — — — — — 6061 63 87'086'C €966 11 [AN44 2 SR (8 4 99.76¢  L0T
— — — — — — — — — 629'CC  6¥ 96'006‘c  81°9S 6LE'FSY 90T
— — — — — — — — — 0L0%¢  €F 6€957'c  19'T¥ 908057  SOT
— — — — — — veeve  €F 6€861°C  8FL'ST 1O 19°92%'c ¢0'9% 209'8LE €01
— — — — — — qes’1e L€ 60901 GQLLLT 60 S7'709°c  S0°SS ¢LS'T6Y  T0T
— — — — — — — — — gzovI ST T9TeT'c L1°8S 066'C6¢  TOT
— — — — — — — — — 996'6 61 €6'20€C 8608 9€L'TeY 001
— — — — — — €19°0T €T 60°GST'C  180F 6 18'0C6 12°901 81S‘€9¢ 66
— — — — — — 0L0‘¢c 61 LGOTT'T  0L0°S 61 P'EIT'T €306 785'02S 86
— — — — — — — — — 168°TT 68 68°'G0S‘'C  ¢6'C6 069°L0V L6
— — — — — — w6's ST 00°€Se’'T  ¥E¥'S €I 6¢°18¢°'T 096 8¥F'eST 96
— — — — — — 619°0T €0 V9T ¥86'8 61 0S'IST'T  ¥1'89 LIV'19¢ 98
91Z‘9T €T 92'799'C VL6V 1 0v'evL — — — 7.6V T 00°L€L €10¢ agriese 18
S[00F# Sopou#  ouwl) S[00# sopou#  ewry S[OO# sopou#  owI} S[O0# Sopou#  owI} owry rea sur
dHdS AN Hd-dHJS- AN dHdS Hd+dHJS eRUR],

(ofpoatory) uostredwod [eLIog - .pcoov_om.m_ o[qer,

42



1060

1065

1070

1075

Appendix B. Detailed Speedup Results of Computational Experi-

ments

This section of the appendix presents detailed results on the speedup of
the parallelization approaches (SPBP-PH and HPBP-PH). The following tables
B.21HB.26| show summary speedup statistics for both versions of the algorithm
and for the three benchmark sets. The first column contains the algorithm
acronym, the second column contains the abbreviated name of the statistical
metric, followed by the metric values over the number of threads used in the
algorithm. The indicators include medians (Med), averages (Avg), standard de-
viations (SD), and the coefficients of variation (CV; which is the ratio of the SD
and Avg). They were taken from instances in the respective benchmark set that
took at least 60 seconds to solve, to account for cases where no parallelization
(or even column generation) was used, e.g. when the algorithm terminated with
the initial schedule found by the heuristic.

This is followed by visualizations of the same data as box plots in figures
B.2HB.4] Finally, plots of the parallel efficiency for the algorithms are shown in
figures and table shows the comparison of waiting conditions during
the execution of the two algorithms (see Section [5).

Table B.21: Average overall parallel speedup (Rubin)

#threads 1 2 4 8 16 32 64

Med 1.00 158 253 440 527 6.6  7.04
SPBP  Avg 100 158 248 418 526 614  6.85
PH (SD) (0.00) (0.04) (0.30) (0.44) (0.48) (0.74) (1.07)
(CV)  (0.00) (0.03) (0.12) (0.11) (0.09) (0.12) (0.16)

Med 1.00 173 289 447 546 630  7.10
HPBP  Avg 100 173 278 442 547 589  7.10
-PH (SD) (0.00) (0.07) (0.37) (0.59) (0.56) (L.11) (1.34)
(CV) (0.00) (0.04) (0.13) (0.13) (0.10) (0.19) (0.19)

43



Table B.22: Average overall parallel speedup (Gagné)

#threads 1 2 4 8 16 32 64

Med 1.00 164 280 441 586 7.74  8.93
SPBP  Avg 100 1.64 282 462 610 T7.89 887
PH (SD) (0.00) (0.12) (0.30) (0.73) (1.14) (1.79) (2.56)
(CV)  (0.00) (0.07) (0.11) (0.16) (0.19) (0.23) (0.29)

Med 1.00 177 293 475 613 754  9.16
HPBP  Avg 100 1.78 297 483 646 863  9.88
PH (SD) (0.00) (0.15) (0.58) (0.99) (1.35) (3.81) (3.46)

(CV) (0.00) (0.09) (0.19) (0.20) (0.21) (0.44) (0.35)

Table B.23: Average overall parallel speedup (Cicirello)

F#threads 1 2 4 8 16 32 64

Med 100 170 286 437 590 7.19 7.81
SPBP  Avg 1.00 1.68 286 436  5.73 7.04 9.78
-PH (SD)  (0.00) (0.12) (0.37) (0.86) (1.28)  (1.85) (21.11)

(CV) (0.00) (0.07) (0.13) (0.20) (0.22)  (0.26)  (2.16)

Med 1.00 174 289 437 589 7.51 8.29
HPBP  Avg 100 171 2.8 446 1144 917 1257
PH (SD)  (0.00) (0.19) (0.58) (1.92) (41.60) (14.69) (41.33)

(CV) (0.00) (0.11) (0.20) (0.43) (3.64)  (1.60)  (3.29)

44



Table B.24: Average parallel DP speedup (Rubin)

#threads 1 2 4 8 16 32 64
Med 1.00 1.67 2.95 6.35 10.38  15.72  22.89
SPBP Avg 1.00 1.67 2.96 6.07 10.15 15.33  22.54
_PH (SD)  (0.00) (0.04) (0.34) (0.60) (1.01) (2.45) (5.35)
(CV) (0.00) (0.02) (0.12) (0.10) (0.10) (0.16) (0.24)
Med 1.00 1.86 3.51 6.72 11.22 16.92  25.05
HPBP Avg 1.00 1.85 3.39 6.57 10.96 15.45  25.93
_PH (SD) (0.00) (0.06) (0.41) (0.62) (0.97) (4.01) (5.55)
(CV)  (0.00) (0.03) (0.12) (0.09) (0.09) (0.26) (0.21)

Table B.25: Average parallel DP speedup (Gagné)

F#threads 1 2 4 8 16 32 64
Med 1.00 1.74 3.35 6.41 10.60 18.74  32.63
SPBP Avg 1.00 1.73 3.30 6.36 10.78 18.51  29.39
-PH (SD) (0.00) (0.10) (0.27) (0.49) (0.86) (2.31) (6.36)
(CV)  (0.00) (0.06) (0.08) (0.08) (0.08) (0.12) (0.22)
Med 1.00 1.91 3.61 7.05 12.21 21.35 35.44
HPBP Avg 1.00 1.90 3.54 6.89 12.11 21.52  34.42
_PH (SD) (0.00) (0.10) (0.61) (0.79) (1.12) (3.95) (6.78)
(CV)  (0.00) (0.05) (0.17) (0.12) (0.09) (0.18) (0.20)

45



Table B.26: Average parallel DP speedup (Cicirello)

#threads 1 2 4 8 16 32 64

Med 1.00 182 354 670  11.76  19.84  28.46
SPBP  Avg 100 183 356 6.69  11.75  19.93  35.52
PH (SD) (0.00) (0.11) (0.29) (0.68) (1.14)  (3.66)  (76.87)

(CV) (0.00) (0.06) (0.08) (0.10) (0.10)  (0.18)  (2.16)

Med 1.00 190 361 679  12.28 2044  30.40

HPBP  Avg 100 187 362 710 2795 2725  50.93

PH (SD) (0.00) (0.19) (0.67) (3.14) (116.36) (45.94) (190.33)
(CV) (0.00) (0.10) (0.19) (0.44)  (4.16)  (1.69)  (3.74)

46



Figure B.2: Box plots for parallel Speedups (Rubin)

64 e HPBR-PH 64 e spar-pH
linear linear
32 32
16 o 16
5 5 o
o o
@ 8+ o) o 8+ o) o]
& &
44 4
o
2 2 ©
1 T T T T T T 1 T T T T
1 2 4 8 16 32 64 1 2 4 8 16 32 64

threads

threads

(a) Parallel Speedup DP (Rubin, HPBP-PH) (b) Parallel Speedup DP (Rubin, SPBP-PH)

64

32

16 -

speedup
o]

—— HPBP-PH 547 S spappH
linear linear
32 1
16 4
a
=}
-
1 § 81 o
&
o
i a o] o
o] o 0
i o 2 S
T T T T T T 1 T T T T T T
1 2 4 8 le 32 64 1 2 4 8 16 32 64
threads threads

(c) Overall parallel Speedup (Rubin, HPBP- (d) Overall parallel Speedup (Rubin, SPBP-

PH)

PH)

47



Figure B.3: Box plots for parallel Speedups (Gagné)

64 -

—»— HPBP-PH
linear

541 s spappH

linear

32

—

T T T T T 1 T T T T T
4 8 16 32 64 1 2 4 8 16

threads threads

64

(a) Parallel Speedup DP (Gagné, HPBP-PH) (b) Parallel Speedup DP (Gagné, SPBP-PH)

64

64

threads

— HPBP-PH —»— SPBP-PH
linear linear
32 1
16 4
o o]
2 . o
o i
a o)
@
4 0 9
o]
2
O
1 T T T T T T
1 2 4 8 16 32 64
threads

(c) Overall parallel Speedup (Gagné, HPBP- (d) Overall parallel Speedup (Gagné, SPBP-

PH)

PH)

48



Figure B.4: Box plots for parallel Speedups (Cicirello)

64 -

—»— HPBP-PH
linear

541 s spappH

8 linear

1 T T T

threads

1 2 4 8
threads

16

32 64

(a) Parallel Speedup DP (Cicirello, HPBP- (b) Parallel Speedup DP (Cicirello, SPBP-

PH) PH)
647 e vpBPPH 647 e seappH
linear linear
32 9 32
o o
16 8 16
=% (o] o] a
% g % 5]
H g 8 H
44 4
o
o ol o
2 o @ 2
o
1 T T T T T T 1 T T T T T T
1 2 4 8 16 32 64 1 2 4 8 16 32 64
threads threads
(c) Overall parallel Speedup (Cicirello, (d) Overall parallel Speedup (Cicirello,
HPBP-PH) SPBP-PH)

49



Figure B.5: Average parallel efficiencies

10 10

E— \ e

aer saron
o o1\
506 S06 \
" " \
00
s % 5 % % P s » » ) E) P
reads reads

(a) Parallel efficiency DP (Cicirello)

(b) Overall parallel efficiency (Cicirello)

efficiency

> HPBP-PH

PBPPH

¢ HPBPPH
PBPPH

efficiency

10 20 30 40 50
threads

(c) Parallel efficiency DP (Rubin)

threads

(d) Overall parallel efficiency (Rubin)

efficiency

e HPBPPH

SPappH

e HPBPPH
E

efficiency

30 40 50
threads

(e) Parallel efficiency DP (Gagné)

Table B.27: Ratio of average number of times entering the waiting condition in SPBP-PH

E)
threads

(f) Overall parallel efficiency (Gagné)

and HPBP-PH for 2 to 64 threads (no waiting in single-core execution)

Srewgmrs o 4 8 5 @ 6 o
Rubin 126 317 86 1 5 0 76
Gagné 541 219 92 137 287 2 182
Cicirello 47 24 588 5 28 54 107

50



1080

1085

1090

1095

1100

Appendix C. Recomputed Results of Tanaka and Araki’s Experi-

ments

We re-enacted all the experiments in Tanaka and Araki| (2013) on the same
hardware as the experiments in In their study, the authors used
different settings for the algorithm depending on the instances to which it was
applied to. The first setting was applied to instances Nos. 41-120 of the Cicirello
set and the second one to the Rubin, Gagné and the rest of the Cicirello set,
using different amounts of memory to store their network structure for what the
authors call the “second stage” (denoted by “512MB”, “2GB” and “20GB” in
the tables below). For the specifics, see Tanaka and Araki| (2013)).

To replicate the computational environment as closely as possible, we con-
ducted the experiments with the implementation unchanged, applied prepro-
cessing to instances Nos. 1-40 of the Cicirello set (removing zero-weight jobs
under certain conditions), and used the same settings reported by the authors.

The two main differences from the originally reported data are hardware and
the fact that the cluster didn’t allow us to run programs for more than 21 days.
Since the instances in question (except for Cicirello No. 18 with 14 days) took
the authors more than 30 days to solve (using “20GB” memory), we ran them
for 14 days. The timelimit affects the results for the following instances (with

the running times from [Tanaka and Araki| (2013)) in parentheses):

e 751 (34 days), 851 (> 30 days; unsolved) and 855 (> 30 days; unsolved)

from the Gagn’e set; and
e Nos. 18 (2 weeks) and 24 (30 days) from the Cicrello set.

Note, that we set a hard time limit of 14 days, so instance No. 18 may have
taken only another hour to solve and prove optimality.

The detailed running times from the re-run experiments are given in Tables
The first three columns in Tables and give the name of
the instance from the Rubin and Gagné set, the number of jobs in the instance,

and the optimal or best known objective value for the instance. The following

ol



1105

1110

1115

three columns show the running times for the instance from the re-enacted
experiments on the cluster, using different amounts of memory for the “second
stage” of the algorithm as mentioned above. In case the re-run experiment did
not terminate within the timelimit, the second column also shows the original
objective value (from the original experiments in their study) in parentheses
where applicable. Also, provably optimal objective values are highlighted as
bold numbers.

Table gives the same information for Cicirello instances Nos. 1-40 as
the previous two tables, only omitting the column with the number ob jobs,
since all instances from this set contain the same number of jobs (60).

Finally, Tables[C.31]and [C.32] address instances Nos. 41-80 and Nos. 81-120
of the Cicirello set, respectively. Both tables contain columns for the name of
the instance, the optimal value, and a single column for the running time, since

no increased amount of memory was required for these instances.

Table C.28: Runningtimes Tanaka and Araki on Rubin instances

Name jobs Opt 512MB 2GB  20GB

401 15 90 0.34 0.34 0.31
402 15 0 0.01 0.00 0.01
403 15 3,418 0.56 0.54 0.53
404 15 1,067 0.46 0.48 0.44
405 15 0 0.00 0.00 0.00
406 15 0 0.00 0.01 0.01
407 15 1,861 0.48 0.48 0.48
408 15 5,660 0.87 0.85 0.85
501 25 261 2.18 2.14 2.09
502 25 0 0.01 0.01 0.01
503 25 3,497 3.10 3.08 3.04
504 25 0 0.03 0.03 0.03
505 25 0 0.02 0.02 0.02

92



Table C.28: cont. - Runningtimes Tanaka and Araki on Rubin

instances

Name jobs Opt 512MB 2GB  20GB

506 25 0 0.02 0.02 0.02
507 25 7,225 4.27 4.28 4.22
508 25 1,915 3.86 3.84 3.88
601 35 12 7.48 7.36 7.31
602 35 0 0.05 0.05 0.05
603 35 17,587 18.37  20.33  19.73
604 35 19,092 25.73 2574  27.32
605 35 228 13.84  13.57  14.90
606 35 0 0.05 0.05 0.05
607 35 12,969 18.32 1795  17.60
608 35 4,732 33.33  33.09 3292
701 45 97 49.55  60.15  55.34
702 45 0 0.10 0.09 0.09
703 45 26,506 53.58  53.71  52.36
704 45 15,206 72.01 7231 7140
705 45 200 866.47 599.48 862.37
706 45 0 0.11 0.10 0.11
707 45 23,789 53.35  53.63  52.32
708 45 22,807 100.73 100.58  99.77

Table C.29: Runningtimes Tanaka and Araki on Gagné instances

Name jobs Opt 512MB 2GB 20GB
551 55 183 116.23 150.63 282.44
552 55 0 0.18 0.17 0.17

]



Table C.29: cont. - Runningtimes Tanaka and Araki on Gagné

instances
Name jobs Opt 512MB 2GB 20GB
553 55 40,498 116.16 114.99 112.04
554 55 14,653 277.87 281.62 278.99
555 55 0 0.30 0.27 0.28
556 55 0 0.19 0.18 0.18
557 55 35,813 146.85 146.07 140.91
558 55 19,871 229.22 230.05 228.58
651 65 247 26,575.61 4,611.69 2,298.27
652 65 0 0.25 0.25 0.26
653 65 57,500 343.74 304.17 262.80
654 65 34,301 390.76 381.56 389.30
655 65 0 355.72 430.00 1,816.32
656 65 0 0.30 0.29 0.30
657 65 54,895 263.95 261.66 253.71
658 65 27,114 471.35 469.43 466.63
751 75 225 (225) — — —
752 75 0 0.45 0.44 0.45
753 75 77,544 839.59 598.87 565.95
754 75 35,200 907.44 888.11 887.85
755 75 0 0.42 0.41 0.41
756 75 0 0.54 0.54 0.52
757 75 59,635  1,197.81 844.79 741.33
758 75 38,339 998.00 991.69 987.59
851 85 363 (360) — — —
852 85 0 0.62 0.63 0.61
853 85 97,497 251942 2,219.22 6,188.71
854 85 79,042  1,451.49 1,222.28 1,177.04

o4



Table C.29: cont. - Runningtimes Tanaka and Araki on Gagné

instances
Name jobs Opt 512MB 2GB 20GB
855 85 260 (260) — — —
856 85 0 0.63 0.64 0.63
857 85 87,011 6,130.77 4,594.41 4,897.54
858 85 74,739 1,867.57 1,850.23 1,817.68

Table C.30: Runningtimes Tanaka and Araki on Cicirello instances

1-40

Name Opt 512MB 2GB 20GB
1 453 120.06 101.78 93.58
2 4,794  4,841.34 1,499.98  1,474.67
3 1,390 2,173.60 1,000.58 589.07
4 5,866 206.60 169.31 129.80
5 4,054  3,563.57 2,350.37  2,768.09
6 6,592 166.86 243.35 171.90
7 3,267  8,640.60 3,622.47  6,680.84
8 100 122.22 109.55 105.54
9 5,660 139.24 130.39 124.33
10 1,740 16,455.70 9,783.92  8,883.74
11 2,785 — 120,893.73 42,921.26
12 0 0.42 0.43 0.41
13 3,904 15,674.95 8,722.61  9,907.07
14 2,075 20,705.47 8,764.03  3,555.71
15 724  2,802.18 841.15 496.78
16 3,285 840.15 802.80 504.49

99



Table C.30: cont. - Runningtimes Tanaka and Araki on Cicirello

instances 1-40

Name Opt  512MB 2GB 20GB
17 0 1,180.80  2767.39  5,696.84
18 773 (767) — — —
19 0 3.41 3.47 3.42
20 1,757  762.29 334.69  316.22
21 0 0.22 0.20 0.21
22 0 0.23 0.25 0.23
23 0 0.17 0.18 0.17
24 761 (761) — — —
25 0 0.32 0.33 0.31
26 0 0.23 0.25 0.24
27 0 0.35 0.36 0.34
28 0 0.40 0.40 0.46
29 0 0.24 0.23 0.23
30 0 8.00 8.14 7.85
31 0 0.47 0.48 0.45
32 0 0.51 0.51 0.48
33 0 0.50 0.51 0.48
34 0 0.40 0.43 0.44
35 0 0.47 0.47 0.50
36 0 0.44 0.46 0.48
37 0 2,890.32 595.89  2,542.07
38 0 0.38 0.38 0.40
39 0 0.48 0.48 0.53
40 0 0.41 0.40 0.43

96



Table C.31: Runningtimes Tanaka and Araki on Cicirello instances 41-80

Name Opt  Time
41 69,102  32.06
42 57,487  45.69
43 145,310  80.55
44 35,166  58.20
45 58,935  80.98
46 34,764  54.08
47 72,853  61.35
48 64,612 105.70
49 77,449  59.38
50 31,092  59.55
51 49,208 91.84
52 93,045 117.65
53 84,841 116.94
54 118,809 104.63
55 64,315 108.07
56 74,889 122.09
57 63,514  97.11
58 45,322 135.31
59 50,999  92.49
60 60,765 137.23

o7

Name Opt Time
61 75,916 41.42
62 44,769 37.31
63 75,317 33.11
64 92,572 39.94
65 126,696 41.08
66 59,685 17.81
67 29,390 26.93
68 22,120 25.99
69 71,118 45.03
70 75,102 36.69
71 145,007 96.11
72 43,286 68.28
73 28,785 91.49
74 29,777 73.14
75 21,602 77.57
76 53,555 75.75
7 31,817 84.48
78 19,462 79.56
79 114,999 70.12
80 18,157 76.73




Table C.32: Runningtimes Tanaka and Araki on Cicirello instances 81-120

Name Opt  Time
81 383,485  30.13
82 409,479  66.12
83 458,752  42.51
84 329,670  46.59
85 554,766  74.38
86 361,417  68.14
87 398,551  47.96
88 433,186  60.54
89 410,092  46.85
90 401,653  56.97
91 339,933  68.98
92 361,152 103.36
93 403,423 125.52
94 332,941  98.30
95 516,926 101.20
96 455,448  79.50
97 407,590  92.92
98 520,582  90.23
99 363,518 106.21
100 431,736  80.98

98

Name Opt  Time
101 352,990  58.17
102 492,572  55.05
103 378,602  46.02
104 357,963  56.07
105 450,806  41.61
106 454,379  56.18
107 352,766  41.31
108 460,793  39.30
109 413,004  54.97
110 418,769  60.62
111 342,752 101.73
112 367,110 114.06
113 259,649 107.98
114 463,474 107.27
115 456,890 115.58
116 530,601 107.89
117 502,840 117.72
118 349,749  62.23
119 573,046 121.78
120 396,183  84.73




	Introduction
	Literature Review
	Machine Scheduling
	Parallel Branch-and-X Algorithms
	Parallel Dynamic Programming Algorithms

	Decision Support Model
	A Serial Branch-And-Price Algorithm
	Node Selection and Branching Strategy
	Column Generation Process
	Primal Heuristic

	Parallelization of the Serial Branch-And-Price Algorithm
	Computational Experiments
	HPC Environment and Benchmark Instances
	Pretests
	Parallel Performance
	Impact of Parallelization
	Speedup Analysis


	Conclusion
	Detailed Running times
	Hybrid Parallel Branch-and-Price with primal heuristic
	Strict Parallel Branch-and-Price with primal heuristic
	Comparison of serial versions of the algorithm

	Detailed Speedup Results of Computational Experiments
	Recomputed Results of Tanaka and Araki's Experiments

