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Abstract

Scheduling problems occur in a broad range of real-world application fields and
have attracted a huge set of research articles. However, there is only little
research on exact algorithms for scheduling problems, many of which are NP-
hard in the strong sense. We investigate the problem on a single machine with a
total weighted tardiness objective function and sequence-dependent setup times.
First, we adopt a serial branch-and-price algorithm from the literature and
present a modified branching strategy and a primal heuristic. Second, we use the
potential of parallel computing architectures by presenting two parallel versions
of the branch-and-price algorithm. Third, we conduct extensive computational
experiments to show that our parallelization approaches provide substantial
parallel speedups on well-known benchmark instances from the literature. We
further observe that the parallel speedups achieved by our parallel algorithms
are very robust among all tested instances.
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1. Introduction

In this study, a single machine scheduling problem with sequence-dependent
setup times and a total weighted tardiness objective function is examined. This
scheduling problem can be classified as 1 | STsq | Y- w;T; in the established
a | B | v notation by |Graham et al| (1979)). We refer to this problem as the
Weighted Tardiness Scheduling Problem with Sequence-Dependent Setup Times
(WTSDS). The scheduling problem 1 || Y w,T; without setup times is already
NP-hard in the strong sense (Tasgetiren et al., 2009; Lawler, |1977). Since it is a
special case of WTSDS (by setting all setup times to zero), WT'SDS is strongly
NP-hard as well.

Problem WTSDS can be described as follows: a set of jobs has to be pro-
cessed without disruption by a single machine, which can only process one job
at a time. Each job has a processing time, a due date and a weight. For ev-
ery pair of jobs, processed in direct succession on the machine, a setup time is
incurred. Since these setup times depend on both jobs, they are called sequence-
dependent. When the completion time of a job is later than its due date, it is
called tardy, with the tardiness set to the time elapsed between the due date
and the time of completion. The goal of WTSDS is to find a feasible schedule
with minimum total weighted tardiness.

There already exist many studies addressing the WTSDS, see |Allahverdi
et al.| (1999, [2008), and |Allahverdi (2015)) for an overview. However, only a
few articles present exact algorithms for WTSDS or one of its generalizations,
see Section [2] for details. Since none of these papers report optimal solutions
to large (e.g., more than 100 jobs) WTSDS instances, such instances are still
computationally intractable.

In our paper, we adopt a serial branch-and-price (b&p) algorithm — a special
kind of a branch-and-bound (b&b) algorithm where linear relaxations are solved
by column generation — which was originally proposed by [Lopes and de Car-
valho| (2007) for a generalization of WTSDS — and present a modified branching

strategy which exploits problem specific sequencing information obtained from
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the column generation process. We also develop a primal heuristic in order to
derive feasible schedules from the fractional solutions of the linear relaxations.
Using this sequential b&p algorithm, we present two parallelization approaches
to utilize the computing power of modern parallel hardware (Hager and Wellein|
2010). The scalability of our parallel algorithms (and limits thereof) is tested us-
ing established benchmark instances introduced by |Cicirello| (2003]), |Gagné et al.
(2002) as well as [Rubin and Ragatz (1995]). Our computational experiments
show that the proposed parallelization strategies provide substantial speedups
with very little variations for the instances mentioned above.

Unlike most studies that parallelize b&b algorithms by concurrently solving
nodes in the b&b tree, our study focuses on using CPU cores to parallelize the
column generation process in individual b&b nodes, which has not been studied
for the underlying problem. Gaining insight into the computational behavior of
this type of algorithmic parallelization is valuable for a joint application of both
parallelization approaches in future research, not only for the studied problem
WTSDS, but also for its extensions.

The remainder of this paper is structured as follows. In Section[2] we provide
a comprehensive overview of literature on machine scheduling as well as parallel
branch-and-x (b&x) and dynamic programming algorithmsﬂ The mathemati-
cal formulation of WTSDS is proposed in Section [3] In Section[d] a serial b&p
algorithm for the WTSDS is presented. Then, we introduce two parallelization
strategies for the b&p algorithm in Section [5| Detailed computational experi-
ments of the proposed parallel algorithms are presented and discussed in Section

[l Finally, Section [7] concludes.

1The latter is used to solve the so called pricing problem during column generation in our

b&p algorithms.
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2. Literature Review

2.1. Machine Scheduling

Various types of machine scheduling problems have been studied by nu-

merous authors. Comprehensive reviews covering machine scheduling problems

with setup times were composed by |Allahverdi et al.| (1999, [2008) and |Allahverdi|
(2015)). Using the three-field notation « | 8 | v by |Graham et al.| (1979), we

focus on scheduling problems on single machines (« = 1) and parallel machines
(o = P for identical machines, a = @ for uniform machines and « = R for unre-
lated machines) with sequence-dependent setup times (8 = STyq), and objective
functions 7 that are at least as general as the total weighted tardiness.

There exist a variety of (meta-)heuristic approaches for these problems,

among them Ant Colony Optimization (Liao and Juan, [2007; Anghinolfi and|
2008)), Evolutionary Algorithms (Xu et al) [2014b), Iterated Local
Search (Subramanian et al., |2014; Xu et al., [2014a; Subramanian and Farias,
2017)), Scatter Search (Bozejko| [2010; /Guo and Tang, 2015) and Variable Neigh-
bourhood Search (Chenl [2019; Nogueira et al.| [2022)). [Kramer and Subramanian|

provide an overview of solution approaches for various earliness-tardiness
scheduling problems, including WTSDS. Although (meta-)heuristic approaches
are often able to produce high-quality solutions, they generally don’t come with
any guarantee of finding optimal solutions — let alone proving their optimality.
Especially since proving optimality often times takes up most of the running
time for b&b algorithms (tailing-off ), a comparison regarding running-times
would be skewed. Hence, we focus on exact algorithms in the following.

, Balakrishnan et al.| (1999), Zhu and Heady| (2000), and |Akyol and Bay-|
considered the total weighted earliness-tardiness objective function
(- wiEj 4+ > wiT;), which coincides with the total weighted tardiness when

all earliness weights w/ are set to zero. Balakrishnan et al(1999) modeled the

problem Q [ STsq | 3 wjiEj + 3 wT}, while Zhu and Heady] (2000) and |Akyol

and Bayhan| (2008) addressed the problem R | STsq | Y w)E; + 3 wiT; by

Mized-Integer Programs (MIPs). The former two were able to solve instances
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with up to 12 (9 respectively) jobs and 3 machines using a commercial solver.
The latter were also not able to solve larger instances with their exact algorithm
based on artificial neural networks.

Lin and Hsieh (2014) present a MIP model for R | STsq | > w;T; and

use a commercial solver to solve instances with up to 12 jobs on 3 machines.

[Tavakkoli-Moghaddam and Aramon-Bajestani (2009), [Lopes and de Carvalho|

(2007), and [Lopes et al.| (2014) solved the same scheduling problem by presenting

b&b and b&p algorithms based on MIP formulations. The former were capable
of solving instances with up to 10 jobs and 4 machines, while the latter two
were able to solve larger instances with up to 150 (180 respectively) jobs and
50 machines within slightly more than one hour (four hours respectively).

Regarding WTSDS, |Tanaka and Arakil (2013) implemented an exact algo-

rithm capable of solving instances with up to 85 jobs within a maximum of

34 days, while [Nogueira et al|(2019) proposed several MIP formulations which

were used to solve instances with up to 20 jobs within one hour.
considered the problem without weights, 1 | STsq | > 7}, and developed
an exact algorithm able to solve instances with up to 45 jobs within half an
hour.

In addition to the paucity of research on exact algorithms for machine
scheduling problems, none of the exact approaches cited in this Section ex-

ploits the opportunities of parallel computation. In our paper, we address both

of these issues by adopting the algorithm of [Lopes and de Carvalho| (2007)

for WTSDS, modifying its branching strategy, developing a primal heuristic
to obtain upper bounds more frequently, and presenting and computationally

evaluating parallelized versions of the adapted algorithm.

2.2. Parallel Branch-and-X Algorithms

Parallel b&x algorithms have been applied to various types of problems.

The list of considered problem types comprises assignment problems (Galea and;
(2011)), graph theory problems (e.g., |Christou and Vassilaras| (2013))),

knapsack problems (e.g., [Ismail et al. (2014))), mixed integer linear programs
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(e.g., |Carvajal et al| (2014)), stochastic optimization problems (e.g.,
(2017)), and traveling salesman problems (e.g.,(Ozden et al|(2017)). Fur-
thermore, flow shop scheduling problems (e.g., [Chakroun et al| (2013alb)), job
shop scheduling problems (e.g.,|Adel et al.| (2016); [AitZai and Boudhar| (2013)),
parallel machine scheduling problems (Rauchecker and Schryen| (2015} [2018))
and the problem 1 || . T; are considered; for a comprehensive

overview of the application of parallel b&x algorithms to optimization problems,

see (2020)).

According to the framework for parallel optimization in operations research

introduced by (2020)), there are three types of parallelization strategies

for b&x algorithms. These are based on the taxonomy of |Crainic and Toulouse|

(2003) and |Gendron and Crainic| (1994). In the first strategy, which is based

on domain decomposition, the solution space is split, and the partitions are ex-
plored concurrently, which for b&x algorithms means that multiple active nodes
of the b&Db tree are explored simultaneously. For this concept, in-
troduced the term coarse-grained intra-algorithm parallelism. In coarse-grained
inter-algorithm parallelism, the second strategy, the solution space is not de-
composed, but multiple b&x procedures are executed concurrently on the same
solution space. In the third strategy, which calls fine-grained
intra-algorithm parallelism, only a small, predefined part of the algorithm is
parallelized when exploring a local region. Hence, this is also called a low-level
strategy. This entails that the computation of an operation at a single b&b

node is executed in parallel.

[Rauchecker and Schryen| (2015) implemented a fine-grained intra-algorithm

parallelization strategy in which solving the pricing problem and the branching

decision is parallelized. |Chakroun et al.| (2013b)) chose the same parallelization

strategy by computing the lower bound of each node of the tree in parallel on

graphics processing units (GPUs). |Carvajal et al.| (2014) chose a coarse-grained

inter-algorithm parallelization strategy. They execute several configurations of
a solver in parallel, each applying a b&b procedure on the same mixed-integer

linear programming problem while sharing information with each other.
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In all other studies on parallel b&x algorithms (based on the review by
)7 a coarse-grained intra-algorithm parallelization strategy is re-
alized (e.g., Aldasoro et al| (2017), Christou and Vassilaras| (2013)), Ismail et al.|
(2014), |Ozden et al. (2017), and Rauchecker and Schryen| (2018)). This is the

most natural, since most straightforward, way to parallelize b&x algorithms

(Schryenl [2020). |Galea and Le Cun| (2011) combined the coarse-grained with

a fine-grained intra-algorithm parallelization strategy in a hybrid approach. In
their article, the computation of the lower bound is vectorized and then paral-
lelized by means of single instruction, multiple data (SIMD) instructions.
also implemented a two-level parallelization on a GPU. On the one
hand, the computation of the lower bound at each node is executed in parallel,
on the other hand, multiple nodes are explored in parallel. These examples also
show that fine-grained and coarse-grained intra-algorithm parallelism are not
mutually exclusive and can be combined in hybrid approaches.

Regarding scheduling problems, there appears a high diversity of paralleliza-

tion strategies. (Chakroun et al. (2013Db)) and |[Rauchecker and Schryen| (2015)) use

a fine-grained intra-algorithm parallelization strategy for a flow shop scheduling
problem and a parallel machine scheduling problem, respectively.
let al| (2013al), |Chakroun and Melab| (2015)), |Gmys et al.| (2016 [2017), Mezmaz,
let al| (2014), and [Vu and Derbell (2016) apply coarse-grained intra-algorithm

parallelization to flow shop scheduling problems. [AitZai and Boudhar (2013)

and [Rauchecker and Schryen| (2018)) also present coarse-grained intra-algorithm

parallelization strategies for a job shop scheduling problem and a parallel ma-

chine scheduling problem, respectively. Finally, [Adel et al] (2016) introduce a

hybrid approach of coarse-grained and fine-grained intra-algorithm paralleliza-
tion for a job shop scheduling problem.

In our paper, we apply a fine-grained intra-algorithm parallelization to the
(single) machine scheduling problem WTSDS by parallelizing the processing of
linear relaxations at the b&p tree nodes. In particular, we parallelize the dy-
namic programming algorithm, which is the most time-consuming part of the

column generation procedure used to solve the linear relaxations. As this en-
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tails solving a kind of shortest path problem, this approach is not limited to
the problem WTSDS, but could be adapted to a variety of other algorithms
for optimization problems that involve solving a similar dynamic programming
problem. Acknowledging that parallelizing b&x algorithms through a coarse-
grained intra-algorithm parallelization by solving nodes of the b&b tree con-
currently is the most studied approach, we focus in this work on fine-grained
intra-algorithm parallelization. Once the individual effects of the fine-grained
parallelization are analyzed, without interfering effects such as early pruning of
b&b nodes due to processing them in parallel, a hybridization can be approached

in future research.

2.8. Parallel Dynamic Programming Algorithms

Parallel dynamic programming (DP) algorithms have also been applied to

numerous types of problem. [Kumar et al.| (2011), |Stivala et al.| (2010), and
use parallel DP to solve graph theory problems while Boyer et al|
(2012), Rashid et al.| (2010), and again |Stivala et al.[(2010) apply parallel DP to
knapsack problems. [Aldasoro et al|(2015) and Rauchecker and Schryen| (2015)

present parallel DP algorithms for a stochastic optimization problem and a

parallel machine scheduling problem, respectively. Applications of parallel DP

to several other problem types are presented by Boschetti et al| (2016), Dias|
let al.| (2013]), [Maleki et al.| (2016)), and |Tan et al.| (2009).

The only approach for using parallel DP as part of a column generation pro-

cedure is presented by Rauchecker and Schryen| (2015)) for a parallel machine

scheduling problem. In their parallelization, the solution space is divided into
independent subproblems, each corresponding to exactly one of the parallel ma-
chines, which are solved in parallel. This strategy is not applicable to WTSDS
since there is only a single machine in WTSDS. Consequently, we present a new
parallel DP approach for executing the column generation procedure in our b&p

algorithm in parallel.
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3. Decision Support Model

To present a decision support model for WTSDS, we rely on [Lopes and
de Carvalho| (2007, who investigate a generalization of WTSDS. Let {1,...,n}
be a set of jobs which must be processed by the single machine. For each job
J € {1,...,n}, the due date is denoted by d;, the processing time by p;, and
its weight by w;. We denote the setup times between two jobs i and j by s;;.
A feasible schedule w = (j1,...,4r), with 0 < h < n, is a tuple of pairwise
different jobs ji,...,jn and represents the order in which the jobs are processed
on the machine. We denote the set of all feasible schedules by 2. The parameter
aj, € {0,1} indicates whether job j is contained in schedule w. Furthermore,
the weighted tardiness of a schedule w, which is formalized at the end of this
section in equation , is denoted by T,,. For each schedule w € € we introduce
a binary decision variable z, which equals 1 if w is operated and 0 otherwise.

Consequently, WTSDS can be formulated as a binary linear program:

min Z T, - x, (1)

we

st Y ajwe=1 Vi=1..n (2)
we
d oz, <1 (3)
weN
z, € {0,1} weN (4)

The objective function represents the total weighted tardiness. Con-
straints ensure that each job is processed exactly once, while constraint
guarantees that at most one schedule w € 2 is allowed on the machine.

The weighted tardiness T, of a schedule w = (j1,...,jx) € Q is defined as

h

T, = Zmax{C’jg —d;,, 0} wj, (5)
£=1

where C;, denotes the completion time of job j,. Then Cj, = soj, + pj,, where
s0; represents the initial setup time to process job j first, and C; = Cj, _, +

8§, _1j. +Dpj, forall 2 <r < h.
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4. A Serial Branch-And-Price Algorithm

The model presented in the previous section can be solved by a b&p algo-
rithm. A generic description of this type of algorithm, first conceptualized by
Barnhart et al.| (1998)), is presented in Algorithm

Algorithm 1 B&p algorithm (Barnhart et al., [1998)
1: Solve linear relaxation of root node using column generation

2: Initialize set of active nodes

3: repeat

4:  Select an active node

5. Branch on selected node

6:  Solve new nodes’ relaxations using column generation
7. Update set of active nodes

8: until set of active nodes is empty

In the first step of the algorithm (line7 the linear relaxation of the root node
is solved by column generation, which is described in Section 4.2} Regarding
WTSDS instances, the root node of the b&b tree corresponds to the problem
modeled in 7, where constraints are relaxed to 0 < z, < 1 for all
w € Q (actually, x,, > 0 suffices due to constraint ) If the optimal solution
of the root node relaxation is integer, an optimal solution for WTSDS has been
found. Otherwise, the set of active nodes is initialized with the root node (line
).

After initializing the set of active nodes, lines are repeated until there
are no more active nodes left. First, one of the active nodes is selected to be
branched on. Branching creates two child nodes that are added to the set of
active nodes while the parent node is removed. The node selection (line
and the corresponding branching strategy (line |5)) are specified in Section

The next step is to solve the child nodes, again using column generation (line

230 @ Based on their optimal solutions, the set of active nodes of the b&b tree

is updated (line . In the course of the update, an active node is declared as

10



235

240

245

250

inactive in three cases. First, if the selected node’s relaxation is not feasible, or
second, if it has an integer optimal solution. The first case cannot happen for
our algorithm, since all columns are inherited from the parent node, but those
which become infeasible due to branching are heavily penalized in the objective
function. Regarding the third case, note that in a minimization problem, the
optimal solution of a node’s relaxation constitutes a lower bound on its optimal
integer solution. Therefore, third, a node is declared as inactive if the solution
value of the node’s relaxation is greater than the value of the best known integer
solution found so far in the tree, which is called pruning (or fathoming).

Once there are no active nodes left, the current best integer solution is also

the optimal solution for the WTSDS instance.

4.1. Node Selection and Branching Strategy

For node selection, we apply best-first search, where the active node with
the lowest lower bound is selected to be explored next. For branching on a
selected node, we follow an established approach, see for example (Chen and
Powell (1999) or |Akker et al.[(1999)), and introduce branching decision variables
Xij, which are defined as

Xij = Z Oijw - Ty < 1 (6)
we

for every i = 0,...,n and j = 1,...,n, where &;j, € {0,1} indicates whether
job 7 is processed immediately before job j in schedule w while (z,)weq is an
optimal solution of the selected node’s relaxation. Hereby, doj., is defined as 1
if 7 has no predecessor i in schedule w because j is the first job processed in
w, and 0 otherwise. In case z,, is binary for all schedules w € €2, X;; indicates
whether job i is processed immediately before job j or not. Accordingly, Xo;
indicates whether job j is processed first or not. Note that a;, € {0.1} in
and d;;, € {0,1} in (@ will be relaxed to aj,,dij, € N to significantly reduce
the state space of the dynamic programming procedure during the pricing phase

(Lopes and de Carvalho, [2007)).

11
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The branching strategy we use is a modified version of most-fractional branch-
ing (abbreviated by MF). While in MF a variable with a value closest to 0.5 is
selected, we also use problem-specific information. Our strategy for selecting a

branching edge therefore consists of two steps. First, we determine a set A of

the ntl)

55— edges (i,7) with the lowest values for |X;; — 0.5]. In other words,

these are the edges with the 1% most fractional values of X;;. Second, from this
set, we select the edge (i*,7*) with the lowest average weighted position over
all feasible schedules w, calculated by
(¢*,7%) = arg min Z ,, - position,;,, (7)
(i,5)€A wed
as we want to branch on an edge which is scheduled preferably early in the

most promising schedules. Note that for position,;,, we only consider the first

w
occurrence of an edge (7,7) in a schedule w; a discussion of why there may be
more than one occurrence is provided in Section The variable X;« ;- is the
one that we branch on.

By branching on X;-;-, job ordering restrictions are set for the two child
nodes of the node that we branch on. In the first child node, X;-;« is set to
1. This implies that only schedules in which job ¢* is processed immediately
before j* are permitted in this node. In the second child node, X;- ;- is set to 0,
which means that only schedules with job ¢* not being processed directly before
j* are feasible for this node. For both child nodes, the set of allowed schedules
is modified according to the imposed restrictions. Therefore, each node of the
b&b tree represents a problem following the structure of model —, only
each with its node-specific set of schedules . In the following, we denote these
sets by Q C O, where each w € Q complies with every branching decision that

led to the selected node.

4.2. Column Generation Process

In this Section, we detail the column generation procedure used to solve the
linear relaxations of the b&b nodes (lines 1 and 6 in Algorithm. All algorithms

in this Section are adopted unchanged from [Lopes and de Carvalho| (2007). As

12



noted above, b&b node relaxations all have the same structure — only differing
25 by node-specific sets of feasible schedules Q — and can therefore be solved by a

single column generation procedure, which we present in Algorithm [2}

Algorithm 2 Column Generation Procedure
1: repeat

2:  Solve a restricted form of the original LP called the restricted LP consi-
dering only a (typically small) subset of variables
3:  Solve the pricing problem for the restricted LP:

3.1: Let (m,0) denote the optimal dual solution of the restricted LP, i.e.,
7; is the dual variable corresponding to job j in constraints and o

is the dual variable corresponding to constraint .

3.2: Determine if there is any variable, i.e., column, z,, in the original LP

that has a negative reduced cost
n
ry =Ty, — Z aj,T; — O (8)
j=1

4:  Add the variable z,, with the least reduced cost to the restricted LP if
the least reduced cost

r* =minr, = min{ T, — E ajuT; — O 9)

weN weN =1

is negative, i.e., r* <0
5. until there are no more variables with negative reduced cost, i.e., an optimal

solution is found

The linear relaxation of a b&b node is referred to as the original LP. By
considering only a small subset of variables, the original LP is initially scaled
down to a so-called restricted LP (line 2). To build the initial restricted LP

20 of a node in the first execution of line 2, an initial set of variables is required.
For the root node, this initial set can be generated by any WTSDS heuristic.
We use the solution heuristic suggested by |Lee et al.,| (1997)) for our algorithm.

For all other nodes, the initial set is inherited from the parent node. Note

13
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that branching on an edge (i*.5*) creates two child nodes, in one of which the
job i* is prohibited from directly preceding job j*. The way the edge was
calculated in , this leads to at least one infeasible schedule w, where z,, > 0
holds in the solution of the parent node. To ensure a feasible linear program,
schedules which become infeasible must still be accessible in the next iteration
when the child node is processed. Otherwise, the dual variables needed in the
pricing problem (see line |3|in Algorithm [2)) cannot be computed. Hence, these
schedules must not be removed from the problem immediately, but are penalized
in the objective function by a sufficiently large value instead. Note that the
alternative of introducing an artificial schedule & containing all jobs also adds
the corresponding coefficients a5 to the model, which affects the computation
of the dual variables 7; and could ultimately have an impact on the column
generation process. Since infeasible columns are only added to model in one
more iteration, the size of the LP is not an issue.

After that, in line 3, the so-called pricing problem is solved, which corre-
sponds to identifying the variable (i.e., column) z,, with the least reduced cost.
The pricing problem is solved by dynamic programming, which is described later
in Algorithm [3} In line 4, the variable x,, with the least reduced cost (if nega-
tive) is added to the restricted LP. If there are no more columns with negative
reduced costs, the optimal solution obtained for the restricted LP also serves as
an optimal solution for the original LP and thus for the linear relaxation of the
processed b&b node.

To solve the pricing problem in line 3 of Algorithm [2| a dynamic program-
ming algorithm, which is described in Algorithm [3] is used. For this algorithm
to be viable, we have to allow for cyclic schedules, where jobs may be processed
more than once in the same schedule w € 2. This reduces the state space of the
dynamic programming algorithm for the pricing problem from exponential to
pseudo-polynomial size, since only the immediate predecessor of each job needs
to be remembered. This entails that aj,, and ;. for jobs ¢ and j in a schedule
w are no longer necessarily binary for linear relaxations of the WTSDS. Note

that this does not affect the optimal solution of an WTSDS instance, since the

14
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Algorithm 3 Solving the Pricing Problem

1: Initialize f(t,j) = oo for each time ¢ < 0, and job j.
. Initialize f(0,0) := —o and f(¢,0) = oo for each time 0 # ¢ < T.
3: For each time 1 <t < T, and job j, set

N

f(t,j) = rg%)n f(t — Sij — pj,i) + max{t — dj7 O}UJJ — ;. (].0)
z J

4: The minimum reduced cost under the value T is defined as

T = t:rg)lj?}jj:rgi{}m f(t, 7). (11)

exactly-once processing of each job is ensured by constraints .

The set of all possible predecessors of job j, denoted by P;, differs for each
node as it depends on node-specific ordering restrictions imposed by the branch-
ing strategy. We define f(¢,j) for a time ¢ € Z and a job j as the minimum
reduced cost of a variable x,,, where job j is completed at time ¢ as the last
job being processed in schedule w. For each variable z,,, reduced costs f(t, )
for all jobs j at all times ¢ < T (with an upper bound T on the makespan of
an integer optimal solution of the current node) are calculated recursively to
identify the minimum reduced cost. Based on that, the corresponding schedule
with minimum reduced cost under the time limit T can be constructed reversely.

Furthermore, we implement two methods for enhancing the efficiency. On
the one hand, we start with a low value of T and successively adjust the time
limit until there are no more variables with negative reduced costs for two
consecutive values of T'. On the other hand, we significantly reduce the solution
space of the pricing problem by considering only so-called decreasing reduced
cost schedules under certain conditions and by preventing generated schedules
from containing sequences of the form (4, 7,4) (so called 2-cycles). For details,

see |[Lopes and de Carvalho| (2007)).

15
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4.3. Primal Heuristic

After the column generation process terminates, the resulting solution of the
restricted problem (z,)weq is fractional for most nodes of the b&b tree. Addi-
tionally, since we allow cyclic schedules to be generated, there will be infeasible
schedules w in the solution of the LP; i.e., x, > 0 holds for such schedules.
To illustrate that this phenomenon, consider an instance with jobs 1,2, 3,4 and
suppose the schedules w; = (1,2,1,2) and wy = (3,4, 3,4) have been generated.
We can confirm that ., = x,, = % is feasible for the relaxation of the set
partitioning model 7. Although both of these schedules are infeasible for
the original problem, they still contain sequencing information because their
columns were generated based on their corresponding reduced costs. Thus, w;
and wy indicate that it’s favorable to have jobs 2 and 4 directly succeed jobs 1
and 3.

This sequence information has already been used in Section to select the
branching edge and stored in the variables X;; from Equation @ We construct
a feasible schedule by iteratively using the largest values of Xj;; i.e., we start
with the (artificial) job, set ¢ = 0, schedule

j= argmax X (12)
k unscheduled
next and continue this way with j as the next ¢ until all jobs are sequenced or
the maximum value of X;; is zero. In the latter case, there are jobs left which
have not been scheduled yet (as would be the case in the example above), and
the remaining jobs are appended to the sequence in ascending order of their
(weighted) due dates (EDD rule).

Since the X;; values have already been computed prior to the primal heuris-
tic, the above procedure is very efficient in terms of additional computation
time. Thus, we follow the idea of |Atakan et al| (2017) to extend the primal
heuristic by a simple local search procedure. We start by iteratively considering
all possible swaps of two jobs in our sequence until the best swap among them
does not lead to any improvement of the current schedule’s objective value (2-

opt). We then apply the same procedure with three jobs at a time (3-opt). This
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extension is applied whenever the primal heuristic described above generates a
solution which is at most 10% worse than the upper bound found so far by the
b&b algorithm, or whenever an improving integer solution is found. With these
restrictions, preliminary experiments showed that only a few improvements are
made each time, and thus there is no need to set a tight iteration limit for the
two extensions in order to reduce computation time.

When abbreviations are used to refer to an algorithm, if the primal heuristic

is applied, it is indicated by the suffix “PH”.

5. Parallelization of the Serial Branch-And-Price Algorithm

In this section, we present our parallelization strategies for the serial b&p
algorithm presented in Section We use fine-grained intra-algorithm paral-
lelization, see Section [2] by solving the linear relaxations of individual b&p tree
nodes in parallel (lines 1 and 6 in Algorithm . This corresponds to paralleliz-
ing the column generation procedure (Algorithm . We identified the dynamic
programming (Algorithm as the most time-consuming part of the column
generation procedure, and therefore this part is chosen for parallelizationﬂ

The crucial part of dynamic programming is to calculate f(¢,7) for all time
slots 1 <t < T and for all jobs 0 < 57 <n. Fixing 1 <ty < T and using parallel
threads to calculate f(to, j) simultaneously for all jobs j proved to be inefficient
in our pretests. Therefore, we use each parallel thread for calculating all values
f(t,0), f(t,1),..., f(t,n) for several 1 < ¢ < T. However, there are data depen-
dencies between the values f(¢,j) and f(¢¥,;’) for different time slots ¢,¢ and
jobs 7, 7', as we can see from the definition in equation . Hence, parallel dy-

namic programming may be obstructed by waiting times. Therefore, reducing

2The other non-trivial part of the column generation procedure is the repeated solving
of restricted LPs. This can be easily parallelized by off-the-shelf solvers. However, we did
not observe any substantial benefit from using solver parallelization (probably because the
restricted LPs are too small for effective parallelization), and therefore we do not follow this

approach in our paper.
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waiting times to a minimum constitutes the prime challenge in parallelizing our
dynamic programming algorithm.

Also, these dependencies lead to an instance-specific number of threads
where we can expect to observe little positive (or even negative) effects from
using additional threads. For an instance of WTSDS, let T = max; j Sij + pj
be the maximum amount of time that can elapse before another job can be
processed, and let us assume that we use at least T + 1 threads. In this sce-
nario, the thread processing the latest time slot is exclusively accessing time
slots which are all still being processed by other threads and therefore contain
missing entries. This phenomenon is evaluated and discussed in Section [6}

We introduce two versions of parallel dynamic programming, which we ex-
plain in below. Both versions are implemented using the OpenMP shared-
memory programming paradigm (OpenMP] 2015), which allows code to be
executed in parallel on multiple shared-memory threads using the statement
#pragma omp parallel for. We use this pragma to parallelize the outer loop
t=0,...,T of dynamic programming on multiple OpenMP threads.

The first version is shown in Algorithm [] and performs what we refer to
as strict parallel dynamic programming (s-pdp). Whenever the reduced cost
f(t — si; — pj,4) for any possible predecessor i of job j is not available at the
time when the calculations for job j at the time ¢ are trying to access the value,

s-pdp waits for it to become available before continuing, as shown in lines 5-7

of Algorithm

3Due to potential synchronization delays, simply waiting for the values to become available
is not economical. In OpenMP, a thread uses a cache where it temporarily holds data from
the shared memory. For efficiency reasons, consistency between this temporary cache and the
shared memory is not always given (Hoffmann and Lienhart, 2008} p.109). Therefore, in many
cases, the required values may be already calculated, but may just not yet be accessible due
to a lack of synchronization. Consequently, if a thread determines that a shared variable value
required for its calculations is not yet available, it first updates its cache to ensure that its
cached values are up-to-date. An update of the required data can be initiated by a so-called

flush directive, which synchronizes a thread’s cache and the shared memory.
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Algorithm 4 Strict Parallel Dynamic Programming (s-pdp)

1: #pragma omp parallel for
2: fort=20,...,7 do
3: for j=1,...,N do

4: for i € P; do

5 while f(t — s;; — pj,1) is not available do

6: flush f(t — sij — pj, %)

7: read f(t — si; —pj, 1)

8: write f(t,7) = minsep, f(t = sij — p;, i) + max{t — d;,0}w; —m;

In our second version, dynamic programming is executed on parallel threads

w5 without verifying the values of shared variables. We refer to this as loose parallel
dynamic programming (l-pdp), which is described in Algorithm [5] In the case
that the reduced cost f(t — s;; — p;,%) is not yet available, calculations are still
continued using the default value for f(t—s;; —pj;,¢) set in line 1. Consequently,

the values for f(t,j) returned by l-pdp may be incorrect.

Algorithm 5 Loose Parallel Dynamic Programming (1-pdp)
1 f(t,j) =00 VO<t<TandV1<j<N

2: #pragma omp parallel for
3: fort=0,...,7 do
4: for j=1,...,N do

5: for i € P; do
6: read f(t — si; —pj, 1)
7: write f(t, ) = miniep, f(t — sij — pj, 1) + max{t — d;, 0}w; — 7;
410 Based on these two versions of parallel dynamic programming, we imple-

mented two exact parallel b&p algorithms, which are explained below:

e Strict Parallel Branch-and-Price (SPBP): Use s-pdp to solve the pricing
problem during column generation (line 3 of Algorithm .

e Hybrid Parallel Branch-and-Price (HPBP): Use I-dpd to solve the pricing
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problem during column generation (line 3 of Algorithm . If more than
one thread is used and when there is no more column with negative reduced
cost according to [-dpd, permanently switch to s-pdp to solve the pricing

problem during column generation (line 3 of Algorithm .

Since s-pdp and [-pdp coincide when using a single OpenMP thread, both
SPBP and HPBP coincide with the serial b&p algorithm from Section [ when

executed on a single OpenMP thread (serial execution).

6. Computational Experiments

In this section, we specify the design of our experiments and discuss the
results and findings from their execution. First, Section describes the com-
putational environment in which the experiments were conducted and introduces
the benchmark instances used to evaluate our algorithms. Next, an initial set
of experiments to analyze our serial algorithm and its features is discussed in
Section [6.2] An important goal of this section is to identify the best perform-
ing combination of features in our algorithms, for which the computationally
expensive parallel execution will be evaluated next. The following Section [6.3.1
details the in-depth experiments conducted to evaluate the performance bene-
fits obtained from our two parallelization approaches. Finally, we discuss and
compare the scalability of our two parallelization strategies in [6.3.2] analyzing

which and how the different facets of our algorithm affect it.

6.1. HPC Environment and Benchmark Instances

The experiments are conducted on the Linux-based HPC cluster Noctua 2 of
the Paderborn Center for Parallel Computing (PC?) at Paderborn University.
We used a two-socket AMD Milan 7763 shared-memory system with 64 cores per
socket, a clock speed of 2.45 GHz per core, and a total of 256 GB main memory.
The upper bound on the running time (wall time) for a single compute task
executed on the cluster is 21 days (or 504 hours). The b&p algorithms are
coded in C++ and compiled by the g++ (v12.2.0) compiler with optimization flag
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-03. To solve the restricted linear programs during column generation (line 2
of Algorithm , we use the Gurobi 10.0.3 API. The parallelization on shared
memory is based on OpenMP 4.5.

Three established benchmark sets from the literature are used to evaluate
the proposed parallel algorithms: First, the algorithms are tested on the 120
benchmark instances from [Cicirello| (2003) and [Cicirello| (2009)f} which are of

problem type 1 | STsq | > w;T;. Each instance consists of 60 jobs with pro-
cessing times p; and weights w; generated from the integer uniform distribution
between 50 and 150, and 0 and 10, respectively. The due dates d; and setup
times s;; are characterized by the three parameters 7, R and 7, which define
the tightness and the range of the due dates, as well as the size of the average

setup time with respect to the size of the average processing time.

(2003) and |Cicirello| (2009) created twelve combinations of parameter settings

and generated 10 instances for each combination. In the following, we refer to
the benchmark set of Cicirello| (2003)) and |Cicirello| (2009) as the Cicirello set.

. Second and third, we apply our algorithms to the benchmark sets from Rubin|
and Ragatz| (1995) and |Gagné et al] (2002) F[These benchmark instances are of

type 1 | STyq | > T;. Our algorithms are applicable to this kind of problem

by defining the weights for all jobs as one. [Rubin and Ragatz (1995))’s set

comprises 32 instances with 15, 25, 35 and 45 jobs while Gagné et al| (2002))’s

set comprises 32 instances with 55, 65, 75 and 85 jobs. In both sets, processing
times are normally distributed with a mean of 100, and setup times are uniformly
distributed between 0 and 20. Furthermore, the instances are characterized by
the parameters processing time variance, tardiness factor, and due dates range,
which build eight possible parameter settings. We refer to the benchmark sets
of Rubin and Ragatz| (1995)) and |Gagné et al. (2002)) as the Rubin set and the

Gagné set, respectively.

4https://www.cicirello.org/datasets/wtsds/| (last accessed 07/15/24)

Shttp://www.uqac.ca/portfolio/carolinegagne/recherche/ordonnancement_n_

travaux/| (last accessed 07/15/24)
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6.2. Serial Performance

In this section, we evaluate the performance of our serial algorithms, in par-
ticular, we investigate which benefits regarding running times are gained from
the modified branching strategy and the primal heuristic introduced in Sections
and For this series of experiments, we consider all four combinations
of the two features in the algorithm. The versions examined are summarized in

Table [II

Table 1: Tested versions of our serial algorithms

Acronym Primal Branching Strategy
Heuristic

SPBP-PH v modified

SPBP modified

MF-SPBP-PH v most-fractional

MF-SPBP most-fractional

SPBP Gt ict Parallel Branch-and-Price
PH Primal Heuristic

MF Most-Fractional Branching

We apply the algorithms to all instances from the three instance sets and set
a time limit of one hour. Table [2] shows the number of instances solved within
the time limit for SPBP-PH, SPBP. MF-SPBP-PH and MF-SPBP. Detailed
running times for all instances that were solved within one hour by at least one
version of the algorithm are given in From the Rubin set, both
versions using the modified branching strategy, SPBP-PH and SPBP, solved 29
instances, while MF-SPBP-PH and MF-SPBP, using most-fractional branching,
both solved 27 of the instances. For the Gagné set, all four versions of the
algorithm solved the same 14 instances within the time limit. As for the Cicirello
instances, the differences are more distinctive, with 53, 45, 27, and 25 instances
solved by the algorithms, respectively.

From these numbers, we can see that each of the two features individually
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Table 2: Solved instances within the first hour for SPBP-PH, SPBP, MF-SPBP-PH and MF-
SPBP

#solved SPBP-PH SPBP MF-SPBP-PH MF-SPBP (total)
Rubin 29 29 27 27 (32)
Gagné 14 14 14 14 (32)
Cicirello 53 45 27 25 (120)
total 96 88 69 66 (184)

has a positive effect on the total number of instances solved within the time
limit, and thus both features enhance the performance of the serial algorithm.
In addition, the branching strategy affects the benefits gained from the primal
heuristic, with 8 more instances solved with the modified strategy compared
to two instance when most-fractional branching is applied. Since both features
are from the serial portion of our algorithm, all further experiments will be
performed with both the modified branching strategy and the primal heuristic.

Before proceeding to the parallelization of the two identified algorithms,
another parameter we analyzed is the number of columns per iteration (i.e., per
call of the dynamic programming algorithm) to be added to the restricted LP.
In Line 9 of Algorithm [2] only a single column with minimal reduced costs is
selected, whereas in fact often more than one negative reduced cost schedule may
be computed in a single call to the DP algorithm. Especially in the early stages
of the b&b procedure, this can cause the same column to be generated again in
a subsequent iteration if it was not added to the restricted LP because another
column was generated at the time with even lower reduced costs. Preliminary
tests with up to ten columns per iteration showed that (up to) four columns per
iteration resulted in a robust trade-off between saving calls to the DP algorithm
without inflating the size of the restricted LP. This number was used in all

experiments, including those discussed above.
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6.3. Parallel Performance

The focus of this section is on the parallelization of our algorithms; i.e., we
study the impact of the number of threads used during column generation for
both the strict and hybrid approaches. In Section[6.3.1} we discuss the results of
the experiments in terms of solved instances, before analyzing our algorithms in
terms of speedup; i.e., the benefit gained from using additional computational
resources, in Section [6.3.2}

Due to the results discussed in Section [6.2] we consider the algorithm using
both the modified branching strategy and the primal heuristic, that is, algo-
rithms SPBP-PH and HPBP-PH. The former algorithm uses the strict strategy
in dynamic programming, where threads wait for missing values to become ac-
cessible before continuing with the next calculation. The latter uses the hybrid
strategy, where missing values are ignored for as long as possible before switch-
ing to the strict mode. Both algorithms are executed on all instances of the
three benchmark sets, using th € {1,2,4, 8, 16,32, 64,128} threads for up to 504
hours (21 days).

To compare our results with other exact methods, we use as reference data

the algorithm used of Tanaka and Araki| (2013). Another exact algorithm worth

mentioning is from a study by |[Sewell et al| (2012). The authors addressed the

problem without tardiness weights in the objective function. Using their Branch-
and-Bound-and-Remember (BB&R) algorithm, they were able to solve most
instances of the Rubin set and some of the Gagné set within 30 minutes. Since
they did not consider weights, the authors also did not apply their algorithm
to the Cicirello set, and the reported results were not superior to those of the
former study, we will only report results from the former study for comparison.
Since the theiraforementioned study is the only one in the literature to report
(provably) optimal solutions for most larger instances (up to 85 jobs), their
algorithm can be considered the state-of-the-art in exact solution methods for
WTSDS. Due to improvements in hardware performance since the release of
their study, we re-ran their program with the same settings as in their study,

but on the same hardware as we used to run our experiments (remark: we did
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Table 3: Solved instances over time using 1 and 64 threads in HPBP-PH

Timelimit (h) (Tanaka™)
Set #instances #threads
1 12 48 504 (336 h)
1 29 29 31 32
Rubin 32 (32)
64 29 31 32 32
1 14 21 26 30
Gagné 32 (29)
64 21 2t 30 31
1 53 99 107 116
Cicirello 120 (118)
64 97 111 117 117

HPBP-PH Hyhrid Parallel Branch-and-Price with Primal Heuristic

not use the preprocessed instances Nos. 1-40 of the Cicirello set to run our
two algorithms). Although, we could not run the very long jobs (30 days and
longer), since all running times are down by up to more than 50% (with very
few exceptions), we use these results as reference in all following tables (in this

Section, marked with a “*”). For details on the re-enacted experiments and the

individual running times, see

6.3.1. Impact of Parallelization

The performance results for our two algorithms HPBP-PH and SPBP-PH in
terms of solved instances are presented in Tables [3]and [ respectively. For each
set of benchmark instances, the tables show the total number of instances in the
set and the number of instances that our algorithms were able to solve within one
hour, twelve hours, two days (48 hours) and 21 days (504 hours). These numbers
are shown for the algorithms running in serial mode (one thread) and using 64
parallel threads. The last column in both tables shows the number of instances

solved by the algorithm from Tanaka and Arakil (2013)) for comparisonﬂ We

SNote, that for instance 751 from the Gagné set and instance No. 7 from the Cicirello set,

HPBP-PH on a single thread took more than 14 days (336 hours) to prove optimality. The
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Table 4: Solved instances over time using 1 and 64 threads in SPBP-PH

Timelimit (h) (Tanaka™)
Set #instances #threads
1 12 48 504 (336 h)
1 29 29 31 32
Rubin 32 (32)
64 29 31 32 32
1 14 21 26 30
Gagné 32 (29)
64 20 26 30 31
1 53 98 107 116
Cicirello 120 (118)
64 95 111 116 117

SPBP-PH Grict Parallel Branch-and-Price with Primal Heuristic

choose the 64-thread version as a representative because this version of the
algorithms achieves the best overall performance. The complete data for all
numbers of threads considered, as well as detailed running times for all instances
(including the state-of-the-art running times from Tanaka and Araki| (2013) for
comparison) are provided in Since the one-hour runs already
showed a massive performance degradation, runs with 128 threads were excluded
for all further experiments to reduce the computational quota (just the final
execution of our experiments alone consumed about 3 million CPU hours).

Using 64 threads, HPBP-PH solved all 32 instances of the Rubin set within
48 hours, all instances but problem 855 of the 32 instances in the Gagné set, and
117 of the 120 instances in the Cicirello set within 21 days to proven optimality.
Absolute results for SPBP-PH are comparable. For a closer comparison of
the two versions, another measure of performance is discussed in the following
section.

For the remaining three instances from the Cicrello set, Nos. 8, 18, and 24,

we used 128 GB of RAM which didn’t suffice. Since this limit was reached in

same is true for instance 751 from the Gagné set when SPBP-PH was run on a single thread.
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less than a week of computing time, we didn’t attempt to run them again, even
with the available maximum of 256 GB.

We see that for both algorithms, as the number of threads increases, more
instances can be solved as well. While using 64 threads results in the same
number of solved instances as using 32 threads, running the algorithms with
128 threads actually shows a performance degradation with 10 fewer solved
instances from the Cicirello set within the first hour (87 compared to 97 using
64 threads). As mentioned in Section [5] this effect is to be expected, with the
values of setup plus processing time (s;; +p;) averaging at 148 for the Cicirello,
108 for the Gagné and 104 for the Rubin instances. The same effects are reflected
in the following speedup analysis.

For the three instance sets, [Tanaka and Araki (2013) solved all instances to
proven optimality within 34 days, except for the instances designated as 851 and
855 from the Gagné set. We were able to solve instance 851 to proven optimality
within seven hours using 64 threads (3.5 days in serial execution), showing that
the aforementioned authors had found the optimal solution with an objective
value of 360. While we can see that their algorithm still has considerably lower
overall running times (especially for the Cicirello instances), this shows how
difficult it is to compare two b&b algorithms that use different approaches to
compute bounds. As for instance 855, we were not able to prove optimality
within 21 days, but found a solution with an objective value of 256 (current
lower bound of 253.263), which was also found by |[Sewell et al.| (2012) and Xu
et al.| (2014b|) using a BB&R and hybrid evolutionary algorithm, respectively.

In comparison to [Tanaka and Arakil (2013) and our exact algorithms, |Chen
(2019) was able to find the optimal solution for 119 out of the 120 instances
from the Cicirello set within 1500 seconds using their Iterated Population Based
VND (IPBVND) heuristic. Within a time limit of 100 seconds, IPBVND found
all 32 optimal solutions from the Rubin set and 27 solutions from the Gagné
set. Using a relaxed time limit of 80.000 seconds, IPBVND also found three of
the remaining five best known solutions from the latter set. This shows that

heuristic methods can be effective in computing excellent solutions that exact
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methods take much longer to obtain. On the other hand, heuristics rely on the
results from exact methods to perform such analyses, and in many cases include
randomized features. For example, this is also the case for IPBVND, where
the reported solution value is the best one obtained from multiple runs of the
algorithm. Although |Chenl(2019) evaluates the robustness of computed solution
values among multiple executions of the algorithm, the fact that a single run
can produce suboptimal solutions shows that exact methods are still necessary

and cannot be discarded.

6.3.2. Speedup Analysis

To compare our two parallelization strategies, in this section we analyze the
scalability of both approaches. We first introduce an established metric used
for this task and discuss the results, before examining the various aspects that
lead to the observed effects.

To evaluate the potential from parallelization for algorithms SPBP-PH and
HPBP-PH, we use established scalability metrics, namely the parallel speedup
and the parallel efficiency (Hager and Wellein, [2010, p.120ff). Parallel speedup
on R threads is defined as the ratio of the time to execute the parallel algorithm
on one thread to the time to execute the parallel algorithm on R threads, which
is called a relative speedup (Barr and Hickman, 1993)). Parallel efficiency on
R threads is defined as the parallel speedup on R threads normalized to the
number of threads R.

The median parallel speedups for the three benchmark sets are shown in
Figure [l The left subfigures (a), (¢) and (e) show the speedups of dynamic
programming (purely parallel part), while the right subfigures (b), (d) and (f)
show the overall speedups of the parallel b&p algorithms. The dotted lines
represent the so-called linear speedup; i.e., a speedup of R on R threads, which
corresponds to an efficiency of 100%. contains figures for the
corresponding parallel efficiencies, as well as the underlying median and average
parallel speedup data and their respective standard deviations, also visualized

as box plots.
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Figure 1: Median parallel speedups
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As can be seen in Figures [l (a), (c) and (e), the median parallel speedup of
the dynamic programming part in HPBP-PH is almost linear for all benchmark
sets up to 16 threads. For 32 and 64 threads, the speedup still increases but
not nearly as linear as before. Although the speedup values for the dynamic
programming parallelization of SPBP-PH are similar to those of HPBP-PH,
they are consistently lower. This is due to the high number of calls to the
expensive flush directive and the time spent waiting for shared variable values
to become available. As shown in a corresponding table in for
our three benchmark sets, the waiting condition is entered on average 76, 182
and 107 times more often in SPBP-PH than in HPBP-PH, respectively. On the
other hand, if enough threads are used, too many values will still be missing
when accessed, and HPBP-PH will quickly switch to s-pdp mode when no more
negative reduced cost columns are found. For the three instance sets considered,
this is not yet the case for 128 threads, but the increase in running times for
almost all instances compared to 32 and 64 threads clearly indicates that this is
the limit for the scalability of our parallelization. The observed running times
suggest that peak performance is achieved in the range of 16-32 threads for most
instances from the Rubin and Gagné sets, and 32-64 threads for the Cicirello
set.

The overall parallel speedups shown in Figures [1| (b), (d) and (f) are signif-
icantly lower than the parallel speedups of the dynamic programming part in
both SPBP-PH and HPBP-PH. This is due to a non-vanishing serial part, which
comprises anything but dynamic programming, and in particular the solution
of restricted LPs by Gurobi during column generation (Algorithm. Note that
using Amdahl’s law to provide upper bounds on possible speedups based on the
fraction of the serial part (Amdahl, [1967) is not meaningful for our algorithms,
since we have observed that the shares in total running time of both the serial
and the parallel parts are not constant when different numbers of threads are

usedE]For the Gagné and Rubin instances, the curve of the overall speedup for

"The dynamic programming algorithm (i.e., the parallel part of the b&p algorithms) is
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both versions becomes almost stagnant using 64 threads (see Figures|l| (d) and
(f)); i.e., using more computing resources not only brings no benefit, but may
even become detrimental.

Further, we observe that, for the Rubin and Gagné sets, the speedups vary
only slightly over all instances considered when 16 or fewer threads are used,
while for HPBP-PH, the numbers for the Cicirello set can vary significantly
when 16 or more threads are used. The difference in this case can also be
seen in a much higher average speedup compared to the median (however, this
indicates, that outliers are mostly positive, even though they are the product
of coincidentally generating good schedules in a few cases). With the exception
of the Cicirello set running HPBP-PH with 8 or more threads, the observed
standard deviations are consistently below 1.14 even for 16 threads. We see
a different picture for 32 and 64 threads. Here, we even observe a standard
deviation of up to 41.33 from the average (overall) speedup of 12.57 for HPBP-
PH applied to the Cicirello set, which is considerably high. This also indicates
that the scalability of the algorithm is highly dependent on the solved instance,
and using too many threads leads to unpredictable behavior (see Footnote @
These effects are noticeably stronger for HPBP-PH compared to SPBP-PH.
The detailed numbers can also be derived from Also, for SPBP-
PH, when the number of threads is held constant, the average and median
speedup values are similar for the Gagné and Cicirello instances, and slightly
lower for the Rubin set, which consists of small instances (45 jobs and fewer). For
instances with fewer jobs, threads guickly finish computing all entries from the
timeslots in the DP matrix to which they were initially assigned. Thus, during

dynamic programming, new timeslots are assigned to threads more frequently to

executed several times during the b&p algorithms. In addition, it cannot be guaranteed
that the same set of columns is generated by the b&p algorithms if different numbers of
threads are used. Therefore, the serial part of the b&p algorithms (i.e., everything except
dynamic programming) is also affected when, for example, more/less columns are generated

on a different number of threads.
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process the corresponding entries, so the overhead of parallelization is greater,
which affects the measured speedup. Regarding HPBP-PH, similar values can
be observed across the three sets for up to 8 threads, but variation increases for
the Cicirello set. when 16 or more parallel threads are used.

In summary, the application of our two proposed parallel b&p algorithms
(HPBP-PH and SPBP-PH) yields substantial speedups that are robust over all
sets of benchmark instances up to an instance-specific number of threads. The
observed speedup values of the dynamic programming algorithms are similar
when the number of threads used is below the limit mentioned above, although
they are consistently larger for HPBP-PH compared to SPBP-PH. When us-
ing more threads than the aforementioned limit of about 32, the speedups for
SPBP-PH are significantly lower compared to HPBP-PH when applied to larger
instances, but the standard deviation also increases for the latter version of the
algorithm. Since these speedups (for dynamic programming) are reflected in
the observed overall speedups (and outliers are mostly on the positive side),

HPBP-PH is superior to SPBP-PH with respect to all benchmark sets tested.

7. Conclusion

In this study, we introduce, implement, and evaluate two exact parallel b&p
algorithms (refered to as HPBP-PH and SPBP-PH) for the 1 | ST,q | > w;T}
scheduling problem, developed from a serial b&p algorithm we adopted from
Lopes and de Carvalho| (2007) with a modified branching strategy and an added
primal heuristic. For both algorithms, we applied a fine-grained intra-algorithm
parallelization strategy by executing the dynamic programming part, which is
used to solve the pricing problem during column generation, on up to 128 paral-
lel threads. Before conducting extensive experiments regarding the parallelized
part of our algorithms, we verified that the branching strategy and the primal
heuristic, both designed to improve the performance of the serial part of the
algorithm, allowed us to solve additional instances even within tight time lim-

its. Our computational experiments on established benchmark instances from
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Cicirello| (2003), (Gagné et al.| (2002)) and Rubin and Ragatz (1995) allowed us to
identify an instance-specific limit of threads for which both parallel algorithms
achieve substantial speedups with very little variation between instances within
the aforementioned benchmark sets. For experiments where this limit is not
exceeded, we observe an almost linear speedup for the dynamic programming
algorithm in both versions of the algorithm, while the corresponding speedup in
SPBP-PH is slightly lower. Also, speedups for SPBP-PH degraded noticeably
faster when the number of threads used exceeded the limit. This results in a
higher parallelization potential for HPBP-PH compared to SPBP-PH, and thus
the former outperforms the latter on all of our benchmark sets tested.

There are limitations to our approach that can be addressed in future work.
First, the fine-grained intra-algorithm strategy of our parallelization efforts al-
lows parallelizing the processing of individual nodes of the b&p tree, but still re-
quires sequential processing of the nodes. Parallelizing this processing through
coarse-grained intra-algorithm parallelization would allow exploiting this ad-
ditional speedup potential. When both parallelization strategies are applied
jointly, a hybrid parallelization strategy emerges. One possible design of such
a hybrid approach is to solve different nodes of the b&p tree simultaneously
on different processes, while multiple threads on each process are used to solve
the respective b&p node in parallel (e.g., by our parallel dynamic programming
algorithms). Second, the observed lower bounds develop more slowly compared
to the upper bounds during the execution of the algorithms for most instances.
Some acceleration techniques could be implemented and tested, such as dom-
inance rules. While we discarded this idea due to the massive impact on the
running time for each call to the dynamic programming algorithm, there may
be a strategy that is worth the overhead. Third, the primal heuristic used in our
algorithm accounts for less than 0.1% of the total running time. Using a more
sophisticated procedure could lead to a higher frequency of finding improving

upper bounds, even when a tight time limit is invoked.
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Appendix A. Detailed Running times

This section of the appendix provides detailed results of the experiments
discussed in Section [G} contains data for HPBP-PH. For the
parallelization experiments in[6.3.1} Table [A1]shows a summary of the number
of solved instances over increasing time limits for different numbers of threads,
while Tables [A] and give the detailed running times of the algo-
rithm using up to 64 threads for the instances from the Rubin, Gagné, and

Cicirello sets, respectively. For each instance (“ins” column), the second and

third columns of the tables show the objective value found by |Tanaka and Araki|

(2013)) and the computation time to find that value. The fourth column shows

the objective value found by our algorithm, followed by seven columns (the “t_i”
columns) with the computation times needed to solve the instance when using
up to 64 threads. Whenever the time limit was exceeded and optimality was
not proved, it is indicated by a dash.

For the sake of completeness, Tables[A-3] [AT5] and [A-7]list the instances and
running times of each benchmark set using 128 threads, only if they were solved
within one hour. As discussed in [6] no further experiments were run with 128
threads due to a significant performance degradation in this setting.

[Appendix_A.2|contains the same tables as[Appendix A.1] only for algorithm
SPBP-PH.

Finally, shows additional statistics for the experiments con-
sidering the different serial versions of the algorithms compared in Section [6.2]
Tables — summarize statistics for each benchmark set, such as the
number of instances solved within one hour for all versions considered, with
additional information on the averages of the number of b&b-nodes used, the
time taken to solve a single b&b-node, the number of columns generated, and
the number of columns generated per node. The specific values used to calcu-
late the above averages are given in the following tables - For each
instance solved to optimality within the time limit by at least one serial version

of the algorithm, they show the running times, the number of b&b nodes, and



the number of columns generated for all versions.

wss  Appendiz A.1. Hybrid Parallel Branch-and-Price with primal heuristic

Table A.1: Solved instances over time in HPBP-PH
Timelimit (h)

Set #instances  #threads
1 12 48 504
1 29 29 31 32
2 29 31 31 32
4 29 31 32 32
Rubin 32 8 29 31 32 32
16 29 31 32 32
32 29 31 32 32
64 29 31 32 32
1 14 21 26 30
2 15 22 27 31
4 16 23 27 31
Gagné 32 8 19 24 27 31
16 20 23 28 31
32 20 26 30 31
64 21 27 30 31
1 53 99 107 116
2 65 103 110 117
4 73 105 111 117
Cicirello 120 8 84 109 111 117
16 92 111 115 117
32 93 111 116 117
64 97 111 117 117
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Appendiz A.2. Strict Parallel Branch-and-Price with primal heuristic

Table A.8: Solved instances over time in SPBP-PH

Timelimit (h)

Set #instances Fthreads
1 12 48 504
1 29 29 31 32
2 29 30 31 32
4 29 31 32 32
Rubin 32 8 29 31 32 32
16 29 31 32 32
32 29 31 32 32
64 29 31 32 32
1 14 21 26 30
2 15 22 26 31
4 16 23 27 31
Gagné 32 8 19 25 27 31
16 20 24 28 31
32 20 26 30 31
64 20 26 30 31
1 53 98 107 116
2 61 103 110 117
4 74 106 110 117
Cicirello 120 8 84 108 111 117
16 91 110 115 117
32 94 110 116 117
64 95 111 116 117
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Appendiz A.3. Comparison of serial versions of the algorithm

Table A.15: Statistics for the four algorithms on Rubin instances solved within one hour in

serial execution (means taken over instances solved by all four versions)

Algorithm SPHP+PH SPHP MF-SPHP-PH MF-SPHP

#solved

#b&b-nodes ()
time per node (@)
#columns (&)
)

(
(
(
(

#columns per node (&

29 29 27 27
13 20 19 24
3.20 3.06 2.96 2.89
1905 2084 2586 2714
o1 59 92 96

Table A.16: Statistics for the four algorithms on Gagné instances solved within one hour in

serial execution (means taken over instances solved by all four versions)

Algorithm SPHP+PH SPHP MF-SPHP-PH MF-SPHP

#solved

#b&b-nodes (&

6]

(2)
time per node (&)
#columns (&)

(2)

#columns per node (&

14 14 14 14
11 21 13 22
18.26  17.92 18.70 18.46
2813 3293 3463 3856
94 100 102 107

Table A.17: Statistics for the four algorithms on Cicirello instances solved within one hour in

serial execution (means taken over instances solved by all three versions)

Algorithm SPHP+PH SPHP MF-SPHP-PH MF-SPHP

#solved

#b&b-nodes (@)
time per node (&)
#columns ()

(2)

#columns per node (&

53 45 27 25
63 70 79 79
19.35  22.05 12.12 14.27
4524 5343 4806 4916
98 99 39 10
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Appendix B. Detailed Speedup Results of Computational Experi-

ments

This section of the appendix presents detailed results on the speedup of
the parallelization approaches (SPBP-PH and HPBP-PH). The following tables
B.21HB.26| show summary speedup statistics for both versions of the algorithm
and for the three benchmark sets. The first column contains the algorithm
acronym, the second column contains the abbreviated name of the statistical
metric, followed by the metric values over the number of threads used in the
algorithm. The indicators include medians (Med), averages (Avg), standard de-
viations (SD), and the coefficients of variation (CV; which is the ratio of the SD
and Avg). They were taken from instances in the respective benchmark set that
took at least 60 seconds to solve, to account for cases where no parallelization
(or even column generation) was used, e.g. when the algorithm terminated with
the initial schedule found by the heuristic.

This is followed by visualizations of the same data as box plots in figures
B.2HB.4] Finally, plots of the parallel efficiency for the algorithms are shown in
figures and table shows the comparison of waiting conditions during
the execution of the two algorithms (see Section [5).

Table B.21: Average overall parallel speedup (Rubin)

#threads 1 2 4 8 16 32 64

Med 1.00 158 253 440 527 6.6  7.04
SPBP  Avg 100 158 248 418 526 614  6.85
PH (SD) (0.00) (0.04) (0.30) (0.44) (0.48) (0.74) (1.07)
(CV)  (0.00) (0.03) (0.12) (0.11) (0.09) (0.12) (0.16)

Med 1.00 173 289 447 546 630  7.10
HPBP  Avg 100 173 278 442 547 589  7.10
-PH (SD) (0.00) (0.07) (0.37) (0.59) (0.56) (L.11) (1.34)
(CV) (0.00) (0.04) (0.13) (0.13) (0.10) (0.19) (0.19)
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Table B.22: Average overall parallel speedup (Gagné)

#threads 1 2 4 8 16 32 64

Med 1.00 164 280 441 586 7.74  8.93
SPBP  Avg 100 1.64 282 462 610 T7.89 887
PH (SD) (0.00) (0.12) (0.30) (0.73) (1.14) (1.79) (2.56)
(CV)  (0.00) (0.07) (0.11) (0.16) (0.19) (0.23) (0.29)

Med 1.00 177 293 475 613 754  9.16
HPBP  Avg 100 1.78 297 483 646 863  9.88
PH (SD) (0.00) (0.15) (0.58) (0.99) (1.35) (3.81) (3.46)

(CV) (0.00) (0.09) (0.19) (0.20) (0.21) (0.44) (0.35)

Table B.23: Average overall parallel speedup (Cicirello)

F#threads 1 2 4 8 16 32 64

Med 100 170 286 437 590 7.19 7.81
SPBP  Avg 1.00 1.68 286 436  5.73 7.04 9.78
-PH (SD)  (0.00) (0.12) (0.37) (0.86) (1.28)  (1.85) (21.11)

(CV) (0.00) (0.07) (0.13) (0.20) (0.22)  (0.26)  (2.16)

Med 1.00 174 289 437 589 7.51 8.29
HPBP  Avg 100 171 2.8 446 1144 917 1257
PH (SD)  (0.00) (0.19) (0.58) (1.92) (41.60) (14.69) (41.33)

(CV) (0.00) (0.11) (0.20) (0.43) (3.64)  (1.60)  (3.29)
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Table B.24: Average parallel DP speedup (Rubin)

#threads 1 2 4 8 16 32 64
Med 1.00 1.67 2.95 6.35 10.38  15.72  22.89
SPBP Avg 1.00 1.67 2.96 6.07 10.15 15.33  22.54
_PH (SD)  (0.00) (0.04) (0.34) (0.60) (1.01) (2.45) (5.35)
(CV) (0.00) (0.02) (0.12) (0.10) (0.10) (0.16) (0.24)
Med 1.00 1.86 3.51 6.72 11.22 16.92  25.05
HPBP Avg 1.00 1.85 3.39 6.57 10.96 15.45  25.93
_PH (SD) (0.00) (0.06) (0.41) (0.62) (0.97) (4.01) (5.55)
(CV)  (0.00) (0.03) (0.12) (0.09) (0.09) (0.26) (0.21)

Table B.25: Average parallel DP speedup (Gagné)

F#threads 1 2 4 8 16 32 64
Med 1.00 1.74 3.35 6.41 10.60 18.74  32.63
SPBP Avg 1.00 1.73 3.30 6.36 10.78 18.51  29.39
-PH (SD) (0.00) (0.10) (0.27) (0.49) (0.86) (2.31) (6.36)
(CV)  (0.00) (0.06) (0.08) (0.08) (0.08) (0.12) (0.22)
Med 1.00 1.91 3.61 7.05 12.21 21.35 35.44
HPBP Avg 1.00 1.90 3.54 6.89 12.11 21.52  34.42
_PH (SD) (0.00) (0.10) (0.61) (0.79) (1.12) (3.95) (6.78)
(CV)  (0.00) (0.05) (0.17) (0.12) (0.09) (0.18) (0.20)
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Table B.26: Average parallel DP speedup (Cicirello)

#threads 1 2 4 8 16 32 64

Med 1.00 182 354 670  11.76  19.84  28.46
SPBP  Avg 100 183 356 6.69  11.75  19.93  35.52
PH (SD) (0.00) (0.11) (0.29) (0.68) (1.14)  (3.66)  (76.87)

(CV) (0.00) (0.06) (0.08) (0.10) (0.10)  (0.18)  (2.16)

Med 1.00 190 361 679  12.28 2044  30.40

HPBP  Avg 100 187 362 710 2795 2725  50.93

PH (SD) (0.00) (0.19) (0.67) (3.14) (116.36) (45.94) (190.33)
(CV) (0.00) (0.10) (0.19) (0.44)  (4.16)  (1.69)  (3.74)
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Figure B.2: Box plots for parallel Speedups (Rubin)
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Figure B.3: Box plots for parallel Speedups (Gagné)
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Figure B.4: Box plots for parallel Speedups (Cicirello)

64 -

—»— HPBP-PH
linear

541 s spappH

8 linear

1 T T T

threads

1 2 4 8
threads

16

32 64

(a) Parallel Speedup DP (Cicirello, HPBP- (b) Parallel Speedup DP (Cicirello, SPBP-

PH) PH)
647 e vpBPPH 647 e seappH
linear linear
32 9 32
o o
16 8 16
=% (o] o] a
% g % 5]
H g 8 H
44 4
o
o ol o
2 o @ 2
o
1 T T T T T T 1 T T T T T T
1 2 4 8 16 32 64 1 2 4 8 16 32 64
threads threads
(c) Overall parallel Speedup (Cicirello, (d) Overall parallel Speedup (Cicirello,
HPBP-PH) SPBP-PH)

49



Figure B.5: Average parallel efficiencies
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Table B.27: Ratio of average number of times entering the waiting condition in SPBP-PH

E)
threads

(f) Overall parallel efficiency (Gagné)

and HPBP-PH for 2 to 64 threads (no waiting in single-core execution)

Srewgmrs o 4 8 5 @ 6 o
Rubin 126 317 86 1 5 0 76
Gagné 541 219 92 137 287 2 182
Cicirello 47 24 588 5 28 54 107
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Appendix C. Recomputed Results of Tanaka and Araki’s Experi-

ments

We re-enacted all the experiments in Tanaka and Araki| (2013) on the same
hardware as the experiments in In their study, the authors used
different settings for the algorithm depending on the instances to which it was
applied to. The first setting was applied to instances Nos. 41-120 of the Cicirello
set and the second one to the Rubin, Gagné and the rest of the Cicirello set,
using different amounts of memory to store their network structure for what the
authors call the “second stage” (denoted by “512MB”, “2GB” and “20GB” in
the tables below). For the specifics, see Tanaka and Araki| (2013)).

To replicate the computational environment as closely as possible, we con-
ducted the experiments with the implementation unchanged, applied prepro-
cessing to instances Nos. 1-40 of the Cicirello set (removing zero-weight jobs
under certain conditions), and used the same settings reported by the authors.

The two main differences from the originally reported data are hardware and
the fact that the cluster didn’t allow us to run programs for more than 21 days.
Since the instances in question (except for Cicirello No. 18 with 14 days) took
the authors more than 30 days to solve (using “20GB” memory), we ran them
for 14 days. The timelimit affects the results for the following instances (with

the running times from [Tanaka and Araki| (2013)) in parentheses):

e 751 (34 days), 851 (> 30 days; unsolved) and 855 (> 30 days; unsolved)

from the Gagn’e set; and
e Nos. 18 (2 weeks) and 24 (30 days) from the Cicrello set.

Note, that we set a hard time limit of 14 days, so instance No. 18 may have
taken only another hour to solve and prove optimality.

The detailed running times from the re-run experiments are given in Tables
The first three columns in Tables and give the name of
the instance from the Rubin and Gagné set, the number of jobs in the instance,

and the optimal or best known objective value for the instance. The following
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three columns show the running times for the instance from the re-enacted
experiments on the cluster, using different amounts of memory for the “second
stage” of the algorithm as mentioned above. In case the re-run experiment did
not terminate within the timelimit, the second column also shows the original
objective value (from the original experiments in their study) in parentheses
where applicable. Also, provably optimal objective values are highlighted as
bold numbers.

Table gives the same information for Cicirello instances Nos. 1-40 as
the previous two tables, only omitting the column with the number ob jobs,
since all instances from this set contain the same number of jobs (60).

Finally, Tables[C.31]and [C.32] address instances Nos. 41-80 and Nos. 81-120
of the Cicirello set, respectively. Both tables contain columns for the name of
the instance, the optimal value, and a single column for the running time, since

no increased amount of memory was required for these instances.

Table C.28: Runningtimes Tanaka and Araki on Rubin instances

Name jobs Opt 512MB 2GB  20GB

401 15 90 0.34 0.34 0.31
402 15 0 0.01 0.00 0.01
403 15 3,418 0.56 0.54 0.53
404 15 1,067 0.46 0.48 0.44
405 15 0 0.00 0.00 0.00
406 15 0 0.00 0.01 0.01
407 15 1,861 0.48 0.48 0.48
408 15 5,660 0.87 0.85 0.85
501 25 261 2.18 2.14 2.09
502 25 0 0.01 0.01 0.01
503 25 3,497 3.10 3.08 3.04
504 25 0 0.03 0.03 0.03
505 25 0 0.02 0.02 0.02
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Table C.28: cont. - Runningtimes Tanaka and Araki on Rubin

instances

Name jobs Opt 512MB 2GB  20GB

506 25 0 0.02 0.02 0.02
507 25 7,225 4.27 4.28 4.22
508 25 1,915 3.86 3.84 3.88
601 35 12 7.48 7.36 7.31
602 35 0 0.05 0.05 0.05
603 35 17,587 18.37  20.33  19.73
604 35 19,092 25.73 2574  27.32
605 35 228 13.84  13.57  14.90
606 35 0 0.05 0.05 0.05
607 35 12,969 18.32 1795  17.60
608 35 4,732 33.33  33.09 3292
701 45 97 49.55  60.15  55.34
702 45 0 0.10 0.09 0.09
703 45 26,506 53.58  53.71  52.36
704 45 15,206 72.01 7231 7140
705 45 200 866.47 599.48 862.37
706 45 0 0.11 0.10 0.11
707 45 23,789 53.35  53.63  52.32
708 45 22,807 100.73 100.58  99.77

Table C.29: Runningtimes Tanaka and Araki on Gagné instances

Name jobs Opt 512MB 2GB 20GB
551 55 183 116.23 150.63 282.44
552 55 0 0.18 0.17 0.17
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Table C.29: cont. - Runningtimes Tanaka and Araki on Gagné

instances
Name jobs Opt 512MB 2GB 20GB
553 55 40,498 116.16 114.99 112.04
554 55 14,653 277.87 281.62 278.99
555 55 0 0.30 0.27 0.28
556 55 0 0.19 0.18 0.18
557 55 35,813 146.85 146.07 140.91
558 55 19,871 229.22 230.05 228.58
651 65 247 26,575.61 4,611.69 2,298.27
652 65 0 0.25 0.25 0.26
653 65 57,500 343.74 304.17 262.80
654 65 34,301 390.76 381.56 389.30
655 65 0 355.72 430.00 1,816.32
656 65 0 0.30 0.29 0.30
657 65 54,895 263.95 261.66 253.71
658 65 27,114 471.35 469.43 466.63
751 75 225 (225) — — —
752 75 0 0.45 0.44 0.45
753 75 77,544 839.59 598.87 565.95
754 75 35,200 907.44 888.11 887.85
755 75 0 0.42 0.41 0.41
756 75 0 0.54 0.54 0.52
757 75 59,635  1,197.81 844.79 741.33
758 75 38,339 998.00 991.69 987.59
851 85 363 (360) — — —
852 85 0 0.62 0.63 0.61
853 85 97,497 251942 2,219.22 6,188.71
854 85 79,042  1,451.49 1,222.28 1,177.04
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Table C.29: cont. - Runningtimes Tanaka and Araki on Gagné

instances
Name jobs Opt 512MB 2GB 20GB
855 85 260 (260) — — —
856 85 0 0.63 0.64 0.63
857 85 87,011 6,130.77 4,594.41 4,897.54
858 85 74,739 1,867.57 1,850.23 1,817.68

Table C.30: Runningtimes Tanaka and Araki on Cicirello instances

1-40

Name Opt 512MB 2GB 20GB
1 453 120.06 101.78 93.58
2 4,794  4,841.34 1,499.98  1,474.67
3 1,390 2,173.60 1,000.58 589.07
4 5,866 206.60 169.31 129.80
5 4,054  3,563.57 2,350.37  2,768.09
6 6,592 166.86 243.35 171.90
7 3,267  8,640.60 3,622.47  6,680.84
8 100 122.22 109.55 105.54
9 5,660 139.24 130.39 124.33
10 1,740 16,455.70 9,783.92  8,883.74
11 2,785 — 120,893.73 42,921.26
12 0 0.42 0.43 0.41
13 3,904 15,674.95 8,722.61  9,907.07
14 2,075 20,705.47 8,764.03  3,555.71
15 724  2,802.18 841.15 496.78
16 3,285 840.15 802.80 504.49
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Table C.30: cont. - Runningtimes Tanaka and Araki on Cicirello

instances 1-40

Name Opt  512MB 2GB 20GB
17 0 1,180.80  2767.39  5,696.84
18 773 (767) — — —
19 0 3.41 3.47 3.42
20 1,757  762.29 334.69  316.22
21 0 0.22 0.20 0.21
22 0 0.23 0.25 0.23
23 0 0.17 0.18 0.17
24 761 (761) — — —
25 0 0.32 0.33 0.31
26 0 0.23 0.25 0.24
27 0 0.35 0.36 0.34
28 0 0.40 0.40 0.46
29 0 0.24 0.23 0.23
30 0 8.00 8.14 7.85
31 0 0.47 0.48 0.45
32 0 0.51 0.51 0.48
33 0 0.50 0.51 0.48
34 0 0.40 0.43 0.44
35 0 0.47 0.47 0.50
36 0 0.44 0.46 0.48
37 0 2,890.32 595.89  2,542.07
38 0 0.38 0.38 0.40
39 0 0.48 0.48 0.53
40 0 0.41 0.40 0.43
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Table C.31: Runningtimes Tanaka and Araki on Cicirello instances 41-80

Name Opt  Time
41 69,102  32.06
42 57,487  45.69
43 145,310  80.55
44 35,166  58.20
45 58,935  80.98
46 34,764  54.08
47 72,853  61.35
48 64,612 105.70
49 77,449  59.38
50 31,092  59.55
51 49,208 91.84
52 93,045 117.65
53 84,841 116.94
54 118,809 104.63
55 64,315 108.07
56 74,889 122.09
57 63,514  97.11
58 45,322 135.31
59 50,999  92.49
60 60,765 137.23

o7

Name Opt Time
61 75,916 41.42
62 44,769 37.31
63 75,317 33.11
64 92,572 39.94
65 126,696 41.08
66 59,685 17.81
67 29,390 26.93
68 22,120 25.99
69 71,118 45.03
70 75,102 36.69
71 145,007 96.11
72 43,286 68.28
73 28,785 91.49
74 29,777 73.14
75 21,602 77.57
76 53,555 75.75
7 31,817 84.48
78 19,462 79.56
79 114,999 70.12
80 18,157 76.73




Table C.32: Runningtimes Tanaka and Araki on Cicirello instances 81-120

Name Opt  Time
81 383,485  30.13
82 409,479  66.12
83 458,752  42.51
84 329,670  46.59
85 554,766  74.38
86 361,417  68.14
87 398,551  47.96
88 433,186  60.54
89 410,092  46.85
90 401,653  56.97
91 339,933  68.98
92 361,152 103.36
93 403,423 125.52
94 332,941  98.30
95 516,926 101.20
96 455,448  79.50
97 407,590  92.92
98 520,582  90.23
99 363,518 106.21
100 431,736  80.98

98

Name Opt  Time
101 352,990  58.17
102 492,572  55.05
103 378,602  46.02
104 357,963  56.07
105 450,806  41.61
106 454,379  56.18
107 352,766  41.31
108 460,793  39.30
109 413,004  54.97
110 418,769  60.62
111 342,752 101.73
112 367,110 114.06
113 259,649 107.98
114 463,474 107.27
115 456,890 115.58
116 530,601 107.89
117 502,840 117.72
118 349,749  62.23
119 573,046 121.78
120 396,183  84.73
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