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Abstract 
Decision support systems play an increasingly important role in disaster management research. 
Coordination of rescue units during disaster response is one of the many areas which may 
benefit from this development. Time pressure, resource shortages, different capabilities of rescue 
units and the interdependence of scheduling and allocation tasks belong to the key challenges 
which emergency operation centers have to cope with. This paper proposes a non-linear 
optimization model and suggests a Monte Carlo-based heuristic solution procedure. We 
computationally benchmark our heuristic with a procedure that is applied in practice. Results of 
our study show that the Monte-Carlo heuristic is superior to the state-of-the art approach in 
terms of aggregated harm by up to 40%. However, our simulations also reveal that the time our 
heuristic needs to process medium-sized instances (100 incidents, 50 rescue units) on a PC is a 
few hours and that more powerful real-time computing capabilities are required. 

 

1. Introduction  

Natural disasters, including earthquakes, Tsunamis, floods, hurricanes, and volcanic eruptions, 
have caused tremendous harm and continue to threaten millions of humans and various 
infrastructure capabilities each year. For example, according to the World Disaster Report of the 
International Federation of Red Cross and Red Crescent Societies (IFRC, 2010), the megathrust 
earthquake centered near Sumatra on December 26, 2004, generated a tsunami that resulted in 
more than 220,000 deaths, the tropical cyclone Nargis on May 2, 2008, lead to almost 140,000 
deaths, and the Haiti earthquake on January 12, 2010 caused more than 220,000 deaths. Over all 
natural disasters within the period 2000-2009, the estimated number of people killed amounted to 
almost 1 million and the estimated economic damage caused by natural disasters was calculated 
to almost US$ 1,000 billion, respectively. 
Immediate consequences of mid- to large-scale natural disasters (e.g. superregional earthquakes) 
can often be characterized by (a) an unknown large number of incidents (casualties, damage), (b) 
multiple, differently skilled rescue teams sent from all over the world, and (c) severe time 
constraints due to finite rescue times and ever-changing situations. The hidden challenge of 
natural disaster management (NDM) is to accept, and ideally to be prepared for, these 
characteristics by satisfying the special needs that are imposed by the set of incidents. This study 
attempts to tackle these characteristics by deterministically investigating different sets of 
scenarios each with different numbers of incidents and rescue units. 
We use the term “incident” as a proxy for all synonyms indicating any immediate event of 
damage or loss caused by a natural disaster or its harmful consequences. 



According to the literature (Ajami & Fattahi, 2009; Chen et al., 2008; Hale, 1997; IFRC, 2010; 
Turoff, 2002), challenges and activities of natural disaster management can be classified along 
the pre-disaster phase (preparedness), the during-disaster phase (response), and the post-disaster 
phase (recovery) which can be arranged in a life-cycle (Chen et al., 2008). Jennex (2007, p. 2) 
further distinguishes two phases during response: the immediate response phase “consists of 
confirming the emergency, generating early warning notices, [and] initiating preplanned 
initial”. The emergency response phase “implements the emergency response plan and begins 
coordinating responders and other resources.  Additionally, this phase is the command and 
control phase that requires the emergency response team to monitor conditions and to 
coordinate response accordingly.”   
In this paper, we focus on the response phase(s) of NDM. Effective and efficient coordination 
efforts during emergency response are regarded as one of the critical tasks for emergency 
operations centers (EOCs). This fundamental challenge imposed on commanders is typically 
aggravated due to the lack of centralized command structure, which results from the involvement 
of many heterogeneous aid organizations, such as the Red Cross, technical relief organizations, 
and national guards (Schimmelpfennig, 2010). In practice, the involvement of these 
organizations with different cultural backgrounds, disaster response policies, resources, and 
capabilities entails a distributed planning and implementation of response actions. It is not 
astonishing that this organizational patchwork results in overall inefficient disaster response 
operations and redundancies in commands. 
Some of the above characteristics in relief management efforts were apparent after catastrophes 
in the recent past (e.g. Haiti 2010, Chile 2010, and Japan 2011). Surprisingly, this sometimes 
leads to the suspicion that the coordination of rescue units during these large-scale emergencies 
is an even bigger problem than resource scarcity over all. Interviews with the German Federal 
Agency for Technical Relief (THW) approved this. The interviewees also revealed another factor 
when it comes to the coordination of resources during emergency response: (human) command is 
often either communicated redundantly or counteractively in an improvised and decentralized 
manner, which makes it difficult for rescue units to follow the right command and execute it 
reliably and in a timely manner. What is currently missing in practice are ways to make 
command processes in chaotic (large-scale) settings even more reliable. This may possibly be 
achieved by avoiding the shortcomings from above and enforcing a centralized command 
structure. 
Coordination tasks can be split into operational and tactical procedures such as scheduling and 
the allocation of resources. We define both as most critical research issues in this paper. This is 
not only due to the underlying information that non-computer based coordination is currently 
done by experienced human reasoning. Yet, we question this expertise for large-scale scenarios 
when chaos and the pressure on individual commanders rise and dozens of incidents are 
confronted to a limited number of rescue teams, accounting for the necessity to co-allocate. This 
hypothesis is based on our assumption that computer-based heuristics may (a) improve human 
reasoning in small-scale scenarios by strictly obeying optimality criteria and (b) provide decision 
support even in more complex large-scale settings where human reasoning is naturally restricted. 
In this study, we address the coordination problem during emergency response and propose a 
decision support system to assist in scheduling and assigning rescue units to incidents. We 
address this objective by suggesting a quantitative optimization model and one possible solution 
heuristic.  



In the modeling process, we assume that harm can be reduced by minimizing overall completion 
times of incidents, weighted by the severity of incidents. Assuming that decision support systems 
may be notably useful in complex settings when human apprehension is finite, the solution of the 
optimization model may act not only as a research contribution but also as a decision support for 
decision-makers in practice. Disaster-specific characteristics such as differences in severity 
levels between incidents, distances, processing times, and different kinds of incidents find 
reflection in the model. We define a benchmark heuristic, which mirrors decision reasoning by 
today’s human commanders, to evaluate the quality of the performance of the proposed solution 
heuristic.  
 
The paper is structured as follows: Section 2 presents requirements, which follow from a 
literature review. These requirements are subsequently integrated into the mathematical 
modeling process in section 3. Section 4 introduces the data environment and describes the 
experiments conducted. Section 5 evaluates the experimental results, which give insights into 
runtimes. The paper closes with a conclusion and an outlook into future work. 

 
2. Literature Review and Requirements 
As this paper focusses on the response phase of NDM, we present a literature review only of this 
phase; a literature overview of the preparedness phase and the recovery phase is provided in Wex 
et al. (2011) and Schryen & Wex (2012), for example. The methodology of our literature review 
is presented in appendix A. 
Altay & Green III (2006) accentuate a strong need for novel theory and methodology by the IS 
community (among others). Open issues include the design of organizational and network 
structures that facilitate communications and coordination in disaster response, and solutions to 
logistical problems in all phases of NDM. 
It was interesting to see that most strands engage in information, communication systems, 
infrastructure (Beroggi & Wallace, 1995; Bo et al., 2009; Chen et al., 2007; Day et al., 2009; 
Fruhling & Vreede, 2006; Mendonça et al., 2001; Turoff et al., 2003), and management (Airy et 
al., 2009; Bharosa & Janssen, 2009), but less in decision support methodology. Some of the latter 
are subsequently introduced. 
One of the many decision support streams we found combines methods from applied statistics 
and probability theory with mathematical programming approaches to establish novel codes of 
conduct and metrics that assist any commander in those critical minutes of the decision-making 
process (Comes et al., 2010; Reijers et al., 2007). Competitive mechanisms (e.g. auctions) and 
cooperative mechanisms (e.g. multi-criteria approaches) are suggested. Another research stream 
follows guidelines from computational intelligence research (Leifler, 2008; van de Walle & 
Turoff, 2008) to bridge the gap between information system design principles and decision 
support process architectures. A third group of researchers makes use of empirical investigations 
of past decision-making conclusions to establish innovative courses of action (Faraj & Xiao, 
2006). A fourth research stream focuses on the decision-making process based on decentralized 
agents, e.g. Fiedrich et al. (2000) introduce the usage of optimization modeling. The authors 
above discuss pros and cons of centralized versus distributed decision authorities. Distributed 
coordination (assignments and schedules) may remain dependent from redundancies and 
miscommunications whereas centralized instances (EOCs) may effectively enforce commands if 
essential infrastructure capabilities exist and EOC communication is prioritized. On the other 



hand, centralized command may act autonomously within closed operational areas. The 
possibility that several operational areas are located right next to each other exists with an 
equivalent number of centralized EOCs. Due to the above weaknesses of decentralized 
coordination, this study focusses on centralized command structures.  
The authors of (Falasca et al., 2009) propose an optimization model for scheduling volunteers 
during emergency response where the subjects feature time windows. Another paper (Rolland et 
al., 2010) promotes centralized coordination by applying a mathematical programming model for 
scheduling distributed rescue units and the assignments of incidents to these units. However, the 
suggested model uses time periods of fixed length, and does not account for the fact that 
incidents may have different levels of severity. Wex et al. (2011) introduce an optimization 
model in a centralized way that matches incidents by clearly assigning a single rescue unit per 
incident. Fuzzy optimization is used in Wex et al. (2012) in order to handle the high level of 
informational uncertainty that occurs during any emergency. All of the above centralized 
optimization models lack the eventuality that rescue units need to be assigned to incidents 
collaboratively. 
We hence deduce that the research objective has been understudied in former scholarship so far. 
The literature review together with interviews with practitioners (THW) led to a distinct set of 
requirements. The artifact, which we propose in the next section is being sought to fulfill the 
following six requirements in order to solve the problem of efficiently and effectively 
coordinating rescue units to incidents: 
 

1. Timeliness in decision provisioning 
2. Autonomy of centralized decision-makers 
3. (In-)Completeness of centralized information 
4. Heterogeneous rescue units and incidents 
5. Non-preemptiveness (Rescue units cannot interrupt processing an incident (job) 
before its complete release) 
6. Ability to co-allocate rescue units to an incident 

 
3. Decision Model 
As we are examining modeling approaches of a real world scenario, which is both a scheduling 
and an assignment problem, we screened relevant literature on the multiple traveling salesman 
problem (mTSP) and from job scheduling theory. Bektas (2006) proposes modeling variants and 
solution procedures for the mTSP. Yet, our scheduling and assignment problem is only related to 
the mTSP in terms of constraints but varies significantly regarding the objective function 
because of dependencies between processing sequences. That is, it does make a difference for the 
overall harm to process an incident before a less severe incident. 
Our problem is also related to a problem in the scheduling literature. If we assume that travel 
times between two incident locations does not depend on the particular type of rescue unit that 
travels, then our problem is equivalent to the “parallel-machine scheduling problem with 
unrelated machines, non-batch sequence-dependent setup times, and a weighted sum of 
completion times as the objective”, classified as R/STSD/∑wjCj in the scheduling literature 
(Allahverdi et al., 2008). However, this assumption is rarely met in practice so that heuristics 
suggested for this problem (Weng et al., 2001) are inappropriate. Thus, we are bound to 
alternative solution heuristics. 



Our artifact, in terms of a quantitative decision model, is modeled as a variant of a (job) 
scheduling model for unrelated, parallel machines (rescue units) (Blazewicz et al., 1991). The 
model is non-preemptive (Requirement 5). We hereby also allow for parallel processing of one 
incident by several rescue units. An incident is not regarded as being completely processed 
unless all required rescue units have finished their work. But, once a rescue unit has finished a 
job it can be assigned to another incident again. Furthermore, we do not require specific 
processing orders (task windows). All relevant information (processing times, severity of 
incidents, and travel times) is expected to be available in order to make the model work. Even 
though this may seem unrealistic, we assume that we can trust reports from on-site agents about 
incidents and status updates of rescue units and regard information as complete. In cases where 
uncertainty prevails, we refer to a non-probabilistic, fuzzy optimization model presented in Wex 
et al. (2012) even though this model is not able to co-allocate rescue units. Using probabilistic 
factors or fuzzy numbers as proxies for uncertainty would also imply other challenges, such as 
appropriate parameter settings, applicability, interpretation value, and an increase in model 
complexity. 
We thus explicitly introduce our model for centralized coordination within clearly defined 
operational areas. In a superregional disaster, we assume to implement our model in n-
decentralized areas given that the autonomous command zones have clear boundaries. 
In cases when the disaster itself is very confusing and the situation is changing continuously (e.g. 
updates and new incidents are continuously reported), we abort the current optimization process 
and restart it with the new parameters (continuous planning property). On the other hand, all 
tasks of rescue units which are already processing incidents or sent out to do so cannot be 
aborted if the optimization is started anew once any scenario has altered. That is, rescue units can 
only be assigned to new incidents when they become idle. 
Besides the fulfillment of previously established requirements, this binary, non-linear 
optimization model pursues two goals: (1) generation of valid schedules and assignments for 
rescue units; (2) minimization of the total harm occurring during the scene. We assume that harm 
can reasonably be modeled by the sum of completion times over all incidents multiplied by 
weighting factors that account for their destructiveness. The model especially accounts for co-
allocation which appears when incidents require various, differently-skilled rescue personnel and 
punishes waiting times that occur when incidents are not processed immediately after their 
appearance. 
The objective function seeks to minimize total weighted completion times which are necessary to 
process all incidents j. Schedules and assignments are generated by two binary decision variables 

 and  ,  which indicate if an incident i is an immediate predecessor of j or a mediate 
predecessor in the list of incidents that are processed by rescue unit k, respectively. A weighing 
factor  is introduced which depicts the level of severity of incident j. For the parameterization 
of factors wj, we make use of the classification introduced by the U.S. Department of Homeland 
Security (2008) which distinguishes between different (terrorism) alert levels. Other parameters 
in use are: processing times  which denote how much time rescue unit k requires to process 

incident j. Travel times  measure the time needed for rescue unit k to move from the location 
of incident i to the location of incident j. We introduce two fictitious incidents ‘0’ and ‘n+1’ for 
technical modeling reasons, where using incident 0 allows for considering the depots (starting 
locations) of rescue units ( 0, 1, … , ;	 0, 0, … , , 1, … , ). 



capk,l is a binary parameter with capk,l=1 if and only if rescue unit k has capability l (e.g. firemen, 
paramedics). Our modeling also provides for those situations in which a rescue unit can have 
more than one capability. The binary parameter cati,l equals 1 if and only if the processing of 
incident i requires characteristics of rescue units which have to be matched by rescue units’ 
capabilities. This explicitly includes the case that an incident requires the capabilities of more 
than one rescue units. To sum up, both relationships (rescue_units[capabilities] and 
incidents[capabilities]) are of type (m:n). 
 

min  

s.t
. 1	, 1, . . , ; 1, . . ,  (C1) 

1	 , 1, . . , ; 1, . . ,   (C2) 

1		,										 		 1, . . ,   (C3) 

1		,				 								 1, . . ,   (C4) 

1 , 0, . . , ; 1, . . , 1; 1, . . , ; 1, . . ,  (C5) 

	 , 1, . . , 	; 1, … ,   (C6) 

		, 0, . . , ; 1, . . , 1; 1, . . ,  (C7) 

0,							 0, . . . , 1; 1, . . ,   (C8) 

, , 	, 1, . . , ; 1, . . ,  (C9) 

, 	 ∈ 0,1 	, 0, . . , ; 1, . . , 1; 1, . . ,   (C10) 

, ∈ 	 0,1 , 1, . . , ; 1, . . ,  (C11) 

, ∈ 	 0,1 , 1, . . , ; 1, . . ,  (C12) 

, , 	 ∈ 	   (C13) 

 
 



Constraint (C1) ensures the correct alignment of immediate predecessor relationships between 
incidents that are processed successively by one specific rescue unit k; (C2) addresses the 
immediate successor relationships analogously. Both constraints permit that an incident may be 
processed by more than one rescue unit (co-allocation) but prohibit that a rescue unit processes 
more than one incident at the same time. 
Constraints (C3)–(C4) guarantee that rescue units start from their depot (fictitious incident ‘0’) 
and end in ‘n+1’ (fictitious incident ‘n+1’). (C5) declares that predecessor relationships are 
transitive. Additionally, if an immediate predecessor exists, there also has to be a successor (C6). 
(C7) indicates that any immediate predecessor is also a general predecessor. (C8), in conjunction 
with (C5) prohibits a reflexive, direct or indirect predecessor relationship. (C9) ensures that all 
capabilities required to process incident i are jointly covered by the rescue units that process 
incident i. In addition, the model still remains valid if rescue units possess more than one 
capability.  
Trivially, (C10) defines the two binary decision variables and implies non-preemption. (C11), 
(C12), and (C13) define all other parameters used. In our sense, the so-called factor of 
destruction wj represents, and is apt to model, the severity level of an incident. An explanation of 
how model instances are parameterized is presented in the next section.  
 
Each feasible solution of the minimization model represents a valid schedule and assignment for 
all rescue units. We illustrate this in the exemplary scenario depicted in Figure 1. Two 
differently-skilled rescue teams face (at least) five incidents out of which only incident 4 requires 
the skills of both units (need for co-allocation). Incidents , ∈  both denote the last real 
incidents which need to be processed by the medical and the firefighting unit, respectively, 
before ending the process with fictitious incident n+1.  
In detail, a schedule is proposed for the medical unit to process incident 1 before processing 
incidents 3 and 4 due to the above optimality criterion (order: 0-1-3-4...-j1-(n+1)). The fire 
brigade would adopt an identical schedule vice versa (0-2-4-5-…-j2-(n+1)). Following such an 
approach would entail an objective value of ‘323’. In contrast, processing incident 3 immediately 
before incident 1 by the medical unit would result in a worse value of ‘328’. For reasons of 
clarity, incident 4 is regarded as uncovered until not all or parts of jobs have been finished, that 
is, until all collaboration units are done processing. 
It is not astonishing that such an illustrative example evolves confusion – thus raising complexity 
– when more incidents or rescue units are involved, especially under the premise that some 
incidents require several capabilities of rescue units and others not. 
 
Proof of Complexity.  Our decision model is a generalization of the emergency response 
decision model suggested in Wex et al. (2012). The generalization lies in the fact that our model 
additionally allows for various capabilities per rescue unit and per incident. Since the model 
suggested in Wex et al. (2012) is NP-hard, our model is NP-hard, too. 

 
  



Figure 1. Example schedule and assignment for a medical and a firefighting unit and an 
incident that requires the collaboration of both. 

 
 

4. Computational Evaluation 
Due to the computational (NP-)hardness and related computational inefficiency of the decision 
model, we suggest two heuristic approaches for solving model instances. We first describe the 
heuristics, then, we present our framework for evaluating the heuristic and the technical 
infrastructure of our simulation. 

 
4.1. Heuristics 
A Monte-Carlo based heuristic is suggested as one possibility to solve the above optimization 
model. Monte-Carlo is chosen for several reasons: 
 
1. Our decision model is too complex (NP-hard) to be solved (optimally) in reasonable time. 
2. We expect a lot of local optima. Deterministic heuristics might get stuck within these. 
3. Monte Carlo allows to adapt runtimes by altering the number of its iterations 

 
The key idea of generating a feasible solution in our Monte Carlo simulation is that incidents are 
iteratively scheduled in two stages: in stage one, an incident is assigned randomly to one of the 



D% most appropriate rescue units, where appropriateness is determined based on the required 
capabilities (skills) and processing times. The motivation of this procedure is based on avoiding 
both a) assignments of incidents to units that require an extremely long time for processing (thus, 
a parameter D in [0; 100] is used), and b) myopic assignments of incidents to units that require 
the shortest processing time among all units (thus, randomness is included). If there is no rescue 
unit that has the capability to process the incident, the algorithm terminates unsuccessfully. 
In stage 2, the chosen incident is inserted into the incident queue of the previously selected 
rescue unit. The criterion for determining the position of the new incident in the queue is based 
on a weighted ratio of the severity of incident w and the time p it takes the selected rescue unit to 
process this incident. Each queue lists its incidents in descending order of (w/p)-values. The 
algorithm terminates successfully if feasible solutions have been generated. 
The Monte Carlo heuristic requires two input parameters: ∈ 0; 	100  is used for the selection 
of rescue units and the number of iterations which is the number of feasible solutions generated. 
We set D = 90 and the number of iterations to 500,000 based on results of pretests. As 
initialization, the currently best solution value is set to infinity and the currently best solution is 
set to undefined, the current number of iterations is set to 0, the cumulated processing times are 
set to 0 for each rescue unit, the current incident queues are set to empty for each rescue unit, and 
we define I* as the set of currently unassigned incidents. The incidents in I* are now processed 
iteratively:  
For all categories ∈ , we define K(d) as the set of all rescue units that are capable of 
processing category d required by incident i. If incident i cannot be classified by category d, we 
set K(d)={} and proceed. We rearrange all K(d) in ascending order of cumulative processing 
times. If there are not enough rescue units that possess the capabilities to completely process 
incident i, the algorithm terminates unsuccessfully. In each K(d), the algorithm randomly selects 
a rescue unit with one of the D% lowest cumulative processing times. The purpose of 
introducing this element of randomization is the avoidance of greedy assignments of units to 
incidents while contemporaneously avoiding assignments of rescue units with extremely high 
cumulative processing times. The cumulative processing time of the selected unit is then 
updated, which concludes stage 1. In stage 2, the current incident i is inserted into the queue of 
the selected rescue unit queue(unit) such that the queue is ordered in ascending order of values 
(fact_destruct(i)/processing_time(unit, i)), and incident i is removed from the set of incidents that 
still need to be assigned. If all incidents have been assigned and all required categories have been 
matched by rescue units’ capabilities, then the current schedule is compared with the best known 
schedule, which is contingently updated. The algorithm terminates successfully if enough 
feasible solutions have been generated; equaling the number of iterations. 
 
As another possible solution method to our model, we select a heuristic which can be found in 
practice, usually in a manually operated and non-automated decision-making processes. We 
gained information on this heuristic through interviews with the THW. The key ideas of the EOC 
heuristic are that a) incidents are assigned to rescue units in descending order of the factor of 
destruction, and b) that each incident j is assigned to those rescue units k that are (i) capable of 
processing incident j and (ii) that can start processing incident j at the earliest point of time, with 
assignment history and updated travel times being considered. That is, the heuristic computes 
schedules which arise when greedily assigning the most severe incident to the closest, idle rescue 
units. An incident is regarded as fully processed until all of its categories are completely matched 
by rescue units’ capabilities. 



We do not only assume that this approach can be found in practice but we also hypothesize that it 
can serve as a well-defined benchmark. In absence of lower bound solutions, the results of both 
heuristics build the basis for the evaluation of our proposed Monte Carlo based solution heuristic 
in the follow-up. 

 
4.2. Experiment Setup 
Due to the lack of real-time data we randomly generated different mid- to large-scale disaster 
scenarios: for each instance size, defined by the number of incidents and rescue units, we 
generated ten instances, which resulted in an overall number of 120 instances. We excluded more 
facile settings in which rescue units numerically outnumber the number of incidents since this 
setting seems to be unrealistic. Table 1 provides an overview of how the instances were 
generated. In all Monte Carlo experiments, we used 500,000 iterations. Larger numbers of 
iterations did not result in better solutions in reasonable time.  
 

Table 1. Randomized generation of scenarios. 
Parameter Values/Distribution 

Numbers of Rescue Units 
(RU) 

∈ 10,20,50  

Numbers of Incidents (Inc.) ∈ 10,20,50,100,200  

Replications of each 
scenario (RU|Inc.) 

10 

Factors of destruction  
Random Integer ∈ 1,2,3,4,5  (discrete 

uniform distribution) 

Capabilities of rescue units 

,

1, 	
	

0,
	 

∈ , ∈ 1, . . ,5  
l=1; Search and Rescue Unit 

l=2; Medical Unit (Paramedics) 
l=3; Fire Brigade Unit 

l=4; Police Unit / Wardens 
l=5; Special Access Unit 

(discrete uniform distribution) 

Categories of incidents 
(capabilities required) 

,

1, 	
	

0,
 

∈ , ∈ 1, . . ,5
Iterations 500,000 

 
We make a sharp distinction between well-established skills of rescue units (e.g. medical or 
firefighting). We classify rescue units as “Special Access Unit” if it cannot be assigned to any of 
the other classes (see Table 1 and New South Wales Government (2007)). Unlike in the model, 



we exclude the possibility that rescue units possess more than one capability. Proportions of 
travel and processing times are explained in the next subsection. 
The model was evaluated using a two-cored machine (2.53GHz, 2GB RAM). We chose this 
elementary environment to get insights into “poor” command centers equipped with household 
computers only and a missing link to high-speed infrastructure. Realistic results and runtimes 
may persuade to implement our approach in disaster-struck countries where sufficient computing 
facilities are missing. This information is essential to consecutively underline our research 
contribution and the fulfillment of requirement 1. Both heuristics have been implemented in 
MATLAB. 

4.3. Parameterization 

We choose the crucial factor time not only to quantify our objective value but also to measure 
distances between (depots and) incidents. We have such an understanding of disasters that travel 
times might be significantly shorter than times which are needed to process incidents (mean 
ratio: 1:20), yet less volatile. We suppose that this is apparent when incidents occur in 
overcrowded areas (such as megacities) with (fire/police) rescue departments in close distance. 
On the other hand (e.g. during intra-regional disasters), travels from rescue units’ depots to 
incidents may be longer than expected whereas processing of incidents itself may be relatively 
short (mean ratio: 1:5). We therefore chose a parameterization to take this feature into 
consideration by varying processing time distributions and keeping travel time distributions 
constant. We also test whether a change in the standard deviation of the processing time 
distribution has an influential impact on the results. 
Lacking real-world data and exact parameters plus considering that incident processing usually 
requires an unknown amount of extra time than actually traveling to incident locations, we 
account for four different settings (A-D) in travel time and processing time distributions. In 
detail, we evaluate four ratios of travel vs. processing times (all normal distributions) when 
randomly generating each scenario, totaling in 480 different scenarios overall (4x10x12): 
 
Table 2. Configuration of processing times of incidents and travel times between incidents. 

Processing times  
(normally distributed) 

A: µ=20, σ=10 

B: µ=10, σ=5 

C: µ=5, σ=2.5 

D: µ=20, σ=5 

Travel times  
(normally distributed) 

µ=1, σ=0.3 

 
5. Results 
Results of both heuristics are depicted in figures 2 and 3 (results of parameterization settings C 
and D can be found in figures 4 and 5 in Appendix B). The boxplots display most relevant 
statistical data (means, quartiles, whiskers, outliers). Boxplots in each figure have been sketched 
for 12 different scenarios depending on the number of incidents and the number of rescue units. 
For example, the notation 10|20 on the x-axis depicts a scenario of 10 rescue units and 20 



incidents. Each box integrates the results of ten replications thus calculating to 12x10=120 
problem instances for each figure. The figures read as follows: the scale represents the ratio 
between the two heuristics. Entries close to the upper top, i.e. close to 100%, are to be 
understood that it is not easily possible to substantially improve the benchmark by the introduced 
Monte Carlo based heuristic. Data points close to the bottom margin of a figure can be 
interpreted as a (large) benefit in comparison to the benchmark. 
At a first glance at figure 2, we notice that no outliers in the regular sense exist beyond all 
whiskers of the boxplots. It also seems that variances seem to be reasonably small (except for 
results of the first scenario 10|10) since boxplots are thin and results stay within a 10% interval. 
Coefficients of variation range between 3% (50RU|200Inc) and 9% (20RU|20Inc). This 
observation may induce that we can make reliable statements about the performance. Only the 
(10RU|10Inc) scenario has a coefficient of variation of 21%. 
Apparently, all results of the proposed Monte-Carlo based heuristic are better than those of the 
benchmark since none of the objective values exceed the result gained from the benchmark 
heuristic (proportions ≤100%). Some of them tend to excessively improve the benchmark 
especially in more straightforward scenarios (up to 57% (left whisker) in the 10RU|10Inc 
setting). The objective value can be improved to up to 30-40% in a (20RU|20Inc) environment. 
The performance adapts towards the benchmark in more complex settings with more incidents 
evolving. 
 

Figure 2. Results of the Monte Carlo based solution heuristic relative to the benchmark 
heuristic (parameterization A, : µ=20, σ=10). 

 
Figure 3 almost mirrors the information value of figure 2. Firstly, it can be noticed that most 
benefits occur when examining the most facile scenarios (10|10, 10|20, 20|20), thus e.g. noticing 
improvements of between 30% and 40% in a 10|20 environment. Secondly, the proposed Monte 
Carlo heuristics seems to be struggling in more complex scenarios, especially in cases with lots 
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of incidents to be handled by a number of rescue units equal/close to fifty (scenarios 50|50, 
50|100, 50|200). In very exceptional cases we even perceived that the results of the Monte Carlo 
heuristic were very similar to those of the benchmark heuristic and the improvement effects were 
low. If so, the corresponding coefficient of variation was low. In all other cases the coefficient of 
variation lies between 12% (scenario 10|10) and 4% (scenario 20|200). Scenarios with 
parameterization B ( : µ=10, σ=5) resemble instances during disasters where rescue units need 
to travel a decent amount of their time between incidents. In comparison to parameterization A, 
parameterizations B and C seem more realistic during intra-regional disasters with large 
distances between incidents. 
All results have been statistically analyzed using a one-sample t-test to prove the superiority of 
the proposed heuristic. Testing leads to the conclusion that all Monte-Carlo based results do 
outperform the benchmark within a 95% level of significance. Since figures 4 and 5 (both in 
Appendix B) almost resemble the results from above, we assume that the hypothesized intuition 
is valid, that the proposed Monte Carlo heuristic will generally improve the current best practice 
in disaster management. Figure 5 gives evidence that a change in the standard deviation of the 
processing time distribution only has a minor impact on the results. 

 
Figure 3. Results of the Monte Carlo based solution heuristic relative to the benchmark 

heuristic (parameterization B, : µ=10, σ=5). 

 
Table 3 depicts the runtime behavior of the Monte-Carlo heuristic for parametrization A ( : 

µ=20, σ=10; : µ=1, σ=0.3). In the smallest scenarios, results were generated within 12min, 
whereas in the most complex setting the computational time endured 2.5 hours. Results for all 
scenarios, which have been dealing with 50 incidents or less, were computed within one hour. 
Interestingly, these numbers in runtimes hold true for the remaining three parametrizations. 
Yet, we hypothesize that 2.5 hours of waiting are too long for the generation of assignments and 
schedules, therefore, we recommend adapting the number of iterations to get results faster 
without losing too much of its benefits. Cutting the number of iterations to 250,000 reduces the 
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runtime of the (50RU|200Inc) scenario to approximately one and a half hours, whereas the mean 
ratio of the results weakens by only 1%. 
Requirement 1 can be fulfilled even more a) by further reducing the number of Monte Carlo 
iterations or b) by increasing computation power. We assume that high-performance processors 
or advanced IT infrastructure cause runtimes to diminish to a minimum even in very complex 
scenarios. If one makes use of this adaptability of the Monte-Carlo based heuristic in complex 
settings, then requirement 1 can be fulfilled. 
 

Table 3. Mean runtimes of the Monte-Carlo based solution heuristic (in seconds). 
t[sec] 10 Inc. 20 Inc. 50 Inc. 100 Inc. 200 Inc. 

10 RU 697 934 1,993 4,170 8,987 

20 RU  1,068 2,142 4,037 8,574 

50 RU   2,526 4,819 9,771 

 

6. Conclusion 
The management of emergency response is recognized as a key issue in literature and in disaster 
management practice. Although NDM has evolved to a research discipline where IS artifacts 
have already been proposed, decision support procedures for assignments and schedules of 
rescue units have mostly been neglected in research. The collaboration between rescue units in 
particular has been lacking attention so far. 

This paper proposes a novel quantitative decision support model for the allocation and 
scheduling of rescue units that eventually need to collaborate based on requirements identified in 
the related literature and in interviews. Due to the NP-hardness of the model, we draw on a 
Monte Carlo based solution heuristic and computationally demonstrated its benefits for various 
parameterizations in relation to a well-defined benchmark. 
As the results show, the application of the proposed heuristic is superior to the best practice 
which was implemented in accordance to the literature and interviews with the German THW. 
Beyond effectiveness through reduced overall harm, the benefit of the formal modeling approach 
lies in the decision model itself as it provides the basis for designing, implementing and applying 
even superior algorithms. Within the process of this research paper, we found the following gaps 
which invite for future work, such as: a) the introduction of time windows, b) pre-emption, or c) 
the employment with real-time data.  
For example, time windows are of particular importance when humans are buried alive and need 
to be saved. Pre-emptive approaches become necessary when rescue units need to improvise or 
act more autonomously or jobs need to be switched quickly and often. Other research streams 
may enhance the applicability of the optimization model, such as the integration of fatigue 
characteristics of rescue units. Fatigue features become apparent when rescue forces lose some of 
their performance abilities caused by the duration of their deployment and the constant pressure 
to save lives over time. Yet, addressing these issues would cause additional constraints to the 
model. 
 
  



Appendix A: Literature Search Procedure 
We scanned the literature in the fields of NDM and IS/computer science. Regarding the former 
field, our search procedure included the following steps: 

 We performed a title search in technological- and management-oriented literature 
databases, namely Business Premier Source, EconLit, and ACM Digital Library (the search 
string was ”(response OR system OR management) AND “disaster”). 
 We searched the proceedings of the “International Conference on Information Systems 
for Crisis Response and Management” and the table of contents of the journals 
“International Journal of Emergency Management”, “International Journal of Emergency 
Response”, and “Disaster Prevention and Management” (since 2000). 

 
Regarding literature on information systems and computer science-related disaster management 
research, our search procedure included the following steps: 

 We performed a title search in technological- and management-oriented literature 
databases, namely ACM Digital Library, Business Premier Source, EconLit, MLA (the 
search string was ”information AND disaster”). We also searched the literature database 
“Web of Science” using the same search string. Due to an unmanageable number of results 
we refined the search by using the following search string: “disaster AND (management OR 
system OR information) AND design”. 
 We scanned the table of contents of premier IS outlets, including “European Journal of 
Information Systems”, “Information Systems Journal”, “Information Systems Research”, 
“Journal of the AIS”, “Management Information Systems Quarterly”, and “Journal of the 
Management of Information Systems”. 
 We searched the proceedings of the “International Conference on Information Systems 
for Crisis Response and Management” and the table of contents of the journals 
“International Journal of Emergency Management”, “International Journal of Emergency 
Response”, and “Disaster Prevention and Management” (since 2000). 

  



Appendix B: Results of Parameterization C and D 

Figure 4. Results of the Monte Carlo based solution heuristic relative to the benchmark 
heuristic (parameterization C, : µ=5, σ=2.5). 

 
Figure 5. Results of the Monte Carlo based solution heuristic relative to the benchmark 

heuristic (parameterization D, : µ=20, σ=5). 
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