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Natural disasters, such as earthquakes, tsunamis and hurricanes, cause tremendous harm each year. In
order to reduce casualties and economic losses during the response phase, rescue units must be allocated
and scheduled efficiently. As this problem is one of the key issues in emergency response and has been
addressed only rarely in literature, this paper develops a corresponding decision support model that
minimizes the sum of completion times of incidents weighted by their severity. The presented problem
is a generalization of the parallel-machine scheduling problem with unrelated machines, non-batch
sequence-dependent setup times and a weighted sum of completion times – thus, it is NP-hard. Using lit-
erature on scheduling and routing, we propose and computationally compare several heuristics, including a
Monte Carlo-based heuristic, the joint application of 8 construction heuristics and 5 improvement heuris-
tics, and GRASP metaheuristics. Our results show that problem instances (with up to 40 incidents and 40
rescue units) can be solved in less than a second, with results being at most 10.9% up to 33.9% higher than
optimal values. Compared to current best practice solutions, the overall harm can be reduced by up to 81.8%.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Natural disasters, such as earthquakes, tsunamis, floods, hurri-
canes and volcanic eruptions, have caused tremendous harm in
the past and continue to threaten infrastructure and millions of
people each year. Of particular importance for the reduction of
casualties and economic losses is the response phase in natural
disaster management, during which a large number of geographi-
cally-dispersed incidents, such as fires and collapsed buildings, re-
quire immediate processing by rescue units in the presence of
severe resource scarcities and time pressure. Thus, one of the most
critical emergency response tasks (Comfort, Ko, & Zagorecki, 2004)
is the efficient allocation and scheduling of rescue units. However,
this challenge has been addressed in the literature only very rarely.

In this paper, we propose a decision support model for emer-
gency operations centers that allocates available rescue units to
emerging incidents and schedules the processing time of these
incidents. The model is formulated as a binary quadratic optimiza-
tion problem, where the objective minimizes the sum of comple-
tion times of incidents weighted by their severity. We refer to
this problem as the Rescue Unit Assignment and Scheduling Problem
(RUASP). Our decision problem is related to problems from both
routing and scheduling. We show that our problem can be modeled
as a (more complex) modification of both the Multiple Traveling
Salesman Problem (mTSP) and the parallel-machine scheduling
problem with unrelated machines, non-batch sequence-dependent
setup times and a weighted sum of completion times as the objec-
tive function, classified as R=STSD=

P
wjCj in the scheduling litera-

ture. Using this relationship, we prove that our problem is NP-hard.
However, the NP-hardness of the underlying problem opposes

one of the imposed requirements that decisions – even in complex
emergency situations – must be derived timely. Therefore, we pro-
pose, implement and computationally compare several heuristics
for the allocation and scheduling of rescue units. More specifically,
we use a Monte Carlo-based heuristic as well as joint applications
of 8 construction heuristics and 5 improvement heuristics. In addi-
tion, we embed these combinations of construction and improve-
ment heuristics into GRASP metaheuristics. Thus, our work
contributes not only to the field of disaster management, but also
to the optimization literature in general.

The remainder of this paper is structured as follows. Section 2
examines and presents relevant literature and reveals the re-
search gap that our paper addresses. In Section 3, we suggest
the RUASP problem and propose an appropriate optimization
model. Because of the NP-hardness, Section 4 proposes several
solution heuristics. Our computational experiments are presented
in Section 5, which also discusses our results. We summarize our
results in Section 6, and conclude with an outlook on future re-
search directions.
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1 In order to provide decision support for realistic situations, we conducted
interviews with associates from the German Federal Agency for Technical Relief
(THW). These associates provided us with profound information on on-site coordi-
nation in the upright aftermath of the 2011 earthquake and tsunami in Japan.

2 In practice, information is likely to be updated frequently so that assignment and
scheduling decisions have to be refreshed based on the status quo of available
information. We account for these dynamics by suggesting that the optimization
model is applied in an iterative manner: if the decision makers determine to update
the current scheduling and allocation plan based on new information, a new instance
of the optimization problem with updated information is created. When solving this
new instance, one needs to account for the fact that some of the known incidents have
already been or are being processed. Accordingly, rescue units may have been already
assigned and sent to incidents. In this case, it must be prohibited to assign busy rescue
units until they will have finished their jobs (non-preemption). To sum up, a sequence
of instances is generated and solved during the disaster response phase.
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2. Related work

In the literature on disaster management, challenges and
activities are classified (Ajami & Fattahi, 2009; Altay & Green,
2006; IFRC, 2012) into the preparedness phase (period before
the disaster), the response phase (period during and shortly after
the disaster) and the recovery phase (period long time after the
disaster). More specifically, the preparation phase addresses tasks
related to planning, training, early warning (i.e. prediction) and
the establishment of necessary emergency services (Gasparini,
Manfredi, & Zschau, 2007; Nisha de Silva, 2001; Pollak, Falash,
Ingraham, & Gottesman, 2004; Svensson, Holst, Lindquist, & Lind-
gren, 1996; UN/ISDR, 2005). The primary aims during the re-
sponse phase are both rescue from immediate danger and
stabilization of the condition of survivors. Tasks include relief,
emergency shelter and settlement, emergency health, water and
sanitation and tracing and restoring family links (IFRC, 2012). In
the recovery phase, tasks are related to person finding, (ex-post)
data analysis, intelligent infrastructure repair and the provision
of various emergency services as well as resources in order to re-
cover the most important infrastructure facilities (GAO, 2006;
Salleem et al., 2008; Sherali, Carter, & Hobeika, 1991). According
to Chen, Sharman, Rao, and Upadhyaya (2008), these phases are
sometimes also arranged in a life cycle.

Regarding decision support, research streams (Airy, Mullen, &
Yen, 2009; Comes et al., 2010; Lambert & Patterson, 2002; Reijers,
Jansen-Vullers, Zur Muehlen, & Appl, 2007; Tamura, Yamamoto,
Tomiyama, & Hatono, 2000) utilize methods from applied statistics
and probability theory combined with mathematical programming
approaches to establish novel codes of conduct and metrics that
assist commanders in critical minutes of the decision-making pro-
cess. In a first research stream, competitive mechanisms (e.g. auc-
tions) and cooperative mechanisms (e.g. multi-criteria approaches)
are developed and, in this context, Fiedrich, Gehbauer, and Rickers
(2000) introduce the usage of optimization modeling. Second, an-
other research direction follows guidelines from computational
intelligence research (Leifler, 2008; van de Walle & Turoff, 2008)
to bridge the gap between information system design principles
and decision support process architectures. A third research stream
uses empirical investigations of past decision-making conclusions
to establish innovative courses of action (Faraj & Xiao, 2006).
Fourth, research also focuses on the decision-making process based
on either decentralized agents (Airy et al., 2009; Falasca, Zobel, &
Fetter, 2009) or a centralized authority.

Researchers argue that distributed coordination (i.e. assign-
ments and schedules) remains independent of failures of a single
emergency operations center, communication bottlenecks evolve
more seldom and loss minimization is achieved more easily.
Regarding the latter, Rolland, Patterson, Ward, and Dodin (2010)
promote centralized coordination by applying a mathematical pro-
gramming model for scheduling distributed rescue units and the
assignments of incidents to these. However, the suggested model
uses time periods of fixed length, and does not account for the fact
that incidents may have different levels of severity. As a remedy,
Wex, Schryen, and Neumann (2011, 2012, 2013) suggest mathe-
matical formulations and a Monte Carlo-based heuristic for the
centralized scheduling and allocation of rescue units under cer-
tainty and under uncertainty, respectively.

This study focuses on decision support in operational manage-
ment during the response phase of natural disaster management.
To augment existing work, we develop and computationally vali-
date a large set of heuristics for the decision support problem of
centralized coordination of rescue units in terms of their schedules
and assignments to incidents. We evaluate all heuristics against
two benchmarks: best practice solutions and lower bounds of opti-
mal solutions.
3. Optimization model

This section introduces the problem of scheduling rescue units
and assigning them to incidents optimally after the occurrence of a
disaster. We refer to this problem as the Rescue Unit Assignment and
Scheduling Problem (RUASP).

3.1. Problem specification

The problem size is determined by the number of available res-
cue units m and the number of incidents n that needs to be pro-
cessed. We consider situations in which the number of available
rescue units is smaller than or equal to the number of incidents
(m 6 n) as this ratio is typical in natural disasters. Furthermore,
we account for the following properties.1

Property 1. Since not every rescue unit is able to process each
incident, we account for both specific requirements of incidents
and different capabilities of rescue units.
Property 2. Processing times are both incident-specific and unit-
specific.
Property 3. Different rescue units need different travel times
between the locations of incidents.
Property 4. The processing of an incident must not be interrupted
(non-preemption).

Property 5. Each incident is assigned a weighting factor account-
ing for both casualties and damage induced over time. This weight
is named factor of destruction or severity level. The sum of
weighted completion times regarding the processing of incidents
measures, as a proxy, the overall harm.

We illustrate the RUASP in Fig. 1, which shows a feasible solu-
tion of a problem instance with m = 5 units and n = 12 incidents.
For each incident j, the level of severity (i.e. factor of destruction)
is given by wj 2 {1, . . . , 5}. The sample schedule considers the spe-
cific requirements (types) of incidents and the capabilities of res-
cue units. Here, the variable capkj equals 1 if and only if rescue
unit k has the capability to process incident j.

The figure indicates that the problem to be solved is static and that
all incidents, available rescue units and their characteristics are known.
However, the decision support system updates its assignments contin-
uously.2 As a consequence, it seems realistic to assume that each instance
does not exceed a moderately large size (m,n6 40), for which our heu-
ristics can provide feasible solutions in timely manner.

3.2. Relationship to routing and scheduling problems

This section explores the relationship of RUASP to existing
problems from both routing and scheduling.



Fig. 1. Feasible solution for sample schedules and assignments with m = 5 units and n = 12 incidents.
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In the routing domain, our problem is related to the multiple
Traveling Salesman Problem (mTSP), which is a generalization
of the TSP and a relaxation of the Vehicle Routing Problem
(VRP) with the capacity restrictions removed (Bektas, 2006). To
prove the relationship to mTSP, one needs to map rescue units
to salesmen and incidents to cities/nodes while requiring that
rescue units need to return to a central depot (given by a ficti-
tious incident) with severity level 0. Furthermore, Property 1
(i.e. capabilities) is modeled by setting the corresponding mTSP
decision variables to 0. While we can aggregate processing times
and travel times in the RUASP to overall travel times, Properties 2
and 3 also require travel times in the mTSP to be salesman-
specific. These properties can be modeled by providing
salesmen-specific travel times between two cities. In addition to
that, Property 4 (non-preemption) is inherently included in the
mTSP. Altogether, this leads to the problem mTSP with
salesman-specific travel times.

With regard to modeling this problem, it seems straightfor-
ward to extend existing mTSP models. In the literature, different
mTSP models are suggested (Bektas, 2006). Among these models,
only the flow based formulation, which uses three-index decision
variables (for two cities and one salesman), can be easily modi-
fied to account for salesman-specific travel times. This extension
requires leaving all constraints unchanged and substituting only
the objective function coefficients cij by ck

ij, with k being the index
of the salesman and i as well as j being the indices of the cities.

Finally, Property 5 addresses the objective to minimize the sum
of weighted completion times. However, a serious issue is caused
by considering this property since the objective function in mTSP
depends only on the edges traveled, but not on the order in which
they are traveled. Considering also Property 5 leads to a mTSP with
salesman-specific travel times under minimizing the sum of weighted
visiting times. We are not aware of related research where a prob-
lem of this structure is addressed.

In the same manner as the mTSP, the VRP shares the issue
caused by Property 5. Again, we are not aware of any VRP exten-
sion that allows modeling our problem. To sum up, the RUASP is
related to both the mTSP and the more general VRP, but it is
neither a specialization nor a relaxation of any of these problems.
Consequently, neither an exact mTSP algorithm nor exact VRP
can be regarded as an exact RUASP algorithm. However, as the sets
of constraints of the mTSP (in the flow based formulation) and of
the RUASP are equal, Section 4 adapts heuristics for the mTSP to
the RUASP.

The RUASP is also related to problems in the scheduling
literature. If we map rescue units to machines, incidents to jobs
and travel times to setup times, then the RUASP is similar to
the parallel-machine scheduling problem with unrelated machines,
non-batch sequence-dependent setup times, and a weighted sum of
completion times as the objective, classified as R=STSD=

P
wjCj in

the scheduling literature (Allahverdi, Ng, Cheng, & Kovalyov,
2008). The RUASP generalizes this scheduling problem which ful-
fills Properties 1, 2, 4 and 5 as the RUASP provides for machine-
specific setup times between two jobs, while, in the scheduling
problem, times depend only on the jobs. More precisely, the
RUASP becomes a R=STSD=

P
wjCj scheduling problem if setup

times are machine-independent. Property 1 of the RUASP (i.e.
capabilities) can be modeled by setting the corresponding
decision variables to 0. With regard to the problem formulation
of RUASP, any formulation of the scheduling problem
R=STSD=

P
wjCj may be used and modified so that Property 3

(different rescue units need different travel times between the
locations of the incidents) holds.

However, according to the review by Allahverdi et al. (2008),
there is only one publication adressing this scheduling problem
(Weng, Lu, & Ren, 2001). While this paper suggests a recursive
objective function, it specifies the constraints at high level only.
Thus, their model formulation is too generic for our intention to
suggest an optimization model. We suggest and computationally
compare several heuristics based on Weng et al. (2001), which
can be adapted to the RUASP (see Section 4).
3.3. Mathematical model

In this section, we propose an optimization model to find opti-
mal schedules and assignments of rescue units to incidents. The



Table 1
Notation used in the mathematical model.

Input parameters
n Total number of incidents, with set I = {1, . . . , n}
m Total number of rescue units, with set K = {1, . . . , m}
wj 2 RP0 Factor of destruction (severity level) of incident j

pk
j 2 RP0 Time required by rescue unit k to process incident j; 1 if

rescue unit k is incapable of addressing incident j

sk
ij 2 RP0 Travel time required by rescue unit k to move from incident i to

incident j; if i = 0 then rescue unit k resides at its depot before
traveling to incident j

capki 2 {0,1} 1 if rescue unit k is capable of addressing incident i; 0
otherwise

Decision variables

Xk
ij 2 f0;1g 1 if incident i is processed by rescue unit k immediately before

processing incident j; 0 otherwise

Yk
ij 2 f0;1g 1 if incident i is processed by rescue unit k (at any time) before

processing incident j; 0 otherwise
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model is presented in a binary quadratic formulation.3 The notation
is given in Table 1.

The mathematical model can be written as

min
Xk

ij ;Y
k
ij

Xn

j¼1

wj

Xn

i¼0

Xm

k¼1

pk
i Yk

ij þ pk
j þ sk

ij

� �
Xk

ij þ Yk
ij

Xn

l¼0

Xk
lis

k
li

 !" # !
ðOÞ

s:t:
Xn

i¼0

Xm

k¼1

Xk
ij ¼ 1; j ¼ 1; . . . ; n; ðC1Þ

Xnþ1

j¼1

Xm

k¼1

Xk
ij ¼ 1; i ¼ 1; . . . ;n; ðC2Þ

Xnþ1

j¼1

Xk
0j ¼ 1; k ¼ 1; . . . ;m; ðC3Þ

Xn

i¼0

Xk
i;nþ1 ¼ 1; k ¼ 1; . . . ;m; ðC4Þ

Yk
il þ Yk

lj � 1 6 Yk
ij; i ¼ 0; . . . ;n; j ¼ 1; . . . ;nþ 1; ðC5Þ

k ¼ 1; . . . ;m; l ¼ 1; . . . ; n;

Xn

i¼0

Xk
il ¼

Xnþ1

j¼1

Xk
lj; l ¼ 1; . . . n; k ¼ 1; . . . m; ðC6Þ

Xk
ij 6 Yk

ij; i ¼ 0; . . . ;n; j ¼ 1; . . . ;nþ 1; k ¼ 1; . . . ;m; ðC7Þ

Yk
ii ¼ 0; i ¼ 0; . . . ;nþ 1; k ¼ 1; . . . ;m; ðC8Þ
Yk
ij 6 capki; i ¼ 1; . . . ;n; j ¼ 1 . . . nþ 1; k ¼ 1; . . . ;m; ðC9Þ

Xnþ1

l¼1

Xk
il P Yk

ij; i¼0; . . . ;n; j¼1 . . .nþ1; k¼1; . . . ;m; ðC10Þ
Xn

l¼0

Xk
lj P Yk

ij; i¼0; . . . ;n; j¼1 . . .nþ1; k¼1; . . . ;m; ðC11Þ
Xk
ij;Y

k
ij 2 f0;1g; i ¼ 0; . . . ;n; j ¼ 1; . . . ;nþ 1; k ¼ 1; . . . ;m:

ðC12Þ

The objective function (O) of the model minimizes the weighted
sum of completion times over all incidents. In addition to the exist-
3 As noted in Section 3.2, problem formulations of the related mTSP and the
R=STSD=

P
wjCj scheduling problem are available, but, eventually, turned out to be not

useful for modeling the RUASP. With regard to the mTSP, the RUASP requires an
objective function in which the order of processed incidents is considered. We suggest
such an objective function by introducing artificial decision variables that model
predecessor relationships. As these variables are appropriate for easily adding subtour
elimination constraints, we do not need to draw on the so-called MTZ-based subtour
elimination constraints in the flow-based formulation (Bektas, 2006, p. 215). The
other constraints included in the flow-based formulation are used in similar form.
ing n incidents, we add two fictitious incidents given by 0 as the
starting point (named depot) and n + 1 as the ending point. These
require no processing time (pk

0 ¼ pk
nþ1 ¼ 0), but unit k needs a given

setup time sk
0j P 0 to move from its starting location to incident j.

In addition to that, we set sk
jðnþ1Þ ¼ 0 for all rescue units k. Let wj de-

note the so-called factor of destruction of incident j. Consequently,
the lower the factor of destruction, the less severe is the incident.

Constraint (C1) ensures that there is exactly one incident that is
processed immediately before each of the n non-fictitious
incidents. Similarly, Constraint (C2) ensures there is exactly one
incident that is processed immediately after each of the n non-
fictitious incidents. Constraints (C3) and (C4) guarantee that each
rescue unit starts processing the fictitious incident 0 (the depot)
and each rescue unit ends processing the fictitious incident n + 1.
Constraint (C5) accounts for the transitivity in predecessor
relationships. If an immediate predecessor for a specific incident
j exists, there has to be a successor as given by Constraint (C6).
Constraint (C7) indicates that an immediate predecessor is also
considered a general predecessor. Constraint (C8) prohibits a
reflexive, direct or indirect predecessor relationship. Constraint
(C9) ensures that rescue unit k is not assigned to incident i if k
has not the capability to process i. Constraints (C10) and (C11) en-
sure that Yk

ij is set to 0 if rescue unit k does not process incident i
before incident j. Constraint (C12) makes the model a binary pro-
gram. Each feasible solution of the minimization model represents
valid schedules and assignments for all rescue units.

The above RUASP formulation can benefit from removing some
variables and constraints depending on the particular problem in-
stance. Using capki = 0, it follows that Xk

ij ¼ Yk
ij ¼ 0 for j = 1, . . . n + 1.

Thus, these variables can be removed from the model.
Additionally, those constraints of (C5)–(C9) can be removed where
capki = 0 _ capkj = 0 _ capkl = 0. Apparently, the extent of model
simplification depends on the number of capabilities rescue units
have. However, for the sake of clarity, we do not explicitly inte-
grate these simplifications in the above model.

With regard to computational complexity, it can be shown eas-
ily that the RUSAP is computationally intractable and NP-hard. The
proof is included in the online appendix.

4. Heuristics for solving the rescue unit assignment and
scheduling problem

Beyond proving NP-hardness of the RUASP (see online appen-
dix), we used small up to moderately large instances with m,
n 6 40 to evaluate practical runtimes. Using a mixed integer non-
linear programming optimizer, more precisely, the Simple Branch
and Bound solver in GAMS, we found that even small instances
cannot be solved optimally in a practically reasonable time. As con-
firmed in interviews with the German Federal Agency of Technical
Relief (THW), decision support in practice must be provided in less
than 30 minutes. Therefore, we suggest several heuristics for solv-
ing the RUASP.

Greedy heuristic: This heuristic is applied in practice in emer-
gency operations centers, usually in a manually-operated and
non-automated decision-making process. We gained informa-
tion on this heuristic through interviews with the THW. As this
heuristic processes incidents in descending order of their level
of severity, we refer to it as GREEDY heuristic.
Construction heuristics: We draw on the scheduling literature
and adapt seven heuristics (Weng et al., 2001) proposed for
solving the R=STSD=

P
wjCj scheduling problem. We name the

heuristics SCHED1 to SCHED7.
Improvement heuristics: Based on the routing literature, we
adapt the classical 2-opt and 3-opt exchange procedure within
a single rescue unit (Lin, 1965; Lin & Kernighan, 1973) as well as
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multi-unit 2-opt and 3-opt, resulting in four heuristics. Further-
more, we suggest a load balancing heuristic.
GRASP metaheuristics: We integrate the previously mentioned
construction and improvements heuristics into GRASP
metaheuristics.
Monte Carlo-based heuristic: We propose a Monte Carlo-
based heuristic in order to account for randomness in the search
process.

With the exception of the Monte Carlo-based heuristic, the
overall set of suggested heuristics can be divided into the set of 8
construction heuristics, which generate initial feasible solutions
of RUASP instances, and 5 improvement heuristics, which itera-
tively generate new feasible solutions and test them for local opti-
mality. Combining each of the construction heuristics with each of
the improvement heuristics, we finally yield 40 composed heuris-
tics, all of which are considered in our computational experiments.

In the remaining part of this section, we first describe the
construction heuristics. Then, we suggest improvement heuristics
before we illustrate GRASP metaheuristics and the Monte Carlo-
based heuristic. We use the notations as introduced in Table 1.

4.1. Construction heuristics

The group of construction heuristics consists of the GREEDY ap-
proach used in practice and a set of construction heuristics origi-
nating from scheduling literature. Let sk denote the total
processing and setup time for unit k in the corresponding iteration.
The assignment ak stores the last incident processed by unit k in
the current iteration. The variable ~pi gives the average processing
time needed for processing incident i by those units that are capa-
ble of i. Then, each heuristic returns r = (r1, . . . , rm), which is a list
of schedules for all m units.

4.1.1. Greedy heuristic
The GREEDY heuristic, which models best practice in emergency

operations centers today, follows the idea that incidents are as-
signed to rescue units in descending order of the factor of destruc-
tion. Here, each incident j is assigned to a rescue unit k that is
capable of processing incident j immediately while considering
assignment history and updated travel times. The pseudoce of
the GREEDY algorithm is described below.

1: Sort incidents in decreasing order of severity,
w1 P w2 P � � �P wn, and set C {w1, . . . , wn}.

2: Initialize the current completion time of each rescue unit,
rescue units to start at the depot, the ordered list of
incidents assigned to unit, i.e.
ck 0, ak 0, rk ; "k 2 K.

3: for i = 1 to n do
4: Select incident i i to be processed.
5: K⁄ {k 2 Kjcapki = 1} are all units capable of processing

incident.
6: if K⁄– ; then
7: unit  arg min

k2K�
sk þ sk

ak ;i
chooses unit with lowest start

time.
8: else
9: return unsuccessfully (no feasible assignment).
10: end if
11: Update sunit  sunit þ sunit

aunit ;i
þ punit

i ; aunit  i;

runit  runit [ fig.
12: end for
13: return r (r1, . . . , rm) being the list of schedules.
Obviously, the greedy algorithm ignores the eventuality that it
may not be optimal to process the most severe incidents first since
processing times may also play a crucial role in the decision-mak-
ing process.

Although the GREEDY heuristic proceeds dynamically through
updating the availability and travel times of rescue units, it acts
myopically in regard to the selection of the incident that is assigned
next. For example, it may be sub-optimal regarding the overall harm
(cmp. objective function (O)) to first assign to rescue unit k the most
severe incident that has a comparably long processing time and,
then, to assign to unit k the incident with the second largest factor
of destruction and with a comparably short processing time. Appar-
ently, the GREEDY heuristic may easily fail in providing good solutions
to an instance of the RUASP. However, because of its simplicity, it
provides solutions quickly and is applicable in practice even without
computational support for small instances.

4.1.2. Scheduling heuristics
To consider a trade-off between severity and processing time,

we adapt 7 heuristics for the scheduling problem R=STSD=
P

wjCj

as suggested by Weng et al. (2001).
The first heuristic differs from the greedy algorithm in two

ways: (1) jobs are ordered based on the ratio of their processing
time averaged over all units to the severity level. (2) The criterion
for assigning incidents to units does not only consider the time re-
quired to travel to the location of the respective incident but also
the time required to process the incident. In more detail, the algo-
rithm named SCHED1 proceeds as follows.

1: Sort incidents by

~p1

w1
P

~p2

w2
P � � �P

~pn

wn
with ~pi  

1
m

X
k2fjjcapji¼1g

pk
i

being the average processing time of incident i, and set

C  ~p1
w1
; . . . ;

~pn
wn

n o
.

2: Initialize the current completion time of each rescue unit,
rescue units to start at the depot, the ordered list of
incidents assigned to unit, i.e.
ck 0, ak 0, rk ; "k 2 K.

3: for i = 1 to n do
4: Select incident i i to be processed.
5: K⁄ {k 2 Kjcapki = 1} are all units capable of processing

incident.
6: if K⁄– ; then
7: unit  arg min

k2K�
sk þ sk

ak ;i
chooses unit with start time.

8: else
9: return unsuccessfully (no feasible assignment).
10: end if
11: Update sunit  sunit þ sunit

aunit ;i
þ punit

i ; aunit  i;

runit  runit [ fig.
12: end for
13: return r (r1, . . . , rm) being the list of schedules.
The second scheduling heuristic, namely SCHED2, differs from
heuristic SCHED1 by assigning an incident to that rescue unit which
has the lowest processing time. Thus, Step 7 is replaced as follows.

7: unit  arg min
k2K�

pk
i chooses unit with lowest average process-

ing time.

Furthermore, the following algorithm SCHED3 considers process-
ing times and travel times but ignores history. Hence, Step 7
looks as follows.
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7: unit  arg min
k2K�

sunit
aunit ;i

þ pk
i chooses unit with lowest sum of

travel and average processing time.

Further heuristics named SCHED4, SCHED5 and SCHED6 are exactly the
same as heuristics SCHED1, SCHED2 and SCHED3, respectively, except
that, in Step 1, incidents are renumbered using their minimum
processing time rather than using the average processing time:

1: Sort incidents by

~p1

w1
P

~p2

w2
P � � �P

~pn

wn
with ~pi  min

k2fjjcapji¼1g
pk

i

being the minimum processing time of incident i and set
C  ~p1

w1
; . . . ;

~pn
wn

n o
.

This step requires that a minimum exists always. If a minimum
does not exist, then the respective incident cannot be processed by
any of the units and the instance has, thus, no feasible solution. In
order to avoid drawbacks induced by pre-ordering incidents (as in
algorithms SCHED1 to SCHED6), the following algorithm SCHED7 selects
both incident and unit in the same step.

1: Initialize the current completion time of each rescue unit,
rescue units to start at the depot, the ordered list of
incidents assigned to unit, i.e.
ck 0, ak 0, rk ; "k 2 K.

2: Initialize list of incidents I {1, . . . , n}.

3: Set C  
skþsk

ak ;i
þpk

i

wi
j i 2 I; k 2 K

� �
and c min

i2I;k2K

skþsk
ak ;i
þpk

i

wi
.

4: for i = 1 to n do
5: Select incident i⁄ 2 I and unit k⁄ 2 K corresponding to c,

i.e. here is the ratio of completion time to severity level
minimal. If no minimum exists, stop unsuccessfully (no
feasible assignment possible).

6: Update I  I n fi�g; sk�  sk� þ sk�

ak� ;i
� þ pk�

i� ; ak�  i;

rk�  rk� [ fi
�g.

7: Update C  
skþsk

ak ;i
þpk

i

wi
j i 2 I; k 2 K

� �
and

c  min
i2I;k2K

skþsk
ak ;i
þpk

i

wi
.

8: end for
9: return r (r1, . . . , rm) being the list of schedules.
4.2. Improvement heuristics

We consider heuristics for k-opt node exchanges originating
from routing literature as well as load balancing as improvement
heuristics.

4.2.1. Routing heuristics
In the routing literature, k-opt exchange procedures consti-

tute improvement heuristics for solving the Traveling Salesman
Problem (Lin, 1965; Lin & Kernighan, 1973), where in each iter-
ation a k-opt exchange is applied until no further k-opt ex-
change leads to an improvement of the objective value (local
optimum is reached). However, in our setting the exchange of
2 or 3 edges across units leads to infeasible solutions when (se-
quences of) incidents are assigned to units which are not capa-
ble of processing these incidents. Thus, we do not exchange
edges but nodes (i.e. incidents) and refer to these moves as
2-nodes and 3-nodes exchange respectively. We apply these
exchange procedures in two ways. First, a k-node exchange is
applied inside the schedule of each rescue unit individually
(named 2NSU with k = 2 and 3NSU with k = 3 respectively). Second,
exchanges are applied across schedules of multiple rescue units
(named 2NMU with k = 2 and 3NMU with k = 3 respectively). The
procedures of the resulting four heuristics are shown in Figs. 2
and 3.

4.2.2. Load balancing heuristic
When queues of rescue units tend to get long in large-scale

disaster scenarios, incidents at the end of the queue need to wait
comparably long until being processed. This can result in exces-
sively large harm (in terms of objective value). In order to avoid
an extremely severe impact, we suggest a load balancing heuristic
LOADBAL that aims at improving a current solution by reassigning the
last incidents in a queue to the end of another queue. Let ik be the
last incident in the (ordered) list rk. Then, the LOADBAL heuristic
proceeds as follows.

1: Initialize harmðrkÞ  
P
12rk

w1
P
i¼1

1
sk
i�1;i þ pk

i

� �
to be the harm

related to unit k 2 K.
2: repeat
3: k�  arg max

k2K
harmðrkÞ selects the unit k⁄ with the

highest harm.
4: Select the unit k0 for which the processing of incident ik�

as the last incident of the queue results in the lowest
additional harm, i.e.

k0  arg min
k2fj2Kjcapj;ik�

¼1g
harmðrk [ fik� gÞ � harmðrkÞ:

5: Determine the reduction and the increase of harm caused
by moving incident ik� from the queue of unit k⁄ to k

0
, i.e.

Dharmk�  harmðrk� Þ � harmðrk� n fik� gÞ;
Dharmk0  harmðrk0 [ fik� gÞ � harmðrk0 gÞ:

6: if Dharmk� � Dharmk0 > 0 then
7: Create new solution with less harm by setting

rk�  rk� n fik� g; harmðrk� Þ  harmðrk� Þ � Dharmk� ;

rk0  rk0 [ fik� g; harmðrk0 Þ  harmðrk0 Þ þ Dharmk0 :

8: end if
9: until Dharmk� � Dharmk0 6 0
4.3. GRASP metaheuristics

Construction heuristics suffer from a shortcoming, i.e. they
follow the same search path over and over. As a remedy, GRASP
(greedy randomized adaptive search procedure) offers a possibil-
ity to diversify the solutions generated by the construction heu-
ristic (Feo & Resende, 1995; Pitsoulis & Resende, 2002; Resende
& Ribeiro, 2003). More precisely, GRASP is a multi-start meta-
heuristic for combinatorial problems in which each iteration
consists of two phases: construction and local search. The con-
struction phase uses a construction heuristic to create feasible
solutions, whose neighborhood is searched using an improve-
ment heuristic until a local minimum is found. The best overall
solution is kept as the result. GRASP variants of algorithms GREEDY

and SCHED1 to SCHED7 as construction heuristics are given by the
following pseudocode.



Fig. 2. Illustration of 2-nodes and 3-nodes exchange steps in a single unit.
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1: Initialize S ;.
2: for iter = 1 to N (max. iterations)
3: Perform greedy randomized construction by initializing

candidate set C, i.e. perform initial steps in algorithms

GREEDY and SCHED1 to SCHED7 respectively.
4: for i = 1 to n do
5: Compute cmin min{cjc 2 C} and cmax max{cjc 2 C}.
6: RCL {c 2 Cjc 6 cmin + a(cmax � cmin)}.
7: Select randomly a value c 2 RCL and let i be the

corresponding incident.
8: Perform steps inside the loop in algorithms GREEDY or

SCHED1 to SCHED7 without reassigning i.
9: Update C Cn{i}.
10: end for
11: Set r (r1, . . . , rm) being the list of schedules.
12: Perform local search upon r by one of the improvement

heuristics giving r0. Update list of solution by S S [ {r0}.
13: end for
14: return solution min S.
4 In our simulations we did not find evidence that an increase in the number of
iterations substantially improves the quality of solutions.
4.4. Monte Carlo-based heuristic

At last, we design a Monte Carlo-based heuristic to solve our
problem for the following reasons. First, Monte Carlo simulation
is flexible with regard to future extensions of the optimization
model, such as co-allocation of rescue units and the consideration
of informational uncertainty. Second, the complexity of the RUASP
is high because of the many constraints and we assume that a
Monte Carlo-based heuristic will not easily get stuck in a local opti-
mum. In more complex scenarios, ‘‘evaluation procedures rely a
great deal on trial and error’’ (Buxey, 1979, p. 566). In contrast, a
Monte Carlo method overcomes this shortcoming.

The key idea of generating a feasible solution in our Monte Car-
lo-based heuristic is that incidents are iteratively scheduled in two
stages. In stage one, an incident is assigned randomly to one of the
D most appropriate rescue units where appropriateness is defined
based on processing times. The motivation of this procedure is
based on avoiding both (a) assignments of incidents to units that
require an extremely long time for processing (thus, a parameter
D 2 [0%,100%] is used), and (b) myopic assignments of incidents
to units that require the shortest processing time among all units
(thus, randomness is included). In a second stage, the incident is
inserted into the incident queue of the previously selected rescue
unit. The criterion for determining the position of the new incident
in the queue is based on a weighted ratio of the severity of incident
wi and the time pk�

i it takes the selected rescue unit to process this
incident. Each queue lists its incidents in descending order of
wi=pk�

i .
The Monte Carlo-based heuristic runs a fixed number of itera-
tions with the Monte Carlo-based heuristic being the one with
the lowest value found in all iterations. The Monte Carlo-based
heuristic requires two input parameters: D and N. D 2 [0%,100%]
is used for the selection of rescue units. The variable N is the num-
ber of feasible solutions generated; we set D = 90% and
N ¼ 500;000 based on the results of pre-tests.4 In more detail,
the Monte Carlo-based heuristic MC proceeds as follows.

1: for iter = 1 to N (max. iterations) do
2: Initialize the cumulative processing time of each rescue

unit, rescue units to start at the depot, the ordered list of
incidents assigned to unit, i.e. curr_process_time(k) 0,
ak 0, rk ; "k 2 K.

3: while I – ; do
4: Select next incident i 2 I and update I In{i}.
5: K⁄ {k 2 Kjcapki = 1} are all units capable of processing

incident i.
6: if K⁄ = ; then
7: return unsuccessfully (no feasible assignment).
8: end if
9: Sort K⁄ in ascending order of curr_process_time and

select randomly a rescue unit k⁄ with one of the D lowest
values of curr_process_time of all rescue units in K⁄.

10: Update sk�  sk� þ sk�
akast ;i

þ pk�
i ; aunit  i.

11: curr process timeðk�Þ  curr process timeðk�Þ þ pk�

i .
12: Set rk�  rk� [ fig and order rk� in descending order

of wi=pk�
i .

13: end while
14: end for
15: return r = (r1, . . . , rm) being the list of schedules.
5. Computational experiments

In our computational experiments, we evaluate the suggested
heuristics against two benchmarks: (1) we compare the solutions
of the heuristics with a lower bound of the optimal solution. We
need to draw on lower bounds as finding optimal solutions even
for moderately small instances turned out to be computationally
infeasible. A gap between a solution found with a heuristic and
the lower bound is an upper bound of the gap between the
heuristic solution and the optimal solution. Thus, the determined
gap underestimates the quality of the heuristic solutions. (2) We
evaluate the solutions of all suggested heuristics regarding their
improvement over the GREEDY heuristic, which represents best
practice behavior of emergency operations centers, and, thus, it
acts as a suitable benchmark. We first present our procedure
to find an appropriate RUASP relaxation in order estimate
lower bounds. Then, we explain the data generation for our
experiments. Subsequently, we present and discuss results as well
as runtimes.

5.1. Relaxation of the RUASP

We tried to find optimal solutions for the binary quadratic pro-
gramming formulation of our problem using the Simple Branch
and Bound solver (SBB) inside the software package GAMS. Even
for small instances with 40 incidents and 40 rescue units, we are
not able to find optimal solutions because of the NP-hardness of
the RUASP. As a consequence, we derive appropriate relaxations
of RUASP.



Fig. 3. Illustration of 2-nodes and 3-nodes exchange steps across units.

Table 2
Settings in randomly generated scenarios. Here, U(a,b,c) is the discrete uniform
distribution between a and b with step size c.

Input parameter Value, range or distribution

Number of rescue units m 2 {10,20,30,40}
Number of incidents n 2 {10,20,30,40}
Number of instances 10
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The computation of the lower bound is achieved by relaxing
the binary constraints within the optimization model to
Xk

ij 2 ½0;1�. We found this constraint relaxation most suitable be-
cause of the following reason: we examined and computationally
tested each possibility to relax a constraint (for a scenario with
10 rescue units and 20 incidents) regarding its consequence for
the mathematical model, the generation of schedules, the run-
times and the gap between the optimal solution of the original
problem instance and the optimal solution of the relaxed prob-
lem instance. The relaxation of all but the binary constraints
led to (a) unrealistic model extensions such as circular assign-
ments or fragmentations of rescue units, (b) no significant
enhancements concerning runtimes, and/or (c) an increase in
the complexity of the whole model in terms of an exploding
solution space or in terms of runtimes. The only suitable relaxa-
tion option was Constraint (C12), which has been found ade-
quate for the calculation of lower bounds. The relaxation of
the binary constraints of a model is a common method. Its appli-
cation reduced runtimes substantially, while the gap between
the optimal solution values of the problem with relaxation and
the original problem turns out be low.

We used the CONOPT solver inside GAMS to solve this relaxed
binary quadratic programming formulation of the optimization
model. Runtimes for the largest instances (40 incidents and 40 res-
cue units) varied between 11 hour and 22 hour, which results in an
average runtime of 15.6 hour. Even the calculation of the smallest
scenarios with 10 incidents and 10 units took at least 2 seconds
with an average of 207 seconds. The runtimes also indicate an
exponential increase depending on the number of units and inci-
dents. We also found that runtimes increase exponentially with
both the number of units and incidents (significance of the overall
model at the 0.1% level), with the number of incidents having a
stronger impact.
Processing times pk
j � Nð20;10Þ

Travel times sk
ij � Nð1;0:3Þ

Factors of destruction wj 2 {1,2,3,4,5}
Capabilities of rescue units Ak � U (1,1,4), k 2 K
Capabilities required by

incidents
Rj � U (1,1,4), j 2 I,

capki ¼
1; if Ak ¼ Ri;
0; else

�
Number of iterations 500,000
5.2. Data generation

We designed the computational experiments based on inter-
views with associates of the THW. These associates were in direct
contact to first search and rescue teams after the major earthquake
in Japan in 2011. Hence, the generation of values for input
parameters is given by Table 2. For our computational evaluation,
we generated ten different instances for each scenario size. We
limit the number of incidents and the number of rescue units to
a maximum of 40 for three reasons: (1) our interviewees at the
THW motivated these upper bounds to reflect practice given that
a single rescue unit may consist of several members. (2) If a new
situation makes it necessary to update old schedules and assign-
ments, we assume that the new instance is unlikely to exceed
these limits since some rescue units may have be assigned to a
number of incidents already. (3) For implausible instances that
consist of more than 40 rescue units and incidents, the available
computing power was not sufficiently powerful to determine low-
er bounds of optimal solution values in reasonable times.

Looking at the situation after the 2011 disaster in Japan, we
find that in urban areas where most of the incidents occur, travel
times between incident locations are low compared to processing
times. For example, it takes much more time to extinguish a
house on fire or to stabilize a collapsed building than it takes a
rescue unit to travel there. We consider this relationship by the
mean values of the normal distributions for generating processing
times and travel and setup times. Furthermore, the factor of
destruction of an incident indicates the level of severity, as intro-
duced by the U.S. Department of Homeland Security (2008): low
(1), guarded (2), elevated (3), high (4), and severe (5) harm.



Table 3

Mean results of composed heuristics in relation to lower bound solutions, i.e. l Hi
LB

� �
. Cells are colored according to this ratio (the brighter, the closer is

the computed solution to the lower bound), whereas stars denote coefficient of variations (CV) with ⁄⁄⁄ 0.03, ⁄⁄ 0.06, ⁄ 0.09.
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Hence, we select a discrete uniform distribution for the severity
levels.

The number of capabilities of rescue units was set to five.
These account for policemen, fire brigades, paramedics, search
and rescue units, and special casualty access teams. This discrete
distinction of units’ types and skills is based on and yet extend-
ing the classification of The New South Wales Government
(2007). Incidents require exactly one of these differently skilled
rescue units. The ratio of capabilities and the personnel required
at an incident is generated randomly using a discrete uniform
distribution.

The selection of the above parametric distributions has several
reasons: (a) we found that real-world scenarios match such set-
tings and (b) because of the individual variance of the selected dis-
tributions, the proposed heuristics are tested under unfavorable
conditions. Other ranges of parameter values and distributions
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did not result in significant deviations neither in the generated
schedules nor in the assignments.

5.3. Data evaluation

We now evaluate the results of the suggested heuristics. We
used the numerical computing environment MATLAB for imple-
mentation and simulation. We consider scenarios consisting of
10, 20, 30 and 40 incidents and units, with the number of units
being lower than or equal to the number of incidents. For each
problem instance, ten instances are randomly generated and
solved by all heuristics. For each instance size and heuristic, we
average the ratios of the heuristic solution Hi to the lower bound
LB yielding averaged ratios l Hi

LB

� �
. Thus, the smaller the ratio, the

closer is the heuristic solution to the lower bound. In addition,
we calculate the respective averages when applying the GREEDY heu-
ristic without any improvement heuristic, which represents cur-
rent best practice. All results are shown in Table 3. The best
practice results are given in the top row and originate from the
GREEDY algorithm along with no improvement heuristic. The evalu-
ation of Table 3 suggests the following findings5:

(1) All compositions of construction and improvement heuristic
improve best practice results given by the GREEDY algorithm
for each of the instance sizes. All results are significant at
the .01 level (p-value of t-test).

(2) Results of the GREEDY algorithm are improved by each of the
improving heuristic for each of the instance sizes (.01 level
of significance).

(3) Choosing SCHED7 as construction heuristic in combination with
any of the improvement heuristics leads to superior results
compared to other combinations of construction and
improvement heuristics. We found statistical evidence at
the .05 level with the exception of only a few comparisons.

(4) Mean ratios of all except GREEDY-based composite heuristics
tend to be well below 1.5. Results in terms of ratios become
worse with large problem scenarios. Compositions consist-
ing of the GREEDY heuristic lead to mean outcomes of between
1.268 and 4.515.

(5) The relative performance of the MC heuristic (bottom row) is
highly volatile. It seems to be a good choice when scenarios
are of small size, whereas results become worse with increas-
ing size of the solution space. Another observation is that, for
all instance sizes, MC dominates (at the .01 level) both the
GREEDY heuristic and the joint application of the GREEDY heuristic
and any of the heuristics 2NSU, 2NMU and 3NSU.

(6) In general, we identify composite heuristics using 3NMU

performing best. In 247 out of 320 statistical comparisons,
3NMU-based algorithms performed better (at the .05 level)
than composite heuristics without 3NMU.

(7) Improvement heuristics are able to improve the solutions
provided by any construction heuristic. This holds for 1532
out of 3200 comparisons (at the 0.1 level).

(8) The application of the GRASP metaheuristics showed mixed
results (cf. online appendix). Compared to the classical counter-
parts, which apply the same combination of construction and
improvement heuristic, results are better in only some cases.

(9) Depending on the instance size, the best solution values
achieved by the heuristics are at most 10.9% up to 33.9%
higher than the lower bound, with the best results often pro-
vided by combinations which use SCHED7.

5.4. Runtimes

As solutions of RUASP instances need to be found within min-
utes in real natural disasters, acceptably low runtimes of the
suggested heuristics are crucial for their practical usage. Runtimes
of all heuristics, except those involving the 3NMU heuristic or the
MC heuristic, were below one second for all instances of all sizes.
The 3NMU heuristic required up to 20 seconds in instances of largest
size (40 incidents and 40 rescue units) and is thus applicable in
practice, too.

In contrast, runtimes of the MC are linear in the number of iter-
ations and, as our results show, also depend on the instance size.
Using 500,000 iterations in each of the runs, we found statistical
evidence that the runtimes of the MC heuristic grow linearly with
both rescue units and incidents, while the number of incidents has
a slightly stronger impact. A detailed analysis is given in the online
appendix. As average runtimes vary between 3.45 minutes for
small instances (10 units and 10 incidents) and 18.26 minutes for
large instances (40 units and 40 rescue units), the applicability of
the MC heuristic depends on the instance size, on the number of
iterations, rescue units and incidents, and on the available comput-
ing resources.

As shown above, GRASP metaheuristics show a possible path to
improve solutions of both construction and improvement heuris-
tics. These metaheuristics diversify the search paths and, conse-
quently, require significantly more computation time. The
average runtimes account for 38.03 seconds, but can get as high
as 25.89 minutes. When integrating 3NMU inside GRASP in particu-
lar, average runtimes even rise to 187.63 seconds across all in-
stances. Increasing the number of iterations inside GRASP also
boosts runtimes, but without improving solutions.
5.5. Discussion

Our results show that the current best practice behavior in
emergency response situations can be substantially improved by
applying heuristics. As most improvements can be achieved in less
than a second (only in a few cases, the computation time spans
several minutes), our heuristics are well applicable in practice. As
the RUASP generalizes the parallel-machine scheduling problem with
unrelated machines, non-batch sequence-dependent setup times and a
weighted sum of completion times as the objective, our algorithms
can also be applied to this well-known class of scheduling
problems.

Although our tested instances do not have more than 40 inci-
dents and 40 rescue units, this limitation in size is of no substantial
practical relevance for two reasons: first, our algorithms are likely
to process instances of much larger size than 40 incidents and 40
rescue units in less than a minute. The limitation of size in our
computations is rooted in the high computation times required
to determine good bounds. Furthermore, additional computing
power can be used to solve larger instances. Second, as we argued
above, larger instance sizes of the RUASP are unlikely to occur as
instances are generated and solved iteratively.

The benefit of having an optimization model and automated
decision support available is obvious: the proposed decision sup-
port provides assistance to the decision makers in situations char-
acterized by a high level of complexity and high time pressure.
However, we would like to stress that the application of any of
the proposed heuristics is intended to enhance human-based
decision making and to offer decision support timely to decision
makers; it is not intended to substitute the actual decisions of
practitioners.
6. Conclusion and outlook

In this paper, we address the Rescue Unit Scheduling and
Assignment Problem (RUASP), which is a key issue in emergency
response management. Our contributions are as follows. We derive
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a binary quadratic optimization model of the problem. Considering
literature on scheduling and routing, we propose a Monte Carlo-
based heuristic, eight construction heuristics, five improvement
heuristics and GRASP metaheuristics. Then, we computationally
evaluate and compare these heuristics. In addition to that, we eval-
uate the heuristics against the current best practice behavior and
against lower bounds of optimal solutions. We found that the
RUASP can be solved for instances with up to 40 incidents and
40 rescue units in less than a second, with the solution values
being at most 10.9% up to 33.9% larger than the optimal value.
While comparing heuristic solution values with lower bounds is
particularly relevant for theoretical analysis, comparing heuristic
solution values with the values found by the GREEDY heuristic is
relevant for the disaster management domain because the GREEDY

heuristic represents current best practice behavior. According to
our results, our algorithms are capable of generating schedules
which reduce the overall harm caused by the GREEDY heuristic to
at least 42.0% and to at most 81.8%. This level of harm reduction
is considerably large. This can help decrease casualties and eco-
nomic losses substantially.

Some future research directions may enhance the applicability
of our optimization model: (1) The integration of performance deg-
radation and preemptive scheduling can be beneficial. Perfor-
mance degradation becomes apparent when rescue units lose
some of their vigor caused by the duration of their deployment
and the constant pressure to save lives over time. (2) Time win-
dows during which incidents need to be processed seem also ade-
quate in emergency response settings. For example, time windows
are of particular importance when humans are buried alive and
need to be saved quickly. (3) Another interesting stream would
be to analyze collaboration between rescue units and the coordina-
tion of autonomous agents. (4) We admit that a deterministic
model in the envisaged application in disaster relief is questionable
when information on incidents, including the level of severity,
processing times and travel times, are not precisely known. While
some information may be modeled stochastically based on histor-
ical data, other information is often described and assessed by
humans, where linguistic estimations are common. In such cases,
fuzzy set theory is a useful approach to model uncertainty. Future
research needs to clarify when to use which type of uncertainty,
how distribution functions and fuzzy membership functions can
be modeled, and how resulting models can be solved.
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