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ABSTRACT 

The increasing availability and deployment of open source 

software in personal and commercial environments makes open 

source software highly appealing for hackers, and others who are 

interested in exploiting software vulnerabilities. This deployment 

has resulted in a debate “full of religion” on the security of open 

source software compared to that of closed source software. 

However, beyond such arguments, only little quantitative analysis 

on this research issue has taken place. We discuss the state-of-the-

art of the security debate and identify shortcomings. Based on 

these, we propose new metrics, which allows to answer the 

question to what extent the review process of open source and 

closed source development has helped to fix vulnerabilities. We 

illustrate the application of some of these metrics in a case study 

on OpenOffice (open source software) vs. Microsoft Office 

(closed source software).   

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics – product metrics, 

process metrics 

General Terms 

Measurement, Security 

Keywords 

Open source software, Closed source software, Security, Metrics 

1. INTRODUCTION 
Over the last few decades we have got used to acquiring software 

by procuring licenses for a proprietary, or binary-only, immaterial 

“object”. We have, then, come to regard software as a good we 

have to pay for – be it for either personal or commercial use – just 

as we would pay for material objects, such as electronic devices, 

or food. However, in more recent years, this widely cultivated 

habit has begun to be accompanied by a model, which is 

characterized by software that comes with a compilable source 

code (open source code). Often, such a source code is free of 

charge and may be modified and/or redistributed. The family of 

software of this kind is referred to as the umbrella term “open 

source software”. When discussing this alleged innovation in 

software distribution, we are reminded by Glass [10] that, 

essentially, free and open source software dates right back to the 

origins of the computing field, as far back in fact as the 1950s, 

when all software was free, and most of it open. 

The current application fields of open source software are 

manifold. Internet programs, such as the mail transfer agent 

Sendmail, the Web server Apache, the operating system Linux, 

the database MySQL, and the office package OpenOffice are 

some of the most popular examples. Comprehensive repositories 

for open source applications, which are already successfully 

competing with today’s binary-only software (closed source 

software), are provided by the open source software development 

websites http://sourceforge.net and http://freshmeat.net, the latter 

maintaining a large index of Unix and cross-platform software. 

The increasing availability and deployment of open source 

software in personal and commercial environments makes open 

source software appealing for hackers, and others who are 

interested in exploiting software vulnerabilities. These security 

flaws become even more dangerous when software is not applied 

in a closed context, but interconnected with other systems and the 

Internet (this argument is also valid for closed source software). 

Naraine [22] reports a study by The Mitre Corp., according to 

which there are more than 230 open source software packages 

already in use, even for critical operations, within U.S. federal 

government agencies and departments. In order to appropriately 

tackle security concerns regarding the applied packages, the U.S. 

Department of Homeland Security initiated the so-called 

Vulnerability Discovery and Remediation, Open Source 

Hardening Project, which was part of a broad federal initiative to 

perform daily security audits of approximately 40 open-source 

applications, including Linux, Apache, and MySQL. All these 

developments show that open source software has definitely 

arrived in the world of important and critical software 

environments that need security protection against attacks. 

Interestingly, Li et al. [19] find that the portion of security 

vulnerabilities related to the total bugs fixed has even increased in 

both software “Mozilla” and “Apache”. The discussion on open 

source security becomes even more relevant when open source 

software packages are themselves deployed as security 
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instruments, such as virus scanners, intrusion detection systems, 

password safes or “single sign-on” systems [4]. However, the 

discussion of whether obscurity outperforms tranparency in terms 

of security is as old as the frequently referenced work of 

Kerckhoffs [15]. 

Picking up the discourse on comparing the security of open source 

software with that of closed source, one might argue that the 

former is inherently more secure due to its communal writing and 

review process. On the other hand, Fisher [7] reminds us that, in 

2002, researchers found several vulnerabilities in the open source 

software “OpenSSL toolkit”, all of which were buffer overruns – 

the most common and preventable flaws in software. Developers 

can also place back doors in open source software deliberately. 

Although there is a plethora of articles in the popular on-line 

press, the observation of Payne [26] that there has been little 

discussion of this in the academic literature is still valid. 

Frequently, discussions and arguments are polarizing, and we 

believe that Herbert Thompson hit the mark when saying “When 

folks talk about Linux and Windows security, a lot of religion gets 

involved.” ([21], p. 27). Furthermore, we also need to consider 

that a security validation might be biased depending on the 

person, role or organization that performs the security analysis. 

For example, Messmer [21] reports that Security Innovation 

caused an uproar when it asserted in a study that a Web server 

based on open source code had twice as many security 

vulnerabilities recorded for it in 2004 as a comparable Microsoft-

based Web server did. According to Messmer, this study was 

financed by Microsoft. 

An unbiased discussion of open source and closed source security 

is necessary for a validation of the arguments of both open source 

advocates and closed source advocates. More specifically, we 

should not primarily address the question of whether open source 

or closed source software is securer, but should rather focus on 

the conditions under which open source development and closed 

source development contribute to enhanced security, in order to 

give hints about the reasons for flaws, and on how to prevent them 

in the future. For example, Li et al. [19] empirically find for 

Mozilla and Apache that, against the belief that buffer overflows 

are the most common form of security vulnerabilities, semantic 

bugs cause more than 70% of vulnerabilities. 

Summing up, it is helpful, if not necessary, to transparently 

measure and rate the security of software – be it open source or 

closed source software [33]. As Bellovin [5], p. 96, quotes Lord 

Kelvin, “If you can not measure it, you can not improve it.” 

However, measuring security is a challenging task, because 

security is somehow invisible: the more secure a system is, the 

less uproar occurs. Despite an increasing number of quantitative 

research papers on measuring software security in the past years, 

it is still true what Witten et al. [32], observed in 2001: what the 

discussion on software security specifically lacks is appropriate 

metrics, methodology and hard data. 

This paper addresses this research gap and contributes to the 

quantification of (open source and closed source) software 

security by (a) analyzing limitations of metrics and models 

defined in previous research, (b) proposing new metrics, which 

measures to what extent the review process of open source and 

closed source development has helped to fix vulnerabilities, and 

(c) applying the metrics in a case study on OpenOffice (open 

source software) vs. Microsoft Office (closed source software). 

The rest of this article is organized as follows: In Section 2, we 

provide an overview of the recent discussion. Then, in Section 3, 

we analyze models proposed in the literature. Section 4 presents 

and discusses the new metric. The data used for the application of 

the proposed metric in the case study are presented in Section 5. 

Section 6 provides our empirical results, before we conclude. 

2. RECENT DISCUSSION 
The discussion on open source and closed source software is 

affected by the presence of several different understandings. It 

becomes even more unclear when several open source licenses are 

mentioned, or further notions, such as “free software”, pop up. 

However, (not only) in the context of the impacts of software 

models on security, does it seem reasonable to precisely define 

what open source software is and whether we can identify several 

categories which need to be treated differently in the security 

context. Therefore, we briefly clarify these issues. This also helps 

us to unfold and discuss the security arguments in favor of and 

against open source software before we present proposed models 

and empirical findings on measuring software security. 

2.1 Terms and Definitions 
In any of the understandings the authors are aware of, the 

availability of source code to the public is a precondition for 

software being denoted as “open source software”. Beyond this 

requirement, the Open Source Initiative (OSI) has defined a set of 

criteria that software has to comply with [25]. The definition 

particularly includes permission to modify the code and to 

redistribute it. However, it does not govern the software 

development process in terms of who is eligible to modify the 

original version. For example, one option would be to allow 

anyone to include source code and to upload it to the software 

repository (this style of development is referred to as “bazaar 

style” by Raymond [27], another would be to supervise the 

modification process by leaving the integration of modification 

proposals up to “wizards”; this traditional, hierarchical 

development style is denoted as “cathedral” by Raymond [27]. 

The implementation of this modification procedure might have an 

impact on the security of the software, so that a detailed 

discussion of open source security would need to consider this 

issue. Summing up, it is important to distinguish between “the 

product” open source software and its development process. With 

regard to the latter, we focus on the implementation phase and do 

not regard other phases in the software development process.   

A plethora of OSD-compliant licenses have come into operation, 

such as the Apache License, BSD license, and GNU General 

Public License (GPL), which is maintained by the Free Software 

Foundation (FSF). The FSF [9] provides a definition of “ ‘free 

software’ [as] a matter of liberty, not price.” In contrast to the 

OSD definition, the FSF explicitly focuses on the option of 

releasing the improvements to the public (freedom 3), thereby 

rejecting a strong supervision of the modification process. More 

specifically, the definition says: “If you do publish your changes, 

you should not be required to notify anyone in particular, or in 

any particular way.” Similar to the discussion of what open or 

free software is, we need to define what “closed software” is. 

Does it comprise all that software that is non-open in a particular 

context, or does it simply mean that software is distributed in a 
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binary-only form? It might be useful in the context of security 

evaluation to further specify different types of “closed” software. 

The categorization of software and its development process as 

“open source software (development)” or “free software 

(development)” in contrast to “closed source software 

(development)” reflects approaches through the developer’s lens 

and specifies the type of development. Complementarily, one 

could also adopt a software user’s point of view by differentiating 

between software that needs to be paid for and software for which 

no fee applies. This dimension takes the pricing model into 

account. The resulting classification scheme corresponds to a two-

dimensional matrix, which is illustrated (with real-world 

examples) in Table 1. 

Table 1. Classification of software 

 Open source Closed source 

Free of 

charge 

Linux, Apache 

Web server 
Adobe Acrobart Reader 

Subject to 

charge 
MySQL MS Windows OS 

2.2 The Debate on Open Source Security 
In the debate on the security of open source and closed source 

software, a set of arguments is repeatedly presented. We present 

and discuss those arguments that seem to arise most frequently.  

While there is consensus that opening source code to the public 

increases the potential number of reviewers, its impact on finding 

security flaws is controversially debated. Proponents of open 

source software stress the strength of the resulting peer review 

process [26] and argue in the sense of Raymond [27] that, “Given 

enough eyeballs, bugs are shallow.” (p. 19). This strength of the 

review process is assumed to make finding bugs easier and more 

likely. Beside the argument of an increased number of reviewers, 

proponents also claim that, for each reviewer, vulnerabilities in 

closed source software are harder to find than those in software 

whose source code is readable. However, opponents comment that 

only techniques differ ([27], p. 67f). For example, closed source 

software can be disassembled. They further worry that open 

source code might attract skilled programmers who are actively 

seeking flaws but who eschew any efforts to find flaws in closed 

source software. In this context, source code of new software 

(version), which has not been inspected by many reviewers, is 

assumed to be particularly endangered.  

Interestingly, both parties essentially agree that open source 

basically makes it easy to find vulnerabilities; they only differ in 

their conclusions with regard to the resulting impact on security. 

With regard to the availability of an increased number of 

reviewers, it is countered that not all reviewers tend to have 

similar experience and expertise. In contrast, experienced 

reviewers in companies are believed to be even better skilled in 

finding flaws. The reason for this bias is that often reviewers do 

not only need to know programming languages but also need to 

have further skills, such as network or cryptographic skills. For 

example, Payne [26] mentions a vulnerability found in some 

implementations of the Secure Shell remote login system protocol 

version 1.5. Finding this vulnerability required not only an 

understanding of the protocol itself, but also of advanced issues 

relating to cryptology. Furthermore, it is queried whether the 

actual number or reviewers is really as high as assumed: Levy 

[18] remarks “Sure, the source code is available. But is anyone 

reading it?”, and Viega [31] guesses that many potential 

reviewers do not inspect the code because they believe that others 

have already done so. Summarizing, advocates of closed source 

software believe that the closeness of software, which follows the 

principle “security by obscurity”, allows security flaws to be 

hidden, at least until a patch is publicly available [8]. The authors 

doubt that this argument is a strong one, since it is difficult, if not 

impossible, to hide the source code during the time the software is 

in operation. A salient example is the accidentally published 

source code of Diebold voting machines on the Internet in 2003 

[29]. This source code had been used by voting machines in 37 

states of the U.S. Although this source code was certainly 

involved in critical operations, it was published, even without any 

criminal efforts being necessary. While this source code was 

readable for anybody, vulnerabilities could also be detected by 

scientists, which initiated a public debate. However, in cases 

where a source code is only available to a few criminals, code 

hiding may even be counterproductive [8]. 

With regard to the detection of security flaws in software, it 

should be equitably noted that not all vulnerabilities are revealed 

by the source code, be it open or closed. Some flaws might be due 

to design decisions, but documentations on design are not always 

available. Other vulnerabilities can infiltrate software if the 

compiler used to generate binary code is insidiously modified. In 

this case, the source code does not reveal these vulnerabilities. 

Thompson [30] demonstrates this principle with C code examples, 

where even the source code of the compiler does not disclose any 

malicious elements, although these are integrated into the binary 

version of this compiler.  

Payne [26] argues that security flaws in open source software can 

be fixed more quickly than those of closed source software, 

because the user community is not dependent on a company’s 

schedule to release a patch. It can rather control the activities to 

fix vulnerabilities by itself. However, Payne [26] also notes that 

the impact of the availability of source code on security might also 

depend on the open source model used. For example, the (open 

source) cathedral model would allow essentially anyone to detect 

vulnerabilities, but not to remove them, because the patching 

process is regulated and needs time, which can then be used by 

attackers to exploit the (unpatched) vulnerabilities.  

The discussion on security presented above involves a lot of 

“religion“[21] and is also characterized by general attitudes 

towards open source and closed source software. However, in 

order to enlighten the impact of open source on security, we 

propose the application of measurements, which allow for a fair 

comparison of open source and closed source software. In the next 

section, we discuss metrics that have been proposed in the 

literature and that would support such measurements. 

3. REVIEW: QUANTITATIVE MODELS 
In the literature, a number of quantitative models for the 

measurement of security of software systems have been proposed. 

These models have often be related to reliability and 

dependability in terms of nomenclature and methodologies [12, 

13, 16]. In this section we briefly present the most important 

security-related models, focussing on security breaches and 

vulnerabilities. Models that address the economics of disclosing 

vulnerabilities (see, for example, [23, 28]), are beyond the scope 
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of our work. Finally, we identify the need for further research by 

summarizing the drawbacks and limitations of existing models 

and metrics. 

Security breaches are incidents, which are due to security 

vulnerabilities. Adopting a quantitative model of reliability, 

Littlewood et al. [20] and Kimura [16] use a probabilistic model 

for the empirical security of software by representing the 

cumulative number of security breaches as a function with the 

elapsed time as an independent variable. The model assumes the 

random variable time up to the next intrusion to be exponentially 

distributed. However, the authors make no assumptions on the 

development of the rate parameter λ.  

In cases where the total effort in finding vulnerabilities is not 

linear in time, for example due to a changing number of reviewers 

with different skills, the elapsed time as the independent variable 

seems inappropriate and would need to be substituted by the total 

effort [20]. Another modification of the basic model refers to 

evaluating the security breaches by considering the cumulative 

reward gained by the attackers. Jonsson and Olovsson [13] 

perform a practical intrusion test on a distributed UNIX computer 

system and collect data related to the difficulty of causing security 

breaches. On the basis of these data, they formulate the hypothesis 

that the occurrence of security breaches can be split into three 

phases based on the attackers’ behavior: the learning phase, the 

standard attack phase, and the innovative attack phase. They 

further find statistical evidence that the times between consecutive 

breaches during the standard attack phase are exponentially 

distributed with a constant rate parameter λ using the 

(independent) variable attacking worker time. Thus, their findings 

support the (homogeneous) model of Littlewood et. al [20]. 

Similar to the observations of Johnsson and Olovsson [13] 

regarding the development of security breaches, Alhazmi et al. [2, 

3] assume that the development of vulnerability discovery, which 

is a precondition for any intentionally induced security breach, 

can be split up into three different phases, in which the usage 

environment and vulnerability detection effort change. In phase 1, 

the software testers gather sufficient knowledge of the system to 

break into it successfully. In phase 2, the discovering of 

vulnerabilities will be most rewarding for both white hat and 

black hat finders. Finally, in phase 3, the vulnerability detection 

effort will then start shifting to the succeeding version of the 

software. These phases form an “S” shape that is assumed to 

follow the principle that the vulnerability discovery rate is linear 

in both the momentum gained by the market acceptance of the 

product and in the saturation due to a finite number of 

vulnerabilities. Let y(t) be the total number of vulnerabilities 

found in period [0,t], A a constant of proportionality, and B the 

total number of vulnerabilities that would eventually be found in 

the software, then Alhazmi et al. (2005) consequently assume the 

vulnerability discovery rate to be given by the differential 

equation )( yBAy
dt

dy
−= , resulting in 

1+
=

−ABtBCe

B
y . Using 

data for both commercial (five versions of Windows) and open-

source systems (two versions of Red Hat Linux ), Alhazmi et al. 

[2] find statistical evidence for their model for both closed source 

software and open source software. Interestingly, following the 

assumption of the model that the total number of eventually found 

vulnerabilities is given by B, it provides a procedure for 

determining B and, thereby, for determining the number of still 

undetected vulnerabilities. Comparing their figures of B (rounded 

up) with the current numbers on detected vulnerabilities 

(bracketed), as provided by the U.S. National Vulnerability 

Database Version 2.0, we get these figures: Windows 95: B=49 

(46), Windows 98: B=66 (91), Windows XP: B=88 (257), 

Windows NT: 153 (234), Windows 2000: 163 (345), Red Hat 

Linux 6.2: 123 (64), and Red Hat Linux 7.1: 163 (36). The gaps 

between predicted and current figures show that the number of 

detected vulnerabilities of some systems are strongly 

underestimated in the model of Alhazmi et al. [2]. Therefore, their 

model needs to be re-evaluated with particular regard to 

approximating the development of detected vulnerabilities in 

phase 3. 

As mentioned above, time-based models become inappropriate 

when the total effort that is spent on detecting vulnerabilities is 

not linear in time. A model that considers this issue is presented 

by Alhazmi and Malaiya [1], who assume the effort to detect 

vulnerabilities of a software system to depend upon the number of 

computers on which the particular software is installed. More 

specifically, they define the effort E as E = (U i
i= 0

n

∑ × Pi) , where 

Ui is the total number of users of all systems at the period of time 

I, and Pi is the percentage of the users using the system. They 

further assume, in analogy to their time-based model [2], that the 

vulnerability detection rate is proportional to the fraction of 

remaining vulnerability. On the basis of these assumptions, they 

hypothesize that the number of vulnerabilities is given by 

y = B(1− e−λvuE ) , where λvu  is a parameter and B represents 

the number of vulnerabilities that would eventually be found. 

They find statistical evidence for the validity of this effort-based 

model for the operating systems Windows 98 and NT 4.0. 

Like Littlewood et al. [20], Rescorla [28] adopts a model 

provided by the literature on software reliability. More 

specifically, he uses the probabilistic G-O model presented by 

Goel and Okumoto [11], which models the number of 

vulnerabilities over time with a non-homogenous Poisson process. 

This model assumes the expected value of the Poisson process to 

be proportional to the number of undiscovered vulnerabilities at 

time t. The model also assumes that all vulnerabilities will 

eventually be found. On the basis of the non-homogenous Poisson 

process that the G-O model features, Rescorla [28] fits an 

exponential of the form 
Θ− /tAe  to the curve of vulnerability. 

Then, the total number of vulnerabilities N can be computed 

by Θ= AN , where A is a constant. 

However, in his empirical analysis of vulnerabilities of (both open 

source and closed source) operating systems, namely Windows 

NT 4.0, Solaris 2.5.1, FreeBSD 4.0 and RedHat Linux 7.0, 

Rescorla [28] finds no (strong) statistical evidence that the G-O 

model appropriately approximates the number of detected 

vulnerabilities over time. 

Having reviewed the literature on the quantitative security 

analysis in the context of “open source versus closed source 

software”, we can identify the following problems and limitations: 

� There is only little literature on measuring software. Those 

metrics and models that have been applied to security are 

mostly adopted from the research field of reliability. 

Particularly, to the knowledge of the authors, no models have 
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been developed that address the discourse on open source 

versus closed source security. There is a strong need for the 

development of metrics and models dedicated to measuring and 

comparing software security. 

� The set of empirical investigations is small and mainly focuses 

on the analysis of operating systems. We assume that these 

limitations are strongly related to the scarcity of security data. 

� Beside the problem of data scarcity, many authors struggle with 

the availability and quality of data, particularly in terms of 

incompleteness and a low level of granularity. 

� Up to now, software security has been addressed like an 

“atom”. Only very few authors split it up into components. 

Particularly in the context of security assessment of open 

source development versus closed source development, it seems 

reasonable to zoom in on the “bundle security assessment” to 

analyze the extent to which elements of security are supported 

by these different types of software development. One option 

would be to follow Payne’s [26] path by separately considering 

security requirements, such as availability and confidentiality. 

However, we propose the following of a more software-

technological dimension, which differentiates according to the 

type of vulnerability source. For example, vulnerabilities can 

occur due to software design, due to implementation faults, 

such as buffer overflows, or due to software environment 

problems, such as the usage of faulty libraries or operating 

system calls. By employing this classification, we would be 

able to assess the appropriateness of the software development 

type with regard to security (maintenance) in more detail. 

� An assumption of many models is the finite number of 

vulnerabilities that a software features or that are detected over 

the software’s lifetime. This assumption needs to be scrutinized 

when we accept the option that patches not only eradicate 

vulnerabilities, but also create new ones. 

� Most existing models on security measurement are related to 

the number of detected vulnerabilities or exploitations. 

However, this is only one aspect of the quantification of 

software security, which needs to be complemented by further 

evaluations. For example, the assessment of the severity of 

vulnerabilities is no less important. 

� The demand for developing models that address software 

security has led the security measurement community 

underemphasizing the discussion of metrics to be used in the 

models. 

The next section addresses the challenge of quantifying software 

security by proposing a new metric that allows to measure to what 

extent the review process of open source and closed source 

development has helped to fix vulnerabilities. 

4. NEW SECURITY METRICS 
As vulnerabilities are the root of exploitations and security 

breaches, the measurement of vulnerabilities is the right point at 

which to start quantifying software. However, the number of 

vulnerabilities does not necessarily reflect the level of security of 

a program. For example, if program A features only one 

vulnerability that is easy to discover, can be exploited 

systematically and causes severe damage, then A can be felt to be 

less secure than a program B that features ten vulnerabilities, each 

of them being extremely hard to discover, can be exploited only in 

the presence of specific conjunctures, and does not cause any 

severe harm. Therefore, we propose weighting vulnerabilities. Let 

n be the number of vulnerabilities in time window [0;t] and vsi, 

i=1..n, be the (normalized) severity of vulnerability i with 

]1;0[∈ivs . Then, the cumulated weighted vulnerability 

CWV(t) in time window [0;t] is calculated by summing up all vsi, 

i.e. ∑ =
=

)(

1
)(

tn

i ivstCWV . A practical example for the “severity 

of vulnerabilty” concept  is the NIST Common Vulnerability 

Scoring System (CVSS), which assigns a (aggregated) score 

between 0 and 10 to each vulnerability (normalization is 

straightforward here). If we further categorize the vulnerabilities 

according to their type j, such as “buffer overflow” or “faulty 

library”, we can compute type-specific CWVs by 

∑ =
×=

)(

1
)(

tn

i iijj vstCWV δ  with 1=ijδ , if vulnerability i 

belongs to type j and 0=ijδ  else. 

This segregation of vulnerabilities according to their type allows 

us to identify the most critical (types of) security defects, so that 

we can discuss the impact of open source and closed source 

development on security broken down into defect types. We 

would like to stress that the categorization of vulnerabilities can 

occur along different dimensions; for example, it can be based on 

the type (buffer overflows, cross-site scripting etc.) that cause 

vulnerabilities, but also on the resulting impact (violation of 

integrity, confidentiality etc.) of intrusions or on the impact on 

business value [6]. In the literature, mainly the first option is 

adopted, but we also find it interesting to discuss the other paths; 

however, this discourse is out of scope of this paper. 

However, the availability of scores and the resulting opportunity 

to derive conclusions on a metric scale level is dangerous, when 

scores were improperly determined on the basis of ordinal 

rankings, thereby reflecting only a seemingly accuracy. The 

Common Vulnerability Scoring System Version 2 Calculator, 

which is applied in the CVSS, implements such a misleading 

procedure. A way out of this problem would be to remain on 

ordinal level by providing vulnerability severity classes (for 

example low, medium, high) and to simply count the 

vulnerabilities for each class without aggregating the numbers. 

We, then, obtain the cumulated unweighted vulnerability 

CUVk(t), with k being the severity class, by  

∑ =
=

)(

1
)(

tn

i ik

k tCUV δ  with 1=ikδ , if vulnerability i belongs to 

severity class k and 0=ikδ  else. Analogously to the calculation 

of CWV, we can also determine CUVk specific to vulnerability 

type j (for example buffer overflow) by ∑ =
=

)(

1
)(

tn

i ijk

k

j tCUV δ  

with 1=ijkδ , if vulnerability i belongs to severity class k and to 

vulnerability type j, and 0=ijkδ  else. 

However, we still need to carefully observe the procedure with 

which classes are used. For example, the NIST National 

Vulnerability Database does not only provide a score for each 

vulnerability, but also a vulnerability class/ranking. 

Unfortunately, “[…] these qualitative rankings are simply 

mapped from the numeric CVSS scores” 

(http://nvd.nist.gov/cvss.cfm). 
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The metrics discussed so far relate to the vulnerabilities that have 

been revealed during the process of reviewing software. However, 

they do not consider the extent to which the review process has 

helped to fix the vulnerabilities. As this issue is particularly 

relevant to the discussion of whether open source software or 

closed source software is more secure in practice, we now address 

it in more detail. 

With regard to the elimination of vulnerabilities by the provision 

of (security) patches, it seems less reasonable to measure the 

number or intensity of patches, because this provides no 

information on the number of covered vulnerabilities or on the 

ages of covered vulnerabilities. It seems rather appropriate to 

compute (statistical data on) the reaction time between detection 

and elimination of a vulnerability, weighted by the level of 

severity of the vulnerability. It might also seem reasonable to 

record how many of the detected vulnerabilities are unpatched: 

Let i be the index of the event that a vulnerability is either 

announced or patched, ti be the corresponding point of time, 

it
pv  be the (possibly severity-weighted) number of detected and 

patched vulnerabilities in the time window [0;ti], and let 
it

uv   be 

the corresponding (possibly severity-weighted) number of 

unpatched vulnerabilities. Then, we define the patch index at time 
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The sum corresponds to the shaded area in Figure 1, the quotient 

1/tn normalizes ].1;0[∈
nt

PI  It should be noted that t1 corresponds 

to the point in time where the first vulnerability is detected. 

Because of the normalization being inherent in PI , PI=0 would 

imply that, for all announced vulnerabilities, a patch is already 

provided at the day of announcement. In contrast, PI=1 would 

imply that none of the announced vulnerabilities has been 

patched. 

 

Figure 1. Visualization of patch index (PI) 

It should also be noted that the proposed patch index does not 

reflect a security level at a specific point of time, but rather 

mirrors the level of community patching activities with regard to 

both the number of unpatched vulnerabilities in relation to all 

vulnerabilities and the time having been consumed for fixing; 

therefore, the patch index is relative in nature. At the beginning, 

the level does not provide any valuable data, but it becomes a 

significant factor after some time has gone by and several 

vulnerabilities have been detected. However, the proposed patch 

index is time-invariant what needs to be discussed or modified in 

future research: 

� The shaded rectangles in Figure 1 are considered regardless of 

their horizontal position. This issue might lead to 

overemphasizing the meaning of early (unpatched) 

vulnerabilities, particularly when the sizes of consecutive 

rectangles are comparably small. 

� The treatment of exposed vulnerabilities is time-invariant in 

that the patch index does not consider whether the exposed 

vulnerabilities were just recently announced or whether they are 

already known for a long time. 

5. DATA 
In order to exemplify and apply the proposed patch index, we 

apply it to data gained for the closed source software “Microsoft 

Office” (considering only Word, PowerPoint and Excel and 

starting with the version released in 2002) and the open source 

software “OpenOffice” (excluding the database program 

introduced in version 2.0) for the period from 1 October 2001 to 

11 March 2008. The reasons for choosing these software bundles 

are rooted in the fact that (1) they provide essentially the same 

functionality, (2) comprehensive security data is available, and (3) 

they are well-known in the software (security) community. 

We consider only those vulnerabilities that have been accepted as 

Common Vulnerabilities and Exposures (CVE) entries by the 

CVE editorial board, which was itself created by the MITRE 

corporation (http://cve.mitre.org). Each of these vulnerabilities 

has a unique identifier, e.g. CVE-1999-0067, which is used as a 

reference in many other vulnerability databases 

(http://cve.mitre.org/compatible/vulnerability_management.html). 

Among these databases, we use one of the most comprehensive, 

the NIST “National Vulnerabilty Database” (http://nvd.nist.gov/), 

which provides full CVE database functionality and offers 

sophisticated search options. We obtain further details of the 

vulnerabilities from the MITRE website, the US-CERT 

Vulnerability Notes Database, Microsoft Security Bulletins, 

OpenOffice.org and “The Open Source Vulnerability Database” 

(http://osvdb.org). 

6. EMPIRICAL RESULTS 
We first address the number of vulnerabilities found for each 

software. Table 2 shows the numbers, categorized according to 

their severity. The table entries correspond to what, in Subsection 

“Security vulnerabilities”, is referred to as “cumulated unweighted 

vulnerability CUVk“, with k being the severity class. The severity 

score follows the NIST Common Vulnerability Scoring System 

(CVSS), the categorization of types also follows NIST, which 

adopts a subset of the Common Weakness Enumeration (CWE) 

list that provides a comprehensive categorization of vulnerability 

types and is maintained by the MITRE corporation. 

The central findings regarding the announced vulnerabilities are: 

� MS Office has attracted about 7 times more vulnerabilities than 

OpenOffice has. However, we have to consider that probably 

more vulnerabilities in OpenOffice than in MS Office might 

have been existed, detected, potentially discussed in forums, 

and finally removed, before they could have become a CVE 

vulnerability. 

� Both software bundles have suffered only minor low-severity 

vulnerabilities; medium- and high-severity vulnerabilities have 

occurred almost equally often. 
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Table 2. Number of vulnerabilities (CUVk) of 

MS Office (M) and OpenOffice (O) 

Vulnerability severity class k 

Low 

(0-3.9) 

Medium 

(4.0-6.9) 

High 

(7.0-10.0) 

Sum 

M O M O M O M O 

3 2 50 6 55 8 108 16 

 

Having analyzed the announced vulnerabilities, we now address 

the question of the extent to which the review process of open 

source development has helped to fix vulnerabilities. For this 

purpose, we apply the patch index, as defined in Section 4. We do 

not apply any weighting of vulnerabilities, because CVE data are 

essentially on ordinal scale level, as discussed in Subsection 4. 

Figure 2 shows the development of the patch index for both 

software bundles. 

Figure 2. Patch indices of MS Office and OpenOffice 

 

Both curves feature a strong decrease at the onset, before leveling 

off. The strong decrease of both curves is due to the fact that, in 

the beginning, the presence of unpatched vulnerabilities is 

“overemphasized”, as the total number of vulnerabilities is low. In 

order to weaken this early impact on the overall development of 

the patch index, it might be reasonable to integrate some kind of 

“weighting vulnerabilities” in future work. 

Interestingly, although the total numbers of vulnerabilities found 

in MS Office is about 7 times higher than the OpenOffice-related 

number, the (levelled off) patch index of MS Office does not 

reveal a comparably weak performance in patching vulnerabilities. 

With regard to MS Office, on average, about 27% of all 

announced vulnerabilities have not been patched, the 

corresponding value of OpenOffice is 18%. However, these 

results do not necessarily mean that MS Office vulnerabilities are 

slower patched than those of OpenOffice. By contrast, a simple 

statistical analysis of patch times reveals that, on average, MS 

Office vulnerabilities (the median is 67.5 days, the mean is 87 

days) are more quickly patched than OpenOffice vulnerabilities 

(the median is 85 days, the mean is about 87.4 days). The reasons 

for these divergent results are that (1) the patch index is invariant 

in which vulnerability is patched and (2) the patch index also 

considers both the total number of vulnerabilities detected and the 

total number of vulnerabilities patched. Interestingly, in the period 

under consideration, the overall proportions of unpatched 

vulnerabilities are almost equal (MS Office: 14/108 ≈ 13%, 

OpenOffice: 2/16 = 12.5%). 

This investigation demonstrates that – in contrast to statistical 

data about patch times – the proposed patch index is capable of 

considering both the extent to which a certain type of software 

development creates vulnerabilities and removes vulnerabilities. 

Therefore, the patch index represents a metric that allows for 

comprehensively measuring and comparing practical software 

security. However, the observed patch times need to be 

interpreted very carefully for two reasons: (1) Data refer to one 

investigation only. (2) Patch times for both closed and open 

source development heavily depend on the concrete patching 

procedures in the responsible organizations or communities. 

Therefore, it would be necessary to consider whether the 

particular open source software development is realized in bazaar 

or in cathedral style (according to OpenOffice.org [24], cathedral 

style seems to dominate the development of OpenOffice). 

7. DISCUSSION AND OUTLOOK 
Discussions in the literature show that the increasing availability 

and the deployment of open source software in personal and 

commercial environments has resulted in a debate “full of 

religion” on the security of open source software compared to that 

of closed source software. This debate reveals the much more 

comprehensive problem of assessing security, which has 

traditionally only rarely been conducted on a quantitative level. 

Although some methods and metrics have been proposed and 

applied in empirical research, the methodology is at an early stage 

and is mainly adopted from the fields of reliability and 

dependability, without careful investigation into the extent to 

which it can be adopted or the question of whether new models 

and metrics are required. For example, one assumption of some 

models is the finite number of vulnerabilities that software 

features or that are detected over the software’s lifetime. This 

assumption needs to be scrutinized when we accept the option that 

patches not only eradicate vulnerabilities, but also create new 

ones. Furthermore, most existing models on security measurement 

are related to the number of detected vulnerabilities or 

exploitations. However, it is only one aspect of the quantification 

of software security. For example, the assessment of the severity 

of vulnerabilities is no less important. Beyond the problems 

related to the scarcity of appropriate models, we also face the crux 

that the set of empirical investigations is small and mainly focused 

on the analysis of operating systems. We assume that these 

limitations are strongly related to the scarcity of security data. 

This paper starts to bridge the sketched gaps by proposing metrics 

that allow for quantitatively comparing software development 

styles with regard to resulting security. The application of the 

proposed metrics, for which reliable data are available, shows 

that, overall, OpenOffice has been more secure than MS Office in 

terms of vulnerabilities. We suggest refining the metrics and 

extending the analysis onto more software bundles. A further step 

beyond such activities would be automated security evaluation, 
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which enables us to continuously monitor (the development of) 

software security and, particularly, to empirically answer the 

question of when, and to what extent, which software 

development style leads to more secure software. More 

specifically, we find it appropriate to analyze which vulnerability 

types (with regard to their roots) are best addressed by which 

software development style. We would then try to group software 

into components, each of which is homogeneous in the roots of 

potential vulnerabilities. For example, all input validation tasks 

could be integrated in an I/O module. This module would then be 

developed according to the development style that best addresses 

the roots of such vulnerabilities. It should be noticed that the 

categorization of vulnerabilities does not necessarily needs to be 

done along the roots of vulnerabilities. It can also occur along the 

resulting impact (violation of integrity, confidentiality etc.) of 

intrusions or along the impact on business value [6]. 
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