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Abstract
In a successful dialogue in general and a successful explanation in
specific, partners need to account for both, the task model (what
is relevant for the task) and the partner model (what one can con-
tribute). The phenomenon of coupling between task and the partner
model becomes especially interesting in the context of Human–
Robot Interaction where humans have to deal with unknown ca-
pabilities of the robot, which can momentarily be perceived when
the robot is unable to contribute to the task. Following research on
the path over manner prominence in an action [31–33], a robot ex-
plained actions to a human by emphasizing two aspects – the path
("where" component) and the manner ("how" component). On criti-
cal trials, the robot occasionally omitted one of these components
where participants sought missing information for the path or the
manner. Participants’ information-seeking and gaze behaviour were
analysed. Analysis confirms the initial predictions for, a) task model
(path over manner prominence), i.e., earlier information-seeking for
path-missing than manner-missing trials, and b) partner model, i.e.,
while information-seeking is predominantly tied to the attention
on the robot’s face, when robot fails to provide resolution, attention
shifts more often towards its torso – a behavior likely to indicate
an exploration of the robot’s capabilities. An individual-level anal-
ysis further confirms that the intra-individual variation in the task
model is partly influenced by the perceived capability of the robot.
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1 Introduction
Explanation is a process as well as an outcome, which does not
conform to a one-size-fits-all approach [30]. In this process, the
involved partners dispose of distinct expectations about their part-
ner (explainer) and the task [9, 18, 25]. Whereas the expectation
about the partner relates to the questions of who is making what
kind of contribution (partner model), the expectation about the task
concerns which aspect of the task is relevant to achieve the task
goal (task model) [37]. Although the coupling of the two models
was postulated for effective tutorial interactions [37], little is known
about how it can be achieved in other forms of dialogue, e.g., in
Human–Robot Interaction. The coupling of such models becomes
particularly significant in a human–robot explanatory dialogue,
since in this context, humans as explainees not only question their
partner’s capabilities more often but also attempt to continuously
determine whether and to what extent the robot can contribute to
the task. For this purpose, humans usually test the robot with mul-
tiple probes on which basis they finally establish a partner model,
i.e., what kind of capabilities they can rely on in an interaction[27].
Following this, the task model can be co-constructed during the
course of interaction, tailored for both the parties based on their
current state on understanding [25]. For example, studies in the
past suggested that humans adapt to the robot’s cues that are in-
terpretative of what the robot is capable of [8]. In this sense, the
dialogue "provides subtle clues to the robot’s functionality and thus
to adequate partner modeling" [8, p. 35]. Other studies have shown
that humans are able to align with the robot’s actions depending
on their partner model of the robot [36]. However, previous studies
did not model the individual differences to study how the coupling
of these models can be achieved. For an individual, the task concep-
tualization could rely on the partner model, such that participants
can structure or adapt their linguistic behavior about the task based
on the perceived capability of the robot [35]. In this context, the
perceived capability at a specific moment in the interaction can
influence how the utterances about the source of misunderstand-
ing are structured [25]. Whereas most studies consider one of the
aspects, the challenge lies in systematically define and relate the
task and the partner models. Hence, here our aim was to first lay
down the definitions of these models in scope of our study and
subsequently investigate the relationship between them.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3686215.3689202
https://doi.org/10.1145/3686215.3689202
https://doi.org/10.1145/3686215.3689202


ICMI Companion ’24, November 04–08, 2024, San Jose, Costa Rica Singh et al.

1.0.1 Task model. We define a task model requiring information
on two dimensions to perform the given action – Path and Manner.
Here, the path characterizes the “where” component in an action,
whereas the manner specifies “how” the action is to be performed.
This task model is grounded on an established finding in psycholin-
guistics research [29, 31], where each action was performed with
attention to the path and manner. The explainer (robot) provided
the information on how and where the given object has to be placed
through a verbal guidance (section 2.4). In numerous studies, it has
been found that in an action event while path remains in the fore-
ground of attention the manner component tends to be attenuated,
resulting in a more robust memory for the path compared to the
manner [31–33]. This phenomenon is consistently observed across
studies in adults as well as developmental studies in infants [14, 22].
Thus, we expected to observe the effect of path vs manner promi-
nence in the information-seeking behaviour of the participants,
consequently informing us about the task conceptualization. This
approach first allows us to establish our initial predictions for the
task model, and then systematically investigate how the partner
model influences it during an interaction.

1.0.2 Partner model. We view the partner model as a dynamic pro-
cess, evolving as the interaction progresses. In our study, the robot
predominantly serves as the explainer, given that it possesses more
information about the task than the explainee. Consequently, we
assume that its capability is continually assessed by the participants
(explainee) throughout the interaction, and it may be perceived as
less capable when it fails to provide resolution occasionally. There-
fore, the explainee develops an expectation or "need" for the robot to
effectively scaffold the task. The partner model thus represents the
explainee’s perception of the explainer’s (robot) capability to act as
a scaffolding agent. Crucially, this initial perception of the explainer
can change throughout the interaction based on the explainer’s
demonstrated ability to provide –or fail to provide – adequate expla-
nations when requested. Hence, the partner model predominantly
draws inspiration from the concept of scaffolding, which is charac-
terized as a supportive and dynamic form of assistance provided
by a more knowledgeable partner, tailored to the learner’s abili-
ties [37]. In HRI, this emphasizes that the explainer (robot) must
be perceived as a partner possessing sufficient characteristics of
a scaffolding agent before the explainee can rely on this support.
In situations where the conversation breaks down due to a lack
of sufficient information or misunderstanding, to keep the loop
going, the explainee should be able to offload the task demands
to the explainer (robot) by assigning the missing-information in
the task. This assignment could manifest in rather various ways,
such at looking at the robot’s face when in doubt or before raising
requests [2, 7, 34], which is considered as a proactive function of
gaze during information-seeking in conversation [17, 24].

1.1 Present Study
The setting was created by incorporating the abovementioned two
models. In each trial, the robot asked the participant referring to
an object to place in a specific manner (vertically or horizontally)
on a destined location (path; on letters). To elicit questions from
the participant, the robot occasionally omitted either the path or
manner information. Our predictions were based on population

as well as individual level variations for both the task and partner
models, which we specify hereunder.

1.2 Predictions
1.2.1 Task Model: Building upon the findings in psycholinguistics
that the path remains salient than manner in an action [21, 29, 31],
we predicted that the absence of path information would elicit
quicker information-seeking behaviour from participants compared
to the instances where the manner information is missing. Cru-
cially, this prediction serves as a validation of our task model. The
prediction is also supported by the previously proposed notion that
the asymmetrical conceptualization of the path and manner arises
from the intrinsic goal-directed nature of cognition, with a primary
emphasis on the path [21, 32, 33].

1.2.2 Partner Model: Perceiving a partner as a legitimate scaffold-
ing agent would entail focusing more on the partner’s face than
other parts of the body especially while information-seeking phase.
Crucially, this prediction would be supplemented by comparing
the gaze behavior in the condition where the robot successfully
provides a resolution (successful scaffolding), compared to a con-
dition where the robot fails to provide a resolution (unsuccessful
scaffolding), prompting the explainee to re-ask the question or pro-
ceed without support. We further predicted that an unsuccessful
scaffolding would lead to an exploration of the partner capabilities
where the attention shifts from the robot’s face to the other parts
of the body. Moreover, evidence from human–human conversation
suggests that not looking into the face while information-seeking
is often interpreted as a sign of avoidance and lack of interest in
conversation [11, 16], such as in the case of unsuccessful scaffolding.
Thus, at the population level, we predicted that while the overall
looks to face would be higher than other parts of the body during
information-seeking phase, this facial engagement would decrease
when the robot shows a lack of capability to scaffold the task.

1.2.3 Relationship between the task and partner model. At the in-
dividual level, we hypothesized that participants showing more
exploratory behaviour while information-seeking — a behavior
that is likely to reflect an exploration of partner’s capabilities fol-
lowing unsuccessful scaffolding — would exhibit more delay in
information-seeking. Here our aim is to find out whether the source
of the variability in the task model (delay in information-seeking)
is partly determined by the uncertainty about the partner’s role
and its potential scaffolding capabilities.

2 Method
The methods in this study are approved by the Review Board of the
university and the informed consent from all the participants were
obtained. The study was preregistered on Open Science Framework
(OSF) before data acquisition, and the associated analysis code is
available online and the data would be available on request.

2.1 Participants
Thirty-three university students (mean age = 22.30, SD = 2.63) were
recruited via classroom advertisements and flyer distribution. All
participants demonstrated native to fluent proficiency in German.
Data from 3 participants could not be analysed due to track-loss
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Figure 1: Setup and example stimulus: manners (vertical and
horizontal) and paths (A N P I R); Three screws needed to be
vertical, while the screw on R needed to be horizontal.

of eye-tracking sample points, hence the final sample size remains
thirty participants.

2.2 Stimuli
The stimuli consisted of four objects in the shape of screw of dif-
ferent colours, Green, Red, Yellow, Blue (Fig. 1). Each object can
be placed in two possible manners (we will refer to it as a "How"-
component) vertically or horizontally (referred to as “hochkant"
or “quer" in German). For complexity consideration, we limited the
options to these two manner-affordances. Additionally, for each
of the four objects, there were five potential positions marked on
the table by unique alphabets where the object could be placed.
These positions served as the path (we will refer to it as a "Where"-
component). The combination of manners (vertical or horizontal)
and paths (identified by unique alphabets) was generated randomly
for each trial, resulting in a diverse array of configurations, of-
fering distinct patterns concerning both manner and paths and
maintaining variability in the task at the same time.

2.3 Procedure
As illustrated in the Figure 1, participants were seated in front of
the NAO robot while wearing Pupil Labs glasses for eye-tracking
(120 Hz), with a 5-point calibration yielding an accuracy of 0.60º
and precision of 0.02º. The room was controlled for illumination
and noise isolation. The objects were placed in front of the partici-
pant in a transparent glass container on a table. Alphabets stickers
were pasted in a row to act as destination path of the object. Two
stationary cameras were placed on the sides to capture the experi-
mental setup. To ensure an unbiased interaction between the robot
and the participant, an experimenter zone was established behind
the participant, concealed by a divider. This setup ensured that
the experimenter remained out of sight, facilitating uninterrupted
interaction solely between the robot and the participant. The exper-
iment started by calibrating the eyetracking and then introducing
the participant to the task.

2.4 Task Instructions
Each participant was instructed to follow the robot for guidance on
each placement of the object and were told to ask questions when
they feel that the information for the task is insufficient. Since the
missing information was only regarding the path or the manner, we
expected the participants to ask questions along those dimensions
(e.g., where, how, and so on). However, participants were given

the liberty to request a repetition whenever they feel it necessary,
enhancing the flexibility of the interaction. After introducing the
participants to the experiment, the experimenter retreated to the
experimenter zone and initiated the experiment script. The robot
was programmed with semiautonomous capabilities, where the con-
trol can be taken over by the experimenter in case the robot fails or
conversation breaks down. On instances when the robot was unable
to hear or respond, participants repeated the commands. The robot
first introduced itself and then reiterated the task instructions again.
After asking for the participant’s readiness, the robot commences
with the first trial. Each trial began with a specific instruction for
placing an object in a designated manner and on a specific path.
The instruction template was structured as follows:

Place the green Object [Manner] on [Path]
Lege bitte das grüne Objekt [Hochkant or Quer] auf [A]

Following each instruction, the robot gazed briefly to the task
and then to the participant and sought confirmation: “Hast du
das erledigt?” (“Have you done it? in English). Upon receiving affir-
mation, the robot progressed to the next object. The trial concluded
when all four objects were placed on the designated path with spe-
cific manner. Subsequently, the robot asked participants to put back
the objects and then turn back to solve a simple addition or sub-
traction task. This was done to offload the working memory and to
keep participants engaged in the task rather than just passively fol-
lowing it. After solving the task, participants turned back towards
the robot, and completed a recall task where they placed back the
objects as instructed during the trial. Upon confirmation, the robot
proceeded to the next trial. The experiment had four blocks, two for
path and two for manner critical trials. Thus, a block included total
five trials, and each trial had 4 moves corresponding to 4 objects,
resulting in a total of 20 moves in a block generated randomly. In
each block, information regarding the path or manner was inten-
tionally omitted (missing information trials) randomly on 4 moves
and rest of the moves (16) were of full information (full information
trials). This was done to prompt questions from the participants
for the missing information occasionally. The entire experimental
session lasted approximately 45 minutes, during which eye-gaze
and video data were continuously recorded.

3 Data Analysis
Eyetracking data was exported using the Pupil Player software. The
videos were initially coded using ELAN [1] and later exported for
further analysis. Since we were only interested in the behaviour for
the time window from instruction onset till the moment of asking
the question, we focus our analysis on this time window. All prepro-
cessing and analysis were conducted using an R script [23], which
is openly accessible in an online repository for reproducibility.

3.1 Preprocessing gaze data
Since we were interested in the looks to the face, torso, and the ob-
jects, three rectangular area of interests, referred to as surfaces, were
defined around the robot’s face, torso and the objects respectively.
Fixations were computed using a time range from 80 to 350 ms with
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Figure 2: Gaze on robot’s face and objects; (A) full information trial and, (B) missing path or manner information trial (right).
The green-shaded region shows the instruction duration. Verticle red-line in B depicts the average question onset time

a maximum dispersion set at the default value of 1.5 degrees. To cal-
culate the fixation proportion on a surface within a specified time
range, the entire time window was divided at a 50 ms resolution.
The number of fixations falling within a surface was then divided
by the total number of fixations within that time bin. The delay
in the information-seeking was calculated for the time window
after the instruction offset by the robot for each trial. Our aim was
to model the time-dependent changes in the gaze for the full and
missing information trials. The full-information trial spanned from
start of the instruction till the confirmation was provided by the
participant. And the missing information trial spanned from start
of the instruction till the offset of the participants’ question. We
modeled these behaviours on a continuous time scale using 2nd
order Growth Curve Analysis (GCA), a methodology previously
applied in analyzing time-dependent changes [19].

3.2 Preprocessing ELAN data
The video data was manual coded on ELAN by three student assis-
tants independently, who were unaware of the hypothesis of the
study. The codings included the annotations of robot instructions,
participant-posed questions and successful vs unsuccessful scaffold-
ing. A successful scaffolding was considered when the participant
sought information and the robot responded successfully (No-error
trials), otherwise an unsuccessful scaffolding when the robot did
not respond to the request (error trials).

4 Results
4.1 Attention on the objects and the face
For the full-information condition (Fig. 2. A), we observed an in-
crease of attention to the objects as soon as the instruction was pre-
sented (vertical line at 0). This continued throughout the instruction
period (green shaded region), where a transient decrease in fixation
on the face was observed, showing the participants’ anticipatory
fixation to the objects upon encountering the instruction. Crucially,
the attention to objects remained till the end of instruction, after
which there was a shift towards the face, as a result of providing
confirmation for the completed task (around 10 sec). For the miss-
ing information trial (Fig. 2. B), there was an increase in attention
towards the objects as soon as the instruction was encountered
(vertical line at 0). However, at the end of the instruction, and after
realizing that the information was insufficient, participants quickly
redirected their gaze back to the robot’s face, likely to seek infor-
mation for the missing aspect in the task. This information-seeking
is shown by a transient increase in gaze on robot’s face starting
just after the offset of instruction which suggests that information-
seeking is tightly coupled with looking at the partner, and in this
case specifically on the face. This increase in looks to the face was
followed by an information-seeking (red vertical line). Importantly,
the delay in the onset of this information-seeking was depended
upon the type of information missing in the task, i.e., the path or the
manner (task-model). According to our first prediction we expected
this delay to be higher for the manner than the path, which we
analysed subsequently.

Figure 3: Fixation on face and torso for critical trials where robot did or did not respond to the question. Left plot; unsuccessful
scaffolding, Right plot; successful scaffolding. The shaded region shows the mean duration of question onset and offset.
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4.2 Information-seeking delay for path and
manner

Following our prediction about the task model, we compared the
time of question onset for the path andmanner critical trials. Here, a
delayed onset was observed for manner-related questions compared
to path-related questions (Fig. 4), supporting our initial prediction
regarding path prominence in event conceptualization. This pre-

Figure 4: Difference in path vs manner question time. Condi-
tions are on x-axis and response time on y-axis

diction was confirmed by fitting a hierarchical linear mixed effects
model using lme4 package in R [5]. We incorporated a full model
with varying intercepts and slopes for each participant to account
for main and random effect structure. The predictors were sum
contrast coded, with manner coded as +0.5 and path as -0.5, such
that the intercept represented the overall mean delay, and the slopes
indicated deviations around this mean for each condition. Model
predictions are depicted in Fig. 4. Confirming our predictions for
the task model, we found a significant delay for the manner than
the path related questions (𝛽 = 0.44, S.E. = 0.2, p=0.03).

4.3 Task and partner model
Our population-level partner model suggested that participants
redirect their attention towards the partner’s face from the object
when they intend to ask question.(Fig. 2). Following our partner
model predictions, whether the participants’ perception about the
robot’s scaffolding capability (successful vs unsuccessful scaffold-
ing) guided the gaze behaviour towards the robot, we analyzed
the gaze in two conditions – where robot successfully provided
the resolution (Response present) or did not provide the resolution
(Response absent) (Fig. 3). Crucially, we looked into the fixation
on the robot’s face and the torso during the information-seeking
phase. For the unsuccessful scaffolding, we observed an exploratory
gaze behaviour where a higher gaze switches from robot’s face to
the torso and vice-versa was observed (Fig. 3, Response absent or
error trial). Importantly, when robot successfully scaffolded the task
(Response present), the attention was predominantly was on the
face throughout the entire information-seeking phase (Fig. 3, Re-
sponse present or No-error trial). Further to investigate whether the

scafolding capability contributes to the task conceptualization and
thus influence the task model (information-seeking), we modeled
the attention allocation on face vs torso as a function of question on-
set delay. The aim was to look whether the response delay predicted
the individual gaze preferences on the face over the torso. For this,
we focused our analysis in the information-seeking time window,
since this specific window allowed us to examine the proactive role
of gaze, when one seeks information particularly about the task. A
linear mixed effect model was fitted for logit transformed propor-
tion of looks at the face and torso following [3]. The model included
sum-contrast coded Area of Interest (AOI: Face vs Torso) and the
question onset delay as a continuous predictor by mean scaling. Our
goal was to fit a maximal model by accounting for random effects
at the subject level variation with slope correlations[4]1. Hence,
the intercept represented the grand mean of gaze towards the face
and torso for mean question onset delay, and deviation around this
mean as the effect size of looks toward the face as compared to the
torso for the population and the individual subjects. Importantly,
we were interested in the random effects (correlation parameter)
between the gaze and delay effect sizes for each subject. A full and
reduced model comparison was done using log-likelihood test by
removing only the correlation parameter from the model [4]. The
model predictions for the subjects are depicted in Figure 5. Adding

Figure 5: (A) Correlation, looks on face over torso and ques-
tion time, (B) model prediction for participants

1model: lmer(meanLook <- 1+AOI*CentMeanDelay + (1+AOI+CentMeanDelay|Subj))
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the correlation random structure between gaze and delay slope
parameters significantly improved the model fit (𝜒2 = 997.86, Df =
1, p<0.001), suggesting that the correlational parameter effectively
captured the variation between onset delay and the gaze on face
over torso. Further, there was a significant interaction between AOI
and question onset time (𝛽 = -0.14, SE = 0.0, p<0.001), such that the
delay also negatively predicted the gaze on the face over the torso.
Meaning, subjects showing more preference for the robot’s face
than the torso were quicker in asking questions (R=-0.42, p=0.02),
as depicted in Figure 5. In comparison to our population-level part-
ner model, where the majority of participants attended to the face
while asking question, on the contrary individuals who exhibited a
higher tendency to look at the torso over the face specifically during
information-seeking phase, experienced more delay in information-
seeking for critical trials. To highlight again, more preference to the
torso was observed for the condition where robot was perceived
less capable of scaffolding the task (Fig. 3)

5 Discussion
The study builds upon a task model, that requires a differentiation
between path and manner of an action. Further, the partner model
consists of the expectation that the partner can scaffold the partici-
pant to perform those actions. Apart from establishing the validity
of these models at the group level, our focus was predominantly
to account for the intra-individual variability of the task and the
partner model in HRI. Based on our initial assumptions about the
task model, we observed that participants were generally quicker
in information-seeking for the path compared to the manner. This
aligns with a robust finding in psycholinguistics [6, 20–22], which
we tested in the context of HRI.

Our investigation into the partner model, with a focus on atten-
tional dynamics, confirmed our initial assumption. At the popula-
tion level, participants tended to lookmore at the robot’s face during
two distinct time segments: a) while receiving the instructions and
b) while information-seeking (asking questions). Crucially, while
receiving the instructions, we also observed a transient decline in
looks at the face which potentially shows the anticipatory attention
to the objects as the task instruction is unveiled. Conversely, when
participants asked questions (for missing information), their gaze
was predominantly directed towards the robot’s face–a behavior in-
dicative of perceiving the robot as a scaffolding partner. It is worth
to mention that despite the fact that area of interest for the body
covered the most part of the visual field of view, the participants’
gaze on the face was predominantly higher which might reflect
that the robot was ascribed as a scaffolding partner over and above
just a point of verbal reference. In this case, one could have sought
information by keeping attention on the objects, which might be
conceived as a question to oneself than to the partner, given the
proactive role of gaze in day-to-day social encounters [11, 15].

Moreover, we observed a delay in manner than path related
questions. This underlines our inherent task model, supporting
the idea that manner carries more vulnerability necessitating con-
scious cognitive opearations, as opposed to the relatively automatic
processing of path relying on less cognitive resources [21]. As a def-
inition, a conscious cognitive operation on a representation would
require more scaffolding than a representation which is already in

attention (e.g., path). One of the methods suggested in previous
studies to mitigate this effect is contrastive scaffolding of the path
and manner [13, 28], which has been shown to improve attention
to both components. Provided that in our experiment the path and
manner instructions were presented randomly, and the delay was
observed for linguistic encoding, than performing an action per se,
the likely explanation of the manner related cost could be due to
linguistic processes governing the retrieval of these two aspects.

Nevertheless, scaffolding the manner might need more inter-
vention of the scaffolding partner than the path. In this regard,
the intra-individual findings from the study highlight the aforeme-
tioned aspects, quicker information-seeking when the preference
to the robot’s face is higher than the torso. This might suggest that
the delay in linguistic processing was partly influenced by whether
the robot was conceptualized as a partner possessing sufficient
scaffolding capability or not. Especially, when the robot did not
successfully scaffold the task, the gaze was more exploratory where
the attention shifted more often to the torso and other body parts,
indicating an exploration.

Here, we focused on a specific aspect of the partner model – per-
ceived scaffolding capability – and found that participants’ delayed
response is partly influenced by their perception of the partner’s
scaffolding capability (as assessed by the gaze). We should critically
note that in future, our assessment needs to be supported by results
from either an online measure assessing the dynamical change in
perception of partner’s role or an offline survey. Our findings bear
significance not only in the realm of human–robot interaction but
also extend to human–human interactional contexts, i.e., perceiv-
ing a partner capable of scaffolding might allow the explainee to
flexibly ascribe more responsibility for the task to their partner.
This is grounded on the understanding that joint actions involve
close collaboration and a shared distribution of the task load among
participants [10]. For example, the amount of information an ex-
plainee shares about the source of a misunderstanding can offer
insights into her commitment to a joint goal. Furthermore, when
an explainee use varied constructions in their verbal behaviour, it
can also establish the partner model as more capable to scaffold the
task as opposed to when they use repetitive requests, since day-to-
day language use is hardly deterministic and relies on variability
[12]. In future, we aim to capture more qualitative aspects of this
perceptual dimension and investigate its meaning for the facial
engagement. Other functional aspects of these measures should
also not be neglected, which might entirely allude to a different
cognitive function in an explanation, such as, monitoring, which
has been proposed to play a different role in explanation processes
[26]. Including a more holistic scale in such cases additionally re-
quires considering the meta aspects from multimodal interaction
(e.g., backchanneling and signs of ignoring the partner) and might
offer us a deeper insight about explanation processes in HRI.

6 Conclusion
This study suggests a potential pathway to systematize task and
partner models from an interdisciplinary perspective by investigat-
ing human Gaze behaviors in HRI. Future research should delve
into the proactive role of the partner model in shaping task model,
particularly when they are embedded in an interactional context.
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