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In disaster operations management, a challenging task for rescue organizations occurs when they have to 

assign and schedule their rescue units to emerging incidents under time pressure in order to reduce the 

overall resulting harm. Of particular importance in practical scenarios is the need to consider collabora- 

tion of rescue units. This task has hardly been addressed in the literature. We contribute to both modeling 

and solving this problem by (1) conceptualizing the situation as a type of scheduling problem, (2) mod- 

eling it as a binary linear minimization problem, (3) suggesting a branch-and-price algorithm, which can 

serve as both an exact and heuristic solution procedure, and (4) conducting computational experiments 

– including a sensitivity analysis of the effects of exogenous model parameters on execution times and 

objective value improvements over a heuristic suggested in the literature – for different practical disaster 

scenarios. The results of our computational experiments show that most problem instances of practically 

feasible size can be solved to optimality within ten minutes. Furthermore, even when our algorithm is 

terminated once the first feasible solution has been found, this solution is in almost all cases competitive 

to the optimal solution and substantially better than the solution obtained by the best known algorithm 

from the literature. This performance of our branch-and-price algorithm enables rescue organizations to 

apply our procedure in practice, even when the time for decision making is limited to a few minutes. 

By addressing a very general type of scheduling problem, our approach applies to various scheduling 

situations. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Managing natural and man-made disasters, such as earth-

quakes, floods, droughts, or industrial accidents, has become an

important issue in today’s world. According to the International

Federation of Red Cross and Red Crescent Societies (IFRC), there

have been 6699 reported disasters in the decade between 2003

and 2012 with more than 1.1 million people killed and financial

losses of more than US$ 1.5 trillion ( IFRC, 2013 ). One of the most

severe natural disaster ever is the 2011 Tohoku-oki earthquake,

tsunami, and nuclear accident in Japan with an estimated US$ 211

billion of direct damage in addition to 19,0 0 0 fatalities ( Kajitani,

Chang, & Tatano, 2013 ). Although the list could be continued, these

statistics suffice to show the importance of constantly refining dis-

aster operations management to reduce the impact of disasters on

humankind. 
∗ Corresponding author. 

E-mail addresses: gerhard.rauchecker@ur.de (G. Rauchecker), schryen@posteo.de 
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Disaster operations management (DOM) has received consider-

ble attention in the OR and MS literature, see Green and Kolesar

2004) , Altay and Green (2006) , and Galindo and Batta (2013) for

n overview. Tasks in DOM can be classified into four main phases:

itigation, preparedness, response, and recovery. One of the most

ritical tasks in DOM is decision support for disaster operations

enters during disaster response and in particular the schedul-

ng of rescue units to process disaster incidents ( Wex, Schryen,

euerriegel, & Neumann, 2014 ). We study this problem taking into

ccount several real-world properties: (i) each rescue unit may

ave multiple capabilities, such as medical care, fire extinguishing,

nd search-and-rescue, while each incident may require several of

hese capabilities. When not all of the required capabilities of an

ncident can be provided by a single rescue unit, the collabora-

ion of several rescue units is necessary. Collaboration can occur

n different forms, including what we call tight and loose collab-

ration. While the former requires that all rescue units are avail-

ble before they can start their operation, the latter allows rescue

nits to work independently. For example, when an incident re-

uires the capabilities of both firemen and medical staff, firemen

an and should start rescuing buried people although medical staff

https://doi.org/10.1016/j.ejor.2018.06.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.06.010&domain=pdf
mailto:gerhard.rauchecker@ur.de
mailto:schryen@posteo.de
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s still not available. In our manuscript, we consider loose collab-

ration as also done in previous work (e.g., Schryen, Rauchecker,

 Comes, 2015; Wex, Schryen, & Neumann, 2013 ). (ii) The pro-

essing of incidents is non-preemptive, (iii) processing times and

ravel times are incident- and unit-dependent, and (iv) each inci-

ent has a specific severity level. Since disaster incidents are time-

ritical, especially when human lives are in danger, Rolland, Pat-

erson, Ward, and Dodin (2010) suggest to use completion times

f incidents as a proxy for overall harm. Building on this approach

nd accounting for the nature of loose collaboration (when rescue

nits required by an incident can start processing this incident in-

ependently), we minimize the weighted sum of completion times,

here weights are incident-specific and where each completion

ime refers to a particular pair of rescue unit k and incident j and

enotes the time at which unit k has finished its processing of in-

ident j . We refer to this problem as Disaster Response Scheduling

roblem (DRSP). 

Even though this type of problem is highly relevant in practi-

al contexts, it has rarely been investigated in the OR literature.

or example, Wex et al. (2014) present heuristics for a special-

zation of DRSP in which incidents have only a single require-

ent, making collaboration of rescue units obsolete. Another spe-

ial case of DRSP was investigated by Rolland et al. (2010) , who

ntroduced meta-heuristics for settings in which incidents do not

ave specific severity levels. Wex et al. (2013) and Schryen et al.

2015) show that DRSP itself is NP-hard in the strong sense. They

ntroduce heuristics and evaluate the quality of their solutions us-

ng lower bounds obtained by an integer quadratic program relax-

tion. Bodaghi and Ekambaram (2016) present a mixed-integer lin-

ar program, using a commercial solver to find the optimal solu-

ion for one small DRSP instance with four rescue units as a case

tudy. However, their case study instance does not involve multi-

apability rescue units, although this could be accounted for by

heir model. To the best of our knowledge, no further algorithms

or solving the DRSP have been suggested in the literature. 

We close this research gap by (1) formulating DRSP as a binary

inear program, (2) developing a novel branch-and-price (b&p) al-

orithm to solve the proposed mathematical program optimally,

nd (3) conducting computational experiments to assess the per-

ormance of the proposed algorithm. We evaluate execution times

f the algorithm and compare the solutions obtained by our b&p

lgorithm to solutions returned by the SCHED heuristic suggested

y Schryen et al. (2015) , which is currently the best performing

lgorithm for DRSP in the literature. We show that our b&p algo-

ithm enables decision makers in disaster operation centers to im-

rove the quality of their scheduling decisions substantially. Conse-

uently, this helps decreasing both casualties and economic losses.

The DRSP represents a very general form of scheduling

roblems. It subsumes non-preemptive scheduling on identi-

al/uniform/unrelated parallel machines with the objective func-

ion being the (weighted) sum of completion times. In addition,

t accounts for sequence-dependent setup times ( Allahverdi, 2015 ).

s a consequence, our b&p algorithm can be used for solving many

ypes of scheduling problems. 

The remainder of the paper is structured as follows:

ection 2 presents and discusses relevant literature. In Section 3 ,

e formulate DRSP as a binary linear optimization model. In

ection 4 , we present our b&p algorithm to solve the proposed

odel exactly. We evaluate the b&p algorithm in computational

xperiments in Section 5 . The results of the experiments are

iscussed in Section 6 before we finally conclude in Section 7 . 

. Related work 

The four phases of disaster operations management are widely

onsidered as mitigation, preparedness, response, and recovery
 Altay & Green, 2006; Galindo & Batta, 2013 ) and are often ar-

anged as a life cycle. Mitigation tasks include activities for re-

ucing the long-term risk of a disaster ( Paul & Hariharan, 2012;

amura, Yamamoto, Tomiyama, & Hatono, 20 0 0 ). The preparedness

hase includes all activities performed before a disaster that aim

t providing a more efficient processing of tasks once the disas-

er strikes ( Albores & Shaw, 2008; Salmerón & Apte, 2010 ). While

itigation and preparedness refer to the time before a disaster, re-

ponse phase activities take place in the immediate aftermath of

 disaster. The main objective here is the deployment of vital re-

ources to affected people ( Fiedrich, Gehbauer, & Rickers, 20 0 0; Lo-

ree & Taskin, 2009 ). Finally, the recovery stage includes tasks that

estore the normal functioning of the community ( Liberatore, Or-

uño, Tirado, Vitoriano, & Scaparra, 2014; Sahebjamnia, Torabi, &

ansouri, 2015 ). 

During the response phase, in which our investigated problem

s situated, researchers offer a variety of methods to support de-

isions. These include mathematical programming, probability the-

ry and statistics, simulation, and decision theory to name only a

ew ( Simpson & Hancock, 2009 ). As outlined in the introduction,

he decision problem DRSP under investigation deals with schedul-

ng rescue units to process a set of disaster incidents. These inci-

ents in particular may have multiple requirements, thus enabling

escue unit collaboration. Rolland et al. (2010) have published a

aper which investigates the scheduling of (loosely) collaborative

escue units. They model the situation as a resource-constrained

roject scheduling problem and present two meta-heuristics for

ts solution. However, their setting does not account for different

everity levels of incidents. 

Wex et al. (2013) model DRSP as a quadratic binary pro-

ram and present a heuristic for its solution. However, their ap-

roach is a crude probabilistic exploration of the feasible solution

pace. Schryen et al. (2015) present a more sophisticated heuris-

ic for DRSP based on scheduling theory. The authors evaluate

heir approach against a heuristic modeling best-practice behav-

or and against lower bounds of a quadratic programming relax-

tion. Bodaghi and Ekambaram (2016) present a mixed-integer lin-

ar program for DRSP and calculate the optimal solution for a

mall case study instance with four rescue units using a commer-

ial solver. Although their model could account for it, their case

tudy instance does not involve multi-capability rescue units. To

he best of our knowledge, no further algorithms for solving DRSP

ave been suggested in the literature. 

To develop an exact algorithm for DRSP, we draw upon connec-

ions to the closely related field of machine scheduling, see Brucker

2007) ; Pinedo (2016) , and Rabadi (2016) for an overview. DRSP

s a generalization of the Rescue Unit Assignment and Scheduling

roblem (RUASP) in which each incident has only a single require-

ent, which makes collaboration obsolete. Wex et al. (2014) show

hat RUASP is a scheduling problem on unrelated parallel ma-

hines with sequence- and machine-dependent setup times and a

eighted sum of completion times as objective function. Using the

hree-field notation by Graham, Lawler, Lenstra, and Rinnooy Kan

1979) , RUASP can be classified as R/s i jk / 
∑ 

w j C j , which in turn is a

eneralization of the machine scheduling problem R/s i j / 
∑ 

w j C j in

hich setup times are not machine-dependent. According to the

xtensive literature reviews by Allahverdi, Gupta, and Aldowaisan

1999) , Allahverdi, Ng, Cheng, and Kovalyov (2008) and Allahverdi

2015) , all research articles on these two machine scheduling prob-

ems focus on heuristics due to a lack of efficiency in solving pro-

osed mathematical programming formulations exactly ( Arnaout,

abadi, & Mun, 2006; Chen, 2015; Rauchecker & Schryen, 2015;

sai & Tseng, 2007; Weng, Lu, & Ren, 2001; Wex et al., 2014 ). 

Regarding a generalization of the R/s i j / 
∑ 

w j C j problem,

opes, Alvelos, and Lopes (2014) and Lopes and de Carvalho

2007) present a branch-and-price (b&p) algorithm for the
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Fig. 1. Sample scenario for the disaster response scheduling problem (DRSP) with n = 21 incidents, m = 12 rescue units, and r = 3 capabilities. 
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R/s i j / 
∑ 

w j T j problem in which jobs have due dates and the objec-

tive is to minimize the sum of weighted tardiness penalties. This

scheduling problem is a generalization of R/s i j / 
∑ 

w j C j (the prob-

lems coincide when all due dates are 0) but not a generalization of

RUASP or DRSP in which setup-times are machine-dependent. Con-

sequently, their b&p algorithm for R/s i j / 
∑ 

w j T j cannot be applied

to DRSP. However, we extend their approach to develop a novel

b&p algorithm for DRSP in this paper. 

3. Optimization model 

In this section, we suggest a mathematical formulation as an

optimization model for DRSP. A set { 1 , . . . , n } of n disaster inci-

dents has to be processed by a set { 1 , . . . , m } of m rescue units.

Each rescue unit may offer different capabilities and each incident

may require multiple capabilities. A sample scenario for DRSP is

given in Fig. 1 . The set of possible requirements/capabilities is rep-

resented by { 1 , . . . , r} . Set cap kq = 1 when unit k offers capability

q (0 otherwise) and req jq = 1 when incident j requires capability q

(0 otherwise). A rescue unit is only eligible for processing one or

more of an incident’s requirements if it offers the respective capa-

bilities. For an incident j , let M j denote the set of rescue units that

are capable of processing at least one requirement of j . 

Let p k 
j 

be the processing time of a unit k for an incident j and

let s k 
i j 

be the travel time of a unit k between the locations of in-

cidents i and j . The time required by unit k to reach the location

of incident j from its current position (e.g., a depot) is represented

by s k 
0 j 

. 1 Furthermore, we denote by w j the weight of an incident

j , which corresponds to its severity level. The processing of an in-

cident by a rescue unit is non-preemptive. Using this notation, a

sample schedule for DRSP is shown in Fig. 2 . In order to determine

the overall harm, we calculate the weighted sum of completion

times, where completion time refers to a particular pair of rescue

unit and incident. Whenever a rescue unit finishes its processing

of an incident j , the current time (weighted with w j ) is added to

the objective function and the unit can move on to the next inci-

dent. In the example in Fig. 2 , unit 1 contributes (3 + 6) · 3 + (9 +
1 Consequently, we can view i = 0 as an artificial incident modeling the current 

position of the rescue unit. Using the term incident , however, we refer to a regular 

disaster incident j ∈ { 1 , . . . , n } throughout the paper unless otherwise stated. 

m  

i  

u

 

e  
 + 3) · 2 + (14 + 2 + 4) · 2 = 95 to the objective function while the

ontributions of unit 2 and unit 3 are 55 and 41, respectively. This

eads to a weighted sum of completion times (i.e., the objective

unction value) of 191. 

The essence and motivation of our objective function lies in our

pproach to consider loose collaboration. In this setting, different

escue units do not have to process the requirements of an inci-

ent at the same time. For each rescue unit that processes an inci-

ent i , it holds that the harm resulting from a delayed processing

ncreases with the extent of this delay. These characteristics pro-

ide the rationale to add, for each incident i , the completion times

f all rescue units that process incident i to the objective function,

ather than considering the maximum of completion times among

ll rescue units that process incident i , for example. In particular, in

cenarios where a certain capability required by several incidents

an be found at only one rescue unit k ∗, some of these incidents

ay need to wait for rescue unit k ∗ much longer than for other

escue units, which can process parts of the incident much earlier.

onsidering the maximum of completion times of all rescue units

hat process a particular incident would ignore the harm-reducing

ffects of all rescue units that process parts of the incident ear-

ier than rescue unit k ∗. This issue does not occur when using the

um of completion times, since there is an incentive that each re-

uirement is processed as soon as possible. Further discussion on

ur objective function and its comparison with the max completion

ime objective function is provided in Appendix A. In summary, we

rgue that the max completion time objective function might be

ore suitable for tight collaboration (where units have to jointly

rocess different requirements at the same time) but the sum of

ompletion times objective function is suitable for the loose collab-

ration setting that we consider in DRSP. 

In the literature, DRSP has been modeled by binary programs

hich use decision variables X k 
i j 
, indicating whether an incident i

s processed directly before incident j on unit k ( Bodaghi & Ekam-

aram, 2016; Schryen et al., 2015; Wex et al., 2013 ). However, algo-

ithms based on this modeling approach are practically inefficient

nd corresponding papers do not report optimal solutions even for

edium-sized instances. Therefore, we present a novel formulation

n which the decision variables indicate whether an entire sched-

le is used for a rescue unit or not. 

A schedule ω = ( j 1 , . . . , j h ) , with 1 ≤ h (or h = 0 if ω is the

mpty schedule), is defined as a tuple of pairwise different
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Fig. 2. Sample schedule with n = 5 incidents and m = 3 rescue units. 

Table 1 

Notation for the mathematical formulation. 

Notation Description 

j = 1 , . . . , n Disaster incidents 

k = 1 , . . . , m Rescue units 

q = 1 , . . . , r Requirements/capabilities 

cap kq Binary capability indicator ( k offers q or not) 

req jq Binary requirement indicator ( j requires q or not) 

M j Set of units capable of processing j 

w j Weight of j 

p k 
j 

Time required by k to process j 

s k 
i j 

Time required by k to travel from i to j 

ω ∈ �k Feasible schedules on k 

c k ω Weighted sum of completion times of ω on k 

a j ω Binary occurrence indicator ( ω contains j or not) 

x k ω Binary decision variable ( ω used on k or not) 
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Algorithm 1 Branch-and-price algorithm for DRSP. 

1: solve linear relaxation of root node (BinLP) using column gen- 

eration 

2: initialize set of active nodes 

3: repeat 

4: select an active node for branching 

5: branch on selected node by constructing two child nodes 

6: solve child nodes’ linear relaxations using column genera- 

tion 

7: update set of active nodes based on new information 

8: until set of active nodes is empty 
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m

ncidents j 1 , . . . , j h . A schedule ω = ( j 1 , . . . , j h ) is feasible on a

nit k if and only if k ∈ M j l 
for all l = 1 , . . . , h . The tuple repre-

ents the order in which the incidents are processed by rescue

nit k . The set of all feasible schedules on unit k is denoted by
k . The weighted sum of completion times c k ω of a schedule

 = ( j 1 , . . . , j h ) on a unit k is be defined as 

 

k 
ω := 

h ∑ 

l=1 

w j l 
·
( 

l ∑ 

g=1 

s k j g−1 j g 
+ p k j g 

) 

. (1) 

Let a jω ∈ Z be the binary parameter which indicates how often

ncident j is contained in schedule ω. For each unit k and each

chedule ω ∈ �k , we introduce a binary decision variable x k ω being

 if ω is used for k and 0 otherwise. This allows for the following

inary linear programming formulation for DRSP (cf. Table 1 for an

verview on the notation): 

in 

m ∑ 

k =1 

∑ 

ω∈ �k 

c k ω · x k ω (BinLP) 

.t. 

m ∑ 

k =1 

∑ 

ω∈ �k 

cap kq · a jω · x k ω ≥ req jq ∀ j = 1 , . . . , n ; q = 1 , . . . , r

(2) 

∑ 

ω∈ �k 

x k ω = 1 ∀ k = 1 , . . . , m (3)

x k ω ∈ { 0 , 1 } ∀ k = 1 , . . . , m ;ω ∈ �k (4)

he objective function of the minimization model ( BinLP ) is the

eighted sum of completion times of all schedules that are used
n the rescue units. Constraint set (2) ensures that each require-

ent of each incident is processed by a suitable rescue unit. Con-

traint set (3) assures that exactly one (possibly empty) schedule

s used for each rescue unit. The binary constraints (4) guarantee

hat each schedule is either fully used or not used (no fractional

sage of schedules). 

. Branch-and-price algorithm for DRSP 

In this section, we develop an exact branch-and-price (b&p) al-

orithm for solving DRSP instances. A b&p algorithm, which has

riginally been conceptualized by Barnhart, Johnson, Nemhauser,

avelsbergh, and Vance (1998) , is a specific form of a branch-and-

ound (b&b) algorithm in which all linear relaxations are solved

sing column generation. This, in turn, was originally introduced

y Dantzig and Wolfe (1960) in the context of Dantzig-Wolfe de-

omposition. The macro structure of our b&p algorithm is pre-

ented in Algorithm 1 . Lines 2, 3, 7, and 8 occur in every b&b al-

orithm and do not require further explanation. All other lines are

larified in detail in the remainder of this section. 

.1. Solving the linear relaxation of the root node 

First, we present a method to solve the linear relaxation of the

oot node (line 1 in Algorithm 1 ). When solving a DRSP instance,

he root node of the b&b tree is given by model ( BinLP ). Conse-

uently, when we relax the binary constraints (4) to 0 ≤ x k ω ≤ 1 for

ll units k and schedules ω ∈ �k , the root node’s linear relaxation

s given as follows: 

in 

m ∑ 

k =1 

∑ 

ω∈ �k 

c k ω · x k ω (BinLP − LR) 
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2 Processing incident 0 directly before incident j on unit k means that incident j 

is processed first on unit k . 
s.t. 

m ∑ 

k =1 

∑ 

ω∈ �k 

cap kq · a jω · x k ω ≥ req jq ∀ j = 1 , . . . , n ; q = 1 , . . . , r

(5)

∑ 

ω∈ �k 

x k ω = 1 ∀ k = 1 , . . . , m (6)

x k ω ≥ 0 ∀ k = 1 , . . . , m ;ω ∈ �k (7)

The restriction x k ω ≤ 1 is already implied by the combination

of (6) and (7) . For solving ( BinLP-LR ), we use column generation,

which is applied in general to solve continuous LPs with a large

number of variables and a small number of constraints. The idea

behind column generation is to solve a series of restricted LPs in-

stead of the large original LP. First, an initial restricted LP is solved

in which only a small feasible subset of variables (also called

columns) is considered. Based on this solution, columns with nega-

tive reduced costs are added to the restricted LP before it is solved

again. This is repeated until no more columns with negative re-

duced costs exist, which implies that the optimal solution of the

current restricted LP is also optimal for the original LP with all re-

maining variables set to zero ( Lübbecke & Desrosiers, 2005 ). In the

following, we apply column generation to solve ( BinLP-LR ) by spec-

ifying (i) the set of variables considered in the initial restricted LP

and (ii) a method on how to find variables with negative reduced

costs. 

The set of variables for the initial restricted LP is obtained by

a solution heuristic for DRSP. We use the SCHED algorithm sug-

gested by Schryen et al. (2015) . Further, let ( π , σ ) denote the op-

timal dual solution of a restricted LP, i.e., π jq is the dual variable

corresponding to the pair ( j , q ) in constraint (5) and σ k is the dual

variable corresponding to unit k in constraint (6) . The reduced cost

of a variable x k ω with respect to the optimal dual solution of the

restricted LP is defined as follows: 

r k ω := c k ω −
n ∑ 

j=1 

r ∑ 

q =1 

cap kq · a jω · π jq − σk . (8)

Finding variables with least reduced costs is equivalent to solving

the so called pricing problem 

r ∗ := min 

k =1 , ... ,m 

min 

ω∈ �k 
c k ω −

n ∑ 

j=1 

r ∑ 

q =1 

cap kq · a jω · π jq − σk . (PP)

We adapt a dynamic programming algorithm – originally formu-

lated by Lopes and de Carvalho (2007) in a machine scheduling

context – in order to obtain a solution for the pricing problem. A

detailed description is provided in Appendix B. The algorithm re-

quires two assumptions: (i) travel times must fulfill the triangle

inequality, i.e., s k 
i 1 i 2 

≤ s k 
i 1 i 3 

+ s k 
i 3 i 2 

for all incidents i 1 , i 2 , i 3 and res-

cue units k and (ii) schedules must be allowed to contain incidents

multiple times. The triangle inequality for travel times can be guar-

anteed by viewing travel times s k 
i j 

as the time which unit k requires

for traveling along its shortest time path between the locations

of i and j . To allow schedules to contain incidents multiple times,

we enlarge the sets �k in both ( BinLP ) and ( BinLP-LR ) accordingly.

Consequently, a j ω is not binary anymore. In order to keep the sets

�k finite, we restrict the maximum makespan of a schedule to

n · ( max i, j,k s 
k 
i j 

+ max j,k p 
k 
j 
) which guarantees that the optimal solu-

tion of ( BinLP ) is still contained in the sets �k . These modifications

are only required for the dynamic programming algorithm to work

and they do not affect the optimal solution of ( BinLP ). The rea-

son is that the triangle inequality for travel times assures that in

an optimal solution for ( BinLP ), each incident is processed at most

once by the same unit since a schedule ω ∈ �k that processes an
ncident multiple times has always a higher weighted sum of com-

letion times c k ω than the schedule resulting when all duplicates

re removed. 

.2. Node selection and branching strategy 

In the following, we explain our strategy for selecting an ac-

ive node to branch on (line 4 of Algorithm 1 ). We use a hybrid

trategy whose two elements are last-in-first-out (LIFO) and best-

ower-bound-first (BLBF). A LIFO strategy selects the active node for

ranching that has been created most recently. A BLBF strategy se-

ects the active node with the lowest optimal solution of its linear

elaxation for branching. 

At the beginning, we use the LIFO search strategy, which is suit-

ble for finding a good feasible solution for the current problem

nstance early. This corresponds to a b&b node having an integer

ptimal solution for its linear relaxation. After having found such

 feasible solution for the current problem instance, we switch to

he BLBF search strategy, which is most suitable for finding an op-

imal solution and for finally proving its optimality. 

For branching on a selected node (line 5 of Algorithm 1 ), we use

o called flow variables X k 
i j 
, as this is common for b&p algorithms

n unrelated parallel machine scheduling ( Lopes et al., 2014; Lopes

 de Carvalho, 2007 ). These variables are defined as 

 

k 
i j = 

∑ 

ω∈ �k 

δi jω · x k ω (9)

or every pair of incidents i = 0 , . . . , n and j = 1 , . . . , n and every

nit k = 1 , . . . , m, where { x k ω | k = 1 , . . . , m ;ω ∈ �k } is an optimal

olution of the selected node’s linear relaxation. The integer pa-

ameter δij ω indicates how often the sequence i → j is contained in

chedule ω (the sequence 0 → j translates to j is the first incident

n ω). If x k ω is binary for all units k and schedules ω ∈ �k , then X k 
i j 

ndicates how often incident i is processed directly before incident

 by unit k . 2 We branch along the edge ( i ∗, j ∗, k ∗) where (i) X k 
∗

i ∗ j ∗ is

losest to 0.5, i.e., 

(i ∗, j ∗, k ∗) = arg min 

i, j,k 
| X 

k 
i j − 0 . 5 | , (10)

nd (ii) ( i ∗, j ∗, k ∗) has not been used for any branching leading to

he current node. 

For branching along the edge ( i ∗, j ∗, k ∗), we introduce node-

pecific sets P k 
j 

of possible predecessors for all incidents j and units

 . At the root node, we initialize P k 
j 

= ∅ if k does not have any ca-

abilities required by j (i.e., k 	∈ M j ). Otherwise, we set P k 
j 

as the set

f all incidents that require one of the capabilities of unit k and

dd the artificial incident 0. Constructing two child nodes from the

urrently selected node is then conducted by modifying the prede-

essor sets P k 
j 

of the currently selected node for all incidents j and

nits k , resulting in node-specific predecessor sets P k 
j 

for the two

hild nodes. 

For the first child node, i ∗ is simply removed from the possible

redecessors of j ∗ on k ∗, i.e., P k 
∗

j ∗ − = { i ∗} . This implies that i ∗ cannot

e processed directly before j ∗ on k ∗ anymore. For the second child

ode, i ∗ is set to be the only possible predecessor of j ∗ on k ∗ and

s removed from all other predecessor sets on k ∗, i.e., we set P k 
∗

j ∗ =
 i ∗} and P k 

∗
j 

− = { i ∗} for all j 	 = j ∗. In addition, we set P k 
j 
− = { j ∗} for

ll units k 	 = k ∗ which cannot serve any requirement of j ∗ that k ∗

annot already serve. The latter applies analogously to i ∗ if i ∗ 	 = 0. 

Setting �k = { ω = ( j 1 , . . . , j h ) | j l−1 ∈ P k 
j l 

for all 1 < l ≤ h } for

ach child node, however, is not sufficient to force i ∗ to be pro-

essed directly before j ∗ on k ∗ in all schedules of the second child
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3 The mean value of the processing times (and therefore implicitly their preci- 

sion) cannot be increased arbitrarily since the execution time of the dynamic pro- 

gramming algorithm depends on upper bounds for the makespan of feasible solu- 

tions for DRSP. This makespan increases with increasing processing times. 
ode, since the presence of multiple capabilities per rescue unit

ay still enable the processing of all requirements of j ∗ by units

 	 = k ∗. To circumvent this issue, we introduce for all k = 1 , . . . , m

he sets E k of all edges ( i , j ) with the property that the current

ode-to-construct (either first or second child node) emanates

rom constructing the second child node along the edge ( i , j , k ) at

ome point of its branching history. Then we define 

k = { ω = ( j 1 , . . . , j h ) | j l−1 ∈ P k j l 
for all 1 < l ≤ h and 

i → j is included in ω for all (i, j) ∈ E k } . (11) 

or all k = 1 , . . . , m . In particular, the sequence i ∗ → j ∗ is forced to

e contained in every feasible schedule on k ∗ in the second child

ode. Conclusively, this guarantees X k 
∗

i ∗ j ∗ = 0 on the first child node

nd X k 
∗

i ∗ j ∗ ≥ 1 on the second child node. 

.3. Solving child nodes’ linear relaxations 

As we have seen in the previous subsection, all nodes of the

&b tree are of the form ( BinLP ) – only differing in node-specific

ets �k . Consequently, all linear relaxations are of the form ( BinLP-

R ). Therefore, the column generation procedure to solve an arbi-

rary node’s linear relaxation (line 6 of Algorithm 1 ) is similar to

he procedure presented in Section 4.1 , hence we only outline the

ifferences. 

The initial set of variables for the restricted LP is obtained by

aking all variables from the final restricted LP of the parent node

nd penalizing those columns that are not feasible anymore due to

ranching (i.e., setting c k ω = ∞ if ω 	∈ �k ). 

We also need to take incomplete schedules into consideration.

hese incomplete schedules cannot be filtered out during column

eneration since the dynamic programming algorithm (see Ap-

endix B for details) cannot be detained from constructing them.

owever, we can ignore them by not adding them to the current

estricted LP. Consequently, an optimal solution of model ( BinLP-

R ) is found when all columns with negative reduced costs are in-

omplete. This completes the description of Algorithm 1 . We prove

he following result about its exactness in Appendix C. 

heorem 1. The presented branch-and-price algorithm is an exact

rocedure for solving DRSP instances. 

. Computational experiments for the b&p algorithm 

In this section, we evaluate the execution times of the sug-

ested b&p algorithm and determine the improvement of the b&p

olutions over the solutions generated by the SCHED heuristic sug-

ested by Schryen et al. (2015) . Our hardware setup is an Intel

estmere X5675 CPU with a clock frequency of 3.07 gigahertz and

6 gigabytes RAM. We coded the algorithm in C++ on Linux CentOS

.3. For the solution of the restricted LPs during column generation,

e used Gurobi 7. 

.1. Data generation 

To reflect the diversity of real-world disasters, we generate in-

tances for four different scenarios. First, we discriminate between

ituations in which rescue units are either specialized, i.e., they

ave a low number of capabilities, or in which they are non-

pecialized, i.e., the number of capabilities per rescue unit is high.

e distinguish between eight different capabilities (based on inter-

iews with practitioners) that are listed in Table 2 . Second, we dif-

erentiate between situations in which travel times are low com-

ared to processing times (low travel intensity) or high compared

o processing times (high travel intensity). There are several fac-

ors that influence travel intensity, which can vary substantially be-

ween different disasters. These factors include distances between
ocations of incidents, traffic density and congestions, or the dif-

culty of (and thereby time required for) processing incidents. For

xample, disasters in urban and rural areas may differ substantially

n these regards. Combining the two dimensions described above,

e yield four different scenarios, which account for diversity re-

arding both external factors (e.g., traffic conditions) and internal

actors (e.g., specialization of rescue units). 

For each of the four scenarios, we investigate different instance

izes in which the number of incidents n and rescue units m varies

etween 10 and 40 (with m ≤ n since resources are scarce in dis-

ster situations). This range is realistic in real world disasters for

wo reasons ( Schryen et al., 2015 ). First, there are multiple disaster

perations centers (DOCs) in a large-scale disaster and this decen-

ralized structure implies moderate numbers of rescue units that

ave to be scheduled by each DOC. Second, real-world disasters are

ighly dynamic situations. New (requirements of) incidents can oc-

ur, some (requirements of) incidents may already have been pro-

essed successfully, and available rescue units and their capabilities

re likely to change over time. These dynamics can be considered

y solving a sequence of different small- or medium-sized prob-

em instances instead of one single large problem instance. A more

etailed discussion is provided in Appendix D. 

For each of the four scenarios, we also vary the probability p req 

ith which a particular incident requires a specific capability be-

ween 10% and 30%. We distinguish between the eight capabili-

ies presented in Table 2 . Applying these probability values leads

o probabilities between 32.8% and 79.0% that a specific incident

as at least two requirements, which makes (loose) collaboration

ecessary. Details are presented in Appendix E. 

For each instance size and each requirement probability in

ach of the four scenarios, we randomly generate ten different in-

tances. The details of our data generation process are presented

n Table 2 ; while scenario-independent parameters are listed in the

pper part, scenario-specific parameters are contained in the lower

art of the table. The severity level of an incident is a uniformly

rawn integer between 1 and 5 according to the five-step scale

ow, guarded, elevated, high, and severe of the former U.S. Homeland

ecurity Advisory System ( Behunin, 2004 ). The processing times

re drawn from a normal distribution with mean value 100 and

 standard deviation of 50. The high coefficient of variation (0.5)

ccounts for processing times that vary substantially in chaotic dis-

ster situations. The processing times are rounded to integers for

lgorithmic reasons (cf. dynamic programming algorithm in Ap-

endix B). This integer requirement does not affect the applica-

ility of our approach, since times are prone to estimations and

herefore not precise in disaster response. 3 To this point, all pa-

ameters are scenario-independent. 

For each unit, the probability p cap of having a specific capa-

ility is scenario-specific: We use p cap = 20% when we investi-

ate specialized rescue units, which leads to slightly less than two

apabilities per rescue unit on average (the theoretical mean is ap-

roximately 1.92 based on the formulas in Appendix E). To model

on-specialized rescue units, we doubled the probability to p cap =
0% , which rises the average number of capabilities per rescue unit

o more than three (the theoretical mean is approximately 3.25

ased on the formulas in Appendix E). This substantial increase en-

bles us to gain insights into the effect of unit specialization on the

erformance of our b&p algorithm. 

Finally, we explain the scenario-specific generation of travel

imes, the intention of which is to cover both low and high travel

ntensities. To accomplish realistic travel times, their generation is
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Table 2 

Details of data generation. 

Input parameter Value, range, distribution 

Number of incidents n ∈ {10, 20, 30, 40} 

Number of rescue units m ∈ {10, 20, 30, 40}, m ≤ n 

Number of capabilities/requirements 8 (policemen, fire brigades, paramedics, 

search and rescue, debris removal, 

infrastructure preservation, logistics teams, 

special casualty access teams) 

Probability of having a particular requirement p req ∈ {10%, 15%, 20%, 25%, 30%} 

Number of instances per p req and instance size 10 

Severity levels w j ∼ U(1 , 5 , 1) 

Processing times p k 
j 
∼ N(100 , 50) 

Grid size for incident positioning 100 × 100 

Speed of rescue units speed k ∼ U (8, 16, 1) 

Scenario specialized/low intensity 

Probability of having a particular capability p cap = 20% 

Travel intensity factor T IF = 1 . 0 

Scenario specialized/high intensity 

Probability of having a particular capability p cap = 20% 

Travel intensity factor T IF = 4 . 25 

Scenario non-specialized/low intensity 

Probability of having a particular capability p cap = 40% 

Travel intensity factor T IF = 1 . 0 

Scenario non-specialized/high intensity 

Probability of having a particular capability p cap = 40% 

Travel intensity factor T IF = 4 . 25 
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2  
based on a coordinate grid which represents a fictitious discretized

version of real maps in disaster applications. For each pair of in-

cidents ( i , j ) on the grid, the travel time of each unit k between

the positions of incidents i and j can be calculated as the distance

between i and j divided by the speed of unit k . In our data gen-

eration, each incident is placed on a 100 × 100 grid by uniformly

drawing its x and y coordinates. After that, the euclidean distance

between all pairs of incidents is calculated and then divided by

the speed of unit k (which is a uniformly drawn integer between 8

and 16). This time is further scaled with a travel intensity factor of

T IF = 1 . 0 for low travel intensity and T IF = 4 . 25 for high travel in-

tensity and finally rounded up to obtain integer values for s k 
i j 

. The

grid size, speed distributions, and travel intensity factors are se-

lected in a way that this results in expected travel times of 5.1 for

low travel intensity and 19.9 for high travel intensity. 4 Since the

processing time distribution has a fixed mean of 100, this leads to

a high ratio of mean processing times to mean travel times for low

travel intensity (approx. 20) and a low corresponding ratio for high

travel intensity (approx. 5). 

In total, we generate and solve 20 0 0 instances (four scenarios,

ten instance sizes and five requirement probabilities per scenario,

and ten instances per instance size and requirement probability). 

5.2. Results 

The results for our computational experiments are presented

in this section. Fig. 3 displays the average execution times of our

b&p algorithm for p req = 20% . 5 The corresponding average execu-

tion times before a first integer solution is found show a similar

pattern and can be obtained from Tables F.13–F.16 in Appendix F.

These execution times are important for practitioners when due to

time pressure the b&p algorithm cannot be executed completely
but is terminated once a feasible solution for the current DRSP 

4 The expected travel times are calculated via enumerating all combinations of 

incidents pairs ( i , j ) with i 	 = j and unit speeds speed k ∈ { 8 , 9 , . . . , 16 } . All of these 

combinations are equally likely to be generated. 
5 Due to space limitation, we present results only for p req = 20% . Results for val- 

ues other than 20% are shown in Appendix F. 

c

S

i

l

f

u

nstance (referred to as first integer (FI) solution ) is found. 6 In this

ase, the b&p algorithm serves as a heuristic. The execution times

or both the exact and heuristic version of our b&p algorithm are

lso reflected in the number of nodes that are explored during the

lgorithm (see Tables F.13–F.16 in Appendix F). 

Further, we compare the objective values of the SCHED heuristic

suggested by Schryen et al., 2015 ) to the objective values of both

he optimal solution and the FI solution found by the b&p algo-

ithm. This comparison allows us to identify the levels of improve-

ents over the SCHED heuristic achieved when the b&p algorithm

s executed as an exact or as a heuristic solution procedure. Fig. 4

isplays the average ratios of objective values of the SCHED solu-

ion to objective values of the optimal solution for p req = 20% . 7 For

xample, a ratio of 1.309 indicates that the objective value of the

CHED solution exceeds the objective value of the optimal solution

y 30.9% on average. The respective ratios for the excess of SCHED

olutions over the FI solutions show a similar pattern and can be

btained from Tables F.13–F.16 in Appendix F. Detailed statistics on

ll results presented in the figures can also be retrieved from these

ables. 

In order to measure the effect sizes of exogenous parameter

alues (including requirement probability) on the execution time of

he branch-and-price algorithm, we conducted a sensitivity anal-

sis, using the following regression model with a logarithmically

ransformed dependent execution time variable: 

n (E X E C _ T IME ) = β0 + β1 · n + β2 · n 

m 

+ β3 · p req 

+ β4 · p cap + β5 · T IF + ε (12)

able 3 shows the results of the regression, which are based on

ata provided in Tables F.5–F.24 in Appendix F. From the original

0 0 0 instances, we excluded those 26 instances where no optimal
6 It needs to be noted that the SCHED heuristic is used to find a set of feasible 

olumns for the initial restricted LP during column generation at the root node (cf. 

ection 4.1 ). Although this SCHED solution is feasible for DRSP, we do not refer to 

t as FI solution. Using the term FI solution, we rather refer to the first feasible so- 

ution that is obtained by further exploring the b&b tree. Such a feasible solution is 

ound whenever the linear relaxation of a b&b node has an integer optimal solution. 
7 Due to space limitation, we present results only for p req = 20% . Results for val- 

es other than 20% are shown in Appendix F. 
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Fig. 3. Average execution times of the b&p algorithm. 

Fig. 4. Average ratio of SCHED objective value to optimal objective value. 
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Table 3 

Results for regression on execution time. 

Effect Estimate (Std. error) t value (Significance) 

Number of incidents ( n ) 0.13 (0.00) 35.38 ∗∗∗

Ratio of incidents to units ( n / m ) 0.88 (0.04) 21.82 ∗∗∗

Requirement probability ( p req ) 15.08 (0.49) 30.99 ∗∗∗

Capability probability ( p cap ) 2.80 (0.34) 8.21 ∗∗∗

Travel intensity factor ( TIF ) 0.17 (0.02) 8.25 ∗∗∗

N 1875 

R squared 0.64 

Notes. Model includes an intercept. ∗∗∗significant at 0.1%. 

Table 4 

Results for regression on ratio SCHED/OPT (values of objective function). 

Effect Estimate (Std. error) t value (Significance) 

Number of incidents ( n ) 0.0 0 (0.0 0) 10.71 ∗∗∗

Ratio of incidents to units ( n / m ) 0.02 (0.00) 6.35 ∗∗∗

Requirement probability ( p req ) 1.11 (0.04) 30.60 ∗∗∗

Capability probability ( p cap ) 0.67 (0.03) 26.57 ∗∗∗

Travel intensity factor ( TIF ) 0.01 (0.00) 6.92 ∗∗∗

N 1875 

R squared 0.49 

Notes. Model includes an intercept. ∗∗∗significant at 0.1%. 
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solution has been calculated after 48 hours. Furthermore, we re-

moved outliers (upper 5%) in order to avoid skewed regression co-

efficients. 

The same type of regression was conducted with the time to

find an FI solution as the dependent variable. The results are very

similar and can be obtained from Table G.25 in Appendix G. 

We also conducted a sensitivity analysis with the ratio

SCHED / OPT of the objective value of the SCHED solution to the ob-

jective value of the optimal solution. Here, we used the following

linear regression model: 

SCHED/OP T = β0 + β1 · n + β2 · n 

m 

+ β3 · p req 

+ β4 · p cap + β5 · T IF + ε (13)

Table 4 presents the results of the regression. We again removed

outliers as described above. 

The results for the same type of regression on the ratio

SCHED / FI of the objective values of the SCHED solutions to the ob-

jective values of the FI solutions are again very similar and can be

obtained from Table G.26 in Appendix G. 

6. Discussion 

We discuss the results of our computational experiments in this

section. We analyze the efficiency of the b&p algorithm before we

interpret its effectiveness. Both subsections begin with a detailed

discussion of the results for p req = 20% before we interpret the re-

sults of our sensitivity analysis in terms of effect sizes of exoge-

nous variables, including requirement probabilities, and make pre-

dictions on the performance of our b&p algorithm for variations in

input data. Finally, we discuss managerial implications of our ex-

periments in a separate subsection. 

6.1. Efficiency of the b&p algorithm 

Discussion of results. Fig. 3 shows that the average execution time

of our b&p algorithm varies between zero seconds and approxi-

mately 40 minutes. When a scenario and an instance size is fixed,

execution times for the ten randomly generated instances can be

volatile with some coefficients of variation being close to 3.0, see

Tables F.13–F.16. Within each scenario, the execution times mainly
epend on two factors. First, when the number of incidents or res-

ue units is fixed, the execution time tends to rise with an increas-

ng ratio n 
m 

of incidents to rescue units. Using a logarithmic scale

n the y -axis of Fig. 3 , we can see that even small changes in this

atio can cause an exponential increase in execution times. For ex-

mple, in the scenario with n = 40 non-specialized rescue units in

ow travel intensity situations, there is an average execution time

f approximately two seconds when m ∈ {30, 40}, which increases

o 56 seconds when m = 20 and to even 988 seconds when m is

educed to 10. This increase of execution times is rooted in the ex-

anded workloads of the rescue units as well as in the resulting

hallenges to not only assign incidents to rescue units but also to

chedule the incidents that are assigned to a particular rescue unit.

Second, when the ratio n 
m 

is fixed, the execution times tend

o increase with an ascending number of incidents. For example,

hen rising the instance size from n = 20 and m = 10 to n = 40

nd m = 20 , the logarithmic scale shows that the increase in exe-

ution time is up to almost three magnitudes ( · 10 3 ); for example,

t increases from 0.5 seconds to 356 seconds in the scenario with

on-specialized rescue units and high travel intensity. This effect in

ot surprising as the solution space expands with increasing values

f n . 

Comparing the four scenarios, execution times for scenarios

ith specialized rescue units tend to be smaller than for scenar-

os with non-specialized rescue units (when low/high travel in-

ensity is fixed). This difference can be more than two magni-

udes. For example, for n = 30 incidents and m = 10 rescue units

n a low travel intensity situation, the execution times rise from

.2 seconds for specialized rescue units to 407 seconds for non-

pecialized rescue units. Facing high travel intensity, the respective

xecution times rise from 7.4 seconds to 848 seconds . This is a

esult of having more feasible allocations and therefore a larger

easible solution space when rescue units have more capabilities.

urthermore, execution times for high travel intensity scenarios

end to be higher than for low travel intensity scenarios (when

pecialized/non-specialized unit setting is fixed). This increment

an be more than one magnitude. In the situation with n = 40 in-

idents and m = 10 specialized rescue units, for example, we have

xecution times of 38 seconds when there is low travel intensity

nd 828 seconds when there is high travel intensity. The execu-

ion times for m = 40 non-specialized rescue units and n = 40 in-

idents rise from 1.9 seconds when there is low travel intensity

o 74 seconds when there is high travel intensity. This is caused

y a less effective bounding since the number of nodes that are

xplored during the b&p algorithm increases correspondingly (see

ables F.13–F.16). 

The execution times until an FI solution is found are substan-

ially lower than the execution times of the entire b&p algorithm

see Tables F.13–F.16). These times are especially important for

ractitioners when the time for decision making is scarce. Over

ll scenarios and instance sizes, the highest execution time (aver-

ged over ten instances) to find an FI solution find an FI solution

s 34.2 seconds. Although being substantially lower, the execution

imes to find an FI solution follow the same patterns regarding the

nfluence of the instance size as described above for the execution

imes for finding an optimal solution. However, execution times for

nding an FI solution are independent of the specific scenario. 

ensitivity analysis. To analyze the sensitivity of execution times

n changes in exogenous parameters and to make predictions for

ariations in input data, we use the results presented in Table 3 .

he regression model has a good fit of R 2 = 0 . 64 , which means

hat 64% of the variance in execution times can be explained by

he five exogenous parameters that we include as independent

ariables in our regression model (12) . Furthermore, the effect

izes of all independent variables are highly significant. 
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When interpreting effect sizes of parameters on execution

imes, the logarithmic scale of execution times in the regression

eeds to be considered. For example, when the size of n is in-

reased by 30 (e.g., by moving from the setting n = m = 10 to the

etting n = m = 40 ), then the natural logarithm of the execution

ime increases by 30 · 0.13; i.e., the execution time increases with

he factor of e 30 · 0.13 ≈ 49.4. When the ratio of incidents to units

s increased by 3 (e.g., by moving from the setting n = m = 40 to

he setting n = 40 , m = 10 ), then the execution time increases with

he factor of e 3 · 0.88 ≈ 14.0. It should be noticed that, when mov-

ng from the setting n = m = 10 to the setting n = 40 , m = 10 , the

wo effects discussed above occur contemporaneously; i.e., the ex-

cution time is approximately increased by the products of both

actors ( ≈ 692). 

Regarding the probability of having a particular requirement

 p req ), we used values that differ by five percent points (10%, 15%,

0%, 25%, 30%). The regression results indicate that an increase

y 5 percent points leads to an increase of execution time by

he factor e 0.05 · 15.08 ≈ 2.1; i.e., the execution time is approximately

oubled. 

The regression results also allow to compare the effects sizes

f the level of specialization of rescue units and the travel inten-

ity of the overall situation, both of which determine the type of

cenario. The level of specialization is operationalized by the prob-

bility with which a specific rescue unit has a particular capability.

e used two values ( p cap = 20% and p cap = 40% ), and the impact

n execution times from increasing p cap is the factor e 0.2 · 2.8 ≈ 1.8;

.e., execution times almost double when rescue units change their

haracteristics from specialized to non-specialized . Regarding travel

ntensity, the impact of changing travel intensity from low to high

s given by the factor e (4 . 25 −−1) ·0 . 17 ≈ 1 . 7 ; i.e., the execution time is

gain almost doubled. However, it should be noted that we used,

or both the level of specialization of rescue units and the travel

ntensity, only two values each so that the regression coefficients

hould be interpreted with caution. 

For those variables where we have investigated more than two

ifferent values in our computational experiments (i.e., number of

ncidents n , ratio of incidents to units n 
m 

, and requirement proba-

ility p req ), the results of the regression can be used to make pre-

ictions of execution times which are outside our computational

cope. We give an example for the variable p req . When we increase

he requirement probability from p req = 30% to p req = 40% , which

s an increase by 0.1, we can expect the average execution times

ceteris paribus) to be increased by the factor e 0.1 · 15.08 ≈ 4.5. When

e fix the scenario to specialized rescue units and low travel inten-

ity and the instance size to n = 40 and m = 20 , for example, then

e can expect the average execution time to rise from 98.1 sec-

nds for p req = 30% (this value can be obtained from Table F.21) to

 . 5 · 98 . 1 seconds ≈ 441 s for p req = 40% . 

We also conducted a regression on the time to find an FI so-

ution, the results for which are presented in Table G.25. It shows

hat the times to find an FI solution depend on changes in exoge-

ous model parameters in a similar way than the execution times

f the entire b&p algorithm – with the exception that the special-

zation of rescue units has no significant influence. 

.2. Effectiveness of the b&p algorithm 

In this subsection, we discuss the improvements of our ex-

ct b&p algorithm over the heuristic SCHED suggested by Schryen

t al. (2015) . We also discuss the quality of solutions when our b&p

lgorithm is executed as a heuristic by terminating upon finding an

I solution. 

iscussion of results. From Fig. 4 , we can see that the SCHED ob-

ective values exceed the optimal objective values obtained by our
&p algorithm by between 16.7% and 55.6% on average with low

oefficients of variation; i.e., for fixed instance sizes and scenarios

he levels of improvements are robust over instances. This shows

hat the solutions returned by our b&p algorithm substantially im-

rove the solutions returned by the SCHED heuristic in all tested

cenarios. When rescue units are specialized, the average excess

f the SCHED objective values over the optimal objective values

s almost constant, especially when n > 20. In scenarios with non-

pecialized rescue units, the average excess is higher and more

olatile, i.e., it depends on instance sizes. The reason for both the

igher excess and volatility is the fact that an increasing number

f feasible allocations in non-specialized scenarios makes the solu-

ion space larger. Therefore, the heuristic approach of SCHED be-

omes less effective. It is also notable that the average SCHED ex-

ess is almost the same for high travel intensity and for low travel

ntensity. 

The average ratios SCHED / FI of the objective value of the SCHED

olution to the objective value of the FI solution show the same

atterns regarding the influence of the instance size and the

pecific scenario on SCHED / FI as described above for the ratios

CHED / OPT , see Tables F.13-F.16 for details. Furthermore, the aver-

ge ratios SCHED / FI and SCHED / OPT almost coincide when a partic-

lar scenario, instance size, and requirement probability are fixed.

his implies that the FI solution is highly effective. Indeed, the av-

rage ratio FI / OPT of the objective value of the FI solution to the

ptimal objective value is between 0.0% and 6.5% with low coef-

cients of variation over instances of the same size and scenario,

ee Tables F.13-F.16 for details. Furthermore, the ratio FI / OPT was

ess than 5% in all but 20 instances (out of 400). In the most dif-

cult single instance with an execution time of almost four hours,

he FI solution exceeds the objective value of the optimal solution

y only 1.6% and was found after 17.8 seconds, which is a small

raction of the full execution time. 

ensitivity analysis. The results of the sensitivity analysis regard-

ng the effect sizes of our parameters on the extent with which

ur algorithm improves the objective values obtained from apply-

ng the heuristic suggested by Schryen et al. (2015) (i.e., the ratio

CHED / OPT ) can be interpreted analogously to our analysis of ex-

cution times. As Table 4 reveals, considerable effects only occur

egarding the requirement probability p req and the capability prob-

bility p cap ; i.e., relative improvements of objective values achieved

hrough our algorithm considerably increase only when the prob-

bility of having a specific requirement increases or when rescue

nits become more/less specialized. The regression on the aver-

ge ratios SCHED / FI shows very similar results (for details see Table

.26) and are therefore not further discussed. 

.3. Managerial implications 

Our computational experiments are of high relevance to the

isaster operations management of rescue organizations when they

eed to assign and schedule their collaborating rescue units to

merging incidents under time pressure in order to reduce the

verall resulting harm. According to our interviews with managers

f rescue organizations, they need to make their decisions during

en minutes. 

Our results show that for almost 94% of the 20 0 0 tested prob-

em instances, our b&p algorithm provides optimal solutions dur-

ng the requested time window of ten minutes and substantially

utperforms a heuristic suggested in the literature in terms of the

esulting harm in almost all instances. Furthermore, first feasible

olutions are found by the b&p algorithm in even considerably less

ime, with only five out of 20 0 0 instances remaining without a first

easible solution during ten minutes. In almost all instances these
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first feasible solutions are competitive to the optimum. These com-

putational results make our b&p algorithm highly appealing for use

in decision support systems for command & control units. 

Extensive sensitivity analysis of execution times reveal statisti-

cally significant effect sizes of exogenous model parameters. Most

influencing is the extent of parameters which determine the inten-

sity of required collaboration of rescue units. The identification of

effect sizes allows reliable predictions on execution times of the

proposed b&p algorithm when all model parameters are set (ex-

plained variance of execution times is about 64%). Such predic-

tions are useful for decision makers in the command & control

board when due to time pressure they need to decide on whether

and when the b&p algorithm should be aborted, accepting the best

found solution so far. 

7. Conclusion 

In this paper, we address a challenge that occurs during the

response phase of disaster operations management. In this phase,

rescue organizations have to assign and schedule their rescue units

to emerging incidents under time pressure in order to reduce the

overall resulting harm. We refer to this problem as the Disaster

Response Scheduling Problem (DRSP). We account for the practical

need that the processing of incidents requires different capabil-

ities, thereby making (loose) collaboration of rescue units neces-

sary. We contribute to both modeling and solving this problem by

(1) conceptualizing the situation as a generalization of a parallel

machine scheduling problem, (2) modeling DRSP as a binary lin-

ear minimization problem, (3) suggesting a branch-and-price algo-

rithm, which can serve as both an exact and heuristic solution pro-

cedure, and (4) conducting computational experiments – including

a sensitivity analysis of the effects of exogenous model parame-

ters on execution times and objective value improvements over a

heuristic suggested in the literature – for different practical disas-

ter scenarios. 

The results of our computational experiments show that most

problem instances of practically feasible size (number of inci-

dents and number of rescue units are not larger than 40) can be

solved to optimality in less than ten minutes. The optimal solu-

tions substantially improve solutions found by the SCHED heuristic

by Schryen et al. (2015) , which is the best DRSP heuristic that we

could find in the literature, in terms of weighted sum of comple-

tion times, which can be seen as a proxy for the overall harm in

disaster situations. When time is scarce and decision makers have

to coordinate rescue units before the algorithm terminates, they

can abort the execution and rely on the best found integer solu-

tion, which is always feasible for DRSP. Even the first found in-

teger solution is competitive to the optimal solution in terms of

objective value and substantially better than the SCHED solution

in almost all instances. A first integer solution was found within

ten minutes in all but five instances. This makes our algorithm not

only applicable in practice but also superior to existing algorithms

in terms of harm reduction. 

Since DRSP is a very general scheduling problem, our b&p

algorithm can also be applied to a variety of more specialized

scheduling problems, including non-preemptive scheduling on un-

related parallel machines with sequence-dependent setup times

and a weighted sum of completion times as objective function

( R/s i j / 
∑ 

w j C j ) and the Rescue Unit Assignment and Schedul-

ing Problem ( R/s i jk / 
∑ 

w j C j ). For both scheduling problems, only

heuristic procedures have been proposed in the literature. 

We envision further avenues for research. From a model per-

spective, preemption can be considered when rescue units may in-

terrupt the processing of incidents. Also, time windows may be in-

tegrated in the model. Furthermore, uncertainty of data may be

modeled by developing, e.g., stochastic versions of the model. From
 validation perspective, our algorithm should be evaluated based

n real data, which have not been available to us. From a compu-

ational perspective, our branch-and-price algorithm can be paral-

elized and executed in parallel computing environments, such as

igh-performance clusters. 
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