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a b s t r a c t

Cloud computing promises the flexible delivery of computing services in a pay-as-you-go manner. It allows

customers to easily scale their infrastructure and save on the overall cost of operation. However Cloud service

offerings can only thrive if customers are satisfied with service performance. Allowing instantaneous access

and flexible scaling while maintaining the service levels and offering competitive prices poses a significant

challenge to Cloud computing providers. Furthermore services will remain available in the long run only

if this business generates a stable revenue stream. To address these challenges we introduce novel policy-

based service admission control models that aim at maximizing the revenue of Cloud providers while taking

informational uncertainty regarding resource requirements into account. Our evaluation shows that policy-

based approaches statistically significantly outperform first come first serve approaches, which are still state

of the art. Furthermore the results give insights in how and to what extent uncertainty has a negative impact

on revenue.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Cloud computing denotes a computing model that enables ubiqui-

ous and on-demand network access to a shared pool of configurable

esources, which can be rapidly provisioned and released with min-

mal management effort (Mell & Grance, 2009). Resources typically

efer to IT infrastructures, platforms or software, which are provided

s services on a per-usage basis. While Cloud computing enjoys wide

opularity for users, Cloud providers face fierce competition that has

ed to an erosion of the margins from $1 per CPU/hour to just a few

ents (Amazon, 2015).

As the revenue side is reduced by the competition, Cloud providers

eed to minimize their operation costs to remain competitive. Reduc-

ng the operation costs is, however, quite difficult as the workload is

ighly uncertain, as the exact distribution of job arrivals is unknown.

o the Cloud providers’ dismay, most of modern applications are on-

ine services that require immediate processing (e.g. Outlook.com,

ropbox, GDrive). As a consequence of the immediacy traditional

atch processing is not applicable; nor is rescaling of the Cloud pos-

ible due to the set up time of adding additional resources to the
∗ Corresponding author. Tel.: +499419435634; fax: +499415435635.

E-mail addresses: tjpueschel@gmail.com (T. Püschel),

uido.schryen@wiwi.uni-regensburg.de (G. Schryen),

iana.hristova@wiwi.uni-regensburg.de (D. Hristova),

irk.neumann@is.uni-freiburg (D. Neumann).

t

l

p

c

o

ttp://dx.doi.org/10.1016/j.ejor.2015.01.027

377-2217/© 2015 Elsevier B.V. All rights reserved.
loud. Thus, Cloud providers need to manage the trade-off between

aintaining excess resources as a buffer and operating the Cloud

ith minimal resources. While the former strategy assures to meet

ll quality of service assertions even if uncharacteristically many jobs

rrive, the latter strategy clearly optimizes on the operating costs po-

entially leaving customers unsatisfied with unmet quality of service

ssertions.

An effective Admission control that determines which job requests

re processed, may alleviate this trade-off: If the workload exceeds a

ritical threshold, the Cloud is susceptible to fail the quality of service

ssertion. In extreme cases this can even result in a system overload

ompromising the stability of the entire system. Admission control

an act as an instrument for Cloud providers to control the exact

umber of jobs that are confronting the Cloud in the short run. The

dmission control decision is, however, hampered by the uncertain

obs arrivals and, in addition, by resource uncertainty. Resource un-

ertainty accounts for the fact that it is literally impossible to predict

he exact resource requirements necessary to meet the quality of ser-

ice assertions, due to the involved complexity in the underlying IT

nfrastructure (cf. Kounev, Nou, & Torres, 2007).

The field of revenue management has developed many solutions

o related problems in other as well as related industries. Those so-

utions, however, are not applicable as they do not account for the

eculiarities of online applications run in Clouds, such as resource un-

ertainty. Cloud systems are too complex, to obtain good predictions

n required resources for a certain job. Thus, resource uncertainty
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results in a tremendous resource overestimation (Caglar & Gokhale,

2014). We extend the revenue management literature by introducing

an admission control scheme that is tailored toward the needs of ser-

vices requiring instantaneous access. We cope with the complicated

issue of resource uncertainty by applying fuzzy set theory to revenue

management. Our work incorporates feedback and significantly ex-

tends models presented in Püschel and Neumann (2009) and Püschel,

Schryen, Hristova, and Neumann (2012).

Our work contributes to the literature by suggesting and testing

various service admission control policies using extensive simula-

tions. We show that the admission problem can be solved in polyno-

mial time, which is prerequisite for instantaneous decisions. Further-

more, we show that our policies succeed in satisfying the technical

requirements stemming from Cloud computing while contempora-

neously securing additional revenue for the Cloud provider. In our

analysis, we demonstrate how uncertainty can affect the tradeoff be-

tween the revenue base and the service request acceptance rate.

The remainder of this paper is structured as follows: In the second

section, we discuss the determinants of the “Cloud Admission Control

Problem”. Subsequently, we review related work in Section 3 based

on these determinants. In Section 4, we propose decision models

that account for various real-time admission control policies of Cloud

providers that focus uncertainty regarding resource demands. The

fifth section comprises an evaluation, where we test and compare our

models with respect to their attractiveness in terms of revenue and

service request acceptance rate. In Section 6, we provide managerial

implications. The paper concludes with a summary and an outlook on

new research avenues.

2. Determinants of the Cloud Admission Control Problem

Before we formulate the Cloud Admission Control Problem

(henceforth CACP), it is useful to state the characteristics of Cloud

applications representing the requirements on the CACP. In total we

account for seven different characteristics:

Production inflexibility: Providers usually maintain a Cloud in-

frastructure, which consists of a fixed amount of resources (e.g.

servers). While resources can easily be added to the Cloud infrastruc-

ture, it takes some time until the Cloud is reconfigured. This reconfig-

uration delay dictates the Cloud infrastructure to be fixed in the short

run. In case of online job processing the Cloud infrastructure cannot

be adapted to the job admission decision.

Perishability: Resources managed as Cloud offer computation and

storage capacities. If the Cloud is not (fully) used it is not possible to

store the excess capacity for later consumption.

Real-time decision-making: Due to the trend toward online pro-

cessing, Cloud providers face the challenge to control job admission

in real time. Effective mechanisms need to work in online and real-

time scenarios as well. With respect to the CACP this translates into

the requirement that the admission control mechanism needs to be

of very low computational cost to be computationally tractable.

Limited/no information on future demand/jobs: Due to the

“pay-as-you-go environment”, Cloud service providers have to serve

customers with lack of information (i.e. non-clairvoyant). In contrast

to machine scheduling problem where relevant data are available (e.g.

distributions of job arrivals and job characteristics), Cloud providers

have only vague information on (i) the job arrival rate, (ii) the exact

resource need of jobs, and on (iii) the customer’s willingness to pay.

Non-probabilistic uncertainty of required resources: Cloud cus-

tomers typically provide estimates on their jobs’ resource require-

ments. As customers usually do not utilize the estimated resources

for the entire job lifecycle, Cloud customers can exploit the flexibility

of Cloud infrastructures by devoting excess resources to other cus-

tomers. The uncertainty in accurate resource prediction stems from

two sources: (i) the customer’s ability to make accurate predictions
nd (ii) the type of the job. The Cloud provider may gather informa-

ion on how well the customers calculate their predictions. Customers

end to overestimate their job resource requirements to have a buffer

n case the job needs more resources. In practice, customers just use

fraction of their requested and consequently allocated resources.

his claim can be verified by observing the actual usage of Google’s

ata centers. Apparently, the used resources are way lower than the

llocated resources (Reiss, Tumanov, Ganger, Katz, & Kozuch, 2012).

he Cloud provider can exploit this buffering behavior, as the unused

esources can be used for other jobs, increasing the overall utilization

f the Cloud. The information on the customers is, however, limited,

f Cloud providers offer their services to the public, as there will be

frequently varying customer base. As such, it is impossible to have

robabilistic information on the accuracy of the resource predictions.

he second uncertainty in resource prediction stems from the type of

he job that is directed to the Cloud. For example, for routine jobs (e.g.

eekly accounting or controlling tasks of customers), the required

esources may be exactly predicted drawing on prior observations.

or jobs that are rarely conducted (e.g. data mining jobs) the required

esources largely depend on the analyzed data. Predicting the job

esources for those jobs is naturally very difficult.

Best-effort vs. priority-based processing: Cloud providers typi-

ally serve two different customer groups, which can be distinguished

ith respect to their quality of service (QoS) requirements (Buyya,

eo, Venugopal, Broberg, & Brandic, 2009). While some customers ac-

ept service delivery on a best-effort base, i.e. without guarantee that

he job is executed, other customers may require a guarantee that the

ob is executed according to the contracted service levels. The former

ustomer group pays less for their service execution, while the latter

roup will only pay in the case the service levels are met. Clearly, Cloud

roviders favor customers with contracted service levels (henceforth

old clients) over best-effort customers, who are processed only when

esources are left.

Resistance to strategic behavior: Since customers also strive to

aximize their utility, it is appealing for them to act strategically

n order to gain advantages. Basically customers have three ways in

hich they can adapt their actions. Firstly they might be able to shift

heir demand in time. They might also be able to split jobs into several

maller ones or merge several jobs into one big one. Their last option

s to vary their price bid. Certain strategic behavior can lead to a

ignificant reduction in revenue of the Cloud provider. Furthermore,

t can reduce customer satisfaction. Customers might be unwilling to

houlder the additional effort necessary for strategic behavior.

. Related work

Quite recently, the CACP has gained in attention by the service lit-

rature. These approaches are, however, driven by the technology and

ot founded by management literature. Obviously, the determinants

f the Cloud Admission Control Problem suggest the use of revenue

anagement mechanisms. However, revenue management has been

eveloped primarily for the airline industry—as such, not all require-

ents of Cloud services are met. Thus, we review both literature

treams and evaluate them with regard to the CACP.

.1. CACP in IT-service environments

The first stream stems from computer science and focuses on tech-

ical aspects. Ferguson, Nikolaou, Sairamesh, and Yemini (1996) dis-

uss the general applicability of economic theories to resource man-

gement. Being a primer, their results are general, but not specifically

ssociated with actual implementations. An interesting approach to

ealize high service levels and end-to-end QoS is the Globus Architec-

ure for Reservation and Allocation (Foster et al., 1999). This approach

ses advance reservations to guarantee QoS. A related approach to
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chieve autonomic QoS aware resource management is based on on-

ine performance models (Kounev et al., 2007). They introduce models

hat are able to predict the impact of the acceptance of an incom-

ng job on the performance of the system and the ability to fulfill

he service-level agreements of all jobs. Elements of client classifica-

ion, such as price discrimination based on customer characteristics,

ave been addressed in Newhouse, MacLaren, and Keahey (2004).

he authors—albeit technically motivated—move in the direction of

pplying methods from revenue management applied in other in-

ustries. However, they do not consider other discrimination factors,

uch as priority on job acceptance or higher quality of service. Aiber

t al. (2004) present an architecture for autonomic self-optimization

ased on business objectives. Their focus is on the technical imple-

entation of economic principles, but not on the employed principles.

oughton, Martin, Powley, and Horman (2006) present research on

ow workload class importance can be considered for low-level re-

ource allocation. They focus on competing workloads in databases

nd investigate what business policies can be used to efficiently allo-

ate resources.

.2. Revenue management and the CACP

Another stream aims at adapting more sophisticated concepts

rom revenue management and admission problems in service com-

uting environments. The use of revenue management concepts by

nternet Service Providers was researched by Nair and Bapna (2001).

hey consider the decision to accept or reject customers but did not

ake different service types or advanced reservation into account.

eo and Buyya (2004) show an approach for a pricing function de-

ending on a base pricing rate and a utilization pricing rate. The idea

ehind utilization based pricing is that when utilization is high, de-

and for the resources is high as well so that customers are willing to

ay higher prices for resources. If utilization is low, lower prices are

harged to attract more customers (Bitran & Caldentey, 2003). One

f the first papers that analyze more sophisticated revenue manage-

ent concepts for cluster systems was published by Dube, Hayel, and

ynter (2005). The model offers one resource for different prices.

ssuming that customer behavior follows a logit model, the authors

nalyze an optimization model for a small number of price classes

nd provide numerical results. Maglaras and Meissner (2006) dis-

uss dynamic pricing strategies for revenue management problems

here a company owns a fixed capacity of a resource which can

e used to deliver different products. They show that this problem

an be simplified to a form where the firm controls the aggregate

ate at which resources are used. Eren and Maglaras (2009) study a

onopoly pricing scenario for a seller with limited market informa-

ion. They consider different demand learning capabilities for sellers.

heir findings suggest that policies where the pricing policy is not con-

inuously updated and re-optimized perform well. This makes them

good alternative for “active” models, which may require more rigid

ssumptions. Anandasivam and Weinhardt (2010) present a policy-

ased decision model for Cloud providers. However, the bid price

echanism on which this model is based requires assumptions on

orkload and demand patterns. For example, the provider has to be

ble to perform a sufficiently accurate demand forecast: each service

equest for the same service requires the same exact amount of ca-

acity (group bookings are not possible). Another stream of literature

ncorporates the uncertainty in admission control into the resource

anagement. Ramalho (1998) examines the application of fuzzy logic

o the CAC (Connection Admission Control) traffic control function in

TM (Asynchronous Transfer Mode) broadband communication net-

orks. Based on observations of the traffic in the ATM link, the paper

erives a Fuzzy Logic Based CAC (FCAC) for the maximum cell loss ratio

rom adding a new connection to a given traffic scenario under un-

ertainty. An alternative approach to measurement-based admission

ontrol for multiclass networks with link sharing for “applications
ith ill specified traffic characteristics” using adaptively measured

aximal rate envelopes is proposed in Qiu and Knightly (2001). By

ssuming that future packet arrivals will not exceed the past maximal

ate envelopes they develop a method that among other indicators re-

ects the uncertainty of the prediction of future workloads and allows

ontrolling important QoS parameters, such as loss probability.

.3. Discussion

The related work covers different aspects of these research prob-

ems. Table A.4 (see online Appendix A) shows which of the main

bjectives, characteristics, and basic approaches are discussed in re-

ated work. However, the mechanisms are only applicable to the Cloud

arket to some extent and an overall decision model that accounts

or the aforementioned characteristics for Cloud service providers

s still missing. Furthermore, many of the mechanisms require rigid

ssumptions. For example, the revenue management mechanisms

ealing with non-clairvoyance (see Table A.4) do not need the exact

nformation about future jobs, but they do need forecasting models

ith sufficiently exact prediction. To address these issues we present

ovel service request admission control models in the following

ection.

. Service request admission control models

In this paper, we consider service request admission control mod-

ls that account for the characteristics discussed in the above sec-

ion. They extend previous work (Püschel & Neumann, 2009; Püschel

t al., 2012). We embed our models into a research framework that is

tructured along two dimensions: The first dimension distinguishes

ituations in which the Cloud service provider can expect to get re-

iable and crisp resource requirements from the customers (situa-

ion under certainty), from those situations where the Cloud service

rovider only has available vague estimates of the resources required

situation under uncertainty). In practice, this vagueness reduces the

rediction quality of required resources. While the (un)certainty of re-

uired resources is exogenously given, in a second dimension Cloud

ervice providers can decide on the applied job admission policy,

hich provides guidance for the decision on whether to accept or

o reject an incoming job request, by taking into account profit- and

ervice-orientation. The policy to apply is a decision variable and thus

epresents an endogenous component. We suggest three policies in

his paper: first-come first-served (FCFS) policy (P1), dynamic pricing

olicy (P2), and a client classification policy (P3).

As our models suggested in this section are extensions and mod-

fications of the well-known “knapsack problem”, we briefly present

nd discuss the “knapsack problem”. The need for modifications and

xtensions of the “knapsack model” lies in its unrealistic assumption

f complete information: all incoming jobs including all their require-

ents need to be known by the service provider. This assumption is

arely met in a “pay-as-you-go” environment, as we face it in a Cloud

ervice setting. Thus, approaches are necessary that address the need

or making real-time decisions regarding the acceptance/rejection

f incoming job requests under the goal of revenue maximization

nd in the absence of knowledge of later jobs and their resource re-

uirements. We refer to these approaches as “online policies”. All six

odels previously mentioned implement such online policies. In the

econd subsection, we present the (basic) model “first-come first-

erved under certainty”, on which the other five models are based. It

hould be noticed that the concept of “certainty” does not target the

nowledge of future jobs, but certainty regarding the real resource re-

uirements of the job currently submitted. In the third subsection, we

ccount for uncertainty (regarding required resources). We present

he theoretical underpinning, fuzzy set theory, and propose the “first-

ome first-served under uncertainty” model. In the fourth subsection

e present the four remaining models.
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4.1. Model under perfect information

If we assume that the provider has perfect information and cer-

tainty about future events, it is possible to calculate the revenue

maximizing solution. This means to ignore non-clairvoyance and non-

probabilistic uncertainty regarding the quality of customers’ resource

predictions (see Section 2). The necessary information includes in-

coming service requests, prices, the exact resource requirements of

each job, and capacity available in the future.

In this case, a simple instance of this problem is:

max
x

|J|∑
j=1

xj ∗ fpj (O1)

subject to:

|J|∑
j=1

cjr(t)∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C1.1)

where T is the set of all regarded time slots; J is the set of available

jobs; R is the set of all resource types; fpj is the price paid for job j;

xj is a binary allocation variable indicating whether job j is accepted

or rejected; cjr(t) is the capacity of resource type r required by job

j in time slot t; and cr(t) is the total capacity available for resource

type r during time slot t. (O1) is the objective function and represents

the achieved revenue. The constraints (C1.1) are resource/capacity

constraints over resources R and time slots T. They assure that not

more capacity can be allocated than is available. The maximization

problem can be formulated as a linear program. It is a generaliza-

tion of the knapsack problem and thus NP-hard, and therefore it is

computationally intractable for large problem instances (the proof

can be found in online Appendix E). Beyond the computational chal-

lenge to solve problem instances optimally, we also face the problem

that perfect information on incoming jobs is not available in practice.

Thus, we suggest different “online policies”, which can be executed

in realtime.

4.2. First-come first-served policy under certainty

In the FCFS policy under capacity constraints an incoming job is

accepted if and only if there is enough capacity available for all re-

sources. A job that is rejected will not be served unless it will be

resubmitted by a client with adapted time slots or/and adapted re-

source requirements. In this case, the resubmitted job is treated as

a new one. This procedure applies to all of our suggested policies.

The following mathematical formulation represents the “first-come

first-served policy under certainty” model:

max
x

|J|∑
j=1

(
1

2
∗ xj

)j

(O2)

subject to:

|J|∑
j=1

cjr(t)∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C2.1)

The objective function (O2) represents the sequential nature of

the policy by ensuring that an incoming job j is served if all required

resources are available (C2.1). The reason for this is that not accepting

job j cannot be compensated in terms of contribution to the objective

value by accepting all future incoming jobs (j + 1), . . . , |J|. It should

be noticed that in contrast to the objective function (O1) of the ba-

sic deterministic model (see p. 10) the FCFS nature of (O2) accounts

for the fact that in practice information on future jobs is not known;

the set J of considered jobs contains only already submitted jobs. The

objective function (O2) is shared by all six service request admission

control models in order to implement our main assumption that in-

coming jobs require real-time acceptance decisions. (C2.1) represents

the capacity constraints which assure that not more capacity is allo-

cated than is available for each resource type, such as CPU, storage
nd bandwidth, thus fulfilling the requirement of not degrading QoS

ue to acceptance of too many jobs. The same objective function and

apacity constraint is used for all policies.

.3. First-come first-served policy under uncertainty

While the idea of the FCFS policy is now introduced, it remains

o explain how we model uncertainty in the FCFS policy (and in all

ther policies introduced later). When customers submit their jobs

o Cloud providers together with their predictions on required re-

ources, the impreciseness of these predictions is due to lack of in-

ormation, belief, and linguistic characterizations (of the customers),

hich all are deemed some of the most important roots of uncer-

ainty (Zimmermann, 2000). It should be noticed that these roots of

ncertainty are particularly inappropriate for being addressed with

robabilistic uncertainty theories, which are often based on historic

ata. Accounting for these roots of uncertainty, we select fuzzy set

heory. A brief introduction into the main concepts of fuzzy set the-

ry and fuzzy optimization is provided in online Appendix D.

The sound theoretical concepts of fuzzy sets and fuzzy arithmetic

llow for flexibly extending the model under certainty. To this end we

tilize the aforementioned concepts of fuzzy set theory by fuzzifying

esource requirements of the customers’ service requests and mod-

lling these requirements with triangular fuzzy numbers. Thereby, we

ield linear optimization models with crisp, binary decision variables,

ith a crisp objective function, and with fuzzified coefficients in the

onstraints. Such models are recognized as a specific type of fuzzy

inear optimization model in the fuzzy mathematical programming

iterature. Baykasoǧlu and Göçken (2008, Table 2) refer to this model

ype as “type 4” with non-fuzzy, binary (B) variables. Unfortunately,

he operations research literature is silent on how to solve instances

f this model type (Baykasoǧlu & Göçken, 2008).

In the “first-come first-served policy under uncertainty” model,

he objective function (O2) is the same as in the “first-come first-

erved policy under certainty” model. However, in the constraints

he resource requirements are now fuzzy numbers denoted by c̃jr .

|J|

j=1

c̃jr(t)∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C̃2.1)

.4. Other models

Having introduced the models for the FCFS policies under certainty

nd under uncertainty, we now present the remaining four models

tructured along the policies.

.4.1. Dynamic pricing

The dynamic pricing policy follows the key idea that when re-

ources become scarce their prices increase. More specifically, it ex-

ends the FCFS policy by relating the price fpj paid for a job j to

esource-specific utilization levels: accepting a job j requires that,

n each time slot t ∈ T where job j runs, the average price paid per

sed time slot (fpj/sj) (sj is the runtime of job j in terms of the number

f timeslots) is not below a weighted sum of reservation prices, with

he weights being the required capacities cjr(t) and the reservation

rices (per unit) rpk being the (utilization based) minimum prices

t which the provider sells his resources. We assume that providers

se a set of utilization levels K = {l0, . . . , ln−1} of their resources and

ssign a specific reservation price rpk to level lk. Both the utilization

evels and the reservation prices are set by the Cloud provider and

emain constant during short-term revenue management. They can

e derived based on the provider’s cost of resources and the degree of

epreciation depending on the utilization level. If in a time slot t the

tilization level Ur(t)of a resource r exceeds level lk, then the provider

equires to get at least the reservation price rp for (one unit of) the
k
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Fig. 1. Time slots of jobs.

r

d

r

f

t

∑

∑

≤

b

U

x

f

t

c

∑

∑

≤

d

U

i

w

4

c

s

i

c

fi

s

t

c

t

o

t

d

p

∑

(

u

∑

(

4

p

(

s

s

s

b

s

s

c

2

r

t

t

u

(
F

espective resource and time slot. It should be noticed that while we

istinguish different utilization levels in a time slot t for different

esources, we do not provide for resource-specific reservation prices.

Dynamic pricing requires constraint (C2.2), which results to the

ollowing constraints of the “dynamic pricing policy under cer-

ainty” model:

|J|

j=1

cjr(t)∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C2.1)

|R|

r=1

|K|∑
k=1

([H(Ur(t)− lk−1)− H(Ur(t)− lk)] ∗ cjr(t)∗ rpk−1 ∗ xj)

fpj

sj

∀t ∈ T, ∀j ∈ J (C2.2)

The utilization level Ur(t) for resource r and time slot t is defined

y:

r(t) := 1

cr(t)
∗

|J|∑
j=1

cjr(t)∗ xj, ∀r ∈ R,∀t ∈ T (4.1)

H is the discrete heaviside step function defined by H(x) = 1 if

≥ 0, H(x) = 0 otherwise. Its use ensures that for each resource r and

or each time slot t only that summand is non-zero (or “activated”)

hat corresponds to the respective utilization level.

Analogously to the FCFS policy, we derive the constraints of the

orresponding model “dynamic pricing policy under uncertainty”.

|J|

j=1

c̃jr(t)∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C̃2.1)

|R|

r=1

|K|∑
k=1

([H̃(Ũr(t)− lk−1)− H̃(Ũr(t)− lk)] ∗ c̃jr(t)∗ rpk−1 ∗ xj)

fpj

sj

∀t ∈ T, ∀j ∈ J (C̃2.2)

Here the current utilization Ũl(t) is now a fuzzy number,

efined by

r̃(t) := 1

cr(t)
∗

|J|∑
j=1

c̃jr(t)∗ xj, ∀r ∈ R,∀t ∈ T. (4.2)
Table 1

Data of jobs.

Number Price paid Price paid per Gold

(fpj) slot (fpj/sj) custome

6 1.6 0.8
√

5 4 2

4 3 1

3 1.8 0.3
√

2 1 1

1 2 1
The discrete heaviside step function needs to be adapted so that it

s defined over fuzzy numbers: H̃(̃x) = 1 if x̃ ≥ 0̃, H(̃x) = 0 otherwise,

ith 0̃ being the fuzzy number “zero”.

.4.2. Client classification

The third policy extends the FCFS policy by implementing client

lassification (strict priority policy) which helps improve customer

atisfaction. The key idea of the policy is that a job is accepted only

f it either submitted by an important customer, referred to as “gold

ustomer”, or if the current utilization level Ur(t) does not exceed a

xed value lc for all resources in all time slots. A Cloud provider clas-

ifies (known) customers as “gold customers” before jobs are submit-

ed; the classification remains constant and is short-term but may be

hanged in the long run, e.g., based on a service-level agreement with

he respective customer. In order to distinguish gold customers from

thers, we introduce parameter ccj, which equals 1 if job j is submit-

ed by a gold customer and 0 else. Constraint (C2.3) implements the

escribed requirements. The constraints of the “client classification

olicy under certainty” model are given below:

|J|

j=1

cjr(t)∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C2.1)

1 − ccj)∗ Ur(t) ≤ lc ∀t ∈ T,∀r ∈ R,∀j ∈ J (C2.3)

The constraints of the fuzzified model “client classification policy

nder uncertainty” look as follows:

|J|

j=1

c̃jr(t)∗ xj ≤ cr(t) ∀t ∈ T, ∀r ∈ R (C̃2.1)

1 − ccj)∗ Ũr(t) ≤ lc ∀t ∈ T,∀r ∈ R,∀j ∈ J (C̃2.3)

.5. Numerical example

We provide a numerical example that shows how the suggested

olicies FCFS, dynamic pricing and client classification are applied

under certainty). The example includes six jobs (job numbers corre-

pond to the sequence of submission) and seven time periods. For the

ake of simplicity, each of the jobs requires one instance, i.e., a job of

ervice type 1 requires 4 units of CPU, 4 units of storage and 16 units of

andwidth (cf. Table B.5 in online Appendix B). Fig. 1 shows the time

lots of the jobs, Table 1 shows all remaining job data. The available re-

ources remain constant over all seven time slots (j = 1, . . . , 7): CPU:

1(t) = c1 = 50, storage: c2(t) = c2 = 24, bandwidth: c3(t) = c3 = 32.

The application of the FCFS policy leads to the acceptance of jobs 1,

, 3 and 4, with an overall revenue of 7.8. Fig. 2a shows the allocated

esources for each time slot based on the jobs that run in the respective

ime slots. Jobs 5 and 6 are not accepted as, for each of the jobs, in

ime slot 5 the capacity of resource 3 would be exceeded.

For the application of the dynamic pricing policy, we use three

tilization levels and corresponding reservation prices: l0 = 0 percent

rp0 = 0), l1 = 50 percent (rp1 = 0.01), l2 = 70 percent (rp2 = 0.03).
ig. 2b shows the results for our numerical example. Jobs 1, 2, 4 and
Type Resources

r CPU Storage Bandwidth

2 8 16 4

2 8 16 4

1 4 4 16

1 4 4 16

2 8 16 4

3 16 8 8
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Fig. 2. Results of the application of policies.
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5 are accepted, which results in an overall revenue of 10.0. Job 3 is

not accepted for the following reason: accepting job 3 would require

to allocate (20, 12, 24) units of (CPU, storage, bandwidth) in time

slot 2, with (50, 24, 32) units being available. Thus, the utilization

levels amount to (40 percent, 50 percent, 75 percent) so that job 3

is not accepted because 0.01 · 4 + 0.03 · 16 = 0.52 > 0.3. Job 6 is not

accepted as the required units of storage (36) exceed the available

units of storage (24).

For the application of the client classification policy, we use the

utilization level lc = 0.7. Fig. 2c shows the results for our numerical

example. Jobs 1, 2, 3 and 6 are accepted, which results in an overall

revenue of 6.4. Job 4 is not accepted for the following reason: accept-

ing job 4 would require to allocate (8, 8, 32) units of (CPU, storage,

bandwidth) in time slot 4, with (50, 24, 32)units being available. Thus,

the utilization level of bandwidth is 1 so that job 4 is not accepted

because 1 > 0.7. Similarly, job 5 is not accepted for the following rea-

son: accepting job 5 would require to allocate (12, 20, 20) units of

(CPU, storage, bandwidth) in time slot 5, with (50, 24, 32)units being

available. Thus, the utilization level of storage is 5/6 so that job 5 is

not accepted because 5/6 > 0.7.

4.6. Computational complexity

Low complexity and therefore low computational costs are

paramount for real-time decision mechanisms. We show that all poli-

cies executed under certainty and under uncertainty run in polyno-

mial time of the number of service requests |J| and the number of

resource types |R|. We first prove this property for execution un-

der certainty: In the mathematical formulation of the policies, the
bjective function (O2) serves to sort the jobs by id (which is assigned

n order of arrival). Sorting can be done in O(|J| ∗ log|J|). In a running

ystem this is not necessary since jobs already arrive in order. Thus,

t is sufficient to check whether the constraints are satisfied. Each

onstraint (C2.1)–(C2.3) can be checked in O(|R| ∗ |J|2). The overall

omplexity is O(|R| ∗ |J|2).
As shown above, the overall complexity of the online model under

ertainty is O(|R| ∗ |J|2). While each arithmetic operation with fuzzy

nstead of crisp numbers adds complexity, this complexity is not de-

endent on R or J, but rather is a constant computational cost per

peration. Thus the overall complexity is still O(|R| ∗ |J|2).

. Evaluation

To validate the proposed models and policies, and to estimate the

ffect of different degrees of uncertainty on the revenue, a thorough

valuation is done. We first show certain properties of the model an-

lytically. As some of the proofs require rigid assumptions we further

valuate the model using simulations based on real world workloads.

he simulation setting and the workloads used for the evaluation

re explained. Subsequently, the results are presented and discussed.

he simulator was implemented as an object-oriented program in

ATLAB.

.1. Analytical evaluation

The first objective for the proposed decision model is revenue max-

mization. Without information about future jobs it is not possible to

chieve the maximum revenue. To analyze the performance of our
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odel we compare the revenue of the dynamic pricing policy with a

tate of the art FCFS approach.

roposition 1. Let pI
avg and pII

avg(rp)be the average price of the accepted

obs for policy I and for policy II, respectively, with rp being the (only)

eservation price and l being the utilization level at which rp becomes

pplicable. Let ar ≥ 1 be the job arrival rate, and let the price X be a

andom variable with known cumulative distribution function P(X).
Then the dynamic pricing policy outperforms the FCFS approach

both under certainty and uncertainty) in terms of revenue if 1 ∗ pI
avg <

in[1, P(X ≥ rp)∗ ar] ∗ pII
avg(rp) under some additional assumptions.

The proof and a numerical example can be found in online Ap-

endix E.

To analyze the second objective, customer satisfaction, we evalu-

te the criteria defined in Section 2. These are an improvement in

cceptance probability for important customers and certain fairness

spects.

roposition 2. A policy with strict priority outperforms a first come first

erved approach (both under certainty and uncertainty) in terms of gold

ustomer acceptance probability.

The proof can be found in online Appendix E.

To address resistance to strategic behavior described in Section 2,

e first need to consider which options for strategic behavior cus-

omers have. The first option some customers might have is to shift

heir demand to off peak hours. Another option is to either split their

obs into several smaller jobs or merge several jobs into a bigger one.

he last option for strategic behavior is to vary their price bids.

While many customers need instantaneous access to services, oth-

rs might be able to shift their demand to times where services can be

ccessed at a lower price. Such behavior is actually in the interest of

he provider as it leads to a more balanced system utilization. One of

he key benefits of introducing dynamic pricing is to give customers

ncentives for such behavior.

To discuss the behavior of merging or splitting jobs we analyze

erge-proofness and split-proofness (Moulin, 2007). A mechanism is

erge-proof if users cannot benefit by merging several jobs to one

igger job. Analogously a mechanism is split-proof if users cannot

enefit by splitting one job to several smaller jobs. This makes sure

sers cannot increase their chance of acceptance or lower their price

y exploiting strategic opportunities at the expense of others. As the

ollowing propositions show, our model is merge-proof but not split-

roof.

roposition 3. The different policies of the model (both under certainty

nd uncertainty) are merge-proof, i.e. users can not benefit by merging

everal jobs to one bigger job.

roposition 4. The different policies of the model (both under certainty

nd uncertainty) are not split-proof, i.e. users can benefit by splitting one

ob to several smaller jobs.

The proof of these propositions are included in online Appendix E.

oulin (2007) shows that in general it is not possible to achieve both

erge- and split-proofness.

As described earlier the third possible strategic behavior for cus-

omers is varying their price bids. Whether such strategic behavior

an be beneficial to customers depends on the exact pricing condi-

ions. If customers are charged the applicable reservation price for

espective utilization level they cannot benefit from varying their

ids. If pay-as-you-bid charging is used a certain type of customer

who does not rely on instantaneous access) could benefit but only

o the extent of lowering the price to the reservation price or shifting

emand to off-peak times.

The analytical evaluation shows that the model delivers improve-

ent both in terms of revenue and customer satisfaction. Since the

roof of the improvements in revenue requiresvery specific assump-
ions it is necessary to further evaluate the revenue improvements

elivered by the model using numerical simulations where these as-

umptions are not necessary.

.2. Simulation setup

In our simulation, we use real workloads based on data from

he Parallel Workload Archive (Feitelson, 2015). The SHARCNET log,

hich was provided to the Parallel Workload Archive by John Mor-

on (john@sharcnet.ca) and Clayton Chrusch (chrusch@sharcnet.ca),

s used as basis for these simulations. It contains 1,195,242 jobs sent

o a set of 10 clusters in Ontario, Canada from a period December 2005

ntil January 2007. The SHARCNET log was chosen as basis because

t contains a large variety of jobs with different runtimes, numbers of

sed CPUs, and varying submit and start times. The workload further

hows high variation in demand over time.

Jobs running less than one hour or more than 10 days were filtered.

ubsequently job runtimes where rounded down to full hours to allow

timeslot based allocation. After filtering invalid jobs, 566,701 jobs

ere left and finally used in the simulation. Although this filtering

pproach reduces the variability in the data, the filtered data set is

till quite large and its size gives enough variability to elicit the major

anagerial implications.

Based on these workloads, nine joblists with different prices and

ervice type assignment were generated as described in the follow-

ng paragraphs. For the evaluation, we consider three types of services

ith requirements for processing power, memory, and storage (see

able B.5 in online Appendix B). Service 1 represents a bandwidth

eavy service type such as video-streaming or a content delivery net-

ork; service 2 represents services requiring mainly storage such

s file hosting or online backup drives; the third service type repre-

ents a CPU-intensive service such as portfolio optimization or video-

ranscoding. Table B.6 (see online Appendix B) shows the contents of

he job lists and the source of the data used. For submission time, start

ime, runtime, and customer ID the data were used as present in the

orkload trace. The service type was drawn from a discrete uniform

istribution. The number of instances per service was adapted from

he job requirements. The pricing information was generated using

truncated normal distribution in order to get non-negative prices.

ull prices were calculated by multiplying unit prices with the num-

er of instances and time slots and rounding the value up to the next

nteger. It was assumed that gold clients are willing to pay a markup

f 20 percent for the priorities.

In our simulation, the capacity is determined by CPU, storage,

nd bandwidth capacity and limited to 1050 for each of these. This

apacity was chosen to accommodate some of the larger jobs from

he SHARCNET log but still have time periods where demand exceeds

upply. Jobs can either start in the same timeslot in which they are

ubmitted or in a later timeslot. Fig. F.6 (see online Appendix F) gives

general visualization of the simulation process.

The fuzzified models make use of the concept of Triangular

uzzy Numbers (c, a, d), as described in online Appendix D. More

recisely, we draw on symmetric Triangular Fuzzy Numbers, where

a − c) = (d − a). Alternatively, we write (c, a, d) = ((1 − g)∗ a, a, (1 +
)∗ a), g ∈ [0, 1]. In our implementation, we use symmetric fuzzy

umbers with g ∈ {0.01, 0.05, 0.1} depending on the level of uncer-

ainty we face. The provision of different levels of uncertainty is use-

ul in two regards: First, it parameterizes the decision model, which

n turn allows for checking the robustness of the model. Second, it

hereby accounts for different situations of uncertainty. As mentioned

n Section 2, the level of uncertainty can vary depending on both the

ustomer and the service request. In this regard, we define the fol-

owing four scenarios:

1: No uncertainty is present.

2: We assume that the uncertainty of the prediction quality of re-

uired resources is mainly based on the type of service request (see
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Table 2

Revenue and gold acceptance comparison for all scenarios.

Policy Scenario μ rev. (σ /μ) rev. Relative cost μ�g (in percent) (σ /μ)�g

of uncertainty (in percent)

P1 S1 21249352.78 0.0187 — 4.22 0.0299

S2 20431190.78 0.0137 −3.85 4.04 0.0614

S3 20226752.44 0.0119 −4.81 4.36 0.0366

S4 19956299.11 0.0117 −6.09 4.14 0.0397

P2 S1 24722267.67 0.0169 — 4.33 0.0462

S2 25231416.11 0.0145 2.06 4.51 0.0499

S3 24764950.78 0.0093 0.17 4.66 0.0349

S4 24431015.33 0.0086 −1.18 4.36 0.0432

P3 S1 17297469.78 0.0074 — 11.93 0.0110

S2 14608163.89 0.0123 −15.55 10.19 0.0120

S3 16671910.22 0.0104 −3.62 11.86 0.0112

S4 15858202.11 0.0086 −8.32 11.02 0.0069

P1: FCFS policy P2: Dynamic pricing policy

P3: Client classification policy

Fig. 3. Mean revenue and mean gold acceptance ratio over all simulations for each of the three policies under all four scenarios.
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Table B.5 in online Appendix B). We assume that for service type 1 re-

source requirements are relatively easy to estimate so that we assume

the lowest level of uncertainty (g = 0.01). For service type 2 we use

g = 0.05. We further assume that due to the high CPU requirements

of service type 3 requirements are most difficult to estimate, which

results in the highest level of uncertainty (g = 0.1).

S3: We assume that the uncertainty of the prediction quality of re-

quired resources is mainly based on the type of customer who re-

quests the service. We distinguish between customers with a known

good prediction quality and others. We regard those customers as

“known” who have userIDs with many jobs in the chosen workload

trace. For known customers, we choose g = 0.01, for the other cus-

tomers we choose g = 0.1.

S4: We assume that the uncertainty of the prediction quality of re-

quired resources is based on both the type of service request and

the type of customer. Due to this high uncertainty, for all jobs and

customers we use the same level of uncertainty (g = 0.1).

5.3. Simulation results

We structure the presentation of our simulation results along the

two dimensions of our research framwework. We first present policy-

related findings for both situations under certainty and under un-

certainty (Findings 1–2), then we present findings that refer to the

differentiation between situations under certainty and under uncer-

tainty (Findings 3–5). We refer to the difference of revenues r1 and

r2 achieved in a situation under uncertainty and in a situation under

certainty, respectively, as “absolute cost of uncertainty”. We refer to

the ratio (r1 − r2)/r2 as the “relative cost of uncertainty”. Finally, we

present a finding on runtimes.
Table 2 contains policies, scenarios, mean revenues, the coeffi-

ients of variation of revenue, the relative cost of uncertainty and the

ean ratios of accepted gold jobs μ�g as well as the coefficients of

ariation for the gold acceptance ratio (σ /μ)�g .

Fig. 3 depicts the mean revenue and mean gold acceptance ra-

io over all simulations for each of the three policies under all four

cenarios.

inding 1. The dynamic pricing policy significantly outperforms the

CFS policy and the client classification policy in terms of revenue

nder both certainty and uncertainty.

As Fig. 3 indicates, the dynamic pricing policy outperforms the

CFS policy regarding revenue in both situations under certainty and

nder uncertainty. This result is statistically significant at the 0.01

evel (see online Appendix C for a detailed description of the statistical

ethodology).

As in all instances the revenue values obtained through the client

lassification policy were lower than those obtained through the FCFS

olicy, we can apparently conclude (without detailed statistical anal-

sis) that the dynamic pricing policy also outperforms the client clas-

ification policy in terms of revenue.

inding 2. The client classification policy significantly outperforms

he FCFS policy and the dynamic pricing policy in terms of gold cus-

omer acceptance ratio.

Fig. 3 indicates the superior behavior of the client classification

olicy in terms of the gold acceptance ratio. Overall, the gold accep-

ance ratio is relatively low with about 4 percent for the FCFS policy

nd the dynamic pricing policy, and 10 percent–12 percent for the

lient classification policy. This is caused by the highly volatile de-

and of specific users in the SHARCNET workload trace.
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Fig. 4. Relative cost of uncertainty for each policy.
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We now turn to the differentiation between situations under

ertainty and under uncertainty and also discuss the impact of the

ifferent uncertainty scenarios on the revenue. The results shown in

ig. 4 and Table 2 indicate the following findings:

inding 3. The FCFS policy achieves lower revenues with increasing

ncertainty.

The FCFS policy achieves the highest revenue in situations under

ertainty. When uncertainty is present and based on either the type

f service request or on the type of customer, then the revenue de-

lines on average by 3.85 percent or 4.81 percent, respectively. When

ncertainty is based on both, the lowest revenue is achieved.

inding 4. In the presence of uncertainty, the client classification

olicy achieves much lower revenues compared to the FCFS policy

nd the dynamic pricing policy.

When uncertainty is present, the client classification policy shows

uch higher losses of revenue (in terms of the relative cost of uncer-

ainty) compared to the FCFS policy and the dynamic pricing policy.

he relative cost of uncertainty amounts to more than 15 percent,

ven in the case of a low level of uncertainty. As a consequence, the

ncentive for Cloud providers to eliminate uncertainty is particularly

igh when client classification is applied.

inding 5. The dynamic pricing policy can achieve higher values

hen (a low or medium level of) uncertainty is present.

While in the presence of a high level of uncertainty (scenario 4)

he revenue decreases (as in the case of the FCFS policy and the client

lassification policy), it marginally increases in the case of a low or

edium level of uncertainty (scenarios 2 and 3, respectively). This

nding is counterintuitive and requires further analysis. In principle,

he increase of revenue is based on a conservative acceptance ap-

roach (required resources are assumed to be slightly higher than

he given figures). This approach leads to the phenomenon that (a)

rst, jobs are rejected that would have been accepted in the case of

ertainty and (b) as a result, jobs that are submitted later are ac-

epted due to available resources. This can lead to an overall increase

f revenue as opposed to the situation under certainty because the

ccepted jobs are more profitable than the rejected ones. This effect is

itigated with increasing level of uncertainty and even disappears in

he presence of a high level of uncertainty when the decision maker

s generally more careful in accepting jobs.

In order to understand this phenomenon better, it is reasonable

o recall that the different levels of uncertainty are modeled with

ifferent widths of fuzzy numbers and what the mathematical conse-

uences of using fuzzy numbers and applying fuzzy arithmetic in our

odels are. The fuzzification of resource demands leads to a fuzzifi-

ation of the left side of the resource constraints (we yield triangular

uzzy numbers), while the right sides (resource capacities) remain

risp. According to fuzzy arithmetic, a triangular fuzzy number (c, a, d)
s smaller than or equals a crisp value z, if and only if d ≤ z. Conse-

uently, the fuzzification of resource demands can lead to violations

f capacity constraints, when the corresponding crisp values do not.

he level of this effect depends on the width of the fuzzy numbers. We

bserve this effect in applying the FCFS policy, where the presence of

ncertainty leads to a decrease of the revenue and where the highest

evel of uncertainty (all fuzzy figures have width g = 0.1) leads to the

owest revenue.

inding 6. The runtimes of executing the suggested policies are low

nder both certainty and uncertainty.

The runtime of one instance of the simulation with 566,701 jobs

as between 10 and 30 seconds for scenario one (we used a PC with

ntel Xeon CPU, E5335@2:00 GHz, 3.75 GB RAM). With runtimes be-

ween 1500 and 4000 seconds the scenarios with uncertainty took

ignificantly longer, however each decision took only fractions of a

econd. This shows the low computation complexity of our approach.

ue to the capacity constraint no overload situation occurred, assur-

ng QoS.

. Managerial implications

In this paper, we formulize different rules for job admission to

upport Cloud service providers effectively managing their comput-

ng infrastructures. In fact, the job admission rules embody a device to

stablish a functioning revenue management in Cloud environments.

loud providers can use these rules to optimally allocate perishable

loud resources in an effort to increase revenue. The execution of

ules necessarily needs to be automated, as human intervention is

oo slow once more than thousands of jobs enter the Cloud system

t the same time. Typically, rules are implemented as policies, where

olicies denote declarative rules defined by the user to adapt and

ontrol the behavior of the system. Hence, in our case policies are

dequate to embed the logic for job admission as part of the business

odel of the Cloud provider. Due to the decomposition of the rules

nd the operational management, the use of policies allows a very

exible management of Cloud infrastructures. Changes in the oper-

tional management take place by merely changing or adapting the

overning policies.

The application of policies has both economic and technological

mplications for Cloud providers, which we discuss in the succeeding

ubsections. While the economic implications are derived within the

cope of the paper at hand, we also explain the technological applica-

ility with regard to how our models can be applied in real practice.

e briefly sketch how the policies were integrated into a running

usiness prototype (Nimis et al., 2008).

.1. Economic implications

In this paper, we provide six different policies as a part of a tool-

ox for Cloud service providers, who need to manage their admission

ontrol processes. Essentially, the Cloud providers can freely choose

mong the different policies that attain their business objective best.

e distinguish between two different business objectives, the maxi-

ization of short-term revenue and the maximization of gold client

atisfaction. The results are qualitatively depicted in Table 3–the

able entries refer to the performance of policies with respect to the

oal ranging from very good (+ + +) to bad (-).

If the Cloud provider prioritizes (short-term) revenue (cf. upper

alf of Table 3), the dynamic pricing policies should be used as our

esults show that the application of dynamic pricing can lead to sig-

ificant revenue gains. If the Cloud provider faces uncertainty with

espect to the required resources, the revenue may increase even fur-

her when using the dynamic pricing policy. The revenue attained

y the client classification policy is lower than applying FCFS. With

ncreasing uncertainty both policies face a drop in revenue.
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Table 3

Policy recommendations for Cloud providers.

Objective: Maximize (short-term) revenue

Policy/Type of estimates Reliable estimates of the resources required Vague estimates of the resources required

FCFS + ◦
Client classification ◦ -

Dynamic pricing ++ + + +

Objective: Maximize gold customer satisfaction

Policy / Type of estimates Reliable estimates of Vague estimates of

the resources required the resources required

FCFS ◦ ◦
Client classification + + + + + +
Dynamic pricing ◦ ◦

Fig. 5. Architecture of the EERM (Nimis et al., 2009, p. 93ff).
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In case the provider needs to give internal users or important

customers preferred access to the Cloud services (cf. lower half of

Table 3), for example, due to service-level agreements, client classifi-

cation is the appropriate policy. This policy can also be used to offer

products at different service levels where availability is significantly

higher for gold jobs. Dynamic pricing and FCFS are equally bad in

terms of accepted gold jobs. These results are robust against uncer-

tainty regarding the required resources i.e., our results remain valid

when Cloud providers account for (non-probabilistic) uncertainty in

customers’ resource predictions by using fuzzy set models.

In addition, by using our policies providers can determine the cost

of giving internal users or important customers preferred access to

their services. With this information they can better decide which

users should be granted such priority or what price markup is ap-

propriate. The simulation of the suggested policies reveals to what

extent different levels of uncertainty reduce revenue. This absolute

cost of uncertainty gives information to providers regarding their in-

vestments in measures to reduce uncertainty. For example, discounts

for customers with high quality predictions of required resources

are possible. The absolute cost of uncertainty would then provide an

upper bound for such discounts. Our simulations also allow Cloud

providers to determine the effect of adding new services with higher

uncertainty to their product portfolio.

On the bottom line, our results suggest that Cloud providers should

always use the dynamic pricing policy until the gold customer sat-

isfaction drops below a certain threshold. Then, it is best to use the

client classification policy until gold customer satisfaction recovers
nd return above the threshold. The predominant use of dynamic

ricing stems from the fact that it is superior in terms of revenue to

ll other policies. As the client classification policy solely cares for

old customers, it is useful to improve customer satisfaction within a

ery short period of time.

Lastly it should be noted that all policies–be it under uncertainty

r certainty–are executed using a very short runtime, which implies

hat they are feasible for practical application in the field.

.2. Technological applicability

In this paper, we mainly analyze the decision policies from a theo-

etical perspective abstracting from real world applications. Nonethe-

ess, the policies have already been developed, implemented and fully

ntegrated into state of the art resource managers within the scope

f the FP6 EU-Project SORMA (http://www.sorma-project.eu). The

echnical component of an Economically Enhanced Resource Man-

ger (EERM) accounts for the current management gap between the

raditional, technical layer of Cloud systems (i.e., classical schedulers

nd resource managers) and the business layer. The overall goal of

he EERM is to isolate economic layers from the complexity of the

loud Systems and to align both business and performance goals

Wirström et al., 2008). The architecture of the EERM is highlighted

n Fig. 5. It shows that EERM provides the infrastructural component,

ncluding the policy manager, which manages the execution of our

olicies. A pilot test where real business users were exposed to the

ERM system, demonstrated the applicability of the economic policy

http://www.sorma-project.eu
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pproach to Cloud environments (Windsor, Rosenberg, Villa, & Amar,

009).

. Summary and Outlook

In this work, we motivated the need for real-time decision models

or the service admission control of Cloud service providers as means

f resource-based revenue management. Based on practical require-

ents, we suggested the use of policies as heuristics, which can deal

ith both informational certainty and uncertainty regarding actually

equired resource levels. As the root of uncertainty is not random-

ess but subjectiveness of human assessments, we drew on fuzzy set

heory for modelling uncertainty.

To evaluate the models and policies, we assessed their proper-

ies analytically. As this analysis requires certain rigid assumptions

e further evaluated them using a simulation based on real world

orkloads with a simulator implemented in MATLAB. The evaluation

howed that the policy based on dynamic pricing can significantly

ncrease revenue. Depending on the type and the level of uncertainty,

he increase is between 16.34 percent and 23.49 percent. To validate

his observation, appropriate statistical tests were performed. The re-

ults further show that the policy which gives gold clients a priority

n job acceptance can drastically increase the acceptance ratio for

old customers.

We further discussed the impact of different types of uncertainty

n revenue. The uncertainty of resource demands can lead to viola-

ions of capacity constraints, when the corresponding crisp values do

ot, thus reducing the number of accepted jobs. The level of this ef-

ect depends on the level of uncertainty, which is modelled with the

width” of triangular fuzzy numbers. However, it can be mitigated or

ven disappears when the rejection of jobs in early phases leads to

he availability of capacities for attractive jobs in later phases, which

ould otherwise be rejected.

Future work would need to investigate the relation between the

egree of uncertainty and revenue. We also plan to research which

ffects can be observed when both the demand side, i.e. job require-

ents, and the supply side (available capacity) display degrees of

ncertainty.

upplementary materials

Supplementary material associated with this article can be found,

n the online version, at doi:10.1016/j.ejor.2015.01.027.
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