

APPLYING HEURISTIC METHODS FOR JOB SCHEDULING IN

STORAGE MARKETS

Journal: 18th European Conference on Information Systems

Manuscript ID: ECIS2010-0380.R1

Submission Type: Research-in-Progress Paper

Keyword:
Decision support systems (DSS), Algorithms, Optimization, Market

engineering

18th European Conference on Information Systems

APPLYING HEURISTIC METHODS FOR JOB SCHEDULING IN
STORAGE MARKETS

Finkbeiner, Josef, University of Freiburg, Kollegiengebäude II, Platz der Alten Synagoge,
79085 Freiburg, Germany, josef.finkbeiner@is.uni-freiburg.de

Bodenstein, Christian, University of Freiburg, Kollegiengebäude II, Platz der Alten
Synagoge, 79085 Freiburg, Germany, christian.bodenstein@is.uni-freiburg.de

Schryen, Guido, University of Freiburg, Kollegiengebäude II, Platz der Alten Synagoge,
79085 Freiburg, Germany, schryen@gmx.net

Neumann, Dirk, University of Freiburg, Kollegiengebäude II, Platz der Alten Synagoge,
79085 Freiburg, Germany, dirk.neumann@is.uni-freiburg.de

Abstract
In double-sided markets for computing resources an optimal allocation schedule among job offers and
requests subject to relevant capacity constraints can be determined. With increasing storage demands
and emerging storage services the question how to schedule storage jobs becomes more and more
interesting. Since such scheduling problems are often in the class NP-complete an exact computation
is not feasible in practice. On the other hand an approximation to the optimal solution can easily be
found by means of using heuristics. The problem with this attempt is that the suggested solution may
not be exactly optimal and is thus less satisfying. Considering the two above mentioned solution
approaches one can clearly find a trade-off between the optimality of the solution and the efficiency to
get to a solution at all. This work proposes to apply and combine heuristics in optimization to gain
from both of their benefits while reducing the problematic aspects. Following this method it is
assumed to get closer to the optimal solution in a shorter time compared to a full optimization.

Keywords: Decision Support System, Algorithms, Optimization, Market Engineering.

Page 1 of 11 18th European Conference on Information Systems

1 INTRODUCTION

Numerous web 2.0 applications have shown that there is an increasing demand for storage capacities
where data has to be available and accessible via internet permanently. Online video hosting and
streaming is getting more and more popular and can therefore be referred as a good example.
According to comScore (2010) about 170 million US internet users watched online videos and nearly
31 billion videos were viewed from US properties during November 2009 alone. Among these the
most prominent online video platform YouTube did achieve almost 40% of all US online videos being
watched followed by Hulu.com with a share of only 3% and various other platforms with smaller
shares. Another example for increasing storage demand in the age of web 2.0 is the social network
facebook. According to their own statistics facebook is hosting more than 350 million active users,
where user generated content is updated on a daily basis. Here a major storage driver is certainly
uploading and sharing user photos. More than 2.5 billion photos have to be stored on the facebook
platform each month (facebook, 2010). Also new technology innovations are about to benefit from
storage space which has to be available not only locally but also on a global scope. On the occasion of
the Consumer Electronic Show 2010 for example, the computer hardware manufacturer ASUS has
showcased future technology concepts, presenting both mobile and stationary devices always
connected with the cloud. (see ASUS, 2010)

Besides the growing storage requirements from web 2.0 and future web 3.0 applications, there are also
economic reasons for an increasing online storage demand: Carr (2005) has shown that 50% to 60%
of the data storage of corporately operated data centers is idle. With the emerge of storage clouds and
storage-as-a-service offerings it is now possible to size-down these data centers and buy online storage
whenever it is required by peak loads. Data center operation costs can therefore be cut down
significantly.

Another interesting observation has been done by Broberg et al. (2009): Due to expensive service
costs, content delivery networks (CDNs) like Akamai or MirrorImage were only attractive to large
enterprises in past times. Being able to resort to storage cloud providers such content delivery network
services are now also practicable for smaller size companies as shown with MetaCDN.

Computing resources can be offered on centrally managed markets, where the scheduling of resource
requests and offers becomes a major topic for information systems research. The crucial winner
determination problem, i.e. which requester obtains what resource at what time, can be handled using
the exact run of an optimization program. Such optimization runs tend to be less useful in practice
since they simply take too long, where market characteristics require high scaled order sizes to be
scheduled in seconds. Heuristic methods can overcome the computational complexity of the exact
optimization problem by determining an approximation to the optimal solution in polynomial time.
This approach can be seen as less satisfying though, since it constitutes only a suboptimal solution,
save when used in conjunction with the optimal solver.

Modern modeling languages and solvers allow the feeding of initial values into an optimization
program to improve a starting solution towards a better solution. Grabbing this idea and applying it in
the domain of scheduling problems, the contribution of this paper is to introduce heuristic optimization
– a method to use good heuristic solutions as initial value in an exact optimization run. The
computation performance (i.e. runtime and iterations) is assumed to be better with heuristic
optimization than with convenient optimization runs without providing starting values. In the line of
explanations an allocation algorithm that has to fit for a double-sided storage market is set up, a
corresponding greedy allocation scheme is applied which serves as basis for building up the heuristic
optimization method.

This work is structured as follows. In section 2 related work in the field of heuristic methods and
storage markets is presented. In Section 3 the model framework is developed briefly and the heuristic
methods are explained in detail. A storage allocation problem serves as basis for the model. A

Page 2 of 1118th European Conference on Information Systems

heuristic is set up in order to deliver initial values which are required for the heuristic optimization
method being explained gradually at the end of section 3. In the subsequent section 4, first simulations
are run for chosen market sizes. Initial results are critically analyzed and compared. Finally, section 5
summarizes and concludes the paper. Besides, further research activities are addressed in an outlook.

2 RELATED WORK

2.1 Heuristic Methods

Approximation techniques are commonly used in operations research to get to a good solution when
being confronted with difficult problems (i.e. NP-complete or NP-hard). Such techniques are classified
as heuristic methods. With these approaches optimality cannot be assured. (Winston and
Venkataramanan, 2003)

Zanakis et al. (1989) developed a scheme that categorizes 442 research articles with respect to the
application area and the type of heuristic method used. They have found that the most frequently used
methods for scheduling problems are in the class ‘construction’ followed by ‘improvement’
algorithms.

Construction methods – typically a greedy approach is used – aim to yield a good solution and often
focus on providing validity with the solution that has to be reached. Improvement methods take a
given valid solution looking (iteratively) for a better one.

For the underlying job scheduling problem in this paper, we stick to these two types of heuristic
methods, since they are easy to develop and implement. First a simple greedy heuristic will be used to
get a good feasible solution (i.e. construction method). Then the greedy solution will serve as starting
value for the heuristic optimization method (i.e. improvement method).

The basic form of the greedy heuristic being used in this work can be found in Lehmann et al. (2002).
Stößer et al. (2010) proposed to adjust the basic greedy allocation scheme to fit for ‘double-sided
multi-attribute auctions with timeslots’.

2.2 Storage Services

Hasan et al. (2005) analyzed the evolution of storage service providers (SSP) from both perspectives -
technical and business. Economic incentives but also challanges of outsourcing storage are worked out
briefly and in addition two case studies are presented.

Placek and Buyya (2006) determined the relevant attributes for trading storage and setting up storage
policies to be storage capacity, upload rate, download rate and time frame. For specifying storage job
requests and offers, we take this set of attributes skipping upload and download rates and replacing
them by the term ‘data transfer’ since storage services usually do not only price the capacity which is
used during a storage job but also the overall amount of data that is transferred while a job proceeds.1

3 THE MODEL FRAMEWORK

This section elaborates a market-based storage scheduling model which allows agents to place their
bids in order to buy storage capacities and nodes to supply storage space at which an automated
allocation mechanism decides if and which storage request is optimally handled by which node.
Besides an associated heuristic counterpart is presented and together with the optimization model it
forms the basis for examining the performance of optimization tasks when the heuristic solution is set
as the initial value for running the optimization.

1 For example: Pricing of Amazon Simple Storage Service (Amazon S3). Available at http://aws.amazon.com/s3/#pricing

Page 3 of 11 18th European Conference on Information Systems

The next part presents the general setting of the model. Section 3.2 shows the mathematical
representation of the storage optimization model and 3.3 presents a greedy allocation scheme of the
model. This section is concluded with subsection 3.4 which introduces and explains the heuristic
optimization method.

3.1 The General Setting

There are two parties in the market where storage space is the central scarce resource to be traded:
Requesters who seek to maximize their private utilities by obtaining storage capacities and on the
other hand providers (i.e. datacenter managers) that are willing to maximize their earnings by
supplying and selling storage services. A node N can offer storage services up to its total storage
capacity limit. Furthermore it is assumed to have a data transfer limit which restricts the acceptance of
storage jobs. A Job J is essentially characterized by a storage request which has to be executed over a
certain time horizon. Providers and job requesters meet at the storage market which is assumed to be
centrally managed.

All market participants are able to submit their node offerings and job requests to a market mechanism
which collects them for a certain time period. After this bidding phase a scheduler allocates the offers
and requests according to a specific algorithm. This market mechanism can be compared to a bulletin
board where offers and requests are collected first and after this a scheduler is responsible for
allocating and coordinating the jobs to the storage servers. In accordance with Parkes et al. (2001) we
propose to use a sealed-bid mechanism which states that the market participants do not get to know the
requests or offers of the others. The scheduler is assumed to have perfect information being able to
determine an optimal allocation schedule. After successful allocation the market process can be
repeated. This is initiated by beginning a new bid collecting phase.

A provider has to offer the storage services of one of its nodes in the following way: (��, ��, ��, ��,
��). In order to run the node a reservation price �� must be paid at least to the provider. �� denotes the
maximum storage space which is available on a node and its total data transfer capability is specified
by ��. To cover the case that a node is not available during the whole time horizon under
consideration storage providers must also provide information about the first period �� a node is
available as well as the last period �� before the node is shut down. A requester who wants to obtain
storage space must submit the following job bundle (��, ��, ��, ��, ��) to the market. Besides their
storage demand �� and their valuation �� which is expressed in monetary units per storage unit
requesters must also provide information about the data transfer �� which is needed for fulfilling a job.
All of these characteristics are valid for each time slot. Finally the requester has to state her time
preferences – i.e. first �� and last �� time slot the storage request has to be performed.

Storage jobs can only be performed if enough storage and data transfer capacity is left in all required
time periods on the assigned node. At this point it is important to emphasize that a node can handle
multiple storage jobs at the same time as long as the storage and data transfer capacity limitations as
well as the time restrictions are not exceeded. On the other hand it is not allowed to separate a job with
respect to its time or storage space dimension to let it run on multiple nodes. The job is assumed to be
inseparable and thus it can only be performed in its entirety on one single node.

Node n 	
 �
 �

 �
 Job j �� �� ��
� ��
n1 1 137 193 1 8 j1 15 83 68 3 7
n2 3 155 138 2 7 j2 1 52 155 5 10
n3 6 137 157 1 9 j3 3 61 86 2 8
n4 2 74 125 1 10 j4 19 59 81 1 3

j5 18 80 118 2 5
j6 14 58 108 3 6
j7 3 95 115 1 5
j8 8 28 109 2 7

Table 1. Sample node offers and job requests

Page 4 of 1118th European Conference on Information Systems

Example: Table 1 shows an exemplary market board of the storage market under consideration. Node
n1 for example offers 137 storage space units and a total of 193 units of data transfer for each period
in the time span from timeslot 1 to 8. Job j1 demands for 83 storage units and 68 units of data transfer
in the time horizon from timeslot 3 to 7.

3.2 Mathematical Representation

This subsection presents the exact algorithm to determine the optimal allocation in the storage market.
The allocation is characterized by the binary decision variable ����, where ���� � 1 if job j is allocated
to node n in phase t and ���� � 0 if not. The set of all phases for the allocation problem is defined as
the time horizon � � �� � � |�� � � � ��� � �� � � |�� � � � ���. With this definition jobs and
nodes lying out of the time horizon will not be allocated and thus they can be neglected. Defining J as
the set of all job requests (storage demand) and N as the set of all defined storage nodes (storage
supply) the winner determination problem can be mathematically represented in the following way:

 !�" # � $ $ $ ������%�� & ��'
(

�

)

�

*

�
 +,1-

Subject to:

�� � � � �� , �� � � � ��, �� / ��, 0 1 � 2, 3 � 4 +51-

$ ����
)

�
� 1, ���� � �0,1�, 0 1 � 2, � � � +52-

$ ������

*

�
 � ��, 0 3 � 4, � � � +53-

$ ������

*

�
 � ��, 0 3 � 4, � � � +54-

$ $ ���9
)

�

:;

 9<=;

� >�� & �� ? 1@ $ ����
)

�
, 0 1 � 2, � � � +55-

The objective (O1) represents an integer program of the allocation problem which has to determine an
optimal allocation schedule in order to maximize the total welfare W. Assuming quasi-linear utility
functions of the requester and providers, welfare can be seen as the sum of the difference of the
requesters’ job valuations and the providers’ reserve price. So the goal is to assign the cheapest
possible node to the most valuable job.

Constraint (C1) allows for an allocation only if it is feasible with respect to job-time accessibility
(�� � � � ��) and resource availability (�� � � � ��). Hence, a job can only be allocated if its time
span corresponds with the time horizon of the node. The profitability statement (�� / ��) ensures that
the requester’s willingness to pay is not being exceeded by the reserve price which would lead to a
negative contribution. (C2) states that a job can maximally be handled by one node at the same time.
(C3) and (C4) specify the resource constraints. The storage and data transfer capacities of a certain
node cannot be exceeded by the respective capacity requirements of all of its assigned jobs together.
Constraint (C6) defines that a job can only be allocated if it is fully executed in all requested time slots
and rejected if this is not possible.

This allocation problem is a special case of the Multiple Knapsack Problem (MKP). Chekuri and
Khanna (2006) argue that MKP is NP-complete. Since the problem at hand is more complex than

Page 5 of 11 18th European Conference on Information Systems

MKP solving it to optimality by use of a complete enumeration is clearly also NP-complete, thus
computationally intractable in practice where users and market characteristics prefer to obtain a
solution in relatively short time periods. An often applied approach to deal with the above mentioned
computational hardness is to use heuristic concepts in order to get a solution near optimality in short
time periods and with considerably less computation efforts. A heuristic counterpart of this allocation
problem is presented in the next subsection.

3.3 Greedy Heuristic

In order to obtain a good approximation in terms of the optimal objective function value in a timely
manner and especially with respect to the constraint set (C1) – (C5) a feasible first allocation scheme
which subsequently will serve as initial value for running a complete enumeration of the integer
program, a simple greedy heuristic is set up with the following rules.

Box 1: Three steps for performing the heuristic greedy allocation.

The approach of this heuristic is to maximize the difference between the valuation of a job and the
reserve price [i.e. �� & �� in objective function (O1)] of a node per unit of storage and time for each
job allocation by sorting job requests and node offers as indicated in box 1.

Example: After sorting the exemplary market board from above as described in the heuristic rules the
optimal allocation can be shown as in table 2 presented. The heuristic proposes to implement five jobs
out of seven. Jobs j2, j3 and j7 are not performed at all, since there are no more resource capacities left
to cover these low valuation jobs. The heuristic yields an objective value of #BC9 � 15,745 where
the exact optimal solution performs with #EF� � 16,871. In this example the heuristic implements
the same jobs as the exact optimization but the assignment to the nodes is handled differently which
yields a good but still suboptimal objective value for the heuristic solution.

X j1 j2 j3 j4 j5 j6 j7 j8

n1 0 0 0 1 0 1 0 0

n2 0 0 0 0 1 0 0 0

n3 1 0 0 0 0 0 0 0

n4 0 0 0 0 0 0 0 1

Table 2: Heuristic allocation schedule

3.4 Heuristic Optimization

This section presents the combined approach of using heuristic solutions as starting values in the
optimization run. An initially derived heuristic allocation schedule can be given over to the integer
program as initial value. From this starting point the solver is assumed to improve the given
suboptimal result towards a better optimal solution. The performance of this attempt can be compared
to a benchmark optimization where the same market board is being optimized without using initial

Policy: Allocate the job with the highest valuation to the node offering its services at the lowest reserve price.
Allocation:

1. Sort jobs 1 � 2 in descending order of their valuations and nodes
 3 � 4 in ascending order of their reserve prices.

2. Start with the most valuable job j and allocate it to the node n
with the lowest reserve price at which an allocatio n is feasible
subject to the technical constraints (C1) – (C5).

3. Repeat step 2 with the next highest 1 � +2 & 1- until there is no more
job left to allocate.

Page 6 of 1118th European Conference on Information Systems

values. The following steps explain the procedure which has to be accomplished in order to run a
heuristic supported optimization in detail.

For a given market board the following steps have to be performed:

1. Use a modeling language in order to set up the specific allocation problem. Optional: For
comparability purposes a benchmark optimization without the existence of initial values can
be executed.

2. Apply the heuristic to the given market board as shown in box 1. At this step it is important to
ensure that the decision variables can be delivered in a proper format to be handled by the
modeling system and solver.

3. Insert the heuristic allocation schedule as initial scenario to the previously created model.

4. Run the program and optionally compare the results with the benchmark and heuristic
solutions.

Example: At first a benchmark optimization upon the above mentioned market board is computed.
The heuristic decision schedule presented in table 2 is implemented as initial allocation to the integer
program. The optimization task is being executed anew. For this small scale problem the heuristic
supported optimization improves the initial value eventually yielding the same optimal allocation
schedule and objective value as the benchmark optimization does. The number of iterations is the
same for both optimization tasks. Since the example covers only a small market the benchmark as well
as the heuristic optimization can be computed within seconds. Comparing the time requirements of
both optimization tasks however reveals an interesting result: The heuristic optimization requires only
about 60% of the time which is needed in order to calculate the benchmark optimization. Projected to
greater sized markets this can lead to huge computation time differences between the two optimization
types.

These first results encourage to intensify research efforts in the direction of heuristic optimization
methods. It is particularly interesting to see how computation time and iterations perform with larger
sized problems. Initial results for more diverse market sizes are presented in the following section.

4 SIMULATION

This section presents initial results of first simulation rounds running GAMS/CPLEX on an Intel Xeon
5335 Processor with 2 GHz and 2 GB of memory.

4.1 Data creation

Different scenarios with varying market sizes are simulated where the market size of 10 indicates that
10 jobs (nodes) are requested (offered) on the market. The resource capacities are drawn from a
normal distribution whereas the valuations are uniformly distributed. In order to keep the scenarios
comparable the same distribution characteristics apply in every scenario. Furthermore only positive
values are allowed. Table 3 shows the chosen data generation parameters at a glance.
Parameter Resource Requesters Resource Providers
Market size 10, 20, 50, 100, 200
Storage space Normal(75,15) Normal(100,15)
Data transfer Normal(90,20) Normal(140,20)
Valuation Uniform(1,20) -
Reservation price - Uniform(1,13)

Table 3: Parameters for data generation

Without the loss of generality the first simulations of the allocation problem are solved for a discrete
single period. Hence, for the sake of simplicity the simulated markets are optimized with a time-
horizon-reduced algorithm. Since there are no time or iteration restrictions relied on the CPLEX solver

Page 7 of 11 18th European Conference on Information Systems

it can run until an optimal solution is being found. In the following section the performance of the
heuristic optimization is compared to the benchmark optimization.

4.2 Initial results

Subsequently first simulation results are presented comparing the performance of the heuristic
optimization approach to a convenient benchmark simulation run.

Figure 1: Runtime Evaluation Figure 2: CPLEX Iterations

Figure 1 shows the runtime of both approaches for each market size. Considering only the benchmark
optimization and comparing the runtime for market sizes 100 and 200, the hardness in computing the
exact model can clearly be seen. While only about one second is needed in order to complete the
optimization run for 100 offers and requests, the same procedure needs GAMS/CPLEX to take more
than 6 times longer for a double market size. A set of 1000 nodes and jobs takes already about 30
minutes of runtime, which is 1800 times higher than the optimization in a market with 100 offers and
requests. More interestingly the comparison of benchmark to heuristic optimization reveals new
insights and first speculations: The heuristic optimization performs better in each scenario. For lower
scaled scenarios (market size 100 and below) the absolute difference seems not to be so great.
Comparing the relative performance of the heuristic optimization to the benchmark for these small
problems it can be shown that the heuristic performs 26% faster on average than the benchmark does.
For greater market boards (200 and above) the difference seems to be more striking. The heuristic
optimization requires only about 69% of the runtime which is required in order to run its benchmark
counterpart. For an order size of 1000 nodes and jobs the relative difference is even getting greater.
While the benchmark requires about 30 minutes of runtime the heuristic optimization does only need 9
minutes.

Figure 2 shows a similar picture for the iterations which are required by CPLEX to complete an
optimization run. For scenarios with market size 10 and 20 the iterations are negligibly small whereas
the iteration requirement is getting pushed significantly with increasing market size, which indicates
again the computational complexity of the exact algorithm. Surprisingly considering the market size
50 for both optimization runs the same 251 iterations are required. A first answer to this exception is
that CPLEX seems to optimize market boards of a lower size with a complete enumeration, not only
with the market size of 50 but also with a market size of 10 and 20. Considering the order size of 100
the benchmark needs 1268 iterations while with the heuristic optimization approach 1084 iterations
are sufficient. Again, considering 200 nodes and jobs the difference is getting significantly great with
4477 iterations for the benchmark compared to 3078 iterations for the heuristic optimization. With
1000 order sets the solver already needs 68557 iterations for the benchmark and about 53092 iterations
for its heuristic optimization counterpart.

Page 8 of 1118th European Conference on Information Systems

Market Size
Heuristic Objective

(Initial Solution)
Heuristic Optimized

Objective
Optimal Benchmark

Objective
10 2209 3785 3785
20 10568 11004 11078
50 22639 23844 23932
100 45125 45961 46516
200 87515 90024 91984

Table 4: Comparison of the average objective function values

Another interesting observation can be done by comparing the averaged objective function values of
the initial solution and the optimal objective value of the heuristic optimization to the benchmark
values, as shown in table 4. The heuristic optimization model indicates three cases of improving the
initial values of a heuristic optimization model:

• A suboptimal initial solution is improved until the global optimum (benchmark objective) is
reached. (Compare with market size 10 in table 4)

• A suboptimal initial solution is improved until a local optimum (heuristic optimized objective)
is reached. The local maximum is closer to the global one but remains still suboptimal.
(Indicated by market sizes 20, 50, 100 and 200 in table 4)

Besides there is another case possible for single simulation scenarios:

• A suboptimal initial solution is not being improved. The program output contains the same
schedule as its heuristic initial allocation schedule.

While the first two cases as well as the time and iteration performance of the heuristic optimization
approach encourage further research activities in this direction the third case can be seen as rather
deflating. However, with this result different research questions (dealing with the reasons for this
situation and if and how to handle it) can be brought up.

5 CONCLUSION & OUTLOOK

This research-in-progress paper has presented heuristic optimization – the idea of including heuristic
solutions as initial value into a full optimization program where a storage allocation problem was built
up in order to serve as basis for this approach. Initial values have been created by using an adequate
greedy heuristic and delivered to the integer program to be optimized. First simulations have shown
that the idea can contribute the optimization procedure to be done in a shorter time with less iterations
than the benchmark optimization requires. We would like to support this result by extending the idea
as well as the model in future research papers proposing to consider the following ideas and research
questions.

The evaluation of heuristic optimization approaches can be enhanced and the model per se extended in
several ways. First it seems obvious to intensify simulation efforts for the single period model. Special
attention can be relied on running multiple simulation rounds for each order set with a greater set of
market scenarios and different job / node competition ratios. A next step is to examine the
performance of the heuristic optimization attempt when the time horizon is incorporated which will
clearly increase the computational hardness.

A second direction for obtaining new insights is to modify the model at hand. Goal programming
approaches can be implemented in order to optimize for different objectives within the same program.
Such additional objectives can deal with the minimization of operating costs and especially energy
costs which are seen as a major cost driver for operating datacenters. Moreover the presented approach
can be applied to and evaluated with other scheduling or more generally optimization problems.
Experiments can contribute to explain how the approach performs with more complex types of
allocation problems.

Page 9 of 11 18th European Conference on Information Systems

Another question arises by considering other heuristics. The idea is to run simulations with changing
heuristics as initial solution and compare the performance of these. Besides the greedy heuristic there
are other heuristics with different properties available for testing the heuristic optimization approach.
It is from particular interest to work out if the heuristic under consideration inherits its properties to
the optimization procedure. It is aimed for classifying different heuristics with respect to their
behaviour within the heuristic optimization model.

As shortly indicated at the end of the previous section it may also be analyzed in which ways the
initial allocation is improved and more interestingly worked out the reasons for the potential inertia
situation of the heuristic starting values which are not improved by the solver within the heuristic
optimization run.

This paper is concluded with a summary of the first interim results and contributions:

• Using heuristic determined allocation schedules as initial value in an optimization run can lead
to considerable time and iteration savings especially for larger scale problems compared to an
optimization task without providing initial values.

• The performance of the heuristic optimization seems to depend heavily on the quality of the
initial allocation. With bad starting values which are far away from global optimality the
performance results for certain simulation scenarios seem to be comparable with a benchmark
optimization.

• Mainly with larger scale problems, for certain scenarios the heuristic starting values may
seemingly constitute a local optimum which is indicated by the solver getting stuck without
improving the initial solution.

• The case of improving the initial values towards a suboptimal local optimum (not global) is
also possible.

All of these results are subject to further research efforts in order to be able to provide a more general
conclusion.

References
ASUS (2010). Advanced Projects: Showcasing the Technologies of Tomorrow, Today!

http://www.asus.com/News.aspx?N_ID=ZKwRY8Vdou3yhQuG
Broberg, J., Buyya, R., and Tari, Z. (2009). MetaCDN: Harnessing ’Storage Clouds’ for high

performance content delivery. Journal of Network and Computer Applications, 32, pp. 1012-1022.
Carr, N. (2005). The End of Corporate Computing. MIT Sloan Management Review, 46 (3), 67.
Chekuri, C. and Khanna, S. (2006). A PTAS for the Multiple Knapsack Problem. SIAM Journal on

Computing, 35 (3), 713-728.
comScore (2010). November Sees Number of U.S. Videos Viewed Online Surpass 30 Billion for First

Time on Record. http://www.comscore.com/Press_Events/Press_Releases/2010/1/November_Sees
_Number_of_U.S._Videos_Viewed_Online_Surpass_30_Billion_for_First_Time_on_Record.

Facebook (2010). Facebook Statistics. http://www.facebook.com/press/info.php?statistics
Hasan, R., Yurcik, W., and Myagmar, S. (2005). The evolution of storage service providers:

techniques and challenges to outsourcing storage. In Proceedings of the 2005 ACM Workshop on
Storage Security and Survivability.

Lehmann, D., O’Callaghan, L., and Shoham, Y. (2002). Truth revelation in approximately efficient
combinatorial auctions. Journal of the ACM, 49(5), pp. 577-602.

Parkes D.C., Kalagnanam J., and Eso M. (2001). Achieving Budget-Balance with Vickrey-Based
Payment Schemes in Exchanges. In: Proceedings of the 17th International Joint Conference on
Artificial Intelligence, pp. 1161-1168.

Page 10 of 1118th European Conference on Information Systems

Placek M, and Buyya R (2006) Storage exchange: A global trading platform for storage services. In:
Proceedings of the 12th international European parallel computing conference (EuroPar 2006).
Springer, Berlin.

Stößer, J., Neumann, D., and Weinhardt, C. (2010). Market-Based Pricing in Grids: On Strategic
Manipulation and Computational Cost. European Journal of Operational Research, 203, pp. 464-
475.

Winston, W.L., and Venkataramanan, M. (2003). Introduction to Mathematical Programming, 4th
Edition, Chapter 14

Zanakis, S.H., Evans, J.R., and Vazacopoulos, A.A. (1989). Heuristic methods and applications: A
categorized survey. European Journal of Operational Research, 43, pp. 88-110.

Page 11 of 11 18th European Conference on Information Systems

