European Journal of Operational Research 222 (2012) 157-167

Contents lists available at SciVerse ScienceDirect

=

UROPEAN . OURNAL OF
PERATIONAL 1" ESEARCH

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor P —

Innovative Applications of O.R.

Energy-aware workload management models for operation cost reduction

in data centers

Christian Bodenstein **, Guido Schryen®, Dirk Neumann ?

2 Information Systems Research, University of Freiburg, Germany
b Department of Management Information Systems, University of Regensburg, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 4 July 2011
Accepted 2 April 2012
Available online 26 April 2012

Keywords:

OR in service industries
OR in telecommunications
Decision support system
Simulation

Cost management

In the last century, the costs of powering datacenters have increased so quickly, that datacenter power
bills now dwarf the IT hardware bills. Many large infrastructure programs have been developed in the
past few years to reduce the energy consumption of datacenters, especially with respect to cooling
requirements. Although these methods are effective in lowering the operation costs they do require large
upfront investments. It is therefore not surprising that some datacenters have been unable to utilize the
above means and as a result are still struggling with high energy bills. In this work we present a cheap
addition to or an alternative to such investments as we propose the use of intelligent, energy efficient,
system allocation mechanisms in place of current packaged system schedulers available in modern hard-
ware infrastructure cutting server power costs by 40%. We pursue both the quest for (1) understanding
the energy costs generated in operation as well has how to utilize this information to (2) allocate com-
puting tasks efficiently in a cost minimizing optimization approach. We were able to underline the
energy savings potential of our models compared to current state-of-the-art schedulers. However, since
this allocation problem is complex (NP-hard) we investigated various model approximations in a
trade-off between computational complexity and allocative efficiency. As a part of this investigation,
we evaluate how changes in system configurations impact the goodness of our results in a full factorial

parametric evaluation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Competition in the computation and storage industry is fierce,
with names like Amazon and Oracle setting radically low pricing
levels for customers, ultimately dominating the cloud computing
industry. If classic datacenters are to survive in the increasing
trend towards cloud computing, they need to match these prices.
With power bills dwarfing the IT hardware bills, organizations con-
tinuously search for management solutions to reduce power con-
sumption in their datacenters.

In terms of ‘effort-to-implement’, currently discussed solutions
can be categorized into long-term strategic, intermediate manage-
rial and short-term operational activities. Long-term activities are
associated with the location of the datacenters. Relocation strate-
gies require long term investments and lead time of at least

* Corresponding author. Address: Information Systems Research, Albert-Lud-
wigs-Universitdt Freiburg, Kollegiengebaeude II, Platz der Alten Synagoge, 79085
Freiburg, Germany. Tel.: +49 (0)761 203 2395 (Sec.); fax: +49 (0)761 203 2416.

E-mail addresses: Christian.bodenstein@is.uni-freiburg.de (C. Bodenstein),
guido.schryen@wiwi.uni-regensburg.de (G. Schryen), dirk.neumann@is.uni-frei
burg.de (D. Neumann).

' IT Management: http://www.itmanagement.com/features/datacenter-power-
consumption-061907/.

0377-2217/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2012.04.005

6 months for smaller datacenters, which makes them unattractive
as a tool in the short run. A vivid example is given by Google, who
built their new datacenter near the hydroelectric facility in Dalles,
Oregon. Here the operation costs could be reduced due to the avail-
ability of inexpensive hydroelectric power. Other companies ex-
plored the possibility to relocate their datacenters to Alaska, in
an attempt to reduce the need for cooling. These extreme temper-
atures, however, also may require heating the datacenter facilities
when temperatures fall too low. Most of the companies have
dropped the idea of hosting datacenters in arctic regions also for
reasons of connectability. The above solutions are examples of deci-
sions which have far-reaching consequences and are thus not an
instrument for active cost reduction required in the near future.
Intermediate managerial measures typically address the archi-
tectural design of datacenters. The most prominent example of
intermediate measures is the installation of hot-cold aisle config-
urations of server and cooling vent placement. Other intermediate
means could be replacing current hardware with more costly
equipment with higher efficiency. An example would be to switch
from an air-based cooling system to a liquid cooling system. Mod-
ern hardware such as servers that utilize liquid cooling are readily
available but again, very costly. Regardless, such changes in the
architectural design of datacenters can be implemented in a short

http://dx.doi.org/10.1016/j.ejor.2012.04.005
mailto:Christian.bodenstein@is.uni-freiburg.de
mailto:guido.schryen@wiwi.uni-regensburg.de
mailto:dirk.neumann@is.uni-freiburg.de
mailto:dirk.neumann@is.uni-freiburg.de
http://www.itmanagement.com/features/datacenter-power-consumption-061907/
http://www.itmanagement.com/features/datacenter-power-consumption-061907/
http://dx.doi.org/10.1016/j.ejor.2012.04.005
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

158 C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167

time and if operators are willing to spend a large amount investing
in such solutions, they are effective as they may attain a minimum
of green diligence.

Although long-term and intermediate efficiency measures are
effective in lowering the operation costs they do require large up-
front investments. It is therefore not surprising that some datacen-
ters have been unable to utilize the above means and as a result are
still struggling with high energy bills.

One inexpensive short-term method to cut down energy costs is
removing the inefficiencies present in operation of computing de-
vices in terms of allocation. By implementing power-aware alloca-
tion of applications or jobs, we can simultaneously address the
underutilization of servers and further decrease the overall energy
costs by migrating jobs to better use the servers and switch the
freed-up servers to a lower power state Dasgupta et al. (2011). This
solution has the advantage of being inexpensive and easy to imple-
ment, as ‘merely’ the VM scheduler needs to be reconfigured,
allowing both small and large corporations to reap the benefits.
For this reason in this work we will pursue efficiency by designing
an energy efficient scheduler to regulate which computing task
should be allocated to which system in attempt to reduce the costs
of operation of every server and the datacenter as a whole.

Generally, allocation problems, specifically those that cover the
placement of tasks on resources, can be divided into two distinct
groups of problems, namely the case of constrained resources and
abundant resources. The quest behind resource constrained allo-
cation is the decision which task to accept and allocate to the con-
strained amount of resources, and according to Bottcher et al.
(1999) has received considerable attention from researchers in
the past. The pursuit in resource abundant allocation problems how-
ever is not the prioritization of tasks, but rather a decision which of
the ample resources should be used - herein lays the potential for
energy efficiency. In the constrained problem we are only able to
maximize our rewards given a fixed amount of energy, but in the
abundant resources scenario we can minimize the used resources
given a task package. We cover the case of resource abundant allo-
cation, which according to related work is often the case for mod-
ern datacenters.

First approaches were discussed by Weiser et al. (1994) in form
of exponential power models based on battery-operated systems,
addressing energy consumption on a chip-level and following
(Yao et al., 1995) the theoretical study of speed scaling policies
to manage energy was initiated. It concluded that less energy is
consumed over the duration of a process if the speed of the proces-
sors is reduced, as confirmed in more recent work by Albers (2010).

This insight was restricted to a chip-level analysis. See (2008)
found that most energy flowing into systems is given off as heat
and as a result only about 10% (percentage varies in hardware com-
plexity) of energy is actually available for computing. Expanding
the analysis to an entire system therefore suggests a decreasing
function power model. This is in accordance to Pisharath et al.
(2004), Wang and Chen (2008), who in consolidation of server re-
sources suggest power management for single server environ-
ments, combining energy-efficiency and management of servers
minimizing the energy consumed by a system, while meeting an
execution time constraint. This design is also present in recent
work by Park and Pu (2007), Pinheiro et al. (2003), Son et al.
(2007) for server cluster environments. Expanding the analysis to
a package of interdependent tasks, (Chen et al., 2005) pursue en-
ergy efficiency in process chains, by reducing the voltages/frequen-
cies of processors executing tasks that are not in the critical path of
the process.

Chase et al. (2001), Freeh et al. (2007), Hamann (2008), Nathuji
et al. (2008), Raghavendra (2008), Rivoire et al. (2007) proposed
solutions for server clusters and datacenters, ranging from en-
ergy-saving power supplies, to the powering down of unused hard

drives to using different power states to conserve energy. Other
work has focused mainly on turning idle machines off, to save
power as shown in Burge et al. (2007), Mastroleon et al. (2005)
for datacenters. More specifically, Burge et al. (2007) showed that
it matters which machines are assigned to each customer, espe-
cially when the data center is under saturated and that simple heu-
ristics like turn off a machine as soon as it becomes idle, can save a
lot of money. Recent observations by hardware vendors however
show that turning servers off, could result in the systems not com-
ing back online and disadvise turning server machines off but to
rather send idle resources to sleep, a feature standardized in mod-
ern computing equipment. This has the added benefit of being able
to power the machines quicker, and reduces failure rates.

Collecting the above insights gained from related literature, we
propose the use of intelligent, energy efficient, system allocation
mechanisms in place of the current packaged system schedulers
available in modern hardware infrastructure as proposed by Das-
gupta et al. (2011). Complementing their findings, we explore the
energy savings potential in an in-depth analysis, by simulating var-
ious different infrastructure configurations in an attempt to find
exactly by how much we can reduce our energy consumption
when implementing energy efficient resource schedulers.

This work is divided as follows. In Section 2 we discuss and
motivate the research methodology followed by this work. In Sec-
tion 3 we present the model and the various model heuristics to be
used to solve the resource cost minimization problem. Section 4
contains the numerical evaluations. Here we analyze the complex-
ity, solution quality of each of our models, as well as show some
insights gained from the simulations before we conclude with
management-centric insights, recommendations and outlook in
Section 5.

2. Methodology

“How effective are energy minimizing resource allocation algo-
rithms compared to current allocation mechanisms and at what cost
(in terms of runtime complexity) can they be implemented?” This is
the primary research question behind this work. We construct a
model benchmark calculating the best possible allocation to mini-
mize the total energy consumed by a datacenter, subject to a num-
ber of necessary operational constraints, as a mathematical
optimization problem. To construct such a model, we must first
understand how allocating a task to a server affects its energy con-
sumption. We therefore formulate our secondary research ques-
tion required to fully address the primary question: “How is
energy consumed by datacenter servers and how can we map them?”

2.1. Describing server energy consumption

Before addressing the central research question of allocation,
we must first explore the secondary research question of system
energy consumption. To do this we used the published results from
the Standard Performance Evaluation Corporation (SPEC) to formu-
late and evaluate the energy consumption of servers. Fig. 1 graph-
ically displays the normalized power consumption relationship,
with the highest and lowest recorded values are depicted by the
bars and the crosses mark the average over 183 by recorded server
types featuring benchmark trials on systems (2008-2011). The ver-
tical axis depicts the power costs normalized between 0 and 1. The
horizontal axis depicts the recorded categories of utilization as re-
corded by SPEC. The figure shows a power/utilization ratio in idle
mode to range between 25% and 75% for the tested systems. This
is in accordance to Moore et al. (2005) who found that idle ma-
chines consume roughly 50% of the power compared to those at
full utilization. Further, we found traces of a non-linear trend.

C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167 159

=

POWER CONSUMPTION

=--- Maximum
—3— Average
= — Minimum

0.0
0% 20% 40% 60% 80% 100%

UTILIZATION

Fig. 1. Relative power consumption of servers graphed against utilization.

Based on the observations in Fig. 1, we form the following prop-
osition assuming:

Proposition 1. The dependency of utilization and power consump-
tion is best captured by the non-linear allometric power function of the
form C=aX’ +d.

To validate the above proposition, we performed a series of
regression analysis on the available SPEC data for each of the 183
systems. Table 2 presents an abridged summary of the coefficients
of determination (the measure of how well the regression line
approximates the real data points) for linear, exponential, logarith-
mic and allometric regressions:

According to the above table (Table 1), comparing the regressive
fit of each function to the observed data points the empirical anal-
ysis supports our proposition that an allometric function best de-
scribes the dependency as the R? values are the highest, closely
followed by the linear function. To ensure that this higher R? result
is not due to over fitting, we additionally compare the functions
using the modified Akaike information criterion AIC,.. The modi-
fied AICp. is a measure of the goodness of fit of a statistical model.
Accounting for parsimony, it allows selecting the best function to
describe the observed relation without the bias of model over fit-
ting. For a given set of observations and resulting functions, the
preferred function is the one with the lowest AIC;. value. Formally,
AlCp = nln% + 2k, where k is the number of parameters in the
statistical model and n are the number of observations.

Table 2 shows the AIC;. values for each model function type.
Since the function with the lowest AIC is the preferred one, the
allometric function is a better fit than the linear function estimate.
As a result, we can confirm the correctness of proposition 1, and
the allometric function captures the dependency of utilization
and energy consumption best.

2.2. Model development

As shown above the allometric function best captures the
dependency of energy costs on utilization. We denote the model
using the allometric function as NLINFIX, abbreviating the fact that
we have a non-linear (i.e. allometric) optimization problem with a

Table 1
R? results table for functional analysis.
Logarithmic Exponential Linear Allometric
C=(bIn(X))+d C=ae?X+d C=aX+d C=aX’+d
R? minimum 0.2218 0.7996 0.8599 0.9727
R?> maximum 0.6542 0.9994 0.9997 0.9999
R? average 0.3686 0.9432 0.9856 0.9935
R? median 0.3721 0.9655 0.9877 0.9959

Table 2
AlC. Values for functional analysis.
Logarithmic Exponential Linear Allometric
C=(bIn(X))+d C=ae®X+d C=aX+d C=aXx’+d
AlCg —21.533 —33.10 —38.679 —53.034
Yes NLINFIX NLIN
Non- | (@UTIL® + d) (a UTILY)
linearity No LINFIX LIN
(aUTIL + d) (a UTIL)
Yes No
On/Off

Fig. 2. Model complexity breakdown.

fixed cost component. Unfortunately, since NLINFIX is a non-linear
binary problem, it is to be expected that solving the problem will
be computationally intensive. As a result, we chose to perform a
series of model approximations which trade computational com-
plexity at the expense of increased costs. Our model heuristics
are devoted to solve the master optimization problem by approxi-
mating the cost functions defining sub-optimization problems that
are easier to solve. These model approximations are summarized
as cost-oriented model approximations in Section 2.2.1. To prop-
erly evaluate our approximations impact, we compare our model
approximation solutions to those found by technical, utilization-
oriented, allocation heuristics that are currently used in practice.
These allocation heuristics are summarized in a single utiliza-
tion-based model heuristic in Section 2.2.2.

2.2.1. Cost-oriented model approximations

From the structure of our allometric cost function we can iden-
tify two main factors affecting the complexity. The first and most
obvious complexity lies in the concave non-linearity of the optimi-
zation problem. The first model heuristic we will use is the relax-
ation of this non-linearity. As we have seen from our previous
empirical analysis, we know that the approximation quality is
around 10%. Thus, we expect our linear heuristic to be close to
the allometric model.

The second issue refers to the binary nature of the optimization
problem, which controls the on/off decision during the optimization
process. Consider the following example which explains this intu-
ition: Assume a task is to be executed on one of two nodes. Node A
costs €10 to run while node B costs €1 to operate. These are the uti-
lization independent costs and occur if a node is powered regard-
less of whether an application is executed on the node or not.
Executing the task on a node causes further costs, namely €1 if
the task is executed on node A and €5 if it is executed on node B.
These are the so-called utilization dependent costs. The choice is
now, which of the two is cheaper and thus which should be se-

Table 3
Model attributes overview.
Model Cost-oriented Utilization
name
Non-linear cost Linear cost On/off
function function decision
NLINFIX v v
NLIN v
LINFIX Vv Vv
LIN Vv

BESTFIT v

160 C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167

lected using an optimization approach. An optimization model
without the discussed on/off decision would look only at the utili-
zation dependant costs and select node A. Node B would therefore
be shut down post-optimization, since it is not needed. The total
costs of this model would therefore amount to €11 (€1 vari-
able + €10 fixed). A optimizer including the on/off decision in its
optimization process would look at the whole picture, making it
a little more complex, but would look beyond only the variable
costs and find that node B is cheaper to operate since it only costs
€6 (€5 variable + €1 fixed) in total to operate.

Mathematically, including this process in optimization is mod-
eled using COST = aUTIL + dY, where d>0 and Y=sign (UTIL).
Therefore,

0, UTIL=0

CoST = { aUTIL® +dY, UTIL >0
Fig. 2 shows the model matrix, in relation to the non-linearity prop-
erty or the on-off decision capability.

NLINFIX in the upper left corner features both properties. The
second model we introduce, NLIN features the first in a series of
model heuristics, as we remove the on/off decision from optimiza-
tion. The third model LINFIX relaxes the non-linearity, allowing for
much faster calculation as a linear integer problem by approximat-
ing the saleable, utilization dependant power costs as a linear func-
tion. The fourth model LIN (Section 3.5) combines the
approximations used in NLIN and LINFIX, excluding the on/off deci-
sion and relaxing the non-linearity. These four models are referred
to as the cost-oriented model heuristics.

2.2.2. Utilization-oriented benchmark heuristic

When introducing new concepts for any process already prac-
ticed by the industry, it is important to always set a benchmark
to compare against. Current system schedulers are often based
on the optimization of the utilization of single systems, or the over-
all utilization of all systems under the schedulers’ control, which is
the case for current system schedulers, such as LSF,? LoadLeveler,
NQS* or TORQUE.® Vengerov (2009) implemented these principles in
his work, labeling this practice as ‘BESTFIT’ allocation which places
the applications on nodes in such a way, as to maximize the average
utilization over all nodes. In our case we implement the dual version
of the problem and minimize the leftover utilization potential (i.e.
the node capacity left unused) according to the ‘no waste’ principle
and label our implementation of his algorithm as BESTFIT (see Sec-
tion 3.6 for a full model description). Table 3 shows a summary of
the Model Attributes Overview described in Section 2.2.

3. The models

In the next section, we proceed to describe each of the intro-
duced models formally, as well as describe their functionality with
a short example study. We begin by introducing and explaining
each of the variables used in the following models.

3.1. Parameter descriptions

Common to all models are a set of parameters, which are de-
fined as follows:

2 http://www.platform.com/workload-management/high-performance-
computing.

3 http://www-03.ibm.com/systems/software/loadleveler/.

4 http://gnqgs.sourceforge.net/docs/starter_pack/introducing/index.html.

5 http://www.clusterresources.com/products/torque-resource-manager.php.

Set of all computing nodes n
Computing units supplied by node n CSp
Memory units supplied by node n ms,
Exogenous cost function parameters of node n an, by,
dn
Cost component: variable, utilization dependant kvary
Cost component: fixed, if node active kfix,
Set of all computing tasks to be executed j
Computing units required by j cd;
Memory units required by j md;

First timeslot where application j is to be executed first;

Last timeslot where application j is to be executed last;

Decision variable if application j is to be executed on X;p,
node n in time ¢

Decision variable if node n is to be powered time t yy;

To simplify the understanding of the data parameters and their
functionality, we have generated a data sample as shown in
Table 4.

The table can be read as follows: J1 is a request for a, application
to be run from timeslot 1 to 4 and requires a minimum of 30 CPU’s
and 45 units of memory in each timeslot. Node (N1) offers 150
CPU’s and 249 units of memory and costs approximately 3.89 mon-
etary units (MU) per 10% increase in utilization and timeslot. kvar,
is the linear approximate of the cost function and is required for
the linear models. kfix, is the y-intercept to the linear estimate.
kvar, and kfix,, are derived from the non-linear function parame-
ters a,, b, and d,. The respective solution of each model is then
plugged into Eq. (CF) which resembles the total costs ‘as if it were
implemented and measured’.

KModel = ZZ (an (ijjnth) + dn * sign (innt)) (CF)
J

This allows the resulting allocation of each model to be comparable.
In the next Sections 3.2,3.3,3.4,3.5,3.6 we formally describe the var-
ious models introduced in this work.

3.2. Base model: NLINFIX

NLINFIX is defined as follows:

XjneCd;
min K = ZZ (an (ZJ e) +d, *ynt) (NF1)
Subject to :
Xm €{0,1}, Vje]lVneNVteT (NF2)
N 1, Vje]l,Vtel[first;last;
fo"f = 0. Vi '1[(- : }l} (NFB)
- , Vjel,¥teT)\ [first;last))
me xedi <csy, VYVneNVteT (NF4)
ijm smd;<ms;,, VneNVteT (NF5)
J
Yo €{0,1},5ign (> Xt | =y, VYNENVELET (NF6)
j

In NLINFIX, allocation is determined by the binary decision variable
Xjnt, Where X;, = 1 if application j is allocated to node n in time slot t,
and x;,; = 0 if not. Eq. (NF1) shows the allometric objective function

http://www.platform.com/workload-management/high-performance-computing
http://www.platform.com/workload-management/high-performance-computing
http://www-03.ibm.com/systems/software/loadleveler/
http://gnqs.sourceforge.net/docs/starter_pack/introducing/index.html
http://www.clusterresources.com/products/torque-resource-manager.php

C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167 161

Table 4
Data sample.
App cd; md; first; last; Node msy ap by d, Kpix kvar
J1 30 45 1 4 (N1) 249 3.90 0.47 3.00 3.89 335
]2 25 31 2 3 (N2) 259 4.50 0.28 3.00 4.67 3.34
b,
N T SYxinecd;\
. iXjnt
Table 5 minK =35 [ay (22
. o CSn
Data generation parameter distribution. not
Variable Variable description Source Distribution Vje], YneNVteT (N1)
cd; Computing units required by j Generated Lognormal LogN S.t.:
(3;1.1)) .
md; Memory units required by j Generated Lognormal LogN Xint € {O’ l}’ V] GJ,V neNveeT (NZ)
(5: 1.7)
first; First timeslot where application j ~ Generated ~ Uniform [1; 5] N 1, Vje],Vte [first;last]
is to be executed ijm = . (N3)
last; Last timeslot where application j Generated Uniform [first;; n 0, V] 6]) VteT \ [ﬁmtj? laStj]
is to be executed 5]
J
ijm xcdj<csp,, VneNVteT (N4)
j
of NLINFIX which minimizes costs based on the utilization of CPU’s J
and fixed costs incurred if nodes are active. The cost function is ~ » X *mdj <ms,, ~VneNVteT (N5)
dependent on the current utilization and for each active node, d, i

are added for each node y,; used. By design, those nodes left unused
are not considered since they can, and by assumption are, automat-
ically shut down at no further cost. We have opted to use CPU’s only
in our target function, since most costs are generated through the
operation of cores. For simplicity we assume that these costs indi-
rectly include all costs of operation (i.e. cooling, network costs,
etc.). Eq. (NF2) introduces the binary decision variable x and (NF3)
ensures the enforcement of agreements allocating all applications
in the schedule and ensures each application is only executed on
one node at a time and t is only defined for those time periods
where allocation for the given combination of applications and
nodes is actually feasible. Eqs. (NF4) and (NF5) are the resource con-
straints and ensure that allocations do not exceed the capacity of
the systems. Finally, Eq. (NF6) binds y,, forcing the fixed costs to
be included only when a application is allocated to a node. Should
no application be allocated to a node, no costs are generated as
the node is not powered in that time slot.

In the following sections we will refer to the NLINFIX allocation
as a benchmark solution, comparing the allocation with the model
heuristics and pointing towards potential flaws in allocation of
each approximation.

3.3. Model approximation: NLIN

Let NLIN be defined as follows:

Table 6
Table key (relevant to Tables 7-10).
PAR Model description SOLN>L # Feas
(T6.1)
Instance Solution’s % Cost Percent of cases Number of
size average increase to where NLINFIX feasible
energy costs NLINFIX solutions generated
incurred (in (T6.3) >LINFIX instances
W) (T6.2) solutions (T6.5) (T6.6)
(Coefficient
of
variation)
(T6.4)

In NLIN we introduce the first of a series of approximations de-
scribed above. Here we relax the requirement for the model to in-
clude the fixed costs of each node in the objective function (N1),
hence reducing the model complexity by the second term in the tar-
get function, as well as removing the last Eq. (NF6) since constrain-
ing y,: is no longer necessary. The remaining constraints (N2)-(N5)
are kept the same as the benchmark Eqs. (NF2)-(NF5).

3.4. Model approximation: LINFIX

Let LINFIX be defined as follows:

N T ZJ_X, cd:
: _ jointtHj
minK = ZH:Z (kvarn * (csn) + kfix,, * ym> (LF1)
Subject to :
Xme €{0,1}, VjeJVneNVteT (LF2)
N 1, Vje],Vtc [first;last;
DXm=10 ey g : -Jl} (LF3)
= , Vjel,VteT\ l[first; last]
J
> Ximxedi<cs,, VneNVteT (LF4)
j
J
> Xipxmd;<ms,, VneNVteT (LF5)
j
J
Yoo €{0,1},sign (> Xjne | =y VnENVEeT (LF6)
j

In LINFIX we introduce the second of a series of approximations. In-
stead of reducing the model complexity by the second decision var-
iable, we relax the nonlinearity of the model by approximating the
nonlinear cost function with a linear constant kvar, using a simple
linear regression of the underlying cost function of the node. (We
assume the function of costs is unknown, the utilization is used
as a predictor variable and the costs serve as a response variable.
Using the ordinary least squares method the marginal effect of uti-
lization on operation costs kvar, is determined. kvar,can thus be
interpreted as the approximate expected change in costs for an increase

162 C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167

in utilization.) Therefore, the objective function (LF1), is now a linear
function, which aims to minimize costs based on the utilization of
CPU’s as well as the amount of active nodes. The remaining con-
straints (LF2)-(LF6) are kept the same as the benchmark Egs.
(NF2)-(NF6).

3.5. Model approximation: LIN

Let LIN be defined as follows:

Z XjneCdj
minK = ZZ <kvarn (3)) (L1)

Subject to :

Xine € {0, 1}, Vje],VvneNVteT (L2)
N 1, Vjel,Vtelfirst;last]

> Xine = o0 Vi st (L3)
- , Vjel],YteT\ [first;last))

Zx,m xcdj<csp,, VneNVteT (L4)

ijm smdj<ms,, VneNVteT (L5)

In LIN we combine both approximations. We now reduce the model
complexity by both the second decision variable and nonlinearity.
Again the nonlinearity is replaced with the marginal effect param-
eter kvar, and the fixed costs term with y,, is dropped. The remain-
ing constraints (LF2)-(LF5) are kept the same as the benchmark Eqgs.
(NF2)-(NF5) and (NF6) is omitted.

3.6. Model approximation: BESTFIT

To serve as a practical use-case benchmark, we enquired about
allocation methods commonly used in datacenters today and
found an algorithm as presented by Vengerov (2009). Following
Vengerov’s intuition “applications are allocated where they fit
best” (SUN/Oracle). In this work we use the simple version of the
model and refer to it as BESTFIT (described as such by the authors).

XjneCd;
minK = ZZ <Z“’”> (BF1)
Subject to :
Xine € {0, 1}, Vjie]VneNVteT (BF2)
1, Vje],Vte lfirst;last;
D K =1 o 1= n A i (BF3)
- 0, Vjel,VteT\ l[first;last]
Zx)mcd Sy, VneNVteT (BF4)
ijmmd ms,, VneNVteT (BF5)

To convert the above intuition into an optimization problem, we
opted to minimize the amount of utilization left unused. The solver
thus searches for the combination of applications which neatly
packs each node. Mathematically, this process is shown by Eq.
(BF1). The remaining constraints (BF2)-(BF5) are kept the same as
the benchmark Egs. (NF2)-(NF5) and (NF6) is omitted.

4. Model evaluations

Generally, two possible approaches can be found in literature
when working with test instances. First, there are the practical use
cases, which have high practical relevance in use, yet they do not
follow any systematic structure required for rigorous analysis Bott-
cheretal.(1999). As a result, an algorithm that performs well on one
specific practical instance is not guaranteed to perform equally well
on other instances. Second, there are artificial numeric simulations,
generated randomly given predefined specifications. Their strength
lies in the fact that fitting them to certain requirements such as gi-
ven probability distributions poses no problem. They may however
reflect situations with little or no resemblance to problem settings
of practical interest. Hence, an algorithm performing well on several
such artificial instances may or may not perform satisfactorily in
practice. In this work, we attempt to work with the best of both
worlds using artificially enhanced practical use cases following
the simulation and evaluation approaches described by Bottcher
et al. (1999), Caprara et al. (2002). More specifically, the node
parameters were derived from energy cost data found by SPEC to
generate 180 node types. The remaining required parameters were
generated randomly and are described in the following Section 4.1.

4.1. Data generation

The infrastructure parameters were drawn from the SPEC sam-
ples described in Section 2.1. The application resource parameters
were drawn randomly from a positively skewed lognormal distri-
bution function logN{(i,0?), as recommended by Feitelson
(2002). The distribution parameters are shown in Table 5. Each
combination generated using these parameters are referred to as
an “instance”. Each order pair is referred to as a “case”.

For every case and instance all models were subject to the same
dataset, allowing the solutions to be directly comparable. For each
case, 10 instances were generated and the average taken. The sim-
ulation was run using GAMS, where the MIP problems were solved
using CPLEX and the MINLP problems was solved using the SBB
solver with CONOPT3 acting as sub-solver for the NLP sub-prob-
lems. While all problem instances covered above belong to the
class of NP-hard ones, the computational tractability of a specific
instance depends on the problem parameters introduced above.

In order to generate and evaluate the test instances, we used a
full factorial design approach, independently analyzing the impact
of changing one parameter at a time. In a preliminary study, we
found the following parameters to be of interest for evaluation:

Allocation Timeframe (AT) [0,5] determines the horizon |T|.
Order Size (0S) [5,50,step 5] determines the amount of appli-
cations (in multiples of 5) ordered to be allocated in [T|.
Resource “Constrainedness” (RC) [5,50, step 5] determines the
average amount of nodes (in multiples of 5) readily available in
each [T|.

Resource Factor (RF) [0,1,step 0,25] reflects the density ratio
of application size and node size. For RF 0, 25 the applications
are on average a quarter the size of the nodes (with pre-set vari-
ances), while for RF 1 the applications and nodes share the same
distribution and magnitude.

We generated 10 instances for each combination of AT, OS, RC,

and RF which gave a total of 10 x 5 x 10 x 10 x 4 benchmark in-
stances of all five models (equals 20,000 generated instances).

4.2. Solution analysis

The models were run on multiple Intel Dual Core (1.67 GHz,
2.5 GB RAM) without limits for the MIP models. The MINLP models

C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167 163

Table 7
Cost evaluation by number of applications.
PAR Ideal (NLINFIX) 2nd best (LINFIX) NoFIX Industry std. BESTFIT SOL N =L (%) # Feas
(NLIN) (LIN)
0S-5 773 774 +0.2% 1155 +49.4% 1165 +50.7% 1361 +76.1% 3.7 1314
(0.546) (0.544) (0.545) (0.542) (0.543)
0S-10 1438 1442 +0.3% 1975 +37.4% 1984 +38.0% 2443 +69.9% 1.8 1248
(0.551) (0.549) (0.543) (0.542) (0.469)
0S-15 2100 2110 +0.5% 2774 +32.1% 2782 +32.5% 3529 +68.1% 2.2 1205
(0.564) (0.561) (0.552) (0.552) (0.471)
0S-20 2815 2822 +0.2% 3641 +29.4% 3648 +29.6% 4732 +68.1% 14 1060
(0.571) (0.568) (0.548) (0.548) (0.469)
0S-25 3481 3500 +0.6% 4399 +26.4% 4403 +26.5% 5794 +66.5% 2.8 1084
(0.587) (0.580) (0.554) (0.553) (0.463)
0S-30 4141 4176 +0.8% 5196 +25.5% 5200 +25.6% 7071 +70.7% 3.5 858
(0.579) (0.573) (0.556) (0.555) (0.448)
0S-35 4713 4736 +0.5% 5788 +22.8% 5793 +22.9% 7924 +68.1% 21 951
(0.571) (0.567) (0.538) (0.538) (0.445)
0S-40 5306 5345 +0.7% 6514 +22.8% 6519 +22.9% 9010 +69.8% 4.9 650
(0.594) (0.585) (0.559) (0.559) (0.434)
0S-45 5934 5966 +0.5% 7143 +20.4% 7146 +20.4% 9921 +67.2% 3.7 866
(0.574) (0.567) (0.545) (0.545) (0.422)
0S-50 6580 6622 +0.6% 7921 +20.4% 7923 +20.4% 11275 +71.4% 4.1 491
(0.593) (0.586) (0.561) (0.561) (0.409)
Table 8
Cost evaluation by number of nodes.
PAR Ideal (NLINFIX) 2nd best (LINFIX) NoFIX Industry std. BESTFIT SOL N =L (%) # Feas
(NLIN) (LIN)
RC-5 1664 1665 +0.0% 1906 +14.6% 1910 +14.8% 2172 +30.5% 71 364
(0.648) (0.648) (0.598) (0.597) (0.608)
RC-10 2046 2049 +0.1% 2434 +19.0% 2437 +19.1% 3019 +47.6% 2.6 500
(0.752) (0.750) (0.677) (0.676) (0.678)
RC-15 2933 2941 +0.3% 3517 +19.9% 3521 +20.0% 4582 +56.2% 2.7 930
(0.737) (0.734) (0.658) (0.6579 (0.641)
RC-20 2830 2838 +0.3% 3503 +23.8% 3508 +24.0% 4497 +58.9% 1.5 802
(0.835) (0.832) (0.735) (0.734) (0.724)
RC-25 3443 3459 +0.5% 4238 +23.1% 4244 +23.2% 5723 +66.2% 25 1056
(0.799) (0.795) (0.720) (0.719) (0.680)
RC-30 3168 3177 +0.3% 3995 +26.1% 4002 +26.4% 5290 +67.0% 1.5 1064
(0.830) (0.827) (0.750) (0.749) (0.702)
RC-35 3688 3712 +0.7% 4652 +26.2% 4659 +26.3% 6259 +69.7% 2.9 1243
(0.853) (0.848) (0.777) (0.776) (0.706)
RC-40 3440 3460 +0.6% 4410 +28.2% 4416 +28.4% 5968 +73.5% 2.8 1166
(0.841) (0.834) (0.781) (0.780) (0.690)
RC-45 3695 3727 +0.9% 4790 +29.6% 4797 +29.8% 6607 +78.8% 33 1289
(0.848) (0.841) (0.785) (0.784) (0.693)
RC-50 3764 3791 +0.7% 4870 +29.4% 4877 +29.6% 6739 +79.0% 3.4 1313
(0.856) (0.848) (0.800) (0.798) (0.696)
Table 9
Cost evaluation by resource factor.
PAR Ideal (NLINFIX) 2nd best (LINFIX) NoFIX Industry std. BESTFIT SOL N = L (%) # Feas
(NLIN) (LIN)
RF-0,25 1501 1519 +1.2% 2090 +39.2% 2094 +39.5% 3223 +114.8% 4.2 2928
(0.619) (0.612) (0.595) (0.593) (0.660)
RF-0,50 3012 3028 +0.5% 3847 +27.7% 3850 +27.8% 5600 +85.9% 2.9 2725
(0.655) (0.650) (0.625) (0.624) (0.631)
RF-0,75 4509 4525 +0.4% 5557 +23.3% 5563 +23.4% 7171 +59.0% 19 2379
(0.672) (0.669) (0.637) (0.636) (0.632)
RF-1,00 5086 5109 +0.5% 6138 +20.7% 6151 +20.9% 7207 +41.7% 1.8 1695
(0.730) (0.727) (0.699) (0.697) (0.677)

were limited to ten thousand integer solutions found using a com-
bination of DFS (depth first search) and branch and bound algo-
rithms (Solver GAMS/SBB using CONOPT as NLP Solver) or one
hour of solver time and the best solution value, and the best lower

bound found before this limit were recorded. Should the MINLP
models not find a solution within these bounds, the MIP solutions
were fed to the MINLP models as an initial solution and subse-
quently again limited to 10,000 integer solutions found or 1 h of

164 C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167

solver time. The respective solution of each model was then
plugged into Eq. (CF) which resembles the total costs ‘as if it were
implemented and measured’ to determine the total costs incurred
when using the respective allocation, allowing the models to be
comparable in their solution:

N T Vy. cd: bn J
Kitoder = 35 (an * (ZJ’C‘JS”!> + dy * sign (me» (CF)
not n j

We report our solution analysis in Tables 7-10. Each column con-
tains the following information and displayed as shown in the table
key (Table 6):

The leftmost column PAR (T6.1) indicates the observed effect
for the respective parameter, as well as the instance characteristic
associated with it. For each model and instance, three values are
documented as displayed in Table 6, namely: Average (T6.2) in
the left cell; % Cost Increase (T6.3) to NLINFIX in the upper right
cell, showing the additional amount of energy required to operate
the infrastructure using the respective model instead of NLINFIX;
Coefficient of Variation (T6.4) in the lower right cell shows the
a normalized ratio between the standard deviation and mean.
These three values are shown for NLINFIX (the model benchmark)
LINFIX, NLIN, LIN and BESTFIT (the representative industry stan-
dard) respectively. The last two columns show the percentage of
solutions where NLINFIX found a better solution than LINFIX
(T6.5), and the number of instances (T6.6) found to be feasible
from the set of generated instances. Table 7 shows the information
gathered from simulation sorted by the various instances of appli-
cations to be allocated. Overall the costs understandably increase
as the amount of applications to be allocated increases. Of interest,
is how the solutions found by the various models separate in mag-
nitude as the order size increase? Comparing NLINFIX to LINFIX,
the average solution gap gradually increases as the number of
applications to be allocated (OS) increases. This effect is also pres-
ent for the percentage of models where the NLINFIX solution was
better than the LINFIX solution. A possible explanation for this ef-
fect could be that once the allocation base increases, the non-linear
models have more room for improvement. NLINFIX and LINFIX
show the cost minimal solutions, with only minor separation be-
tween them, followed by NLIN and LIN which show solutions with
about 20-25% higher costs. Overall, compared to using BESTFIT as
an allocation model, if system managers use energy efficient mod-
els like NLINFIX or LINFIX, the costs could be reduced by 41%. The
same effect can be observed in Table 8 for the instances are
grouped by the number of available infrastructure nodes (RC).

In Table 9 the cost effect of the resource factor, the relative size
of applications in relation to the nodes they are operated on, is
shown. If the applications are roughly the same size as the nodes,
meaning at most one application can be allocated to a node at a
time, the solutions found by all models are closer to each other,
than if two or more can fit on each node. Especially if the resource
factor nears one, the problems become computationally more
intensive for the non-linear solvers reducing their ability to find
a good solution in time. For this reason, for the ‘hardest’ RF in terms
of complexity, LINFIX beat NLINFIX in cost efficiency because the
non-linear models were simply unable to find better solutions
within the allotted CPU time.

In terms of the timeframe over which the application allocation
is to take place, the higher the timeframe, the higher the spread be-
tween the solutions found by the various heuristics (Table 10).
Here, NLINFIX is closely followed by LINFIX in finding the best
solutions to the problem.

Based on the above observations, we can see that there is a dis-
tinct order of model preference in terms of cost efficiency, with
NLINFIX > LINFIX > NLIN >LIN > BESTFIT. However it should be

noted that the above observations are only aggregated for models
where the nonlinear solvers actually found a better solution within
an hour of solver time. In fact, for NLINFIX, only about 2/3 of the
MINLP models were actually solved with the branch and bound
algorithms of the GAMS/SBB and of these only 4% of these solutions
were in fact better than the LINFIX solutions. The same is true for
NLIN, but here only about 38% of the models were solved, and only
2% of these were actually better than the LIN variants. As a result,
from a stand-alone perspective LINFIX outperforms NLINFIX, not
because it is better, but because it is less prone to solver error. This
is mostly evident for larger scenarios. For smaller problems, the er-
ror diminishes.

While every solution finding algorithm might eventually suc-
ceed to find a solution at some point the time it takes for them
to do so decides whether they can be used in practice or not. An
algorithm which finds a solution after an hour of work is of no
use if the solution is required in 10 s intervals; by the time the
model has found a solution, the solution may no longer be relevant.
Therefore parallel to a cost efficiency analysis, we conduct a run-
time analysis of our base model and its cost efficiency and techni-
cal model heuristics.

4.3. Runtime analysis

A runtime analysis can generally be done on two levels: theo-
retical complexity analysis and the search of what parameters con-
tribute to the “hardness” of a problem. In this work we will do
conduct both of these analysis. While the theoretical complexity
analysis concluding NLINFIX, LINFIX, NLIN and LIN are NP-Hard
can be found in Appendix A, in the following section we will per-
form a computational runtime analysis to determine just what
parameters make the underlying problems NP-hard. The question
now arises, what makes the instances generated above ‘hard’ or
‘easy’.

Fig. 3 shows the model runtimes sorted by parameter for the
two most representative parameters “applications” and “nodes”.

Fig. 3a shows the average CPU time taken against the amount of
applications processed. It shows how the CPU time increases as the
amount of applications to be scheduled increases for each model.
While LINFIX, BESTFIT and (up until order sizes of 30 applications)
LIN had runtimes of less than a second, the runtime of NLIN and
NLINFIX gradually increased. The same is true for Fig. 3b which
shows the average CPU time taken against the amount of nodes
processed. It shows how the CPU time increases as the amount of
nodes to schedule on increases for each model. As the amount of
nodes and applications to schedule increases, the solvers take long-
er to process them. The runtimes of LINFIX and BESTFIT however
remain unaffected by this increase.

Since some form of pattern is evident in the runtimes following
a ceteris paribus change in parameters the dependencies on the
respective parameters can be functionally modeled as: Runtime =
ﬂ]*AT“' PB2x0S + B3%RC + S4+RF + k.

Following standard practice for multiple regression models, we
calculated the B regression coefficient matrix for each model, with
runtime as dependant variable, and AT, OS, RC, RF and k (k is a con-
stant) as regresses and yielded the following results shown in Table
11. Each row shows the j coefficients (and their respective t-value
of each parameter in parentheses) for each attribute AT, OS, RC and
RF respectively. The rightmost column shows the F-values for each
function. Since all Fs are larger than the critical value 2.80 (for
o =0.01 with 12236 degrees of freedom) we can deduce that the
observed relationship between the dependant variable Runtime
and the independent regressors f, 2, f3 and f4 is not merely a
random occurrence.

Looking at the signs, we can conclude, that for all models,
increasing the Allocation Timeframe (AT) results in a direct in-

C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167 165

Table 10
Cost evaluation by allocation time.
PAR Ideal (NLINFIX) 2nd best (LINFIX) NoFIX Industry std. BESTFIT SOLN > L # Feas
(NLIN) (LIN)
AT-1 2014 2015 +0.4% 2502 +24.2% 2506 +24.4% 3398 +68.7% 2.9 2170
(0.823) (0.819) (0.751) (0.749) (0.694)
AT-2 2451 2464 +0.5% 3018 +23.1% 3022 +23.3% 4124 +68.2% 37 2170
(0.814) (0.810) (0.743) (0.742) (0.688)
AT-3 3068 3084 +0.5% 3834 +25.0% 3840 +25.2% 5131 +67.3% 3.1 2869
(0.829) (0.823) (0.760) (0.758) (0.705)
AT-4 3585 3606 +0.6% 4547 +26.8% 4554 +27.0% 6073 +69.4% 25 2909
(0.835) (0.831) (0.769) (0.768) (0.710)
AT-5 4161 4181 +0.5% 5312 +27.7% 5320 +27.9% 7104 +70.7% 1.9 1779
(0.813) (0.809) (0.755) (0.753) (0.700)
g 180 0 BESTHT ——LN ——LINFIX -NLIN NLINFIX g 160 1 BESTAIT ——LN ——LINFIX “NLIN NLINFIX
Z 140 S 140
=] juu}
-3 o
120 120
100 100
80 80 ‘
60 60 l
/1
40 40
20{i M 20
0 0

0 5 10 15 20 25 30 35 40 45 50
NUMBER OF JOBS - 05

(a) Runtime Evaluation by Number of Apps

0 5 10 15 20 25 30 35 40 45 50
NUMBER OF NODES - RC

(b) Runtime Evaluation by Number of Nodes

Fig. 3. Runtime evaluations.

crease in solver runtime. The same is true for the Order Size (OS)
and for the resource capacity (RC). Finally, the resource factor RF,
which controls the general size of the applications simulated, neg-
atively affects the runtime. In words, if the computing tasks are so
big that they take up all of the resources of a node on average (i.e.
RF — 1), solving the allocation problem is quicker than if more
than one task can fit onto the system. Comparing effects across
models the most prominent difference between the models would
be the susceptibility to an increase in solver runtime as the alloca-
tion timeframe AT increases for our non-linear model variants.
Interestingly, NLIN was more susceptible to a change in OS than
NLINFIX, which in turn was more susceptible to an increase in AT
than NLIN.

4.4. Bringing it all together: managerial implications

While the experimental results above must not be generalized
too hastily, they do suggest practical use for the cost efficient man-
agement of datacenters. Dasgupta et al. (2011) argue that at a

server level, the energy consumed by a server is directly propor-
tionate to its wattage (300 W = 300$ per year). esteiT, though fast
and computationally inexpensive shows weaknesses when faced
with heterogeneous computing environments, where the costs
generated for systems not equal for all systems. This is where both
versions of LIN and NLIN performed well, as they consider these
changing costs in their optimization. In comparison LIN and NLIN
differ in their need for accuracy. For cases simulated where the
NLIN function was quasi-linear (low variance in OLS estimations
for the varco, parameter) the difference between the LIN and NLIN
models was so low, that the computational burden to compute the
solution for NLIN models makes its slight improvement in energy
usage questionable.

The same principle is true for LINFIX and NLINFIX. Both models
show great potential in cost reduction and are a must for underuti-
lized datacenter. If technologies are available to reduce the idle
costs through PowerNap or comparable features, not including
these methods in optimization is costly. Table 8 shows that using
NLINFIX rather than BESTFIT results in a cost reduction of 30%

Table 11

Regression analysis.
Model AT [N RC RF k F-value
NLINFIX 13.018"** (9.8) 0.882** (9.1) 0.885** (9.4) —63.887"* (-13.0) 20.794™ (3.1) 109.91***
NLIN 10.107* (9.3) 1.797* (22.7) 0.619** (8.1) —45.514"* (-11.4) —13.022** (-2.4) 202.30"*
LINFIX 0.049 (1.3) 0.023** (8.5) 0.015** (5.9) —0.687* (—5.1) —0.250 (—1.4) 34.65***
LIN 0.653 (0.8) 0.381** (6.4) 0.008 (0.2) —5.776* (-1.9) -4.492 (-1.1) 11.35"*
BESTFIT 0.003"** (4.4) 0.001** (29.4) 0.001"** (21.0) 0.004 (1.6) —-0.010"" (-2.5) 341.19"*

* Indicates a significance of more than 90%.
** Show a level between 95% and 99%.
*** Mark a significance level of more than 99%.

166 C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167

for only five servers. Analogous to the monetary worth of this watt
savings mentioned by Dasgupta et al. (2011) this results in saving
over 5008% per year. For a larger infrastructure of 50 servers this
savings potential further increases to 3000$ per year. Once data-
center managers know the costs for each power state of each sys-
tem, costs for powering and cooling can be cut by up to 43%. These
models serve to aid IT Service providers to implement insights
gained through our research to allocate their tasks to their re-
sources in a cost-efficient manner, provided their cost situation
resembles those presented in this work. In summary, based on
the above work we were able to set up the following recommenda-
tions based on averages over all simulated data:

Trade-off: Computation time vs. solution quality

Result 1: If allocation decisions are to be made at regular intervals
(less than 1 h), use LINFIX. This decision will save up to 40.4%
energy costs compared to state-of-the-art mechanisms. Com-
pared to the benchmark solution (NLINFIX), LINFIX solutions
show a potential loss of up to 2.3%.

If allocation decisions are less frequent and computation time and
infrastructure are not restrictive, we recommend to use NLINFIX.
The energy savings potential is 42.5% compared to the state-of-
the-art mechanism.

Result 3: LIN and NLIN both outperform BESTFIT, however both
have a considerably higher computation time and lower energy
savings potential than LINFIX. As a result, they are not recom-
mended for implementation in this setting.

What makes the instances ‘hard’?

Result 4: Allocation Timeframe (AT) and the Resource Factor (RF)
have the largest impact on the computational runtime of NLINFIX
and LINFIX.

5. Conclusions and outlook

In this work we set out to explore to what extent operation
costs of datacenters can be reduced through energy-aware alloca-
tions of computational tasks. Understanding how costs are gener-
ated, and which factor generates what potential is essential for
successful cost reduction strategies. This work contributed to this
understanding of costs in datacenters by formulating as well as
numerically evaluating various cost models in cost minimization
approaches. Through analysis of related work and methods used
by datacenters today, we found potential short-term reduction of
energy costs through efficient allocation. We found indications of
cost saving potential in the choice of allocation mechanism. Based
on this finding, we derived and presented a collection of allocation
optimizers. Here we argue that there is no single mechanism that
satisfies all purposes as each allocation problem has its own set of
assumptions and requirements acting on it. For example some allo-
cation procedures need to be allocated within a matter of seconds,
while other problems may be given more time for this decision.

Reflecting the distinct requirements of different foci in optimi-
zation, a catalog of co-existing models is needed and thus is pro-
vided by this work in a series of model heuristics. We elaborated
the models and reflected the unique properties inherent to each
version as stipulated by the model requirements. Each model
was evaluated and we found that the four models performed sig-
nificantly better than Bestrit. This in turn suggests that using our
mechanisms, specifically LINFIX, vs. currently used platform sched-
ulers could significantly reduce the costs of operation. The trade-
off decision between computational speed and allocation efficiency
is a challenging choice even for the most experienced project man-
ager. The surprisingly high efficiency of LINFIX as well as the insig-
nificant implementation costs and low computational cost found in
this simulation trial makes further research on this path promising.
We determined that a good trade-off was achieved while sacrific-

ing only a minor fraction of efficiency. The cost savings potential
ranged from 500% to 3000%$ per year, without requiring a large up-
front investment. This inclusion could create additional savings
opportunities. Energy efficient placement of applications could
generate second order effects such as cooling or floor space of data-
centers, the operational costs could be lowered even further.

Looking into the future, much work must still be done. In this
work, the central focus on energy costs was based on benchmark
results focusing only on the CPU system utilization. Little or no in-
sights are gathered into the interplay of memory and CPU. Perhaps
by looking at the interplay between hardware within a system, fur-
ther savings potential could be found. For example, the cooperative
effect of a memory intensive task and a CPU intensive task could be
investigated. Further, pushing towards regenerative energy usage,
the allocation models could include varying power sources when
allocating task to nodes. For example, if a datacenter has a pool
of solar panels, some applications could be scheduled on solar
powered machines when sufficient power is produced.

Appendix A

A.1. Computational complexity analysis

Proposition A.1. LIN is NP-hard.

Proof. We reduce the 0-1 Multiple Knapsack Problem (MKP),
which is NP-hard (Martello and Toth, 1990) to LIN. The MKP is
defined as:

N J
maxxK = max» > pXy VjeJVneN, (MKP1)
noj
Subject to :
X, €{0,1}, Vje]VneN, (MKP2)
N
dXej=1 Vjej (MKP3)
J
D XWj<Ch, VneN (MKP4)
J
w0 VjeJ (MKP5)

Any instance of 0-1 MKP can be polynomially transformed into an
equivalent instance of LIN by transforming the objective function
into a minimization function minzfl’zj(fpj)xnj, and by setting
T={1} (when reducing LIN to a problem over a single time unit,
the index t can be removed from the decision variables; (MKP4) is
then modeled through (L2)), Z=1(neN), cdj=—p,(j €])),

CSn

csp = Yojedj(n € N), md; = w;(j € J), s, = cy(n € N). O
Proposition A.2. LINFIX, NLIN and NLINFIX are NP-hard

Proof. For LINFIX, setting kfix,, = O for all N, we yield an instance of
LIN, which is NP-hard (see proof above). Likewise, setting a, =0,
¢, =1, for all N, in NLIN, yields an instance of LIN. Finally, setting
a, = kfix, = 0, ¢, = 1, in NLINFIX resembles an instance of LIN, which
is NP-hard (as above). O

References

Albers, S., 2010. Energy-efficient algorithms. Communications of the ACM 53 (5),
86-96. http://dx.doi.org/10.1186/1748-7188-5-11.

Bottcher,]., Drexl, a., Kolisch, R., Salewski, F., 1999. Project scheduling under
partially renewable resource constraints. Management Science 45 (4), 543-559.
http://dx.doi.org/10.1287/mnsc.45.4.543.

http://dx.doi.org/10.1186/1748-7188-5-11
http://dx.doi.org/10.1287/mnsc.45.4.543

C. Bodenstein et al./European Journal of Operational Research 222 (2012) 157-167 167

Burge,]., Ranganathan, Partha, Wiener, J.L., 2007. Cost-aware scheduling for
heterogeneous enterprise machines (CASH’EM). In: IEEE International
Conference on Cluster Computing, pp. 481-487.

Caprara, A, Fischetti, M., Toth, P., 2002. Modeling and solving the train timetabling
problem. Operations Research 50 (5), 851-861. http://dx.doi.org/10.1287/
opre.50.5.851.362.

Chase,].S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P., 2001. Managing
enery and server resources in hosting centers. ACM SIGOPS Operating Systems
Review 35 (5), 103-116. Alberta, Canada.

Chen, G., Malkowski, K., Kandemir, M., Raghavan, S., 2005. Reducing power with
performance constraints for parallel sparse applications. In: Proceedings of the
19th International Symposium on Parallel and Distributed Processing, 8p).

Dasgupta, G., Sharma, A, Verma, A. Neogi, A., Kothari, R, 2011. Workload
management for power efficlency in virtualized data centers.
Communications of the ACM 54 (7), 131-141.

Feitelson, D.G., 2002. Workload Modeling for Performance Evaluation of Complex
Systems: Techniques and Tools. Lecture Notes in Computer Science 2459, 114-
141, Springer Verlag.

Freeh, V.W.,, Lowenthal, D.K,, Pan, F., Kappiah, N., Springer, R., Rountree, B.L., 2007.
Analyzing the energy-time trade-off in high performance computing
applications. IEEE Transactions on Parallel Distribution Systems 18 (6), 835-
848.

Hamann, H.F, 2008. A measurement-based method for improving data center
energy efficiency. In: Proceedings of the IEEE International Conference on
Sensor Networks.

Mastroleon, L., Bambos, N., Kozyrakis, C., Economou, D., 2005. Automatic power
management schemes for Internet servers and data centers. In: IEEE Global
Telecommunications Conference, 2005 (GLOBECOM 05).

Moore,]., Chase, J., Ranganathan, P., Sharma, R.K., 2005. Making scheduling “cool”:
temperature-aware workload placement in data centers. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, USENIX
Association, Anaheim, CA.

Nathuji, R., Isci, C., Gorbatov, E., Schwan, K., 2008. Providing platform heterogeneity-
awareness for data center power management. Cluster Computing 11 (3), 259-
271.

Park, I, Pu, L., 2007. Energy efficient expanding ring search. In: Proceedings of the
First Asia International Conference on Modelling & Simulation, IEEE Computer
Society.

Pinheiro, E., Bianchini, R., Carrera, E., Heath, T., 2003. Dynamic cluster
reconfiguration for power and performance. Compilers and operating systems
for low power, 75-93, Kluwer Academic Publishers.

Pisharath,]., Choudhary, A., Kandemir, M., 2004. Energy management schemes for
memory-resident database systems. In: Proceedings of the 13th ACM
International Conference on Information and Knowledge Management, ACM,
Washington, DC, USA.

Raghavendra, P., 2008. Optimal algorithms and inapproximability results for every
CSP. In: Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, ACM, Victoria, British Columbia, Canada.

Rivoire, S., Shah, M., Ranganathan, Partha, Kozyrakis, C., 2007. JouleSort: a balanced
energy-efficiency benchmark. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, ACM, Beijing, China.

See, S. 2008. Is there a pathway to a Green Grid.

Son, S., Malkowski, K., Chen, G., Kandemir, M., Raghavan, P., 2007. Reducing energy
consumption of parallel sparse matrix applications through integrated link/CPU
voltage scaling. Journal of Supercomputing 41 (3), 179-213.

Vengerov, D., 2009. A reinforcement learning framework for utility-based
scheduling in resource-constrained systems. Future Generation Computer
Systems 25 (7), 728-736. http://dx.doi.org/10.1016/j.future.2008.02.006.

Wang, X., Chen, M., 2008. Adaptive power control for server clusters. In: 2008 IEEE
International Symposium on Parallel and Distributed Processing. IEEE, pp. 1-5.
http://dx.doi.org/10.1109/IPDPS.2008.4536425.

Weiser, M., Welch, B., Demers, A., Shenker, S., 1994. Scheduling for reduced CPU
energy. In: Proceedings of the 1st USENIX Conference on Operating Systems
Design and Implementation. USENIX Association, Monterey, California.

Yao, F., Demers, A., Shenker, S., 1995. A scheduling model for reduced CPU energy.
In: Proceedings of IEEE 36th Annual Foundations of Computer Science. IEEE
Comput. Soc. Press, pp. 374-382. http://dx.doi.org/10.1109/SFCS.1995.492493.

http://dx.doi.org/10.1287/opre.50.5.851.362
http://dx.doi.org/10.1287/opre.50.5.851.362
http://dx.doi.org/10.1016/j.future.2008.02.006
http://dx.doi.org/10.1109/IPDPS.2008.4536425
http://dx.doi.org/10.1109/SFCS.1995.492493

	Energy-aware workload management models for operation cost reduction in data centers
	1 Introduction
	2 Methodology
	2.1 Describing server energy consumption
	2.2 Model development
	2.2.1 Cost-oriented model approximations
	2.2.2 Utilization-oriented benchmark heuristic

	3 The models
	3.1 Parameter descriptions
	3.2 Base model: NLINFIX
	3.3 Model approximation: NLIN
	3.4 Model approximation: LINFIX
	3.5 Model approximation: LIN
	3.6 Model approximation: BESTFIT

	4 Model evaluations
	4.1 Data generation
	4.2 Solution analysis
	4.3 Runtime analysis
	4.4 Bringing it all together: managerial implications

	5 Conclusions and outlook
	Appendix A
	A.1 Computational complexity analysis

	References

