
DIMINISHING DOMAIN MISMATCH FOR DNN-BASED ACOUSTIC DISTANCE ESTIMATION
VIA STOCHASTIC ROOM REVERBERATION MODELS

Tobias Gburrek, Adrian Meise, Joerg Schmalenstroeer and Reinhold Haeb-Umbach

Paderborn University, Department of Communications Engineering, Germany
{gburrek, schmalen, haeb}@nt.uni-paderborn.de

ABSTRACT

The room impulse response (RIR) encodes, among others, informa-
tion about the distance of an acoustic source from the sensors. Deep
neural networks (DNNs) have been shown to be able to extract that
information for acoustic distance estimation. Since there exists only
a very limited amount of annotated data, e.g., RIRs with distance
information, training a DNN for acoustic distance estimation has to
rely on simulated RIRs, resulting in an unavoidable mismatch to RIRs
of real rooms. In this contribution, we show that this mismatch can be
reduced by a novel combination of geometric and stochastic model-
ing of RIRs, resulting in a significantly improved distance estimation
accuracy.

Index Terms— acoustic distance estimation, room impulse re-
sponse simulation, stochastic room impulse responses

1. INTRODUCTION

Knowing the distance between a speaker and the recording device
can be valuable information for downstream signal processing tasks,
e.g., for geometry calibration in wireless acoustic sensor networks
(WASNs) [1], signal processing in hearing aids [2] or source ex-
traction [3]. Common approaches estimate the distance between an
acoustic source and a compact recording device with multiple micro-
phones by evaluating the power ratio between the coherent signal part,
originating from the direct signal propagation path, and the diffuse
signal part which summarizes the propagation paths with multiple
reflections [4, 5].

In real environments each room has individual acoustic transfer
functions, that depend not only on the distance between the recording
device and the acoustic source but also on the room’s shape, the
positions of the device and the source, furniture, and materials on
walls, ceiling and floor. Hence, either training data of the room under
consideration or at least data from rooms with similar characteristics
are required to finetune the parameters of a distance estimator and
thus increase the model’s precision [6–8].

Collecting and annotating recordings from real environments
with diverse room sizes and reverberation conditions is a tedious
task. Publicly available data is usually limited in one of the required
variabilities: Meeting data often lacks ground truth positioning infor-
mation, while data intended for comparing localization techniques
usually stem only from a very limited number of rooms. As shown
in [6], this limited size of these data sets also limits the performance
of data-driven distance estimation methods.

Recent approaches to distance estimation are based on deep neu-
ral networks (DNNs), be it single-channel [8] or multi-channel [9],
and require a large amount of training data to reliably generalize to
unknown data. In [9] we proposed to use a convolutional recurrent
neural network (CRNN) trained on simulated data, which leveraged

the problem by using diverse room setups for generating training data,
that were similar to the rooms during tests. To this end, synthetic
room impulse responses were generated via an image source method
(ISM) [10] and subsequently convolved with speech data. This syn-
thetic data models sources and microphones with omnidirectional
characteristics, which directly influences the distance-related features,
e.g., coherent-to-diffuse power ratio (CDR), and thus leads to a mis-
match between synthetic data and recordings from real environments.
A DNN trained with synthetic room impulse responses (RIRs) with
omnidirectional sources will have difficulties dealing with real-world
data with typically directional sources [1, 8]. To reduce the resulting
systematic errors on real-world data, direct-to-reverberant energy ra-
tio (DRR) augmentation techniques can be used [1,11]. Alternatively,
synthetic data may be enriched by recordings from real environments
or pre-trained models may be fine-tuned to environments, as for ex-
ample proposed by the authors of [6]. However, the generalization
ability between different data sets typically is limited as shown in [8].

In order to be able to create large synthetic data sets for training
a distance estimator, the modeling of the RIRs must become more re-
alistic and, for example, include directional characteristics of sources
and microphones to enable the applicability of the models to arbitrary
scenarios. For example, there are approaches such as [12] that directly
learn to map synthetic RIRs to real RIRs. However, the approach
from [12] is not suitable for the problem at hand, since the general
structure of a real RIR may be adapted, but the exact parameters of
the simulated scenario, e.g., the distance, are not preserved.

In this paper, we propose an approach to RIR simulation with
the aim of improving the performance of a data-driven distance esti-
mator, trained with synthetic RIRs, on data from real environments.
While the signal propagation paths with only a few reflections are
simulated using a geometric approach to model the mainly specular
characteristics of the reflection, the signal propagation paths with
more reflections, which are mainly diffuse, are simulated based on a
stochastic approach. Thereby, the power of the stochastic part of the
simulated RIRs is chosen so that the resulting DRR, as distance car-
rying information, meets the relation between the source-microphone
distance and the critical distance, which results from the parameters
of the simulated room. Furthermore, the directivity of the sources is
taken into account in the geometrical part of the simulated RIR and
the calculation of the power of the stochastic part. Experiments have
shown that training a DNN-based distance estimator solely on the
proposed simulated data improves its generalization ability to real
data from the MIRaGe [13] and MIRD [14] data sets.

The paper is organized as follows: In Sec. 2 we briefly review
common techniques for simulating RIRs before we present our ap-
proach to generating RIRs in Sec. 3. After a short explanation of the
used distance estimator in Sec. 4, experimental results are presented
and discussed in Sec. 5. Finally, we end with some conclusions in
Sec. 6.



2. REVIEW ON RIR SIMULATION TECHNIQUES

Common simulation software for RIRs employs either the image
source method, that approximately considers the geometrical setup of
microphones and sound sources in a shoe box-shaped room [15–17],
ray/cone tracing algorithms utilizing 3D models [18] or a combination
of both. Although ray/cone tracing algorithms promise more realistic
simulations than the image source method by considering furniture
and different wall materials, it remains a tool for special purposes.
The generation of diverse and detailed 3D models is time-consuming
and the computational complexity of calculating the reflections and
tracing the sound geometrically is intractable for the large amount of
data required for DNN training.

2.1. Directivity of sources and microphones

Many acoustic sources have a directivity pattern that significantly
differs from an omnidirectional directivity pattern. As reported in [19]
the directivity pattern of human speakers is frequency-dependent and
depends on the type (vocal or fricative) of uttered phonemes. It can
be roughly approximated by a cardioid characteristic, which can also
be found in monitor loudspeakers.

This implies that depending on the direction of view the acoustic
source and each mirrored image of the source get an extra image-
dependent weighting factor in the image source method [20]. So the
summation of all weighted image signals impinging on the micro-
phone’s position is taken as an approximate recording of a directive
audio source. If the microphones also have a directivity pattern the
impinging mirror signals have to be weighted in accordance to the
direction of view of the microphone.

Although the image method has proven its usefulness in many
publications, it tends to deliver sparse sequences of impulses that,
when convolved with clean audio snippets, do not provide a natural
sound perception for the human listener. A RIR recorded in a real en-
vironment shows a much noisier and random structure than the RIRs
generated by the image method, especially for the late reverberation.

2.2. Stochastic RIR models

Some approaches, e.g., [21], suggest to model RIRs statistically as
a random process with an exponentially decaying envelope, that
is influenced by some basic acoustic parameters, to better capture
general characteristics of a RIR and to ignore the exact geometrical
propagation of the sound. We extend the model from [21] with a
delay Nd, i.e., the integer rounded time of flight between the acoustic
source and the microphone, and approximate the RIR hs(n) by an
exponentially decaying Gaussian process:

hs(n) :=

{
b(n) e

−∆
n−Nd

fs for n ≥ Nd

0 else
(1)

with n as the sample index, ∆=3·ln (10) /T60, fs as the sampling
frequency and b(n) as zero-mean, white Gaussian noise with variance
σ2
b , i.e., b(n) ∼ N (0, σ2

b ). However, if the model should reflect dis-
tance information and simultaneously consider the directivity patterns
of the source and microphone, it has to be further extended.

3. PROPOSED RIR SIMULATION TECHNIQUE

As mentioned in [22] the image source method is suitable to model
the early reflections of sound, which are mainly specular, but the
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Fig. 1. Visualization of the proposed approach to RIR simulation

late reflections, which are mainly diffuse, are not modeled appro-
priately by the image source method. Hence, we propose to model
only the early reflections using the image source method while the
late reflections are modeled using the stochastic approach presented
in Section 2.2. Therefore, we combine the image source method and
the stochastic model of (1) to generate a RIR h(n) of length N as
follows (see Fig. 1)1: First, we simulate the early part of the RIR
hI(n) based on the image source method using the image sources up
to order K. Thereby, a cardioid pattern is utilized for the source’s
directivity. We choose K=3 since reflections of higher order are
nearly completely diffuse as reported in [22]. Additionally, a high
pass filter is applied to the early part of the RIR hI(n) as proposed
in [10].

The diffuse, late reflections should follow (1) while preserving the
distinct reflections modeled by hI(n). This is achieved by weighting
hs(n) with the function

ψ(n)=


0 n≤Nd

1
2

(
1− cos

(
π(n−Nd)
2fs/(κ∆)

))
for Nd<n≤Nd+

2fs
κ∆
.

1 n>Nd+
2fs
κ∆

(2)

First experiments on the choice of κ have shown that a better gener-
alization to recorded RIRs is achieved for κ=1. This choice results
in a smoother fade-in of the stochastic part of the RIR, i.e., less dis-
turbance of the early reflections. The resulting RIR h(n) is given
by

h(n) = hI(n) + ψ(n) · hs(n). (3)

Finally, the power of the Gaussian process in (1) is chosen so that
the RIR h(n) exhibits a desired DRR. The desired DRR η is calcu-
lated based on the relation between geometrical as well as acoustic
properties of the room and the distance between the source and the
microphone [2]. In addition to that, we extend the relation from [2]
by taking into account that the direct path component of the RIR is
scaled by the source’s directional response D(φ, ϱ), where φ and ϱ
are the azimuth and elevation angles between look direction of the
source and relative position of the microphone, respectively. Thus,
the desired DRR is given by

η = D2(φ, ϱ) · d
2
c

d2
, (4)

1Code is available at https://github.com/fgnt/paderwasn



with d as the distance between the source and microphone. dc denotes
the critical distance with

dc = 0.1m ·
√
α · β ·

√
VR/m3

π T60/s
, (5)

where α and β are the directivity factors of the acoustic source and the
microphone, respectively, and VR is the room volume. We consider
omnidirectional microphones, i.e., β = 1. The directivity factor
of the source α is drawn from the uniform distribution U(2.5, 5.5),
which corresponds to the interval around the directivity factor of the
cardioid pattern, in order to account for fluctuations of the DRR of
recorded RIRs for different positions.

Given the desired DRR η, the variance σ2
b of the Gaussian process

b(n) is chosen such that the DRR of the RIR h(n), i.e.,

η̂ =

Nd+w∑
n=Nd−w

h2(n)

N∑
n=Nd+w+1

h2(n)

, (6)

matches the DRR η, with w defining the length of a small window
around the impulse at delay Nd, which belongs to the direct path.
Here, we use w=40 as proposed in [11].

4. DISTANCE ESTIMATOR

We use our CRNN from [9] with the short-time Fourier transform
(STFT) of the signals of a microphone pair as input for distance
estimation. The STFT is represented in the form of its absolute value
and the sine and cosine of its phase for each microphone signal. Note
that the STFT as input feature comes with the advantage that it does
not only contain information about the source microphone distance
in the form of the DRR-related inter-level differencess (ILDs), which
can be derived from it, but also useful side information for distance
estimation, as discussed in [9]. Before calculating the STFT, all
signals are normalized to the range [−1, 1]. The model is trained
to solve distance estimation as a classification problem with a class
granularity of 0.1m.

Since only simulated data should be involved in the training pro-
cedure, also the best-performing checkpoint can only be determined
based on an independent validation data set of simulated RIRs. How-
ever, the best-performing checkpoint for simulated data might not
correspond to the best-performing checkpoint for real-world data. We
solve this issue via stochastic weight averaging (SWA) [23]. Thereby,
the model weights of the last 25% of the checkpoints are averaged.
As mentioned in [24], this might also lead to flatter minima of the
error plane, which can lead to a better generalization to other domains,
e.g., a better generalization from simulated training data to real-world
data.

5. EXPERIMENTS

We simulated a data set of 100 k RIRs to train the distance estimator.
Thereby, 10 k different rooms are simulated. The length and width
of the rooms are drawn from U (5m, 7m) and their ceiling height
from U (2.4m, 3.0m). Moreover, the sound decay times T60 of the
rooms were drawn from U (0.2 s, 0.7 s)

Ten constellations consisting of a source and a microphone pair
with 8 cm inter-microphone distance are generated for each room.
Therefore, the microphone pair was placed in the room with random

position and orientation. Next, the source is placed relative to the
microphone pair with a randomly drawn direction-of-arrival (DoA)
and distance so that a minimum distance of 0.3m and a maximum
distance of 5m (or the largest possible distance that would fit into the
area considered for source placement) was maintained. Hereby, a min-
imal distance of 0.5m to the walls and 1m to the ceiling and floor is
kept for each microphone and acoustic source. If the acoustic source
would have to be placed outside the considered area for the drawn
distance and DoA, the DoA is increased until the source position is
within the considered area. The azimuth of the source’s direction of
view is randomly drawn from U (−90◦, 90◦) relative to the direct
line of sight between the source and the microphone pair while the
corresponding elevation is randomly drawn from U (−15◦, 15◦). All
simulated RIRs have a length of N=16 384 samples. The image
source method was realized using pyroomacoustics (PRA) [16].

In order to evaluate the ability of a distance estimator, which is
trained solely using simulated RIRs, to generalize to real-world data,
we utilize two data sets of recorded RIRs, namely MIRaGe [13] and
MIRD [14] as test sets. Both RIR data sets were recorded in a room
of size 6m × 6m × 2.4m with configurable reverberation times.
From the data sets, we selected only those microphone pairs that have
a spacing of 8 cm. The acoustic sources of MIRD are placed on a
regular grid at either 1m or 2m distance from a single microphone
array with DoAs between ±90◦ with 15◦ steps in between. Here,
we used all examples with a sound decay time T60 of 360ms and
610ms, which results in a total of 364 test samples. In contrast,
the MIRaGe data set has a cube-shaped volume, the so-called grid
(46cm×36cm×32cm), in which the sound source is positioned and
from which we have selected 100 positions. The microphone arrays
are placed at defined distances (1m, 2m, 3m), three facing the
acoustic source and three at an angle of 45◦. Additionally, 25 outside
of the grid (OOG) source positions are distributed across the room.
From the available sound decay times T60 we selected 300ms and
600ms, which resulted in 1200 test samples for source positions
from the grid and 300 test samples for source positions outside of the
grid.

Microphone signals with a length of 1 s are generated by convolv-
ing clean speech from the LibriSpeech data set [25] with the RIRs.
During training the speech samples are randomly drawn from the
train-clean-100 subset of LibriSpeech. For the evaluation, ten speech
samples from the test-clean subset of LibriSpeech were used per
constellation of source and microphone pair to mitigate the influence
of the speech on the distance estimates. Moreover, additive white
Gaussian noise (AWGN) is added to the microphone signals in order
to simulate sensor noise with a signal-to-noise ratio (SNR), which is
randomly drawn from U (40 dB, 60 dB).

The distance estimators were trained for 500 k iterations utilizing
the Adam optimizer [26] with a batch size of 16 and a learning rate of
3·10−4. Thereby, a checkpoint is created every 10 k iterations. The
STFT for feature extraction uses a Blackman window with a length
of 25ms and shift of 10ms.

We evaluate the performance of the distance estimators by calcu-
lating the mean-absolute error (MAE) of the I distance estimates per
data set with

MAE =
1

I

I∑
i=1

∣∣di − d̂i
∣∣, (7)

where di denotes the ground truth distance and d̂i its estimate. Note
that estimated distance classes are mapped to the distance estimate d̂i
before calculating the MAE.



Table 1. Comparison of the proposed approach to RIR simulation
and the image source method (ISM) with different source directivity
patterns. Additionally to the results on MIRD and MIRaGe results on
a simulated version of MIRaGe (Sim.) are reported. We use the same
approach to RIR simulation for the simulated version of MIRaGe and
the training of the corresponding distance estimator.

Method Source Directivity MAE / m
MIRD MIRaGe Sim.

ISM Omnirectional 0.75 0.54 0.20
ISM Subcardioid 0.51 0.47 0.17
ISM Cardioid 0.27 0.46 0.16
ISM Supercardiod 0.49 0.61 0.21
ISM Hypercardioid 0.32 0.54 0.21

Proposed Cardioid 0.20 0.31 0.26

Table 1 compares the performance of a distance estimator trained
with RIRs which are simulated using the proposed method to the
the performance of distance estimators trained with RIRs which are
simulated via the the image source method using different directiv-
ity patterns for the source. It can be seen that the proposed RIR
simulation method leads to a significantly better distance estimation
performance on MIRD and MIRaGe compared to the image source
method (ISM). Moreover, it can be seen that the model which is
trained with RIRs from the image source method with cardioid source
directivity exhibits the best performance of all models whose training
data were generated using the image source method. In contrast, the
distance estimators which are trained with RIRs generated with less
pronounced source directivities perform worst.

In addition to that, the distance estimators are evaluated on a
simulated version of MIRaGe, which was generated by the same
RIR simulator as the one used to generate the training data for the
respective model. While there is a large gap between the perfor-
mance on simulated and recorded RIRs for distance estimators whose
training data was simulated using the image source method, this gap
is relatively small for a distance estimator trained with data for the
proposed method. This means that the proposed method improves the
generalization ability of a distance estimator from simulated training
data to real data by far.

Results for the distance estimation performance, which can be
achieved by a combination of RIRs from the image source method
and the DRR augmentation technique proposed in [1], can be found
in Table 2. Thereby, the DRR augmentation method varies the DRR
of the RIRs by scaling the part of the RIRs belonging to the direct

Table 2. Comparison of the proposed approach to RIR simulation and
the DRR augmentation technique from [1], which scales the impulse
belonging to the direct path with the factor α. α is either randomly
drawn as in [1] or calculated so that the resulting RIR meets the target
DRR from (4).

Method Source Directivity DRR aug. MAE / m
MIRD MIRaGe

ISM Omnidirectional α ∼ U (1, 3) 0.27 0.56
ISM Omnidirectional α based on (4) 0.23 0.43
ISM Cardioid α based on (4) 0.24 0.37

Proposed Cardioid - 0.20 0.31

Table 3. Ablation study of the proposed approach to RIR simulation
by varying the source’s directivity pattern, the maximum order of
the image sources K used to simulate hI(n) and the method used
calculate the late part of the RIRs. The last line corresponds to the
proposed parametrization.

Source Directivity Order K Late RIR MAE / m
MIRD MIRaGe

Cardioid 0 Stochastic 0.52 0.54
Omnidirectional 3 Stochastic 0.36 0.36

Cardioid 3 ISM 0.24 0.42

Cardioid 3 Stochastic 0.20 0.31

path propagation. Compared to the random scaling of the direct path
component, which we proposed in [1] to increase the DRR, better
distance estimates can be achieved by scaling the direct path so that
the RIRs show a DRR which is calculated based on (4) as in the pro-
posed method. Hereby, the influence of the directivity on the direct
path D(φ, ϱ) in (4) is calculated for the cardioid pattern. Further, the
distance estimation performance is better when simulating sources
with a cardioid directivity instead of omnidirectional sources. From
this we hypothesize that the distance estimator benefits from incor-
porating the source’s directivity into the model of the early specular
reflections. However, the performance which can be achieved by
using the proposed RIR simulator cannot be reached.

An ablation study for the proposed RIR simulator is given in Ta-
ble 3. It is shown that the distance estimation performance degrades
a lot if only the direct path is simulated via the image source method,
i.e., K=0, which again speaks for the importance of a correct sim-
ulation of the specular early reflections. Moreover, it can be seen
that the stochastic process from (5) models the diffuse reflections of
higher order better than the image source method. In addition to that,
simulating omnidirectional sources and also choosing D(φ, ϱ)=1 in
(4) degrades the performance of the distance estimator.

6. SUMMARY

In this paper, we presented a new approach to simulate RIRs for
the training of a DNN-based acoustic distance estimator to improve
its performance in real-world scenarios. Thereby, the image source
method was utilized to simulate the reflections of lower order, which
mainly show a specular character. A cardioid pattern is used to
simulate the source’s directivity in the image source method because
in real-world scenarios acoustic sources typically exhibit a directivity
pattern, which largely differs from an omnidirectional directivity
pattern. In addition to that, the mainly diffuse reflections of higher
order are modeled via an exponentially decaying stochastic process.
The power of the latter is scaled such that the DRR of the RIR fits to
the distance between the source and the microphone. Experiments
on recorded RIRs show that our contribution improves the simulated
training data of a distance estimator to match the characteristics
present in real data better than previous approaches.

In future works we will investigate the suitability of the proposed
approach to RIR simulation to generate training data for data-driven
models for other purposes, like dereverberation, speech enhancement
or room parameter estimation, e.g., DRR and sound decay time T60

estimation.
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