
Faculty for Computer Science, Electrical Engineering and Mathematics
Department of Computer Science
Research Group Secure Software Engineering

Bachelor’s Thesis
Submitted to the Secure Software Engineering Research Group

in Partial Fulfilment of the Requirements for the Degree of

Bachelor of Science

Tailoring Code Property Graphs to
Jimple

by
Michael Youkeim

Thesis Supervisor:
Prof. Dr. Eric Bodden

and
Prof. Dr.-Ing. Juraj Somorovsky

Paderborn, November 26, 2024

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen worden ist. Alle Ausführungen, die wörtlich oder sinngemäß übernommen worden
sind, sind als solche gekennzeichnet.

Ort, Datum Unterschrift

Abstract. The increased complexity of modern software has led to much more
sophisticated attack vectors. As a result, we require newer vulnerability detection
methods to ensure software security without compromising efficiency.
The Code Property Graph (CPG) is a program representation that provides a compre-
hensive overview of program behavior, combining abstract syntax trees, control flow
graphs, and program dependence graphs. With such a detailed data structure, we can
detect patterns that characterize known vulnerabilities and identify various security
threats. Querying the combined data structure instead of the individual graphs en-
ables the detection of multidimensional scenarios.
This work aims to integrate the advantages of CPGs into software systems that utilize
the Jimple intermediate representation. We introduce JimNode, a novel approach for
generating CPGs specifically tailored to Jimple. Despite the model incompatibility, our
evaluation, which covered approximately 50,800 methods, reveals an 88.07% similarity
of the inter-statement edges compared to Joern, the state-of-the-art tool for CPG
generation. We provide a detailed analysis of our methodology and discuss why it is
better suited for Jimple programs than Joern’s language-agnostic approach.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Thesis Structure . 3

2 Background 5
2.1 Program Analysis . 5

2.1.1 Data Flow Analysis . 5
2.1.2 Control Flow Analysis . 6

2.2 Jimple . 6
2.2.1 Challenges of Bytecode . 6
2.2.2 Advantages of Jimple . 8
2.2.3 Impact on Program Analysis . 9

2.3 Property Graphs . 9
2.3.1 Core Concepts and Structure . 9
2.3.2 Querying Property Graphs . 10
2.3.3 Formalizing Property Graphs . 11

3 Code Property Graphs 13
3.1 Structure and Components . 13

3.1.1 Abstract Syntax Trees . 13
3.1.2 Control Flow Graphs . 14
3.1.3 Program Dependence Graphs . 15
3.1.4 Constructing the CPG . 16

3.2 Relevance and Applications . 17
3.2.1 Vulnerability Characterization . 17
3.2.2 Vulnerability Detection . 18

4 Contribution 19
4.1 Theoretical Foundations . 19

4.1.1 Control Dependence . 19
4.1.2 Data Dependence . 23

4.2 Methodology and Model Design . 25
4.2.1 Design and Model Structure of JimNode 25
4.2.2 Advantages Over Language-Agnostic Models 27
4.2.3 Practical Disadvantages of Joern . 27

4.3 Implementation and Integration . 28

vii

4.3.1 Adopting SootUp’s CFG and AST . 28
4.3.2 Building the CDG and DDG . 28
4.3.3 Model Considerations . 28

5 Evaluation 31
5.1 Research Questions and Criteria . 31
5.2 Evaluation Methodology . 31
5.3 Results and Discussion . 33

5.3.1 RQ1: Similarity Analysis . 33
5.3.2 RQ2: Performance Analysis . 35

6 Related Work 37
6.1 Vulnerability Detection . 37
6.2 Static Analysis Frameworks . 37
6.3 Standardizing Property Graphs . 38

7 Threats to Validity 39
7.1 Technical and Tool-Specific Considerations . 39

7.1.1 Tool-Specific Limitations . 39
7.1.2 Variability and Bias in Jimple Code Generation 39

7.2 Methodological Concerns . 40
7.2.1 Conversion and Transformation Bias . 40
7.2.2 Measurement and Evaluation Criteria . 40

7.3 Data Selection and Reliability . 41
7.3.1 Selection Bias . 41
7.3.2 API and Data Source Reliability . 41

8 Conclusion and Future Work 43
8.1 Conclusion . 43
8.2 Future Work . 44

8.2.1 Advanced Query Capabilities . 44
8.2.2 Performance Optimization . 44
8.2.3 Database Integration . 44
8.2.4 Graph Visualization Enhancements . 44

Bibliography 45

viii

Introduction
1

In the following, we first detail the motivations guiding this research and the specific objectives
and challenges we aim to tackle in Section 1.1. The Problem Statement in Section 1.2 further
clarifies the particular issues we address. Section 1.3 then outlines the organization of the
chapters, providing a clear framework for navigating this thesis.

1.1 Motivation

As the complexity and size of software systems continue to expand, the task of detecting vulner-
abilities has become increasingly challenging. Manual methods and traditional tools are often
inadequate for the nuanced demands of modern software security [Gra][BBC+].

Detecting vulnerabilities in software is an intricate and multifaceted challenge. Vulnerabili-
ties encompass a multitude of aspects, each adding to the complexity of the task [AW].

Consider, for instance, the case of buffer overflow vulnerabilities. Buffer overflow vulnerabil-
ities involve the improper handling of memory within a program. When a program attempts to
store more data in a memory buffer than it can safely accommodate, it can lead to a breach of the
system’s security [BEHW]. These vulnerabilities, while seemingly straightforward, encompass
various dimensions of software security [PT].

Identifying buffer overflow vulnerabilities requires a deep understanding of the logic and
control flow of the code. These vulnerabilities often depend on the exact sequence of instruc-
tions that lead to the overflow, making manual detection a cumbersome and error-prone process
[TZWL]. Detecting buffer overflows also requires monitoring how data is read into and manip-
ulated in memory buffers, which is also tedious given the complexity of modern software. The
multifaceted nature of vulnerabilities underscores the necessity for advanced techniques capa-
ble of integrating comprehensive analyses [AW]. Such techniques would provide a structured
approach to effectively tackle the different dimensions of vulnerabilities and ensure security. In
addition, buffer overflows often depend on external inputs, which makes it difficult to predict
when and how they might occur. This unpredictability makes detection even more difficult.

Another reason that contributes to the amount of bugs in modern software is its large scale.
With software systems comprising millions of lines of code, attempting to manually detect all
vulnerabilities is a daunting task fraught with limitations. Modern software is characterized
by its sheer scale and complexity. From operating systems to web applications, the lines of
code have multiplied exponentially. Large-scale software systems involve intricate code, numer-
ous dependencies, and frequent updates. In such a landscape, manual vulnerability detection

1

1.2 Problem Statement

becomes impractical [BBC+] [AHSM]. Furthermore, the rapid pace of software development
demands quick and continuous updates. Vulnerabilities can be introduced or fixed with each
update, making it a race against time. Manual detection methods simply cannot keep up with
this velocity. This underscores the need for automation. Automated vulnerability scanning tools
that utilize techniques such as static and dynamic analysis can efficiently scan large code bases
and identify potential vulnerabilities quickly and accurately [TZWL]. These tools are able to
handle the scale and complexity of modern software and provide comprehensive coverage and
timely detection.

Java is one of the most widely used programming languages, known for its ability to run
on any device using the Java Virtual Machine (JVM). Java’s design utilizes the JVM to en-
sure stable performance and security across different computing environments. This thesis ad-
dresses these challenges by integrating Code Property Graph (CPG) into the Java analysis and
optimization environment, with a specific focus on tailoring them to Jimple, an intermediate
representation of Java bytecode. Unlike conventional methods that primarily focus on syntax,
this implementation enables a multi-dimensional analysis of software, encompassing not only
the syntactical elements but also the behavioral and semantic aspects of code.

CPGs provide a practical framework for vulnerability detection. The main contributor to
their effectiveness is their ability to represent the source code comprehensively. The integration
of the Abstract Syntax Tree (AST), Control Flow Graph (CFG), and acpdf subgraphs facilitates
a more thorough analysis, as the process of searching for vulnerabilities involves querying the
integrated structure of the CPG using queries that include aspects of all of the three subgraphs.

Yamaguchi et al.demonstrated the effectiveness of CPGs in detecting software vulnerabili-
ties by identifying 18 previously unknown vulnerabilities in the Linux kernel [YGAR]. These
vulnerabilities span various types, including buffer overflows, integer overflows, format string vul-
nerabilities, and memory disclosure. By using graph traversals, which are similar to database
queries, they were able to systematically examine combined properties of the code for signs of
vulnerabilities. This method is beneficial for identifying subtle and intricate vulnerabilities that
conventional, isolated methods of static code analysis might miss. The effectiveness of CPGs
in this study underscores their potential as a powerful tool for improving code security through
detailed and proactive vulnerability detection.

1.2 Problem Statement

While there exist tools that support the generation of CPGs, like the language-agnostic Joern,
they are not tailored to the specific structure of Jimple [joe]. This lack of specialization results
in queries that are not fully type-supported and do not efficiently utilize the unique types and
structures of Jimple. Moreover, these general models tend to be excessively intricate as they cater
to various scenarios across different programming languages without accounting for the inherent
simplicity of Jimple. This thesis aims to address these issues by developing CPGs specifically
for Jimple. By focusing on the characteristic aspects of Jimple, this specialized approach aims
to improve the efficiency and accuracy of analysis processes for Java applications and overcome
challenges that broader, language-agnostic tools may not be able to fully overcome.

This integration of CPGs into Jimple marks a significant step towards optimizing the use of
CPGs in bytecode optimization frameworks and ensures that static analysis tools can analyze
complex code structures more effectively. This specialization in the use of CPGs for Jimple
facilitates a deeper understanding of the inherent vulnerabilities of Java applications.

The broader goal of this thesis is to enrich the toolkit available for vulnerability detection
in Java, contributing to the ongoing efforts to secure increasingly complex software systems. In
doing so, it aims to bring about a more nuanced and thorough approach to understanding and

2

Chapter 1. Introduction

mitigating software vulnerabilities, particularly in Java-based environments.
We focus on addressing two primary challenges. The first challenge involves the detailed

alignment of Jimple’s unique structure within the CPG framework. This entails accurately
capturing the intricacies of Jimple programs in CPGs to ensure that the CPG representation
reflects the specific properties and semantics of Jimple code. The second challenge concerns the
efficient generation of CPGs tailored to Jimple. This aspect requires leveraging efficient analyses
and algorithms to generate the CPGs. Addressing these challenges is critical to the accurate
and efficient application of CPGs to Jimple and paves the way for more targeted and effective
vulnerability analysis within Java’s unique ecosystem.

1.3 Thesis Structure
Following, we provide a detailed roadmap of the entire thesis, outlining its structure and pro-
viding a preview of the subsequent chapters.

In Chapter 2, we lay the foundation by discussing the fundamental concepts of static analysis
in the context of software security. We explore common vulnerability detection techniques,
setting the stage for the more advanced approaches presented. We then delve into the intricacies
of the Jimple intermediate representation and discuss its relationship to Java bytecode. Finally,
we introduce the concept of property graphs and illustrate their role as a versatile means of
representing structured data.

In Chapter 3, we explain the structure and essential components of code property graphs.
We demonstrate how these components work together to form a powerful representation of
program properties. We then explore their advantages and potential limitations. Finally, we
delve into their practical applications in the context of detecting common vulnerability patterns.
In addition, we present practical examples and case studies that illustrate how these structures
are effectively utilized to improve software security.

In Chapter 4, we delve into the methodology adopted throughout this research. We provide
a comprehensive explanation of the approaches and techniques used to achieve our research
objectives. We then offer detailed insights into the implementation of the solution proposed in
this thesis.

Moving on to Chapter 5, we assess the correctness of the generated CPGs in representing
the specified input accurately. The purpose of this assessment is to ensure that the guidelines
produced are in line with our objectives and expectations. In addition to correctness, we also
evaluate the performance of the proposed solution.

Chapter 6 discusses other studies and tools related to our project. We review the approaches
of other studies to similar problems and where our work fits into the overall picture.

Following the discussion of related work, Chapter 7 addresses the threats to validity of our
research. This chapter carefully examines potential limitations and biases inherent in our study’s
design, methodology, and analysis. By acknowledging these threats, we discuss the implications
for the reliability and generalizability of our findings and describe the measures employed to
minimize their impact. This critical evaluation is essential for ensuring the robustness of our
research conclusions.

Finally, in the Chapter 8, we provide a concise summary of the work performed and the
results achieved throughout the thesis. We then explore avenues for future work, suggesting
how the completed research could be expanded to achieve further goals.

3

1.3 Thesis Structure

4

Background
2

In the following, we provide the foundational knowledge necessary for understanding the context
of our work. In Section 2.1, we provide an introduction to program analysis. We then explore
the specifics of Jimple in Section 2.2 and conclude with an introduction to property graphs in
Section 2.3.

2.1 Program Analysis

Program analysis is an essential aspect of software development that involves examining, un-
derstanding, and enhancing the code [NNH]. Program analysis can be broadly categorized into
various types, each with its own methodologies, goals, and applications. The two most fundamen-
tal types are static analysis and dynamic analysis. However, there are various other specialized
categories such as behavioral analysis, fuzz testing, and symbolic execution [BCD+][LPJ+][SR].
Each of these techniques offers unique insights into the behavior and performance of software
systems. In this section, we mainly lay our focus on static analysis.

In static analysis, the source code of a program is examined without being executed. One of
the main objectives of static analysis is to identify areas for optimization to improve a program’s
overall efficiency. This involves analyzing algorithms for efficiency, detecting redundant code,
and identifying opportunities for code refactoring. In addition, static analysis helps to optimize
resource usage, e. g., memory consumption, by analyzing the code structure and applying the
appropriate improvements.

2.1.1 Data Flow Analysis

Data-flow analysis is among the static analysis techniques used to examine and optimize pro-
grams [AC][VJB+]. Data-flow analysis tracks how variables are defined and used in the program,
offering insights into their usage and the paths data takes. This is crucial for identifying segments
of code where data processing can be optimized. It helps uncover inefficiencies such as unused
variables or unreachable code segments. Furthermore, there are several data flow analyses that
enhance the security of the code, such as taint analysis. Taint analysis tracks the flow of poten-
tially insecure or “tainted” data through the program. This is significant in identifying security
vulnerabilities, especially in scenarios where untrusted input can flow into sensitive program
areas, leading to issues such as SQL injection or cross-site scripting (XSS) vulnerabilities. This
analysis helps to find the exact places in the code where data sanitization or validation checks

5

2.2 Jimple

should be implemented. We will further delve into the theoretical foundations and practical
applications of data flow analysis in Chapter 4.

2.1.2 Control Flow Analysis

Another critical aspect within the domain of static analysis is Control Flow Analysis. Control
flow analysis is a technique used to understand the order in which a program’s individual state-
ments, instructions, or function calls are executed or evaluated. This analysis is essential in
identifying the different paths a program might take during its execution, which is crucial for
both optimizing performance and ensuring correct program behavior. By analyzing the control-
flow graph of a program, compilers and static analysis tools can identify unreachable code and
dead code, i.e., code that does not affect the program’s output, and can perform optimizations
to enhance the program’s performance.

2.2 Jimple

Jimple is an intermediate representation of Java bytecode that is more human-readable and
more suited for analysis than bytecode [VrCG+].

2.2.1 Challenges of Bytecode

Java bytecode is designed for efficient execution by the JVM, not for human readability or
ease of analysis. Its dense and complex nature makes it difficult for developers and analysts to
intuitively understand the program’s logic and flow.

Stack-based Nature

1 iload_0
2 iconst_2
3 irem

Listing 2.1: Bytecode Example for Computing
the Remainder of x Divided by 2

Bytecode operates on a stack-based mechanism. This stack-based nature of bytecode intro-
duces complexity, especially for certain types of analyses.

For example, in a simple operation example, computing x%2 requires three instructions,
demonstrating the granularity of bytecode operations. The sequence to perform this calculation,
as illustrated in Listing 2.1, involves the following operations.

1. Loading the value of x onto the stack with an iload instruction, which pushes x onto the
top of the operand stack.

2. Pushing the constant value ‘2‘ onto the stack, typically achieved with an iconst_2 in-
struction, preparing it for the modulus operation.

3. Executing the modulus operation using the irem instruction, which pops the two top
values from the stack (x and ‘2‘), computes the remainder of their division, and pushes
the result back onto the stack.

6

Chapter 2. Background

This example shows how bytecode decomposes even simple expressions into multiple instruc-
tions. This granularity necessitates examining all preceding instructions to fully understand the
computation being performed.

For more complex expressions, the number of required instructions increases significantly, po-
tentially becoming arbitrarily large. Consequently, to determine the expression being computed,
the analysis must examine all preceding instructions.

Low-Level Orientation

Bytecode’s low-level and machine-oriented nature lacks high-level abstractions, which compli-
cates human readability and analysis. The design of bytecode focuses on machine efficiency
rather than ease of understanding or analysis, making it challenging for humans to directly
interpret or analyze the code without significant effort.

Complex Control Flow

The control flow within bytecode is influenced by its stack-based architecture. Complex ex-
pressions in bytecode often require multiple instructions and intermediate results stored on the
operand stack. This leads to intricate control flow patterns, especially when expressions involve
nested or chained operations. In addition, evaluating these complex expressions can make un-
derstanding the control flow of the program particularly difficult, which highlights the challenges
of working directly with low-level code representations for program analysis and optimization.

These aspects underscore the challenges associated with directly working with and analyz-
ing bytecode, particularly when compared to more abstracted intermediate representations like
Jimple.

1 if (x > y) {
2 x = x + 1;
3 }
4 // Following code ..

Listing 2.2: A simple if-condition example in
Java

Consider the simple Java if-condition shown in Listing 2.2. In Java bytecode, this translates
to a sequence of operations involving loading the variables, performing a comparison, and then
a conditional jump based on the comparison’s outcome.

1 iload_1
2 iload_2
3 if_icmple L1
4 iinc 1, 1
5 L1:
6 // Following code ..

Listing 2.3: A simple if-condition example in Bytecode

In the corresponding bytecode representation in Listing 2.3, the iload instructions load the
variables x and y onto the stack. The if_icmple instruction pops the two top values from

7

2.2 Jimple

the stack (x and y), compares them, and jumps to the label L1 if the condition x ≤ y is true,
effectively inverting the original x > y condition for the jump logic. The iinc instruction is
then used to increment the variable x by 1 if the jump is not performed, indicating the condition
x > y was true.

This transformation requires careful analysis to understand and trace the original high-level
conditional logic. Unlike the clear and structured if-else blocks in Java, bytecode represents
these conditions with conditional jump instructions and direct variable manipulation commands
like iinc, which can be harder to follow and understand, especially in more complex conditional
structures with nested if-else statements.

This complexity in representing and understanding conditional logic in bytecode exemplifies
the challenges of working directly with low-level code representations for program analysis and
optimization.

2.2.2 Advantages of Jimple

Jimple converts bytecode’s stack-based operations into a three-address code format, significantly
enhancing readability, simplicity, and the capacity for analysis.

Higher Level of Abstraction

Jimple is far easier for a human to understand due to its higher level of abstraction. Operations
are explicitly stated, resembling high-level language constructs more closely than bytecode.

Stackless Representation

Jimple eliminates the stack mechanism used in bytecode, replacing it with additional local
variables. This transformation makes references explicit rather than implicit, aiding in clarity
and analysis [VrCG+].

Three-Address Code

Jimple’s use of three-address code simplifies each operation to the form of x = y op z, where
an assignment involves at most three operands. This format is crucial for readability and makes
program analysis and optimization more straightforward [VrCG+].

Compactness

Jimple significantly simplifies the complexity of bytecode by mapping its over 200 distinct op-
erations to only 16 different statement types. This consolidation not only enhances readability
but also streamlines the analysis process by reducing the diversity of operations that must be
understood and processed.

Typed and Named Variables

Jimple introduces typed and named variables, enhancing the accuracy of analyses. For exam-
ple, interface invocations can sometimes be statically resolved using the type information pro-
vided, facilitating optimizations such as loop unrolling, method inlining, and branch prediction
[VrCG+].

Now, consider the representation of the same Java program, as detailed in Listing 2.2, within
the Jimple intermediate language. The Jimple representation, shown in Listing 2.4, maintains
the structure and logic of the Java source code, but with the aforementioned improvements for
analysis.

8

Chapter 2. Background

1 int x, y;
2 if (x <= y) goto label1;
3 x = x + 1;
4 label1:
5 // Following code

Listing 2.4: Jimple representation of a simple Java if-
condition

This example demonstrates Jimple’s approach to representation, which is straightforward,
stackless, uses three-address code, is compact, and employs typed and named variables. These
characteristics significantly contribute to Jimple’s suitability for detailed program analysis and
optimization.

2.2.3 Impact on Program Analysis

The clarity and structure of Jimple greatly facilitate the analysis of dynamic Java features, such
as reflection and dynamic method invocation. By abstracting complex bytecode operations into
more understandable structures, Jimple allows for deeper and more effective program analysis,
highlighting optimization opportunities more clearly than bytecode [VRGH+].

Jimple’s design addresses the challenges posed by bytecode’s complexity and lack of read-
ability. By providing a more accessible, stackless, and structured format, Jimple enables more
effective program analysis and optimization.

2.3 Property Graphs
Property graphs represent a versatile and powerful model for organizing and analyzing complex
data relationships. They have evolved over time to become a fundamental tool in various
domains, from social network analysis to complex system modeling [ABD+]. The essence of a
Property Graph lies in its ability to not only represent entities and their relationships but also
to enrich these elements with detailed attributes.

2.3.1 Core Concepts and Structure

At its core, a property graph consists of nodes, edges, properties, and labels. Nodes typically
represent entities or objects, while edges denote the relationships or interactions between these
entities. Both nodes and edges can have properties associated with them, which are key-value
pairs that provide additional information about the entity or relationship. Labels, assigned to
both nodes and edges, categorize them into distinct types or classes. For example, node labels
might identify whether an entity is a Person, Organization, or Event, and edge labels might
specify the nature of the relationships, such as FriendOf, EmployedBy, or Attended. Property
graphs are multigraphs, i. e., the same pair of nodes can have several edges between them.
Additionally, property graphs can be enriched with schemas that provide a predefined structure
for the properties and labels associated with nodes and edges, thereby further organizing and
defining the graph’s data model.

These features make property graphs particularly useful for modeling real-world scenarios
where entities have multiple attributes and can be connected in various ways [HBC+]. The
support for multiple edges between the same pair of nodes enables the representation of more
complex relationships and connections in the data. Additionally, the ability to operate without

9

2.3 Property Graphs

a strict schema, yet allowing for its inclusion when necessary, provides flexibility that makes it
suitable for a wide range of applications and use cases.

To illustrate the practical utility of property graphs, consider the example of a social network
platform like Facebook, where users are represented as vertices and friendships as edges. Each
user (node) can have properties such as name, age, and interests, while the friendships (edges)
may include properties like the date the friendship was established or the strength of the con-
nection. Figure 2.1 shows a potential property graph representation that captures this scenario
and illustrates the model’s ability to encapsulate complex relational data in a structured yet
flexible way.

Alice, Bob, Carol, and David are depicted as nodes in the graph, each with their respective
attributes and the edges between them represent different types of social interactions or rela-
tionships. For instance, Alice follows both Bob and Carol, as indicated by the edges labeled
“follows” connecting Alice to Bob and Carol. Furthermore, the graph captures additional in-
teractions such as liking posts. For instance, Alice has liked a post by Bob (edge labeled “liked
post”), and similar interactions are depicted between other users in the network. The graph
also demonstrates the concept of multiple edges between the same pair of nodes. For example,
Bob and Carol have both followed each other, resulting in two edges labeled “follows“ between
them. Moreover, the graph showcases edges with the same label but different properties. For
instance, Bob and Carol have both liked posts by Alice, each with a distinct post identifier.

follows

liked post

Name

Age

Interests

User
: Alice

: 32

: Travel, Photography liked post follows

post_id : 123456

liked post

post_id : 111

liked post

User
Name : Bob

Age : 28

post_id : 222
post_id : 789012 follows User

Name : David

liked post Age : 30

Interests : Cooking, Music follows post_id : 567890 Interests : Technology, Gaming

follows

follows Name

Age

Interests

User
: Carol

: 35

: Reading, Yoga

Figure 2.1: Property graph illustrating social network interactions.

2.3.2 Querying Property Graphs

The structure of property graphs lends itself to powerful querying and analysis capabilities.
Graph databases that support property graphs often provide query languages like Cypher by
Neo4j, which enable intricate queries based on both the structure of the graph and the properties
of nodes and edges [Neo24]. This feature allows for more sophisticated analyses, like finding the
shortest path considering not just the distance but also other factors like traffic conditions or
route safety [AAB+].

10

Chapter 2. Background

2.3.3 Formalizing Property Graphs

Currently, property graphs do not have a single, universally agreed-upon formal definition but
rather are understood through a commonly accepted conceptual framework. Efforts toward
standardizing the concept and query languages for property graphs include the development of
openCypher by Neo4j and the ongoing work by ISO/IEC to standardize GQL (Graph Query
Language) as a query language for property graphs [GJK+][Int24]. These initiatives aim to
provide more formal definitions and interoperability standards for property graph technologies.

In the context of this work, property graphs will serve as the basis for different program
representations. For that purpose, we will provide a formal definition of property graphs tailored
to our specific needs.

Definition 2.1 (Property Graph). A property graph G is defined as a tuple
G = (V, E, Pv, Pe, ϕv, ϕe, Lv, Le, λv, λe). V denotes the set of vertices in the graph. E denotes
the set of directed edges, with each edge being a pair (u, v) where u, v ∈ V , indicating a directed
edge from vertex u to vertex v. Pv and Pe represent sets of property keys associated with vertices
and edges, each property being a pair (key, value) ∈ K × V , where K is the domain of keys
and V is the domain of values. The functions ϕv : V → 2Pv and ϕe : E → 2Pe map vertices
and edges to a set of their properties, respectively. Lv and Le indicate separate sets of labels for
vertices and edges, with λv : V → Lv and λe : E → Le as the functions assigning these labels.

Applying the given definition to our social network example in Figure 2.1, we identify the
components of the tuple G as follows. The set of vertices V includes {Alice, Bob, Carol, David},
representing individuals in the network. The set of directed edges E consists of tuples such
as (Alice, Bob), each indicating a directed relationship from one vertex to another. Properties
associated with vertices (Pv) include keys like “Age” and “Interests”, with corresponding values
for each individual, for instance, (“Age”, 32) for Alice. Similarly, properties associated with
edges (Pe) include keys relevant to the interactions, such as “post_id” for edges labeled “liked
post”. The functions ϕv and ϕe map these vertices and edges to their associated properties,
respectively. Labels for vertices and edges (Lv and Le, respectively) further classify the graph
elements, with λv and λe assigning these labels. For example, λe would map an edge from Alice
to Bob with the action “follows” to its respective label.

There are simpler formulations of property graphs in the literature, such as the definition
by Yamaguchi et al.[YGAR]. We opted for this particular extended definition, where Lv and
Le are uniquely addressed for labeling nodes and edges, respectively, due to the need to capture
the notion of different labeling domains. This distinction is crucial in our context since we use
labels to convey the notion of object or entity types. We assume that the set of types relevant
to edges generally differs from that for vertices.

11

2.3 Property Graphs

12

Code Property Graphs
3

In the following, we delve into the essence and functionality of code property graphs. Section 3.1
breaks down their structure and components, while Section 3.2 illustrates their relevance and
applications through practical examples.

3.1 Structure and Components
CPGs present an innovative framework for source code analysis by synthesizing various dimen-
sions of code representation into a cohesive structure. This concept, initially introduced by
Yamaguchi et al. [YGAR], integrates key aspects of code analysis—Abstract Syntax Tree (AST),
Control Flow Graph (CFG), and Program Dependence Graph (PDG)—directly into a unified
graph-based format.

3.1.1 Abstract Syntax Trees

ASTs form the backbone of the CPG, representing the syntactic structure of the source code.
Each node in an AST corresponds to a construct in the source code, such as variables, opera-
tors, method calls, and control structures. The hierarchical nature of ASTs mirrors the nested
structure of programming constructs, providing a detailed view of the code’s syntax.

Formal Representation of ASTs as Property Graphs

Given the formal definition of a property graph provided in Definition 2.1, we can represent an
AST within this framework as follows.

• Vertices (V): Each vertex corresponds to a syntactic construct in the source code, such
as variables, operators, method calls, and control structures. These syntactic constructs
are the nodes (V) of the AST.

• Edges (E): Directed edges represent the syntactic hierarchy and relationships between
nodes, such as parent-child relationships in the tree structure, included in E.

• Properties of Vertices (Pv) and Edges (Pe): Nodes (vertices) carry properties (Pv)
like positional information (e. g.statement position). While basic AST edges primarily
signify structural connections without additional attributes, enhanced ASTs might include
properties (Pe) on edges to capture more nuanced relationships, such as the sequence of
arguments in a function call.

13

3.1 Structure and Components

• Property Functions (ϕv, ϕe): The function ϕv : V → 2Pv maps each node to its set of
properties and extends the AST with detailed contextual information. Similarly, ϕe : E →
2Pe would apply to edges if they carry properties.

• Labels (Lv, Le): Labels are used to explicitly denote the type of syntactic constructs
and relationships. Each node is assigned a label from Lv (e. g., VariableDeclaration,
Assignment, MethodCall), signifying its role in the source code. Edges are labeled from
Le to denote the type of syntactic relation (e. g., ParentChild, ArgumentSequence).

• Labeling Functions (λv, λe): The function λv : V → Lv assigns the appropriate syntactic
type label to each node, while λe : E → Le labels each edge with its relationship type.

3.1.2 Control Flow Graphs

CFGs are integrated into CPGs to represent the flow of control in a program. They illustrate
how execution progresses from one block of code to another, highlighting the paths that might
be taken during execution. In CFGs, nodes can represent either basic blocks — a sequence of
consecutive statements or instructions with only one entry point and one exit point — or single
statements, and edges represent the flow of control from one block to another. This graphical
representation provides a detailed view of all possible execution paths and is instrumental in
identifying areas like loops, conditional branches, and exit points.

Formal Representation of CFGs as Property Graphs

In alignment with our formal definition of a property graph in Definition 2.1, we detail the
representation of a Control Flow Graph (CFG) as follows.

• Vertices (V): Each vertex corresponds to a single statement in the source code, and
collectively, these statements form the nodes (V) of the CFG, representing the granular
execution points within a program.

• Edges (E): The directed edges between the vertices represent the control flow from one
statement to another and capture the possible execution paths through the program. These
edges are contained in E and describe how the execution can progress or branch depending
on the conditions fulfilled at runtime.

• Properties of Vertices (Pv) and Edges (Pe): Each node can be associated with proper-
ties (Pv) such as statement position. Edges might carry properties (Pe) that describe the
conditions under which control flow transitions occur, like boolean conditions for branches.

• Property Functions (ϕv, ϕe): The function ϕv : V → 2Pv maps each statement to
its relevant properties, enriching the CFG with contextual details. Similarly, ϕe : E →
2Pe maps edges to their properties, if any, enhancing the understanding of control flow
dynamics.

• Labels (Lv, Le): Labels denote the type of control flow constructs represented by nodes
and edges. Nodes (V) receive labels from Lv indicating their statement type (e. g.,
Assignment, IfStatement, Loop), while edges (E) are labeled from Le to reflect the
nature of control flow (e. g., TrueBranch, FalseBranch, LoopBack).

• Labeling Functions (λv, λe): λv : V → Lv assigns a specific type label to each statement,
which clarifies its role in the program logic. λe : E → Le provides the edges with labels
that indicate the type of control flow relationship they represent, thereby offering insights
into the program’s execution pathways.

14

Chapter 3. Code Property Graphs

3.1.3 Program Dependence Graphs

PDGs, introduced by Ferrante et al., capture the dependencies between different parts of the
code [FOW]. They illustrate how data flows through the program and how different operations
depend on each other. This is crucial for understanding the impact of changes in one part of
the code on other parts, and for identifying potential side effects. PDGs consist of two primary
subgraphs: the Control Dependence Graph (CDG) and the Data Dependence Graph (DDG).

Control Dependence Graphs

The CDG records control dependencies within the program. Control dependencies are relation-
ships that indicate that the execution of a piece of code depends on the outcome of a particular
condition or decision point in another piece of code. In a CDG, the nodes represent program
statements or code blocks, while the edges represent control dependencies. For example, in
an if-else statement, the code blocks within the if and else sections are control-dependent on
the conditional expression of the if statement. This means that the execution of these blocks
depends on the result of the evaluation of the conditional expression.

Data Dependence Graph

The DDG illustrates data dependencies within the program. Data dependencies occur when a
piece of code depends on data produced by another part of the program. In the DDG, nodes
again represent program statements or operations, and edges signify the data dependencies
between these operations.

Formal Representation of CDGs and DDGs as Property Graphs

Following the formal definition of a property graph provided in Defintion 2.1, we describe the
representation of a CDG as follows.

• Vertices (V): Each vertex corresponds to a single statement or control structure in the
source code, where collectively, these elements form the nodes (V) of the CDG. This
representation emphasizes the points in the program where the execution path diverges
based on conditional statements.

• Edges (E): Directed edges between vertices represent control dependencies, indicating
that the execution of one statement is conditionally dependent on another. These depen-
dencies form the edges (E) of the CDG and outline the influence of the decision points on
the execution sequence.

• Properties of Vertices (Pv) and Edges (Pe): Nodes may carry properties (Pv) such as
the condition leading to a control dependency or the statement position. Edges, character-
izing the nature of control dependencies, could have properties (Pe) detailing the specific
conditions under which control is passed from one node to another.

• Property Functions (ϕv, ϕe): The function ϕv : V → 2Pv maps each node to its set of
properties. Similarly, ϕe : E → 2Pe assigns properties to edges to clarify the conditions of
dependency.

• Labels (Lv, Le): Nodes are labeled with types from Lv that reflect their role in control de-
pendencies (e. g. Conditional, LoopStart, MergePoint). Edges are labeled from Le

to indicate the type of control dependency (e. g. TrueDependency, FalseDependency,
LoopDependency).

15

3.1 Structure and Components

• Labeling Functions (λv, λe): Through λv : V → Lv, each control statement or structure
is assigned a label identifying its type. λe : E → Le categorizes the control dependencies
by illustrating how execution decisions impact the program’s flow.

Finally, for the DDGs, the vertices (V) and their properties (Pv) are defined similarly to the
CDGs. The special features of the DDG are described below.

• Edges (E): In DDGs, directed edges are particularly significant, representing data depen-
dencies. These dependencies indicate that the execution or value of one statement directly
influences another. This relationship is crucial for understanding data flow and potential
side effects in program execution.

• Properties of Edges (Pe): The properties associated with edges in DDGs might include
information about the data dependency (e. g., the dependency variables).

• Labels (Le): Edges in DDGs are labeled to reflect the specific kind of data dependency
they represent (e. g., ReachingDef.).

3.1.4 Constructing the CPG

The construction of a CPG involves the integration of multiple subgraphs—namely, the AST,
CFG, CDG, and DDG—each representing different facets of program semantics. The unification
process is formalized as follows, adhering to the principles of property graph
G = (V, E, Pv, Pe, ϕv, ϕe, Lv, Le, λv, λe) defined in Definition 2.1:

1. Vertex Integration (V): The set of vertices in the CPG, VCPG, is the union of vertices
from the AST, CFG, CDG, and DDG. Each vertex represents a unique construct or
statement in the source code, ensuring no duplication:

VCPG = VAST ∪ VCFG ∪ VCDG ∪ VDDG

2. Edge Integration (E): The set of edges in the CPG, ECPG, combines the edges from the
AST, CFG, CDG, and DDG, preserving their original semantics while avoiding overlap:

ECPG = EAST ∪ ECFG ∪ ECDG ∪ EDDG

3. Property Aggregation (Pv, Pe): Properties of vertices and edges (PvCPG , PeCPG) are
aggregated from their counterparts in the subgraphs. This aggregation preserves the orig-
inal context and adds a layer of integration for analysis:

ϕvCPG : VCPG → 2PvCPG , ϕeCPG : ECPG → 2PeCPG

4. Label Harmonization (Lv, Le): The labeling functions λvCPG and λeCPG ensure that
each vertex and edge in the CPG is assigned a label that reflects its role across the com-
bined semantics of the subgraphs. This step is crucial for maintaining the integrity and
interpretability of the merged graph:

λvCPG : VCPG → LvCPG , λeCPG : ECPG → LeCPG

5. Semantic Preservation: Throughout the integration process, it is imperative to preserve
the semantic relationships inherent in each subgraph. This involves careful mapping of
control and data dependencies, ensuring that the unified graph accurately represents the
program’s behavior and structure.

16

Chapter 3. Code Property Graphs

This formal methodology outlines the comprehensive approach to constructing a CPG by
integrating distinct but related subgraphs, thereby facilitating a multidimensional analysis of
source code through a unified, semantically rich graph model.

While, in practice, entities such as statements inherently carry the same properties across
different subgraphs, we adopt a formal approach to property integration. This strategy is imple-
mented to ensure comprehensiveness and to avoid any potential confusion that might arise from
implicit assumptions about property uniformity. By formally integrating properties, we avoid in-
advertently omitting nuanced details and ensure that each entity is represented in the CPG with
the greatest possible completeness and accuracy, reflecting the full range of its characteristics as
described in the individual subgraphs.

3.2 Relevance and Applications

CPGs stand out due to their ability to encapsulate multiple facets of source code. By combin-
ing the syntactic structure provided by ASTs, the execution flow depicted in CFGs, and the
interdependencies highlighted in PDGs, CPGs offer a comprehensive representation of both the
static and dynamic characteristics of code. This multifaceted approach enables a more holistic
analysis, crucial for a range of applications from security vulnerability detection to code quality
assessment.

3.2.1 Vulnerability Characterization

Whereas traditional code analysis methods might focus on a single aspect of the code, CPGs
provide a layered and interconnected view. This allows for an enhanced program analysis, since
CPGs reveal additional insights into how different components of the code interact and impact
each other.

Consider, for instance, the Time-of-check to time-of-use (TOCTTOU) vulnerability. The
TOCTTOU vulnerability exemplifies a scenario where the multifaceted analysis capability of
CPGs becomes indispensable.

1 public class FileAccess {
2 public void handleFile(String filePath) {
3 File file = new File(filePath);
4

5 // Time-of-Check
6 if (isNotSymbolicLink(file)) {
7 // Time-of-Use: Potential TOCTTOU Vulnerability
8 processFile(file);
9 }

10 }
11

12 private boolean isNotSymbolicLink(File file) {
13 return !Files.isSymbolicLink(file.toPath());
14 }
15

16 private void processFile(File file) {
17 // Perform some operation on the file
18 }
19 }

Listing 3.1: Example of the TOCTTOU Vulnerability.

17

3.2 Relevance and Applications

In a TOCTTOU scenario, the victim first ensures that a particular file is not a symbolic
link (symlink). Once confirmed, they believe it is safe to work on the file. However, in the
intermediary time between the verification and the subsequent action, an attacker stealthily
replaces the original file with a symlink. Unaware of this change, the victim then accesses the
file, assuming that it is not a symlink. Such a vulnerability poses significant risks. For example,
if a password file is mapped to the symlink, this can lead to the unintentional disclosure of
sensitive data.

This type of vulnerability highlights the importance of considering multiple facets of code
behavior—sensitive operations, type usage, attacker control, and sanitization measures—–in
conjunction [YGAR]. CPGs, by encapsulating these aspects, enable the detection of such com-
plex vulnerability patterns that would otherwise evade more traditional, single-faceted analysis
techniques.

3.2.2 Vulnerability Detection

The methodology of Yamaguchi et al. for characterizing vulnerabilities using CPGs represents a
paradigm shift in static code analysis by transitioning to a model that accounts for the entirety
of code structural and semantic components [YGAR]. Analyses that focus on isolated aspects
of the code fall short of identifying complex vulnerabilities, such as TOCTTOU, where specific
preconditions must be met. While some tools attempt to remedy that by assuming that all
preconditions are always satisfied, this often leads to a high rate of false positives [SNAA].
CPGs, by providing a multi-dimensional view of the code, pave the way for more accurate and
nuanced vulnerability detection, reducing the reliance on broad assumptions and subsequent
manual filtering of results.

18

Contribution
4

In the following, we present the cornerstone contributions of our research. Section 4.1 lays
the foundation by outlining the fundamental principles underlying the construction of CPGs
universally. Section 4.2 examines our methodology and the rationale behind the design deci-
sions of JimNode. Lastly, section 4.3 discusses the practical implementation of our theoretical
framework and design principles.

4.1 Theoretical Foundations

The construction of a CPG entails constructing and assembling its subgraphs. This section
discusses the theoretical underpinnings required for constructing the CPG subgraphs. Since we
were only concerned with the construction of the CDG and DDG based on an already established
CFG, we will focus exclusively on the construction of CDG and DDG.

4.1.1 Control Dependence

The principles of dominance and post-dominance within a CFG are pivotal for building the CDG.
In the following, we explore how these foundational concepts form the basis for its construction.

Dominance in Control Flow Analysis

The foundational concept of dominance in control flow analysis was first systematically articu-
lated in the seminal work of Prosser [Pro]. Dominance within a CFG is defined by the principle
that a node is considered dominant over another if every path to the latter must traverse through
the former. This concept is integral to understanding the flow of control in programs and is
particularly significant in compiler optimization and control flow analysis.

Dominance analysis is employed to systematically dissect the control paths within a CFG. In
the broader scope of program analysis, dominance is a key factor in accurately determining points
of control convergence and divergence, which are critical in understanding program behavior
and structure [CFR+]. In the context of our research, we leverage the concept of dominance to
identify the control dependencies between the nodes of the CFG and consequently construct the
CDG. The choice of dominance analysis for the construction of the CDG due to its robustness
in mapping control flow dependencies as well as its operational efficiency [CHK]. Dominance
between two nodes in a CFG is defined as follows.

19

4.1 Theoretical Foundations

Definition 4.1 (Dominance). A node A in a CFG is said to dominate another node B if every
path from the initial node to B passes through A. This is denoted as A dom B.

D(A) = {B ∈ CFG | ∀ paths P from the start node to B, A ∈ P}

The dominators of a node are thus the nodes that are present in every path from the start
node to this node. Similarly to the concept of dominance, we can introduce the concept of
post-dominance as follows.

Definition 4.2 (Post-Dominance). A node A in a CFG is said to post-dominate another node
B if every path from B to the exit node passes through A. This is denoted as A pdom B.

PD(A) = {B ∈ CFG | ∀ paths P from B to the exit node, A ∈ P}

Dominance Frontiers

While dominance indicates the nodes that influence the execution path of other nodes, control
dependencies are more specific. They exist between two nodes A and B if the execution of B
depends on a decision made at A. To derive control dependencies from the established dominance
relationships, we introduce the concept of dominance frontiers.

Definition 4.3 (Dominance Frontier). The dominance frontier of a node A is the set of all
nodes B for which A does not dominate B, but A dominates an immediate predecessor of B in
the CFG. In other words, the dominance frontier represents those nodes that are just outside the
reach of A’s dominance. This can be denoted as follows.

DF (A) = {B ∈ CFG | ¬(A dom B) and ∃C pred B, A dom C}

Similarly, we define post-dominance frontiers as follows.

Definition 4.4 (Post-Dominance Frontier). The post-dominance frontier of a node A is the
set of all nodes B for which A does not post-dominate B, but A post-dominates an immediate
successor of B in the CFG. In other words, the post-dominance frontier represents those nodes
that are just outside the reach of A’s post-dominance. This can be denoted as follows.

PDF (A) = {B ∈ CFG | ¬(A pdom B) and ∃C succ B, A pdom C}

Dominance frontiers and post-dominance frontiers are critical in identifying the points in the
program where control paths diverge and converge, respectively. They are particularly important
in the construction of CDGs as they help to determine where control dependencies arise in the
presence of branching structures in the program. Similarly, we define post-dominance frontiers
as follows.

Dominance Trees

Building on the concept of dominance, where the dominators of a node include all nodes present
in every path from the start node to the given node, we transition to a more specific aspect known
as immediate dominance. Immediate dominance refines the general notion of dominance by
identifying the closest dominator to a node within the CFG. Specifically, a node A is considered
the immediate dominator of node B if it directly precedes B in the hierarchy of dominators,
with no intermediate nodes exhibiting dominance over B. This implies that A is the last node
through which all paths from the start node to B must pass, making it a pivotal control point
in the flow of the program. Immediate dominance thus narrows down the broad spectrum of

20

Chapter 4. Contribution

A

B

C

D

E

F

G

H

Figure 4.1: Example of a CFG

A

B

E

F

C

D

G

H

Figure 4.2: Dominator tree for Figure 4.1

dominators to highlight the most direct influence on a node’s execution path. Consider the CFG
in Figure 4.1 with the entry node A. Since node A is the entry point, it dominates all other
nodes. Similarly, node B dominates all nodes in the graph, except for A. Node C dominates
only itself and node D, but it does not dominate node G due to the presence of paths ABEFG
and ABEG. Likewise, node E dominates only itself and node F . Node G dominates only itself
and node H. Nodes D, F , and H dominate only themselves. Based on this, we can identify the
immediate dominators and construct the dominance tree shown in Figure 4.2.

Algorithm for Finding Dominators

In the realm of compiler design and program analysis, determining the dominators within a
CFG is a pivotal task. This process is foundational for constructing the dominator tree, which
is essential for optimizing code, identifying loops, and enhancing program analysis techniques
[Ram]. There are several algorithms designed to find dominators in a CFG, each varying in
complexity and efficiency.

Algorithm 1 outlines the the naïve approach to finding dominators in a CFG. It involves

21

4.1 Theoretical Foundations

Algorithm 1 Naive Approach for Calculating Dominators
Require: Control flow graph CFG with start node S
Ensure: Dominator set Dom for each node in CFG

1: for each node N in CFG do
2: Dom[N]← {S} ▷ Initialize dominator set with start node
3: if N ̸= S then
4: Dom[N]← Dom[N] ∪ {N} ▷ A node dominates itself
5: for each node M in CFG excluding S and N do
6: isDominator ← true
7: for each path P from S to N do
8: if M /∈ P then
9: isDominator ← false

10: break
11: end if
12: end for
13: if isDominator then
14: Dom[N]← Dom[N] ∪ {M} ▷ Add M to N ’s dominators
15: end if
16: end for
17: end if
18: end for

a simple but exhaustive examination of all paths within the graph. For a given node B, this
method checks every possible path from the entry node of the CFG to B, ensuring that a
candidate dominator node A is present in all such paths. If A is found in every path leading to
B, A is considered a dominator of B.

While conceptually straightforward, the naïve method is computationally intensive, espe-
cially for complex CFGs with a large number of nodes and intricate control flows. The primary
limitation of this approach lies in its requirement to examine all paths within the CFG, which
can grow exponentially with the size of the graph. This exhaustive path analysis makes the
naïve method less practical for use in real-world applications, where CFGs can be extensive and
complex.

One of the most common approaches in dominance analysis is the Cooper-Harvey-Kennedy
algorithm by Cooper et al. [CHK]. It is known for its simplicity and efficiency.In the JimNode
implementation, the CHK algorithm was utilized to compute the post-dominance frontiers.

Building the CDGs from Post-Dominance Frontier

In their foundational work on PDGs, Ferrante et al. define control dependence based on the
concept of dominance. A node Y becomes control dependent on node X if and only if there
is a path from X to Y , with all intermediate nodes post-dominated by Y without X being
post-dominated by Y . This relationship is represented in the CDG edges connecting nodes to
their respective post-dominators [FOW].

The conventional computation of control dependence utilizes two primary methods based on
dominance principles. Initially, one can construct a post-dominator tree, establishing control
dependencies by directly connecting nodes to their post-dominators.

The alternative approach, proposed by Cytron et al., utilizes post-dominance frontiers to
determine control dependencies [CFR+].

Our work in JimNodedraws upon these established methods, particularly the insights from

22

Chapter 4. Contribution

Cytron et al.. To compute control dependence relations, we reverse the CFG, incorporate a
virtual start node, and then compute the dominance frontiers within the reversed graph. This
adaptation, which is in line with common practices, leverages the idea that dominators in the
reversed CFG correspond to post-dominators in the original graph.

4.1.2 Data Dependence

Data dependence is a fundamental concept in data flow analysis that plays a crucial role in
understanding the behavior of programs. It refers to the relationships and constraints that
exist between different data elements within a program. These dependencies determine how
data values propagate through the program and affect the control and flow of execution. In the
following, we introduce the basic principles and concepts underlying data dependence.

Data Flow Analysis

Data flow analysis is one of the main approaches to program analysis. It emerged as a system-
atic method to analyze the flow of data across the control flow of a program. The technique is
instrumental in identifying how data values are defined, used, and propagated through a pro-
gram, with applications ranging from dead code elimination to register allocation and constant
propagation [NNH] [AC].

One of the fundamental concepts in data flow analysis is the notion of a “data flow graph,”
which represents the flow of information within a program. It illustrates how data values are
generated, used, and modified across different parts of the code.

Data flow analysis operates on the CFG. The primary goal of data flow analysis is to deduce
information about the possible set of values calculated at various points in a program and how
these values “flow” from one part of the program to another.

At the heart of data flow analysis lies the concept of solving data flow equations that ab-
stractly represent the flow of information across the program’s control paths. At the heart of
data flow analysis lies the concept of solving data flow equations that abstractly represent the
flow of information across the program’s control paths. Two fundamental analyses—forward
and backward analysis—serve as the basis for various optimization strategies.

• Forward Analysis: Propagates information from the entry point towards the exit points
of a CFG. Examples include constant propagation and reaching definitions.

• Backward Analysis: Information flows from exit points back to the entry. Examples
include live variable analysis and dead code elimination.

These analyses rely on the iterative solution of data flow equations until a fixed point is
reached, where no new information is generated upon further iteration.

Tabular representations, or data flow tables, play a pivotal role in visualizing and solving
data flow equations. Each row in a data flow table typically corresponds to a basic block or
a statement in the program, while columns represent the data flow facts being analyzed (e. g.,
definitions reaching a point, live variables at a point).

Two principal tables emerge in the analysis:

1. Gen and Kill Sets: The “Gen” (generate) set identifies the data flow facts generated by
executing a basic block, and the “Kill” set identifies facts that are no longer valid after
the block’s execution.

2. In and Out Sets: For each basic block, the “In” set represents the data flow facts that
hold at the entry point of the block, and the “Out” set contains facts that hold at the exit.

23

4.1 Theoretical Foundations

By iteratively updating these sets based on the relationships defined by the data flow
equations—–considering the CFG’s structure and the gen/kill effects of each block—the analy-
sis can reach a state where the in and out sets stabilize, providing a comprehensive view of the
program’s data flow properties.

In the following, we will apply the above principles to conduct the reaching definitions
analysis.

Reaching Definitions Analysis

1 x = 5;
2 y = x + 1;
3 x = y + 2;
4 if x > y goto label6;
5 y = x + 3;
6 label6:
7 x = y + 4;

Listing 4.1: Example Program Segment for
Reaching Definitions Analysis

Reaching definitions analysis is a fundamental data flow analysis technique used to determine
which definitions of variables “reach” a certain point in the program without being overwritten.
This analysis helps identify potential redundancies and optimizations by tracking where variable
values come from and how they propagate through the program’s control flow.

Consider the Jimple program in Listing 4.1. In reaching definitions analysis, we are interested
in identifying which assignments (definitions) of variables are available (i. e., reach) at each point
in the program.

The analysis process involves creating tables that summarize the “gen” (generate) and “kill”
sets for each statement, as well as the “in” and “out” sets that represent definitions reaching the
entry and exit of each statement, respectively.

Without going into specific algorithmic details, which might closely resemble existing lit-
erature, a generalized approach to solving the reaching definitions problem involves iteratively
updating the “in” and “out” sets for each node in the CFG based on the “gen” and “kill” sets
until no more changes occur [Kil].

For instance, at line 1, “gen” is x=5 because it generates a definition of “x”, and “kill”
would include any prior definitions of “x” that are overwritten by this new definition. The “in”
and “out” sets for each line are computed by considering the flow of definitions through the
program’s CFG.

Line Gen Kill In Out
1 {x=5} {} {} {x=5}
2 {y=x+1} {} {x=5} {x=5, y=x+1}
3 {x=y+2} {x=5} {x=5, y=x+1} {x=y+2, y=x+1}
4 {} {} {x=y+2, y=x+1} {x=y+2, y=x+1}
5 {y=x+3} {y=x+1} {x=y+2} {x=y+2, y=x+3}
6 {x=y+4} {x=y+2} {y=x+3} {x=y+4}

Table 4.1: Reaching Definitions Analysis for the Program Segment in Listing 4.1

24

Chapter 4. Contribution

Table 4.1 demonstrates how variables are defined and used throughout the program. Typ-
ically, defining the specifics of an analysis involves detailed discussions on several theoretical
aspects: the domain of analysis, the direction (forward or backward), the meet operator, trans-
fer functions, and the initial and boundary conditions. However, due to the comprehensive
coverage of these foundational concepts in seminal texts, and in order to maintain conciseness
and clarity in our discussion, we have omitted a detailed exposition of these aspects. For compre-
hensive insights into these foundational concepts, the seminal texts by Aho, Sethi, and Ullman,
and by Muchnick, are highly recommended [ASU86][Muc].

Building the DDG

Transitioning from reaching definitions analysis to constructing the DDG is a direct process.
Essentially, the DDG is a visual representation of the dependencies identified through reaching
definitions analysis, where each node in the graph corresponds to a statement in the program,
and edges represent the dependencies between these statements based on the data flow.

In reaching definitions analysis, we identify where and how variables are defined (generated)
and where these definitions are “reached’ ’ or used within the program. This analysis uncovers
the dependencies between the variable definitions and their subsequent uses and forms the basis
for the DDG. Constructing the DDG involves constructing the nodes and edges as specified
below.

• Nodes: Each statement in the program that defines or uses a variable becomes a node
in the DDG.

• Edges: For each use of a variable, an edge is drawn from the statement that defines the
variable (if that definition reaches the use) to the statement in which the variable is used.
This edge signifies a data dependency, which indicates that executing the using instruction
depends on the value defined by the defining instruction.

4.2 Methodology and Model Design

Unlike traditional language-agnostic models, like Joern, which often struggle to capture the
intricacies of specific programming languages and software systems, JimNode adopts a tailored
approach that aligns closely with the underlying semantics and structures of the code. By
incorporating language-specific knowledge into its design, JimNode offers a more nuanced and
accurate representation of programs.

4.2.1 Design and Model Structure of JimNode

At the heart of JimNode is a design philosophy that aims to represent the concrete syntax
and semantic structure of Jimple code within the framework of a CPG. This alignment allows
the representation of the code to maintain adherence to the original Jimple constructs and
enables a more accurate and deeper analysis. It avoids the generic abstractions often used by
language-specific tools, which can dilute the specificity and context of the language constructs.

The structure of JimNode’s CPG, as depicted in Figure 4.3, is a manifestation of this
approach. It comprises specialized nodes and edges that correspond directly to the elements of
Jimple code, thus preserving its unique syntax and semantics. This detailed mapping ensures
that the intricacies of Jimple are not lost in translation to a generic model.

The StmtPropertyGraphNode and ValuePropertyGraphNode are pivotal to this de-
sign. They are not just generic placeholders but are extended to represent specific Jimple types.

25

4.2 Methodology and Model Design

<<Interface>>
PropertyGraph

- nodes: List<PropertyGraphNode>
- edges: List<PropertyGraphEdge>

+ PropertyGraph(method: SootMethod)

<<Abstract>>
AbstractPropertyGraph

- nodes: List<PropertyGraphNode>
- edges: List<PropertyGraphEdge>

+ getNodes(edge: GraphEdge): List<PropertyGraphNode>
+ getEdges(edge: GraphEdge): List<PropertyGraphEdge>

+ predecessors(node: PropertyGraphNode):
List<PropertyGraphNode>

+ getHeads(): List<PropertyGraphNode>
+ getTails(): List<PropertyGraphNode>

<<Abstract>>
PropertyGraphEdge

<<Abstract>>
AbstractMergedPropertyGraph

- subgraphs: List<PropertyGraph>

CPG

+ astPredecessors(node: PropertyGraphNode): List<PropertyGraphNode>
+ astSuccessors(node: PropertyGraphNode): List<PropertyGraphNode> +
cfgPredecessors(node: PropertyGraphNode): List<PropertyGraphNode> +
cfgSuccessors(node: PropertyGraphNode): List<PropertyGraphNode> +
cdgPredecessors(node: PropertyGraphNode): List<PropertyGraphNode> +
cdgSuccessors(node: PropertyGraphNode): List<PropertyGraphNode> +
ddgPredecessors(node: PropertyGraphNode): List<PropertyGraphNode> +
ddgSuccessors(node: PropertyGraphNode): List<PropertyGraphNode>

- source: PropertyGraphNode
- destination: PropertyGraphNode

+ getSource(): PropertyGraphNode
+ getDestination(): PropertyGraphNode <<Abstract>>

PropertyGraphNode

<<Abstract>>
AstEdge

<<Abstract>>

CfgEdge
<<Abstract>>

CdgEdge
<<Abstract>>

DdgEdge
StmtPropertyGraphNode ValuePropertyGraphNode

+ getStmt(): Stmt + getValue(): Value

AST CFG CDG DDG MutablePropertyGraph

+ addNode(node: GraphNode): void
+ addEdge(edge: GraphEdge): void

Figure 4.3: Basic design of the CPG.

This means that the CPG not only contains the structure of the code but also rich, typed
information about each statement and value.

While Joern provides representations for elements such as local variables and array types,
these are often defined in a generic manner; for instance, types are denoted as strings rather
than specific objects, leading to a representation that is flexible but may lack the precision of a
language-specific approach. This level of detail is not typically captured in a language-agnostic
model like Joern’s, which abstracts away such specifics into a unified representation, potentially
obscuring the language’s unique features.

By adopting this approach, JimNode facilitates a more granular level of analysis. Re-
searchers and developers can query the graph directly for specific Jimple constructs, which

26

Chapter 4. Contribution

greatly simplifies the process of program analysis. Such a direct mapping from the Jimple code
to the CPG also aids in reducing the cognitive load for the user, as there is a clear correspondence
between the code being analyzed and its representation within the graph.

4.2.2 Advantages Over Language-Agnostic Models

The tailored approach of JimNode presents several advantages over language-agnostic models
such as Joern. Following, we enumerate the key benefits, which underscore the value brought
by a model intricately aligned with the semantics of Jimple code.

MA1 Semantic Richness: The JimNode model leverages the specific syntactic and semantic
features of Jimple, offering a rich set of constructs that are directly aligned with the
language’s own abstractions. This level of semantic richness enables more precise static
analysis, vulnerability detection, and program understanding.

MA2 Ease of Use: By mirroring the actual constructs of Jimple, the learning curve for new
users is significantly reduced. Analysts can intuitively navigate the CPG, as it closely
resembles the source code structure they are familiar with, leading to a more efficient
analysis process.

MA3 Enablement of Advanced Analysis: The model specificity empowers researchers to
perform advanced analyses that are often cumbersome or impossible with generalized mod-
els. For example, specialized data flow analyses that leverage Jimple’s unique features can
be more effectively implemented within the JimNode framework.

These Model Advantages, denoted from MA1 to MA3, constitute the foundation for the
significant enhancements in JimNode’s CPG model. In the following, we highlight the practical
disadvantages of the most commonly used language-agnostic tool for generating CPGs, Joern.

4.2.3 Practical Disadvantages of Joern

While Joern excels at providing a robust framework for analyzing code across a variety of
programming languages, its application to the nuanced features of languages like Jimple reveals
certain limiations. These shortcomings underscore the limitations of a generalized approach
to static code analysis, especially when dealing with language-specific features of Jimple. We
categorize these disadvantages as follows.

PD1 Excluding Identity Statements: Joern’s approach to control flow graphs (CFGs) omits
identity statements, which are crucial for representing the initial state of parameters and
fields in Jimple. The exclusion of these statements, as discussed in a recent update to
Joern’s repository (Joern Pull Request 1094), results in an incomplete and potentially
misleading CFG representation [Pro22].

PD2 Inaccuracies with Goto Statements: The CFGs in Joern have been found to inaccu-
rately represent goto statements, including multiple targets for a single statement. This
misrepresentation could lead to incorrect assumptions about the program’s control flow,
impacting the accuracy of subsequent analyses.

PD3 Ambiguities in Invoke Statement Types: Joern’s language-agnostic model does not
adequately differentiate between various types of invoke statements, as specialinvoke,
interfaceinvoke, dynamicinvoke, or virtualinvoke. This lack of specificity
can obscure the precise nature of method invocations in Jimple, complicating the task of
accurate method call analysis.

27

https://github.com/joernio/joern/pull/1094

4.3 Implementation and Integration

PD4 Lack of Edge Information: The edges in Joern’s CPG model lack detailed information,
making it challenging to discern the exact nature of control flow, especially in conditional
structures. Analysts are often required to infer the meaning of edges based on the context,
which is not always evident or accurate.

PD5 Learning Curve for Joern Query Language: Joern introduces its own query language,
which, while powerful, has a steep learning curve and is more naturally suited to languages
like C and C++ for which Joern was originally developed. This creates an additional
barrier for users working primarily with Java or Jimple, who must adapt to a query
language that may not align well with these languages’ idioms.

These Practical Disadvantages, denoted from PD1 to PD5, highlight the challenges posed by
language-agnostic models in accurately capturing the complexities of Jimple code and reinforce
the need for tailored solutions like JimNode for program analysis in this domain.

4.3 Implementation and Integration
The practical realization of JimNode involved the development of a new module within the
SootUp framework, an overhaul of the Soot framework first released in December 2022 [Soo23b].
This section briefly outlines the integration process and the technical aspects regarding the
construction of the various components of the CPG.

4.3.1 Adopting SootUp’s CFG and AST

SootUp serves as the foundational platform for JimNode’s implementation. The framework’s
StmtGraph provided the basis for constructing the CFG component of the CPG. For the AST,
JimNode leverages simple parsing techniques on statement objects within SootUp to ensure
seamless integration of the AST property graph, which is built on SootUp’s robust object model.
The implementation details and the module’s source code can be accessed at the following link.

https://github.com/michaelyoukeim/SootUp

4.3.2 Building the CDG and DDG

The development of the CDG and DDG represents JimNode’s core contribution to enhancing
the analytical capabilities of the CPG.

4.3.3 Model Considerations

The development of JimNode within the SootUp framework aimed to refine the granularity of
the CPG for Jimple, as described in section 4.1. Although the project succeeded in improving
the level of detail of the nodes beyond the capabilities of generalized models such as Joern, the
desired typed structure could not be fully achieved due to time constraints. While the nodes
were elaborated in great detail, the edge labels were implemented as strings, which are intended
for later refactoring towards a more type-specific schema.

The aspiration for developing a fully typed model that would provide a nuanced and detailed
perspective on Jimple statements could not be realized within the timeframe of the project. The
need to prioritize the correctness and stability of the current features led to this goal being put on
hold. Consequently, the focus of the project shifted to creating a robust foundation that, despite
the preliminary use of string labels for edges, significantly improves the analysis capabilities over
the existing models.

28

https://github.com/michaelyoukeim/SootUp

Chapter 4. Contribution

This strategic approach ensures that the current iteration of JimNode not only represents
a significant improvement in static code analysis tools, but also provides a solid foundation for
future developments. The foundation laid by this project describes a clear path to achieving the
comprehensive, type-enriched CPG that was originally proposed and underlines the success of
the project in balancing immediate practical requirements with long-term goals. Conceptually,
transforming the current version to the aspired model only requires slight refactoring.

29

4.3 Implementation and Integration

30

Evaluation
5

In the following, we evaluate our research’s effectiveness and efficiency. This includes setting
the research questions and criteria in Section 5.1, describing the evaluation methodology in
Section 5.2, and discussing the results in Section 5.3, providing a critical analysis of our findings.

5.1 Research Questions and Criteria
The evaluation of the conducted work is based on the following research questions.

• RQ1: Does the generated CPG accurately represent the specified input?

• RQ2: How well does the provided solution perform regarding processing time and resource
utilization?

In our research questions, we select Joern as the baseline because it is the primary tool for
CPG generation [joe]. This choice allows us to validate our JimNode’s performance directly
compared to the established standard.

RQ1 aims to verify the correctness of the generated CPGs, particularly their ability to accu-
rately represent the syntax, control flow, and data flow of an input Java program transformed
into Jimple. A successful assessment would confirm that our method reliably translates the
Jimple code into a CPG format that fulfills the criteria established by Yamaguchi et al.[YGAR].
To this end, we perform a comparative analysis between the CPGs generated by JimNode and
the CPGs generated by Joern to provide a direct benchmark for accuracy.

RQ2 evaluates the efficiency of JimNode in generating CPGs from Jimple code, focusing
on processing time and resource utilization. By comparing our performance metrics against
Joern’s, we aim to highlight the relative enhancements and benefits JimNode introduces.

5.2 Evaluation Methodology
The core of our evaluation methodology revolves around assessing the correctness of the CPGs
generated for a given JAR file. Figure 5.1 illustrates the process we follow to assess the CPG
generation accuracy. We first generate CPGs for the file using JimNode and Joern. Joern
relies internally on Soot for processing Jimple code. Given that Jimple version produced by
Soot is not fully compatible with that produced by SootUp, we have to ensure that the CPGs
produced by both platforms are based on the same version of Jimple. To achieve this, we

31

5.2 Evaluation Methodology

JAR File

Jimple Geneartion With Soot CPG Generation with Joern

Jimple Joern CPG

CPG Geneartion With SootUp
Converting the Joern CPG

to a SootUp CPG

SootUp CPG SootUp CPG

SootUp CPG Transformations Joern CPG Transformations

Transformed CPG

Component-wise

Transformed CPG

Comparison

Figure 5.1: Evaluation methodology for the comparison of CPGs generated from Jimple code
with SootUp and Joern.

use Soot to convert the JAR file into Jimple code. This code is then used to generate the
CPGs with SootUp. Following this, for the CPGs generated with Joern, we undertake a crucial
step of interpreting and converting the Joern-generated CPG to a format that aligns with the
SootUp model. This conversion is vital for maintaining consistency across the comparisons and
facilitating the application of the transformations.

Subsequently, we apply a set of transformations to each CPG to obtain compatible repre-
sentations. We then assess the level of similarity between the two transformed property graphs.
Since the CPG is composed of different components such as AST, CFG, CDG and DDG, with
potentially common nodes, but disjoint edges, we assess these subgraphs individually.

To maintain the integrity of our comparison, we only included those methods whose Jimple
code was successfully interpreted by SootUp. In addition, we considered the available methods in
both SootUp and Joern exclusively. Since the CPGs of both platforms follow different schemes,
we performed specific transformations on both platforms to obtain comparable representations.
The applied transformations are described in detail below.

• Excluding Identity Statements: As noted in PD1, the CFGs generated by Joern no
longer incorporate identity statements [Pro22]. To align the representations, we removed
identity statements from the JimNode CPGs.

• Excluding Incorrect Goto Statements in Joern: One of the issues identified with
Joern’s output , as outlined in PD2, is the inclusion of incorrect goto statements. To
rectify this, we refined our analysis by filtering out the incorrect goto statements in Joern’s
representation and only considered the goto statements that point to valid target statement
positions.

• Normalizing Invoke Statements:
Since Joern does not provide a straightforward way to determine whether a statement
is a specialinvoke, interfaceinvoke, dynamicinvoke, or virtualinvoke (see
PD3), we normalized all invoke statements in both representations to virtualinvoke.

32

Chapter 5. Evaluation

After applying the aforementioned conversions and transformations to the Joern CPG, we
evaluate the degree of similarity between the two graphs using a similarity score. This score is
calculated as the percentage of edges that are identical in both graphs relative to the total number
of edges in the SootUp CPG. This method provides a precise indicator of their comparative
alignment. In this respect, edges are considered identical when they connect nodes that align
completely in detail. For example, within control flow graphs, nodes—typically representing
statements—must match precisely in all their components to be deemed similar. This standard
ensures that the similarity score accurately reflects not only an exact match between the graphs
but also considers both the structural arrangement and the detailed correspondence of node
attributes.

In our evaluation, we did not assess the AST component due to its complex matching re-
quirements. Matching parent statements is a binary outcome process; a successful match means
a 100% similarity in AST components, while failure leads to a complete mismatch. This nuanced
matching process exceeded our current evaluation scope. Due to the intricate process required
for matching parent statements in the AST and the complexity arising from model mismatches,
our evaluation specifically focused on inter-statement edges—those connections existing directly
between statements.

To evaluate runtime efficiency, we compared the time taken by Joern to generate a CPG
with the time required by our newly integrated module to perform the same task. To identify
the relationship between memory allocation and performance, we conducted our assessments
across various memory allocation configurations.

5.3 Results and Discussion

To carry out the evaluation methods described above, we developed the evaluation tool CpgEval
[You24]. This tool was utilized to assess the 30 most frequently used Maven projects. For
the selection of these projects, we relied on the API provided by libraries.io[Lib]. Our search
was specifically narrowed to Java packages, and to enable automated package downloading, we
further restricted our query to include only those packages available on the Maven platform. In
the subsequent text, we detail our findings related to efficiency and runtime performance.

5.3.1 RQ1: Similarity Analysis

Graph Total Methods Total Edges Same Edges Avg. Sim. %
CFG 50,759 305,370 296,660 97,14 %
CDG 50,787 120,092 102,894 85,67 %
DDG 50,787 212,999 162,737 76,40 %

Table 5.1: Similarity Assessment of CPG Components in JimNode and Joern.

The evaluation of graph similarities between JimNode and Joern is summarized in Table 5.1.
This table presents a comprehensive comparison across three different types of graphs: CFGs,
CDGs, and DDGs. The analysis includes different totals of methods for each graph type, due
to the creteria specified in Section 5.1 for method coverage. The CFG comparison demonstrates
a high degree of similarity, with an average similarity percentage of 93.9556%, indicating that
the structural representation of control flow in SootUp closely aligns with Joern. The CDG
analysis shows a slightly lower average similarity of 81.9565%, reflecting differences in how call
dependencies are represented. The DDG comparison highlights a further distinct pattern of
similarity at 76.40%. These findings underscore the effectiveness of JimNode in generating

33

https://github.com/michaelyoukeim/CpgEval/tree/master
https://libraries.io/api

5.3 Results and Discussion

graph representations that are largely consistent with Joern, with specific distinctions observed
in each graph type.

To calculate the overall similarity percentage, we first summed the similar edges for all graph
types, obtaining a total of 296, 660+102, 894+162, 737 = 562, 291 same edges. Then, we summed
the total edges for all graph types, resulting in 305, 370 + 120, 092 + 212, 999 = 638, 461 total
edges. The overall similarity percentage is thus calculated as follows:

Overall Similarity % =
(︃562, 291

638, 461

)︃
× 100 ≈ 88.07%

This calculation reveals an 88.07% similarity in the inter-statement edges between the CPGs
generated by JimNode and Joern, underscoring the effectiveness of our approach in producing
comparable graph structures despite the model incompatibilities.

Several factors contribute to the less than perfect similarity percentages observed in our
benchmarks. Primarily, even after the transformations, both models of Joern and JimNode have
major incompabitibilities. For example, the DDG and CDG in Joern could include expresssions,
while JimNode only includes statements as CDG and DDG Nodes.

Additionaly, the process of transforming the CPG into a format compatible with the SootUp
model presents significant challenges. This transformation leverages Joern’s query capabilities
to extract insights from the CPGs, a process that, while powerful, is intricate and susceptible
to errors. As a result, CPGs that might semantically match could be inaccurately deemed
non-matching due to errors in this conversion process. Additionally, the Joern representation
occasionally lacks specific information, such as statement positions, and fails to account for
identity statements. Despite efforts to normalize these discrepancies, mismatches between the
representations may still occur.

Furthermore, inaccuracies in CPG generation, attributable to either Joern or SootUp, could
also explain the observed deviations. On the SootUp side, these inaccuracies might stem from
bugs within the proposed solution or the underlying SootUp framework itself. However, pin-
pointing the exact cause of each discrepancy is not straightforward. The interplay of these
factors—complex transformation processes, missing information in representations, and poten-
tial inaccuracies in CPG generation—collectively accounts for the observed variance from the
ideal similarity percentages.

Below are the specifications of the evaluation environment we used for the similarity and
performance evaluation.

• Device Name: michael-pc

• CPU: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz, 2.60 GHz

• Memory: 16.0 GB RAM (15.9 GB usable)

• System Type: 64-bit operating system, x64-based processor

• Operating System: Windows 10 Pro

• Java Version: Oracle OpenJDK 20.0.1

• Joern Version: Maven dependency of version 1.2.35

• SootUp Version: 1.2.0

34

Chapter 5. Evaluation

SootUp (m:s) Joern (m:s)
01:02 18:41

Table 5.2: CPG Generation Time for the 30 Most Used Maven Projects

5.3.2 RQ2: Performance Analysis

Table 5.2 outlines the comparative performance of Joern and SootUp in generating CPG for the
30 most commonly used Maven projects. The recorded times - 18:41 for Joern and 01:02 for
SootUp - represent the complete duration from start to finish of the CPG generation process.
For SootUp, this includes the time from the start of generation to the point at which the CPG
is fully prepared and available in a runtime variable. In contrast, Joern’s duration includes the
entire process initiated by the CPG creation command. This evaluation reveals a significant
disparity in favor of SootUp. This difference is primarily attributed to several key operational
and architectural distinctions between the two frameworks.

Firstly, Joern’s methodology necessitates writing the CPG data to disk before it can be
accessed or queried. This additional step introduces latency not present in SootUp’s processing
pipeline. Furthermore, the CPGs generated by Joern are comprehensive, encompassing detailed
information about the code’s structure, including the call graph as well as various other aspects.
While this breadth of information is valuable for in-depth analysis, it inherently requires more
time to generate and manage. Additionally, while Joern’s generalized representation allows for
a versatile analysis across different programming languages, this sophistication leads to a larger
volume of data being saved. The abstraction process introduces extra computational steps and
overhead, contributing to both a slower performance and increased data storage requirements.

In contrast, SootUp’s modular architecture allows for selective utilization of its components
and thus a targeted analysis that focuses exclusively on relevant aspects of the code. This ap-
proach not only optimizes the analysis process, but also reduces the computing overhead, result-
ing in faster runtime performance. Additionally, while Joern relies on the older Soot framework
to generate its graphs, SootUp has implemented optimizations that surpass the original Soot’s
efficiency, further contributing to its accelerated performance.

35

5.3 Results and Discussion

36

Related Work
6

In the following, we review existing literature and research efforts that overlaps with our study.

6.1 Vulnerability Detection

Apart from the work done by Yamaguchi et al., several other studies laveraged the power CPGs
for vulnerabilty detection [YGAR]. Li et al.applied their deep learning-based system, VulDeeP-
ecker, to three software products and successfully detected four vulnerabilities that were not
reported in the National Vulnerability Database [LZX+][XLQ+][Şa].

Banse et al. introduced the Cloud Property Graph (CloudPG), which aims to enhance the
security of cloud services by providing a comprehensive framework that integrates both static
and dynamic security analysis [BKSW]. Their graph is based on the ontology, functionalities,
and security features of cloud resources. Weiss et al. focused on developing of a platform that
enables the generation of a language-independent CPG representation. Their use of fuzzy parsing
enabled the generation of even incomplete or non-compilable code. Brito et al.used CPGs to
identify vulnerabilities in WebAssembly binaries [Bri]. Their study addressed the challenge of
detecting vulnerabilities in WebAssembly binaries developed in memory-unsafe languages [WB].

6.2 Static Analysis Frameworks

Wala is a static analysis framework developed by IBM that provides features for analyzing Java
bytecode and related languages [WAL23]. It provides support for creating call graphs, point-to-
analysis and various other compiler optimizations and analyses. Opal is a project that focuses on
the static analysis of Java bytecode and emphasizes the precision and efficiency of its analyses
[OPA23]. It excels in providing a solid foundation for the construction of practical program
analysis and tools aimed at both academic research and industrial applications. Soot is a Java
optimization framework that serves as a versatile tool for the analysis and transformation of Java
and Android applications [Soo23a]. It supports four different representations of code: Jimple
(an intermediate representation), Shimple (an SSA variant of Jimple), Grimp (an aggregated
version of Jimple that is suitable for decompilation and code inspection), and Baf (a simplified
representation of bytecode). SootUp is an overhaul of the Soot framework that aims to improve
its usability and extend its capabilities [Soo23b].

37

6.3 Standardizing Property Graphs

6.3 Standardizing Property Graphs

Currently, efforts towards the standardization of property graphs are still ongoing [Int24]. GQL
aims to become an international standard for property graph querying, based on the initial
efforts by languages such as Cypher, Gremlin, and SPARQL [GJK+] [Neo24]. Thakkar et al.
emphasize the lack of standardization in various graph-based data management systems [TPAV].
Green et al. provided precise mathematical definitions for property graphs in GQL [GGL]. Addi-
tionally, Francis et al. introduced GPC, a pattern calculus for property graphs, aligning with the
standards adopted by the GQL Standard committee [FGG+]. The discussions including trans-
formation from other representations, like RDF-star, included the work conducted by Abuoda
et al.[ADKH].

38

Threats to Validity
7

In the following, we identify and discuss the potential threats to the validity of our research.
Through Sections 7.1 to 7.3, we critically examine the limitations of our methodology, tools,
and data, ensuring a transparent evaluation of our study’s robustness.

7.1 Technical and Tool-Specific Considerations

In the following, we describe the technical and tool-specific limitations encountered.

7.1.1 Tool-Specific Limitations

Our evaluation method is primarily based on the comparison between the results generated by
our newly integrated module and those generated by Joern. While Joern is widely known for
its ability to generate CPGs accurately, its process of converting Jimple code specifically is not
entirely accurate. As mentioned in the Evaluation section, Joern disregards identity statements
and provides insufficient information about statement positions and method invocation state-
ment types. Joern’s limitations restrict the quality and precision of our evaluation. Furthermore,
our approach makes extensive use of the SootUp framework for the creation of the CFG and AST
components of our CPGs. The development of the DDG component also relies on the advanced
data flow analysis capabilities provided by the SootUp framework. Consequently, existing bugs
or limitations in these tools could affect the integrity and reliability of the CPGs we produce.

Given this reliance on external tools, our evaluation process acknowledges the complexity
of accurately comparing both CPG formats. It is worth noting that although the leveraged
tools and features play an important role in our analysis, they bring their own challenges and
limitations. For example, the accuracy of the CPG outputs depends not only on the correctness
of the Jimple code conversion, but also on how comprehensively these tools can represent the
various components of the code in graph format. The effectiveness of our evaluation is therefore
closely tied to the performance and capabilities of the underlying frameworks. As we navigate
these dependencies, our methodology is aware of the potential for discrepancies and the need
for careful interpretation of the results.

7.1.2 Variability and Bias in Jimple Code Generation

The process of generating Jimple code from Java bytecode, primarily through Soot, inherently
involves a certain degree of variability. This is partly due to the use of different versions of Soot

39

7.2 Methodological Concerns

or changes to configuration settings during Jimple creation. Although we aimed to generate the
Jimple code with the same options that are used in Joern, there is a possibility that we made
an oversight that resulted in the generation of different Soot codes. This potential discrepancy
could be due to variations in the configured of the Soot options.

Additionally, since SootUp interprets only specific portions of the Jimple files for evaluation,
this selective processing introduces a bias. The alternative approach to using Soot for the
Jimple code code generation was to directly convert the JAR files using SootUp. However,
due to compatibility issues between the Jimple code produced by Soot and SootUp, executing
evaluations through this method proved to be significantly challenging. These compatibility
issues arise from differences in the way Soot and SootUp process and interpret Java bytecode,
resulting in mismatches that could affect the accuracy and consistency of the generation of CPG.
As a result, the variability introduced by the Soot-based Jimple code generation process remains
a critical factor that affects the reliability of our comparative analysis.

7.2 Methodological Concerns
In the following, we outline our methodological concerns.

7.2.1 Conversion and Transformation Bias

As outlined in the evaluation section, our method for comparing the CPGs involved performing
a series of transformations on the outputs of both frameworks. A critical procedure in this
process was the interpretation and subsequent conversion of the CPGs generated by Joern to
ensure compatibility with the SootUp model. This step naturally entailed the possibility of
inaccuracies. Efforts to make Joern’s and SootUp’s CPGs comparable may not capture every
detail or subtle difference in the way each tool presents information.

For the conversion of Joern’s CPG, we worked with the data that was provided via the query
interface, which allows for querying the generated CPGs. A major challenge was that much of
this data was in a text-based format. Compared to object-based representations, text-based
data is inherently more complex to interpret. To overcome this complexity, we occasionally
resorted to minor heuristics. These heuristics were used to infer the types or values of certain
components within the graph nodes based on the available textual information.

While these heuristics were invaluable in advancing the conversion process, they are also a
potential source of error. By relying on inference rather than direct interpretation, there is a risk
that the information encoded in the Joern CPGs may be misrepresented or oversimplified. This
methodological necessity, though carefully considered, highlights one of the inherent challenges
in ensuring the accuracy of our comparative analysis. Every step taken to bridge the gap between
the different formats of CPGs was done with recognition of these limitations. Our focus was to
minimize these errors and provide a fairly comprehensive and accurate comparison.

7.2.2 Measurement and Evaluation Criteria

The criteria chosen for computing edge similarity, and thus the overall similarity score between
CPGs, may not represent the most comprehensive approach to understanding graph equivalence.
Our method quantifies similarity primarily based on the percentage of matching edges and thus
focuses on a direct attribute comparison. While this provides a clear, quantifiable metric, it may
not capture the full complexity of graph equivalence, particularly in aspects that go beyond mere
structural congruence.

Conventionally, more nuanced approaches to assessing similarity could consider the semantic
relationships and functional roles of nodes and edges within graphs, beyond their mere presence

40

Chapter 7. Threats to Validity

or absence. These methods could potentially provide deeper insight into graph equivalence by
evaluating how changes in one part of the graph affect its overall behavior or meaning. In
contrast, a purely quantitative measure based on edge matching could miss such subtleties and
potentially misrepresent the true similarity between graphs.

Furthermore, the chosen criteria assume that all edges contribute equally to the semantics
of the graph, which is not always the case. In reality, some edges might be more important due
to their role in the control flow, data dependencies or security vulnerabilities. A more refined
approach could weight edges differently based on these considerations, providing a more accurate
reflection of graph similarity that is consistent with conventional practices in CPG analysis.

7.3 Data Selection and Reliability

7.3.1 Selection Bias

In our study, we focused on analyzing the 30 most commonly used Maven projects. It is impor-
tant to recognize that projects that are not based on Maven or those with different characteris-
tics might yield different results. There is a likelihood that projects from different domains have
unique semantic structures that were not considered in our analysis. The selection of widely
used projects suggests that they are mostly in line with common and recommended practices
and thus have a certain structural uniformity. Furthermore, it is conceivable that the most
widely used libraries contain methods with relatively small scale that adhere to best practices,
which would imply that the analyzed control flow graphs do not represent more complex config-
urations. Nonetheless, the rationale behind selecting the most popular projects was to maximize
the likelihood of capturing a wide range of patterns. However, there remains an inherent bias,
as our analysis may primarily reflect patterns that are more common. While this approach is
strategic, it also recognizes the potential limitation of the scope of patterns that our assessment
could encompass.

7.3.2 API and Data Source Reliability

In our assessment, we used libraries.io API to determine the 30 most used packages [Lib]. We
assumed that the data provided was both accurate and comprehensive. Nevertheless, there is
a possibility that this data does not accurately reflect actual usage, which could result in a
selection of projects that do not truly represent the top 30 in terms of actual usage.

41

https://libraries.io/api

7.3 Data Selection and Reliability

42

Conclusion and Future Work
8

In the following, we summarize the thesis’s main findings and contributions in Section 8.1.
Section 8.2 then outlines potential directions for future research and suggests possible pathways
for building on the foundation laid in this thesis.

8.1 Conclusion

In this work, we aimed to improve the analysis of Jimple code by tailoring CPGs specifically
to its unique intermediate representation. Through the development of JimNode, a solution
designed to generate CPGs optimized for Jimple, this work aimed to bridge the gap between
generic CPG generation tools and the specific needs of Jimple code analysis. The motivation
behind JimNode was rooted in the hypothesis that a tailored approach could offer substantial
improvements over the state-of-the-art tool, Joern, particularly in terms of simplicity and direct
applicability to Jimple code.

Our comprehensive exploration and development process led to the creation of a model that
not only aligns more closely with the structure and semantics of Jimple but also simplifies the
CPG creation process. The evaluation of JimNode, through a detailed comparison with CPGs
generated by Joern, underscored the accuracy of our approach. By examining the presence
of equivalent edges in both JimNode-generated and Joern-generated CPGs, without directly
measuring similarity due to the intentional divergence in model complexity, we provided em-
pirical evidence supporting the effectiveness of our tailored solution. Despite differences in the
underlying models, our comprehensive evaluation, which spanned approximately 50,800 meth-
ods, showed an 88.07% similarity in the inter-statement edges when compared with Joern, the
leading tool for CPG generation.

This thesis underscores the importance of model adaptation in the realm of code analysis,
highlighting how tailored solutions can lead to more efficient, accurate, and meaningful anal-
yses. In comparing JimNode with Joern, we not only validated our model’s effectiveness but
also initiated a dialogue on the potential for specialized tools to complement or even surpass
generalized counterparts in specific contexts.

In conclusion, the development and evaluation of JimNode represent a significant step for-
ward regarding the generation of CPGs, particularly for Jimple code. The insights gained from
this work pave the way for further exploration into tailored analysis tools, encouraging a more
nuanced approach to software analysis that considers the intricacies of different programming
languages.

43

8.2 Future Work

8.2 Future Work
There are several avenues for future exploration that promise to make JimNode even more
powerful and user-friendly. Below are key areas where future work could significantly contribute
to the advancement of this project.

8.2.1 Advanced Query Capabilities

During the development of this project, the primary focus was laid on the foundational aspects
of JimNode, particularly on generating and tailoring CPGs for Jimple. Consequently, the query
capabilities received less attention in this initial phase. Looking ahead, there is a vast potential
for improvement in this area. By supporting more advanced query capabilities, JimNode could
enable the application of sophisticated patterns on the generated CPGs. This enhancement
would allow users to conduct deeper and more nuanced analyses of their codebases, identifying
complex patterns and vulnerabilities with greater ease.

8.2.2 Performance Optimization

As datasets grow in size and complexity, optimizing the performance of queries becomes increas-
ingly important. Future work could focus on further improving the efficiency of data retrieval,
ensuring that JimNode can handle large-scale CPGs without compromising on speed.

8.2.3 Database Integration

Integrating JimNode with various database systems would significantly expand its usability.
This integration would allow JimNode to directly interact with graph databases, enabling the
storage, retrieval, and analysis of CPGs within a database environment. Such support would
facilitate the management of persistent graphs and enhance the tool’s applicability in real-world
scenarios.

8.2.4 Graph Visualization Enhancements

Currently, JimNode offers visualization through simple DOT graphs, which serve as a founda-
tional tool for representing the structure of CPGs. While effective for basic visualization needs,
there’s considerable room for improvement to meet the diverse and complex requirements of
users. Enhancing the graph visualization capabilities of JimNode is thus a promising direction
for future work. By introducing more sophisticated visualization techniques, including inter-
active exploration features, customizable layouts, and detailed node and edge representations,
JimNode could significantly improve the user’s ability to understand and analyze the intricate
relationships within CPGs.

44

Bibliography

[AAB+] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Do-
magoj Vrgoč. Foundations of modern query languages for graph databases. 50(5):68:1–
68:40.

[ABD+] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith Hare,
Jan Hidders, Victor Lee, Bei Li, Leonid Libkin, Wim Martens, Filip Murlak, Josh
Perryman, Ognjen Savković, Michael Schmidt, Juan Sequeda, Slawek Staworko, and
Dominik Tomaszuk. PG-keys: Keys for property graphs. pages 2423–2436.

[AC] F. E. Allen and J. Cocke. A program data flow analysis procedure. 19(3):137.

[ADKH] Ghadeer Abuoda, Daniele Dell’Aglio, Arthur Keen, and Katja Hose. Transforming
RDF-star to property graphs: A preliminary analysis of transformation approaches –
extended version.

[AHSM] Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen Schulz, and Max Mühlhäuser.
The tip of the iceberg: On the merits of finding security bugs. 24(1):3:1–3:33.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[AW] Andrew C. M. Austin and Laurie Williams. One technique is not enough: A compar-
ison of vulnerability discovery techniques.

[BBC+] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of
code later: using static analysis to find bugs in the real world. 53(2):66–75.

[BCD+] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene
Finocchi. A survey of symbolic execution techniques. 51(3). Place: New York, NY,
USA Publisher: ACM.

[BEHW] Matt Bishop, Sophie Engle, Damien Howard, and Sean Whalen. A taxonomy of buffer
overflow characteristics. 9(3):305–317.

[BKSW] Christian Banse, Immanuel Kunz, Angelika Schneider, and Konrad Weiss. Cloud
property graph: Connecting cloud security assessments with static code analysis. In
2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pages 13–
19. ISSN: 2159-6190.

[Bri] Tiago Brito. Wasmati: An efficient static vulnerability scanner for WebAssembly.

45

8.2 Future Work

[CFR+] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. 13(4):451–490. Number: 4.

[CHK] Keith Cooper, Timothy Harvey, and Ken Kennedy. A simple, fast dominance algo-
rithm.

[FGG+] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Do-
magoj Vrgoč. GPC: A pattern calculus for property graphs.

[FOW] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. 9(3):319–349. Number: 3.

[GGL] Alastair Green, Paolo Guagliardo, and Leonid Libkin. Property graphs and paths in
GQL: Mathematical definitions.

[GJK+] Alastair Green, Martin Junghanns, Max Kiessling, Tobias Lindaaker, Stefan Plan-
tikow, and Petra Selmer. openCypher: New directions in property graph querying.

[Gra] Andy Gray. An historical perspective of software vulnerability management. 8(4):34–
44.

[HBC+] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebas-
tian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa
Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine Zimmermann.
Knowledge graphs. 54(4):71:1–71:37.

[Int24] International Organization for Standardization. Information technology – database
languages – gql. https://www.iso.org/standard/76120.html, 2024.

[joe] Joern: A robust code analysis platform. https://joern.io/.

[Kil] Gary A. Kildall. A unified approach to global program optimization. pages 194–
206. Conference Name: the 1st annual ACM SIGACT-SIGPLAN symposium Place:
Boston, Massachusetts Publisher: ACM Press.

[Lib] Libraries.io api. https://libraries.io/api.

[LPJ+] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. Fuzzing:
State of the art. 67(3):1199–1218. Conference Name: IEEE Transactions on Reliability.

[LZX+] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng,
and Yuyi Zhong. VulDeePecker: A deep learning-based system for vulnerability de-
tection.

[Muc] S. S. Muchnick. Advanced compiler design and implementation.

[Neo24] Neo4j. Neo4j graph database. https://neo4j.com/, 2024.

[NNH] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Data flow analysis. In
Flemming Nielson, Hanne Riis Nielson, and Chris Hankin, editors, Principles of Pro-
gram Analysis, pages 35–139. Springer.

46

https://www.iso.org/standard/76120.html
https://joern.io/
https://libraries.io/api
https://neo4j.com/

Chapter 8. Conclusion and Future Work

[OPA23] OPAL Project. Opal - a scala library for the static analysis, and the development of
analysis frameworks, for java bytecode and frameworks that are written in java, 2023.

[Pro] Reese T. Prosser. Applications of boolean matrices to the analysis of flow diagrams. In
Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer
conference, IRE-AIEE-ACM ’59 (Eastern), pages 133–138. Association for Computing
Machinery.

[Pro22] Joern GitHub Project. Pull request 1094: Exclusion of identity statements in joern,
2022.

[PT] Bindu Madhavi Padmanabhuni and Hee Beng Kuan Tan. Defending against buffer-
overflow vulnerabilities. 44(11):53–60.

[Ram] Ganesan Ramalingam. On loops, dominators, and dominance frontiers. 24.

[SNAA] Aamir Shahab, Muhammad Nadeem, Mamdouh Alenezi, and Raja Asif. An automated
approach to fix buffer overflows. 10:3777.

[Soo23a] Soot Team. Soot - a java optimization framework, 2023.

[Soo23b] SootUp Team. Sootup - enhancing the soot framework, 2023.

[SR] Raunak Shakya and Akond Rahman. A preliminary taxonomy of techniques used in
software fuzzing. In Proceedings of the 7th Symposium on Hot Topics in the Science
of Security, HotSoS ’20, pages 1–2. Association for Computing Machinery.

[TPAV] Harsh Thakkar, Dharmen Punjani, Sören Auer, and Maria-Esther Vidal. Towards an
integrated graph algebra for graph pattern matching with gremlin.

[TZWL] Ye Tao, Lingming Zhang, Linzhang Wang, and Xuandong Li. An empirical study on
detecting and fixing buffer overflow bugs.

[VJB+] Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, Henk Corporaal, and
Francky Catthoor. Advanced copy propagation for arrays. 38(7):24–33.

[VrCG+] Raja Vallee-rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framework.

[VRGH+] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. Optimizing java bytecode using the soot framework: Is it fea-
sible? In David A. Watt, editor, Compiler Construction, Lecture Notes in Computer
Science, pages 18–34. Springer.

[WAL23] WALA Team. Wala - t.j. watson libraries for analysis, 2023. GitHub repository.

[WB] Konrad Weiss and Christian Banse. A language-independent analysis platform for
source code.

[XLQ+] Xiaojun Xu, Chang Liu, Feng Qian, Heng Yin, Le Song, and Dawn Song. Neural
network-based graph embedding for cross-platform binary code similarity detection.

[YGAR] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discov-
ering vulnerabilities with code property graphs. In 2014 IEEE Symposium on Security
and Privacy, pages 590–604. ISSN: 2375-1207.

47

8.2 Future Work

[You24] Michael Youkeim. CpgEval GitHub Repository. https://github.com/
michaelyoukeim/CpgEval/tree/master, 2024.

[Şa] Canan Batur Şahin. Semantic-based vulnerability detection by functional connectivity
of gated graph sequence neural networks.

48

https://github.com/michaelyoukeim/CpgEval/tree/master
https://github.com/michaelyoukeim/CpgEval/tree/master

	Introduction
	Motivation
	Problem Statement
	Thesis Structure

	Background
	Program Analysis
	Data Flow Analysis
	Control Flow Analysis

	Jimple
	Challenges of Bytecode
	Advantages of Jimple
	Impact on Program Analysis

	Property Graphs
	Core Concepts and Structure
	Querying Property Graphs
	Formalizing Property Graphs

	Code Property Graphs
	Structure and Components
	Abstract Syntax Trees
	Control Flow Graphs
	Program Dependence Graphs
	Constructing the CPG

	Relevance and Applications
	Vulnerability Characterization
	Vulnerability Detection

	Contribution
	Theoretical Foundations
	Control Dependence
	Data Dependence

	Methodology and Model Design
	Design and Model Structure of JimNode
	Advantages Over Language-Agnostic Models
	Practical Disadvantages of Joern

	Implementation and Integration
	Adopting SootUp's CFG and AST
	Building the CDG and DDG
	Model Considerations

	Evaluation
	Research Questions and Criteria
	Evaluation Methodology
	Results and Discussion
	RQ1: Similarity Analysis
	RQ2: Performance Analysis

	Related Work
	Vulnerability Detection
	Static Analysis Frameworks
	Standardizing Property Graphs

	Threats to Validity
	Technical and Tool-Specific Considerations
	Tool-Specific Limitations
	Variability and Bias in Jimple Code Generation

	Methodological Concerns
	Conversion and Transformation Bias
	Measurement and Evaluation Criteria

	Data Selection and Reliability
	Selection Bias
	API and Data Source Reliability

	Conclusion and Future Work
	Conclusion
	Future Work
	Advanced Query Capabilities
	Performance Optimization
	Database Integration
	Graph Visualization Enhancements

	Bibliography

