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Specification, composition, and placement of network services
with flexible structures
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SUMMARY

Network function virtualization and software-defined networking allow services consisting of virtual
network functions to be designed and implemented with great flexibility by facilitating automatic
deployments, migrations, and reconfigurations for services and their components. For extended flexibility,
we go beyond seeing services as a fixed chain of functions. We define the service structure in a flexible
way that enables changing the order of functions in case the functionality of the service is not influenced by
this, and propose a YANG data model for expressing this flexibility. Flexible structures allow the network
orchestration system to choose the optimal composition of service components that for example gives the
best results for placement of services in the network. When number of flexible services and number of
components in each service increase, combinatorial explosion limits the practical use of this flexibility. In
this paper, we describe a selection heuristic that gives a Pareto set of the possible compositions of a service
as well as possible combinations of different services, with respect to different optimization objectives.
Moreover, we present a heuristic algorithm for placement of a combination of services, which aims at
placing service components along shortest paths that have enough capacity for accommodating the services.
By applying these solutions, we show that allowing flexibility in the service structure is feasible.
Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Softwarization of networks introduces new levels of flexibility in service provisioning and
orchestration that are, similar to targets like reducing the costs for network operators [1], hard or
impossible to achieve in traditional networks. For example, in a software-defined network hosting
virtualized composed services, Virtual Network Functions (VNFs) are highly portable and the
service delivery chain can be modified without human intervention.

In this context, services are defined as a composition of multiple network functions that should
be traversed by network flows in a specific order [2]. The simplest case for such a service is a linear
chain of at least one network function between two specific endpoints in the network. Inserting
functions that can split network flows over different paths makes the structure of a service more
complicated than a simple chain. Such services can be modeled as directed graphs consisting of
network functions as nodes and the connections between pairs of network functions as edges of the
graph. We refer to these graphs as service graphs.

Different VNFs of a service that are responsible for packet processing in the network can influence
the traversing flows in different ways, for example, by modifying data rate or splitting flows over
different branches. As an example, we assume network flows need to be processed by VNFs f1
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(e.g., a video optimizer function) and f2 (e.g., a firewall) as part of a service. The functionality
of these VNFs and their effect on the flows is independent from each other. Therefore, traversing
these functions with the order of f1 → f2 or f2 → f1 gives the same processing result. In this
example, f2 is a function that can block certain incoming flow and therefore, reduce the data rate
of traversing flows. Consequently, the two options for the structure of this service result in different
requirements for the service: f2 → f1 connection requires less link capacity than f1 → f2. For
example, if deploying the service as f1 → f2 is not possible because of insufficient link capacity,
the network orchestration system can simply re-order these functions and try deploying f2 → f1
that has lower link capacity requirements.

Similar examples are possible with flexible services that contain branches in their structure. For
example, we assume a load balancer is required for distributing the load over 3 instances of a
certain function f and all the flows need to go through a firewall before being processed by f . If
the orchestration system is allowed to arbitrarily chain the load balancer and the firewall, different
results can be achieved, e.g.:

• Distributing the flows over 3 different branches by the load balancer and placing a firewall on
each branch results in less traffic on each branch but 3 instances of the firewall are required.

• All flows traversing a single firewall instance before reaching the load balancer requires less
firewall instances but the load the firewall need to handle and the load on each branch going
out of the load balancer is larger than the previous case.

We use these facts to profit from a new degree of freedom in service composition: under-
specifying the structure of a composed service and allowing the order of chaining a subset of VNFs
in a service to be determined and modified dynamically, provided that the overall functionality
of the service is not impaired. This paper is based on a conference paper [3] we presented at the
IEEE NetSoft 2016.

One problem here is that specifying this flexibility in the service structure cannot be done using
traditional graph representations in an efficient way. In previous work [4], we have proposed a
context-free grammar for flexible service structure specification. In this paper, as the first part of
our contributions, we present a YANG [5] model for service structures that enhances our previous
model for defining, modifying, and reusing complex and flexible chaining structures for services
consisting of multiple VNFs.

The YANG data modeling language is designed to provide a hierarchical model of configuration
and runtime data for the Network Configuration Protocol (NETCONF) and supports data instances
in different formats, e.g., XML. In a dynamic, softwarized network, where requirements of services
and availability of network resources are changing over time, services and the virtual network
functions that compose them can also be abstracted as reconfigurable data elements with certain
attributes, e.g., required link capacity and computational resources. In this way, structure of a service
can be modeled as a (re)configurable attribute of the service.

Such a specification can then be used by network orchestration systems for calculating the best
placement for new service deployment requests, according to the current state of network and
requirements of new and existing services in the network.

If the service structure is fully specified as a set of totally ordered VNFs, the only decision that
needs to be taken in the placement step is mapping requested VNFs to network nodes and creating
required paths among them. If necessary, previous mappings can also be modified to accommodate
new services. However, when deployment requests have a flexible service structure, the placement
decision also includes the decision about which chaining option to use for each service for getting
the best possible mapping.

Considering that n different VNFs specified with an arbitrary order can be chained together in
n! ways, chaining and placement calculations for a set of service deployment requests can quickly
result in combinatorial explosion. To improve the practical applicability of specifying services with
a flexible structure in an environment where several services need to be managed and orchestrated,
the solution space needs to be limited. This, however, is not an straightforward task; because we have
to deal with different metrics for two different decisions, namely, chaining the functions together in
a specific order and calculating the placement for a set of services. Measurable metrics for different
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SPECIFICATION, COMPOSITION, AND PLACEMENT OF FLEXIBLE SERVICES 3

chaining and combination options for different services before calculating the placement are limited
to the information available in the service descriptors, for example, resource requirements for
individual service components. These metrics are not the same as the metrics of interest after the
services are placed and deployed in the network, for example, latency of an entire service, and
resource utilization in a network that hosts several services.

As our second contribution in this paper, we propose a selection heuristic that uses the limited
information available before placement for selecting a representative subset of possible options that
can potentially result in a close-to-optimal state for the network after placement. The output of the
selection heuristic is the input to the placement step, where the service graphs need to be mapped
to the network. Our third contribution in this paper is a placement heuristic that finds close-to-
optimal solutions for the service placement problem with respect to relevant metrics in large-scale
distributed networks, e.g., remaining link capacity in the network after placement.

The rest of this paper is organized as follows. In Section 2, we present an overview of related
work in specification and placement of services. In Section 3, we present a YANG data model for
flexible service specification and in Section 4, we describe our model for handling the problem of
composing, combining, and placing services with flexible specifications. We describe our multi-
solution heuristic for selecting a subset of possible combinations for services in Section 5 and
evaluate our solution in Section 6. Afterwards, we describe our placement heuristic and evaluation
results for it in Section 7 and 8, respectively, before concluding the paper in Section 9.

2. RELATED WORK

The model used for specifying the connections and relationships among service components in most
ongoing network function virtualization work is based on and similar to the VNF Forwarding Graph
(VNFFG) description defined in the ETSI Network Function Virtualization (NFV) management and
orchestration document [6], for example, in SONATA [7], UNIFY [8], T-NOVA [9], and OSM [10]
projects.

In the cloud computing context, Sun et al. [11] have published a survey of description languages.
Our model differs from these existing models and languages in the sense that we focus on a flexible
description for expressing how the components of a service are chained and composed to set up the
service. In a similar approach to flexibility in service descriptions, template-based descriptions of
service structures define an application as a generic graph template that can be modified and adapted
during and after deployment, e.g., the model proposed by Keller et al. [12]. However, the idea of
changing the order of traversing the service components is not captured in these templates.

In the service function chaining context, Moens and Volckaert [13] have published a survey
of different modeling strategies. They analyze the trade-off between flexibility and management
complexity for service modeling approaches. Obviously, our flexible specification model brings
along new complexities and requires orchestration mechanisms that can make us of the new degrees
of freedom, which is the main focus of this paper.

Application of YANG/NETCONF in software-defined networking makes it a good candidate
for adoption in network function virtualization management and orchestration. For example, the
OpenDaylight Service Function Chaining project [14] uses a YANG data model [15] for describing
the structure of services and requirements of their components. Our model can be used as an
extension to this model to include the description of complex service function chaining structures in
a flexible way. An example YANG schema has also been defined in the ETSI NFV management and
orchestration document [6] that demonstrates the feasibility of integrating our model in a system
compatible with ETSI NFV recommendations.

The placement problem we are investigating is a combination of two NP-hard problems: Supply
Chain Network Design (SCND) and Virtual Network Embedding (VNE). SCND [16], a variant of
the facility location problem, aims to open a chain of facilities of different types and assign them
so that the demand is satisfied and facility or transportation costs are minimized. This corresponds
to finding the optimal placement of chained components of a service in our problem. The path
creation aspect of our work corresponds to the VNE problem [17], a variant of the multi-commodity
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flow problem. These problems allocate virtual network nodes and connect them together through
links with constraints while trying to minimize costs. Such problems have been studied in different
contexts, for example, Garmehi et al. [18] consider request routing and resource allocation in hybrid
content delivery networks.

In our previous work [4], we have modeled the placement process for services consisting of VNFs
as a Mixed Integer Quadratically Constrained Program (MIQCP). In several other contributions, the
placement problem has been considered specifically in the network function virtualization context.
For example, Sahhaf et al. [19] discuss the placement problem taking internal decomposition
possibilities for VNFs into account. Mijumbi et al. [20] have designed and evaluated greedy
algorithms and a tabu search-based heuristic for mapping and scheduling VNFs. Moens and
De Turck [21] present a formal model for the VNF placement problem. Qu et al. [22] propose
a delay-aware solution for VNF scheduling and resource allocation for services. Savi et al. [23]
propose a solution for service placement that takes processing costs on network nodes into account.
Their solution is designed for simple chains of VNFs without branching. Beck and Botero [24]
present a heuristic algorithm for services with flexible structures based on our optimization model
assumptions [4]. They solve the problems of finding the best composition for VNFs in the service,
and finding the best placement for the service in one step. in contrast to our two-step approach,
such a combined approach is limited to a specific optimization objective and cannot guarantee the
optimality of the selected composition for VNFs.

Complexity of the placement problem highlights the importance of a solution for reducing the
possible options for the input of placement step when services can be composed in different ways.
Additionally, to enhance the practical usability of the new degree of freedom offered by flexible
service specification, fast and efficient algorithms are required for calculating the placement for
services.

This paper is an extended version of a conference paper [3] we have presented before. In addition
to the YANG model and the selection heuristic in the conference paper, here we present a heuristic
algorithm for solving the placement problem and describe the evaluation results of the heuristic in
comparison to the optimal placement approach. We have also made slight modifications in the rest
of the paper to accommodate the new results, e.g., in the introduction, related work, and conclusion
sections.

3. A YANG MODEL FOR SERVICE SPECIFICATION

In Figure 1, we present the tree representation of our YANG module (effectively, the grammar) for
flexible specification of complex services, created using pyang †, a YANG validation tool. To keep
the descriptions compact, we have only included structural attributes in the YANG model shown
here. Different requirements and specifications of services and their components can be included in
the model, e.g., as described in the IETF draft of service function chaining YANG data model [15].
We use service-function in our model for referring to the service function type defined in
this IETF draft, which includes detailed specification of individual VNFs in a service (e.g., compute,
storage, and memory requirements).

Within this tree, each leaf node that represents a data element is specified by a name and a type,
e.g., identifier of type string. A list of leaf nodes is specified by <name>* and type of
the leaves, e.g., the list best-binding-functions defines a set of service-functions.
Lists of non-leaf nodes are specified by <name>* and a key written as [<name>] that is unique
among all items of the list. E.g., in the list of service-components each item has a unique
component-identifier. Description of the list elements follows as children of the node. To
express a choice among different options, the node name is written as (<name>)? and the possible
choices are represented as its child nodes with the format :(<name>). Optional data items are

†https://github.com/mbj4668/pyang, date accessed: 2016-07-01
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module: flexible-service-specification
+--rw specification
+--rw name? string
+--rw version? string
+--rw included-network-functions* [network-function-id]
| +--rw network-function-id string
| +--rw network-function-type? service-function
| +--rw latency-bound? uint32
+--rw input-data-rate? uint32
+--rw service-structure

+--rw service-components* [component-identifier]
+--rw component-identifier string
+--rw compositions* [composition-identifier]

+--rw composition-identifier string
+--rw (composition-type)?
+--:(best-binding)
| +--rw best-binding-functions* service-function
+--:(all-bindings)
| +--rw all-bindings-functions* service-function
+--:(split)
| +--rw splitter-function service-function
| +--rw optional-best-binding* service-function
| +--rw outgoing-branches* [branch-id]
| +--rw branch-id uint8
| +--rw (branch-type)?
| +--:(normal-branch)
| | +--rw composition composition-ref
| | +--rw replications? uint8
| +--:(pass)
| +--rw string string
+--:(function)
| +--rw single-function service-function
+--:(link-to-composition)
+--rw existing-composition composition-ref

Figure 1. YANG data model

represented as <name>?, e.g., number of replications can be optionally specified for a branch
if outgoing branches from a splitter function are identical.

In our flexible service specification module, the service specification consists of a list of
totally ordered service-components. Each service-components is a list of at least one
composition of service functions.

Different types of compositions can be used for defining complex structures:

• best-binding composition defines a set of partially ordered VNFs.
• all-bindings composition defines a set of VNFs can be specified to be chained together

in a way that all possible permutations of them are traversable, i.e., a full mesh of paths has
to be built among the VNFs.

• split composition defines a branching structure for splitting the flows over different
branches. This composition consists of:

– a VNF that can classify and split the flows over different branches,
– an optional best-binding composition to be traversed before the flows reach the branches,
– branches that can consist of a single VNF (or service endpoint), a composition of

multiple VNFs, or can be an empty branch (pass) that can be used for skipping a part
of the service structure. In case the branches are identical, they need to be specified only
once. The number of required replications can be specified if it is known, if not it can be
left open to be specified at deployment time.

• function composition defines a single function to be included as a part of the service.
• link-to-composition can be used to include an existing composition into a new service

description. For this purpose, we define a reference to composition-identifier as
a new type called composition-ref and use it for referring to compositions defined
elsewhere. Recursive structures are not allowed in YANG data modeling language and can
only be expressed using path references.

With this model, services can be defined from scratch using the available types of functions in the
network. Additionally, the network orchestration system can maintain a catalog of pre-composed
services that a tenant can request as an standalone service or for using it as part of a more complex
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service structure. Examples of YANG schemas for service and function descriptors are shown in
the ETSI NFV Management and Orchestration document [6]. For example, the following lines are
part of extensions that should be made to an existing schema (based on Figure 1) to allow a list of
functions to be treated as a best-binding composition.
leaf-list best-binding-functions {

description
"List of VNFs/endpoints without a specific order of traversing them.";

type service-function;
min-elements 1;

}

4. PROBLEM DESCRIPTION

In this section, we first describe our assumptions regarding flexible service deployment requests
and afterwards, we describe the decision problem for chaining and placing services that arrive at the
network with such flexible specifications.

4.1. Service Deployment Requests

Information included in a deployment request in our model corresponds to the service
descriptor format defined by ETSI for Network Function Virtualization (NFV) management and
orchestration [6], e.g, VNFs included in the service and their resource requirements. Connections
and dependencies among them, however, go beyond ETSI descriptors and are specified in a flexible
way (i.e., based on our YANG model). Moreover, we assume the input data rate to a service is
variable and can change during the lifetime of the service. To support this, we define resource
requirements of the included VNFs as a function of the data rate they need to handle. We assume
the requirements of a VNF increases linearly with the incoming data rate to this VNF.

To model the influence of each VNF on the service structure, we categorize the VNFs based on
their expected impact on network flows into two different types as follows:

1. VNFs that forward incoming flows with a data rate that can be equal to, more than, or less
than their data rate when entering the VNF (e.g., as a result of changing data encoding by the
VNF),

2. VNFs that split incoming flows over different branches with equal or different data rates (e.g.,
for load balancing or as a result of traffic classification).

We realize this classification by assigning the expected ratio of outgoing data rate to incoming
data rate to each branch leaving a VNF.

Based on this categorization, changing the order of traversing two VNFs in a service can result in
the following cases:

• If both VNFs are of type 1 and have a similar ratio of outgoing data rate to incoming data rate,
then chaining them together in either order results in the same data rate on the path between
them and in the same number of instances for the VNFs and therefore, the same resource
requirement in total.

• If both VNFs are of type 1 but have different expected ratios of outgoing data rate to incoming
data rate, then chaining them in different orders results in different data rates on the path
between them and therefore, different total resource requirements. The number of instances
required for each VNF is the same in both cases.

• If at least one of the VNFs is of type 2, then based on the ratio of outgoing to incoming data
rates for each VNF, chaining them in different orders can result in different data rates on the
paths between them, different number of required VNF instances, different number of paths
to connect the instances, and different total resource requirements. For example, if the type 2
VNF is a load balancer and the other VNF is a firewall (of type 1), placing the firewall before
the load balancer means one instance of each VNF is needed. But placing the load balancer
first could mean having one firewall instance on each of the outgoing branches from the load
balancer.
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Figure 2. Possible steps for finding the best placement option for a set of example deployment requests

4.2. Service Placement

We assume multiple flexible service requests need to be mapped to the network. Figure 2 shows
a possible set of actions that should be performed for finding the best placement option for three
requests. In this figure, services X and Z each include two VNFs that can be traversed in an arbitrary
order. Therefore, in step 1©, two different service graphs can be built for each of them (denoted as
X1, X2 and Z1, Z2, respectively). The request for service Y specifies a total order resulting in one
single service graph.

To consider all possible ordering options in the placement, the created service graphs go through
step 2© that creates all possible combinations of different service graphs and passes them to the
placement decision algorithm. For the small example in Figure 2, the placement algorithm in step 3©
needs to run four times, once for each possible combination of the service graphs. The placement
that provides the best values for metrics of interest in the network can be chosen in step 4© for actual
deployment.

For a large set of flexible service specifications, number of possible combinations of service
graphs can become very large very quickly. In this case, for solving the chaining and placement
problem, one end of the spectrum is to explore the whole set of possible combinations. However,
in spite of the benefits resulting from flexible specification of service structures, running a
(computationally expensive) placement process for every possible combination is not a practical
solution. Alternatively, the whole set of steps shown in Figure 2 can be modeled as one large
optimization problem that needs to be solved only once. Considering the complexity of the
placement optimization problem for one single service, solving such a complicated optimization
problem will not be possible in an acceptable time scale either.

The other end of the spectrum is to define a “default” way of chaining VNFs together, irrespective
of different functionalities and requirements of services. For example, a rule can be defined in
step 1© to sort the VNFs in ascending order of the ratio of outgoing data rate to incoming data
rate [4]. In this way, we have exactly one service graph for each request; in Figure 2, this corresponds
to filtering out X1 or X2 (and Z1 or Z2). Using the example rule, the resulting graph has the smallest
value for average required link capacity. The placement process needs to run only once for the single
combination of all these pre-filtered service graphs.

However, choosing one single combination in this way eliminates the variety of optimization
options offered by different ways of chaining VNFs together. For example, there might be chaining
options that optimize metrics like number of required VNFs, required computational resources for
satisfying all deployment requests, number of utilized network nodes, etc. after placement. But they
are simply discarded using a single-solution heuristic. Such a solution would only be acceptable if
the best possible service graph could be detected already in step 2© in Figure 2. But the information
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available about the possible combinations in this step does not directly correspond to the metrics of
interest after placement that can only be measured and analyzed in step 4©.

What we can ideally achieve using the information available before placement is to relate them to
the structure and requirements of services by concentrating on multiple metrics and based on that,
using a multi-solution heuristic, select a representative subset of possible combinations for services.
Then we can use the reduced set as the set of placement input options. This reduces the decision
time, by reducing the number of times the placement process needs to be performed, compared to
exploring the whole set of options. Moreover, regardless of the optimization objectives used for
placement calculation, there is a good chance of finding close-to-optimal solutions; because in the
placement input set we have representatives for all possible options.

We describe such a selection heuristic in Section 5, which provides a generic method for selecting
a subset of possible combinations of the requests as input for placement. The metrics used for
filtering the combinations should be selected intuitively based on the optimization objectives. We
have evaluated the heuristic using metrics and objectives that are targeted towards congestion control
over nodes and links in the network, as one of possible optimization objectives. However, the
solution can easily be generalized to other metrics and objectives.

Once the filtering process is completed, the actual placement can be calculated, e.g., based on our
MIQCP formulation [4] for an optimal placement, for the selected combinations of the requests with
the intended optimization objective. Our MIQCP formulation of the placement decision problem
consists of a rather complex model to ensure a realistic decision. Therefore, even if the output of the
selection heuristic is one single combination, finding the optimal placement on large-scale networks
can take several hours for large request sets with complex structures. That means, in addition to the
selection heuristic and to further enhance the decision time, we need a heuristic algorithm for the
placement calculation step as well. We present our placement heuristic in Section 7 and describe the
evaluation results of the heuristic algorithm in comparison to the optimal placement calculation.

5. SELECTION HEURISTIC

For this heuristic, first of all, we need to compute every possible combination of different service
graphs that need to be placed in the network. Although the number of combinations can be large,
computing them without performing the actual placement is not an expensive task.

For choosing a representative subset of the combinations, we need to extract meaningful metrics
out of the information available about the combinations before placement. We pick the following
metrics for evaluating different combinations of services.

• Sum of data rates over all virtual links in all service graphs in a combination
• Sum of resource requirements (e.g., an abstract value representing the amount of required

compute, memory, and storage resources) over all VNFs in all service graphs in a combination
• Total number of VNFs specified over all service graphs in the combination

This can of course be generalized to any other metric aggregating the information available
in service deployment requests that can represent the different options for service structure and
requirements.

The combinations with the best possible trade-offs among the chosen metrics can then be
identified by looking at the Pareto-optimal combinations regarding these metrics. In a scenario
where different metrics need to be optimized, Pareto-optimal solutions are the solutions that cannot
improve one metric without worsening at least one other metric. The selected combinations by our
multi-solution heuristic are the combinations in this Pareto set.

To demonstrate how the Pareto sets could look like, we have used two different sets of example
service deployment requests consisting of five services (which we refer to as S0–S4). Each service
has two or three VNFs in it that can be chained together in an arbitrary order. These VNFs need to be
traversed between given service endpoints. In each service, one VNF can split incoming flows over
three different branches. Input data rates for services and ratio of outgoing data rate to incoming
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Figure 3. Two different options for the structure of an example service, consisting of two VNF types f1 and
f2 that can be traversed in an arbitrary order between the endpoints

(a) Combinations of S0 and S1 (b) Combinations of S2, S3, and S4

Figure 4. Selected combinations for example services

data rate for VNFs are chosen randomly. Resource requirements of each VNF increase linearly with
data rate that enters the VNF and the resource requirement for a unit of data rate is also chosen
randomly.

Services S0 and S1 have a similar structure specification, with different input data rates and
different ratios of outgoing data rate to incoming data rate for each included VNF. Their structure
is shown in Figure 3. Each of them results in two different service graphs and therefore, they can
be combined into four different inputs for the placement process (in step 2© of Figure 2). These
combinations (numbered from 0 to 3) result in different requirements and different values for our
metrics of interest, as shown in Figure 4a. For simplicity and visibility, we assume the computational
requirements of VNFs in this example represent the overall resource requirements. The Pareto-
optimal combinations (1 and 3) are marked with a star. Combination 1 consists of the chaining
option 2 for S0 and the option 1 for S1, while combination 3 consists of the option 2 for both S0 and
S1.

Similarly, as shown in Figure 4b, there are 24 possible combinations for service graphs that can
be built for S2 to S4, out of which 3 combinations belong to the Pareto set and are selected by the
heuristic. Structure of S3 and S4 also corresponds to the structure shown in Figure 3 but S2 consists
of 3 VNFs that can be traversed in an arbitrary order, resulting in 6 different chaining options that
we do not show here.

Taking the selected combinations instead of the complete set of combinations gives us placement
inputs with the best possible trade-offs among the metrics available before the actual placement.
In the following section, we evaluate the quality of the selected combinations, by comparing the
placement results for these combinations to the set of combinations that optimize the placement
objectives (in our case, controlling congestion in network nodes and links).

6. EVALUATION OF SELECTION HEURISTIC

To evaluate how good the selected combinations can represent the set of all possible combinations,
we have calculated the placement for different sets of example requests in a total of 450 runs.
We follow the steps shown in Figure 2 for the placement process. Each placement run consists
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of computing the optimal placement for a set of deployment requests with flexible specifications.
During each run, the placement is computed for all possible combinations of the service graphs
generated for the deployment requests, including the combinations selected by our heuristic. In this
way, we can analyze the quality of the solutions achieved using the heuristic among all possible
solutions.

The deployment requests follow the model described in Section 4.1 and have similar
characteristics as described in Section 5 regarding the services shown in Figure 4a and 4b. We
have chosen the structure of the example services based on an IETF Service Function Chaining
(SFC) draft on general use cases for SFC [25]. We have used 9 different sets of deployment
requests, each including one, two, or three services. In order to have interesting distinctions among
different combinations of a service, each service includes at least one VNF of type 2 (as described
in Section 4.1).

Sum of input data rates for the requests in a set is the same for all placement runs and is
distributed randomly over the requests in the set. Endpoints of the requested service graphs are
pinned to random nodes in the network in each run. The underlying network has 12 nodes and 42
directed edges (including self-loops) and is based on the abilene network from SNDlib [26]. Among
available network instances in this library, we have selected a small one to be able to apply the
optimization approach in a reasonable time. Similarly, we have chosen the size and complexity of
the deployment requests in a way that running optimization approach for all possible combinations
of them is feasible in a reasonable time.

We have used a modified version of the placement optimization problem description from our
previous work [4] for calculating the placement of the request sets.

Assuming the network graph G=(V,E), we define the following constraints in the placement
problem:

∀v∈V : NodeUtilv ≤ MaxNodeUtil

∀(v, v′)∈E, v 6=v′ : LinkUtil(v,v′) ≤ MaxLinkUtil

where NodeUtilv and LinkUtil(v,v′) are continuous variables with values between 0 and 1 that show
the utilization of node v and link (v, v′), respectively. With similar definitions, MaxNodeUtil and
MaxLinkUtil serve as upper bounds for node and link utilization, which we minimize using the
objective function, as an attempt to minimize node and link congestion in the network. We use
the equally-weighted sum of MaxNodeUtil and MaxLinkUtil as one possible option for such an
objective function:

minimize (0.5 ·MaxNodeUtil + 0.5 ·MaxLinkUtil)

Out of the results of each placement run, for each combination of a set of requests, we calculate
the maximum link utilization and maximum node utilization for network nodes. For each set of
requests, the preferred combinations are the combinations corresponding to the results that belong
to the Pareto set regarding these two metrics after the actual placement (not to be confused with
selected combinations that we had before performing the placement).

To evaluate the quality of selected combinations, we need to quantify the differences and relations
between the set of selected combinations and the set of preferred combinations. For this, in the
following sections, we consider two views:

• Evaluation of preferred combinations that were not selected by our heuristic in each placement
run (Figure 5a)

• Evaluation of selected combinations by our heuristic that do not belong to the set of preferred
combinations in a placement run (Figure 5b)

Afterwards, we describe the gain in decision time that the heuristic can provide.
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Figure 5. Sets of combinations selected by our heuristic and combinations that give the best placement results
(preferred combinations) among all possible combinations of services with flexible structures
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Figure 6. Evaluation of preferred combinations that are not selected by our heuristic

6.1. Preferred Combinations not Selected by Heuristic

Figure 6a shows the histogram of fraction of preferred combinations in placement results that were
not selected by the heuristic. For each placement run one value has been calculated as

|P \ S|
|P | ,

where P is the set of preferred combinations in that run, S is the set of selected combinations by the
heuristic, and |X| denotes the cardinality of set X and \ denotes the set difference ‡.

The values show that in many simulation runs, none of the preferred combinations are included
in the combination set chosen by the heuristic. To evaluate the importance of the combinations that
were missed by the heuristic, we calculate the max-norm distance of each preferred combination
to the closest selected combination. In a vector space, the max-norm distance of two vectors, also
known as the chessboard distance, is the greatest difference of them along any of the dimensions,
which can give a meaningful comparison of the quality of two combinations in our case. The max-
norm distance of two combinations reflects the difference in the resulting maximum link utilizations
or difference in maximum node utilizations (depending on which one is more significant) when these
combinations are placed in the network. The largest possible distance between two combinations
according to these metrics is 1.

Figure 6b shows the resulting histogram. For the majority of preferred combinations there is
at least one selected combination with a distance close to 0. For the remaining combinations,
the distance is negligible. The largest recorded distance has a value of around 0.54 and has been
recorded for 2 combinations out of around 1100 preferred combinations over all placement runs.
That means, in spite of the large number of preferred combinations that are not included in the

‡In terms of classification theory or information retrieval, this is the false negative or miss rate if we think of our heuristic
as a classifier to detect preferred combinations.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2017)
Prepared using nemauth.cls DOI: 10.1002/nem1963
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Figure 7. Evaluation of selected combinations that are not among preferred combinations after placement

combination set selected by the heuristic, the variety of possible structures and requirements in the
set of all possible combinations is actually captured by the heuristic results.

6.2. Selected Combinations outside Preferred Combinations Set

For the second part of the evaluation, in Figure 7a we show the histogram of fraction of selected
combinations that do not belong to the preferred combination set over different placement runs. For
each placement run one value§ has been calculated as

|S \ P |
|S| .

In more than 150 placement runs, all of the combinations selected by our heuristic belong to the
preferred combination set, while in close to 200 runs none of the selected combinations are in the
preferred combination set. However, Figure 7b shows that for the majority of selected combinations,
the max-norm distance to the closest preferred combination is close to 0 and negligible. The largest
distance has a value of around 0.66, which is recorded for one combination out of around 970
selected combinations over all placement runs. That means, the combinations selected by our
heuristic can closely represent the preferred results in these placement runs.

6.3. Gain in Decision Time

Figure 8 shows the ratio of combinations selected by our heuristic to the total number of
combinations over different placement runs. As illustrated in Figure 2, time to reach a final
placement decision depends on the number of times the placement needs to be calculated, which is in
turn determined by the number of selected combinations. Using this heuristic, the placement needs
to be calculated less than half as often as the case where no heuristic is applied. However, most of our
service deployment requests were small requests, similar to the case shown in Figure 4a. Comparing
this case to Figure 4b shows that the larger service sets are, the larger possible combinations are,
and the ratio of selected combinations to all tends to decrease. That means, for large sets of flexible
services, our multi-solution can select combinations that can result in optimal or close-to-optimal
solutions after placement in a significantly less time compared to the option of exploring all possible
combinations.

§The false discovery rate in terms of classification theory.
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Figure 8. Fraction of selected combinations among all combinations over all placement runs

7. PLACEMENT HEURISTIC

In this section, we describe a heuristic algorithm that can very quickly find a close-to-optimal
solution for the network service placement problem. As described in Section 2, this is a complex
problem and finding an optimal solutions for a large number of services on a large-scale network is
practically not feasible.

While the objective function in an optimization approach can be replaced to optimize the values
for different metrics as necessary, for the heuristic algorithm we need to select the metrics to be
optimized beforehand as this drives the decision process of the algorithm. Our placement model is
based on the assumption that the substrate network is a geographically distributed network, e.g.,
a large-scale telco operator’s network, with multiple data and compute centers connected to each
other. In these networks, applications like video streaming and file sharing are increasingly taking
up link capacities and need low-latency paths. Moreover, in such scenarios it is important to place
the services in a way that enough capacity is left on the network links to satisfy larger number of
subsequent requests as well as requests with large data rates.

Considering there requirements, we have designed a heuristic algorithm that calculates the
placement for a set of service graphs in a way that the traffic between the endpoints of a service is
routed through the shortest path whose bottleneck link has just enough capacity for the requirements
of the service (smallest fit first). The bottleneck link on a path is the link with the smallest capacity
along this path. Among different paths with equal lengths that can carry the required amount of
traffic, the path with the smallest bottleneck is selected to leave paths with more capacity for serving
other, possibly larger requests. Similarly, among different paths with equal bottleneck capacity, the
path with the least number of hops is preferred. A path is accepted for placement only if the nodes
along this path have enough capacity to host all VNFs of the service and the latency of the path
matches the end-to-end latency requirements of the corresponding service.

For calculating the paths, we use one of the variations of the bottleneck shortest paths problems,
an algorithm to solve the single-source shortest paths for all flows problem (SSSP-AF) by Shinn
and Takaoka [27]. In this problem, it is assumed that a set of flows with different data rates are
given as set W and the network network links have limited capacities. For every flow with a data
rate w ∈W , the goal is to find the shortest paths (with respect to number of hops) from a source
node to all other nodes in the network such that the paths can carry flows with data rates of up to
w. The output of the algorithm is a set of (d,w) tuples for each destination node, where d is the
number of hops in the shortest path that can carry flows with data rates up to w. This algorithm
has a complexity of O(mn), where m is the number of links and n is the number of nodes in the
substrate network graph [27].

The input and basic assumptions of the heuristic algorithm are identical to the optimization
model [4] and the assumptions described in Section 4. For example, for the heuristic design we
assume that the service deployment requests include an (exact or estimated) upper bound for the
input data rates at the starting points of the services, and the input data rates to all other VNFs in the
services can be calculated based on given expected ratios for the outgoing to incoming data rate for
each VNF. Moreover, we assume the start and end point locations of service flows are given. Such a
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Figure 9. Example service graphs

Algorithm 1 Heuristic algorithm for placement of a combination of multiple requests
1: C ← a combination of multiple annotated service graphs
2: G← annotated substrate network graph
3: function PLACECOMBINATION(C, G)
4: A← sorted list of pairs of start and end points of services
5: for (as, ae) ∈ A do
6: chains(as, ae)← sorted list of simple chains between start and end points as and ae

7: for (as, ae) ∈ A do
8: for c ∈ chains(as, ae) do . Every chain c is a subgraph of C
9: PLACECHAIN(c, G)

10: if placement successful then
11: if latency of the created path ≤ latency bound between as and ae then
12: placement for c is valid

13: function PLACECHAIN(c, G)
14: R← c . Remaining pairs of VNFs to be placed in the chain
15: D ← data rate between each VNF pair . Extracted from the annotated chain c
16: for (f1, f2) ∈ c do
17: ps ← location of f1 . Current location
18: if f2 is not already placed then
19: if requirements of f2 can be satisfied by available resources on ps then
20: place f2 on ps and update G
21: else
22: d← max∀(x,y)∈R(D(x, y)) . Largest data rate over pairs of VNFs to be placed
23: pe ← location of first VNF in c after f2 that has already been placed
24: P ← GETPATH(ps, pe, d,G) . Ordered set of nodes in the path
25: while there are unexplored nodes on P do
26: v ← next node on P
27: if requirements of f2 ≤ available resources on v then
28: place f2 on v and update G
29: break . Placement of f2 done, stop iterating over P
30: if there are no more nodes to explore on P then
31: return c cannot be placed . No node along P can host f2, placement of c failed
32: R← R \ (f1, f2) . Remove (f1, f2) from remaining pairs of VNFs to be placed
33: return placement results and updated G

start point can be, for example, one of the network nodes where the requests for a group of end users
in a specific geographical location enter the network. An end point can be, for example, the back-
end server of the application that is already placed and used by other instances of the service, or a
physical network function with a fixed location that needs to be used along the virtualized network
functions.

An overview of the steps of this heuristic solution can be found in Algorithm 1. The input to this
algorithm is a set of service graphs that need to be mapped to the network (e.g., one of the selected
combinations given by the selection heuristic in Section 5). The combination is a (disconnected)
graph annotated with data rates of the logical links between pairs of VNFs, requirements of the
VNFs (e.g., given as tuples of computation, memory, and storage requirements), the end-to-end
latency that can be tolerated for each service, and the location of the start and end points of services
in the network. The substrate network graph is also given, annotated with capacity and latency of
network links, and capacity of nodes (e.g., in terms of available computation, memory, and storage
resources).

Services might have different end points (e.g., Figure 9a) and different branches between one
pair of start and end points within them (e.g., Figure 9b). For such services, we find and store
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every simple chain of VNFs between every pair of start and end points in the service. A chain is a
subgraph of the service graph with a linear structure, which starts at the start point of the service
and ends at one of the end points of the service. Each of the chains in a service might have different
requirements, e.g., different amount of data rate over their edges, so the placement of them needs to
be prioritized and regulated.

In line 4 of Algorithm 1, pairs of start and end points (as, ae) of different services are sorted in
decreasing order according to the sum of data rates over all virtual links between them and stored
in A. Similarly, if there are multiple simple chains between one start and end point, in lines 5 and 6,
the simple chains are sorted in decreasing order according to the sum of data rates over all virtual
links among them and stored as a list called chains(as, ae) for every (as, ae) in A. This ordering
ensures that the chains with higher data rates are placed first and have a higher chance of getting
shorter paths.

Every chain is an ordered list of pairs of VNFs (f1, f2) (including the start and end point of the
chain), such that f1 and f2 are nodes of the combined graph C, (f1, f2) is a virtual link in graph C,
and by following the pairs in a chain in the given order we can get from the starting point of that
chain to the end point of the chain after traversing all VNFs in that chain.

We start the placement with the heaviest pair of start and end points, the pair that has the largest
sum of data rates over its virtual links, and if there are multiple simple chains between them, we
start with the heaviest chain. In line 9, the PLACECHAIN function is called, which calculates the
placement for the input chain c on the substrate network graph G.

If the placement is successful, the results are returned together with the updated network graph
G (e.g., with less capacity on its nodes and links after accommodating the placed chain). If the
latency requirements of the placed chain are met, the placement is accepted as a valid placement.
For simplicity, this algorithm does not include any backtracking steps in case the placement is
unsuccessful or invalid. Implementing the backtracking using different path options provided by the
SSSP-AF algorithm [27] is straightforward.

The PLACECHAIN is described starting from line 13. Within this function, we iterate over the
pairs of VNFs (f1, f2) (virtual links in the chain) and place them one by one. As the start point
of the chain is also a part of the chain, while iterating over these pairs, in the simplest cases, f1
is already mapped to a location in the network, and we try to find the location for f2. For this, in
line 19 and 20, similar to the behavior of the placement optimizer, we first check the feasibility of
placing f2 on the same node where f1 was placed. If that is not possible, in line 24, we calculate
the shortest path towards the end point that has enough capacity for the largest data rate over the
remaining parts of the chain to be placed, based on the SSSP-AF algorithm.

As an input for path calculation using the SSSP-AF algorithm, in line 22 we find the largest data
rate over the pairs of VNFs that still need to be placed.

SSSP-AF calculates the paths from a given node towards all other nodes in the network, out of
which we only need the paths towards one specific end point. Function GETPATH processes the
output from SSSP-AF to extract the path P towards this end point as an ordered list of the network
links belonging to this path.

The end point pe used by GETPATH for calculating P is equal to the location of ae (end point of
the chain) if the current chain has no overlaps with another chain that has already been placed
in the network. Figure 9b shows an example of such an overlap. We assume the simple chain
a1→f1→f2→f4→a2 is the heavier chain and needs to be placed before the other chain between
a1 and a2. For placing the first chain, for all VNF pairs in it, pe is set to the location of a2 and
GETPATH is called to find the shortest path between the current node and the location of the end
point of the chain. However, while placing the second chain a1→f1→f3→f4→a2, function f4 has
already been placed, so in line 23, pe is set to the location of f4 and GETPATH will be called to find
the shortest path towards that node. Moreover, to avoid calculating the placement more than once
for functions like f1 and f4 that appear on multiple chains of a service, in line 18 we check if the
function has already been mapped to a node.

Once a VNF is placed in the network, for placing the next VNF in the chain, we do not rely on
the previously calculated shortest path towards the end; instead, we recalculate the path for every
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Figure 10. Structure of service graphs used for evaluations

new (f1, f2) to be placed to make use of the opportunity that once the virtual link with the largest
data rate on the chain has been mapped to the network, the subsequent VNFs can be placed along a
path that might be even shorter than the one initially calculated.

In the following section, we evaluate the performance and running time of this heuristic algorithm.

8. EVALUATION OF PLACEMENT HEURISTIC

As described in Section 7, we have designed the placement heuristic in a way that services are placed
on network nodes along short paths with acceptable latencies and just enough link capacity. We
evaluate this heuristic algorithm against optimal placement results obtained using an optimization
approach described in our previous work [4].

For services with flexible structures, the placement heuristic algorithm is used for placing the
selected combinations: among different options for the arbitrary chaining possibilities in the service
structure, some are selected and passed one by one to the placement step as a fixed and explicitly
defined graph. Therefore, the services we have used for evaluating the placement heuristic do not
include any arbitrary chaining options.

We have used 5 different sets of example service requests that include simple chains as well as
more complex branched structures. As in the evaluation of the selection heuristic, the structure of
the example services is based on the IETF Service Function Chaining (SFC) draft on general use
cases for SFC [25]. This document is one of the rare resources where examples of possible service
structures are illustrated. Sets of services are selected as follows, in increasing complexity, based on
the time required by the placement optimizer to find a solution for them:

• Set 1 includes 4 simple chains each having a structure as shown in Figure 10a.
• Set 2 includes 3 services, one having a structure as shown in Figure 10b and two having a

structure as shown in Figure 10c.
• Set 3 includes 8 simple chains each with a structure as shown in Figure 10a, making this set

similar to Set 1.
• Set 4 includes 7 services in total, four simple chains like Set 1 and three services like in Set 2.
• Set 5 includes 3 services with a structure as shown in Figure 10d.

These sets include services with different structures, i.e., simple chains of functions, services
with converging branches, and services with independent, diverging branches. The VNFs used in
the services can split incoming flows over different outgoing branches, increase or decrease data
rates of incoming flows, or forward them without modifying the data rate. Combination of these
cases represents what a placement algorithm would need to deal with, highlighting various aspects
of our solution, e.g., making sure the flows converge towards the required functions, the right flow
ends up in the right endpoint, etc.

For each of these sets, we have performed 300 placement runs. Each run uses a new random
seed for setting up the input. In each run, we have calculated placement once using the heuristic
algorithm and once using the optimization approach.

Similar to the evaluation setup in Section 6, the abilene network from SNDlib [26] is used as the
substrate network. Start and end points of the service graphs are mapped to random nodes in the
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network in each run. For one set, sum of input data rates for the services is always the same for
all runs, with each service getting a new, randomly assigned share of the total data rate as input in
each run. In different runs different amounts of data rate need to be routed among different network
nodes. We have used this approach to create enough variation in the amount and sources of the load
in the network, while keeping the total input load in a fixed level to reduce cases where the mapping
is infeasible and no insight is provided for comparing the optimization approach to the heuristic
approach.

We have chosen the following objective function for the optimization approach:

maximize
∑

(v,v′)∈E,v 6=v′

remcapv,v′

where E is the set of links in the substrate network and remcapv,v′(∀(v, v′) ∈ E) shows the
remaining data rate on every link (v, v′) after the placement is calculated. The value of remcapv,v′ is
calculated by subtracting the data rate of every flow that passes (v, v′) from the capacity of the link.
We exclude the internal links of network nodes (self-loops in the network graph) from the objective
function and maximize remcapv,v′ only for those links (v, v′) ∈ E where v 6= v′. In this way, we
force the the placement to use these internal links more than other links. This results in consecutive
VNFs in a service being mapped to the same network node as long as there is enough capacity on
the current node to host the next VNF (also taking other constraints of the optimization model [4]
into account).

The placement solution that is computed using this objective function has the maximum possible
value for mean remaining capacity over all network links, excluding the self-loops. Therefore, as
a first step to compare the results of the heuristic algorithm to the optimal results, in Figure 11a
we show the comparison between the mean remaining capacity over all network links for each
of the service sets based on the results of all placement runs. Results of the heuristic algorithm,
with respect to the metric that is optimized by the optimization approach, are very similar and in
some cases almost identical to the optimal results. The largest difference between the results of the
heuristic algorithm and the optimization approach is around 5% and belongs to the results of Set 1.
The plots (Figure 11a–11e) include confidence intervals at 95% of confidence level.

To highlight the differences better, we ignore the unused network links and in Figure 11b we
show the comparison between the mean remaining capacity only over those links that were used for
mapping the services in each run.

The largest difference between the results is around 22% and can be seen in the results of Set 1.
The optimization approach can handle the placement of this set much better than the heuristic
algorithm, partly due to the type of the VNFs used in the services in this set. These services consist
of simple chains of VNFs, and one of the VNFs in each chain has a ratio of outgoing to incoming
data rate larger than 1, so the input data rate to the services increases somewhere in the middle
of the chains. The optimization approach obviously tries to map the two VNFs with such a large
data rate between them into one node. By mapping the link between them to an internal link in the
node (a self-loop), this part of the flow does not consume capacity on inter-node links. The heuristic
algorithm, in contrast, cannot foresee this increase in the data rate and simply places the VNFs into
nodes with enough capacity along the shortest path that can push through the maximum data rate
over the chain.

The same effect can be observed in other sets as well. However, the different between the results
is influenced by other parameters as well. For example, the services in Set 3 have the same structure
as Set 1 (simple chain) and include some VNFs increase the data rate. The difference of results there
is smaller than the difference for Set 1, because number of services in Set 3 is twice the number of
services in Set 1; that means, input data rate to each service is smaller in Set 3 and hence, data rate
of the flow after leaving the VNF that increases the data rate is smaller and has a smaller effect than
it has in the case of Set 1.

The difference of heuristic results to optimal results is also affected by the fact that services with
complex structures are broken into simple chains and the chains are mapped to the network one
by one using the heuristic. This is reflected, for instance, in the placement results for Set 2 and
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Set 5, which consist of branching services. In such services, location of the VNFs that appear in
more than one simple chain in the service structure (e.g., f1 in Figure 10d, which is a part of all
3 simple chains between a1 and a2) is determined only based on the first chain that is placed. The
optimization approach, in contrast, considers the whole service at the same time and can find better
a better mapping.

We also evaluate the minimum link capacity that remains in the network after placement, over the
links that are used for the services. The heuristic algorithm always selects the path with the smallest
bottleneck value among all the paths that have enough capacity for the data rate of the service. As
shown in Figure 11c, compared to the results of the optimization algorithm this behavior does not
cause much higher chances of congesting network links. The largest difference is around 52% and
again belongs to Set 1 as described before. However, for complex services like in Set 2 and Set 5, the
heuristic can get as close as 90% to the behavior of the optimization approach regarding this metric.

Although none of our placement approaches explicitly attempts to optimize usage of resources
on network nodes, in Figure 11d we show the remaining capacity on the most congested network
node after the placement. There is no significant difference between the behavior of the heuristic
algorithm and the optimization approach in this regard.

Difference of running times between the two algorithms is shown in Figure 11e, on a logarithmic
scale. Set 5 is the most complex input for the optimization approach among our test sets. Finding
a solution for this set requires around 31 minutes on average in our test environment, using the
Gurobi¶ solver on a machine with Intel X6560 CPUs running at 2.67 GHz. On the same machine,
the heuristic can find a solution in around 69 milliseconds.

As described in Section 7, no backtracking step is included in the heuristic algorithm that would,
for example, try another path in case a chain cannot be placed along the first suitable path found
by the SSSP-AF algorithm. Therefore, we show a comparison of the success ratio between the
algorithms in Figure 11f. We consider a run as successful if a placement can be calculated for the
complete set of input services in that run.

A failure ratio of around 35% can be observed for Set 2. Resource requirements of VNFs increase
with the incoming data rate. As the input data rates and start and end locations are assigned randomly
in each run, requirements of VNFs can differ greatly over different runs. Therefore, in some cases the
placement is simply not feasible as the network does not have enough resources to host the service.
Because of the branched structure and outgoing to incoming ratios of individual VNFs in Set 2,
this effect is stronger for this input set. Even the optimization algorithm has not been able to find a
solution for all instances of this set. The results can be improved, for example, by trying the second-
best path when the placement of a chain fails. For other sets the success ratio is acceptable. As every
network node in our model is a large data center, in reality it will likely have enough capacity for
hosting VNFs. Therefore, as long as there is a path in the network that has enough capacity to route
the required traffic between the start and end point of a chain, the heuristic algorithm will find this
path and place the VNFs on the nodes along this path.

9. CONCLUSION

The YANG model presented in this paper provides a powerful tool for flexible specification of
complex service structures. It extends the structural aspects of existing YANG definitions for service
function chaining that are under development, e.g., as part of the OpenDaylight service function
chaining project.

Our selection heuristic produces a number of combinations for the possible service graphs that
can be built for a set of requests with flexible specifications. The output is the Pareto-optimal
points regarding different metrics that represent possible variations in the structure and requirements
of a flexibly-specified service. These variations cover link capacity requirement, virtual resource
requirement, and number of required instances for VNFs in the service.

¶http://www.gurobi.com, date accessed: 2016-07-01
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Figure 11. Evaluation results for placement heuristic

We have evaluated the set of selected combinations using a placement optimization approach that
is aimed towards congestion control in network nodes and links. However, the selection criteria
is generic and flexible and can be used with any other metric and optimization objective. Our
evaluations show that the set of selected combinations can closely represent the Pareto set of the
combinations with respect to the values of node and link utilization after performing the placement.
For service deployment request sets with multiple possible combinations, our selection heuristic can
reduce the decision time by eliminating at least half of the options. The resulting gain in decision
time tends to increase for large request sets with a large number of combinations.

Results of the selection heuristic can be used in different ways. For example, one can try the
placement for all selected combinations and select the best option according to the results. Another
interesting possibility would be to change the structure of services for adapting the deployments to
the network state. That means, it is possible to categorize the selected combinations according to
specific metrics of interest and use different combinations over time. For example, one can do the
initial placement using a combination with the lowest resource requirements and switch to the one
with the lowest link capacity requirement if a high link utilization is detected.

Our placement heuristic provides quick and close-to-optimal solutions for mapping services to
the network. This algorithm can place services with simple or complex structures. It maps the VNFs
of a service to nodes with enough capacity along the shortest path with the smallest bottleneck
value, just enough for carrying the data rate of the service. We have evaluated this algorithm in
comparison to an optimization approach that maximizes the mean remaining data rate on network
links. Heuristic results show a maximum of 5% deviation from optimal results, with respect to this
objective.

Our selection and placement heuristics can be applied jointly to place services with flexible
structures. A large portion of possible combinations can be eliminated, leaving a representative
set of combinations that can produce optimal or close-to-optimal results. Afterwards, by applying
the placement heuristic instead of optimally placing the selected combinations, the decision time is
further improved. Using these heuristics and with a negligible deviation from optimal solution, our
evaluations show that flexible structures are feasible for complex services.
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