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To model dynamical systems on networks
with higher-order (non-pairwise) interactions, we
recently introduced a new class of ordinary
differential equations (ODEs) on hypernetworks.
Here, we consider one-parameter synchrony breaking
bifurcations in such ODEs. We call a synchrony
breaking steady-state branch ‘reluctant’ if it is tangent
to a synchrony space, but does not lie inside it. We
prove that reluctant synchrony breaking is ubiquitous
in hypernetwork systems, by constructing a large
class of examples that support it. We also give an
explicit formula for the order of tangency to the
synchrony space of a reluctant steady-state branch.

1. Introduction
Recent advances in a large variety of research fields
have highlighted the importance of non-pairwise
interactions for the collective dynamical behaviour of
complex network systems. These so-called higher-order
interactions turn out to be crucial in problems from,
e.g. neuroscience (see [1,2]), social science (see [3])
and ecology (see [4–6]). Physicists have, in particu-
lar, emphasized the impact of group interactions on
synchronization behaviour in various coupled oscillator
models and their generalizations (such as topologi-
cal signals on cell complexes or swarmalators with
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higher-order interactions) by comparing them with ‘classical’ dyadic network models (e.g.
[7,8]). At the same time, model reconstruction of dyadic networks is sometimes known to
paradoxically yield group interactions, e.g. in experiments with electrochemical oscillators
[9]. Higher-order interaction networks have consequently found their way into various recent
mathematical studies as well. We mention in particular the theoretical papers [10–16], which
investigate synchronization in classes of networks with non-pairwise, nonlinear interactions in
their equations of motion. We also refer to the excellent surveys [17–21] and references therein,
for an in-depth discussion of higher-order networks, and numerous examples of higher-order
network systems arising in applications.

This article builds on previous work of the authors [16], in which we generalized the notion
of a coupled cell network, introduced by Golubitsky et al., Golubitsky & Stewart and Field [22–
24], to the context of higher-order networks. We did this by introducing a class of ‘hypernet-
works’ and defining their ‘admissible’ maps and ordinary differential equations (ODEs), thus
formalizing the notion of a dynamical system on a higher-order interaction network. We also
introduced balanced colourings [22] of hypernetworks, and hypergraph fibrations [25,26], and
used these concepts to classify the robust synchrony patterns, that is the synchrony spaces that are
invariant under every admissible map, to hypernetwork dynamical systems.

The most surprising result in von der Gracht et al. [16] is the observation that the robust
synchrony spaces of a hypernetwork system are not determined by linear terms in its equations
of motion. This distinguishes hypernetworks from classical (dyadic) coupled cell networks, for
which it was proved in Golubitsky et al. [27] that a synchrony space is invariant under every
admissible map, if and only if it is invariant under every linear admissible map, see also [28].
On the contrary, we prove in von der Gracht et al. [16] that a synchrony space of a hypernetwork
system is robustly invariant, whenever it is invariant under all polynomial admissible maps of a
specific degree, which depends on the order of the hyperedges in the hypernetwork. Examples
moreover show that our estimate for this polynomial degree is sharp.

As a consequence, a hypernetwork-admissible map of sufficiently low polynomial degree
may admit ‘ghost’ synchrony spaces that are not supported by general, e.g. higher degree
polynomial admissible maps. These ghost synchrony spaces may have a profound effect on
the dynamics of the hypernetwork system. In particular, the final section of von der Gracht
et al. [16] presents numerical evidence that they can give rise to a remarkable new type of
local synchrony breaking bifurcation. The aim of this paper is to explain when and why such
bifurcations occur.

We in fact observed this type of bifurcation in a one-parameter family of admissible ODEs
for the hypernetwork depicted in figure 1a, meaning that these ODEs are of the form given
in equation (2.3) below. Figure 1b displays two numerically obtained branches of steady states
that emerge in a bifurcation in a particular system of this form. The steady-state branches were
found by forward integrating the equations of motion—so they are asymptotically stable. We
see that y0 = y1 for negative values of the bifurcation parameter λ, so on the negative branch y0

and y1 are synchronous. On the positive branch, y0 and y1 are non-synchronous, i.e. for positive
values of λ it holds that y0 ≠ y1. However, even though y0 and y1 grow notably as λ increases,
the difference y0 − y1 only increases very slowly as a function of λ, and hence it appears that the
branch is tangent to the synchrony space {y0 = y1}. In von der Gracht et al. [16], we called this
phenomenon ‘reluctant synchrony breaking’. The term ‘reluctant’ is to be understood literally,
and refers to the slow separation of the states of two nodes that were synchronous before the
bifurcation. Importantly, the reluctance is not caused by any (external) physical influence. On
the contrary, it is solely due to the topology of the interaction structure of the hypernetwork, as
we show below. A more detailed numerical analysis, see figure 2a,b, suggests that y0 − y1 ∼ λ3,
i.e. that the branch has a third order tangency to the synchrony space. In §4, we prove that this
is indeed the case.
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We show in this article that reluctant synchrony breaking is ubiquitous in hypernetworks.
The main result that we present is theorem 4.2, which states that reluctant synchrony break-
ing occurs generically in one-parameter bifurcations in a large class of hypernetworks. These
so-called augmented hypernetworks are constructed by coupling new nodes to an existing
network or hypernetwork by means of specific higher-order interactions. The hypernetwork
depicted in figure 1a is just one example of such an augmented hypernetwork. This means that
the anomalous bifurcation that was discovered in von der Gracht et al. [16] and described above
is not a numerical artefact. Instead, reluctant synchrony breaking is a generic phenomenon in
ODEs of the form (2.3). To illustrate our main result, we present several more examples in this
paper. We also argue (see remark 6) that one may design augmented hypernetworks that admit
reluctant synchrony breaking bifurcation branches with an arbitrarily high order of reluctancy,
i.e. an arbitrarily high order of tangency to a synchrony space.

Structure of the article. In §2, we illustrate reluctant synchrony breaking by studying the
example presented in [16] in more detail. In §3, we summarize the theoretical findings of von
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Figure 1. A hypernetwork that supports an unusual 'reluctant' synchrony breaking local steady-state branch. The round
nodes in figure 1a correspond to the x-variables in (2.1), and the square nodes to the y-variables. The numerically obtained
bifurcation branch in figure 1b satisfies y0 = y1 for λ < 0 and y0 ≠ y1 for λ > 0. We will prove in this paper thaty0 − y1 ∼ λ3 for λ > 0. (a) The hypernetwork that realizes the ODE system (2.1). (b) Numerically obtained bifurcation
diagram for equations of the form (2.1). Figure taken from von der Gracht et al. [16].
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Figure 2. More details for the steady-state branches depicted in figure 1b. Figures taken from von der Gracht et al.
[16]. (a) The difference between the y-nodes along the steady state branches. (b) A log–log plot of the difference
between the y-nodes, for λ > 0. The black line segment in the log–log plot has slope 3 and was added to show thaty0(λ) − y1(λ) ∼ λ3.
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der Gracht et al. [16], in which we defined a class of dynamical systems on hypernetworks,
studied their robust synchrony and balanced partitions, and introduced the so-called augmen-
ted hypernetwork. In §4, we prove our main result, theorem 4.2, which states that reluctant
synchrony breaking occurs generically in augmented hypernetworks, and which provides a
formula for the order of reluctancy of the synchrony breaking steady-state branch. We also
apply the theorem to the example discussed in this introduction. In §5, the main theorem is
illustrated by three more examples. A discussion of our results is presented in §6.

2. A first example
We now provide more details on the example that was briefly discussed in §1, and that was
introduced and studied numerically in von der Gracht et al. [16]. As mentioned above, this
example concerns the hypernetwork shown in figure 1a. In von der Gracht et al. [16], we
introduced the class of admissible ODEs of a hypernetwork (see also §3). The admissible ODEs
associated to the hypernetwork in figure 1a are all the ODEs of the form:

(2.1)

ẋ0 = G(x0,x0,x0) ,ẋ1 = G(x1,x1,x0) ,ẋ2 = G(x2,x1,x2) ,ẏ0 = F(y0, (x0,x1), (x1,x2), (x2,x0)) ,ẏ1 = F(y1, (x0,x2), (x1,x0), (x2,x1)) ,

for certain smooth functions F and G. We assume for now that the variables xi, yj take values inℝ, so that F : ℝ × ℝ2 × ℝ2 × ℝ2 ℝ and G : ℝ × ℝ × ℝ ℝ. The brackets in F serve to distinguish
the two-dimensional inputs from hyperedges of order two (the purple arrows in figure 1a).
The assumption that these hyperedges are identical, translates into the requirement that F is
invariant under all permutations of these pairs of variables. That is, we require that for allY , X1, …, X6 ∈ ℝ,

(2.2)

F(Y , (X0, X1), (X2, X3), (X4, X5)) =F(Y , (X2, X3), (X0, X1), (X4, X5)) =F(Y , (X0, X1), (X4, X5), (X2, X3)) .

To study bifurcations within this class of admissible ODEs, we parameterize the response
functions F and G in (2.1) by a scalar variable λ taking values in some open neighbourhood
Ω ⊆ ℝ of the origin. This gives the one-parameter family of hypernetwork admissible ODEs:

(2.3)

ẋ0 = G(x0,x0,x0; λ) ,ẋ1 = G(x1,x1,x0; λ) ,ẋ2 = G(x2,x1,x2; λ) ,ẏ0 = F(y0, (x0,x1), (x1,x2), (x2,x0); λ) ,ẏ1 = F(y1, (x0,x2), (x1,x0), (x2,x1); λ) .

To guarantee that the system (2.3) is admissible for every fixed value of λ ∈ Ω, we assume F
satisfies equation (2.2) for any fixed value of λ. Let us in addition assume:F(0, (0, 0), (0, 0), (0, 0); 0) = G(0, 0, 0; 0) = 0 ,

so that the system (2.3) has a steady-state point at the origin for λ = 0. We may study the
persistence of this steady-state by investigating the Jacobian at the origin of the system for λ = 0.
To this end, we write:
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(2.4)

F(Y , (X0, X1), (X2, X3), (X4, X5); λ)
= aY + bX0 + cX1 + bX2 + cX3 + bX4 + cX5 + dλ +O(‖(Y , X0, …, X5; λ)‖2) ,

and

(2.5)G(X0, X1, X2; λ) = AX0 + BX1 + CX2 +O(|λ| + ‖(X0, X1, X2)‖2) ,

with a, …, d, A, B,C ∈ ℝ, to specify the linear terms. The multiple occurrence of the terms b andc in (2.4) is due to the fact that according to (2.2), F depends in the same way on the tuple
(X0, X1) as it does on (X2, X3) and (X4, X5) . In terms of these coefficients, the Jacobian matrix
of the right-hand side of equation (2.3) at (x; λ) = (0,0) with respect to the spatial variablesx = (x0,x1,x2, y0, y1) is: A + B + C 0 0 0 0C A + B 0 0 0

0 B A + C 0 0b + c b + c b + c a 0b + c b + c b + c 0 a
.

The eigenvalues of this Jacobian are A + B + C, A + B and A + C (all with multiplicity 1), anda (with algebraic and geometric multiplicity 2). To allow for a steady-state bifurcation to
occur at λ = 0, we consider the case A + B = 0. We moreover assume the generic conditionsa, A + B + C, A + C ≠ 0 to hold.

We claim that as λ is varied near 0, two branches of steady states will generically emerge
from the origin. These can be found by first focusing on the subnetwork given by the three
nodes of the same type. That is, we first solveG(x0,x0,x0; λ) = 0 ,G(x1,x1,x0; λ) = 0 ,G(x2,x1,x2; λ) = 0 .

A direct calculation shows that, for generic values of the first- and second-degree Taylor
coefficients of G, one of the steady-state branches is locally given by

(2.6)x0(λ) = x1(λ) = x2(λ) = x(λ) = D0λ +O(|λ|2 ) ,

while another branch is given by:

(2.7)x0(λ) = D0λ +O(|λ|2 ) ,  x1(λ) = D1λ +O(|λ|2 ) ,x2(λ) = D2λ +O(|λ|2 ) ,

for certain non-zero and mutually distinct D0,D1,D2 ∈ ℝ. For our choices of parameters, no
further branches exist. We omit the computation of these branches. For a detailed exposition on
how to compute steady-state bifurcation branches in so-called feedforward networks (i.e. networks
with no loops other than self-loops), we refer to von der Gracht et al. [29].

We now turn to computing the values of y0 and y1 along the bifurcation branches. We start
by looking at the first branch, given by equation (2.6). Restricted to this branch, the steady-state
equation ẏ0 = 0 becomes:

(2.8)F(y0, (x(λ),x(λ)), (x(λ),x(λ)), (x(λ),x(λ)); λ) = 0 .

Combining (2.4) and (2.6) this can be expanded as:

ay0 + (3D0(b + c) + d)λ +O(‖(y0; λ)‖2) = 0 ,

which by the implicit function theorem has a unique solution given by:
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y0(λ) = −3D0(b + c) − da λ +O(|λ|2 ) .

Setting ẏ1 = 0 gives precisely the same equation to solve as (2.8), but with y0 replaced by y1.
Hence, we find y0(λ) = y1(λ) along this first branch, which we will therefore refer to as the
synchronous branch of system (2.3).

We now turn to the second branch of steady states, of which the asymptotics of the x-varia-
bles is given by equation (2.7). Combining (2.4) with (2.7), we find that ẏ0 = 0 is equivalent to

ay0 + ((b + c)(D0 + D1 + D2) + d)λ +O(‖(y0; λ)‖2) = 0 .

It follows again from the implicit function theorem that locally precisely one solution exists,
given by:

(2.9)y0(λ) = −(b + c)(D0 + D1 + D2) − da λ +O(|λ|2) .

In exactly the same way, we find that ẏ1 = 0 is solved for by

(2.10)y1(λ) = −(b + c)(D0 + D1 + D2) − da λ +O(|λ|2) .

Note that these expressions for y0(λ) and y1(λ) agree up to first order in λ. However, unlike for
the synchronous branch, there is no reason to conclude that y0(λ) = y1(λ) along this branch, as
the equations for ẏ0 and ẏ1 in (2.3) are different for distinct x0,x1 and x2:F(y0, (x0(λ),x1(λ)), (x1(λ),x2(λ)), (x2(λ),x0(λ)); λ) = 0 ,F(y1, (x0(λ),x2(λ)), (x1(λ),x0(λ)), (x2(λ),x1(λ)); λ) = 0 .

We will refer to the branch of steady states given by equations (2.7), (2.9) and (2.10) as the
reluctant branch of (2.3).

Figure 1b demonstrates numerically that the reluctant branch is truly non-synchronous. The
figure was taken from von der Gracht et al. [16], and it shows a numerically obtained plot
of the asymptotically stable bifurcation branches that emerge in a bifurcation in a particular
realization of system (2.3), namely for the choices

G(X0, X1, X2; λ) = − X0 + X1 − X2 + 8λX0 + 4X0
2  and F(Y , (X0, X1), (X2, X3), (X4, X5); λ) = − 5Y + 14λ

− ℎ(10X0 − 12X1) − ℎ(10X2 − 12X3) − ℎ(10X4 − 12X5)

in which,

(2.11)ℎ(x) = sin (x) + cos (x) − 1 .

It is known from von der Gracht et al. [29] that for this choice of G, the steady-state branchx(λ) is stable inside the subnetwork given by the three nodes of the same type. The negative
coefficient in front of the linear Y -term in F implies that it is stable in the y-directions as well—
so that it can easily be found numerically. Figure 1b shows the synchronous branch for λ < 0
and the reluctant branch for λ > 0—indeed, y0 and y1 agree for λ < 0, and quite clearly do not forλ > 0. This becomes even more visible in figure 2a, which shows y0 − y1 as a function of λ. The

logarithmic plot in figure 2b suggests that y0(λ) − y1(λ) ∼ λ3. In §4, we prove that this is truly the
case.

In this article, we rigorously prove the existence of reluctant steady-state branches in
bifurcations in a large class of hypernetwork systems. Specifically, we will show that reluctant
bifurcation branches appear in generic one-parameter local synchrony breaking steady-state
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bifurcations in the admissible ODEs for such hypernetworks. We also provide a formula for the
order in λ with which the ‘reluctant nodes’ separate.

3. Preliminaries
In this section, we briefly introduce hypernetwork dynamical systems and summarize results
obtained in von der Gracht et al. [16]. In fact, in von der Gracht et al. [16], we define a hypernet-
work to be a collection N = (V ,H, s, t) consisting of a finite set of vertices or nodes V , a finite set of
hyperedges H and source and target maps s and t defined on H. Given an edge ℎ ∈ H, its targett(ℎ) ∈ V  is a single vertex, whereas the source s(ℎ) = (s1(ℎ), …, skℎ(ℎ)) ∈ Vkℎ is an ordered kℎ-tuple
of vertices. The number kℎ > 0 depends on the hyperedge ℎ, and is called its order. To avoid
cluttered notation though, we often suppress the dependence of kℎ on ℎ when it is clear from
context, and simply write k. Note that the kℎ vertices in s(ℎ) are not required to be distinct. The
order of a hypernetwork N is then defined as the maximum of the orders of its hyperedges, so
that the hypernetworks of order 1 are precisely the classical (dyadic) networks.

In addition to the data that are explicitly given in N = (V ,H, s, t), we also specify equivalence
relations on both the nodes V  and the hyperedges H. We typically refer to both as the colour
or type relation. The reason that these relations are not specified in N is because they will
apply to all hypernetworks at once. That is, it will make sense for two nodes in different
hypernetworks to have the same colour, and likewise for multiple hyperedges across different
hypernetworks. This allows us to define node- and hyperedge-type preserving maps between
different hypernetworks, which in turn give rise to semi-conjugacies between the dynamics, see
von der Gracht et al. [16] for more details. Intuitively, this colour-relation conveys whether two
nodes correspond to comparable or incomparable agents in a real-world system modelled by
the hypernetwork, and similarly whether or not two hyperedges specify the same influence.
As is suggested by this interpretation, the vertex- and hyperedge-types have to satisfy certain
consistency conditions. These are:

(i) if two nodes v0 and v1 are of the same type, then there exists a hyperedge-type preserving
bijection between the set of hyperedges targeting v0 and those targeting v1;

(ii) two hyperedges ℎ0,ℎ1 of the same type have the same order k, and for each i ∈ {1, …, k}
the nodes si(ℎ0) and si(ℎ1) are of the same vertex-type.

These conditions allow us to define dynamical systems with the interaction structure of the
given hypernetwork. Such dynamical systems are specified by so-called admissible vector fields.
To introduce these, we fix an internal phase space ℝnv for each node v ∈ V , which will be
identical for nodes of the same type. Each node v is given a state variable xv ∈ ℝnv. The total
phase space of the hypernetwork dynamical system describes the states of all these variables, and
is thus the direct sum ⨁v ∈ Vℝnv. We also specify, for each hyperedge ℎ ∈ H, the vector of its
source variables:

xs(ℎ) = xs1(ℎ), …,xskℎ(ℎ) ∈ i = 1

kℎ ℝnsi (ℎ) .

Next, we choose for each node v ∈ V  its response function

(3.1)Fv: ℎ : t (ℎ) = v i = 1

kℎ ℝnsi (ℎ) → ℝnv .

These functions must satisfy certain conditions that reflect our intuitive idea that hyperedges
of the same type encode identical influence, as well as the notion that nodes of the same type
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respond to their input in the same way. In words, we require that the variables of identical-type
hyperedges may be freely interchanged in Fv, as well as that Fv and Fw are the same when the
nodes v and w are of the same type, after an appropriate identification of their domains. We
may capture both requirements in one succinct condition as follows: given nodes v and w of the
same type, for any hyperedge-type preserving bijection α : t−1(v) t−1(w) we have:

(3.2)Fw t(ℎ2) = wxs(ℎ2) = Fv t(ℎ1) = vxs(α(ℎ1)) ,

for all x = ⨁v ∈ V xv ∈ ⨁v ∈ Vℝnv. Recall that at least one such α exists when v and w are of the
same type. Finally, we define the hypernetwork admissible vector field

fN: v ∈ Vℝnv → v ∈ Vℝnv ,

on the total phase space, to be given component-wise by:

fvN(x) = Fv ℎ : t(ℎ) = vxs(ℎ)

for all v ∈ V  and x ∈ ⨁v ∈ Vℝnv.
To study synchronization in hypernetwork dynamical systems, we define a polysynchrony

subspace to be a subspace of the total phase space of a hypernetwork that is determined by
equality of clusters of node variables. More precisely, for any partition P = {V1, …,VC} of the
nodes V  of a hypernetwork, one can define the polysynchrony subspace

SynP = {xv = xw when v  and w are in the same element of P} .

Such a polysynchrony subspace is called robust if it is invariant under the flow of any admis-
sible vector field, that is, when fN(SynP) ⊆ SynP  for every admissible vector field fN. It was
shown in von der Gracht et al. [16] that SynP  is robust if and only if P is balanced, meaning
that the partition is ‘consistent with the hypernetwork structure’. For the precise definition of a
balanced partition, we refer to von der Gracht et al. [16]. It was also shown in von der Gracht et
al. [16] that a partition P is balanced (and hence SynP  is robust) if and only if SynP  is invariant
under all polynomial admissible vector fields of degree at most k(k + 1)/2, where k is the order
of the hypernetwork.

Example 3.1. One can show that the hypernetwork discussed in §2 and depicted in figure
1a has four robust synchrony subspaces (apart from the total phase space itself), namely
{x0 = x1}, {x0 = x1 = x2}, {x0 = x1 and y0 = y1} and {x0 = x1 = x2 and y0 = y1}.

Of particular interest in this paper are so-called augmented hypernetworks, also introduced
in von der Gracht et al. [16]. Their definition involves the symmetric group on k + 1 elements,
denoted by Sk + 1, which acts on the ordered set {0, …, k} by permutations. We denote by Sk + 1

0

and Sk + 1
1  the subsets of even and odd permutations, respectively, and denote by sgn(σ) ∈ {0, 1}

the sign of a permutation σ ∈ Sk + 1
sgn(σ).

Definition 3.2. (Definition 5.1 in von der Gracht et al. [16].) Let N be a hypernetwork withk + 1 ≥ 3 nodes v0, …, vk of the same type. We define the augmented hypernetwork with coreN ,
denoted by N♢, as the hypernetwork obtained by adding two additional nodes w0,w1, one
self-loop for each wi and (k + 1)! new hyperedges to N. The new nodes are of the same type,
which differs from that of the vi. Likewise, we construct a new hyperedge-type that we assign
to the (k + 1)! additional hyperedges. Necessarily, the self-loops on the new nodes are of a same,
new type too. The (k + 1)! new hyperedges are indexed by the symmetric group Sk + 1, so that we
may denote them by ℎσ for σ ∈ Sk + 1. We define their sources and targets by
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(3.3)t(ℎσ) = wsgn(σ) and s(ℎσ) = (vσ(1), …, vσ(k)) ,

where Sk + 1 acts on the ordered set {0, …, k}. Note that vσ(0) ∈ {v0, …, vk} is therefore the onlyv-node not in the source of ℎσ, and that these hyperedges all have order k.
Example 3.3. The hypernetwork discussed in §2 and depicted in figure 1a is an example

of an augmented hypernetwork. Here, the core consists of the k + 1 = 3 circular nodes in the
centre and the arrows between them. The core in fact forms a classical (dyadic) network. The
two ‘added’ nodes are depicted as the square ones. Equation (2.1) gives the form of a general
admissible vector field for this augmented hypernetwork. Recall that the response function F in
equation (2.1) is invariant under permutations of the three pairs of inputs, which reflects that
the six ‘added’ hyperedges are all of the same type.

By assumption, all nodes in the core N of an augmented hypernetwork are of the same type,
so that N♢ has precisely two node-types. This means that two response functions are required to

describe an admissible vector field fN♢
 for N♢. We will usually denote these by F and G, whereG is used for the nodes in N and F for the two additional nodes. Likewise, we see that the total

phase space is determined by two vector spaces: one for the internal dynamics of the v-nodes,ℝnv, and one for that of the w-nodes, ℝnw. We will later set both equal to ℝ. Note that F takes
one argument from ℝnw, corresponding to the self-loop, and (k + 1)!/2 entries from ⨁kℝnv for
the remaining hyperedges. As these latter hyperedges are indexed by (half of) the symmetric
group, we may see the response function as

F :ℝnw⊕σ ∈ Sk + 1
0

k ℝnv → ℝnw ,

with the property that the (k + 1)!/2 entries with values in ⨁kℝnv may be freely interchanged.
Note that we simply index these entries by Sk + 1

0  to emphasize that they correspond to the
hyperedges that are indexed by (part of) the symmetric group. We could have also used Sk + 1

1

and, because we may freely interchange these entries, we do not have to give an explicit
identification between Sk + 1

0  and Sk + 1
1 . In particular, in any augmented hypernetwork the

dynamics of the w-nodes may simply be written as

(3.4)ẏ0 = F y0, σ ∈ Sk + 1
0
xσ  and ẏ1 = F y1, σ ∈ Sk + 1

1
xσ ,

where xσ = (xσ(1), …,xσ(k)), and where we write yi for the state of node wi and xj for the state of
node vj.

Remark 1. We may generalize the definition of an augmented hypernetwork by connecting
the auxiliary nodes w0 and w1 only to a subset S of nodes of the same type of the core,

consisting of k + 1 nodes of the same type. In this case, the nodes in the core that are not
elements of S may in fact be of different type. We can then add (k + 1)! hyperedges of order k,

precisely as in definition 3.2, but now with all source nodes in S. It will be clear that our results

also hold for such hypernetworks, but to avoid a cluttered exposition we will mostly work with
definition 3.2. See also remark 5.

4. Reluctant synchrony-breaking
We now show that the reluctant synchrony breaking observed in §2 is not a peculiarity of
systems of the form (2.3), but can occur in any augmented hypernetwork. In fact, we shall
give natural conditions on the core N that guarantee that reluctant synchrony breaking occurs
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generically in the augmented hypernetwork N♢. Moreover, in theorem 4.2 below, we give a
precise expression for the degree (in the bifurcation parameter) at which the reluctant syn-
chrony breaking occurs. We start by introducing some useful notation and conventions.

As it is sometimes convenient to make explicit the dependence of an admissible vector

field on its response functions, we will often write f(F,G)
N♢

 and f(G)
N  for the admissible vector

fields of N♢ and N, respectively. Furthermore, because in this section we are mainly interested

in bifurcations, we will often use fN (and fN♢
, f(F,G)

N♢
,etc.) to denote parameter families of

admissible vector fields. This means fN is an admissible vector field for any fixed value of the
bifurcation parameter, as in §2.

Throughout this section, we will investigate asymptotics and power series in λ for bifurca-
tion branches. Some of these might involve fractional powers of λ, meaning that such branches
are only defined for positive or negative values of λ. To keep this section as readable as possible,
we assume from here on out that all branches are defined for positive values of λ, so that we
may always write λp for any power p ≥ 0. The corresponding results for negative values of λ
follow easily by redefining λ as −λ. For a function X = X(λ) defined for small positive values ofλ, we will frequently use the abbreviation X(λ) ∼ λp to denote that there exists a constant A ≠ 0
for which X(λ) = Aλp + ‘higher order terms in λ’.

Definition 4.1. Let N be a hypernetwork with n nodes and denote by fN:ℝn × Ω → ℝn
a one-parameter family of admissible vector fields for N, where each node has a one-
dimensional internal phase space. In this paper, a locally defined branch of steady statesx(λ) = (x1(λ), …,xn(λ)) for fN is called fully synchrony-breaking if for all i, j ∈ {1, …,n} with i > j
there exist numbers pi, j > 0 such that:

(4.1)xi(λ) − xj(λ) ∼ λpi, j .

Given a fully synchrony-breaking steady-state branch, we define its order of asynchrony as the
number:

(4.2)
p̄ = ∑i, j = 1i > j

n pi, j .

In what follows, we will need to make some assumptions about the asymptotics and regularity
of the branches. To avoid a detailed exposition, we instead use a formal ansatz. From here on
out, we will always assume a fully synchrony-breaking branch x(λ) = (x1(λ), …,xn(λ)) to come
with a finite set of numbers Υ ⊆ (0,p‾ ] such that we may write:

(4.3)xi(λ) = ∑p ∈ Υ
Ai,pλp +O(|λ|p̄ + ϵ )

for some ϵ > 0, and with Ai,p ∈ ℝ. Note that these Ai,p may very well vanish. As we may write:

(4.4)

xi(λ) − xj(λ) = ∑p ∈ Υ
(Ai,p − Aj,p)λp +O(|λ|p̄ + ϵ )

= Di, jλpi, j + ‘higher-order terms’ ,

and because pi, j ≤ p‾, we see that necessarily pi, j ∈ Υ for all i > j. Note that the Di, j appearing in
(4.4) are all non-zero by assumption (4.1).

Equation (4.4) also shows that Ai,pi, j and Aj,pi, j cannot both be 0, as this would imply Di, j = 0.

As a result, we see that at least one of the components xi(λ) and xj(λ) grows as λs with s ≤ pi, j.
Given k ∈ {1, …,n} let us denote by sk the order of xk(λ), so that xk(λ) ∼ λsk. If xk(λ) = 0 then we
may set sk = ∞. What we have argued is simply that min (si, sj) ≤ pi, j.
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A related quantity appearing in theorem 4.2 below will be

(4.5)p̂ = min (s1, …, sn, 1) .

It follows that:

(4.6)p̂ ≤ min (s1, s2) ≤ p1,2 < p‾ ,

as pi, j > 0 for all i, j.
In the theorem below, we assume all admissible vector fields correspond to one-dimensional

internal dynamics for each node.
Theorem 4.2. Let N♢ be an augmented hypernetwork with core N, the latter consisting of k + 1 ≥ 3

nodes, and let f(G)
N : ℝk + 1 × Ω → ℝk + 1 be a one-parameter family of admissible vector fields for N,

corresponding to some response function G. Assume f(G)
N  admits a fully synchrony-breaking branch of

steady states x(λ) = (x0(λ), …,xk(λ)) with order of asynchrony p‾.

Then for a generic λ-dependent response function F = F( ⋅ ; λ), the system f(F,G)
N♢

: ℝk + 3 × Ω → ℝk + 3

admits a steady-state branch z(λ) = (x0(λ), …,xk(λ), y0(λ), y1(λ)) for which:

y0(λ), y1(λ) ∼ λp̂wℎile  y0(λ) − y1(λ) ∼ λp̄ .

The branch z(λ) consists of asymptotically stable equilibria for f(F,G)
N♢

 if and only if x(λ) consists of

asymptotically stable equilibria for f(G)
N  and ∂F /∂y(0; 0) < 0.

Note that, since p̂ < p‾ by equation (4.6), we see that the branch found in theorem 4.2 is truly
tangent to the space {y0 = y1}. In other words, the difference between the y-components grows
significantly slower than the two y-values themselves.

Remark 2. As (f(−F,G)
N♢

)w = −(f(F,G)
N♢

)w for the two nodes w outside the core, we see that z(λ) is a

branch of steady-states for f(F,G)
N♢

, if and only if it is for f(−F,G)
N♢

. The stability condition in

theorem 4.2 holds for either f(F,G)
N♢

 or f(−F,G)
N♢

. Hence, each existing branch that is stable for the

core is stable for either f(F,G)
N♢

 or for f(−F,G)
N♢

. This can be particularly useful if one wants to realize
all branches (not just the stable ones) numerically.

Before proving the theorem, we first apply it to our running example.
Example 4.3. In §2, we investigated a bifurcation scenario with a fully synchrony-breaking

branch in the core, given by xi(λ) = Diλ +O(|λ|2) for i ∈ {0,1,2} and with mutually distinct Di.
It follows that xi(λ) − xj(λ) = (Di − Dj)λ +O(|λ|2) for all i, j. As Di − Dj ≠ 0 for i > j, we obtainp3,1 = p3,2 = p2,1 = 1 and hence p‾ = 1 + 1 + 1 = 3 .

Theorem 4.2 therefore predicts a bifurcation branch z(λ) = (x0(λ),x1(λ),x2(λ), y0(λ), y1(λ)) in the

augmented system fF,GN♢
, for a generic choice of F and with any G supporting the aforemen-

tioned fully synchrony-breaking branch in the core, which satisfies:

y0(λ) − y1(λ) ∼ λ3 .

This is indeed what we found in our numerical investigation, see figure 2b.
The proof of theorem 4.2 requires some machinery from von der Gracht et al. [16]. There we

introduced the polynomials P(k): ⨁σ ∈ Sk + 1
0 ℝk ℝ, given by:

(4.7)P(k) σ ∈ Sk + 1
0
Xσ = ∑σ ∈ Sk + 1

0
Xσ, 1

1 Xσ, 2
2 ⋯Xσ, kk ,
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for k ∈ ℕ, and where Xσ = (Xσ, 1, …, Xσ, k) ∈ ℝk for σ ∈ Sk + 1
0 . We also state the following result, a

proof of which can be found in von der Gracht et al. [16].
Lemma 4.4. (Lemma 5.6 in von der Gracht et al. [16].) Let Q: ⨁σ ∈ Sk + 1

0 ℝk → ℝ be a polynomial

function that is invariant under all permutations of its #Sk + 1
0  entries from ℝk. Then there exists a

polynomial S:ℝk + 1 → ℝ such that:

(4.8)
Q σ ∈ Sk + 1

0
xσ − Q σ ∈ Sk + 1

1
xσ = S(x) ∏i, j = 0i > j

k
(xi − xj)

for all x = (x0, …,xk) ∈ ℝk + 1, where xσ = (xσ(1), …,xσ(k)) for all σ ∈ Sk + 1.
Remark 3. It can readily be seen that for any polynomial Q satisfying the conditions of

lemma 4.4, (4.8) is actually equivalent to the fact that

(4.9)Q σ ∈ Sk + 1
0

xσ = Q σ ∈ Sk + 1
1

xσ ,

whenever (x0, …,xk) ∈ ℝk + 1 satisfies xi = xj for some distinct i, j ∈ {0, , …, k}. This observation
still holds when Q is not polynomial, see lemma 5.5 of von der Gracht et al. [16]. The latter fact
actually underlies the proof of lemma 4.4 that is given in [16].

Lemma 4.5. The polynomials P(k) defined in (4.7) satisfy:

(4.10)
P(k) σ ∈ Sk + 1

0
xσ − P(k) σ ∈ Sk + 1

1
xσ = ∏i, j = 0i > j

k
(xi − xj),

for all x = (x0, …,xk) ∈ ℝk + 1.
Proof. By lemma 4.4, we have:

P(k) σ ∈ Sk + 1
0

xσ − P(k) σ ∈ Sk + 1
1

xσ = S(x) ∏i, j = 0i > j
k

(xi − xj),
for some polynomial S. It remains to show that S = 1. To this end, note that both the left-
and right-hand side of equation (4.10) has total degree 1 + ⋯ + k = k(k + 1)/2. This means S is a
constant polynomial. As both sides of equation (4.10) contain a term 1 ⋅ x1x2

2…xkk, we see thatS = 1 and the result follows.
Before we move on to the proof of theorem 4.2, we first have a closer look at the set of

powers Υ. Recall that we may write:

(4.11)xi(λ) = ∑p ∈ Υ
Ai,pλp +O(|λ|p̄ + ϵ ) ,

for all the components xi(λ) of a fully synchrony-breaking branch. By adding zero-coefficientsAi,p to expression (4.11) and by decreasing ϵ if needed, we may assume that for all p, q ∈ Υ, we
have:

(4.12)
p + q ∈ Υ if p + q ≤ p‾ ;p + q ≥ p‾ + ϵ if p + q > p‾ ,

and also that:

1 ∈ Υ if 1 ≤ p‾ ;
1 ≥ p‾ + ϵ if 1 > p‾ .

More precisely, we can add to Υ all non-zero sums s = c + p ∈ Υcpp with non-negative inte-
ger coefficients c, cp, such that s ≤ p‾. Note that this adds a finite number of elements to Υ,
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as necessarily cp ≤ p/p  and c ≤ p . It then follows from equation (4.12) that p‾ ∈ Υ, as we
have pi, j ∈ Υ for all i > j. This allows us to iteratively investigate coefficients corresponding
to (possibly non-integer) powers of λ in the branches, as well as in polynomial expressions
involving the components of these branches. For instance, if x1(λ) and x2(λ) are given by
equation (4.11), then we may likewise write:

x1(λ)x2(λ) = ∑p ∈ Υ
Ap′ λp +O(|λ|p̄ + ϵ ) and 

λx1(λ) = ∑p ∈ Υ
Ap″λp +O(|λ|p̄ + ϵ ) ,

for some Ap′ , Ap′′ ∈ ℝ. Finally, whenever

w(λ) = ∑p ∈ Υ
Apλp +O(|λ|p̄ + ϵ ) ,

for some locally defined map w:ℝ ≥ 0 ↦ ℝ and with Ap ∈ ℝ, then for q ∈ Υ we may write:

[w(λ)] ≤ q := ∑p ∈ Υp ≤ q
Apλp  and [w(λ ] < q := ∑p ∈ Υp < q

Apλp,

for the truncated power series.
Proof of theorem 4.2. By assumption, x(λ) = (x0(λ), …,xk(λ)) locally solves

(f(F,G)
N♢

(x, y; λ))v = (f(G)
N (x; λ))v = 0 for all nodes v in the core N and all y = (y0, y1) ∈ ℝ2. To solve

for the y-components, let K ∈ ℕ be such that:

(4.13)(K + 1) min (p | p ∈ Υ) > p‾ .

We expand a general response function F as:

(4.14)F(Y ,X; λ) = aY + ∑ℓ,m = 0

K Qℓ,m X Yℓλm +O (‖ X,Y ; λ ‖K + 1) ,

for Y ∈ ℝ, λ ∈ ℝ≥0, and where

X := σ ∈ Sk + 1
0
Xσ,

with Xσ ∈ ℝk. Here each Qℓ,m is a polynomial of degree at most K that is invariant under all
permutations of the vectors Xσ, which follows from the fact that F is invariant under permuta-
tions of these vectors. Our assumption (which is necessary for a bifurcation) that F(0,0; 0) = 0
implies that Q0,0(0) = 0. Moreover, by setting the number a ∈ ℝ equal to the derivative of F at
(0,0; 0) in the Y -direction, we may assume that Q1,0(0) = 0.

For s ∈ {0,1}, the equation ẏs = 0 gives:

(4.15)ays + ∑ℓ,m = 0

K Qℓ,m σ ∈ Sk + 1
s xσ(λ) ysℓλm +O(‖(x(λ), ys; λ)‖K + 1) = 0 ,

where xσ(λ) = (xσ(1)(λ), …,xσ(k)(λ)) for all σ ∈ Sk + 1. If we assume a ≠ 0 then by the implicit
function theorem, this equation locally has a unique solution ys(λ), which can be written as:

ys(λ) = p ∈ Υ
Bs,pλp +O(|λ|p‾ + ϵ) .

Note that the lowest value of p ∈ Υ for which Bs,p ≠ 0 will generically be the minimum of the
orders of the xi(λ), unless these all exceed 1. In that case, this lowest value of p generically

equals 1, due to the presence of the term Q0,1(0)λ1 in equation (4.15). Thus by definition of p̂, we
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indeed see that generically ys(λ) ∼ λp̂. The coefficients Bs,p ∈ ℝ can iteratively be solved from the
equation:

(4.16)ays(λ) + ∑ℓ,m = 0

K Qℓ,m σ ∈ Sk + 1
s xσ(λ) ysℓ(λ)λm +O(|λ|p̄ + ϵ ) = 0 ,

which is (4.15) applied to the solution branch (x0(λ), …,xk(λ), y0(λ), y1(λ)). We now want to show
that:

(4.17)y0(λ) − y1(λ) = O(|λ|p̄ ),

for these unique solutions. We will do so by proving for all q ∈ Υ with q < p‾ that:

(4.18)[y0] < q = [y1] < q ⟹ [y0] ≤ q = [y1] ≤ q .

Note that for q = min (p | p ∈ Υ), we have [y0] < q = [y1] < q = 0. Hence, iterated use of implication
(4.18) indeed proves equation (4.17). To show that the statement in (4.18) holds, we subtract
equation (4.16) for s = 1 from the one for s = 0, which gives us:

(4.19)a(y0(λ) − y1(λ)) + ∑ℓ,m = 0

K
∑s = 0

1
( − 1)sQℓ,m σ ∈ Sk + 1

s xσ(λ) ysℓ(λ)λm +O(|λ|p̄ + ϵ ) = 0 .

Given q ∈ Υ satisfying q < p‾, let q+ denote the smallest element in Υ such that q+ > q, i.e. q+ is the
‘next power’ to consider. Note that q < p‾ means q+ ≤ p‾ exists. It follows that:

(4.20)

0 = a([y0(λ)] ≤ q − [y1(λ)] ≤ q)
+ ∑ℓ,m = 0

K
∑s = 0

1
( − 1)sQℓ,m σ ∈ Sk + 1

s xσ(λ) [ys(λ)] < qℓ λm +O(|λ|q+
) .

Here, we have used that:

(4.21)Qℓ,m σ ∈ Sk + 1
s xσ(λ) [ys(λ)] ≤ qℓ λm = Qℓ,m σ ∈ Sk + 1

s xσ(λ) [ys(λ)] < qℓ λm +O(|λ|q+
) ,

which is clear whenever ℓ = 0, ℓ > 1 or m > 0. For (ℓ,m) = (1,0) it holds because Q1,0(0) = 0, so thatQ1,0 has no constant term and hence:

Q1, 0 σ ∈ Sk + 1
s xσ(λ)

is divisible by λr for r = min (p | p ∈ Υ). We now assume [y0(λ)] < q = [y1(λ)] < q, so that
[ys(λ)] < q = [y0(λ)] < q for both choices of s. Using lemma 4.4, equation (4.20) becomes:

(4.22)

0 = a([y0(λ)] ≤ q − [y1(λ)] ≤ q)
+ ∑ℓ,m = 0

K
∑s = 0

1
( − 1)sQℓ,m σ ∈ Sk + 1

s xσ(λ) [ys(λ)] < qℓ λm +O(|λ|q+
)

= a([y0(λ)] ≤ q − [y1(λ)] ≤ q)
+ ∑ℓ,m = 0

K
[y0(λ)] < qℓ λm∑s = 0

1
( − 1)sQℓ,m σ ∈ Sk + 1

s xσ(λ) +O(|λ|q+
)

= a([y0(λ)] ≤ q − [y1(λ)] ≤ q)
+ ∑ℓ,m = 0

K
[y0(λ)] < qℓ λmSℓ,m(x(λ)) ∏i, j = 0i > j

k
(xi(λ) − xj(λ)) +O(|λ|q+

) ,

for some polynomials Sℓ,m. As it is clear that:
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i, j = 0i > j
k

(xi(λ) − xj(λ)) = O(|λ|p‾) ,

equation (4.22) simplifies to:

a([y0(λ)] ≤ q − [y1(λ)] ≤ q) = O(|λ|q+
) .

Using again the assumption that a ≠ 0, this indeed gives [y0(λ)] ≤ q = [y1(λ)] ≤ q.
By induction, (4.17) holds true as outlined above. It follows that we may write:

y0(λ) − y1(λ) = Eλp̄ +O(|λ|p̄ + ϵ)
for some E = B0,p‾ − B1,p‾ ∈ ℝ. We next want to show that E ≠ 0 generically. To this end, recall
that Bs,p‾ can be solved for from equation (4.16). In fact, for fixed values of a ≠ 0 and the power
series coefficients of each xi(λ), we may express Bs,p‾ as a polynomial in the coefficients of the
various Qℓ,m. Therefore, we may likewise express E = B0,p‾ − B1,p‾ as such a polynomial. Now, any
polynomial on a finite dimensional vector space is either identically zero, or vanishes only on
the complement of an open dense set. Therefore, the proof is complete if we can give at least
one response function F for which E ≠ 0. To this end, consider:

(4.23)F(Y ,X; λ) = aY + P(k)(X) .

Using lemma 4.5, we get:

(4.24)

0 = F y0(λ), σ ∈ Sk + 1
0
xσ(λ); λ − F y1(λ), σ ∈ Sk + 1

1
xσ(λ); λ

= a(y0(λ) − y1(λ)) + P(k) σ ∈ Sk + 1
0
xσ(λ) − P(k) σ ∈ Sk + 1

1
xσ(λ)

= a(y0(λ) − y1(λ)) + ∏i, j = 0i > j
k

(xi(λ) − xj(λ))

= a(y0(λ) − y1(λ)) + ∏i, j = 0i > j
k Di, j λp̄ +O(|λ|p̄ + ϵ ) .

Hence, for this particular choice of response function, we obtain:

E = − 1a ∏i, j = 0i > j
k Di, j ≠ 0 ,

which shows that E is indeed generically non-vanishing.
Finally, equation (4.15) shows that the branch:

(4.25)z(λ) = (x0(λ), …,xk(λ), y0(λ), y1(λ))

is stable if x(λ) is stable for f(G)
N , and if in addition a < 0. Since a = ∂F(0; 0)/∂y, this completes the

proof. ∎
Remark 4. The condition in theorem 4.2 that x(λ) is fully synchrony-breaking is essential.

More precisely, it follows from remark 3 that if xi(λ) = xj(λ) for some distinct i, j, then the
equations ẏ0 = 0 and ẏ1 = 0 give identical solutions y0(λ) and y1(λ).

Example 4.6. The augmented hypernetwork depicted in figure 3 generically does not
support a reluctant synchrony-breaking steady-state branch. Its core (shown in the grey box) is
a fully symmetric three-cell network. It is known that this network only admits local synchrony
breaking steady state branches for which xi(λ) = xj(λ) for a pair i ≠ j, see [30]. Hence, all
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these branches are partially synchronous, and the conclusion of theorem 4.2 cannot be drawn.
According to the previous remark, all generic solution branches in fact satisfy y0(λ) = y1(λ) .

Remark 5. Recall from remark 1 that we may generalize the definition of an augmented
hypernetwork to allow only hyperedges between the two additional nodes and a subset S of

nodes of the same type of the core. It is clear that the results of theorem 4.2 still hold for this
construction. More precisely, we then need a steady-state bifurcation branch in the core that
has different components for the nodes in S. We may then define the order of asynchrony as

in definition 4.1, but comparing only states in S. As in theorem 4.2, we will then generically

have a steady-state bifurcation in a corresponding admissible vector field for the augmented
hypernetwork, with the difference between the w-nodes growing in λ raised to the power
of the order of asynchrony. Stability of this branch for the augmented hypernetwork can be
guaranteed if the relevant branch for the core is stable.

5. More examples
In this section, we present three more examples that illustrate theorem 4.2.

Example 5.1. Consider the augmented hypernetwork shown in figure 4a. Its admissible
ODEs are given by:

(5.1)

ẋ0 = G(x0,x1; λ) ,ẋ1 = G(x1,x0; λ) ,ẋ2 = G(x2,x2; λ) ,ẏ0 = F(y0, (x0,x1), (x1,x2), (x2,x0); λ) ,ẏ1 = F(y1, (x0,x2), (x1,x0), (x2,x1); λ) ,

where F has the usual symmetry properties and where we assume each node to have a
one-dimensional phase space. The grey box in figure 4a denotes the core of this hypernetwork,
which is a disconnected, classical first-order network and whose dynamics corresponds to that
of the x-variables in (5.1). Generically, a one-parameter bifurcation in an admissible system for
the core is either given by the product of two saddle-nodes or by a pitchfork bifurcation. Only
the latter of these involves a fully synchrony-breaking branch, and so we focus on that case,
which we realize by choosing:

(5.2)G(X0, X1; λ) = −X0 − X1 + λX0 − X0
3 .

0

1

2

0

1

Figure 3. An augmented hypernetwork that generically does not support reluctant synchrony-breaking.
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It follows that for λ < 0, the only (stable) steady-state branch is given by x0(λ) = x1(λ) = x2(λ) = 0.
For λ > 0 we find (apart from some unstable branches) two stable, fully synchrony-breaking
branches, given by:

x0(λ) = −x1(λ) = ±λ1/2, x2(λ) = 0 .

For each of these two latter branches, we have:

x2(λ) − x0(λ) = ∓λ1/2, x2(λ) − x1(λ) = ±λ1/2,x1(λ) − x0(λ) = ∓2λ1/2 ,

from which we see that

p‾ = 1
2 + 1

2 + 1
2 = 3

2 .

Hence, for the choice of response function G given by (5.2), theorem 4.2 predicts the full system
(5.1) to undergo a bifurcation where y0(λ) − y1(λ) ∼ λ3/2 for λ > 0, for a generic choice of F.

A numerical investigation corroborates this result, see figure 4. These figures are obtained
using Euler’s method for the system (5.1) with G given by equation (5.2) and where we use:
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Figure 4. An augmented hypernetwork with a disconnected core together with the numerically obtained bifurcation
diagram for a corresponding system of the form (5.1). (a) Depiction of the augmented hypernetwork whose core is shown
within the grey box. We have left out self-loops corresponding to self-influence of each node. (b) The stable branches
of a synchrony-breaking bifurcation. (c) The difference between the y-nodes along the stable branches. (d) A log–log
plot of the difference between the y-nodes. The black line segment has fixed slope 3/2 for comparison, indicating thaty0(λ) − y1(λ) ∼ λ3/2.
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(5.3)
F(Y , (X0, X1), (X2, X3), (X4, X5); λ)

= − 5Y + 14λ − ℎ(10X0 − 12X1) − ℎ(10X2 − 12X3) − ℎ(10X4 − 12X5)
,

in which

(5.4)ℎ(x) = sin (x) + cos (x) − 1 = 2sin (x + π
4 ) − 1 .

This function F is chosen because it has non-vanishing Taylor coefficients of arbitrary order—to
guarantee that the genericity conditions of theorem 4.2 hold—while also satisfying the required
symmetry condition. We forward integrated the system (5.1) for each of 600 equidistributed
values of λ ∈ [−0.03, 0.03]. For each fixed value of λ, integration was performed up to t = 5000
with time steps of 0.1, and starting from the point (x0,x1,x2, y0, y1) = (0.1, −0.2, 0.3, 0.4, 0.5). For
the log–log plot of figure 4d, we instead chose 600 values of λ ∈ [0.0005, 0.03], such that the
values of ln (λ) are equidistributed.

Example 5.2. We next turn to the augmented hypernetwork depicted in figure 5a. The core
of this hypernetwork, shown in the grey box, is an example of a classical (dyadic) network that
itself shows reluctant synchrony-breaking. More precisely, admissible systems for this core are
of the form:

(5.5)

ẋ0 = G(x0,x1,x0; λ) ,ẋ1 = G(x1,x2,x0; λ) ,ẋ2 = G(x2,x2,x0; λ) .

These ODEs are special instances of those of the more general form:

(5.6)

ẋ0 = H(x0,x1,x0,x1,x2; λ) ,ẋ1 = H(x1,x2,x0,x1,x2; λ) ,ẋ2 = H(x2,x2,x0,x1,x2; λ) ,

obtained by setting H(x, y, z,u, v; λ) = G(x, y, z; λ). Alternatively, one may think of (5.6) as
denoting all admissible systems for a network obtained from the core in figure 5a by adding six
additional arrows. The first three of these are from node 1 to all nodes in the core (including
an additional self-loop for node 1), and are all of a single, new type. The last three are from
node 2 to all nodes in the core, likewise all of one new type. The reason for adding these new
arrow-types is that we can rigorously compute generic steady-state bifurcations in systems of
the form (5.6), using centre manifold reduction. See Nijholt et al. [31] for a detailed exposition of
the techniques used.

For the sake of this example, it is enough to know that in subsection 7.2 of Nijholt et al. [31]
it is shown that the system (5.6) generically undergoes a steady-state bifurcation involving a
synchrony-breaking branch:

(5.7)

x(λ) = (x0(λ),x1(λ),x2(λ))
= (D0λ +O(|λ|2 ), D1λ +O(|λ|2 ), D1λ +O(|λ|2 )) ,

where

(5.8)x2(λ) − x1(λ) = D2, 1λ2 +O(|λ|3 )) ,

and with D0,D1,D0 − D1,D2, 1 ≠ 0. As this branch diverges from the synchrony space {x1 = x2} at
only quadratic leading order, we may again speak of reluctant synchrony breaking. As opposed
to the reluctant synchrony breaking we have considered in augmented hypernetworks though,
the space {x1 = x2} is actually robust for systems of the form (5.6), and so for the special cases
(5.5) as well. The synchrony-breaking branch (5.7) can furthermore take over stability from
a fully synchronous one as λ increases through zero, see table 2.1 in Nijholt et al. [31]. We
therefore predict such a bifurcation to occur in the special system (5.5) as well.
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Figure 5 reveals that this is indeed the case. Figure 5b shows the components of the stable
branches for the augmented hypernetwork of figure 5a. However, as the core is a subnetwork
of its augmented hypernetwork, we see that the x-variables depend only on each other and
so depict a bifurcation in the three-node system (5.5) as well. Figure 5b shows a reluctant
separation happening between the nodes v1 and v2, corresponding to the variables x1 and x2,
with figure 5c,d indicating this occurs as ∼ λ2.

It follows from (5.7) and (5.8) that we have

x2(λ) − x0(λ) ∼ λ, x1(λ) − x0(λ) ∼ λ andx2(λ) − x1(λ) ∼ λ2 ,
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Figure 5. An augmented hypernetwork whose corresponding core system is of the form (5.5) and shows reluctant synchrony
breaking itself together with the numerically obtained bifurcation diagram. (a) Depiction of the augmented hypernetwork.
We have left out self-loops corresponding to self-influence of each node. (b) The stable branches of a synchrony-breaking
bifurcation. (c) The difference between x2 and x1 along the stable branches. (d) A log–log plot of the difference betweenx2 and x1. (e) The difference between the y-nodes along the stable branches. The black line segment has fixed slope 2 for

comparison, indicating that x2(λ) − x1(λ) ∼ λ2. (f) A log–log plot of the difference between the y-nodes. The black line

segment has fixed slope 4, which indicates that y0(λ) − y1(λ) ∼ λ4.
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so that p‾ = 1 + 1 + 2 = 4 .

By theorem 4.2, this implies that the augmented hypernetwork system generically exhibits the
highly reluctant synchrony-breaking asymptotics:

y0(λ) − y1(λ) ∼ λ4 .

The numerics in figure 5e,f corroborate this surprising asymptotics—see in particular the
branches corresponding to the y-variables in figure 5b.

The details of the numerics are the same as for the previous example, except that time ran
until t = 5000 for figure 5b,c and e, and until t = 15 000 for figure 5d,f. The response function for
the x-variables was chosen to be:

G(X0, X1, X2; λ) = −0.55X1 + 0.25X2 + 1.5λX0 − 0.1X0
2 ,

with F given by equations (5.3) and (5.4).
Example 5.3. Finally, we consider the augmented hypernetwork of figure 6a, which has as

its core a classical feed-forward network with four nodes. More precisely, the nodes in the core
evolve according to the ODEs:

(5.9)

ẋ0 = G(x0,x1,x2; λ) ,ẋ1 = G(x1,x2,x3; λ) ,ẋ2 = G(x2,x3,x3; λ) ,ẋ3 = G(x3,x3,x3; λ) .

It is known that this system generically supports steady-state bifurcations in which stability
passes from a fully synchronous branch to one in which:

x0(λ) ∼ λ1/4 , x1(λ) ∼ λ1/2andx2(λ),x3(λ),x2(λ) − x3(λ) ∼ λ ,

see [29] and [32]. This unusually fast rate of synchrony breaking is also referred to as amplifica-
tion. It follows that:

p‾ = 1
4 + 1

4 + 1
4 + 1

2 + 1
2 + 1 = 11

4 ,

so that theorem 4.2 predicts a reluctant steady-state branch with

y0(λ) − y1(λ) ∼ λ11
4 .

This unusual growth rate is verified numerically in figure 6, which was obtained by numerically
integrating the augmented system for:

G(X0, X1, X2; λ) = 10X1 − 20X2 + 15λX0 − 100X0
2 ,

and

F Y , σ ∈ S4
0
Xσ; λ = − 0.01 ∑σ ∈ S4

0
ℎ(120Xσ, 1 + 40Xσ, 2 − 100Xσ, 3) − 5Y − λ ,

where Xσ = (Xσ, 1, …, Xσ, 4) ∈ ℝ4 and with ℎ given by equation (5.4).
Figure 6b shows the components of the stable branches, whereas figure 6c is a log–log

plot of the difference of the y-components, for positive values of λ. In this latter picture, the
dashed black line segment has fixed slope 11/4, indicating that indeed y0(λ) − y1(λ) ∼ λ11/4. For
comparison we also plotted the dotted black line segment, which has fixed slope 10/4, and
which does not fit as well for low values of λ. Both figures were made by forward integrating
the vector field for the augmented system from the point:
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(x0, …,x3, y0, y1) = (−0.001, −0.002, −0.003, −0.004, 0.001, 0.002)

in phase space, for various values of λ and with time steps of 0.1. For figure 6b, this was done
up to t = 2000 and with 600 equidistant values of λ ∈ [−0.03, 0.03]. For figure 6c, this was up tot = 20 000 and for 100 equidistant values of ln (λ) ∈ [ln (0.00003), ln (0.03)].

Remark 6. Example 5.2 shows that even classical (dyadic) networks may generically support
reluctant synchrony breaking bifurcations. However, we are not aware of any method to design
networks that, for instance, break synchrony up to some prescribed degree in λ. For hypernet-
works, the augmented hypernetwork construction makes this design problem more tractable.
In fact, we show below that one may construct hypernetworks that support generic reluctant
synchrony breaking to arbitrarily high order.

To illustrate how one can create hypernetworks with an arbitrarily high order of reluctant
synchrony breaking, we return to the five-node augmented hypernetwork of equation (2.1). In
§2, we observed that the three-node core of this hypernetwork supports a steady-state branch in
which xi(λ) = Diλ +O(|λ|2) for some mutually distinct Di ∈ ℝ. Using the same notation as in §2,

we expand the response function F for the y-nodes as:
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Figure 6. An augmented hypernetwork with a core consisting of a classical feed-forward network with four nodes, shown
within the grey box. In contrast to the previous examples, for this hypernetwork we have k + 1 = 4, so that there are
(k + 1)! = 24 hyperedges of order k = 3. Also shown are numerically obtained bifurcation diagrams. (a) Depiction of
the augmented hypernetwork. We have left out self-loops corresponding to self-influence of each node. (b) The stable
branches of a synchrony-breaking bifurcation. (c) A log–log plot of the difference between the y-nodes. The dashed black
line segment in the log–log plot has fixed slope 11/4, whereas the dotted segment has fixed slope 10/4.
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(5.10)

F(Y , (X0, X1), (X2, X3), (X4, X5); λ)
= aY + bX0 + cX1 + bX2 + cX3 + bX4 + cX5 + dλ

+O(‖(Y , X0, …, X5; λ)‖2) ,

and we recall that we found a reluctant steady-state branch in the augmented hypernetwork
with asymptotics:

(5.11)y0(λ) = −(b + c)(D0 + D1 + D2) − da λ +O(|λ|2 ) ,

and

(5.12)y1(λ) = −(b + c)(D0 + D1 + D2) − da λ +O(|λ|2 ) .

To this augmented hypernetwork, we can now add another node of the same type as they-nodes, with corresponding variable y2. We couple it to the nodes in the core in such a way
that:

(5.13)y2̇ = F(y2, (x0,x1), (x1,x0), (x0,x0); λ) .

The aforementioned branch of steady states is then supported by this larger hypernetwork as
well, where in addition,

(5.14)y2(λ) = −(b + c)(D0 + D1 + D0) − da λ +O(|λ|2 ) ,

as can be seen using equation (5.10). To summarize, we now have a branch where the threey-nodes satisfy:

(5.15)

y0(λ) = E0λ +O(|λ|2 ) , y1(λ) = E0λ +O(|λ|2 ) ,y2(λ) = E2λ +O(|λ|2 ) and y0(λ) − y1(λ) ∼ λp
for some p > 1 (in this particular case p = 3). Moreover, from equations (5.11), (5.12) and (5.14)
we see that E0 ≠ E2, as D0 ≠ D2 by assumption.

We may now use the three y-nodes as the core for another augmented hypernetwork, say by
adding two z-nodes of a new type (cf. remark 5). We also add a third z-node, precisely as we
did with the third y-node. That is, we set:

(5.16)

z0̇ = F~(z0, (y0, y1), (y1, y2), (y2, y0); λ) ,z1̇ = F~(z1, (y0, y2), (y1, y0), (y2, y1); λ) ,z2̇ = F~(z2, (y0, y1), (y1, y0), (y0, y0); λ) ,

where F~ is a response function for the z-nodes. Just as before, we will then find:

(5.17)

z0(λ) = E0′λ +O(|λ|2 ) , z1(λ) = E0′λ +O(|λ|2 ) ,z2(λ) = E2′λ +O(|λ|2 ) and z0(λ) − z1(λ) ∼ λp + 2

for some generically non-zero E0′ ,E2′ ∈ ℝ. The new power p + 2 follows from theorem 4.2, as

(5.18)y2(λ) − y0(λ) ∼ λ , y2(λ) − y1(λ) ∼ λ , y0(λ) − y1(λ) ∼ λp ,

which holds because E0 ≠ E2. We may also argue that E0′ ≠ E2′  in precisely the same way that we
argued that E0 ≠ E2.

This shows that by iteratively growing the augmented hypernetwork, we may increase the
order (in λ) of reluctancy of the reluctant steady-state branch. In other words, we may design
hypernetworks with an arbitrarily high order of reluctant synchrony breaking. Concretely, our
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example shows that we can arrange for p = 3, 5, 7, …. It is also clear from this construction that
the resulting reluctant branch may be assumed stable.

6. Discussion
In von der Gracht et al. [16], the authors introduced a mathematical framework to capture
higher-order interactions in network dynamical systems, thereby generalizing the analogous
set-up for classical (dyadic) networks [22–24]. It is observed in von der Gracht et al. [16]
that, unlike for dyadic networks, synchronization in these hypernetwork dynamical systems
is governed by higher-order (nonlinear) terms in the equations of motion. This suggests that
hypernetwork systems may display interesting phenomena that cannot be observed in dyadic
networks. In particular, the authors of von der Gracht et al. [16] construct a hypernetwork
system that shows numerical evidence of a bifurcation scenario in which two nodes break
synchrony at an unusually high order in the bifurcation parameter.

In this paper, we provide a general method to construct hypernetwork systems displaying
such ‘reluctant’ synchrony breaking, and we give a rigorous mathematical proof that these
bifurcations occur generically in these systems. We also give an analytical expression for the
order in the bifurcation parameter at which the synchrony breaking occurs.

Even though reluctant synchrony breaking is not impossible for dyadic networks, there
is currently no understanding of what causes their (rare) occurrence. A method for construct-
ing networks to achieve reluctant synchrony breaking is likewise lacking. In this paper, we
show that this design problem is much more tractable for hypernetwork systems, and that
the phenomenon appears to be significantly more common when higher-order interactions are
present. This sheds new light on the role that such higher-order interactions play in various
natural systems, and on their potential for applications in engineering.

In particular, we see interesting parallels with the concept of homeostasis. This term refers to
the ability of living organisms to keep their internal states approximately stable when external
conditions are changed. A well-known example is the ability of warm-blooded animals to
regulate their body temperature across a wide range of environmental temperatures [33,34].
For dynamical systems with a distinguished input parameter I  and output function X , an

(infinitesimal) homeostasis point is an input parameter value I = ℐ0 at which dX /dI = 0, with

higher-order derivatives possibly vanishing too [35]. In our set-up, the output function is the
difference between the states of two nodes at equilibrium, while the input parameter is a
bifurcation parameter λ. Thus, reluctant synchrony breaking can be interpreted as a form of
‘synchrony homeostasis’. This phenomenon may well occur within living systems, as syn-
chrony has been linked for instance to gene-regulatory processes [36] and memory formation
in the brain [37]. Of course, such claims would have to be verified in the relevant biological
systems. Nevertheless, it is striking that higher-order interactions can slow down desynchroni-
zation, perhaps to make a system more resilient to variations in external conditions.
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