
Transport Layer Obscurity:
Circumventing SNI Censorship on the TLS-Layer

Niklas Niere∗, Felix Lange∗, Robert Merget†, and Juraj Somorovsky∗
∗{niklas.niere, felix.lange, juraj.somorovsky}@upb.de, Paderborn University, Paderborn, DE

†robert.merget@tii.ae, Technology Innovation Institute, Abu Dhabi, UAE

Abstract— HTTPS composes large parts of today’s Internet
traffic and has long been subject to censorship efforts in
different countries. While censors analyze the Transport Layer
Security (TLS) protocol to block encrypted HTTP traffic,
censorship circumvention efforts have primarily focused on
other protocols such as TCP. In this paper, we hypothesize that
the TLS protocol offers previously unseen opportunities for
censorship circumvention techniques. We tested our hypothesis
by proposing possible censorship circumvention techniques
that act on the TLS protocol. To validate the effectiveness
of these techniques, we evaluate their acceptance by popular
TLS servers and successfully demonstrate that these tech-
niques can circumvent censors in China and Iran. In our
evaluations, we discovered 38—partially standard-compliant—
distinct censorship circumvention techniques, which we could
group into 11 unique categories. Additionally, we provide novel
insights into how China censors TLS traffic by presenting
evidence of at least three distinct censorship appliances. We
suspect that other parts of China’s censorship apparatus and
other censors exhibit similar structures and advocate future
censorship research to anticipate them. With this work, we
hope to aid people affected by censorship and stimulate further
research into censorship circumvention using cryptographic
protocols.

1. Introduction

Censorship is employed by various countries to restrict
network access of their citizens [2], [8], [27], [47], [56],
[81], [83]. A prominent example of a censor is the Great
Firewall of China (GFW). First analyzed in 2006 by Clayton
et al. [18], the GFW has become the most analyzed censor
globally [5], [13], [14], [22], [35], [44], [75], [81] while
other censors like Iran are also commonly analyzed [4], [8],
[11]. These analyses determined general censor behavior and
found different censorship evasion techniques to enable a
more open Internet.

One of the main goals of censors is to prohibit access
to certain websites. To do so, censors are known to perform
deep packet inspection (DPI) for different protocols, such
as HTTP [8], [32] and DNS [9], [32], [35] and encryption
protocols, such as Transport Layer Security (TLS) [49],
[81] and VPNs [80]. Depending on the analyzed protocol,
blocking can be performed through methods such as TCP

RSTs [8], [18], [42], block pages [13], [42], or dropping
packets [75], [79]. Censoring plaintext protocols is espe-
cially easy for censors. For example, when plaintext HTTP
is used, censors can read contained data, such as the server
hostname, and decide whether to block the connection.

HTTP can be combined with TLS to encrypt the under-
lying traffic (HTTPS). HTTPS is widely used across the
Internet [19], [29]. Using HTTPS prevents censors from
directly analyzing plaintext HTTP. To censor TLS-encrypted
content, censors can block specific IP addresses that host
the unwanted content. This is possible because TLS does
not encrypt IP headers that contain the server’s IP address.
While used by censors in practice, this strategy has two
severe limitations. First, censored servers can change their
IPs. Second, in virtual host environments, multiple websites
can share the same IP address, forcing the censor to also
block benign content. Such scenarios are typical for Content
Delivery Networks (CDNs) and cloud providers, making IP
blocking impractical for many domains. Instead of blocking
IPs, censors rely on the Server Name Indication (SNI)
extension when censoring TLS.

Server Name Indication (SNI). Hosting multiple servers on
the same IP is realized in TLS with the SNI extension [21].
Using the SNI extension, the client conveys to the server
the virtual host it wants to reach. While the extension was
optional for older TLS versions, TLS 1.3 requires servers
to support the SNI extension [59]. The client sends the SNI
extension in the very first TLS message (ClientHello),
which is sent unencrypted and thus reveals the hostname
to a passive observer. Therefore, the SNI extension allows
the censors to learn the intended hostname and block the
content. Notably, some servers in virtual host environments
are reachable without an SNI extension or an incorrect
hostname in the SNI extension. This is possible when the
virtual host environment identifies the destination domain
with the encrypted HTTP Host header or defaults to one of
its hosted domains.

Censorship Circumvention. In previous research, censor-
ship has been circumvented on different levels. To prevent
censorship analyses on the HTTP level, HTTP-based cir-
cumventions usually try to obfuscate censored keywords
such as the Host header [32], [83] or hide the request
entirely [46]. However, when TLS is used to encrypt HTTP
traffic, HTTP-level circumventions are not helpful anymore.

As TCP is application-unspecific and widely used, many
strategies on the TCP level have been created that mainly
attempt to invalidate the internal TCP state of a censor to
prevent censors from blocking content [11], [13]. The most
successful strategies are implemented by major censorship
evasion tools such as GoodbyeDPI [73] or zapret [16].
Unfortunately, censors are catching up to TCP-level circum-
vention techniques such as TCP fragmentation [13], neces-
sitating additional avenues for censorship circumvention.
Research Gap. While TCP-based and HTTP-based censor-
ship has been analyzed extensively, there is still unexplored
potential in censorship circumvention techniques on the TLS
layer. Singular circumvention techniques on the TLS layer
have been found such as TLS record fragmentation [49],
record injection [81], and hostname alterations [57]. While
all three techniques obfuscate the hostname in the SNI
extension, they consider only specific parts of the TLS
protocol and do not combine different techniques. Raman et
al. [57] and Xue et al. [81] have also limited their analysis
to censors and make no assertion about the acceptance
of their techniques on real-world web servers. Combining
these observations, we identify a research gap to thoroughly
analyze the TLS handshake for censorship circumvention
techniques and their effectiveness against censors and real-
world servers.
Methodology. To close this gap and develop TLS-level cir-
cumvention techniques that not only circumvent censors but
also are accepted by TLS servers, we explore the following
research questions:

RQ1: Which censorship circumvention techniques can be
designed based on the complexity of the TLS protocol?

RQ2: To what extent are TLS messages that are manip-
ulated through circumvention techniques accepted by
real-world servers?

RQ3: Which techniques servers accept are most successful
against real-world censors?

To answer these questions, we developed a five-phase
methodology. In the first phase, we identify TLS-level
censorship circumventions, which we then implement and
combine in the second phase. In the following phases, we
evaluated our test vector against real-world servers and
censors. We concentrated on techniques concerning the
ClientHello flight, which contains the SNI extension.
For example, we inserted a null byte into the SNI extension.
In another technique, we fragmented the ClientHello
message across multiple TLS records, similar to TCP frag-
mentation. Such deep protocol-level changes may lead to
servers rejecting the created messages. Therefore, we eval-
uated whether combinations of our techniques are accepted
by popular web servers and CDNs before testing them on
real-world censors.
Findings. As a result of our evaluations, we gained deep in-
sights into the inner workings of the censorship mechanism
in China and Iran, allowing us to identify a previously unno-
ticed third middle box in China’s censorship infrastructure.
We then present six categories of successful circumvention

techniques for the analyzed censors. Our results show that
the analyzed censors show diverse behavior when presented
with our circumvention techniques (cf. Table 4). The most
successful category is TLS record fragmentation. Strategies
in this category were widely accepted by all web servers
and successfully circumvented censorship in China and Iran.
Interestingly, TLS record fragmentation does not cause any
protocol violation and can be applied without having root
access to the system, making it an ideal circumvention
technique for the usage in proxies. Additionally, invalidating
version fields and removing the SNI extension entirely were
also very successful strategies.
Contributions. We make the following contributions:

• We present a novel five-phase methodology to ana-
lyze censorship circumvention techniques systemati-
cally. We show how this methodology can be applied
to perform the first systematic analysis of the TLS
handshake for censorship circumvention possibilities.
We identified novel strategies on the TLS level and
transformed them into censorship circumvention tech-
niques.

• We developed Censor Scanner,1 an open-source tool
that implements and combines the discovered TLS-
level techniques and fully automatically evaluates the
extent to which they are accepted by a given censor
and by servers.

• We demonstrate 24 unique successful circumvention
techniques by executing automated scans with Censor
Scanner against local servers, CDNs, and censors in
China and Iran.

• We provide novel insights into Iran’s and China’s cen-
sorship infrastructure and present evidence of three
distinct middleboxes that perform China’s TLS censor-
ship. We characterize them regarding their censorship
behavior and circumventability.

2. Background

Transport Layer Security (TLS) is arguably one of the
most important cryptographic protocols in the world. Before
it can encrypt and authenticate data, TLS must negotiate
the necessary cryptographic parameters such as keys and
algorithms. TLS performs this negotiation during a partially
unencrypted handshake. Figure 5 in Appendix D depicts the
handshake of a TLS 1.2 connection [20]. To stay within
the scope of this paper, we focus on which messages are
encrypted and which contain the server’s domain name in
the following. TLS 1.2 only encrypts the Finished mes-
sages of the handshake. Increasing efficiency and protection,
TLS 1.3 removes a round-trip from the handshake and
encrypts all handshake messages except the ClientHello
and the beginning of the ServerHello flight [59]. This
has certain implications for censors that want to determine
the server’s domain name. As the server’s domain name is
contained in the Certificate message and the Server

1. https://github.com/tls-attacker/Censor-Scanner/releases/tag/
v1.0_sp2025

2

https://github.com/tls-attacker/Censor-Scanner/releases/tag/v1.0_sp2025
https://github.com/tls-attacker/Censor-Scanner/releases/tag/v1.0_sp2025

Type Length TLS Version

TLS Record

Random Session ID Cipher Suites

Compress. Methods Extensions Length

Type TLS Version Length

TLS Message

Ext. Type Ext. Length List Length

Type Name Length Hostname

Server Name Indication

...
...

Figure 1. Structure of a TLS ClientHello message inside a TLS
record with an SNI extension. Greyed-out fields are not used for our
manipulations.

Name Indication (SNI) extension in the ClientHello
message, a censor could analyze either in a TLS 1.2 connec-
tion but only the latter in a TLS 1.3 connection. Our work
focuses on analyzing SNI-based censorship.

Record and Message Layer. Handshake messages are
wrapped in TLS records. The structure of a ClientHello
message is depicted in Figure 1. The TLS message structure
contains the actual message content, such as the proposed
cipher suites or the SNI extension, and header information,
such as the message’s length. The TLS record structure
contains the TLS message and its header information, such
as the type of the contained message and the record’s length.
The header bytes of a TLS record of a ClientHello
message always start with 0x16 for the message type and
0x0303, 0x0302, or 0x0301 for the TLS version. The
given TLS version indicates the lowest supported version
by the client. Notably, the TLS version field of the record
header can differ from the TLS version field in the message
header.

To transfer messages of arbitrary lengths, TLS sup-
ports record fragmentation. This feature allows the TLS
peer to fragment the message across several records. Fig-
ure 2 depicts a ClientHello message that is split over
two TLS records. This so-called record fragmentation oc-
curs naturally when a TLS message is too large for a
single TLS record. Specifically, TLS messages have a
larger maximum size (224 − 1 bytes) than TLS records
(214 bytes). While the record header’s length field would
potentially allow for record sizes up to 216 − 1 bytes,
the standard prohibits implementations from sending such
large records. TLS record fragmentation can also be en-
forced by intentionally choosing small TLS records. Further-
more, the max_fragment_length extension [21] and
the record_size_limit extension [69] specify ways
to lower the maximum size of TLS records intentionally.

ClientH... ...ello

ClientHello

TLS Record 1 TLS Record 2

TLS Record

Figure 2. A TLS ClientHello message as part of one TLS record
and split over two TLS records. The position of the fragmentation can be
chosen arbitrarily. For SNI-based censorship circumvention, fragmentations
in and around the SNI extension are of special interest.

2.1. Censorship

Internet censorship is widely used by many countries
and has been analyzed extensively [2], [4], [27], [44], [47],
[51], [53], [56], [62]. While following similar objectives,
countries deploy different approaches to limit Internet access
for their residents. Some countries, such as China, maintain
their own censorship infrastructure [78], while others del-
egate censorship to Internet Service Providers (ISPs) [79].
Depending on the specific implementation, Internet censor-
ship can affect different services and protocols and exhibit
varying complexity. Simple censors can block traffic to
certain IPs or ports, risking unintended overblocking of
services sharing the same IPs or ports. Advanced censors
perform deep packet inspection (DPI) to extract destination
information, such as the website’s domain name or content
from various application-layer protocols. For example, cen-
sors analyze HTTP [8], [32], DNS [32], [35], TLS [49],
[81] and VPN protocols [80]. To block connections after a
successful analysis, censors can drop packets [75], [79] or
inject malicious packets such as false DNS responses [62]
or TCP RSTs [18]. Censors also employ residual cen-
sorship, blocking any connection that follows a censored
connection [10] and deploy partially redundant censorship
implementations [6], [15], [32]. The diverse landscape of
censorship and the closed-source implementations make its
analysis challenging.

2.2. TLS Censorship

As the TLS protocol encrypts application data, cen-
sors have to rely on the information provided by the TLS
protocol when censoring TLS connections. Since the SNI
extension contains the server’s domain and is unencrypted,
censors can extract the domain from a ClientHello
and determine whether to censor the handshake [10], [62],
[79]. To censor TLS handshakes, the censors in China
and Iran inject TCP RST packets and have been found to
employ residual censorship on subsequent messages [10].
In China, two distinct middleboxes that analyze TLS hand-
shakes have been identified [15]. In TLS handshakes, the
Certificate message from the server also contains the
server’s domain. However, there are multiple drawbacks
when analyzing the Certificate message. For example,
it is encrypted in TLS 1.3, making it impossible to extract

3

the server’s domain for censors. Additionally, certificates
can contain multiple hostnames, making it unclear which
hostname the client tries to access. Since censors are not
known to consider certificates, we focus on SNI censorship.

2.3. TLS Censorship Circumvention

To circumvent SNI-based censorship, a censor has to be
prevented from extracting the server’s domain name from
the SNI extension. At the same time, the receiving TLS
server still has to accept the TLS handshake. Censorship
circumvention techniques that circumvent censors and are
accepted by TLS servers can be achieved in two common
ways. For example, a censor can be tricked into ignoring
the TLS handshake altogether by desynchronizing the TCP
state of the censor and the server [13]. A different approach
is to prevent the censor from extracting the server’s domain
name from the SNI extension by modifying parts of the
TLS handshake to obfuscate or hide the intended hostname.
If the implementation of the TLS server is more lenient than
that of the censor, these obfuscations can still be accepted
by TLS servers. In the following, we review two known
obfuscation techniques for TLS that were shown to be
successful censorship circumvention techniques.
Domain Fronting. Domain fronting circumvents SNI-based
censorship by placing a harmless domain name in the SNI
extension. A censor that cannot decrypt the TLS connection
sees only the harmless domain in the SNI extension. The
server that receives and decrypts the TLS connection can
choose the correct destination based on the domain name in
the encrypted HTTP Host header. To provide the correct
resource, the domain indicated in the Host header must
be hosted on the server that receives the fronted request,
making it especially interesting for servers that host a high
number of domains, such as Content Delivery Networks
(CDNs). This mismatch between the HTTP Host header
and the SNI extension is not endorsed by the standards but
is not explicitly forbidden [21]. The censorship circumven-
tion community recognized domain fronting for censorship
evasion [24], [65] and implemented it in various circum-
vention tools [31], [45], [55], [67], [68]. After initial usage,
Amazon [1], [7], Cloudflare [55], and Google [3] disabled
domain fronting on their servers, stating unintended usage
of their services.
Fragmentation. To prevent censors from extracting the
SNI extension from the ClientHello message, it can be
fragmented over multiple TCP segments or TLS records.
Splitting application layer data over multiple TCP segments
is known as TCP fragmentation and is a widely successful
circumvention technique [13]. More recently, TLS record
fragmentation has been introduced as a censorship circum-
vention technique by Niere et al. [49]. They fragmented the
ClientHello over multiple TLS records to circumvent
censorship in China and determined considerable support
by TLS servers. We achieve TLS record fragmentation by
manually creating small TLS records and TCP fragmenta-
tion by constructing large TLS messages that coerce the
underlying TCP socket to fragment the message.

3. Methodology

Previous research only sporadically considered TLS-
level censorship circumvention techniques. As some of them
were very effective in the past, the question arises whether
more effective TLS-level circumvention techniques exist. To
evaluate this, we performed the first systematic analysis of
TLS-level opportunities to circumvent SNI-based censor-
ship. We developed a five-phase methodology (Figure 3) to
find bypass techniques that circumvent censors and are ac-
cepted by real-world TLS servers. In the first phase (Design
Phase), we manually analyzed the TLS handshake for mean-
ingful strategies that could potentially circumvent SNI-based
censorship. In phase two (Implementation Phase), we then
implemented our strategies in a tool called Censor Scanner.
Censor Scanner can automatically test these strategies with
endpoints to evaluate if the technique is successful with
a given censor and accepted by a given TLS server. To
this end, Censor Scanner exhaustively combines potential
strategies up to a configurable degree t. By combining strate-
gies, Censor Scanner is able to test advanced circumvention
techniques that utilize detailed mismatches between the cen-
sor’s and server’s TLS parsing behavior. We then evaluated
which strategies are accepted by TLS servers by running
Censor Scanner against Apache, Nginx, and websites hosted
on various CDNs (Server Evaluation Phase). Next, we
evaluated the successful strategies from the previous phase
against censors in China and Iran (Censor Evaluation
Phase) by using Censor Scanner to initiate TLS connections
from China and Iran to a vantage point behind the censor
and recorded the censors’ behavior. This allows us to de-
velop a final list of strategies for circumventing SNI-based
censorship in these countries. Lastly, we evaluate the final
list of strategies against the top 10,000 servers of the Tranco
list (Tranco Evaluation Phase) to assess their usability
as censorship circumvention techniques further. Below, we
detail each phase of our methodology.

3.1. Phase I: Design Phase

To bypass a censor, one has to find messages that are
differently interpreted by the censor and the server that the
user tries to reach. Specifically, the censor must think it
should not block a given message while the intended server
still understands and processes it. This is typically achieved
by exploiting discrepancies in message parsing logic or by
abusing the fact that censors only partially store the state of a
given connection. To explore censors for potential bypasses,
we manually created a list of potential TLS-level censorship
circumvention strategies, which we present in the following
paragraphs, answering RQ1.

3.1.1. Circumvention Identification. To generate ambigu-
ous messages in the context of TLS SNI-based censorship,
we focus on the first flight of the client, which usually only
contains the ClientHello message, and systematically
apply manipulations to it. With manipulations, we create
uncommon flights that still adhere to the specification or

4

t<=2

t<=3

merge any
successful

CDNs

Apache/Nginx

China

Iran

Manipulation
Extraction

Implementation &
Combination

Design Server Evaluation Censor EvaluationImplementation

Tranco Top 10k

Tranco Evaluation

Figure 3. Overview of the methodology of this paper, separated into five phases. In the Design Phase, we extract possible manipulations of the TLS
handshake. In the Implementation Phase, we implemented these manipulations into a tool that automatically combines manipulations exhaustively. Using
our tool, we evaluated the acceptance of combined manipulations by local web servers and CDNs (Server Evaluation Phase). Next, we attempted to
circumvent censorship in China and Iran with every manipulation combination accepted by at least one web server (Censor Evaluation Phase). Lastly,
we evaluated the most successful circumvention techniques against the top 10,000 servers of the Tranco list (Tranco Evaluation Phase).

deviate from the specification slightly, such that they can
still be potentially accepted by the server but cannot be
correctly parsed by the censor anymore. Each manipulation
adjusts a specific field in the message or performs structural
changes to the flight, such as record fragmentation. While
these manipulations can be potentially arbitrarily chosen, we
curated a finite list of those that we deemed especially likely
to be useful for censorship circumvention. For example,
changing the client random in a ClientHello is unlikely
to evade a censor as it is randomly populated in every
benign TLS connection to begin with. Below, we iterate over
common ideas that inspired some of our manipulations. We
refer to Appendix A for a list of our specific manipulations.
TLS Misidentification. To perform SNI-based censoring,
the censor must first identify that a given connection is
using the TLS protocol. We presume that censors are doing
this by looking specifically at the first few bytes of a TLS
connection. By changing the beginning of a TLS connection
(e.g., invalidating the type field in the record header, cf.
Figure 1), we aim to prevent the censor from identifying
our messages as TLS, and therefore from parsing them.
Changing Enums. TLS messages can contain a variety of
constants. For instance, the TLS version field in the record
header is often set to TLS 1.0 for middlebox compliance.
By changing constants to other valid or invalid constants, we
hope to surprise the censor with an uncommon choice, co-
ercing it to potentially ignore the message when it does not
implement the respective (potentially non-existent) feature.
Length Field Manipulation. Fields that are variable in
length are preceded by a field that indicates their length in
TLS. By changing the length field to an invalid value (e.g.,
a shorter length or an overlong length value), we potentially
prevent the censor from successfully parsing the message.
Intuitively, this should also prevent the intended server from
parsing our messages. However, this is not necessarily the
case as some length fields are redundant, and TLS servers
are known to not always strictly parse these fields [63].
Fragmentation. Most TLS applications do not use TCP or
TLS fragmentation, meaning censors can usually function
without implementing these features. At the same time, frag-
mentation can prevent stateless censors from reassembling
and analyzing our messages.

SNI Removal. Removing the hostname from the SNI ex-
tension or removing the SNI extension completely from
the ClientHello message can be a powerful circum-
vention technique. The only possible countermeasure for
censors is to block every ClientHello message without
a SNI extension or to resort to an alternative censorship
technique such as IP-based blocking. As censoring every
ClientHello message without an SNI extension can lead
to considerable overblocking, censors are inclined to allow
TLS connections without an SNI extension.
Domain Fronting. Placing incorrect hostnames in the SNI
extension prevents censors from determining the connec-
tion’s true destination. While censors possess no counter-
measure against this technique, the receiving server must
accept TLS connections with a wrong hostname in the SNI
extension.
Null Bytes. The SNI value is transmitted as a string. Since
many programming languages terminate strings with a null
byte internally, we consider the null byte particularly inter-
esting as a malformed value. We use it in various locations
to potentially confuse the string-parsing logic of the censor.

When designing our manipulations, we avoided ruling
out too many modifications beforehand and let the evalua-
tion decide which manipulations were effective. As we show
in phase 2 (Implementation Phase), we fully automated
our analysis, meaning that a re-execution with a different
set of ideas for manipulations in future evaluations is easily
possible.

3.2. Phase II: Implementation Phase

To implement our approach, we developed an open-
source tool based on TLS-Attacker [70], called Censor
Scanner. Censor Scanner implements all mentioned manip-
ulations and can create TLS connections to a target server.
To construct advanced circumvention techniques, Censor
Scanner combines all implemented manipulations exhaus-
tively up to a configurable strength parameter t. A value
of t = 1 would mean that Censor Scanner would try to
create a TLS connection with each possible manipulation
once without performing any combinations. With a value of

5

t = 2, we would create a TLS connection for each tuple of
possible manipulations. For example, adding a second SNI
extension is a manipulation, and manipulating the hostname
in either the first or the second SNI extension is a second
manipulation. As done in this example, Censor Scanner
also considers SNI extensions added by one manipulation
in all further manipulations. Following these rules, Censor
Scanner combines all defined manipulations exhaustively up
to the given test strength t and applies each combination to
a ClientHello flight. We call the set of manipulations
applied to a given ClientHello message a test vector.
This exhaustive combination of manipulations leads to expo-
nential growth in combinations for increasing test strengths.
We want to point out that our approach is deterministic. All
combinations we created in our evaluations are reproducible
using our tool Censor Scanner.

Exhaustively combining all manipulations leads to com-
binations with inapplicable manipulations. For example,
manipulating the hostname in the SNI extension has no
impact when combined with a manipulation that removes
the SNI extension. Censor Scanner also does not combine
manipulations of the same type twice. This means that we do
not apply two types of record fragmentation simultaneously
or manipulate a length field with two different values. To
save redundant executions, we explicitly filter out such com-
binations during the combination phase wherever possible.

3.3. Phase III: Server Evaluation Phase

In this work, we aim to determine working censorship
circumvention techniques on the TLS layer. To achieve this,
it does not suffice to prevent censors from blocking our
test vectors: the server the user is trying to reach must still
understand and process the sent messages. If a given test
vector causes the server to not understand the message any-
more, it is unfit for censorship circumvention. To evaluate
servers’ acceptance of our manipulations and to answer our
RQ2, we tested each combination of manipulations against
popular web servers. Specifically, we used Censor Scanner
to apply each combination to a TLS handshake with each
web server we evaluated. As popular web server targets, we
chose a mix of web servers that we can analyze locally and
websites served by popular CDNs to estimate real-world
acceptance. For the local web servers, we chose the six
Apache and Nginx versions that are obtained when running
the respective apt install command on the Ubuntu versions
18.04, 20.04, 22.04, 23.04, 23.10, and 24.04. As popular
CDNs to scan, we chose Akamai, Amazon, Cloudflare,
Fastly, and Google. To observe possible differences in SNI
parsing, we chose two different public websites that are
hosted on the respective CDN. The first website shared its
IP address with other websites, while the second website
did not. Our motivation behind this setup was that websites
sharing their IP addresses with others might enforce stricter
SNI parsing, possibly affecting techniques such as domain
fronting, which is highly relevant for censorship circum-
vention [24]. We classified our techniques as successful
if the target server responds with the desired HTTP page

we requested in the HTTP Host header. A complete list
of websites we evaluated for each CDN can be found in
Section B. We evaluated the local servers with a test strength
t = 3. To not overload real websites with our scans, we set
the test strength of our CDN scans to t = 2. We conducted
our evaluation of servers from a virtual machine from the
DFN2.

3.4. Phase IV: Censor Evaluation Phase

To evaluate the effectiveness of our manipulations
against censors and to answer our RQ3, we attempted to
circumvent two censors with each manipulation combination
that was successful against any web server from phase
three. For the evaluation, we chose to test Censor Scanner
against China and Iran. We analyzed China’s Great Firewall
of China (GFW) because it is one of the most sophisti-
cated censors, and its use of SNI-based censorship is well-
documented. We complemented our analysis of the GFW
with an analysis of Iran’s censors to collect evidence on
the extent to which the discovered techniques transfer to
other censors. To trigger the firewalls in China and Iran, we
rented vantage points in both countries and sent manipulated
ClientHello flights to a controlled vantage point in
Germany. Specifications of our used vantage points are given
in Appendix C. We considered a test vector successful if
the ClientHello message it was applied to was not
intercepted by the censor and a response from the destination
server could be received. If the expected answer has not been
received, we automatically analyzed all received packets of
the connection, such as injected TCP RST packets, timeouts,
or TLS alerts, and classify the reason why the connection
did not succeed.

To compensate for network irregularities, we tested each
test vector three times against each censor and recorded the
result of the connection. If the same result was reached in
at least 2/3 of the connections, the connection result was
assumed for all connections; otherwise, the test vector was
re-executed until the same connection result was reached
for at least 2/3 of all executed connections. We configured
Censor Scanner to try at most 20 times, after that we
considered the test vector to be undecided. Notably, we
counted timeouts as separate connection results and allowed
a maximum of 30 timeouts in addition to the 20 connection
attempts. We did so to compensate for network downtimes
on our vantage points.

3.5. Phase V: Tranco Evaluation Phase

As a last step, we evaluated successful circumvention
techniques from phases three and four on the top 10,000
domains from the Tranco list [54]. After excluding domains
that were unresolvable, did not support TLS, or requested
exclusion from our scans during previous analyses, we could
evaluate 6,739 servers.

2. German National Research and Education Network, https://
www.dfn.de/

6

https://www.dfn.de/
https://www.dfn.de/

4. Server Evaluation Results

To answer RQ2, we performed acceptance scans with
seven distinct web servers (cf. Server Evaluation phase,
Section 3) in February and March 2024. In total, we eval-
uated 2,926,259 test vectors; 10,578 of these test vectors
were accepted by at least one web server. We consider a
test vector accepted if it connects to the same website as
an unmodified request. Table 1 depicts the number of test
vectors accepted by different web servers ordered by their
test strength. For t = 1 and t = 2, 53.35% and 48.56%
of test vectors were accepted by at least one web server,
respectively.

In our local analyses, we evaluated Nginx and Apache
default versions on six Ubuntu versions. Regardless of the
Ubuntu version, both implementations yielded the same
successful test vectors (cf. Table 1). Both servers employ the
strictest implementation; they accepted 24 test vectors with
test strength t = 1. We attribute this to OpenSSL being used
by both Apache and Nginx, and security backports applied
to Apache, Nginx, and OpenSSL in Ubuntu’s LTS versions.

Our CDN evaluations showed that every implementation
accepted a unique number of test vectors. This stems from
unique parsers and other differences in the CDN’s libraries.
For instance, Amazon and Akamai’s implementations do not
validate the maximum TLS record size of 214 bytes [20].
Fastly and Google validate the record size, while Cloudflare
accepts only smaller TLS records. Other particularities are
the acceptance of a second SNI extension by Akamai’s
implementation and a wrong certificate returned by Fastly in
TLS 1.3 connections with invalid NameType or TLS version
fields in the ClientHello message. In contrast to Apache
and Nginx, CDNs parse the SNI extension less strictly. The
most lenient implementation—Amazon’s s2n—accepted 85
of these test vectors and over 86% of all successful test
vectors.

Our results reveal differences in the leniency of web
servers regarding our test vectors. These differences im-
ply fundamentally different behavior of common open-
source server implementations and commonly used CDNs,
underlining the importance of analyzing live web servers
in conjunction with offline implementations. At the same
time, the high overlap of successful test vectors between
servers indicates possible circumvention techniques that can
be used on multiple servers. Overall, our evaluation yielded
numerous test vectors accepted by web servers which we
could use in our following evaluation of censors.
Placeholder Server Certificates. Some test vectors elicited
placeholder certificates from web servers during the TLS
handshake. Affected servers would send a placeholder
certificate valid for some CDN-specific domain such as
j.sni-644-default.ssl.fastly.net, finish the
TLS handshake successfully, and respond with the HTTP
page indicated by the encrypted HTTP Host header. Ta-
ble 2 depicts the test vectors and web server combinations
that trigger a placeholder certificate. We mainly triggered
placeholder certificates with test vectors that remove or
obfuscate the hostname in the SNI extension, such as SNI

Table 1. VECTOR ACCEPTANCE

Test Strength t = 1 t = 2 t = 3a ∑
t

Vectors 169 18,972 2,907,118 2,926,259

Web Servers
Apache 24 239 1,275 1,538
Nginx 24 239 1,275 1,538
Cloudflare 28 362 – 390
Fastly 38 606 – 664
Google 42 686 – 728
Akamai 52 865 – 917
Amazon 85 9,037 – 9,122

Any Server 90 (53.35%) 9,213 (48.56%) 1,275 10,578

Number of successful test vectors, ordered by test strength. A test vector counts as
successful when the web server returns a correct certificate and the correct website.
For CDNs, a test vector counts as successful if it was successful in either deployment
(with shared IP or dedicated IP). We attribute the same results of Nginx and Apache
to using OpenSSL with backported fixes.
a t = 3 was only executed on local web servers.

removal, domain fronting, or byte injections into the SNI
hostname. By removing or obfuscating the hostname, these
techniques prevent servers that host multiple domains on
a shared IP address from providing the correct certificate
for the requested hostname. Servers that host only a single
domain on an IP address can default to the correct certifi-
cate. As such, our results show that Apache, Nginx, Fastly,
Google, and Akamai opt to send a placeholder certificate
for domains on shared IP addresses. For domains hosted
on a single IP address all scanned servers defaulted to
the correct certificate in many cases. While placeholder
certificates prevent validating the resource’s authenticity, the
correct HTTP page is accessible. We consider test vec-
tors that trigger placeholder certificates, such as domain
fronting, viable censorship circumvention techniques. We
also highlight the need for censorship research to consider
server deployment when evaluating servers’ acceptance of
circumvention techniques.

5. Analysis of Middleboxes

After determining the set of test vectors accepted by at
least one web server (Censor Evaluation phase, cf. Table 1),
we evaluated which test vectors in this set successfully
circumvent censorship in China and Iran. We executed our
censorship scans in March, April, and May 2024. During
our scans, we encountered multiple middleboxes in China
and one middlebox in Iran. In this section, we describe
the behavior of these middleboxes before showcasing the
success of specific test vectors in Section 6.

5.1. China

For our initial evaluations in China, we configured Cen-
sor Scanner to place wikipedia.org in the SNI extension,
triggering censorship. Part of the censorship we encountered
in China was residual censorship of up to six minutes
on the triple (source IP, destination IP, destination port).
Accordingly, we evaluated our test vectors across multiple
ports and did not reuse a censored destination port for seven
minutes.

7

wikipedia.org

Table 2. TEST VECTORS TRIGGERING PLACEHOLDER CERTIFICATES

TLS 1.2 + TLS 1.3 TLS 1.3

R
em

ov
eS

N
I

E
xt

en
si

on
B

yt
es

A
dd

iti
on

al
SN

I

L
is

tL
en

gt
h

N
am

eT
yp

e

D
om

ai
n

Fr
on

tin
g

In
je

ct
A

sc
ii

In
je

ct
U

ni
co

de

M
es

sa
ge

V
er

si
on

N
am

eT
yp

e

Shared IP
Apache # # – – – – – – – –
Nginx # # – – – # # # – –
Fastly # # – – – # # # # #
Google # # – – – # # # –
Akamai # # # # # # # # – –
Amazon – – – – – – – –
Cloudflare – – – – – – – – –

Dedicated IP
Fastly – – – – –
Google – – – –
Akamai – – – – –
Amazon – –
Cloudflare – – – – – –

Excerpt of resulting minimal test vectors that triggered the correct HTTP page and a
correct or incorrect TLS certificate on at least one server hosting either one or multiple
domains on an IP address. We determined placeholder certificates in a shared IP setting
on Apache, Nginx, Fastly, Google, and Akamai.
 : correct certificate and HTTP page
#: incorrect certificate but correct HTTP page
–: incorrect HTTP page or aborted handshake

When we evaluated how exactly the GFW interfered
with our requests, we noticed different blocking behaviors
depending on the exact test vector we used. In particular,
we would measure distinct censorship behaviors by the
GFW for exemplary circumvention strategies A and B with
t = 1 while their combination with t = 2 circumvented
the GFW. Through manual analyses, we discovered three
distinct ways the GFW was censoring our connection: we
saw a single RST, a single RST+ACK, or three RST+ACK
packets. The GFW often used multiple blocking techniques
simultaneously, resulting in the recorded behavior being a
combination of the distinct techniques. The combination
of techniques we encountered was different for subsequent
executions of the same request, resulting in challenging non-
deterministic blocking behavior. We concluded that there
is likely not a single censorship device but three differ-
ent devices that censor connections independently. In our
subsequent analyses, we noticed that not all domains were
censored by all of the middleboxes. A similar behavior was
reported by Bock et al. [15] and Wang et al. [74], who
discovered two different censorship behaviors. We could
map these behaviors to the first two detected devices (MB-
1 and MB-2). However, the last middlebox (we call it
MB-New) was not publicly known or documented in the
censorship literature.

We asserted that all three middleboxes are part of the
GFW and not inserted at the ISP level by sending a censored
message with increasing TTL values while waiting for the
censorship to trigger. All middleboxes started triggering at
the same TTL, indicating that the censoring happens at a
single position in the network. Figure 4 depicts how all three
middleboxes inject one or multiple RST packets directly
after the ClientHello message to tear down connections

and potentially trigger simultaneously. TCP reassembly and
residual censorship are employed differently by all three
middleboxes in China, which we believe hindered the anal-
ysis of both properties in recent years.

To avoid non-determinism during the evaluation and
isolate the middleboxes, we adapted our scanning approach
by selecting an initial ClientHello to base our manipu-
lations on that only gets censored by one of the middleboxes
at a time. For instance, we found that placing wikipedia.org
in the SNI extension and increasing the TLS version in
the ClientHello to 0x0304 isolated MB-1. For MB-
2, we placed freetibet.org in the SNI extension and set the
ExtensionsLength field to 0. For the isolation of MB-
New, we used freetibet.org in the SNI extension and set
the NameType field in the SNI extension to an invalid
value. For the full evaluation, we scanned each middlebox
individually in a separate scan.

Client Server

MB-1 MB-2 MB-New

GFW

3 RST+ACK RST RST+ACK

Figure 4. The GFW consists of three distinct middleboxes. Notably, all
three middleboxes inject a different pattern of TCP RST packets and can
trigger simultaneously.

To characterize the detected middleboxes further, we
performed additional manual tests. In the following, we
detail specific behaviors for each middlebox.

MB-1. MB-1 injects three indistinguishable RST/ACK
packets into the connection which is the behavior of
the GFW predominantly mentioned in analyses of the
GFW [15], [34], [74]. It also censors residually by injecting
a single RST/ACK packet for roughly 90 seconds which
has also been reported in previous evaluations for China’s
SNI and HTTP censorship [10], [12], [17], [34]. MB-1 can
reassemble TCP segments up to a coalesced length of 10,240
(210 ∗ 10) bytes. However, MB-1’s reassembly sporadically
fails, which we suspect might be due to limited buffers in
the middlebox. When parsing TLS, MB-1 relies on both
version fields, the Extension Length, the SNI Name Length,
and the SNI NameType; it ignores the Extensions Length
and the List Length. Invalidating either of these fields pre-
vents MB-1 from blocking the request. It interprets the last
SNI extension when multiple SNI extensions are present
and filters out injected records before the ClientHello
message. As MB-1 most closely resembles the behavior of
the GFW discussed in previous works [15], [34], [74], we
assume it to be the primary middlebox of the GFW.

MB-2. MB-2 behaves similarly to the middlebox detected
by Bock et al. [15] and Wang et al. [74]. It injects a
single RST packet with an unset ACK flag and does not
employ residual censorship. Like Bock et al., we could only
determine domains blocked by both MB-1 and MB-2. In

8

wikipedia.org
freetibet.org
freetibet.org

contrast to the analysis of Bock et al., we observed that
it injects its RST packet directly after the ClientHello
packet and not after the ClientKeyExchange message.
This discrepancy may be due to a software update. As MB-
1, MB-2 also reassembles TCP fragments, but it does so
differently. It reassembles TCP segments if the segmentation
occurs in the TLS record or TLS message header (i.e., in the
first 10 bytes) or if the segmentation occurs after byte 512
(29). We suspect that MB-2 reassembles the header bytes
to classify the protocol of the message and assumes all
legitimately fragmented messages to be over 520 bytes long.
The TCP reassembly of MB-2 is similarly unreliable to that
of MB-1 and fails sporadically. Similarly to MB-1, MB-2
also relies on both version fields and the SNI Name length; it
parses the Extensions Length field but ignores the Extension
Length field of individual extensions and the List Length
field of the SNI extension. It is also the only middlebox that
censors invalid SNI extensions without a single list entry—
effectively censoring without the presence of a hostname.

MB-New. With MB-New, we present a previously unde-
scribed middlebox of the GFW. This middlebox injects a
single RST/ACK packet and employs residual censorship of
up to 360 seconds by null routing subsequent packets. In
contrast to MB-1 and MB-2, MB-New does not reassemble
TCP segments and censors different domains than the other
two middleboxes. It parses the Extensions Length field,
which summarizes the length of all extensions, and the
length field of each extension (cf. Figure 1), but ignores the
length fields in the TLS record and TLS message headers.
It ignores all values from the SNI extension except for the
actual hostname and infers the position of the hostname
using the Extension Length field, assuming a single SNI
entry. For example, MB-New can successfully block a re-
quest with an invalid List Length field but fails to block
a request with an invalid Extension Length field. It also
does not parse the TLS version of the message header
only the first two—major—bytes of the TLS version in
the record header. In contrast to MB-1 and MB-2, which
parse more header bytes, MB-New relies only on the first
two bytes of the TLS connection (0x1603) to determine a
TLS ClientHello. Its permissive parser makes it more
resilient against circumvention attempts but might lead it
to parse more connections that are not TLS in the first
place. As MB-New only triggers on a few domains, it is
sufficient to circumvent MB-1 and MB-2 for most domains.
We do not know whether MB-New has been installed as a
dedicated backup censor for certain domains or resembles
internal structures of the GFW’s organization. We also do
not know if MB-New was only installed recently or has only
been overlooked so far. The only reference to the behavior
of MB-New we could find was made by Hoang et al. [34]
in 2024. While they detected MB-New’s unusually long
residual censorship, they attributed it to specific domains
rather than a separate middlebox.

Table 3. SUCCESSFUL TEST VECTORS

Test Strength t = 1 t = 2 t = 3
∑

t

Vectors 159 17,382 2,733,298 2,750,839

Iran 61 8,537 1,089 9,687
China 46 7,354 901 8,301

MB-1 [74] 58 8,102 1,097 9,257
MB-2 [15] 58 7,960 1,055 9,073
MB-New 57 8,703 929 9,689

Any Server 67 (42.14%) 9,020 (51.89%) 1,106 10,193

Number of test vectors that circumvented censors and were accepted by at least
one web server, ordered by test strength. This table shows that the combination
of middleboxes in China is harder to circumvent than the censor in Iran.

5.2. Iran

The middlebox we encountered in Iran censors con-
nections by injecting a single RST/ACK packet into the
connection after the ClientHello message. It does not
reassemble TCP segments. In contrast to previous research,
we also did not detect residual censorship [10] in Iran. Iran’s
middlebox expects two valid TLS version fields and parses
the Extensions Length and SNI Name Length fields to deter-
mine the location of the SNI. This makes its implementation
somewhat similar to that of MB-2 of the GFW.

6. Analysis of Circumvention Techniques

Our evaluation of TLS servers and censors yielded suc-
cessful strategies for the middleboxes in China and Iran.
From the 10,193 test vectors accepted by at least one com-
bination of server and censor (cf. Table 3), we generalized
the techniques depicted in Table 4. To reduce the number of
depicted vectors, we left out vectors with t > 1, yielding the
same or worse results as a smaller vector with t′ < t. For
example, we do not display vectors that change the TLS
version in the record and message header, as the singular
approaches are more successful. Notably, minimal combina-
tions with t = 2 exist, such as injecting a CCS message into
a TLS 1.3 connection. Besides minimizing test vectors for
better result presentation, we merged different test vectors
of the same circumvention type that did not show different
behavior among each other. For instance, we merged the
injection of various ASCII characters into the ASCII-Letter
technique. The execution of fine-grained test vectors was
still beneficial during our evaluations as it provided more
detail about the servers’ and censors’ implementations. Due
to space constraints, Table 4 only contains a selection of
the most successful circumvention techniques; we plan to
publish the extended version of Table 4 after the review
process.

6.1. Combining Vectors

Each test vector depicted in Table 4 circumvents cen-
sorship of at least one middlebox and is accepted by at
least one web server. To successfully circumvent censorship
in Iran, it is sufficient to use a technique that circum-
vents its only censor and is accepted by the required web
server; to successfully circumvent the GFW, the process is

9

Table 4. SELECTION OF SUCCESSFUL TEST VECTORS

Technique Local Servers Akamai Amazon Cloudflare Fastly Google Censors Tranco‡

Apache Nginx ■ ■■■ ■ ■■■ ■ ■■■ ■ ■■■ ■ ■■■ MB-1 MB-2 MB-New IR Top 10k

Version Field
Message Header: TLS 1.3 || Invalid Higher – 97.36%

*Record Header: TLS 1.3 – 99.11%
*Record Header: SSLv2 – – – – – – – – – – – 18.50%
*Record Header: Invalid – – – – – – – – – – 23.45%

Record Fragmentation
*In Message Body 92.80%
*In Message Header – 86.66%

Record Injection
*In CH: Alert Incomplete† – – – – – – – – – 21.32%
*In CH: Internal Warn Alert† – – – – – – 41.04%
*In CH: Heartbeat Any ||Invalid† – – – – – – – – – – 17.20%
*Before CH: Internal Warn Alert – – – – – – – – – – 9.42%
*Anywhere: CCS + TLS 1.3 – – – – – – – – – – – 4.63%

TCP Fragmentation
Additional List Entries – – – – – – – – – – 16.22%
Additional Cipher Suites Max Possible Record Size – – – – – – 47.34%
Additional Cipher Suites Max Defined Record Size – – – 71.05%
Padding Extension Max Possible Record Size – – – – – – 48.23%
Padding Extension Max Defined Record Size – – – 71.87%

Hostname Injection
Null Byte after Hostname – – – – – – – – – – – 22.05%
Null Byte in/before Hostname – – – – – – – – – – – 11.28%
ASCII-Letter / Domain Fronting # – # – – – # # 34.96%
Non-ASCII # – # – – # # 37.08%

SNI Hiding
No SNI Extension # # # – – # # 38.08%
Invalid Extension Bytes # # # – – # # 38.28%
No SNI List Entry – – – – – – – – – – – – 6.63%
SNI Last Extension + Short Extensions Length – – – – – – – – – – – – 7.26%

Selection of circumvention techniques that circumvented at least one censor and were accepted by at least one web server. The results are ordered according to the phases presented in Figure 3. Section 6.1 interprets
the circumvention techniques presented in this table. This table highlights fragmentation techniques, version field manipulations, and SNI removal as very effective for censorship evasion.
 : correct certificate and HTTP page #: incorrect certificate but correct HTTP page –: incorrect HTTP page or aborted handshake ■/ ■■■: Server hosts one/multiple domains

* These techniques can be applied by a MITM tool as they do not invalidate the TLS handshake.
† Injected record after fragmentation
‡ We evaluated 6,739 reachable servers out of 10,000 and counted a vector as successful for a server if any of its instantiations finished the TLS handshake and responded with the same HTTP content as in a default
TLS handshake.

more complicated. As all three middleboxes of the GFW
can censor a connection, a test vector must circumvent
all active middleboxes for a given domain to bypass the
GFW as a whole. Since a user typically does not know
which middleboxes will be used to censor a given domain,
techniques that bypass all three middleboxes simultaneously,
such as TLS record fragmentation, are especially desirable.
Alternatively, one can combine techniques whose union
circumvents all three middleboxes. Notably, web server ac-
ceptance for this combination is only the intersection of web
server acceptance for the singular techniques. For instance,
setting the Extensions Length to 0 and invalidating
the NameType circumvents all middleboxes but is only
accepted by the instance of Amazon that hosts one domain.

6.2. Technique Categories

We group successful techniques into categories as visible
in Table 4. Each category encompasses techniques that alter
similar parts of the ClientHello message or are other-
wise comparable. We discuss the most successful categories
and their effectiveness below.
Version Field. Techniques in this category alter the TLS
version in the TLS message header or the TLS record
header. Note that these techniques only alter the respective

header fields; TLS 1.2 is still used for the handshake. Servers
accepted all message header alterations that set the TLS
version higher than TLS 1.2. This aligns with the version
negotiation mechanism of TLS 1.2 described in Appendix E
of RFC 5246 [20] in which servers expect clients to send
potentially higher versions than TLS 1.2. This message
header alteration is accepted by all censors except MB-
New. Similarly, all censors except MB-New can be bypassed
by setting the TLS version in the record header to TLS
1.3, which is also accepted by all servers. Setting the TLS
version in the record header to SSL 2.0 or invalidating
it circumvents MB-New, but only Amazon’s web servers
accept these changes.

We evaluated the implementations of BoringSSL by
Google [28] and OpenSSL [52] used in Apache and Nginx.
We discovered that they validate only the first—the major—
byte of the TLS version (0x03) in the record header. This
leads them to allow TLS 1.3 (0x0304) but disallow an
invalid header such as 0x2020. As other web servers and
MB-New exhibit similar patterns, we suspect them to vali-
date this version field similarly. Overall, changes to the TLS
version in the record and message header were successful
on all servers and all censors except MB-New. As MB-New
operates on only a few domains, we consider alterations of
the TLS version fields to be highly successful and usable

10

for censorship circumvention.
Record Fragmentation. Introduced as a circumvention
technique by Niere et al. [49], we affirmate TLS record frag-
mentation as a highly successful circumvention technique.
It circumvented all servers in our analyses and was accepted
by all TLS servers. Only one of Akamai’s web servers did
not accept TLS record fragmentation when it occurred in
the message header. In contrast to most other techniques
presented in this paper, TLS record fragmentation fully
complies with the TLS specification [20]. It can also become
necessary as TLS handshake messages are potentially larger
(224−1 bytes) than TLS records (216−1 bytes). This leads to
an overall acceptance by servers. We cannot say why TLS
record fragmentation circumvents censors so well as it is
conceptually similar to TCP fragmentation. While censors
seem to start reassembling TCP fragments (cf. Paragraph
TCP Fragmentation), TLS record fragmentation is not yet
considered. Therefore, TLS record fragmentation found us-
age in circumvention tools [38], [77]. Our results confirm
the viability of TLS record fragmentation as a censorship
circumvention technique.
Record Injection. The techniques in this category inject an
additional TLS record into the connection. Some of these
techniques inject an additional record between two records
of an already fragmented ClientHello message. While
TLS record fragmentation currently suffices to circumvent
censors, we conjecture this combination to complicate fu-
ture record reassembly by censors further. Every server
except the one at Akamai with one hosted domain and
the one at Fastly with multiple hosted domains supported
at least one combined record fragmentation and injection
technique. Besides these combined techniques, we also dis-
covered that injecting an internal warning alert before the
ClientHello message circumvents censorship and was
accepted by some servers. Xue et al. [81] proposed a sim-
ilar circumvention technique for Russia’s TSPU Throttling
by injecting a ChangeCipherSpec message before the
ClientHello message. However, contrary to injecting a
warning alert, only a single web server accepted TLS 1.3
handshakes starting with injected ChangeCipherSpec
messages, making it unfit for censorship evasion. Our results
show that record injections provide an additional avenue for
censorship circumvention, especially in combination with
TLS record fragmentation.
TCP Fragmentation. While we do not directly manipulate
the TCP-layer in this paper, we could nevertheless trig-
ger TCP fragmentation with alterations on the TLS layer.
Specifically, we added SNI list entries, cipher suites, or
a padding extension to artificially increase the size of the
ClientHello message. In Section 5.1, we detailed that
MB-1 and MB-2 reassemble TCP fragments. Despite techni-
cal progress by censors, we could still circumvent them with
TCP fragmentation using large messages indicating limited
reassembly capabilities by the middleboxes. While TCP
fragmentation reliably circumvented censors, around 47%
of servers do not reassemble TLS records that exceeded the
maximum defined size of 214 bytes. Cloudflare even rejects

large TLS records that still fall in the RFC-compliant size of
at most 214 bytes: Cloudflare finishes the TLS handshake but
responds with an HTTP error afterward. Most other servers
accepted large TLS records smaller than 214 bytes.
Hostname Injection. The techniques in this category in-
ject symbols into the hostname or replace the hostname
altogether through domain fronting. Domain fronting or
injecting ASCII and non-ASCII symbols circumvents any
censor. These techniques were also widely accepted by
servers; servers that host multiple domains often responded
with an incorrect placeholder certificate (c.f. Section 4).
SNI Hiding. Some techniques remove or hide the SNI
extension or a part of it. For instance, one technique removes
the SNI extension entirely, while another disguises it as a
different extension. Both techniques bypass all evaluated
censors and are widely accepted by servers; placeholder
certificates were often sent by servers that host multiple
domains (c.f. Section 4). We suspect censors ignore these
requests as all major browsers send an SNI extension by
default; blocking all TLS requests without an SNI extension
could lead to overblocking.

6.3. Result Confirmation

Tranco Evaluation. To further determine servers’ accep-
tance of the test vectors depicted in Table 4, we evaluated
their acceptance by the top 10,000 servers from the Tranco
list. Our results show that general server acceptance of
our test vectors aligns with their acceptance by the CDN
servers we evaluated in the third phase. This affirms various
successful circumvention techniques such as TLS record and
TCP fragmentation, increasing the TLS version fields, and
domain fronting.
Censorship Circumvention. We manually confirmed the
success of two techniques presented in Table 4: TLS record
fragmentation and setting the TLS version in the record
header to TLS 1.3. Using TLS record fragmentation, we
accessed wikipedia.org/wiki/Water censored by all three
middleboxes. By setting the TLS version in the record
header to TLS 1.3 we accessed en.wikipedia.org/wiki/Water
censored by MB-1 and MB-2. We used curl [64] to access
the websites and extended DPYProxy [39], an open-source
censorship circumvention tool, to alter the TLS record head-
ers. To circumvent the GFW’s IP censorship, we routed our
connection over a proxy server hosted at a vantage point
at our university. We plan to provide the complete setup in
our artifact evaluation and create a pull request extending
DPYProxy after peer review.

7. Discussion

Successful Censorship Circumvention Techniques. We
identify four techniques as most successful: Increasing the
TLS version fields, fragmenting TLS records, fragmenting
TCP segments, and omitting the SNI extension. We also
project that all four techniques will stay viable in the future.
The TLS version fields are used by censors to fingerprint the

11

wikipedia.org/wiki/Water
en.wikipedia.org/wiki/Water

TLS protocol at the beginning of the handshake. Censors
that attempt to reassemble TCP segments or TLS records
need complex implementations that hold state. Lastly, omit-
ting the SNI extension from a TLS handshake forces censors
to allow the connection, block all TLS connections without
an SNI extension, or fallback to IP-based blocking, leading
to possible overblocking. Besides these generally successful
techniques, we project other techniques to be useful for
accessing websites or services with known server imple-
mentations.
Integration in Circumvention Tools. In contrast to lower-
layer censorship evasion techniques, TLS-layer techniques
cannot always be added to an application in hindsight.
As soon as a technique modifies the contents of the
ClientHello, the application has to account for the mod-
ification inside the Finished messages as the modifica-
tions influence the handshake transcript. Therefore, to use a
handshake-layer technique, the client’s TLS implementation
has to be aware of it. In contrast, changes in the record
header or the record fragmentation do not influence the
cryptographic computations and can, therefore, be added
without cooperation from the application. We marked such
techniques with a * in Table 4. Alternatively, TLS-based
techniques can be used by integrating them as Malicious-in-
the-Middle (MitM) between the application and the censor.
This necessitates the client to trust a TLS certificate pos-
sessed by the circumvention tool to possess a TLS certificate
trusted by the client. It is also possible to modify the TLS
libraries used by existing software, such as browsers, with
LD_PRELOAD to apply our techniques [26]. Circumvention
tools that already execute their own TLS handshake [68],
[77] or browsers can directly implement our discovered
techniques.
Benefit of Exhaustive Combinations. The benefit of our
combinatorial approach was twofold. We found combined
circumvention techniques such as a TLS 1.3 connection with
an altered TLS version in the TLS message header. It also
helped us to identify the distinct middleboxes of the GFW.
When two manipulations triggered different censorship be-
haviors and their combination circumvented the GFW, we
encountered distinct middleboxes. Other frameworks, such
as Geneva [13], also yield combinations of manipulations as
circumvention techniques. Our approach differs by combin-
ing manipulations exhaustively. We argue that this helped
us to identify and analyze the three distinct middleboxes of
the GFW more easily.

7.1. Limitations and Future Work

Censorship Analysis. We focused our evaluations in Sec-
tion 5 on the first flight of the TLS handshake, as we
only encountered censorship that directly followed the
ClientHello message in a preliminary scan. Specifically,
we did not encounter the deeper TLS-level censorship that
was detected by Bock et al. [15] as part of an additional
middlebox of the GFW in 2021. While we believe that this
middlebox has since changed its behavior (cf. Section 5.1),

it is possible that we ignored sporadic TLS censorship that
occurs after the servers’ ServerHello message. Addi-
tionally, our scans assume that the behavior of the censor
does not change meaningfully during our evaluations. We
assume that we did not encounter such behavior during
our evaluations, as our results were reproducible across
two scans. Nevertheless, we recommend future research to
use control probes during their measurements to ensure
consistent results.
Generalizing Results. We used only one vantage point
in Germany to which we sent our TLS ClientHello
messages: we could have missed SNI censorship that is only
triggered in connections to specific IP addresses. We also
conducted our evaluations from a single vantage point in
China and Iran, which means that the specific techniques
presented in this paper might not be generalized to other
vantage points in the same or other countries. Similarly,
censorship in residential networks might not be equal to
the censorship we detected at the rented vantage points.
However, we want to emphasize that our methodology—
and Censor Scanner in particular—can be directly applied to
find such techniques from other vantage points. Future work
could integrate Censor Scanner into evasion tools, such that
it automatically finds successful circumvention techniques
itself. An application could then dynamically query Censor
Scanner whenever it needs a new successful circumvention
technique.
Censor’s Ability to Update Their Implementation. Cen-
sors can potentially update their implementations to accom-
modate the circumvention techniques described in this paper.
We consider such amends possible for some techniques:
for instance, we believe that detecting hostnames followed
by null bytes and considering TLS messages with invalid
version fields is feasible for a censor. Other techniques
require more complex changes for a censor: reassembling
TCP segments or TLS records requires censors to hold
state, acquire memory space, and implement mechanisms
for freeing memory after analyzing a connection. While we
can only make assumptions about the costs for a censor
such as the GFW, we argue that they are considerable
and potentially deemed too costly. As evidence, we see the
GFW’s continuing inability to reassemble TCP segments at
least 12 years after they first attempted reassembly [40].
Domain Fronting. In this paper, we provide a limited
evaluation of domain fronting on CDNs. While we iden-
tified effective domain fronting opportunities on singular
servers, the same techniques must not necessarily apply
to other servers of the same CDN as we did not control
server-specific configurations on the CDNs we evaluated.
We suggest an extensive analysis of domain fronting op-
portunities on different CDNs and their usage in censorship
circumvention for future work.
TCP Fragmentation. While TCP fragmentation is widely
used for censorship circumvention, we saw mixed effec-
tiveness in China. Parts of the GFW can reassemble TCP
segments, and while we could overwhelm their reassembly
algorithms with large messages, these messages were not

12

accepted by all TLS servers. We conjecture that TCP frag-
mentation continues to be a vital technique for censorship
circumvention in the future but suggest a detailed analysis
of censors’ TCP reassembly algorithms and servers’ accep-
tance of large messages in future work.

Other protocols. In this work, we consciously manipulated
only the TLS layer to argue about the effectiveness of this
approach meaningfully. Even with this constraint, some TLS
layer manipulations forced changes on the TCP layer, such
as TCP fragmentation. We presume that censorship circum-
vention techniques that combine manipulations on multiple
network layers, such as TLS and TCP, will be even more
effective. Therefore, we propose future work to evaluate the
effectiveness of these techniques. Last but not least, similar
to TLS, censorship circumvention techniques for TLS-like
protocols such as DTLS [58] or QUIC [37] have not been
explored yet. We consider QUIC to be especially promising
since it combines the features of TLS with its own transport
layer mechanisms.

7.2. Ethical Considerations

We considered the impact of our analyses on real-world
infrastructure and people. We evaluated Apache and Nginx
locally and did not impact the Internet infrastructure. In
our evaluations of CDNs, we analyzed two large websites
per CDN. Each website was subject to under 20.000 TLS
handshakes distributed over multiple hours. We consider that
amount of traffic negligible for the large CDN providers we
evaluated. After encountering rate limits on Cloudflare, we
adjusted our throughput accordingly. During our scan of the
Tranco Top 10k server, we sent less than 100 messages to
each server and excluded servers that requested exclusion
in previous scans. The machines from which we executed
our scans were identifiable as such through their DNS
records and an HTTP landing page. We rented our vantage
points in adherence to the applying sanctions list and export
regulations by the European Union [23].

To evaluate censors in China and Iran, we rented a van-
tage point in each country similar to previous research [13],
[34], [42]. From these vantage points, we sent all generated
traffic to an additional vantage point we rented in Germany.
Thus, our evaluation of censors only inflicted traffic on
intermediate network operators used to large amounts of
network traffic.

We strongly believe that censorship circumvention re-
search provides more benefits to researchers and affected
people than to censors. While censors could adjust their
censorship to the techniques we evaluated, this inflicts a
resource cost on the censor (cf. Section 7). We also dis-
covered previously unknown techniques that directly benefit
the censorship circumvention community. Lastly, structural
insights about censors provide avenues for future circum-
vention research.

8. Related Work

ESNI and ECH. As a countermeasure to SNI inspection, the
community is currently working on a new extension called
Encrypted Server Name Indication (ESNI)—later redefined
as the Encrypted ClientHello (ECH) extension [60].
Both extension versions encrypt the SNI extension to pre-
vent analysis by censors or other middleboxes. However,
they have not been fully standardized yet [60]. Additionally,
with the ECH extension not yet being widely used [17], [71]
and focusing on privacy protection rather than censorship
circumvention [60], it can be censored easily by blocking it
entirely [14], [76]. We consider evaluating the effectiveness
of ECH for censorship circumvention as important future
work over the next few years as its usage grows.
Locating Censorship Devices. In 2022, Raman et al. [57]
determined the network location of various censorship de-
vices and fingerprinted their behavior. As part of their
fingerprinting efforts, they recorded the devices’ censorship
behavior when dealing with different TLS handshakes. For
their evaluations, they considered semantically valid changes
to TLS handshakes such as different TLS versions, cipher
suites, or providing a client certificate. They also invalidated
the domain name in the SNI extension. For example, they
reversed the domain name and added subdomains. While
Raman et al. could circumvent censors with some of their
constructed TLS handshakes, they primarily used them to
fingerprint censorship devices. Thus, they did not evaluate
the acceptance of their constructed TLS handshakes by TLS
servers. Additionally, they manipulated only specific parts of
the TLS handshake in their analysis and did not combine
different manipulations. In our work, we broadened the
scope of Raman et al. by thoroughly analyzing the TLS
handshake for possible manipulations. Instead of focusing
on previously successful techniques, we considered all fields
of the TLS handshake and TLS record headers for our
manipulations.
Throttling Twitter. In their analysis of Russia’s throt-
tling of Twitter in 2021, Xue et al. [81] success-
fully circumvented the throttling by injecting addi-
tional TLS ChangeCipherSpec messages before the
ClientHello message. Xue et al. also circumvented
the throttling by inserting a large padding extension into
the ClientHello message, which splits it over multiple
TCP segments that the censor could not reassemble. This
technique is particularly interesting as it forces changes on
the TCP layer through manipulations on the TLS layer.
While the techniques introduced by Xue et al. adhere to
the TLS standards [20], [59], Xue et al. did not measure
actual support by TLS servers. In our work, we increased
TCP segment sizes through the padding extension, as done
by Xue et al., and additional cipher suites.
Censorship Measurements. To provide a worldwide view
of Internet censorship, OoniProbe [51], ICLab [48], and
Censored Planet [66] publish data of repeatedly conducted
censorship analyses around the world. Additionally, more
specific analyses of censorship have been carried out in

13

various countries worldwide. Examples include Russia [25],
[81], Syria [2], Pakistan [47], Thailand [27], Iran [8], [32],
and China’s GFW [5], [13], [14], [22], [34], [75], [78].
While we analyzed the GFW and Iran’s censor in our work,
our approach is generic enough that it is also likely to work
and circumvent SNI-based censorship in other countries.
Circumvention Tools. To help affected people, many cen-
sorship circumvention tools have been developed. They
usually fall into one of three categories. Tools in the first
category directly manipulate network packets that leave the
operating system [16], [43], [73]. These tools usually per-
form TCP-level manipulations. A second category of tools
operates a proxy server on the client’s machine [16], [30],
[30], [33], [36], [39], [41], [82]. By opening separate sock-
ets, these tools can manipulate HTTP or other application
traffic without breaking the client’s TCP sequence numbers.
Tools in the last category rely on a dedicated proxy behind
the censor [61], [68], [72]. While this allows for great flex-
ibility regarding circumvention techniques, clients must set
up or be provided with such a dedicated proxy. Some tools
in the second and third categories already implement TLS-
level circumvention techniques. DPYProxy [39], Intra [38],
and V2Ray [77] implement TLS record fragmentation. Tor
Snowflake [68] uses domain fronting to connect to servers
in CDNs.
Geneva. In our work, we built Censor Scanner to auto-
matically detect circumventions for SNI-based censorship
by manipulating TLS packets. Similarly, Bock et al. [13]
built Geneva, a tool that automatically finds censorship
circumventions by manipulating TCP packets with a genetic
algorithm. Geneva has been further extended to the HTTP
and DNS layer by Harrity et al. [32]. Since its inception,
Geneva has successfully evaded censorship in China [13],
[14], [32], India [13], [32], Kazakhstan [13], [32], Iran [11],
and Turkmenistan [50].

9. Conclusions

In this work, we extend SNI-based censorship circum-
vention by applying alterations directly to the TLS layer.
Our analyses of web servers and censors confirm the effec-
tiveness of our approach, yielding numerous possible cen-
sorship circumvention techniques (RQ1) many of which are
accepted by TLS servers (RQ2) and circumvent real-world
censors (RQ3) at the same time. Circumvention tools can
use these circumvention techniques to aid affected people.
As we detect substantial differences in the acceptance of test
vectors by different web server implementations, we stress
the importance of analyzing online web servers in future
research. Overall, we recommend applying the methodology
developed in our work to the analysis of other protocols.
We conjecture that similar circumvention techniques can be
identified in cryptographic protocols like DTLS and QUIC,
which share similarities with TLS.

Besides specific circumvention techniques, we identified
and subsequently isolated three distinct middleboxes of the
GFW, one of which was previously unknown. Exhaus-

tively and systematically combining circumvention strate-
gies proved vital for the detection of the three middleboxes,
and we suspect that this is the reason why one middlebox
stayed undetected for so long. We suggest future research
to expect multiple possible middleboxes and to consider
augmenting their analyses with the combinatorial approach
presented in our work.

Acknowledgments

We want to thank the reviewers and shepherd for their in-
sightful comments and constructive feedback. Niklas Niere
and Felix Lange were supported by the German Federal
Ministry of Education and Research (BMBF) through the
project KoTeBi (16KlS1556K).

References

[1] “Amazon Web Services starts blocking
domain-fronting, following Google’s lead,”
https://www.theverge.com/2018/4/30/17304782/amazon-domain-
fronting-google-discontinued, Apr. 2018.

[2] C. Abdelberi, T. Chen, M. Cunche, E. D. Cristofaro, A. Friedman, and
M. A. Kâafar, “Censorship in the Wild: Analyzing Internet Filtering in
Syria,” in Proceedings of the 2014 Internet Measurement Conference,
IMC 2014, Vancouver, BC, Canada, November 5-7, 2014,
C. Williamson, A. Akella, and N. Taft, Eds. ACM, 2014, pp. 285–
298. [Online]. Available: https://doi.org/10.1145/2663716.2663720

[3] accessnow, “Google ends "domain fronting," a crucial way for tools
to evade censors,” Jan. 2023.

[4] C. Anderson, “Dimming the Internet: Detecting Throttling as a
Mechanism of Censorship in Iran,” Jun. 2013, arXiv:1306.4361 [cs].
[Online]. Available: http://arxiv.org/abs/1306.4361

[5] Anonymous, “Towards a Comprehensive Picture of the Great
Firewall’s DNS Censorship,” in 4th USENIX Workshop on Free
and Open Communications on the Internet (FOCI 14). San
Diego, CA: USENIX Association, Aug. 2014. [Online]. Avail-
able: https://www.usenix.org/conference/foci14/workshop-program/
presentation/anonymous

[6] Anonymous, A. A. Niaki, N. P. Hoang, P. Gill, and
A. Houmansadr, “Triplet censors: Demystifying great Firewall’s
DNS censorship behavior,” in 10th USENIX workshop on
free and open communications on the internet (FOCI
20). USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/foci20/presentation/anonymous

[7] W. Arrington, “Continually Enhancing Domain Security
on Amazon CloudFront | Networking & Content Deliv-
ery,” https://aws.amazon.com/blogs/networking-and-content-
delivery/continually-enhancing-domain-security-on-amazon-
cloudfront/, Apr. 2019.

[8] S. Aryan, H. Aryan, and J. A. Halderman, “Internet
Censorship in Iran: A First Look,” in 3rd USENIX
Workshop on Free and Open Communications on the Internet
(FOCI 13). Washington, D.C.: USENIX Association, Aug.
2013. [Online]. Available: https://www.usenix.org/conference/foci13/
workshop-program/presentation/aryan

[9] A. Bhaskar and P. Pearce, “Many roads lead to rome: How packet
headers influence DNS censorship measurement,” in 31st USENIX
security symposium (USENIX security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 449–464. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/bhaskar

14

https://doi.org/10.1145/2663716.2663720
http://arxiv.org/abs/1306.4361
https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
https://www.usenix.org/conference/foci20/presentation/anonymous
https://www.usenix.org/conference/foci13/workshop-program/presentation/aryan
https://www.usenix.org/conference/foci13/workshop-program/presentation/aryan
https://www.usenix.org/conference/usenixsecurity22/presentation/bhaskar
https://www.usenix.org/conference/usenixsecurity22/presentation/bhaskar

[10] K. Bock, P. Bharadwaj, J. Singh, and D. Levin, “Your Censor is
My Censor: Weaponizing Censorship Infrastructure for Availability
Attacks,” in 2021 IEEE Security and Privacy Workshops (SPW), May
2021, pp. 398–409. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/9474303

[11] K. Bock, Y. Fax, K. Reese, J. Singh, and D. Levin, “Detecting
and Evading Censorship-in-Depth: A Case Study of Iran’s Protocol
Whitelister,” in 10th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 20). USENIX Association,
Aug. 2020. [Online]. Available: https://www.usenix.org/conference/
foci20/presentation/bock

[12] K. Bock, G. Hughey, L.-H. Merino, T. Arya, D. Liscinsky,
R. Pogosian, and D. Levin, “Come as You Are: Helping
Unmodified Clients Bypass Censorship with Server-side Evasion,” in
Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. Virtual
Event USA: ACM, Jul. 2020, pp. 586–598. [Online]. Available:
https://dl.acm.org/doi/10.1145/3387514.3405889

[13] K. Bock, G. Hughey, X. Qiang, and D. Levin, “Geneva:
Evolving Censorship Evasion Strategies,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association
for Computing Machinery, Nov. 2019, pp. 2199–2214. [Online].
Available: https://dl.acm.org/doi/10.1145/3319535.3363189

[14] K. Bock, iyouport, Anonymous, L.-H. Merino, D. Fifield,
A. Houmansadr, and D. Levin, “Exposing and Circumventing
China’s Censorship of ESNI,” 2020. [Online]. Available:
https://gfw.report/blog/gfw_esni_blocking/en/

[15] K. Bock, G. Naval, K. Reese, and D. Levin, “Even Censors
Have a Backup: Examining China’s Double HTTPS Censorship
Middleboxes,” in Proceedings of the ACM SIGCOMM 2021
Workshop on Free and Open Communications on the Internet,
ser. FOCI ’21. New York, NY, USA: Association for Computing
Machinery, Aug. 2021, pp. 1–7. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3473604.3474559

[16] bol van, “zapret,” May 2024. [Online]. Available: https://github.com/
bol-van/zapret

[17] Z. Chai, A. Ghafari, and A. Houmansadr, “On the importance
of Encrypted-SNI (ESNI) to censorship circumvention,” in 9th
USENIX workshop on free and open communications on the
internet (FOCI 19). Santa Clara, CA: USENIX Association, Aug.
2019. [Online]. Available: https://www.usenix.org/conference/foci19/
presentation/chai

[18] R. Clayton, S. J. Murdoch, and R. N. M. Watson, “Ignoring the Great
Firewall of China,” in Privacy Enhancing Technologies, G. Danezis
and P. Golle, Eds. Berlin, Heidelberg: Springer, 2006, pp. 20–35.

[19] Cloudflare, “Cloudflare Radar | Adoption & Usage Worldwide,” 2024.
[Online]. Available: https://radar.cloudflare.com/adoption-and-usage

[20] T. Dierks and E. Rescorla, “Rfc 5246: The transport layer security
(tls) protocol version 1.2,” 2008.

[21] D. Eastlake 3rd, “Rfc 6066: Transport layer security (tls) extensions:
Extension definitions,” 2011.

[22] R. Ensafi, P. Winter, A. Mueen, and J. R. Crandall, “Analyzing
the Great Firewall of China Over Space and Time,” Proceedings
on Privacy Enhancing Technologies, 2015. [Online]. Available:
https://petsymposium.org/popets/2015/popets-2015-0005.php

[23] European Union. (2025) Eu sanctions map.
https://www.sanctionsmap.eu/. [Online]. Available: https://
www.sanctionsmap.eu/

[24] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson, “Blocking-
resistant communication through domain fronting,” Proceedings on
Privacy Enhancing Technologies, vol. 2015, no. 2, pp. 46–64,
Jun. 2015. [Online]. Available: https://petsymposium.org/popets/
2015/popets-2015-0009.php

[25] funkerwolf, “Почему Ростелеком блокирует esni трафик?,”
2020. [Online]. Available: https://qna.habr.com/q/862669

[26] gaul. (2021) Awesome ld_preload. [Online]. Available: https:
//github.com/gaul/awesome-ld-preload

[27] G. Gebhart and T. Kohno, “Internet Censorship in Thailand: User
Practices and Potential Threats,” in 2017 IEEE European Symposium
on Security and Privacy (EuroS&P), Apr. 2017, pp. 417–432.
[Online]. Available: https://ieeexplore.ieee.org/document/7961994

[28] Google, “boringssl,” 2024. [Online]. Available: https:
//boringssl.googlesource.com/boringssl/

[29] Google, “HTTPS Encryption in the Web – Google
Transparency Report,” Jul. 2024. [Online]. Available: https:
//transparencyreport.google.com/https/overview

[30] Google Jigsaw, “Jigsaw-Code/Intra,” Jun. 2024. [Online]. Available:
https://github.com/Jigsaw-Code/Intra

[31] greatfire, “Greatfire/freebrowser,” GreatFire.org, May 2024.

[32] M. Harrity, K. Bock, F. Sell, and D. Levin, “GET /out:
Automated Discovery of Application-Layer Censorship Evasion
Strategies,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp.
465–483. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/harrity

[33] S. Hayeri, “GreenTunnel,” May 2024. [Online]. Available: https:
//github.com/SadeghHayeri/GreenTunnel

[34] N. P. Hoang, J. Dalek, M. Crete-Nishihata, N. Christin, V. Yeg-
neswaran, M. Polychronakis, and N. Feamster, “Gfweb: Measuring
the great firewall’s web censorship at scale,” jun 2024, selected
for publication at Usenix 2024: https://www.usenix.org/conference/
usenixsecurity24/presentation/hoang.

[35] N. P. Hoang, A. A. Niaki, J. Dalek, J. Knockel, P. Lin, B. Marczak,
M. Crete-Nishihata, P. Gill, and M. Polychronakis, “How Great is
the Great Firewall? Measuring China’s DNS Censorship,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 3381–3398. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/hoang

[36] hufrea, “hufrea/byedpi: Bypass DPI,” 2024. [Online]. Available:
https://github.com/hufrea/byedpi

[37] J. Iyengar (Ed.) and M. Thomson (Ed.), “QUIC: a UDP-based
multiplexed and secure transport,” May 2021, iSSN: 2070-
1721 Number: 9000 Place: Fremont, CA, USA Series: Internet
request for comments Type: RFC tex.howpublished: RFC 9000
(Proposed Standard) tex.key: RFC 9000. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc9000.txt

[38] G. Jigsaw. (2023) Outline SDK, TLS client hello fragmentation by
fixed length #134. [Online]. Available: https://github.com/Jigsaw-
Code/outline-sdk/pull/134

[39] JonSnowWhite, “DPYProxy,” 2024. [Online]. Available: https:
//github.com/UPB-SysSec/DPYProxy

[40] S. Khattak, M. Javed, P. D. Anderson, and V. Paxson, “Towards
Illuminating a Censorship Monitor’s Model to Facilitate Evasion,”
2013. [Online]. Available: https://www.usenix.org/conference/foci13/
workshop-program/presentation/khattak

[41] krlvm, “PowerTunnel,” May 2024. [Online]. Available: https:
//github.com/krlvm/PowerTunnel

[42] F. Li, A. Razaghpanah, A. M. Kakhki, A. A. Niaki, D. Choffnes,
P. Gill, and A. Mislove, “lib•erate, (n): a library for exposing
(traffic-classification) rules and avoiding them efficiently,” in
Proceedings of the 2017 Internet Measurement Conference, ser.
IMC ’17. New York, NY, USA: Association for Computing
Machinery, Nov. 2017, pp. 128–141. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3131365.3131376

[43] macronut, “ghostcp,” May 2024. [Online]. Available: https://
github.com/macronut/ghostcp

15

https://ieeexplore.ieee.org/abstract/document/9474303
https://ieeexplore.ieee.org/abstract/document/9474303
https://www.usenix.org/conference/foci20/presentation/bock
https://www.usenix.org/conference/foci20/presentation/bock
https://dl.acm.org/doi/10.1145/3387514.3405889
https://dl.acm.org/doi/10.1145/3319535.3363189
https://gfw.report/blog/gfw_esni_blocking/en/
https://dl.acm.org/doi/10.1145/3473604.3474559
https://dl.acm.org/doi/10.1145/3473604.3474559
https://github.com/bol-van/zapret
https://github.com/bol-van/zapret
https://www.usenix.org/conference/foci19/presentation/chai
https://www.usenix.org/conference/foci19/presentation/chai
https://radar.cloudflare.com/adoption-and-usage
https://petsymposium.org/popets/2015/popets-2015-0005.php
https://www.sanctionsmap.eu/
https://www.sanctionsmap.eu/
https://www.sanctionsmap.eu/
https://petsymposium.org/popets/2015/popets-2015-0009.php
https://petsymposium.org/popets/2015/popets-2015-0009.php
https://qna.habr.com/q/862669
https://github.com/gaul/awesome-ld-preload
https://github.com/gaul/awesome-ld-preload
https://ieeexplore.ieee.org/document/7961994
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://github.com/Jigsaw-Code/Intra
https://www.usenix.org/conference/usenixsecurity22/presentation/harrity
https://www.usenix.org/conference/usenixsecurity22/presentation/harrity
https://github.com/SadeghHayeri/GreenTunnel
https://github.com/SadeghHayeri/GreenTunnel
https://www.usenix.org/conference/usenixsecurity24/presentation/hoang
https://www.usenix.org/conference/usenixsecurity24/presentation/hoang
https://www.usenix.org/conference/usenixsecurity21/presentation/hoang
https://www.usenix.org/conference/usenixsecurity21/presentation/hoang
https://github.com/hufrea/byedpi
https://www.rfc-editor.org/rfc/rfc9000.txt
https://github.com/Jigsaw-Code/outline-sdk/pull/134
https://github.com/Jigsaw-Code/outline-sdk/pull/134
https://github.com/UPB-SysSec/DPYProxy
https://github.com/UPB-SysSec/DPYProxy
https://www.usenix.org/conference/foci13/workshop-program/presentation/khattak
https://www.usenix.org/conference/foci13/workshop-program/presentation/khattak
https://github.com/krlvm/PowerTunnel
https://github.com/krlvm/PowerTunnel
https://dl.acm.org/doi/10.1145/3131365.3131376
https://dl.acm.org/doi/10.1145/3131365.3131376
https://github.com/macronut/ghostcp
https://github.com/macronut/ghostcp

[44] A. Master and C. Garman, “A Worldwide View of Nation-state
Internet Censorship,” Free and Open Communications on the
Internet, 2023. [Online]. Available: https://petsymposium.org/foci/
2023/foci-2023-0008.php

[45] moxie0, “A letter from Amazon,” https://signal.org/blog/looking-
back-on-the-front/, May 2018.

[46] P. Müller, N. Niere, F. Lange, and J. Somorovsky, “Turning Attacks
into Advantages: Evading HTTP Censorship with HTTP Request
Smuggling,” in Free and Open Communications on the Internet,
2024. [Online]. Available: https://foci.community/foci24.html

[47] Z. Nabi, “The anatomy of web censorship in pakistan,” in 3rd
USENIX workshop on free and open communications on the
internet (FOCI 13). Washington, D.C.: USENIX Association, Aug.
2013. [Online]. Available: https://www.usenix.org/conference/foci13/
workshop-program/presentation/nabi

[48] A. A. Niaki, S. Cho, Z. Weinberg, N. P. Hoang, A. Razaghpanah,
N. Christin, and P. Gill, “ICLab: A Global, Longitudinal Internet
Censorship Measurement Platform,” in 2020 IEEE Symposium on
Security and Privacy (SP), May 2020, pp. 135–151, iSSN: 2375-1207.
[Online]. Available: https://ieeexplore.ieee.org/document/9152784

[49] N. Niere, S. Hebrok, J. Somorovsky, and R. Merget, “Poster:
Circumventing the GFW with TLS Record Fragmentation,” CCS
2023 - Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pp. 3528–3530, Nov.
2023, iSBN: 9798400700507 Publisher: Association for Computing
Machinery, Inc. [Online]. Available: https://dl.acm.org/doi/10.1145/
3576915.3624372

[50] S. Nourin, V. Tran, X. Jiang, K. Bock, N. Feamster, N. P. Hoang,
and D. Levin, “Measuring and Evading Turkmenistan’s Internet
Censorship: A Case Study in Large-Scale Measurements of a Low-
Penetration Country,” in Proceedings of the ACM Web Conference
2023. Austin TX USA: ACM, Apr. 2023, pp. 1969–1979. [Online].
Available: https://dl.acm.org/doi/10.1145/3543507.3583189

[51] Open Observatory of Network Interference, “OONI: Open
Observatory of Network Interference,” May 2024. [Online].
Available: https://ooni.org/

[52] OpenSSL, “openssl: TLS/SSL and crypto library,” 2024. [Online].
Available: https://github.com/openssl/openssl

[53] R. Padmanabhan, A. Filastò, M. Xynou, R. S. Raman, K. Middleton,
M. Zhang, D. Madory, M. Roberts, and A. Dainotti, “A multi-
perspective view of Internet censorship in Myanmar,” in Proceedings
of the ACM SIGCOMM 2021 Workshop on Free and Open
Communications on the Internet, ser. FOCI ’21. New York, NY,
USA: Association for Computing Machinery, Aug. 2021, pp. 27–36.
[Online]. Available: https://dl.acm.org/doi/10.1145/3473604.3474562

[54] V. L. Pochat, T. van Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking hard-
ened against manipulation,” in 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019. The Internet Society, 2019. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/tranco-a-
research-oriented-top-sites-ranking-hardened-against-manipulation/

[55] Psiphon, “Why You Don’t Need Google’s Domain Fronting,” Apr.
2018.

[56] R. S. Raman, L. Evdokimov, E. Wurstrow, J. A. Halderman,
and R. Ensafi, “Investigating Large Scale HTTPS Interception in
Kazakhstan,” in Proceedings of the ACM Internet Measurement
Conference, ser. IMC ’20. New York, NY, USA: Association for
Computing Machinery, Oct. 2020, pp. 125–132. [Online]. Available:
https://dl.acm.org/doi/10.1145/3419394.3423665

[57] R. S. Raman, M. Wang, J. Dalek, J. Mayer, and R. Ensafi,
“Network measurement methods for locating and examining
censorship devices,” in Proceedings of the 18th International
Conference on emerging Networking EXperiments and Technologies,
ser. CoNEXT ’22. New York, NY, USA: Association for
Computing Machinery, Nov. 2022, pp. 18–34. [Online]. Available:
https://dl.acm.org/doi/10.1145/3555050.3569133

[58] E. Rescorla and N. Modadugu, “Datagram transport layer security
version 1.2,” Jan. 2012, iSSN: 2070-1721 Number: 6347 Place:
Fremont, CA, USA Series: Internet request for comments Type: RFC
tex.howpublished: RFC 6347 (Proposed Standard) tex.key: RFC
6347. [Online]. Available: https://www.rfc-editor.org/rfc/rfc6347.txt

[59] E. Rescorla, “Rfc 8446: The transport layer security (tls) protocol
version 1.3,” 2018.

[60] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood, “TLS Encrypted
Client Hello,” Internet Engineering Task Force, Internet Draft
draft-ietf-tls-esni-24, Mar. 2025, num Pages: 53. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tls-esni

[61] S. Satija and R. Chatterjee, “BlindTLS: Circumventing TLS-based
HTTPS censorship,” in Proceedings of the ACM SIGCOMM 2021
Workshop on Free and Open Communications on the Internet.
Virtual Event USA: ACM, Aug. 2021, pp. 43–49. [Online].
Available: https://dl.acm.org/doi/10.1145/3473604.3474564

[62] K. Singh, G. Grover, and V. Bansal, “How India Censors the
Web,” in Proceedings of the 12th ACM Conference on Web
Science, ser. WebSci ’20. New York, NY, USA: Association for
Computing Machinery, Jul. 2020, pp. 21–28. [Online]. Available:
https://dl.acm.org/doi/10.1145/3394231.3397891

[63] J. Somorovsky, “Systematic Fuzzing and Testing of TLS Libraries,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, Oct. 2016, pp. 1492–1504.
[Online]. Available: https://doi.org/10.1145/2976749.2978411

[64] D. Stenberg, “curl,” 1996. [Online]. Available: https://curl.se/

[65] K. Subramani, R. Perdisci, P.-C. Skafidas, and M. Antonakakis,
“Discovering and Measuring CDNs Prone to Domain Fronting,”
in Proceedings of the ACM on Web Conference 2024. Singapore
Singapore: ACM, May 2024, pp. 1859–1867. [Online]. Available:
https://dl.acm.org/doi/10.1145/3589334.3645656

[66] R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi, “Censored
Planet: An Internet-wide, Longitudinal Censorship Observatory,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’20. New York, NY,
USA: Association for Computing Machinery, Nov. 2020, pp. 49–66.
[Online]. Available: https://dl.acm.org/doi/10.1145/3372297.3417883

[67] The Tor Project, “Meek,” https://gitlab.torproject.org/tpo/anti-
censorship/pluggable-transports/meek, Mar. 2024.

[68] ——, “Snowflake,” 2024. [Online]. Available: https://
snowflake.torproject.org/

[69] M. Thomson, “Record Size Limit Extension for TLS,” RFC
8449, Aug. 2018. [Online]. Available: https://www.rfc-editor.org/
info/rfc8449

[70] tls-attacker, “TLS-Attacker,” Jun. 2024. [Online]. Available: https:
//github.com/tls-attacker/TLS-Attacker

[71] Z. Tsiatsikas, G. Karopoulos, and G. Kambourakis, “Measuring the
Adoption of TLS Encrypted Client Hello Extension and Its Forebear
in the Wild,” in Computer Security. ESORICS 2022 International
Workshops, S. Katsikas, F. Cuppens, C. Kalloniatis, J. Mylopoulos,
F. Pallas, J. Pohle, M. A. Sasse, H. Abie, S. Ranise, L. Verderame,
E. Cambiaso, J. Maestre Vidal, M. A. Sotelo Monge, M. Albanese,
B. Katt, S. Pirbhulal, and A. Shukla, Eds. Cham: Springer Interna-
tional Publishing, 2023, pp. 177–190.

[72] v2fly, “v2ray: A platform for building proxies to bypass network
restrictions.” Jun. 2024. [Online]. Available: https://github.com/v2fly/
v2ray-core

[73] ValdikSS, “GoodbyeDPI,” May 2024. [Online]. Available: https:
//github.com/ValdikSS/GoodbyeDPI

[74] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishnamurthy, “Your
State is Not Mine: A Closer Look at Evading Stateful Internet
Censorship,” in Proceedings of the 2017 Internet Measurement
Conference, ser. IMC ’17. New York, NY, USA: Association for
Computing Machinery, Nov. 2017, pp. 114–127. [Online]. Available:
https://dl.acm.org/doi/10.1145/3131365.3131374

16

https://petsymposium.org/foci/2023/foci-2023-0008.php
https://petsymposium.org/foci/2023/foci-2023-0008.php
https://foci.community/foci24.html
https://www.usenix.org/conference/foci13/workshop-program/presentation/nabi
https://www.usenix.org/conference/foci13/workshop-program/presentation/nabi
https://ieeexplore.ieee.org/document/9152784
https://dl.acm.org/doi/10.1145/3576915.3624372
https://dl.acm.org/doi/10.1145/3576915.3624372
https://dl.acm.org/doi/10.1145/3543507.3583189
https://ooni.org/
https://github.com/openssl/openssl
https://dl.acm.org/doi/10.1145/3473604.3474562
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://dl.acm.org/doi/10.1145/3419394.3423665
https://dl.acm.org/doi/10.1145/3555050.3569133
https://www.rfc-editor.org/rfc/rfc6347.txt
https://datatracker.ietf.org/doc/draft-ietf-tls-esni
https://dl.acm.org/doi/10.1145/3473604.3474564
https://dl.acm.org/doi/10.1145/3394231.3397891
https://doi.org/10.1145/2976749.2978411
https://curl.se/
https://dl.acm.org/doi/10.1145/3589334.3645656
https://dl.acm.org/doi/10.1145/3372297.3417883
https://snowflake.torproject.org/
https://snowflake.torproject.org/
https://www.rfc-editor.org/info/rfc8449
https://www.rfc-editor.org/info/rfc8449
https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Attacker
https://github.com/v2fly/v2ray-core
https://github.com/v2fly/v2ray-core
https://github.com/ValdikSS/GoodbyeDPI
https://github.com/ValdikSS/GoodbyeDPI
https://dl.acm.org/doi/10.1145/3131365.3131374

[75] P. Winter and S. Lindskog, “How the Great Firewall of China
is Blocking Tor,” in 2nd USENIX Workshop on Free and Open
Communications on the Internet (FOCI 12). Bellevue, WA: USENIX
Association, Aug. 2012. [Online]. Available: https://www.usenix.org/
conference/foci12/workshop-program/presentation/Winter

[76] wkrp, “Blocking of Cloudflare ECH in Russia, 2024-11-05 ·
Issue #417 · net4people/bbs,” Nov. 2024. [Online]. Available:
https://github.com/net4people/bbs/issues/417

[77] XTLS. (2023) Xray-core, replace TCP segmentation with TLS hello
fragmentation #2131. [Online]. Available: https://github.com/XTLS/
Xray-core/pull/2131

[78] X. Xu, Z. M. Mao, and J. A. Halderman, “Internet Censorship in
China: Where Does the Filtering Occur?” in Passive and Active
Measurement, N. Spring and G. F. Riley, Eds. Berlin, Heidelberg:
Springer, 2011, pp. 133–142.

[79] D. Xue, B. Mixon-Baca, ValdikSS, A. Ablove, B. Kujath, J. R.
Crandall, and R. Ensafi, “TSPU: Russia’s decentralized censorship
system,” in Proceedings of the 22nd ACM Internet Measurement
Conference, ser. IMC ’22. New York, NY, USA: Association for
Computing Machinery, Oct. 2022, pp. 179–194. [Online]. Available:
https://dl.acm.org/doi/10.1145/3517745.3561461

[80] D. Xue, R. Ramesh, A. Jain, M. Kallitsis, J. A. Halderman,
J. R. Crandall, and R. Ensafi, “OpenVPN is open to VPN
fingerprinting,” in 31st USENIX security symposium (USENIX
security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
483–500. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/xue-diwen

[81] D. Xue, R. Ramesh, V. S. S, L. Evdokimov, A. Viktorov, A. Jain,
E. Wustrow, S. Basso, and R. Ensafi, “Throttling Twitter: an
emerging censorship technique in Russia,” in Proceedings of the
21st ACM Internet Measurement Conference, ser. IMC ’21. New
York, NY, USA: Association for Computing Machinery, Nov. 2021,
pp. 435–443. [Online]. Available: https://dl.acm.org/doi/10.1145/
3487552.3487858

[82] xvzc, “SpoofDPI,” May 2024. [Online]. Available: https://github.com/
xvzc/SpoofDPI

[83] T. K. Yadav, A. Sinha, D. Gosain, P. K. Sharma, and S. Chakravarty,
“Where The Light Gets In: Analyzing Web Censorship Mechanisms
in India,” in Proceedings of the Internet Measurement Conference
2018, ser. IMC ’18. New York, NY, USA: Association for
Computing Machinery, Oct. 2018, pp. 252–264. [Online]. Available:
https://doi.org/10.1145/3278532.3278555

Appendix A.
Manipulation Details

Figure 1 depicts the structure of a ClientHello mes-
sage with the surrounding TLS record structure and the con-
tained SNI extension. We manipulated all ClientHello
fields except the Random, Compression Methods, and
Session ID. Next to direct manipulation of single fields,
we also considered more involved structural manipulations
of our flight, such as TLS record fragmentation, the injection
of non-handshake records, or the addition of extensions
in the ClientHello. In the following, we detail our
manipulations and how we apply them to a default TLS 1.2
ClientHello message.
Base Version. The initial ClientHello we manipulate
is built for a default TLS 1.2 handshake. As a structural
manipulation, we changed the TLS version of the base
ClientHello to the TLS versions 1.0, 1.1, 1.2, and 1.3.
For each version, we sent the corresponding cipher suites,

included necessary extensions such as the Supported
Versions extension, and used version-specific algorithms
during the handshake if we tried to test the establishment
of the whole connection.
Record Fragmentation. As another structural manipula-
tion, we fragmented the ClientHello message across
multiple TLS records. We defined four different initial frag-
mentation points: After two bytes in the message header,
before the SNI extension, in the middle of the hostname in
the SNI extension, and after the SNI extension. Subsequent
records have the same size as the initial record.
Record Injection. Besides the fragmentation of records,
we injected additional records into the TLS handshake.
Xue et al. [81] discovered ChangeCipherSpec message
injection as a successful circumvention technique in Russia.
We generalized their finding by injecting different records
in various locations around the ClientHello message.
We injected all defined records before the ClientHello
message, after the ClientHello message, and in all
positions defined for record fragmentation. For the latter,
we fragmented the ClientHello message and injected
an additional record in between.
Record and Message Types. The record header and mes-
sage header of a ClientHello message contain a type
field that indicates the record type and message type, re-
spectively.We manipulated both types with different defined
and undefined values. .
Version Fields. The TLS ClientHello message contains
two TLS version fields. One in the record header and one
in the message header. With this manipulation, we only
changed the value of the version field and did not attempt
to handshake the TLS version we inserted into the version
field.
Cipher Suites. To exceed censors’ buffer sizes, we ar-
tificially increased the size of the ClientHello. To
this end, we added cipher suites to the Cipher Suite
field. For this manipulation, we defined two possible val-
ues: the maximum allowed size for the record and the
maximum possible value for the 2-byte length field that
indicates the size of the TLS record. To achieve this,
we added multiple instantiations of the same cipher suite
TLS_NULL_WITH_NULL_NULL. We kept all other cipher
suites unchanged.
Length Fields. A ClientHello message with a SNI
extension contains six length fields: The record length, the
message length, the length of all extensions, the length of
the SNI extension, the length of the SNI’s list structure, and
the length of the hostname. We manipulated all six length
fields by setting the length to higher values, lower values,
or the original value when other manipulations would im-
plicitly increase it through insertions.In another length field
manipulation, we decreased the size of the length field so
that it excluded the last entry of the structure it refers to.
For example, the List Length field of the SNI extension
can exclude the last list entry. We also manipulated specific
length fields by increasing their size by 20 and appending

17

https://www.usenix.org/conference/foci12/workshop-program/presentation/Winter
https://www.usenix.org/conference/foci12/workshop-program/presentation/Winter
https://github.com/net4people/bbs/issues/417
https://github.com/XTLS/Xray-core/pull/2131
https://github.com/XTLS/Xray-core/pull/2131
https://dl.acm.org/doi/10.1145/3517745.3561461
https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen
https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen
https://dl.acm.org/doi/10.1145/3487552.3487858
https://dl.acm.org/doi/10.1145/3487552.3487858
https://github.com/xvzc/SpoofDPI
https://github.com/xvzc/SpoofDPI
https://doi.org/10.1145/3278532.3278555

20 bytes to the end of the structure referred to by the length
field.

TLS Extensions. As it is of paramount importance for the
censor, we focused on manipulating the SNI extension in
our evaluations. We defined manipulations that remove the
SNI extension, change its place in the extension list, or
add additional SNI extensions with the same hostname as
the original. Any added SNI extensions are considered by
other manipulations that alter fields in the SNI extension.
Specifically, these manipulations can alter the original SNI
extension, additional SNI extensions, or all at once. We
hoped to evoke mismatches in censors and servers regarding
which SNI extensions they prefer to parse. Next to manip-
ulations of the SNI extension, we also injected a padding
extension into the extension list to artificially increase the
size of the ClientHello message, exceeding potentially
limited buffer sizes of the censor.

SNI Type Fields. We manipulated the Extension Type
and Name Type fields of the SNI extensions by invali-
dating them. We set the Extension Type value from
0x0000 to 0x9999. A similar circumvention has been
found by Bock et al. [14] for the ESNI extension. We altered
the Name Type from 0x00 to 0x01. We anticipated that
some censors and servers would ignore the name type
because only one name type has ever been defined.

SNI List Entries. Similar to the addition of SNI extensions,
we added list entries to the SNI extension or removed the
original list entry. We added one list entry, two list entries, or
the number of list entries that maximize the SNI extension
size. The additionally inserted hostnames are the same as the
original, except when the manipulation adds the maximum
number of allowed hostnames. There, we added the original
hostname in the middle and at the end of the list, while
all other hostnames are set to an uncensored hostname. We
expected different server and censor behavior for multiple
list entries, especially when another manipulation further
invalidates a list entry.

SNI Hostname Manipulations. We defined a total of
six manipulations for the hostname. The first manipulation
changes the casing of the hostname to an alternating case.
Notably, this is a standard-conforming manipulation as the
hostname is case-insensitive. Another manipulation flips the
highest bit of all ASCII characters, turning them into non-
ASCII characters. Yet another manipulation injects symbols
into the hostname: A null byte, a space, a backspace, subdo-
mains, top-level domains, or possibly incomplete Unicode
characters. Possible insertion points for these injections are
before, in the middle of, or after the hostname. The fourth
manipulation pads the hostname to the maximum allowed
length by appending the character g. Another possible ma-
nipulation replaces the existing hostname with an uncen-
sored hostname. We expected most hostname manipulations
to be largely successful against censors. We anticipated
some of them to lead to domain fronting opportunities on
CDNs.

Appendix B.
CDN Websites

Table 5. SELECTED CDN WEBSITES.

Shared IP Unshared IP

Cloudflare medium.com vimeo.com
Fastly apache.org nytimes.com
Google tensorflow.org boardgamegeek.com
Akamai europeanbusinessreview.com walmart.com
Amazon fxhome.com flickr.com

We chose one website that is hosted on a server where it shares an IP
address with other servers, and one website that is hosted on a dedicated
server.

Appendix C.
Server Specifications

Table 6. SPECIFICATION OF OUR VANTAGE POINT IN CHINA.

Country Zhengzhou. China
AS#: 4837

Vendor: China VPS Hosting
URL: https://chinavpshosting.com/

ISP: CHINA UNICOM (state-owned)

Table 7. SPECIFICATION OF OUR VANTAGE POINT IN IRAN.

Country: Mashhad, Iran
AS#: 201295

Vendor: Avanetco
URL: https://www.avanetco.com/

ISP: Shabakeh Ertebatat Artak Towseeh PJSC (private)

Table 8. SPECIFICATION OF OUR VANTAGE POINT IN GERMANY.

Country: Berlin, Germany
AS#: 201295

Vendor: IONOS
URL: https://www.ionos.de/

ISP: IONOS SE (private)

Appendix D.
TLS Handshake

Client Server

ClientHello

ServerHello

Certificate

ServerHelloDone

KeyExchange

CCS

[Finished]

CCS

[Finished]

[Application Data][Application Data]

Figure 5. An exemplary TLS 1.2 handshake. Encrypted messages are
surrounded by brackets. Messages that contain the hostname of the server
are printed in bold. A TLS 1.3 handshake is similar but also encrypts
the server’s certificate message and the extensions in the ServerHello
message.

18

https://chinavpshosting.com/
https://www.avanetco.com/
https://www.ionos.de/

	Introduction
	Background
	Censorship
	TLS Censorship
	TLS Censorship Circumvention

	Methodology
	Phase I: phase1
	Circumvention Identification

	Phase II: phase2
	Phase III: phase3
	Phase IV: phase4
	Phase V: phase5

	Server Evaluation Results
	Analysis of Middleboxes
	China
	Iran

	Analysis of Circumvention Techniques
	Combining Vectors
	Technique Categories
	Result Confirmation

	Discussion
	Limitations and Future Work
	Ethical Considerations

	Related Work
	Conclusions
	References
	Appendix A: Manipulation Details
	Appendix B: CDN Websites
	Appendix C: Server Specifications
	Appendix D: TLS Handshake

