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EXPERT INSIGHT

DNA origami nanostructures  
in biomedicine and the issue  
of stability
Adrian Keller

During the last decade, DNA origami nanostructures (DONs) have evolved into molecular 
precision tools widely applied in the biomedical field and especially in targeted drug delivery. 
Numerous successful in vivo studies have demonstrated potential therapeutic applications 
in the treatment of cancer, autoimmune diseases, and bacterial infections, among others. 
Tremendous progress has been made toward the clinical application of DONs and several 
important hurdles have been overcome. As one of the last major challenges, efficient means 
for controlling the in vivo stability of DONs need to be developed that do not interfere with 
their anticipated functions. Although we are not quite there yet, numerous recent stud-
ies have approached this issue from different angles, uncovered the intrinsic and extrinsic 
molecular mechanisms that govern DNA origami stability in physiological environments, and 
developed strategies to stabilize DONs in the absence of cations and against digestion by 
nucleases. This contribution provides an overview of the recent advances in the field and 
tries to paint a coherent picture of the various processes and interdependencies that affect 
the structural integrity of DONs in vivo. The most promising strategies for the stabilization 
of DONs under those conditions and their current limitations are discussed in order to guide 
future research efforts. 
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INTRODUCTION

In 2006, Rothemund presented a new 
method for the self-assembly of DNA nano-
structures with almost arbitrary shapes 
called DNA origami [1]. It relies on the con-
trolled folding of a long single-stranded 
scaffold by hybridization with a set of short 
oligonucleotides, so-called staple strands 
(Figure  1A). The total number of staples 
used for DNA origami assembly depends 
on the design and the employed scaffold 
and may range from few ten [2] to more 
than 200 staples [1]. Each staple consists 
of multiple domains that hybridize with 
different separated segments of the scaf-
fold, thereby forcing the scaffold to adopt a 

predefined shape. This is usually achieved 
by first heating the scaffold and staple mix-
ture to about 80 °C, followed by slow cool-
ing to room temperature in the presence of 
cations that screen electrostatic repulsion 
between neighboring helices. Rothemund 
already demonstrated the assembly of a 
variety of 2D DNA origami shapes about 
100 nm in diameter using the same scaffold 
(the M13mp18 phage genome) in combina-
tion with different sets of staple strands [1]. 
In 2009, four studies extended the DNA ori-
gami approach to the fabrication of bulky as 
well as hollow 3D shapes [3–6], including a 
box-shaped container with a controllable 
lid that could be opened by addition of two 
oligonucleotide keys (Figure  1B) [5]. This 
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not only demonstrated the possibility of 
generating stimuli-responsive DNA origami 
nanostructures (DONs) with the capability 
to undergo defined shape transformations 
upon interacting with a preselected molec-
ular trigger, but already hinted at possible 
applications as drug delivery vehicles for 
the controlled release of therapeutic cargos 
[5]. In the following 15 years, DONs have 
become widely applied molecular tools 

routinely employed in various research 
fields including synthetic [7] and chemical 
biology [8], super-resolution microscopy 
[9,10], biophysics [11,12], nanoelectronics 
[13,14], biosensing [15,16], optics [17,18], 
and especially biomedicine [19–22].

Compared to other nanomaterials, 
DONs have several key advantages that 
make them ideal candidates for biomedical 
applications:

FIGURE 1

(A) In DNA origami assembly, a long single-stranded DNA scaffold is folded into a predesigned 2D or 3D nanoscale shape upon hybridization 
with a set of oligonucleotides called staple strands. (B) A hollow 3D DNA origami box with two locks (yellow) that can be opened by two 
molecular keys (blue). DON: DNA origami nanostructure.
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	f DONs can be assembled at high yields 
that may reach values of 90% and 
more [1];

	f Complex, almost arbitrary shapes can be 
fabricated, ranging from quasi-1D fibers 
and 2D sheets to compact nanoparticles 
and wireframe-like cages [23];

	f Being fully composed of DNA, DONs are 
biodegradable and nontoxic and illicit 
only a moderate immune response [24];

	f The diverse chemistry of DNA enables 
the straightforward loading of DONs 
with drug molecules through various 
interactions, including intercalation [25], 
groove-binding [26], and electrostatic 
binding [27];

	f Additionally, each staple strand has a 
unique location within the DNA origami 
shape, which enables the controlled 
arrangement of small molecules, DNA 
and RNA strands, enzymes, and proteins 
into complex patterns with nanometer 
and sub-nanometer precision [8];

	f In a similar way, stimuli-responsive 
elements for the triggered release or 
display of therapeutic cargo can be 
incorporated in the form of switchable 
DNA motifs such as aptamers [28] and 
triple helices [29].

Because of these advantages, numerous 
potential applications of DONs in the bio-
medical field have been investigated, pri-
marily in drug delivery [30] but also in drug 
discovery [31] and biomaterials science 
[32]. Tremendous advances toward the 
clinical application of DNA origami-based 
drug carries have been made in the past 
10 years, including not only numerous suc-
cessful in  vivo treatments, but also their 
in  vivo tracking at single-cell resolution 
[33], their biotechnological large-scale 
production [34] and the introduction of 

custom scaffolds that lack any potentially 
active genes [35] and thus face fewer reg-
ulatory challenges [19,20]. However, while 
many challenges have been faced and 
overcome, some challenges remain. Chief 
among them still is the limited stability of 
DONs in physiological environments, even 
though considerable progress has been 
made in the last few years toward elucidat-
ing and understanding the complex molec-
ular mechanisms that govern DNA origami 
stability under relevant conditions. We are 
now beginning to understand how DNA 
origami stability can be controlled by ratio-
nal design choices. Additionally, several 
strategies for the application of stabilizing 
molecular coatings and the introduction 
of covalent links have been developed. 
Nevertheless, there still are some open 
questions and unsolved issues that need to 
be addressed before therapeutic DONs can 
enter the clinic. Therefore, this contribu-
tion summarizes the recent advances in the 
field and tries to paint a coherent picture 
of the various processes and interdepen-
dencies that affect the structural integrity 
of DONs in the physiological environment. 
Promising strategies for the stabilization 
of DONs under those conditions and their 
current limitations are discussed to guide 
future research efforts.

APPLICATIONS OF DNA  
ORIGAMI NANOSTRUCTURES  
IN BIOMEDICINE

Many of the early studies exploring bio-
medical applications of DONs focused on 
cancer chemotherapy. To some extent, this 
was due to the fact that several cancer che-
motherapeutic drugs in clinical use such as 
doxorubicin spontaneously bind to DNA, 
thereby enabling their rather straight-
forward loading into DONs [30,36,37]. 
Doxorubicin intercalates between the base 
pairs of the DNA duplexes and is released 
spontaneously upon transfer into doxo-
rubicin-free media and/or DNA origami 
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degradation. This approach therefore relies 
on the accumulation of the drug-loaded 
DONs in the tumor tissue, either due to the 
enhanced permeability and retention (EPR) 
effect [30] or the incorporation of target-
ing entities such as aptamers [38]. Readers 
are advised, however, that the interaction 
between doxorubicin and DNA is much 
more complex than some of these studies 
assumed, so that the employed loading pro-
tocols may have led to severe doxorubicin 
aggregation and thus unreliable results [25]. 

As of today, DNA origami nanocarriers 
have been employed successfully in  vivo 
in various cancer treatment strategies, 
including enzyme delivery [39], RNA 
interference [40], photothermal therapy 
[41], immunotherapy [42], and various 
combinations thereof [40,43,44]. In many 
of these studies, the DONs featured target-
ing entities on their surfaces that enabled 
their specific binding to cancer cells 
[39,40,42,44], as well as stimuli-respon-
sive elements that triggered the release or 
display of the cargo [39,40,42,44].

More recently, the direct therapeutic 
potential of DONs beyond drug delivery has 
been explored as well. DONs are efficient 
scavengers of reactive oxygen species (ROS) 
and especially singlet oxygen [45], which 
opens up potential applications in the treat-
ment of ROS-related diseases such as acute 
kidney injury [46–48], rheumatoid arthri-
tis [49], sepsis under diabetic conditions 
[50], and atherosclerosis [51]. Also in these 
cases, the DONs are often equipped with 
additional functional entities to improve 
targeting or add another mechanisms of 
action [47–51]. These general strategies 
have also been applied in delivery concepts 
for the treatment of ocular diseases [52,53] 
and bacterial infections [54,55]. 

DNA ORIGAMI STABILITY UNDER 
PHYSIOLOGICAL CONDITIONS

All approaches discussed above rely on 
controlling the structural integrity of the 

DONs as unwanted degradation or dena-
turation will result in the loss of targeting 
capabilities and/or the premature release 
of the loaded cargo. Maintaining structural 
integrity in physiological environments, 
however, turned out rather challenging 
because DONs are more sensitive toward 
certain environmental factors than linear 
double-stranded DNA. Whereas nucleases 
represent the greatest threat to the in vivo 
stability of double-stranded DNA, DNA 
origami stability in physiological media is 
strongly affected also by the ionic composi-
tion. For a more detailed discussion of these 
phenomena and their underlying molecular 
mechanisms, the reader is referred to some 
recent reviews [56,57].

During DNA origami assembly, a large 
number of base pairs (~7500) are com-
pacted into a small volume (~12000  nm³), 
resulting in a large charge density of about 

-1.25  nm⁻³. To facilitate efficient assem-
bly, the resulting electrostatic repulsion 
between neighboring helices needs to be 
compensated. This is typically achieved 
by adding relatively high concentrations 
of Mg²+ ions (~10–20 mM) to the assembly 
reaction mixture. These Mg²+ ions then form 
salt bridges between the backbone phos-
phates of neighboring helices and thereby 
stabilize the overall assembly. Transferring 
the DONs into physiological media that 
have much lower Mg²+ concentrations may 
therefore lead to their disintegration due 
to electrostatic interhelix repulsion. For 
some time, this was considered a major fac-
tor restricting the application of DONs in 
biomedicine [58]. However, it is generally 
accepted now that DONs can be transferred 
into media with Mg²+ concentrations in the 
low µM range without any negative effects 
on their structural integrity [59–61]. Under 
such low-Mg²+ conditions, DNA origami sta-
bility depends critically on the presence of 
residual Mg²+ salt bridges [59], the removal 
of which will result in DNA origami dena-
turation. This can be caused for instance by 
the presence of ethylenediaminetetraacetic 
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acid (EDTA), which efficiently chelates Mg²+ 
ions. HPO₄²- ions may elicit a similar effect 
by interfering with the phosphate-bound 
Mg²+ ions, thereby reducing their ability 
to compensate the electrostatic interhelix 
repulsion. In such cases, DNA origami sta-
bility can be maintained by monovalent 
Na+ ions at physiological concentrations of 
100–200  mM. However, design-specific fac-
tors play an important and sometimes even 
dominant role as well, as will be discussed 
in the next chapter.

In addition to the ionic environment, 
the fact that many biological fluids contain 
nucleases presents another threat to the 
in vivo stability of DONs [58]. Consequently, 
several studies have investigated DNA ori-
gami degradation by various nucleases 
[25,61–66]. The most relevant nuclease in 
the context of drug delivery is DNase  I, a 
non-specific nuclease abundant in serum 
and various tissues. While DNase  I rap-
idly digests linear double-stranded DNA, 
the situation is more complex for DONs. 
Here, their susceptibility toward DNase  I 
digestion depends on several intrinsic 
(i.e., design-specific) and extrinsic (i.e., envi-
ronmental) factors. The former encompasses 
the local and global mechanical properties of 
the DONs that will be discussed in the next 
chapter. The latter includes again the pres-
ence of Mg²+ ions, which are used as cofac-
tors by DNase  I to facilitate the catalytic 
cleavage of the DNA backbone. Low Mg²+ 
concentrations will thus result in dimin-
ished digestion efficiency. However, low 
Mg²+ concentrations may in turn destabilize 
DONs (see above), which can lead to a stron-
ger impact of the strand breaks generated by 
limited DNase I activity on the overall integ-
rity of the DON by promoting the dissocia-
tion of the generated fragments. 

An important fact to consider is that 
the majority of the mentioned studies 
investigated the effects of ionic composi-
tion and nucleases on non-modified DONs. 
Loading them with chemotherapeutic car-
gos via intercalation or other methods may 

lead to altered sensitivities toward ionic 
effects and nuclease attack. Intercalation 
of doxorubicin, for instance, was found 
to slow down DNA origami digestion by 
DNase  I dramatically [25]. This can be 
attributed to the unwinding of the DNA 
duplex upon intercalation, which results 
in less efficient binding of DNase I to the 
minor groove. DNA origami digestion could 
also be slowed down by blocking the minor 
groove with a minor groove binder [67]. 
While such effects may on the one hand 
be beneficial for stabilizing DONs in  vivo, 
they will on the other hand also delay the 
release of the cargo.

In certain applications, ROS may play 
an important role as well. As discussed in 
the previous chapter, DONs are employed 
as ROS scavengers to treat ROS-associated 
diseases. However, ROS may also be cre-
ated during the treatment of other con-
ditions. For instance, DONs have been 
investigated as potential nanocarriers for 
the targeted delivery of photosensitiz-
ers in photodynamic therapy [26,68–70]. 
Additionally, DONs can also be decorated 
with ROS-producing DNAzymes [54]. These 
ROS will interact with and thereby damage 
the DONs, eventually leading to complete 
disintegration after prolonged exposure 
times. This may have adverse effects on 
the therapeutic outcome. When the DONs 
are loaded with ROS-producing entities, 
generated ROS are scavenged before they 
can damage any cellular components. This 
will reduce their therapeutic efficiency and 
may even completely suppress any thera-
peutic effect as recently demonstrated for 
antimicrobial photodynamic inactivation 
[45]. In the treatment of ROS-associated 
diseases, the DONs are sometime utilized 
not only as ROS scavengers but also as 
delivery vehicles for therapeutic proteins 
[48,71]. The limited structural stability 
of the DONs under high-ROS conditions 
thus may negatively affect their effective-
ness as delivery vehicles. Also in such set-
tings, ROS-induced structural damage will 
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generally be more severe in the absence of 
stabilizing Mg²+ ions, as electrostatic inter-
helix repulsion promotes the dissociation of 
those staple strands whose hybridization to 
the scaffold is weakened by oxidative base 
damage [70].

STABILIZING DNA ORIGAMI 
NANOSTRUCTURES IN 
PHYSIOLOGICAL ENVIRONMENTS

The stability issues discussed in the previ-
ous chapter have led to a large research effort 
aiming at stabilizing DONs under relevant 
physiological conditions. These efforts can 
be divided into three conceptually differ-
ent approaches. The first approach tries to 
enhance the resistance of the DONs against 
adverse influences via rational design 
choices. Instead, the second approach tries 
to shield the DONs from adverse influences 
via the application of molecular coatings. 
The third approach tries to reinforce the 
DONs via the introduction of additional 
covalent links to make them more tolerant 
against adverse influences.

Design factors

It has been observed early on that the sta-
bility of DONs depends on their shape and 

internal structure, with some designs being 
more stable under physiological conditions 
than others [58]. DONs are largely composed 
of parallel double helices connected by back-
bone crossovers (Figure  2A). The double 
helices can be arranged using two different 
lattice types, the square lattice or the hon-
eycomb lattice (Figure  2B). These lattices 
differ not just in the geometric arrange-
ment of helices but also in the structure of 
the duplexes. While the honeycomb lattice 
maintains the 10.5  bp per helical turn of 
regular B  DNA, the square lattice requires 
10.67 bp per helical turn [62]. This is because 
in this lattice, the backbone crossovers have 
to be placed in the plane of the duplexes in 
order to create a flat sheet, which is hindered 
by the different dimensions of the major 
and minor grooves. The resulting artificial 
distortion of the base stack may lead to 
considerable strain. Therefore, the lattice 
type on which a certain DON is based may 
have an effect on its mechanical properties 
[72,73]. However, the mechanical properties 
of DONs are also influenced by other design 
factors and especially the density of staple 
crossovers. A higher crossover density in 
general leads to mechanically more rigid 
structures [61]. 

A considerable number of studies have 
been published in the last few years that 

FIGURE 2

(A) Routing of staple strands (purple) in the 2D DNA origami triangle designed by Rothemund on the 
square lattice [1] shown in Figure 1A. Scaffold is shown in grey. (B) Cross section of 16 parallel DNA 
duplexes arranged in the square (left) and the honeycomb lattice (right). DON: DNA origami nanostructure.

Internal structure of DONs.
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investigated the effects of different design 
factors on DNA origami stability under var-
ious destabilizing conditions, including at 
elevated temperatures [74], in the presence 
of chaotropic denaturants [75] and organic 
solvents [76], in electrolytes with different 
ionic compositions [59,61,66,74,77], and 
in the presence of ROS [70] and different 
nucleases [25,61,63–65]. From this bulk 
of studies, one general conclusion can be 
drawn. Mechanically flexible DONs are 
more stable than rigid ones under condi-
tions that destabilize the base stack via 
unstacking or dehybridization. This par-
ticularly includes low-salt and oxidizing 
(ROS) conditions and can be explained by 
strain-induced melting. In a rigid DON, the 
staples experience more mechanical strain 
as a result of electrostatic interhelix repul-
sion. This promotes the melting of the 
strained staples under destabilizing con-
ditions. In contrast, more flexible DONs 
can accommodate electrostatic interhelix 
repulsion by shape alterations, which low-
ers the strain experienced by their staples 
and makes them more tolerant toward 
destabilizing conditions.

When it comes to the effects of design 
factors on nuclease digestion, the situ-
ation is a bit more complex. Mechanical 
properties play an important role also in 
this context, with rigid DONs being more 
resistant toward digestion by DNase I [61]. 
This is because the binding of DNase  I 
to duplex DNA results in groove widen-
ing and especially duplex bending. Rigid 
DONs resist this bending, which leads to 
reduced DNase I binding and thus lowers 
the digestion rate. However, such a clear 
correlation is usually observed only for 
rather simple shapes with homogeneous 
mechanical properties such as helix bun-
dles [61]. Other shapes often feature a 
selection of structurally different design 
elements with different mechanical prop-
erties and thus different digestion rates. 
In those designs, it is often observed that 
more flexible elements are digested rapidly, 

while more rigid elements may survive 
for rather long times [63]. This may then 
lead to the structural collapse of the DNA 
origami shape, even though the major-
ity of duplexes are still intact. In addi-
tion, DNase  I has a diameter much larger 
than that of a DNA duplex. In the dense 
duplex arrangements found in many DONs, 
DNase  I binding will be reduced substan-
tially because of steric hindrance. In this 
case, the more densely packed square lat-
tice should result in lower digestion rates 
[63]. This, however, is not always observed 
because other design factors may influ-
ence the mechanical properties of the 
DONs to such an extent that their effect 
on DNase  I digestion is larger than that 
of the lattice type [25,63]. Because of its 
large size, DNase I cannot penetrate bulky 
3D  DONs, so that the helices buried in 
their interior are efficiently shielded. This 
in general leads to bulky 3D DONs having 
lower digestion rates than 2D shapes [25].

All this suggests that the design fac-
tor approach suffers from an intrinsic lim-
itation. DONs with high stability under 
low-salt conditions are more susceptible 
to nuclease digestion, while those with 
high nuclease resistance denature eas-
ily in the absence of stabilizing Mg²+ ions. 
Unfortunately, most biological fluids fea-
ture low Mg²+ concentrations and nucleases. 
In such environments, additional stabiliza-
tion strategies may be required. 

Molecular coatings

The in  vivo stability of DONs can be 
enhanced by the application of molecular 
coatings. This was first demonstrated by 
encapsulation of DNA origami cages in 
lipid membranes with the aid of lipid-DNA 
conjugates attached to the outer DNA ori-
gami surface [78]. Subsequently, the sta-
bilizing potential of several other coating 
strategies has been evaluated, including 
polymer [79–82] and peptide [83,84] coat-
ings as well as protein coatings based on 
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modified albumin [85,86] or virus capsid 
proteins [87,88]. In all these examples, 
coating was achieved via electrostatic 
interactions and resulted in enhanced 
nuclease resistance and/or enhanced sta-
bility under low-Mg²+ conditions. In some 
cases, the coatings also improved cellular 
uptake [79,85].

From a translational point of view, 
the most interesting coatings are 
oligolysine-PEG copolymer coatings [79] as 
these commercially available copolymers 
are fully synthetic and thus cheaper to pro-
duce under CMC and GMP regulatory compli-
ance than proteins, which often face issues 
of sterilization, purity, and batch-to-batch 
consistency [89]. Furthermore, they offer 
some fine-tuning of their biological inter-
actions. It has been demonstrated that the 
nuclease resistance of these coatings can 
be further enhanced by crosslinking of the 
lysines using the well-established amine-
amine crosslinker glutaraldehyde to reduce 
the mobility and dissociation of the electro-
statically adsorbed polymers [90]. In addi-
tion, such coatings are able to protect also 
DNA handles attached to the DNA origami 
surface [91] without interfering with their 
functionality [79] and can be used to con-
trol protein corona formation and cellular 
uptake [92,93].

While representing a powerful approach 
for the stabilization of DONs in physio-
logical environments, applying a molecu-
lar coating to a DNA origami nanocarrier 
comes at a price. Most importantly, most if 
not all the discussed coatings will prevent 
the DONs from undergoing any shape trans-
formations. This means that the triggered 
release of encapsulated cargo will not be 
possible. However, also passive release will 
be severely hindered due to the restricted 
transport across the coating, which is quite 
significant already for small molecules [82]. 
Even though some biomedical applications 
may be able to tolerate or even benefit from 
these tradeoffs, others may not.

Covalent links

A few alternative approaches to enhanc-
ing DNA origami stability have recently 
been developed, which introduce covalent 
links to reinforce the internal structure 
of the DONs. Early on, enzymatic liga-
tion was adopted to seal the staple nicks 
within the DON, so that the several rather 
short staples are joined to form longer oli-
gonucleotides with higher melting tem-
peratures [94]. Unfortunately, ligation 
resulted only in moderate increases in DNA 
origami stability, presumably due to lim-
ited accessibility of the nicks within the 
dense arrangement of duplexes resulting in 
incomplete ligation [95]. Recently, however, 
it was demonstrated that this problem can 
be solved by either the addition of cosol-
vents that enhance enzyme activity or by 
using enzyme-free chemical ligation [96]. 
Both approaches enabled the near-quan-
titative ligation of 2D and 3D  DONs with 
increased stability against low Mg²+ con-
centrations and DNase I digestion [96]. 

DNA origami stability in low-Mg²+ and 
nuclease-containing environments has 
been improved also by the UV-induced 
crosslinking of staple strands [97]. This 
approach utilizes the formation of cyclobu-
tane pyrimidine dimers between thymine 
overhangs of neighboring staples under 
UV irradiation. By employing custom scaf-
folds, UV crosslinking can be achieved 
even without the introduction of staple 
overhangs [35]. 

All these covalent linking approaches 
can be combined with both the design fac-
tor and the coating approach, thus offering 
an additional means of fine-tuning DNA 
origami stability. However, they also come 
with some potential drawbacks. Reinforcing 
their internal structure increases DNA 
origami rigidity, which may affect drug 
loading and release. Also, they may hinder 
shape transformations in DONs by lock-
ing them in a fixed conformation. Avoiding 
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these issues will require extensive design 
optimization and may impose restrictions 
on other design factors.

TRANSLATIONAL INSIGHT

Many important advances have been made 
in the last years toward the clinical appli-
cation of biomedical DONs. Important hur-
dles such as the initially high costs [34] or 
the reliance on genomic scaffolds [35] have 
already been overcome with the help of new 
biotechnological methods. Toxicity studies 
are showing very promising results [24,98] 
and the large bulk of successful in vivo stud-
ies is encouraging, highlighting numerous 
possible treatment targets ranging from 
cancer [30] to autoimmune diseases [49] 
to bacterial infections [54]. What remains 
as a last major challenge at the preclinical 
stage appears to be the reliable control of 
pharmacokinetics, biodistribution, and cel-
lular uptake, which in turn requires efficient 
means of controlling the in vivo stability of 
DONs that do not interfere with their antic-
ipated functions. Tremendous progress has 
been made in the past few years toward 
this goal by uncovering the fundamental 
mechanisms that govern DNA origami sta-
bility, elucidating the complex interplay 
between design and environmental factors, 
and developing a variety of stabilization 
methods. However, we now recognize the 
limitations of these different stabilization 
strategies. It appears rather unlikely that 
either of these approaches alone will be able 
to meet all requirements of the large num-
ber of different applications. Applications 
relying on shape transformations for the 
triggered release of the cargo may for 

instance utilize highly specific designs tai-
lored toward high stability, whereas passive 
release strategies may rather employ pro-
tective coatings that not only increase DNA 
origami stability but also modify their drug 
release profile. 

To aid in the selection of appropriate 
stabilization strategies for a given applica-
tion, further insights are required regard-
ing the effects of the different stabilization 
strategies on drug loading, drug release, 
and stimuli-responsive shape transforma-
tions. Design factors are known to affect 
drug loading and release [26,36], whereas 
drug loading can alter the nuclease resis-
tance of DONs, which in turn modifies 
drug release profiles [25]. However, little is 
known regarding the impact of protective 
coatings on drug release, except that they 
may restrict transport in and out of the 
DON [82]. Additionally, many DNA-binding 
drugs are positively charged, so that their 
loading into DONs may affect the applica-
tion of molecular coatings via electrostatic 
interactions. Furthermore, while it was 
demonstrated that oligolysine-PEG copo-
lymer coatings do not impair the func-
tionality of single-stranded DNA handles 
on the DNA origami surface [79], it is not 
clear at all whether this is also the case for 
more complex entities such as aptamers, 
triple helices, or DNAzymes. Especially 
aptamers are known to be highly sensi-
tive toward changes in their immediate 
vicinity [99]. Future studies thus need to 
systematically investigate the interdepen-
dencies between the different stabilization 
strategies and the biomedical performance 
of DONs to enable their successful transla-
tion to the clinic.
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