Abstract—Fully-automated resource dimensioning is one of the key requirements for agile, DevOps-enabled network function virtualization (NFV) scenarios in which new service versions are continuously delivered and deployed to production. To enable and support these dimensioning processes, a priori knowledge about the performance behavior of the deployed service function chains (SFC) is collected using profiling solutions that automatically generate so-called SFC performance profiles. A challenge in those profiling processes is the huge configuration space of typical SFCs that need to be explored to collect enough information to accurately describe the performance behavior of the profiled SFC.

In this paper, we introduce the concept of time-constrained profiling (T-CP) which profiles only a small subset of all possible SFC configurations and uses machine learning techniques to predict performance values for the remaining configurations to generate a full SFC performance profile within a given time limit. Using our novel, open-source T-CP prototype, we analyze the accuracy of the generated profiles using different selection algorithms to find good configuration subsets as well as different prediction approaches. We base parts of this analysis on real-world SFC performance measurements, which we make publicly available as open dataset.

I. INTRODUCTION

When deploying a service function chain (SFC) in a network function virtualization (NFV) scenario, resources like virtual CPU cores or memory have to be assigned to the involved virtualized network functions (VNFs) to meet performance goals like maximum delay or minimum throughput. These resources have usually been assigned manually based on expert knowledge, which is not feasible in agile environments in which softwarized networks are managed using DevOps methods [1]. In these environments, new (versions of) SFCs are automatically tested, continuously integrated, and deployed (CI/CD) [2] directly to production – a process that requires a priori knowledge about the relationship between assigned resources and achieved performance metrics to automate resource dimensioning and ensure that given performance goals are met [3]. This knowledge can be automatically gathered using VNF and SFC profiling (sometimes also called benchmarking) [4]–[7]. Such profiling processes collect information about the runtime behavior of the SFC under test (SFC-UT) by deploying it under different resource configurations and testing its resulting performance. The results of these profiling processes, the so-called SFC performance profiles (SFC-PP), are then used by management and orchestration (MANO) systems to optimize their resource dimensioning decisions. It is essential that the obtained SFC-PPs provide enough information to accurately describe the performance behavior of the deployed SFC to meet performance goals and to avoid unexpected performance degradations caused by, for example, automatically deployed service updates.

A challenge for such profiling solutions is, on the one hand, that the configuration space sizes of even simple SFCs, which have to be explored during the profiling process, tend to become very large if the number of configuration parameters or number of involved VNFs increases, as we quantify in Sec. II-A. On the other hand, the profiling processes as such are expected to be performed as part of the NFV DevOps cycle and thus have to be completed in a reasonably short time, i.e., a couple of hours or even minutes [1]. Because of this, novel profiling solutions are needed that do not require to exhaustively test the complete configuration space of an SFC. These profiling solutions aim to already produce usable SFC-PPs at the beginning of the profiling process and potentially improve their quality, in terms of profile accuracy, over time. In this context, profile accuracy means the error between the expected performance values described in the SFC-PP and the performance values achieved in reality.

In this paper, we introduce the concept of time-constrained profiling (T-CP) which produces SFC profiling results within a given time limit. Besides an initial problem analysis and a formal problem formulation given in Sec. II, the key contributions of this paper are twofold: First, we present the design, workflow, and used algorithms for a T-CP-enabled profiling system and introduce our open source T-CP prototype, called nfv-t-cp [8] in Sec. IV. Second, we use this prototype, which comes together with an open dataset containing the results of more than 2000 real-world SFC performance measurements, to evaluate our T-CP concept and the involved algorithms using synthetic and real-world SFC performance models in Sec. V.

II. THE SFC PROFILING CHALLENGE

An SFC consists of multiple, interconnected VNFs. Each of these VNFs receives, processes, and possibly modifies the packets before it forwards them to the next VNF. Each of these VNFs has a set of resources assigned to it, for example, number of CPU cores, memory, or virtualized network interfaces. The performance of each VNF is determined by the assigned resources and the total SFC performance is a result of the combination of the performance values achieved by the involved
VNFD model specified in ETSI IFA11 [9] and TOSCA’s NFV v1.0 VNF model [10]. Both models are pretty similar and we found eight different CPU and memory configuration parameters: cpuArchitecture, numaVirtualCpu, virtualCpuClock, virtualCpuOverSubscriptionPolicy, virtualCpuPinning, virtualMemSize, virtualMemoryOverSubscriptionPolicy, and numaEnabled. Considering typical values that could be assigned to these parameters, the models end up with more than 10^5 possible configurations for a single VNF. In addition to this, we also analyzed the information model of OpenSource MANO (OSM) rel. 3 [11] and found a configuration space with more than 10^4 configurations per VNF.

Having these numbers available, we computed the size of the configuration space of all analyzed PoCs as shown in Fig. 2. These sizes are compared against a baseline SFC that contains a single VNF. It shows that the configuration spaces of the used SFCs are huge, i.e., $\geq 10^9$, and that the combinatorial explosion of configuration spaces plays a role in real-world scenarios, motivating our work on a T-CP system.

B. Problem formulation

Given the huge configuration space of an SFC and the fact that the re-deployment or re-configuration of an SFC takes a considerable amount of time [12], executing profiling measurements on the complete configuration space is infeasible. It gets even worse if the profiling process should be performed in a given time frame, i.e., with a given time constraint l. As a result, only a subset of the complete configuration space can be tested and profiling measurements on untested configurations need to be predicted using the available results.

More formally, we define the set of all possible configurations F of a VNF as the cartesian product of a series of sets $F = P_1 \times P_2 \times \ldots \times P_m$ where each set represents a single, discrete configuration parameter (also called a feature) P_i and its possible values, e.g., number of CPU cores: $P_{\text{cores}} = \{1, 2, \ldots, 16\}$. Using discrete configuration parameters works fine since all relevant real-world configurations are also based on discrete values. In a complex SFC, multiple VNFs are combined and each of them can be configured to configure a single VNF. We focused on CPU and memory configuration parameters, since they are commonly available in different models. Thus, all results of this analysis should be understood as lower bound because they do not consider additional parameters like software configurations or versions.

We investigated two VNF description models, namely ETSI’s VNFD model specified in ETSI IFA11 [9] and TOSCA’s NFV v1.0 VNF model [10]. Both models are pretty similar and we found eight different CPU and memory configuration parameters: cpuArchitecture, numaVirtualCpu, virtualCpuClock, virtualCpuOverSubscriptionPolicy, virtualCpuPinning, virtualMemSize, virtualMemoryOverSubscriptionPolicy, and numaEnabled. Considering typical values that could be assigned to these parameters, the models end up with more than 10^5 possible configurations for a single VNF. In addition to this, we also analyzed the information model of OpenSource MANO (OSM) rel. 3 [11] and found a configuration space with more than 10^4 configurations per VNF.
independently of other VNFs with a configuration \(c \in F \). For simplicity of the model, we assume that every involved VNF supports the same configuration space and thus all available configuration features of \(F \). Based on this, the overall configuration space \(C \) of a complex SFC with \(n \) VNFs can be defined as \(C = F_1 \times F_2 \times ... \times F_n \). Its cardinality as function of available configuration features and number of VNFs is given by \(|C| = \left(\prod_{i=1}^{n} |P_i| \right)^n \).

For each SFC configuration that should be tested, the service is deployed and configured (taking setup time \(t_{\text{up}} \)), its performance is measured (in time \(t_{\text{measure}} \)), and it is terminated to free the resources (taking time \(t_{\text{down}} \)). After this, the next SFC configuration is tested. We call this a profiling round [5]. The total time \(t \) needed to profile a single SFC configuration is hence \(t = t_{\text{up}} + t_{\text{measure}} + t_{\text{down}} \). This is usually dominated by \(t_{\text{up}} \) and \(t_{\text{down}} \) [12]. In this paper, we consider \(t \) to be constant for each configuration to be tested.

As a result, the number of configurations \(k \) that can be tested in a given time limit \(l \) is limited by \(k \leq \lfloor \frac{l}{t} \rfloor \). More specifically, we define the subset of configurations to be tested within the given time limit as \(\overline{C} \subseteq C \) and \(|\overline{C}| = k \). This subset is defined by a selection function \(S_k : C \rightarrow \{ 0, 1 \} \). For each configuration \(c \in \overline{C} \), we obtain profiling results, denoted by a function \(P : \overline{C} \rightarrow \mathbb{R} \) (profiling results could be tuples of real numbers or other values as well; this matters not for the remaining discussion). We lift these measured profiling results, obtained on \(\overline{C} \), to predicted results for the entire configuration space by defining a profiling predictor \(P : C \rightarrow \mathbb{R} \) that uses the measured results for \(\overline{C} \) as training data. We denote these predicted profiling results as \(\hat{R} \).

This model poses two questions. First, how to best select the subset of \(k \) configurations to be tested? And second, using the performance measurements made on these \(k \) configurations, how to best pick the interpolation function \(P \) so that the resulting SFC-PPs accurately predict the performance of the SFC compared to real measurements, i.e., minimizing the prediction error? We will give answers to these two questions in the reminder of this paper.

To measure the quality of the predicted results \(\hat{R} \) compared the measured results \(R \), we use the normalized root-mean-squared deviation (NRMSD) as our main evaluation metric. The NRMSD is based on the mean-squared error (MSE), calculated over the entire configuration space with \(n \) predictions, and is normalized using the range \((R_{\text{max}} - R_{\text{min}}) \) of the measured data (Eq. 1).

\[
\text{NRMSD} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{R}_i - R_i)^2} \frac{R_{\text{max}} - R_{\text{min}}}{R_{\text{max}} - R_{\text{min}}} \tag{1}
\]

We picked a normalized metric to ease comparison between different SFC profiles generating performance values with different scales. Using a squared error metric has the advantage that more weight is given to larger prediction errors which is not the case in absolute error metrics. Those errors are more problematic for the usefulness of the resulting SFC-PPs, because they more likely lead to wrong resource dimensioning decisions of MANO systems and thus to reduced service quality or malfunction.

III. Related Work

A couple of solutions for performance profiling of virtualized applications has already been proposed by the cloud-computing community. Most of them focus on solutions to profile single-VM applications [13], [14] but some solutions also support complex, composed applications [15]. In addition to this, the NFV community has also started to search for profiling solutions that focus specifically on NFV use cases [7], [16]. These solutions either focus on profiling single VNFs or on evaluating NFV infrastructure deployments [4], [17], [18]. Others do consider profiling of complex SFCs [19] to characterize the performance behavior of end-to-end services, which cannot be derived from isolated VNF profiles [5], [6].

Some of the SFC profiling solutions support even automated testing of different VNF sequences in an SFC [6]. All of these solutions, however, face the challenge of huge SFC configuration spaces that have to be explored, leading to impractical runtimes of the profiling process. None of the existing approaches can automatically select a subset of configurations to be profiled to systematically reduce the time needed to characterize an SFC. Even if it is possible to simply stop these existing NFV profiling solutions after the time limit is reached, irrespective of their current system state, it would cause very poor or even incomplete profiling results. This is because those solutions might only have explored a very small or unimportant part of the configuration space at the point in time when they are stopped. Because of this, smarter solutions are needed that start to profile the configuration space at large, in the first steps, and then successively improve the result quality until the time limit is reached. This is where our T-CP approach can be used as a complementary extension to the existing approaches as we do not tie our T-CP design to a specific profiling solution as shown in Sec. IV-A.

One solution that does smart selections in a cloud application context is called PANIC [20]. In their paper, the authors compare three selection approaches: Uniform grid and random sampling as well as a greedy adaptive sampling algorithm, each combined with different prediction (or interpolation) approaches, like linear regression. Their results indicate that testing a small subset of the overall configuration space already yields sufficient results to generate reasonably good performance profiles. Their evaluation focuses on a two-dimensional configuration space using cloud benchmarks based on big data frameworks like Hadoop. PANIC was explicitly designed to profile this kind of cloud applications, but it is still possible to use the PANIC algorithm without any changes in NFV profiling scenarios. To analyze its performance in an NFV context, we used PANIC as part of our evaluation in Sec. V and compared it to the algorithms presented in this paper.

An extension to PANIC is a decision tree-based selection approach, which was recently proposed in [21]. This approach uses decision trees to iteratively partition the configuration
space based on the accuracy of linear regression models applied to each of these partitions. The final partitioning and the selected configuration points obtained during the partitioning phase are then used to train a new decision tree-based model to finally represent the cloud application’s performance behavior. According to [21], this approach tends to show a reduced accuracy when only small numbers of configurations are tested. Further, the approach tends to show better results when executed on configuration spaces with few, for example, two dimensions, which is rarely the case if SFCs, often consisting of more than two VNFs, should be profiled. As a result, their solution is not directly applicable to our scenarios. However, the use of decision trees seems to be a promising approach and we plan to explore it in future work.

Even though the presented solutions try to reduce the size of configuration spaces that have to be explored during profiling, none of them has a notion of time-constrained profiling nor supports the integration with NFV profiling platforms. This underlines the novelty of our T-CP concepts for the NFV domain, as presented in this paper.

IV. Designing a T-CP System

Based on our previous work in which we introduced a generic automation approach for VNF and SFC profiling [5], we designed an SFC profiling system that explicitly supports time-constrained profiling. The system gets all possible configuration parameters and a fixed time limit as inputs, runs automated performance measurements on the SFC-UT until the time limit is reached, and derives an SFC performance profile based on the available measurements.

A. Building blocks and workflow

Using the problem formulation (Sec. II-B) we identified and analyzed the required building blocks and workflows of a T-CP system and developed a prototype as shown in Fig. 3. Its components are placed around one or multiple profiling platforms that execute the SFC-UT and measure its performance under different resource configurations. Before that, the configurations to be tested are selected by the selection component \(S_k \) (step 1) and serve, together with the service description, as inputs to the profiling platform(s) (step 2). Note that we do not tie our T-CP system to a specific SFC profiling platforms and designed it to use arbitrary, existing solutions. To combine other profiling platforms with T-CP, they need to have an interface where the configurations to be tested during the profiling runs can be specified as well as an interface to output the measured performance results – requirements that are fulfilled by [4]–[6]. The measured results are forwarded to the prediction component \(P \), which uses them as training data and generates predicted performance values for all possible configurations of the SFC-UT (step 3). Finally, the predicted results \(\hat{R} \) can be forwarded to a MANO system to optimize its resource assignment decisions and for automated lifecycle actions, like scaling, healing, or reconfiguration (step 4). Alternatively, the obtained profiling results \(\hat{R} \) can be used to analyze the behavior of the SFC under test, e.g., by an SFC developer, to debug performance issues.

The two main building blocks that distinguish this system from existing profiling solutions [4]–[6] are the selection component \(S_k \) and the prediction component \(P \). The selection component gets all possible configuration parameters of the SFC-UT (\(C \)) and a maximum number of \(k \) configurations to be selected as inputs before selecting the first configuration to be measured by the profiling platform. Once this is done, the selection algorithm selects the next configuration to be measured. This round-based design allows to not only use static selection algorithms, like random sampling, but also dynamic selection algorithms that use feedback of already performed measurements as additional input, potentially improving the selection quality. We present an example of a feedback-based selection algorithm in the next section. If multiple parallel profiling platforms are available in a T-CP system, a centralized \(S_k \) component selects the configurations to be profiled which are then equally distributed among the available profiling platforms (see Sec.IV-B). The resulting measurements are collected and processed by a centralized prediction component as described in Sec. IV-C.

B. Selection component

We implemented three different selection algorithms for our T-CP system. First, a simple random selection algorithm, called URS, that selects configurations uniformly at random and does not rely on the feedback of previous measurements.

Second, we re-implemented the greedy adaptive sampling selection algorithm (PGAS) proposed by Giannakopoulos et al. [20] as a first example for a feedback-based algorithm. PGAS initially picks a fixed number of samples at the borders of the configuration space (border points) before picking further samples based on the maximum distances between
the measured results of the previous samples. PGAS was initially designed to profile cloud applications instead of NFV service chains but can be applied to the NFV domain without substantial changes.

Third, we developed our own feedback-based algorithm, called weighted random VNF selection (WRVS), which comes in two flavors, WRVS1 and WRVS2. WRVS’s general idea is to favor the configurations that belong to the VNFs of the SFC that seem to have a higher impact on the overall SFC performance. To detect those VNFs, the algorithm is split into two phases. First, a bootstrapping phase is used to select \(n \) (WRVS1) or \(2n \) (WRVS2) initial configuration points for an SFC with \(n \) VNFs. Each of these configuration points minimizes or maximizes the configuration parameters of one of the \(n \) VNFs and sets the configuration parameters of all other VNFs to their median values. More specifically, WRVS1 picks configurations that minimize parameters and WRVS2 picks configurations that minimize and maximize the parameters. For example, in an SFC with three VNFs in which only the number of vCPU cores \((1...16)\) can be configured, the first two configuration points, using WRVS2, would be \((\text{vnf}1=1, \text{vnf}2=8, \text{vnf}3=8)\) and \((\text{vnf}1=16, \text{vnf}2=8, \text{vnf}3=8)\). Thus, \(\text{vnf}1 \) is once tested with minimum number of vCPUs and once with the maximum number of vCPUs, with the goal to gain knowledge about the impact of the vCPU configuration parameter of \(\text{vnf}1 \). The definition on how to minimize and maximize parameters, is given by the developer of the VNFs or by the profiling experiment developer as annotation to the configuration space used as input to our system. Using this initial selection scheme, the algorithm collects information about the impact of the individual VNFs to the overall SFC performance. This impact is defined as the change to the overall SFC performance \(\Delta \), when the configuration of VNF \(i \) is altered. These values are used as weights in the next phase of the algorithm.

The second phase of the algorithm starts after \(n \) or \(2n \) configurations have been tested and randomly picks configurations from the overall configuration space until the limit of \(k \) configurations is reached. This random selection process uses the weights from the first phase to favor the selection of configuration points that alter the configurations of those VNFs that have higher weights assigned. That is, configuration points from VNFs with a higher \(\Delta \), are more likely to be selected for further profiling rounds. With this, the feedback from the profiling process guides our selection algorithm to improve the overall profiling result by focusing on that parts of the configuration space that seem to have higher impact to the overall SFC performance.

C. Prediction component

This component can either be based on simple regression techniques or on more complex machine learning solutions. In our prototype, we utilize the the scikit-learn machine learning library [22] to implement the prediction component. Besides a simple polynomial regression predictor, we also use support vector regression predictors with different kernels, decision tree regression, lasso regression, elastic net regression, ridge regression, and stochastic gradient descent regressions predictors, resulting in a total of 11 prediction algorithms available in our prototype.

V. Evaluation

We use our T-CP system prototype, called nfv-t-cp [8], to evaluate our design and to study the impact of different selection algorithms, prediction algorithms, service topologies, and number of samples on the overall result quality, i.e., prediction error. To do so, we execute a set of profiling experiments in which all possible configurations of the SFC-UT are tested. This exhaustive profiling step gives us baseline results serving as ground truth for later comparison. Then we use T-CP to execute profiling experiments that only test a fixed number of configurations \(k \) and compare their results to the initial experiments using the NRMSE metric. In all our experiments, we use the maximum throughput as VNF and SFC performance metric captured during the profiling measurements.

Our evaluation uses two different approaches to provide our T-CP system with profiling data. The first set of experiments does not rely on real-world measurements and simulates the SFC-UT with a model that randomly assigns synthetic performance functions, taken from [21], to the involved VNFs as described in Sec. V-A. The second set of experiments, in contrast, does rely on real-world measurements and is based on a forwarding SFC with three VNFs that was also used in our previous work [5] and is described in Sec. V-B.

A. Randomized synthetic performance models

In the first set of experiments, we simulate the performance behavior of an SFC-UT with a model that is based on Giannakopoulos et al. [21] and uses synthetic functions to map VNF configurations to performance (i.e. throughput) values. The benefit of this model-based approach is that our system can be evaluated with a high number of possible VNF and SFC configurations without the need to execute each of them in a real-world system and measuring their performance to get the required results to serve as ground truth.

For each evaluated T-CP system configuration, we generate 10 synthetic performance model instances and randomly assign one of the VNF performance functions shown in Tbl. I to each of the VNFs. The involved coefficients \(a_1 \) to \(a_m \) are picked uniformly at random with \(a_i \in [0.1, 2.0] \). With this model, black-box SFCs with unknown VNF behavior are simulated.

We use eight different SFC topologies, composed of two to five VNFs, combined to four linear chains (l2 to l5) and four diamond chains (d2 to d5) as shown in Fig. 4. The performance of each VNF is calculated using a given configuration and assigned performance function. This results in an SFC graph with throughput assigned to each node. Having this, we calculate the overall throughput of the SFC by solving the maximum flow problem between \(s \) and \(t \) assuming unlimited link capacities since we are only interested in modeling the

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>LIN</td>
<td>$f_1(c) = a_1 c_1 + \ldots + a_m c_m$</td>
</tr>
<tr>
<td></td>
<td>POLY</td>
<td>$f_2(c) = a_1 c_1^2 + \ldots + a_m c_m^2$</td>
</tr>
<tr>
<td>Avg.</td>
<td>EXP</td>
<td>$f_3(c) = e^{f_1(c)}$</td>
</tr>
<tr>
<td></td>
<td>EXPABS</td>
<td>$f_4(c) =</td>
</tr>
<tr>
<td></td>
<td>EXPSQ</td>
<td>$f_5(c) = e^{-f_1(c)^2}$</td>
</tr>
<tr>
<td>High</td>
<td>GAUSS</td>
<td>$f_6(c) = e^{-2 f_2(c)}$</td>
</tr>
<tr>
<td></td>
<td>WAVE</td>
<td>$f_7(c) = \cos(f_1(c)) \cdot f_3(c)$</td>
</tr>
<tr>
<td></td>
<td>HAT</td>
<td>$f_8(c) = f_2(c) \cdot f_6(c)$</td>
</tr>
</tbody>
</table>

Diamond topologies ($d_2 \ldots d_5$):
- d_2
- d_3
- d_4
- d_5

Linear topologies ($l_2 \ldots l_5$):
- l_2
- l_3
- l_4
- l_5

![Fig. 4: Simulated SFC topologies: Four linear chains and four diamond chains.](image)

VNF performance. Each VNF in this model has a single configuration parameter with 10 discrete configuration values, resulting in up to 10^5 SFC configurations for the largest topologies (l_5 and d_5).

We first analyze the behavior of different prediction algorithms used in our T-CP system using the URS and WRVS2 selectors. Fig. 5 shows a comparison of four prediction algorithms, namely support vector regression (SVRPRK), decision tree regression (DTRP), lasso regression (LRP), and ridge regression (RRP). Results for the other implemented prediction algorithms, which produce similar results, are not shown because of space limits. The figures show the NRMSD for different numbers of samples k selected from the overall configuration space of the profiled SFCs (up to 10^5 possible configurations). Each of these experiments is repeated 100 times and the error bars indicate 95% confidence intervals. The results show that a small number of samples, e.g., $k = 16$, allows to perform reasonably good predictions for the behavior of the overall configuration space of an SFC. They also show that the RRP and DTRP predictors perform best for the used SFCs.

Next, we analyze the behavior of different selection algorithms. This should answer the question whether our WRVS algorithm outperforms existing algorithms for cloud application profiling, namely PGAS [20]. Fig. 6 shows comparisons of four selection algorithms for each of the four prediction algorithms used before. It can be seen that the WRVS algorithms outperform the PGAS algorithm irrespective of the used prediction approach. However, the results also show that the WRVS selection is not better and often outperformed by the simple randomized selection approach (URS). In the SVRPRK case, WRVS shows slightly better results than URS for $8 \leq k \leq 20$, but is again outperformed by URS when k increases. This result is surprising since we expected that favoring some VNFs in the profiled SFC would lead to better results for small k.

We also compare the behavior of different selector/predictor combinations for different SFC topologies as shown in Fig. 7. The results show that the URS selector performs well, irrespective of the used topology, whereas PGAS shows worse results for smaller topologies, e.g., d_2. The WRVS selectors show similar behavior for different topologies but tend to be better with smaller topologies, like d_2 and d_3.

B. Real-world performance measurements

The second set of experiments utilizes our previous work about automated SFC profiling [5] and is based on a real-world profiling process using an SFC-UT with three VNFs.
This SFC has a smaller configuration space but allows us to evaluate our system in a real-world scenario including realistic performance numbers that are based on measurements instead of synthetic functions. The used SFCs are linear chains that contain three forwarding VNFs (Nginx\(^2\) configured as TCP load balancer, the TCP relay Socat\(^3\) and Squid Proxy\(^4\) with disabled caching functionality to forward every packet) in different orders, resulting in three possible SFC topologies. Each VNF has a single configuration parameter (CPU time) and the maximum achieved throughput during a large HTTP download is measured. The measurements to test each possible configuration of this simple chain took about 39 hours, with 60 seconds measurement time per configuration. Our raw measurements are available online and can be re-used by other researchers [8].

We again compare the behavior of our selection approaches in combination with four different prediction algorithms as shown in Fig. 8. The results show that the WRVS algorithm works better on the real-world SFC performance data with three VNFs compared to the synthetic SFCs analyzed in the last section. Especially for small \(k \), WRVS often outperforms URS and PGAS. However, especially for \(k = 4 \) the models are often overfitted when WRVS is used. This could be a result of the static selection of the initial points during the bootstrapping phase of WRVS.

Finally, we compare the three different topologies of the used SFC. In each topology, the order of the three VNFs in the SFC is changed which leads to a changed overall SFC performance as reported in [5]. Our results show that the performance behavior of the sq-nx-sc topology can be predicted much better than the other topologies, especially when the WRVS2 selection algorithm is used. These results show that the predictions become better when the sq VNF, which is known to be the bottleneck of this SFC (see [5]), is moved closer to the entry point of the SFC. An insight that might be exploitable to develop better selection algorithms that try to focus on those parts of the configuration space that influence the behavior of a bottleneck VNF. One of the future directions to extend our work.

VI. CONCLUSION

The sizes of real-world SFC configuration spaces makes the application of existing NFV profiling solutions infeasible for agile DevOps environments. Even though existing NFV profiling solutions could be simply stopped after a given amount of time, the produced performance profiles would only reflect a small subset of the configuration space and would lose important information about the SFC-UT’s performance behavior. We presented a solution for this by introducing our T-CP concepts for NFV.

To study these concepts, we presented our open-source T-CP system \(nfv-t-cp \) [8] and used it to analyze different selection and prediction algorithms. Our results show that a T-CP system can generate reasonably accurate SFC-PPs by profiling only small subsets of the overall configuration space. We showed that the subset of configuration points that are profiled has a big impact to the quality, in terms of prediction error, of the resulting SFC-PPs. Our presented selection algorithm performs
well with most of the real-world cases but barely keeps up with random selection approaches in the synthetic scenarios. This motivates future work on selection algorithms, for example, based on decision trees as shown in [21]. Together with this paper, we published an open dataset of our profiling experiments containing performance measurements of real-world forwarding SFCs with three VNFs [8].

ACKNOWLEDGMENTS

This paper has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. H2020-ICT-2016-2 761493 (SGTANGO), and the German Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

REFERENCES

