© IFIP, (2018). This is the author's version of the work. It is posted here by permission of IFIP for your
personal use. Not for redistribution. The definitive version was published in IEEE/IFIP 14th International
Conference on Network and Service Management (CNSM).

Understand Your Chains and Keep Your Deadlines:
Introducing Time-constrained Profiling for NFV

Manuel Peuster
Paderborn University
manuel.peuster @uni-paderborn.de

Abstract—Fully-automated resource dimensioning is one of the
key requirements for agile, DevOps-enabled network function
virtualization (NFV) scenarios in which new service versions are
continuously delivered and deployed to production. To enable
and support these dimensioning processes, a priori knowledge
about the performance behavior of the deployed service function
chains (SFC) is collected using profiling solutions that automati-
cally generate so-called SFC performance profiles. A challenge in
those profiling processes is the huge configuration space of typical
SFCs that need to be explored to collect enough information
to accurately describe the performance behavior of the profiled
SFC.

In this paper, we introduce the concept of fime-constrained
profiling (T-CP) which profiles only a small subset of all possible
SFC configurations and uses machine learning techniques to
predict performance values for the remaining configurations to
generate a full SFC performance profile within a given time
limit. Using our novel, open-source T-CP prototype, we analyze
the accuracy of the generated profiles using different selection
algorithms to find good configuration subsets as well as different
prediction approaches. We base parts of this analysis on real-
world SFC performance measurements, which we make publicly
available as open dataset.

I. INTRODUCTION

When deploying a service function chain (SFC) in a network
function virtualization (NFV) scenario, resources like virtual
CPU cores or memory have to be assigned to the involved vir-
tualized network functions (VNFs) to meet performance goals
like maximum delay or minimum throughput. These resources
have usually been assigned.manually based on expert knowl-
edge, which is not feasible in agile environments in which
softwarized networks are managed using DevOps methods [1].
In these environments, new (versions of) SFCs are automati-
cally tested, continuously integrated, and deployed (CI/CD) [2]
directly to production — a process that requires a priori knowl-
edge about the relationship between assigned resources and
achieved performance metrics to automate resource dimen-
sioning and ensure that given performance goals are met [3].
This knowledge can be automatically gathered using VNF and
SEC profiling (sometimes also called benchmarking) [4]-[7].
Such profiling processes collect information about the runtime
behavior of the SFC under test (SFC-UT) by deploying it
under different resource configurations and testing its resulting
performance. The results of these profiling processes, the so-
called SFC performance profiles (SFC-PP), are then used by
management and orchestration (MANO) systems to optimize
their resource dimensioning decisions. It is essential that the

Holger Karl
Paderborn University
holger.karl @uni-paderborn.de

obtained SFC-PPs provide enough information to accurately
describe the performance behavior of the deployed SFC to
meet performance goals and to avoid unexpected performance
degradations caused by, for example, automatically deployed
service updates.

A challenge for such profiling solutions is, on the one
hand, that the configuration space sizes of even simple SFCs,
which have to be explored during the profiling process, tend to
become very large if the number of configuration parameters
or number of involved VNFs increases, as we quantify in
Sec. II-A. On the other hand, the profiling processes as such
are expected to be performed as part of the NFV DevOps
cycle and thus have to be completed in a reasonably short
time, i.e., a couple of hours or even minutes [1]. Because of
this, novel profiling solutions are needed that do not require to
exhaustively test the complete configuration space of an SFC.
These profiling solutions aim to already produce usable SFC-
PPs at the beginning of the profiling process and potentially
improve their quality, in terms of profile accuracy, over time.
In this context, profile accuracy means the error between the
expected performance values described in the SFC-PP and the
performance values achieved in reality.

In this paper, we introduce the concept of time-constrained
profiling (T-CP) which produces SFC profiling results within a
given time limit. Besides an initial problem analysis and a for-
mal problem formulation given in Sec. I, the key contributions
of this paper are twofold: First, we present the design, work-
flow, and used algorithms for a T-CP-enabled profiling system
and introduce our open source T-CP prototype, called nfv-
t-cp [8] in Sec. IV. Second, we use this prototype, which
comes together with an open dataset containing the results of
more than 2000 real-world SFC performance measurements, to
evaluate our T-CP concept and the involved algorithms using
synthetic and real-world SFC performance models in Sec. V.

II. THE SFC PROFILING CHALLENGE

An SFC consists of multiple, interconnected VNFs. Each
of these VNFs receives, processes, and possibly modifies the
packets before it forwards them to the next VNF. Each of these
VNFs has a set of resources assigned to it, for example, num-
ber of CPU cores, memory, or virtualized network interfaces.
The performance of each VNF is determined by the assigned
resources and the total SFC performance is a result of the com-
bination of the performance values achieved by the involved

Manuel Peuster
© IFIP, (2018). This is the author's version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive version was published in IEEE/IFIP 14th International Conference on Network and Service Management (CNSM).�

c;, €C

CPU, mem, NUMA

4,1024, 1

4952

in: (f)— (s ot

SFC-UT

2,128,0
2,128,0

9 Q0w >

5,256, 0

Fig. 1: Example scenario of an SFC with 5 VNFs each having
three configuration parameters with multiple possible values
resulting in 2565 configurations to be tested to obtain a full
performance profile of the SFC-UT.

VNFs. Unfortunately, this combined SFC performance cannot
easily be predicted based on the performance results of single
VNFs, as shown in [5], [6], and thus a profiling system needs
to test SFCs end-to-end. In this paper, we assume that all VNFs
of an SFC are deployed on a single NFV infrastructure (NFVI)
data center and do not consider the case in which SFCs
are split over multiple data centers. Moreover, we assume
that all SFCs are black boxes so that a profiling system can
only measure their overall performance for a given resource
configuration but does not have direct access to the internals
of single VNFs. This assumption ensures that our profiling
system is compatible with proprietary VNF implementations.

As a result, a profiling system needs, in principle, to
take all potential resource configurations of an SFC into
account, ending up with a huge configuration ‘space that
has to be tested. Fig. 1 shows, for example, a service with
5 VNFs, in which each VNF can have 1-16 CPU cores,
{128, 256, 512, ..., 16384} MB memory and non-uniform
memory access (NUMA) enabled or disabled; this leads to
16 - 8 - 2 = 256 possible configurations per VNF and 256°
possible configurations for the entire SFC. It can be seen
that the configuration space of such an SFC is huge and it
becomes infeasible to test each of these configurations during
the profiling process—keep in mind that each test entails to
re-deploy or re-configure the SFC-UT. It becomes even more
complicated when the results of the profiling process should
be available after a given, pre-defined time limit—a scenario
which we call time-constrained profiling.

A. Reality check: Configuration space sizes in the wild

To get more insights and quantify the configuration space
sizes of common, real-world SFCs, we analyzed five SFCs
from ETSI’s proof-of-concept (PoC) library!. To do so,
we checked the list of available PoCs and selected those
which are well documented and contain information about
the number of used VNFs. We picked the vEPC (PoC#5),
vIMS (PoC#11), SGi/Gi-LAN (PoC#15), VOLTE (PoC#27), and
L3VPNmon (PoC#36) PoC, which gives us five example SFCs
containing between 4 and 14 VNFs.

We then investigated existing VNF description approaches
and information models, to get insights into the number of
configuration parameters as well as configuration values used

Thttp://www.etsi.org/technologies- clusters/technologies/nfv/nfv-poc

@ 1068 VNF model

3 W ETSI/TOSCA
@ 10 OSMrel. 3
3

o 103

o

i

=

baseline VEPC VEPC (HA) vIMS SG|/G| LAN VOLTE L3VPNmon
(single VNF) (PoC#5) (PoC#5) (PoC#15) (PoC#27) (PoC#36)

(PoC#11)
ETSI PoC
Fig. 2: Analysis of configuration space sizes of real-world
SFCs and VNF models.

to configure a single VNF. We focused on CPU and memory
configuration parameters, since they are commonly available
in different models. Thus, all results of this analysis should
be understood as lower bound because they do not consider
additional parameters like software configurations or versions.
We investigated two VNF description models, namely ETSI’s
VNFD model specified in ETSI IFA11 [9] and TOSCA’s
NFV v1.0 VNF model [10]. Both models are pretty similar
and we found eight different CPU and memory configu-
ration parameters: cpuArchitecture, numVirtualCpu, virtual-
CpuClock, virtualCpuOversubscriptionPolicy, virtualCpuPin-
ning, virtualMemSize, virtualMemoryOversubscriptionPolicy,
and numaEnabled. Considering typical values that could be
assigned to these parameters, the models end up with more
than 10° possible configurations for a single VNF. In addition
to this, we also analyzed the information model of OpenSource
MANO (OSM) rel. 3 [11] and found a configuration space
with more than 10* configurations per VNF.

Having these numbers available, we computed the size of
the configuration space of all analyzed PoCs as shown in
Fig. 2. These sizes are compared against a baseline SFC
that contains a single VNF. It shows that the configuration
spaces of the used SFCs are huge, i.e., > 10%, and that the
combinatorial explosion of configuration spaces plays a role in
real-world scenarios, motivating our work on a T-CP system.

B. Problem formulation

Given the huge configuration space of an SFC and the fact
that the re-deployment or re-configuration of an SFC takes
a considerable amount of time [12], executing profiling mea-
surements on the complete configuration space is infeasible. It
gets even worse if the profiling process should be performed
in a given time frame, i.e., with a given time constraint /. As a
result, only a subset of the complete configuration space can be
tested and profiling measurements for untested configurations
need to be predicted using the available results.

More formally, we define the set of all possible configu-
rations F' of a VNF as the cartesian product of a series of
sets FF = P; X P, x ... x P,, where each set represents
a single, discrete configuration parameter (also called a fea-
ture) P; and its possible values, e.g., number of CPU cores:
Peores = {1,2, ..., 16}. Using discrete configuration parameters
works fine since all relevant real-world configurations are
also based on discrete values. In a complex SFC, multiple
VNFs are combined and each of them can be configured

independently of other VNFs with a configuration ¢ € F.
For simplicity of the model, we assume that every involved
VNF supports the same configuration space and thus all
available configuration features of F'. Based on this, the overall
configuration space C' of a complex SFC with n VNFs can be
defined as C' = F; X Fy x ... x F,. Its cardinality as function of
available configuration 71:eatures and number of VNFs is given
by [C] = (T 1R)

For each SFC configuration that should be tested, the
service is deployed and configured (taking setup time i),
its performance is measured (in time fyeasure), and it is
terminated to free the resources (taking time ¢4own). After this,
the next SFC configuration is tested. We call this a profiling
round [5]. The total time ¢ needed to profile a single SFC
configuration is hence ¢ = typ + tmeasure + tdown Where t is
usually dominated by ¢, and tqown [12]. In this paper, we
consider ¢ to be constant for each configuration to be tested.

As a result, the number of configurations %k that can be
tested in a given time limit ! is limited by k < [L]|. More
specifically, we define the subset of configurations to be tested
within the given time limit as C' C C and |C| = k. This subset
is defined by a selection function Sy, : C' — {0,1}. For each
configuration ¢ € C, we obtain profiling results, denoted by
a function P : C' — R (profiling results could be tuples of
real numbers or other values as well; this matters not for the
remaining discussion). We lift these measured profiling results,
obtained on C , to predicted results for the entire configuration
space by defining a profiling predictor P : C' — R that uses
the measured results for C' as training data. We denote these
predicted profiling results as R.

This model poses two questions. First, how to best select the
subset of k& configurations to be tested? And second, using the
performance measurements made on these k configurations,
how to best pick the interpolation function P so ‘that the
resulting SFC-PPs accurately predict the performance of the
SFC compared to real measurements, i.e;, minimizing the
prediction error? We will give answers to these two questions
in the reminder of this paper.

To measure the quality of the predicted results R compared
the measured results R, we use the normalized root-mean-
squared deviation (NRMSD) as our main evaluation metric.
The NRMSD is based on the mean-squared error (MSE),
calculated over the entire configuration space with n predic-
tions, and is normalized using the range (Rmax — Rmin) Of the
measured data (Eq. 1).

VAT (B - Ri)?
Rmax - Rmin

We picked a normalized metric to ease comparison between
different SFC profiles generating performance values with
different scales. Using a squared error metric has the advantage
that more weight is given to larger prediction errors which
is not the case in absolute error metrics. Those errors are
more problematic for the usefulness of the resulting SFC-PPs,
because they more likely lead to wrong resource dimensioning

NRMSD =

(1)

decisions of MANO systems and thus to reduced service
quality or malfunction.

III. RELATED WORK

A couple of solutions for performance profiling of virtu-
alized applications has already been proposed by the cloud-
computing community. Most of them focus on solutions to
profile single-VM applications [13], [14] but some solutions
also support complex, composed applications [15]. In addition
to this, the NFV community has also started to search for pro-
filing solutions that focus specifically on NFV use cases [7],
[16]. These solutions either focus on profiling single VNFs or
on evaluating NFV infrastructure deployments [4], [17], [18].
Others do consider profiling of complex SFCs [19] to charac-
terize the performance behavior of end-to-end services, which
cannot be derived from isolated VNF profiles [5], [6]. Some of
the SFC profiling solutions support even automated testing of
different VNF sequences in an SFC [6]. All of these solutions,
however, face the challenge of huge SFC configuration spaces
that have to be explored, leading to impractical runtimes of
the profiling process. None of the existing approaches can
automatically select a subset of configurations to be profiled
to systematically reduce the time needed to characterize an
SFC. Even if it is possible to simply stop these existing NFV
profiling solutions after the time limit is reached, irrespective
of their current system state, it would cause very poor or even
incomplete profiling results. This is because those solutions
might only have explored a very small or unimportant part
of the configuration space at the point in time when they are
stopped. Because of this, smarter solutions are needed that start
to profile the configuration space at large, in the first steps, and
then successively improve the result quality until the time limit
is reached. This is where our T-CP approach can be used as
a complementary extension to the existing approaches as we
do not tie our T-CP design to a specific profiling solution as
shown in Sec. IV-A.

One solution that does smart selections in a cloud applica-
tion context is called PANIC [20]. In their paper, the authors
compare three selection approaches: Uniform grid and random
sampling as well as a greedy adaptive sampling algorithm,
each combined with different prediction (or interpolation)
approaches, like linear regression. Their results indicate that
testing a small subset of the overall configuration space already
yields sufficient results to generate reasonably good perfor-
mance profiles. Their evaluation focuses on a two-dimensional
configuration space using cloud benchmarks based on big data
frameworks like Hadoop. PANIC was explicitly designed to
profile this kind of cloud applications, but it is still possible
to use the PANIC algorithm without any changes in NFV
profiling scenarios. To analyze its performance in an NFV
context, we used PANIC as part of our evaluation in Sec. V
and compared it to the algorithms presented in this paper.

An extension to PANIC is a decision tree-based selection
approach, which was recently proposed in [21]. This approach
uses decision trees to iteratively partition the configuration

space based on the accuracy of linear regression models ap-
plied to each of these partitions. The final partitioning and the
selected configuration points obtained during the partitioning
phase are then used to train a new decision tree-based model to
finally represent the cloud application’s performance behavior.
According to [21], this approach tends to show a reduced
accuracy when only small numbers of configurations are
tested. Further, the approach tends to show better results when
executed on configuration spaces with few, for example, two
dimensions, which is rarely the case if SFCs, often consisting
of more than two VNFs, should be profiled. As a result, their
solution is not directly applicable to our scenarios. However,
the use of decision tress seems to be a promising approach
and we plan to explore it in future work.

Even though the presented solutions try to reduce the size of
configuration spaces that have to be explored during profiling,
none of them has a notion of time-constrained profiling nor
supports the integration with NFV profiling platforms. This
underlines the novelty of our T-CP concepts for the NFV
domain, as presented in this paper.

IV. DESIGNING A T-CP SYSTEM

Based on our previous work in which we introduced a
generic automation approach for VNF and SFC profiling [5],
we designed an SFC profiling system that explicitly supports
time-constrained profiling. The system gets all possible con-
figuration parameters and a fixed time limit as inputs, runs
automated performance measurements on the SFC-UT until
the time limit is reached, and derives an SFC performance
profile based on the available measurements.

A. Building blocks and workflow

Using the problem formulation (Sec. II-B) we identified and
analyzed the required building blocks and workflows of a T-
CP system and developed a prototype as shown in. Fig. 3.
Its components are placed around one or multiple profiling
platforms that execute the SFC-UT and measure its perfor-
mance under different resource configurations. Before that,
the configurations to be tested are selected by the selection
component Sy (step 1) and serve, together with the service
description, as inputs to the profiling platform(s) (step 2).
Note that we do not tie our T-CP system to a specific SFC
profiling platforms and designed it to use arbitrary, existing
solutions. To combine other profiling platforms with T-CP,
they need to have an interface where the configurations to
be tested during the profiling runs can be specified as well
as an interface to output the measured performance results—
requirements that are fulfilled by [4]-[6]. The measured results
are forwarded to the prediction component P, which uses them
as training data and generates predicted performance values for
all possible configurations of the SFC-UT (step 3). Finally, the
predicted results R can be forwarded to a MANO system to
optimize its resource assignment decisions and for automated
lifecycle actions, like scaling, healing, or reconfiguration (step
4). Alternatively, the obtained profiling results R can be used

N N
NSD AN
I VNFD

_______________________ Network Service

[— I -

M g @ TN

o N i, ®—| SFC-UT |—® :@ §
kR P2 g i

3 C : Profiling Platform (P) 7§_ LR

"""" = J’,Lfr’éin

feedback
train' P

T-CP System SO
predicty
“) z’ 3
Resource 3 1 i
> Management fé % {
MANO LR

Fig. 3: Main building blocks and workflow of our T-CP
system, build around existing profiling platforms, feeding the
resource management component of a MANO system.

to analyze the behavior of the SFC under test, e.g., by an SFC
developer, to debug performance issues.

The two main building blocks that distinguish this system
from existing profiling solutions [4]-[6] are the selection
component S, and the prediction component P. The selection
component gets all possible configuration parameters of the
SFC-UT (C) and a maximum number of k configurations to
be selected as inputs before selecting the first configuration
to be measured by the profiling platform. Once this is done,
the selection algorithm selects the next configuration to be
measured. This round-based design allows to not only use
static selection algorithms, like random sampling, but also
dynamic selection algorithms that use feedback of already
performed measurements as additional input, potentially im-
proving the selection quality. We present an example of a
feedback-based selection algorithm in the next section. If
multiple parallel profiling platforms are available in a T-CP
system, a centralized Sy component selects the configurations
to be profiled which are then equally distributed among the
available profiling platforms (see Sec.IV-B). The resulting
measurements are collected and processed by a centralized
prediction component as described in Sec. IV-C.

B. Selection component

We implemented three different selection algorithms for
our T-CP system. First, a simple random selection algorithm,
called URS, that selects configurations uniformly at random
and does not rely on the feedback of previous measurements.

Second, we re-implemented the greedy adaptive sampling
selection algorithm (PGAS) proposed by Giannakopoulos et
al. [20] as a first example for a feedback-based algorithm.
PGAS initially picks a fixed number of samples at the borders
of the configuration space (border points) before picking
further samples based on the maximum distances between

the measured results of the previous samples. PGAS was
initially designed to profile cloud applications instead of NFV
service chains but can be applied to the NFV domain without
substantial changes.

Third, we developed our own feedback-based algorithm,
called weighted random VNF selection (WRVS), which comes
in two flavors, WRVS1 and WRVS2. WRVS’s general idea
is to favor the configurations that belong to the VNFs of
the SFC that seem to have a higher impact on the overall
SFC performance. To detect those VNFs, the algorithm is
split into two phases. First, a bootstrapping phase is used
to select n (WRVSI) or 2n (WRVS2) initial configuration
points for an SFC with n VNFs. Each of these configuration
points minimizes or maximizes the configuration parameters
of one of the n VNFs and sets the configuration parameters
of all other VNFs to their median values. More specifi-
cally, WRVSI picks configurations that minimize parameters
and WRVS2 picks configurations that minimize and max-
imize the parameters. For example, in an SFC with three
VNFs in which only the number of vCPU cores (1...16)
can be configured, the first two configuration points, us-
ing WRVS2, would be (vnfl=1, vnf2=8, vnf3=8)
and (vnfl=16, vnf2=8, wvnf3=8). Thus, vafl is once
tested with minimum number of vCPUs and once with the
maximum number of vCPUs, with the goal to gain knowledge
about the impact of the vCPU configuration parameter of vnfI.
The definition on how to minimize and maximize parameters,
is given by the developer of the VNFs or by the profiling
experiment developer as annotation to the configuration space
used as input to our system. Using this initial selection scheme,
the algorithm collects information about the impact of the
individual VNFs to the overall SFC performance. This impact
is defined as the change to the overall SFC performance A;
when the configuration of VNF 7 is altered. These values are
used as weights in the next phase of the algorithm.

The second phase of the algorithm starts after n or 2n
configurations have been tested and randomly picks config-
urations from the overall configuration space until the limit
of k configurations is reached. This random selection process
uses the weights from the first phase to favor the selection of
configuration points that alter the configurations of those VNFs
that have higher weights assigned. That is, configuration points
from VNFs with a higher A; are more likely to be selected
for further profiling rounds. With this, the feedback from the
profiling process guides our selection algorithm to improve
the overall profiling result by focusing on that parts of the
configuration space that seem to have higher impact to the
overall SFC performance.

C. Prediction component

This component can either be based on simple regression
techniques or on more complex machine learning solutions. In
our prototype, we utilize the the scikit-learn machine learning
library [22] to implement the prediction component. Besides
a simple polynomial regression predictor, we also use support
vector regression predictors with different kernels, decision

tree regression, lasso regression, elastic net regression, ridge
regression, and stochastic gradient descent regressions predic-
tors, resulting in a total of 11 prediction algorithms available
in our prototype.

V. EVALUATION

We use our T-CP system prototype, called nfv-t-cp [8],
to evaluate our design and to study the impact of different
selection algorithms, prediction algorithms, service topologies,
and number of samples on the overall result quality, i.e.,
prediction error. To do so, we execute a set of profiling
experiments in which all possible configurations of the SFC-
UT are tested. This exhaustive profiling step gives us baseline
results serving as ground truth for later comparison. Then we
use T-CP to execute profiling experiments that only test a
fixed number of configurations k and compare their results
to the initial experiments using the NRMSD metric. In all
our experiments, we use the maximum throughput as VNF
and SFC performance metric captured during the profiling
measurements.

Our evaluation uses two different approaches to provide our
T-CP system with profiling data. The first set of experiments
does not rely on real-world measurements and simulates
the SFC-UT with a model that randomly assigns synthetic
performance functions, taken from [21], to the involved VNFs
as described in Sec. V-A. The second set of experiments, in
contrast, does rely on real-world measurements and is based
on a forwarding SFC with three VNFs that was also used in
our previous work [5] and is described in Sec. V-B.

A. Randomized synthetic performance models

In the first set of experiments, we simulate the performance
behavior of an SFC-UT with a model that is based on
Giannakopoulos et al. [21] and uses synthetic functions to map
VNF configurations to performance (i.e. throughput) values.
The benefit of this model-based approach is that our system
can be evaluated with a high number of possible VNF and
SFC configurations without the need to execute each of them
in a real-world system and measuring their performance to get
the required results to serve as ground truth.

For each evaluated T-CP system configuration, we generate
10 synthetic performance model instances and randomly as-
sign one of the VNF performance functions shown in Tbl. I
to each of the VNFs. The involved coefficients a; to a,,
are picked uniformly at random with a; € [0.1,2.0). With
this model, black-box SFCs with unknown VNF behavior are
simulated.

We use eight different SFC topologies, composed of two to
five VNFs, combined to four linear chains (12 to 15) and four
diamond chains (d2 to d5) as shown in Fig. 4. The performance
of each VNF is calculated using a given configuration and
assigned performance function. This results in an SFC graph
with throughput assigned to each node. Having this, we
calculate the overall throughput of the SFC by solving the
maximum flow problem between s and ¢ assuming unlimited
link capacities since we are only interested in modeling the

TABLE I: Synthetic VNF performance functions (from [21])

Complexity Name Function
Low LIN fi(c) = arer + .. + amem
POLY fale) = a1} + ... + amc},
Avg. EXP fa(c) = ef1(e)
EXPABS fa(c) = elf1 (0l
EXPSQ fs(c) = e~ F1(0)?
High GAUSS fo(c) = e=12(0)
WAVE f1(c) = cos (f1(c)) - fs(c)
HAT fs(c) = fa(e) - fe(c)

Linear topologies (/2 ... [5):
20,0, 0N 0,0:0:0,0:0:0

Diames (d2d o

Fig. 4: Simulated SFC topologies: Four linear chains and four
diamond chains.

VNF performance. Each VNF in this model has a single
configuration parameter with 10 discrete configuration values,
resulting in up to 10° SFC configurations for the largest
topologies (15 and d5).

We first analyze the behavior of different prediction algo-
rithms used in our T-CP system using the URS and WRVS2
selectors. Fig. 5 shows a comparison of four prediction algo-
rithms, namely support vector regression (SVRPRK), decision
tree regression (DTRP), lasso regression (LRP), and ridge
regression (RRP). Results for the other implemented prediction
algorithms, which produce similar results, are not shown
because of space limits. The figures show the NRMSD for
different numbers of samples k selected from the overall
configuration space of the profiled SFCs (up to 10° possible
configurations). Each of these experiments is repeated 100
times and the error bars indicate 95 % confidence intervals.
The results show that already a small number of samples, e.g.,
k = 16, allows to perform reasonably good predictions for the
behavior of the overall configuration space of an SFC. They
also show that the RRP and DTRP predictors perform best for
the used SFCs.

Next, we analyze the behavior of different selection algo-
rithms. This should answer the question whether our WRVS
algorithm outperforms existing algorithms for cloud applica-
tion profiling, namely PGAS [20]. Fig. 6 shows comparisons
of four selection algorithms for each of the four prediction
algorithms used before. It can be seen that the WRVS al-
gorithms outperform the PGAS algorithm irrespective of the
used prediction approach. However, the results also show that
the WRVS selection is not better and often outperformed
by the simple randomized selection approach (URS). In the
SVRPRK case, WRVS shows slightly better results than URS

Predictor Study (URS) Predictor Study (WRVS2)

O SVRPRK A LRP O SVRPRK A LRP
o DTRP v RRP o DTRP v RRP
a 0.4 a 0.4
(%) %)
= =
g3 4
g 3
N R i S S —, S
© 0.2 ., = ©
g =3 g
g N g
0.1
0.0

T T T T T T T
4 8 12 16 20 24 28 32 36
number of samples (k)

T T T T T T T
4 8 12 16 20 24 28 32 36
number of samples (k)

Fig. 5: Comparison of prediction algorithms for different
numbers of measured samples using the URS and WRVS2
selectors.

Selector Study (DTRP) Selector Study (LRP)

0 5
o URS A WRVS2 o URS A WRVS2
o PGAS10 v WRVS1 o PGAS10 v WRVS1
0.4 0.4
a [a}
(%] (%]
b= = #
'Dc: % 031 LI =
S E - B g
8 g i e i 35
© ©
£ £
£ £
2 2
0.1
00 ———T——T—T—T—T—T T 00 —T——T—T—T—T—T—T T
4 8 12 16 20 24 28 32 36 4 8 12 16 20 24 28 32 36
number of samples (k) number of samples (k)
0s Selector Study (RRP) Selector Study (SVRPRK)
o URS A WRVS2 o URS A WRVS2
o PGAS10 v WRVS1 o PGAS10 v WRVS1
o044 o 044
n 3 n
= \ b=
T 03 .\ 4
2 sy g
N 3 N
02N, Frow--BeEog g ®
£ B B - 13
2 2
0.1
0.0 0.0

— T T T T T
4 8 12 16 20 24 28 32 36
number of samples (k)

T T T T T T T
4 8 12 16 20 24 28 32 36
number of samples (k)

Fig. 6: Selector algorithm comparison with four different
prediction algorithms.

for 8 < k < 20, but is again outperformed by URS when
k increases. This result is surprising since we expected that
favoring some VNFs in the profiled SFC would lead to better
results for small %.

We also compare the behavior of different selector/predictor
combinations for different SFC topologies as shown in Fig. 7.
The results show that the URS selector performs well, irre-
spective of the used topology, whereas PGAS shows worse
results for smaller topologies, e.g., d2. The WRVS selectors
show similar behavior for different topologies but tend to be
better with smaller topologies, like d2 and d3.

B. Real-world performance measurements

The second set of experiments utilizes our previous work
about automated SFC profiling [5] and is based on a real-
world profiling process using an SFC-UT with three VNFs.

Topology Study (URS/RRP) Topology Study (PGAS10/RRP)

o
3]

0.5

o d2 A d4 o d2 A d4
o d3 v d5 o d3 v d5
a 0.4 1 a 0.4 1
%] 1]
= =
x Z034g
el el n\
O Q N
N N B
3 o2 NE B #op-et-9-8
1 € BB - B g --m -
2 2
0.1

0.0

T T T T T T T
4 8 12 16 20 24 28 32 36
number of samples (k)

T T T T T T T
4 8 12 16 20 24 28 32 36
number of samples (k)

0s Topology Study (WRVS1/RRP) 05 Topology Study (WRVS2/RRP)

o d2 A d4 v o d2 A d4
o d3 v d5 = o d3 v d5
o 04 a 0413
a a v
s ® = \
SER P 034
g ﬂ\\\ g TR oo X 8 o \iz
N \ N
= BB =
© 0.2 “\‘Eﬂ © 0.2 N R e B oo
1S b g € B ik
E Eo-aggw| O
0.1
0.0

T T T T T T
4 8 12 16 20 24 28 32 36
number of samples (k)

L e e e e e
4 8 12 16 20 24 28 32 36
number of samples (k)

Fig. 7: Selector/predictor performance breakdown for different
diamond SFC topologies with two to five VNFs.

This SFC has a smaller configuration space but allows us to
evaluate our system in a real-world scenario including realistic
performance numbers that are based on measurements instead
of synthetic functions. The used SFCs are linear chains that
contain three forwarding VNFs (Nginx’> configured as TCP
load balancer, the TCP relay Socat® and Squid Proxy* with
disabled caching functionality to forward every packet) in
different orders, resulting in three possible SFC topologies.
Each VNF has a single configuration parameter (CPU time)
and the maximum achieved throughput during a large HTTP
download is measured. The measurements to test each possible
configuration of this simple chain took about 39 hours, with
60 seconds measurement time per configuration. Our raw
measurements are available online and can be re-used by other
researchers [8].

We again compare the behavior of our selection approaches
in combination with four different prediction algorithms as
shown in Fig. 8. The results show that the WRVS algorithm
works better on the real-world SFC performance data with
three VNFs compared to the synthetic SFCs analyzed in the
last section. Especially for small k, WRVS often outperforms
URS and PGAS. However, especially for £ = 4 the models are
often overfitted when WRYVS is used. This could be a result of
the static selection of the initial points during the bootstrapping
phase of WRVS.

Finally, we compare the three different topologies of the
used SFC. In each topology, the order of the three VNFs

Zhttp:/nginx.org
3http://www.dest-unreach.org/socat/
“http://www.squid-cache.org

Selector Study (DTRP) Selector Study (LRP)
i T

o
8]

o URS A WRVS2 F
O PGAS10 v WRVS1 i
o 04 a 047 1
(%) %)
s A s
o 0.3 o
o e
(9] (0]
N N
© 0.2 ©
£ £
2 2
0.1 1 011 o uRs A WRVS2
O PGAS10 v WRVS1
0.0 —T—T—T—T—T—T— 0.0 —T—T—T—T—T—T—
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
number of samples (k) number of samples (k)
05 Selector Study (RRP) 05 Selector Study (SVRPRK)
0 047 a
wn w
s s
o 0.3 o
o e
(9] ()
N N
© 0.2 A T 0.2
£ £
o o
c _ c |
011 o uRs A WRVS2 011 o uRs A WRVS2
O PGAS10 v WRVS1 0 PGAS10 v WRVS1
0.0 —T—T—T—T—T—T— 0.0 —T—T—T—T—T—T—
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

number of samples (k) number of samples (k)

Fig. 8: Selector performance comparison using real-world SFC
performance measurements.

in the SFC is changed which leads to a changed overall
SFC performance as reported in [5]. Our results show that
the performance behavior of the sg-nx-sc topology can be
predicted much better than the other topologies, especially
when the WRVS2 selection algorithm is used. These results
show that the predictions become better when the sq VNF,
which is known to be the bottleneck of this SFC (see [5]), is
moved closer to the entry point of the SFC. An insight that
might be exploitable to develop better selection algorithms
that try to focus on those parts of the configuration space that
influence the behavior of a bottleneck VNF. One of the future
directions to extend our work.

VI. CONCLUSION

The sizes of real-world SFC configuration spaces makes
the application of existing NFV profiling solutions infeasible
for agile DevOps environments. Even though existing NFV
profiling solutions could be simply stopped after a given
amount of time, the produced performance profiles would only
reflect a small subset of the configuration space and would
loose important information about the SFC-UT’s performance
behavior. We presented a solution for this by introducing our
T-CP concepts for NFV.

To study these concepts, we presented our open-source T-CP
system nfv-t-cp [8] and used it to analyze different selection
and prediction algorithms. Our results show that a T-CP system
can generate reasonably accurate SFC-PPs by profiling only
small subsets of the overall configuration space. We showed
that the subset of configuration points that are profiled has a
big impact to the quality, in terms of prediction error, of the
resulting SFC-PPs. Our presented selection algorithm performs

normalized RMSD

normalized RMSD

Topology Study (URS/RRP) Topology Study (PGAS10/RRP)

0.5 0.5
0.4 1 K,\ 8 0.4 1
@ g
0.3 0.3
o
[
N
0.2 Ny CERC © 0.2
\&\& 88782 g
T gy 8
014 o nx-sc-sq A SQ-NX-SC 014 o nx-sc-sq A SQ-NX-sc
O sc-sg-nx O sc-sg-nx
00 ———T—T—T—T— T T T 00 —T—T——T—T—T—T—T— T
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
number of samples (k) number of samples (k)
5 Topology Study (WRVS1/RRP) 5 Topology Study (WRVS2/RRP)
0.4 a
]
=
034 e«
o
[
N
0.2 4 g
Bt s A
i c & A A
0.1 O nx-sc-sq A SQ-NX-SC 0.1 O nx-sc-sq A SQ-NX-SC
O sc-sg-nx O sc-sg-nx
0.0 T T T T T T T T 0.0 T T T T T T T T T
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

number of samples (k) number of samples (k)

Fig. 9: Selector/predictor behavior based on real-world SFC
performance numbers using a linear SFC with three VNFs
and alternating VNF sequences.

well with most of the real-world cases but barely keeps up with
random selection approaches in the synthetic scenarios. This
motivates future work on selection algorithms, for example,
based on decision trees as shown in [21]. Together with
this paper, we published an open dataset of our profiling
experiments containing performance measurements of real-
world forwarding SFCs with three VNFs [8].

ACKNOWLEDGMENTS

This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No. H2020-ICT-2016-2 761493 (SGTANGO), and the German
Research Foundation (DFG) within the Collaborative Research Centre
“On-The-Fly Computing” (SEFB 901).

REFERENCES

[1]- H. Karl, S. Drixler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Mar-

[3]

[4]

trat, M. S. Siddiqui, S. van Rossem, W. Tavernier et al., “DevOps for
network function virtualisation: an architectural approach,” Transactions
on Emerging Telecommunications Technologies, vol. 27, no. 9, pp. 1206—
1215, 2016.

M. Zhao, F. L. Gall, P. Cousin, R. Vilalta, R. Muifioz, S. Castro,
M. Peuster, S. Schneider, M. Siapera, E. Kapassa, D. Kyriazis, P. Has-
selmeyer, G. Xilouris, C. Tranoris, S. Denazis, and J. Martrat, “Verifi-
cation and validation framework for 5g network services and apps,” in
2017 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), 2017, pp. 321-326.

M. Peuster and H. Karl, “Understand Your Chains: Towards Performance
Profile-based Network Service Management,” in 5th European Workshop
on Software Defined Networks (EWSDN’16). 1EEE, 2016.

R. V. Rosa, C. Bertoldo, and C. E. Rothenberg, “Take your vnf to the
gym: A testing framework for automated nfv performance benchmark-
ing,” IEEE Communications Magazine, vol. 55, no. 9, pp. 110-117,
2017.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

M. Peuster and H. Karl, “Profile Your Chains, Not Functions: Automated
Network Service Profiling in DevOps Environments,” in 2017 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2017.

J. Nam, J. Seo, and S. Shin, “Probius: Automated approach for vnf
and service chain analysis in software-defined nfv,” in Proceedings
of the Symposium on SDN Research, ser. SOSR ’18. New
York, NY, USA: ACM, 2018, pp. 14:1-14:13. [Online]. Available:
http://doi.acm.org/10.1145/3185467.3185495

R. Rosa and C. Rothenberg, “VNF Benchmarking Methodology,” IETF
Internet-Draft https://tools.ietf.org/id/draft-rosa-bmwg- vnfbench-01.
html, UNICMAP, Internet-Draft, 2018. [Online]. Available:
https://tools.ietf.org/id/draft-rosa-bmwg-vnfbench-01.html

M. Peuster, “nfv-t-cp: NFV Time-Constrained Profiling Framework,”
online at: https://github.com/CN-UPB/nfv-t-cp, Paderborn University,
2018.

ETSI, “Network Functions Virtualisation (NFV); Management and
Orchestration; VNF Packaging Specification,” Website, 2016, on-
line at http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/011/02.01.
01_60/gs_NFV-IFA011v020101p.pdf.

Oasis TOSCA, “TOSCA Simple Profile for Network Functions Vir-
tualization (NFV) Version 1.0, Website, 2016, online at http://docs.
oasis-open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.html.
ETSI OSM, “Open Source MANO: Open Source NFV Management
and Orchestration (MANO) software stack aligned with ETSI NFV,”
Website, 2016, online at https://osm.etsi.org.

T. L. Nguyen and A. Lebre, “Virtual machine boot time model,” in 2017
25th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), 2017, pp. 430—437.

T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and
modeling resource usage of virtualized applications,” in Proceedings
of the 9th ACM/IFIP/USENIX International Conference on Middleware.
Springer-Verlag New York, Inc., 2008, pp. 366-387.

J. Taheri, A. Y. Zomaya, and A. Kassler, “vmbbthrpred: A black-
box throughput predictor for virtual machines in cloud environments,”
in European Conference on Service-Oriented and Cloud Computing.
Springer, 2016, pp. 18-33.

B. C. Tak, C. Tang, H. Huang, and L. Wang, “Pseudoapp: performance
prediction for application migration to cloud,” in 2013 IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2013).
IEEE, 2013, pp. 303-310.

ETSI GS NFV-TST 001, “Network Functions Virtualization (NFV); Pre-
deployment Testing; Report on Validation of NFV Environments and
Services,” 2016.

R. V. Rosa, C. E. Rothenberg, and R. Szabo, “VBaaS: VNF benchmark-
as-a-service,” in 2015 Fourth European Workshop on Software Defined
Networks. 1EEE, 2015, pp. 79-84.

M. Baldi and A. Sapio, “A network function modeling approach for
performance estimation,” in Research and Technologies for Society
and Industry Leveraging a better tomorrow (RTSI), 2015 IEEE Ist
International Forum on. 1EEE, 2015, pp. 527-533.

L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “NFV-VITAL: A Frame-
work for Characterizing the Performance of Virtual Network Functions,”
in Network Function Virtualization and Software Defined Network (NFV-
SDN), 2015 IEEE Conference on. 1EEE, 2015, pp. 93-99.

I. Giannakopoulos, D. Tsoumakos, N. Papailiou, and N. Koziris, “Panic:
modeling application performance over virtualized resources,” in Cloud
Engineering (IC2E), 2015 IEEE International Conference on. 1EEE,
2015, pp. 213-218.

I. Giannakopoulos, D. Tsoumakos, and N. Koziris, “A decision tree
based approach towards adaptive modeling of big data applications,”
in 2017 IEEE International Conference on Big Data (Big Data), 2017,
pp.- 163-172.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
2013, pp. 108-122.

