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Abstract

Miller’s rule originated as an empirical relation between the nonlinear and linear optical
coefficients of materials. It is now accepted as a useful tool for guiding experiments and
computational materials discovery, but its theoretical foundation had long been limited to a
derivation for the classical Lorentz model with a weak anharmonic perturbation. Recently,
we developed a mathematical framework which enabled us to prove that Miller’s rule
is equally valid for quantum anharmonic oscillators, despite different dynamics due to
zero-point fluctuations and further quantum-mechanical effects. However, our previous
derivation applied only to one-dimensional oscillators and to the special case of second- and
third-harmonic generation in a monochromatic electric field. Here we extend the proof to
three-dimensional quantum anharmonic oscillators and also treat all orders of the nonlinear
response to an arbitrary multi-frequency field. This makes the results applicable to a much
larger range of physical systems and nonlinear optical processes. The obtained generalized
Miller formulae rigorously express all tensor elements of the frequency-dependent nonlin-
ear susceptibilities in terms of the linear susceptibility and thus allow a computationally
inexpensive quantitative prediction of arbitrary parametric frequency-mixing processes
from a small initial dataset.

Keywords: Miller’s rule; generalized Miller formulae; nonlinear optics; nonlinear susceptibility;
harmonic generation; frequency mixing; quantum anharmonic oscillator; time-dependent
perturbation theory

1. Introduction

Nonlinear optical effects arise from the fact that the induced polarization in atoms,
molecules, or solids is, in general, not simply proportional to an applied external electric
field. The nonlinear response is especially relevant for strong fields [1]. The necessary field
strengths were achieved for the first time in the 1960s with the invention of the laser by
Theodore Maiman [2]. Shortly afterwards, Peter Franken and co-workers discovered the
doubling of the irradiation frequency of a ruby optical maser when interacting with a quartz
crystal [3]. Since then, nonlinear optical processes have become fundamental to modern
photonics, underpinning applications such as frequency conversion [4,5], tunable coherent
light sources [6], ultrafast spectroscopy [7], optical microscopy of biological systems [8],
and quantum information processing [9]. For the latter, parametric down-conversion [10]
is a key process for single-photon sources [11].

A critical challenge in advancing these technologies is the identification of materials
with tailored nonlinear optical properties. Traditional approaches rely on experimental trial-
and-error or numerically intensive computations, such as simulations based on many-body
perturbation theory [12]. However, these are usually too cumbersome for applications in
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the rapidly developing field of data-driven materials science [13], where high-throughput
screening methods [14], machine learning [15], and the computer-aided discovery of new
materials [16,17] typically require a highly efficient evaluation of the specific nonlinear
optical coefficients in question for a large number of materials. In this situation, empirical
relations like Miller’s rule [18] provide a convenient way to quickly estimate the desired
nonlinear susceptibilities from previously measured or computed data for the linear optical
properties, thus opening a practical pathway for efficient materials screening.

In its original formulation, Miller’s rule states that the nonlinear optical coefficient for
second-harmonic generation is approximately proportional to a certain product of linear
susceptibilities evaluated at different frequencies [19]. Initially based on experimental data
for a small set of inorganic crystalline solids, Miller’s rule was subsequently confirmed
for a large and diverse range of materials, including organic molecular crystals [20], ferro-
electrics [21], and chalcogenide glasses [22], while more notable deviations were reported
for optical metamaterials [23,24]. Similar relations were also found for other nonlinear
coefficients, such as third-harmonic generation [25].

Despite its repeated empirical validation, the theoretical foundations of Miller’s rule
remain unsatisfactory, as a proper mathematical derivation had for a long time been limited
to the classical Lorentz model [26], whose assumptions of classical particle dynamics and
velocity-dependent damping are notably different from the actual quantum-mechanical
behavior of electrons in real solids. In a recent work [27], we presented a rigorous derivation
for driven quantum anharmonic oscillators, based on a solution of the time-dependent
Schrodinger equation in the presence of an external electric field, which finally established
that Miller’s rule is, in principle, equally applicable to quantum-mechanical systems despite
fundamental differences in the underlying dynamics, such as zero-point fluctuations or
tunneling into the barriers. However, the main focus of [27] was on the development of the
necessary mathematical tools. As a consequence, the actual derivation was restricted to one-
dimensional oscillators and to the special case of second- and third-harmonic generation
driven by a monochromatic electric field with just a single frequency component.

In this work, we extend our previous treatment substantially along three lines. First, we
consider realistic three-dimensional systems, which gives access to all tensor components
of the nonlinear optical susceptibilities in real anisotropic materials. Second, we assume an
arbitrary multi-frequency driving field instead of a monochromatic field, so that processes
like sum-frequency or difference-frequency generation with different input frequencies,
which had previously been neglected, can also be described. These are essential for many
technological applications, such as optical parametric amplification or parametric down-
conversion. Third, we include all orders of the electric field in a nonperturbative manner so
that the resulting formulae are not limited to second- and third-harmonic generation but
equally cover high harmonics and other high-order nonlinear processes.

From the time-dependent Schrodinger equation, we derive explicit solutions for the
nonlinear susceptibilities of quantum anharmonic oscillators up to arbitrary order for
electric fields with multiple frequency components. Furthermore, we demonstrate that
all elements of the nonlinear susceptibilities can be written in terms of the linear optical
susceptibility. The resulting generalized Miller formulae mirror expressions previously
derived for the classical Lorentz model [28] and can be used for high-throughput screening
of nonlinear optical materials [29-31]. In particular, they allow a numerically very efficient
estimate of arbitrary nonlinear coefficients, such as high-harmonic generation or multi-wave
mixing, based solely on data for the linear susceptibility. By leveraging existing databases of
measured or computed linear optical properties, such as refractive indices or susceptibilities,
it is thus feasible to predict the nonlinear response with modest computational resources.
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After such an initial screening, more numerically intensive methods can then be focused on
the most promising configurations.

This paper is organized as follows. In Section 2, we describe the driven quantum
anharmonic oscillator model that is considered in this work. In Section 3, we solve the
time-dependent Schrodinger equation analytically up to first order in the anharmonicity
and derive the generalized Miller formulae that allow us to express the nonlinear optical
susceptibilities up to arbitrary order in terms of the linear susceptibility. The practical
application is further illustrated by means of a numerical example. Finally, our conclusions
are summarized in Section 4.

2. Methods

In this work, we consider independent electrons in a confining three-dimensional
anharmonic potential V(r) with a global minimum at » = 0 that are driven by an external
electric field. Within a quantum-mechanical treatment, the dynamics are governed by the
time-dependent Schrodinger equation

indr¥ (r,t) = (H<O> (r,t) + HY (r))‘I’(r, ), (1)

where the Hamiltonian operator is written as the sum of the time-dependent Hamiltonian
of a driven harmonic oscillator

1> m
HO(r,t) = == V2 + — T QPr + eoE(t) - 2
(r,t) 2mV,+2r r+eyE(t) -7 ()
and the time-independent anharmonic part of the potential

HY(r) = Y Vigalykz! 3)
ikl

with Vi = 0 for j+k+ 1 < 2. The shape of the potential is completely arbitrary, as
long as the global minimum remains at r = 0. Without loss of generality, however, the
eigenfrequency matrix may always be chosen in the diagonal form

wy 0 0
Q=10 wy 0 4)
0 0 w;

by aligning the coordinate system with the principal axes of the harmonic part of the
potential. The expansion coefficients of the anharmonic part are obtained from

1 oftk+I
Vi = - v . 5
= SR | awiagkadt | ) . ©)

In general, if the coordinate system is determined in this way, the time-dependent
external electric field contains projections

E() = Y Ey(t)eg ©
q

on all Cartesian unit vectors e; with g € {x,y,z}, which may be written as a sum of Fourier
components in the form

E (1) = Y Ej(w)e e = Y Ey(w)e @HME, 7)

w
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The sum runs over pairs of positive and negative frequencies. As the field components
Eq(t) are real, the Fourier coefficients must satisfy the relation £;(—w) = E} (w). Further-
more, we have assumed that the field is switched on adiabatically with a parameter o > 0.
For more compact expressions, we use the shorthand notation @ = w + i7.

The adiabatic switching of external electric fields is a ubiquitous mathematical device
in ab initio electronic-structure calculations because it connects the dynamics of driven
quantum systems with the stationary initial ground state and thus facilitates the use of time-
dependent perturbation theory. For example, it underlies the Adler-Wiser formula [32,33]
for the polarizability and dielectric function that is exploited in nearly all implementations
of linear-response time-dependent density-functional theory for solids [34]. Furthermore,
the nonzero imaginary part of w + i7y gives rise to a complex frequency-dependent dielectric
function, which reflects the absorption and damping due to electron scattering. In this
sense, the switching parameter <y plays a very similar role as the damping constant or the
inverse scattering time 1/7 in the Lorentz model and leads to a broadening of the peaks in
the spectral function. Instead of the limit y — 0, practical applications typically use a finite,
not even necessarily small value, both for numerical reasons and to simulate the effect of
additional scattering channels, such as electron—phonon scattering, that are not explicitly
included. The temporal modulation of the electric field may instead be controlled by an
appropriate Fourier series. For a consistent construction of nonlinear susceptibilities by
means of generalized Miller formulae, a proper treatment of the imaginary parts of the
complex frequencies will turn out to be crucial, as seen in the following.

The applied external electric field induces a dynamic polarization

P(t) = —Ne, / Y (r, )P (r, £) dr ®)

which equals the total electric dipole moment of N electrons with the charge —ep. It can be
expanded by orders of the external field with the nth-order components [1]

A

Y A (@1 Duy @1, On) By (@1) - By (wy)e (@1t @n)t )

(1)

The first-order susceptibility x4, is called linear because the contribution to the polar-
ization is directly proportional to the electric field, whereas all higher-order susceptibilities
are called nonlinear. If there is no ambiguity, then we will use the short-hand notation
)(y;)l.__,xn (01 + ...+ @y) instead of X&ﬁ)l__an (@1+ ...+ @n;@1,...,w0n) for simplicity.

In the following, we will solve the time-dependent Schrodinger Equation (1) analyt-
ically for a weakly anharmonic but otherwise arbitrary potential using time-dependent
perturbation theory up to the first order in the anharmonicity. The results demonstrate
that all nonlinear susceptibilities up to arbitrary order in the electric field can be expressed

exactly in terms of the linear susceptibility in a generalization of Miller’s rule.

3. Results and Discussion

For a weak anharmonicity, the Schrodinger Equation (1) can be solved by perturbation
theory. In contrast to standard approaches, where the unperturbed system is assumed to
be in a stationary initial state and the external electric field is regarded as a small time-
dependent perturbation, we take the driven harmonic oscillator with the Hamiltonian (2)
as our starting point, while the time-independent anharmonic part of the potential (3) acts
as a perturbation. It is this reversal of roles that allows us to include the full external electric
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field in a nonperturbative manner and subsequently analyze the nonlinear response up to
arbitrary order. The wavefunction is thus expanded by orders of the anharmonicity as

¥(r,t) =Y. ¥ (r1). (10)

n>0

After inserting this expansion into (1), the terms of each order n form a hierarchy of
differential equations, which can be solved in sequence.

3.1. Zeroth Order: Three-Dimensional Driven Harmonic Oscillator

The Schrodinger equation of a driven harmonic oscillator in three dimensions, with
no anharmonic deformation of the potential, is given by

ind ¥ (r,t) = HO (r, ¥ (1, 1) . (11)

As the axes were chosen in such a way that the eigenfrequency matrix (4) becomes
diagonal, the Hamiltonian H®) (r,t) decomposes into a sum of three decoupled opera-
tors that describe the independent one-dimensional motion along each of the Cartesian
coordinates 4. As a consequence, the wavefunction can be factored into components

Wfkn0:=[;¢£Nmt» (12)

each of which obeys the time-dependent Schrédinger equation for a driven one-dimensional
harmonic oscillator

. K2 mw?
indeypy) (q,t) = (—maﬁ + eoEq(t)q> P (q,1). (13)

The exact analytic solution, first derived by Schrodinger [35], is discussed in detail
in [27]. The resulting coherent states can be written as

0(,£) = @, (g — qo(£))e/l B+ a0 D+ Lo Lao W0V (94

in terms of the normalized stationary eigenfunctions of the quantum harmonic oscillator

_ (g /4 1 [ mwg —mwqq®/ (2h)
(an(q) - ( h ) \/Man< h qije 1 (15)

and the corresponding energy eigenvalues E,, = fiwg(ng +1/2) with ng € No. The symbol
H,, denotes the Hermite polynomial of order n,. Furthermore,

qo(t) = Y do(w)e ™! (16)

is the corresponding classical trajectory, i.e., the solution of Newton’s equation of motion for
a classical particle with the same one-dimensional harmonic potential and time-dependent
electric field. The Fourier coefficients are easily obtained as

fo(w) = —€0<1> Eq(w). (17)

m w%—(bz
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The last ingredient is the classical Lagrangian for the driven harmonic oscillator

me

L(g0(), do(t), ) = F-do(1)* = —La0(t)? = oy (£)go(t). (18)

As the trajectory is known, the integral over the Lagrangian in (14) could be evaluated
explicitly, but this is in fact not necessary, because the phase factor cancels out later and
does not contribute to the physical observables.

The quantum-mechanical expectation value of the position operator is given by

(ro(t)) = / YO (¢, 79O (v, 1) B (19)

By inserting (12) as well as the explicit form (14) of the coherent states and exploiting
the normalization of the individual components of the wavefunction, this yields

(q0(t)) = /j; @y (q — q0(t))q9n, (9 — qo(t)) dg = qo(t) . (20)

In the absence of anharmonic perturbations, the quantum-mechanical expectation
value (go(t)) is thus identical to the classical trajectory go(f). The corresponding con-
tribution to the induced polarization is linear in the electric field and equals 15,1(1) (w) =

—Nepgo(w). By comparing to the definition 15,;1) (w) = eox,%) (@)E4(w), which follows
from (9) with n = 1, we eventually obtain the explicit expression for the linear susceptibility

2
1), ., _ Nej 1
Xgq (@) = com <w§—d;2> . (21)
3.2. First Order: Anharmonic Perturbation of the Potential
The first-order terms of the Schrodinger Equation (1) satisfy the relation

(ihat —HO (r,t))\f,&l)(r,t) = HOA¥ (1, 1). (22)

The first-order correction to the wavefunction is obtained from time-dependent per-
turbation theory as

O (1, ¢ hZ‘I’n, t //‘P ', HHO YO (1) B dt, 23)

which exploits the fact that the eigenfunctions of the driven harmonic oscillator at a fixed
time t, even in the presence of an external electric field, form a complete orthonormal set,
satisfying the orthonormality relation

JRCI r—H/I%q, (g,1)dg
—HEW“W[ 91y = 00(1) @,y (1 — (1)) dg 24
= 1;[ 5nq,n{i
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and the completeness relation
L 000 00 = [T DO g, (0= d0(1) 9, (7' = d0()
n q g
(25)

=[]é(a—14")
q

The first-order contribution to the electron displacement, the expectation value of the
position operator, is given by

(r1(1)) = / YO (0 v D (r, 1) Pr + cc., 26)

where c.c. denotes the complex conjugate. In the following, we focus on the x component
of the position vector; the expressions for the other vector elements can be obtained from a
straightforward permutation of symbols. By inserting the first-order wavefunction (23), the
expectation value can be written as

() = =1 / ¥ (1, ) D (1, ) / / O, ) HO (¥ 0 (¢, ) 37 dt + c.c. 27)

Using the factored form (12) and the orthonormality of the wavefunctions, the sum-
mation simplifies to one over 1}, with nj = n, for all g # x. This leads to

hZ/ 1/) XtXl[J ( t) dx

//w (1) (Htpnq , > Dyl (1) (Hlpnq q, t>d3r’dt—|—c.c.

97X q7x

(28)

The previously derived solution for the wavefunctions of the driven harmonic oscil-
lator (14) is then substituted. After applying the change of variables x = % + xo(t) and
v =# 4 ry(t), we obtain

1 ; / +oo
(x1(t)) = ﬁZ;el(mﬁnx)th/ Py (%) (% + x0(t)) @y (% )dx/ ol (e —nx)wxt
! —o0 (29)

% [ @ (&) pn, (1) (ZVHO (7 + 10(8)) g, (), (7). (2) &7t + c.c.

For n; = 1y, all integrals become real. In conjunction with the prefactor 1/ (ih), this
results in a purely imaginary contribution to the sum, which is canceled by its complex
conjugate. Therefore this term may be omitted.

The first integral in Equation (29) can be evaluated by introducing the matrix elements

+o0 .
Qi () = L . Pug ()7 Py (q) de, (30)

whose explicit solutions are provided in Appendix A.1. We note that —eoﬂnqrni7 (1) are
the dipole transition matrix elements of the harmonic oscillator. With this definition, the
integral yields

o0

(31)
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As n, = n, may be omitted in Equation (29), only the two terms with n, = 1y + 1 or
n. = ny — 1 contribute to the sum. The expectation value of the position operator can thus
be written as (x1(t)) = W — W~ with

1 . L
Eﬂnmnxil(l)e;th/eizth

x / Prt1 () P, (7 ) @ (ZVHD (7 + 10(£)) @y (2) @, (7 ) i (21) d3F dt + c.c.

W* =+
(32)

Inserting the explicit form of the anharmonic potential (3), the spatial integrals become

Vi [ @1 (#)gn, (¥ ), (7 P (2P (% +10(0) (7 +00(0) (2 +20(0)' 7. (33)
iz k I
After decomposing the volume integral into a product of one-dimensional integrals
over each Cartesian coordinate and applying the binomial theorem, this can be written as

j / “+o0 Ly -/
S0 X (1) [ onsr @02 (0 g () 8

/
ikl j=o N

x i (k/> /m ou, (7 )7y ): <l,)/ on, (2122 2o (1) d2' .

k'=0

As xo(t), yo(t), and zo(t) depend only on time, they can be factored out. The remaining
spatial integrals can again be expressed in terms of the matrix elements an,n; (j) defined
in (30) and assume the form

Lok LNk (1 N o
Vie 3 3 2 (]],) (k,> (1/> %0 (8 o (D)X 20(8) oyt e (= 1)y (k= K ) Qo (1 = 1) (35)
When these are substituted back into Equation (32) and the time-independent matrix

elements (), ,/ are factored out from the integral over f, we obtain

HT’l

whelo TVl E Y z( ) () (1) msrni=1)

ikl j=ok=01' (36)
X Qg ny (k= K ) Qo (1 = 1) (i) eTieost / xo(t) yo(t)F 2o () e* st dt + c.c.
For brevity, we introduce the short-hand notation for the time integrals
O3 (1) = ieTiex! / xo(t) yo (£ zo (1) et dt . (37)

The evaluation of the integrals can be found in Appendix A.2. Using this short-hand
notation and including the complex conjugate explicitly into the summation, we obtain

— 3 1 3 (0) (1) (1) (0t + 050 0)

ikl j=0K'=01'=0

X (Q”xr”x"rl(l)ﬂ”x"rl,nx (] - ]/) - an/nx—l (1)an_1rnx (] - ]I))
X anny(k —KN)Qu . (1-1).
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We note that the time dependence of the expectation value stems exclusively from
Ojfk,l/ (t) + Oj7k, ;(t). By interchanging the double summation, this can be rearranged to

) == 3 ¥ (0 +05,0) 1 3 % (1) () (1) v
(

7KL j=j k=k' I=I' (39)
X Q”xr”x+1 (1)Q”x+1,nx (] - ]/) - an/nx—l (1)an_1rnx (] - ]I))
X Qi (k= K) Qo (1= 1) .

Next, we apply an index shift that simplifies the arguments of the matrix elements
0, by substituting j with j + j', kwith k + k', and [ with [ 4+ I’. This leads to

1 _ i+ 7"\ (k+ KN (1+T
i) =3 5 (0fen0+ 0 @) & () (L) (8 Wi

!/
JLK ikl N\
X (an,nx-H (1)07’13("1‘1,”1)( (]) - an,nx—l (1)an—1,nx (j))Qny/”y (k)Q”z/”z (l) :

40)

As the time-dependent factors Offk/ ;(t) play the decisive role in the derivation of the
generalized Miller formulae, we introduce the symbols

IR AYIERAVIERY
A;'C’k’l/ :Z ( j >( K I VjJrj/,k+k/,l+l/

jikil
X (Qnm”lx'i‘l (1)Q”x+1,nx (]) - Q”x/nx—l (1)07’1)(—1,”)( (]) )Q”y/”y (k)anznz (l)

(41)

for the time-independent coefficients with analogous definitions for A]y/k/  and A]?, g In
this way, the expectation value simplifies to

1 _
<X1 (t)> = _ﬁ 'kzl A;'C/k/l/ (O]—'"’_k’l’(t) + Oj’k’l’(t)) . (42)
]/, /, !
By inserting the expression for O;fk/ o () + O (t) from Appendix A.2, the expectation
value eventually yields

1 2w ASy

M) =-3 L L

]’,k”l/ wl/"'/wj,+k,+l/ wx

- p fo(wl)...fo(w-/)
(CUl +...+ wj’+k’+l’>2 J (43)

. . 5 5 —i(@ .+ @ t

X Yo (w]-/+1) ... Yo (wj/+k/)20 (w]-/+k/+1) e zo(wj/+k/+l/)e i By it ) ,
which describes the induced dynamics of the driven quantum anharmonic oscillator along
the x axis exactly up to first order in the anharmonicity. Analogous relations are valid for
the other components of (ry(t)).

3.3. Generalized Miller Formulae

Based on the derivation in the previous section, we proceed to extract the nonlinear
susceptibility and formulate the generalized Miller formulae. In a first step, we express the
Fourier coefficients of the classical trajectory (17) of the harmonic oscillator in terms of the
linear susceptibilities (21) and the electric field according to

10(w) = ~ o Xig (@) Eq(@). (44)

The expectation value of the position operator thus takes the form
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K+
200y eom (1), . B e \ T
(a(t)) =—— ) 3 f/qu 2Xxx (@1 + .+ @pppr) (Ne())

7K a)l,...,w]v/Jrk/H/ (45)
x X (@1) .. W (@ )X@y)( @jry1) - -ny) (@j’+k’)xg) (@jryxry1) - A (@jr k1)

A A A —i(@1+.. @, t
X Ex(wl) . Ex(w]-/)Ey(w]-/H) . Ey(wj/+k/)Ez(w]'/+k/+1) . Ez(w]-/+k/+l/)e i(an @t k1)
with individual sums over the three counter variables j/, k/, and I’. In order to collect all

terms of the same order n = j' + k" + I’, we insert an appropriate filter. For the polarization,
defined as P;(t) = —Nep(q(t)) in (8), we thus obtain the nonlinear components

2mw g \"
P;En)(t) =& Z fe e <_ NE > XJ(CX) (CUl +...+ (Un) Z (Sn,]"-l-k’-i-l’AjF’k’l’
W1,y Wy 0 g

. . . . . . (46)
X chlx) ((Ul) .. )O(Clx) ((U]/)X§,1y) ((Uj/+1) . X;ly) (wj’-i-k’)Xg? (wj’—i-k’—i-l) . Xg? (wj’-i-k’—i-l’)

X Ex(wl) .o Ex(wj/)ﬁy(wj’+1) ce Ey(wj/+k/)ﬁz (a)j/+k/+1) e Ez (wj/+k/+l/)e_i(a)1+...+d]n)t .

This expression is already very similar to the definition of the optical susceptibilities in
(9), but instead of a sum over «y, ..., a,, the indices of the Cartesian axes appear in a fixed
order. For any given tuple of j/, k/, and I, there are (j' + k' +1')!/(j't k't I'!) distinct index
permutations that contribute equally to the polarization, as may be confirmed by changing
the multiplication order and relabeling the summation variables appropriately. Therefore,
we can insert additional summations over a7, ..., «, if we simultaneously divide by the
number of permutations for each distinct set. In this way, we eventually arrive at

n 2mw € -
PO = Y Y X(O)xgwﬁ @) @1) - x D (@)

W1 yeeefWiy B o)y heg Ne

SR . (ot #7)
X X Gnjenrr—  AjerEa (@1) - B, (wp ) (@rt@n)t
j’,k’,l’ .
and equivalent expressions for the other vector elements of the polarization.
By comparison with (9), the susceptibility tensor elements are now identified as
- . . 2mw €
X!gé;;é)l...an<(U]+...+wn;CU1,...,(Un) = heOa(_N(e)o> X,S(a)((U]+ +wn) ( )
48
/| k/| l/|
1) - 1) -
X 705412’61 (@1)-- thcn)ocn Z On,j1 +k'+l’] A;‘/k/l/ .

]/ k/ l/

As in Miller’s original formula for second-harmonic generation, these generalized
Miller formulae express all higher-order tensor elements of the nonlinear susceptibility
as products of linear susceptibilities with a material-specific but frequency-independent
prefactor.

In practical applications, this prefactor or even the shape of the confining potential are
often not explicitly known, as in a recent study where Miller’s rule was invoked to analyze
the polaronic enhancement of second-harmonic generation in lithium niobate [36]. In such
situations, it is convenient to eliminate the prefactor by considering the ratio

X (@1 A i@, @) X (@1 e D) Kook (@1) - X (@)

X (@ et Ol @ @) XD 4+ @)K (@) (@)

(49)
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This relation allows a full evaluation of the frequency-dependent nonlinear susceptibil-

ity xé’i{...an (@1 +...4+@y;@1,...,0,) based only on knowledge of the linear susceptibility

and a single data point for an nth-order process at a set of reference frequencies @, . .., @;,.

3.4. Practical Application

When applying the generalized Miller formulae as a screening tool for materials with
desired nonlinear optical properties, it must be assumed that the linear susceptibilities
)(t(k}x) (w + i7y) are tabulated in a database as functions of the real irradiation frequency w
and have been measured or calculated with a fixed broadening . As a consequence, one
requires a practical procedure for constructing the susceptibility xw (w1 + ...+ wny +iny)
that enters (49) with an increased broadening parameter n<y. Indeed, as we show below,

this can be achieved by evaluating the convolution

W +iny = o [ @ i) 1 W, )

27 J o w' — (w+i(n—1)y)

In order to prove this identity, we first rewrite the linear susceptibility
2
D) (o +i7) = N LI 51
Ko (@ +17) eom w2 — (w +ivy)2’ G
using a partial fraction decomposition as
2

(1) N Neg 1 1 B 1 5
Xaw (@ + i) eom 2wy <w+(wa+i'y) w— (wy —iy) )’ 42)

This expression can be regarded as an analytic function of w with simple poles in the
lower half of the complex frequency plane. The convolution (50) is then equivalent to the
contour integral

2
Vv NS L1 1 1 ,
K (0 iny) = eom 2wy 2711 J \ W' + (wy +i7y) @' — (o —i7) ) W — (w+i(n—1)7) de’, 43

where the path along the real axis is closed by a semicircle over the upper or lower complex
half-plane. According to the residue theorem, the contour integration yields

1) . Né 1 1 B 1
Koo (@ +iny) = eoin(;Zwa <(w +i(n—1)y) + (wa +iy) (wH+i(n—1)7) — (wa — i’Y))

(54)

_ Né 1 1 B 1
Ceom 2wy \w + (wy +iny) W — (wy —iny) )’

which is indeed equivalent to (52) with n<y instead of . Based on the knowledge of the
linear susceptibility with a fixed broadening v, the convolution (50) thus allows a numerical
construction of the linear susceptibility at any frequency w with the broadening n-y.

3.5. Numerical Example

In order to illustrate the practical application of the generalized Miller formulae, we
explain the construction of the susceptibility for fifth-harmonic generation

2mMwy € 5 - -
X (5@, @) = T (—N(’eo) Adooxsd (50) xa (@)° (55)

for an incident field along the x direction as an example. In the upper panel of Figure 1,

we display the real and the imaginary part of the linear susceptibility ;&2 (w +i7), given
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by (21). The resonance at the eigenfrequency w, of the harmonic part of the potential is
clearly visible. As the imaginary part is a Lorentzian curve whose width is proportional to
v and whose height is inversely proportional to v, this parameter value merely determines
the broadening of the peaks but does not change the results in a qualitative way; for the
results in Figure 1, we have chosen v = wy/4. In the same panel, we also show the
function )(g) (5w + i57) obtained from the convolution (50), whose resonance is much
broader and located at wy /5. In both cases, the linear susceptibility is displayed in units
of Ne3/(egmw?). In the lower panel, we plot the calculated fifth-order susceptibility in
units of 2Ne§ A%y, / (hm’wll). According to (55), each data point of )(J(Ci)xxx (5@) in the lower
panel is constructed as a product involving one point from each of the blue and red curves
of the upper panel. As a consequence, the main spectral features are observed near the
resonance frequencies of the two underlying linear susceptibilities.

2
1.5 _
3
= -~
—-05 -
_1 T T
Re
Im - - -
3
w
=
_B
(s
=
1.5 2

w/wy

Figure 1. Frequency dependence of the susceptibility )(,((Sx)xxx (5@) for fifth-harmonic generation,
calculated from the generalized Miller formulae.

4. Conclusions

In this work, we presented an analytic solution of the time-dependent Schrodinger
equation for a three-dimensional quantum oscillator with an arbitrary, weakly anharmonic
potential driven by an external electric field. While the anharmonicity is treated within
first-order perturbation theory, we include the full electric field in a nonperturbative
manner. Therefore, the results remain valid for strong fields and allow us to derive explicit
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expressions for the induced dynamic polarization up to arbitrary order in the electric
field. As the central result of this paper, we proved that all components of the nonlinear
optical susceptibilites can be written exactly as products of the linear susceptibility. These
generalized Miller formulae thus facilitate a highly efficient numerical evaluation of any
nonlinear optical coefficients. Although analogous expressions were already known for the
classical Lorentz model [28], this constitutes the first rigorous proof for quantum systems
and justifies their application in actual materials investigations where the electron dynamics
are governed by quantum mechanics. There are also notable differences: In the classical
Lorentz model, the peak broadening arises from the velocity-dependent damping and is
an intrinsic property of the material; therefore, all linear susceptibilities in the generalized
Miller formulae must be evaluated with the same broadening parameter but different real
frequency arguments. In contrast, for quantum anharmonic oscillators the broadening
stems from the adiabatic switching of the external electric field, which can formally be
described by complex frequencies @ = w + iy, and one of the linear susceptibilities in (49)
must be evaluated at the sum of the complex frequencies. A failure to take the modified
broadening properly into account may lead to significant deviations, and a comparison
with accurate experimental or theoretical results for the nonlinear optical coefficients may
then falsely suggest a violation of the generalized Miller formulae [27].

The generalized Miller formulae hold particular promise in data-driven materials
science, where specific optical coefficients, such as high-harmonic generation or multi-wave
mixing for given frequencies, are often not contained in databases due to the vast number
of nonlinear phenomena and must instead be generated on the fly. In such situations, the
generalized Miller formulae may be invoked to predict nonlinear optical susceptibilities
quickly and with modest computational resources, using only readily available measured
or computed data for the linear susceptibility as an input. We illustrated the practical
procedure by means of a numerical example, fifth-harmonic generation by a monochromatic
electric field, in Figure 1 above. In particular, we showed how the linear susceptibility
for complex frequencies with an imaginary part n-y, which is required to evaluate the
generalized Miller Formula (49) for an nth-order process, can easily be obtained numerically
from a convolution with a suitable broadening function. In combination with a database of
frequency-dependent linear susceptibilities, the generalized Miller formulae can thus be
exploited to generate arbitrary nonlinear optical coefficients efficiently in high-throughput
screening and computational materials discovery.

As an example for practical applications, Gjerding et al. [37] compared the second-
order susceptibility x(? (2@) with the product (V) (2@)x(V) (@©)? in the static limit w — 0
for 67 transition-metal dichalcogenides with the chemical formula MX,, where M denotes
a transition-metal cation and X is a chalcogen anion. This class of two-dimensional crystals
is known to possess high nonlinear optical coefficients with a pronounced directional
anisotropy. As demonstrated in [37], the products of the linear susceptibilities are indeed
approximately proportional to the true nonlinear susceptibilities, and the proportionality
factor is only weakly material dependent. In such situations, Miller’s rule can be exploited
to efficiently derive the nonlinear coefficients based on available data for the linear coef-
ficients, in this case from the Computational 2D Materials Database (C2MD), and screen
for materials with the desired properties. The generalized Miller formulae derived in this
work facilitate the same approach for higher-order nonlinear processes.

While the generalized Miller formulae derived here are exact for weakly anharmonic
potentials, it should be noted that the results for systems with a strong anharmonicity,
as may be encountered in actual materials, will only be approximate. Therefore, further
benchmarking of the quantitative accuracy in such cases remains highly desirable, as do
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investigations of additional effects on the electron dynamics, such as the mutual Coulomb
repulsion in interacting many-electron systems.
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Appendix A
Appendix A.1. Matrix Elements 0, ()

The matrix elements an,n% (j) defined in (30) can be written as

a = (Y" ! " H, (2)7H,, (2)eFdz (A1)
qu,?l%] - qu \/W . ng Vlfi
sy

by inserting the time-independent eigenfunctions of the harmonic oscillator (15) and
substituting z = /mw,/hq. For j = 0, the result

1 Foo 2
Hy, (z)H,y (z)e” dz = Oyl (A2)

!
/ _ q
2" gt e

follows directly from the orthogonality of the Hermite polynomials. For j > 0, the identity

an,nfi (O) =

zHy, (z) = %anﬂ(z) + ngHy,-1(z) (A3)

leads to the recursion formula

. o\, —— ‘ .
an,nfl (]) = (2qu> ( ng +1 anJrl,n’q (] - 1) + \/@anfl,n; (] - 1)) ’ (A4)

which can be iterated as necessary. In particular, the matrix elements for j = 1 that enter (31)

are given by

B 1/2
an,nfi(l) = (zqu> (\/ My +1 éanrl,n’q + Méanl,n[]) . (A5)

Appendix A.2. Integrals Oﬁd(t)

The integrals O].+kl(t) and Oﬁcl defined in (37) are complex conjugates of each other.
With the Fourier representations (16) of the classical trajectory of the harmonic oscillator in
each Cartesian coordinate, they can be written as

1

, j k
(t) = iieﬁ“’xt/ (Zﬁo(w)e_i‘:’t> (Zgo(w)e_i‘;’t> <Zio(a})e_i“~”> etiwst gt (A6)
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By introducing distinct frequency variables for each sum, this can be rearranged to

O () =xie™ 37 fo(wr)... 2o(w))do(wjs1) - - Jo(wjix)
wl""'wj+k+1 (A7)

x 20(“’j+k+1) o 2O(wj+k+l) /e:ti[wx:F(d71+...+dJ]‘+k+1)]t dt .

The remaining integration over t is elementary and yields

Ojikl(f)z Y. Ro(wi)...Ro(wj)fo(wjs1) - - Jo(wjsk)
WLy 0 e

o @1t A @)t (A8)

Wy F (@14 + @jrky1)

% 20(Wjikt1) - - - 20(Wjktr)

Finally, the evaluation of the expectation values in (42) only involves the real-valued
sum O;,“d (t) + O, which simplifies to

Oj+kl(t) + O]?d = Z on(wl) ... fo(a)]‘)ﬁo(w]qu) .. .}/A()(w]'_i_k)
W geeeWip et 1
(A9)

waefi(d’l Fot @)t

X 20(wj+k+1) ...20 (w]-+k+l) 2
x
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