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Abstract

We propose a spatio-spectral, combined model-based and data-
driven diarization pipeline consisting of TDOA-based segmen-
tation followed by embedding-based clustering. The proposed
system requires neither access to multi-channel training data
nor prior knowledge about the number or placement of micro-
phones. It works for both a compact microphone array and dis-
tributed microphones, with minor adjustments. Due to its su-
perior handling of overlapping speech during segmentation, the
proposed pipeline significantly outperforms the single-channel
pyannote approach, both in a scenario with a compact micro-
phone array and in a setup with distributed microphones. Addi-
tionally, we show that, unlike fully spatial diarization pipelines,
the proposed system can correctly track speakers when they
change positions.

Index Terms: diarization, meeting data, spatial, spectral,
spatio-spectral

1. Introduction

Diarization systems assign regions of speech activity to the in-
dividual participants of a conversation, thus answering the ques-
tion “Who spoke when?”. Essentially, they solve two tasks, seg-
mentation and speaker assignment. The first is on identifying
regions (segments) of constant speaker activity, while the sec-
ond assigns speaker labels to each segment. There exists a large
variety of methods for how these tasks are solved [1-5].

Here, we categorize diarization systems according to
whether they use spectral or spatial cues, or both. Early di-
arization systems using spectral information employed statisti-
cal models [6], while recent systems rely on speaker embed-
dings, e.g., x-vectors or d-vectors [2,7, 8], extracted from audio
segments, which are then clustered. Alternatively, they are used
to directly predict the speech activity of all participants in a con-
versation on a frame-by-frame basis as in End-to-End Neural
Diarization (EEND) systems [3].

If multi-channel input is available, spatial cues have been
shown to deliver strong diarization results [1,9-11]. In partic-
ular, they excel over spectral systems in regions of overlapping
speech [12, 13]. However, one should be aware of the fact that
segments of speech activity are assigned to positions or direc-
tions in space, rather than to speakers, with the consequence that
speaker movements or speaker position changes can confuse the
system. Additionally, strong reflections can result in so-called
phantom positions, indicating activity from a direction, where
actually no speaker is present. It is also known that the quality
of spatial cues depends on the inter-microphone distance, with
reduced informativeness if this distance is small [14].
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There are only few examples of systems that use both spec-
tral and spatial cues. Multi-channel information is used as
auxiliary input of an otherwise spectral diarization system in
[15-17], leading to improved performance. However, this ap-
proach requires a dedicated training phase with multi-channel
data. That this is a significant impediment became clear in the
recently concluded NOTSOFAR-1 challenge, where the lack of
in-domain training data was cited as the main reason why only
few systems made explicit use of spatial information for diariza-
tion [18]. An example of a deeper integration of spectral and
spatial information is the integrated model of [19].

In this work, we introduce an alternative spatio-spectral di-
arization system. It shares similarities with the well-known
pyannote diarization system, which is a purely spectral sys-
tem that consists of (temporally) local segmentation followed
by embedding-based global clustering [S]. We propose to do
segmentation with spatial features instead, using a model-based
approach. With the local segmentation being strictly decoupled
from the single-channel, embedding-based clustering stage, the
proposed system does not require in-domain training data.

The spatial segmentation model is based on [13]. It em-
ploys Time Difference Of Arrivals (TDOAs) estimates to detect
segments of speech activity for all active sources. Then, beam-
forming is applied to all segments with speech activity to en-
hance the target speaker, and suppress crosstalk in regions of
overlapping speech. Next, a speaker embedding extractor is ap-
plied to the enhanced speech segments, and global clustering of
embedding vectors is carried out to obtain the speaker assign-
ments for all speech segments in the meeting. This spectral
clustering stage diminishes the impact of phantom positions,
because embedding vectors computed from a segment repre-
senting a strong reflection will exhibit strong similarity with the
segment containing the direct path signal of that speaker, such
that they will be merged during clustering. In this way, the ad-
vantages of both spectral and spatial processing are exploited,
while mitigating their drawbacks: The spatial processing ad-
dresses noise and overlapping speech, while the spectral pro-
cessing can cope with possible position changes of a speaker.

Unlike [13], which requires globally constant speaker po-
sitions, the proposed system requires a speech source to be not
moving only for a single segment of speech. In contrast to [15],
the system does not require multi-channel training data, and it
is independent of the number of microphones and its geometric
arrangement. In the experiments, we show that it delivers good
results both for a compact microphone array and for distributed
microphones, with minimal adjustment of parameters.

Section 2 describes the proposed spatio-spectral diarization
pipeline, which is evaluated in Section 3 both in a distributed
and compact microphone setup in terms of Diarization Error
Rate (DER) and Word Error Rate (WER). Finally, Section 4
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Figure 1: Illustration of the proposed spatio-spectral diarization pipeline.

offers some conclusions and an outlook on future work.

2. Spatio-spectral diarization pipeline

A multi-channel recording of a meeting with K speakers can be
modeled in the time-frequency domain as the summation

ye(t, f) = Zsl(k)(taf)hc,l(k)(t,f) (1)
10

of delayed, clean speech signals s;()(t, f) which are padded
to match the length of the conversation. Here, h. ;1) (¢, f) de-
notes the acoustic transfer function between speaker k and mi-
crophone c for each speech segment (k) in time frame ¢ and
frequency bin f.

The proposed system cascades a TDOA-based local seg-
ment detection stage with a global spectral embedding-based
clustering stage. Fig. 1 illustrates this pipeline.

2.1. Multi-source TDOA estimation

The TDOA 7;,; of a signal between two microphones 7 and j
for a single active sound source can be found as the position of
the maximum of the Generalized Cross Correlation with Phase-
Transform (GCC-PhaT) [20]

T = <IFFT (et f)*l)) @

All pairwise TDOA estimates are gathered in a TDOA vector
T
T =[70,1,70,2,T1,2,...,TCc-1,0] , 3)

where C' is the total number of microphones. GCC-PhaT ex-
hibits one local maximum per source. Since multiple sources

can be active at the same time, P local maxima are chosen as
(c-1)C

possible delays 7,, 1 < p < P [13]. Thus, P~ 2  different
TDOA vectors can be constructed from the estimated delays
by combining all individual TDOAs, while only up to K vec-
tors are physically grounded. To address this, a TDOA vector
is kept only if the sum of the delays over each closed loop of
microphones is close to zero, e.g.,

To,1 + T1,2 + T2,0 < Tth,

where the threshold 7y, is set to a small value to account for
numerical errors [21,13]. By performing this TDOA estimation
for each time frame, a set of TDOA vectors and corresponding
frame indices of speech activity is estimated, which are next
grouped into speech segments.

2.2. Temporally constrained segment detection

The speech segment detection is performed as in [13] by a tem-
porally constrained leader-follower clustering. Here, the indi-
vidual segments are determined by the pairwise Euclidean dis-
tance between all TDOA vectors. Two TDOA vectors 7; and
T; can only belong to the same cluster if they do not exceed
a maximal Euclidean distance ATmax, and if the temporal dis-
tance between frames ¢; and ¢; is smaller than 1s. This allows
individual segments to contain short regions of either silence or
where no TDOA could be detected and prevents the formation
of too large segments. Additionally, it prevents two consecu-
tive segments from being merged since small segments are fa-
vored. After clustering, the detected segments [ are specified by
their start and end frames ¢_ ; and ¢_g; ; as well as their median
TDOA vector 7;, while their respecti\;e speaker labels are yet
unknown.

2.3. Segment-level beamforming

According to the W-disjoint orthogonality property of speech
[22], each time-frequency bin (tf-bin) can be modeled to be ei-
ther populated by a single source or by noise. This assumption
underlying mask-based beamforming [23] is used to estimate
binary masks to perform segment-wise beamforming.

First, for each processed segment the tf-bins containing
only noise are estimated. This is done according to [24]
via the eigenvalue gap of the tf-wise Spatial Covariance Ma-
trix (SCM) estimates of the observation vector y(¢, f) =
(w1(t, f), .-, yc(t, )T, which are gathered by averaging the
outer product of the observation vector over a small local con-
text. Since these tf-wise SCM estimates depict a dominant
eigenvalue only for speech regions, bins are assigned to the
noise mask if the eigenvalue gap between the first and second
largest eigenvalue is below a threshold.

All remaining tf-bins are assigned to the mask of the pro-
cessed segment or the interfering segments as follows. First,
“prototype” SCMs are computed as the outer product of the
steering vectors a; corresponding to each 7;

‘I)ZA = aia? . (4)

These prototypes are compared against the instantaneous matrix
of pairwise phase terms of the observation

N
v = ly(t, fy(t, f)H] ®)

using the spatial covariance distance measure from [25]. The
binary mask of each speech segment is now formed by those
tf-bins, whose SCM is closest to the same prototype SCM.



The segment-forming process can also result in superfluous
segments that are caused by phantom positions. Before beam-
forming, these segments need to be identified and removed to
prevent using a speaker’s own reflection as an interferer dur-
ing beamforming. Reflections are characterized by the fact
that its SCM shows a stronger deviation from the prototype
SCM at high frequencies, which is caused by phase errors so
that the corresponding binary masks are sparsely populated for
higher frequencies. Therefore, the average mask activity be-
tween 150Hz to 3500 Hz is compared against a threshold to
determine whether the activity matches that of a speech signal.
Segments containing too little activity are declared as caused by
reflections and discarded.

Finally, the binary masks of the remaining segments need
to be refined to fill up missing tf-bins that were assigned to dis-
carded segments. This can either be done by repeating the mask
estimation on the reduced set of segments, or by using a com-
plex Angular Central Gaussian Mixture Model (cACGMM) for
mask refinement as proposed in [13, 16]. In the latter approach,
a statistical mixture model is fitted to the data, which is initial-
ized with the binary masks. This refinement step is of low com-
putational complexity because only few iterations are needed
and because the model is applied to a single segment and not
the whole meeting.

2.4. Embedding extraction & clustering

For each beamformed segment, the ResNet34-based d-vector
model from [26] is employed to extract a speaker embedding.
Then, HDBSCAN [27], a hierarchical, density-based clustering
approach is applied to the embeddings. Here, similar speaker
embeddings are grouped by the pairwise cosine distance be-
tween them. Additionally, HDBSCAN marks outliers. These
outlier segments are merged into the most similar cluster. If
two intersecting segments are assigned to the same cluster, the
activity of both segments is merged. This allows merging phan-
tom positions caused by reflections that were not detected in the
beamforming stage. Since this step employs spectral informa-
tion only, embeddings of a speaker changing their position can
still be merged into the same cluster.

3. Experiments
3.1. Experimental Setup

For evaluation, the proposed pipeline is applied to the Lib-
riCSS [28] and LibriWASN [14] data sets. LibriCSS consists
of re-recordings of simulated LibriSpeech 8-speaker meetings
ranging from 0 % to 40 % overlapping speech with a duration
of 10min. LibriWASN is an additional re-recording of the
same synthetic meetings as LibriCSS, albeit in a distributed
setup with multiple recording devices in two different rooms,
exhibiting a T60 time of 200 ms (LibriWASN20) and 800 ms
(LibriWASN5g0).

The diarization pipeline is applied to 4 microphone chan-
nels, which is the smallest possible number for TDOA-based
source localization. In the compact setup, the 4-element mi-
crophone array asnupb?7 is used for LibriWASN, and 4 of the
non-center microphones in LibriCSS. For a distributed setup,
four smartphones of LibriWASN, the two Pixel6, one Pixel7
and a Xiaomi device, are used, and all channels are assumed to
be synchronized both in terms of Sampling Rate Offset (SRO)
and Sampling Time Offset (STO).

The delay thresholds 7 are set to 1 and 2 for the com-
pact and distributed microphone setup, respectively, and the

maximum delays during segment detection A7max are set to 1
and 0.75 samples, to accommodate for the very different inter-
microphone distances. All remaining parameters are chosen in-
dependently of the scenarios, which encompass three different
rooms and five different microphone setups.”

In addition to the DER as a performance measure, the
transcription performance of the downstream ASR system
from [29] is evaluated in terms of concatenated minimum-
permutation Word Error Rate (cpWER). To this end, Guided
Source Separation (GSS) [30] is applied as in [13] to extract
the speech sources. For the ASR experiment, all 7 microphone
channels of LibriCSS are used to be comparable with the liter-
ature, while only 4 channels are used for diarization. For calcu-
lating the DER according to [31], no forgiveness collar is used,
and the cpWER is obtained using the meeteval toolkit [32].

3.2. Diarization performance

First, the proposed pipeline is evaluated w.r.t. its capability
to be employed both in a distributed and a compact micro-
phone setup. Table 1 shows that, in the distributed setup of
LibriWASN2q0, the proposed system can perform diarization
equally well in overlap and in single-speaker regions, achiev-
ing an average DER of 3.78 % and of 4.19 % when only eval-
uating regions of overlapping speech. For the LibriWASNgoo
database, the system still can achieve similar average (DERavg)
and overlap-DERs (DERov) of 3.92% and 5.28 %, respec-
tively. Compared to other systems like [33] and [34] that try to
address overlapping speech on a fully spectral level and achieve
a DERov of 25 % to 30 % for single-channel processing, this
underlines the advantage of dedicated multi-channel processing
to handle overlapping speech in diarization.

When switching to a compact scenario, the total perfor-
mance decreases by 1 % to 2 % absolute in terms of DER and
WER, which is to be expected since the spatial cues used for
TDOA estimation become less informative and speakers are
harder to separate. Still, the system is able to consistently obtain
similar DERs in single-speaker and overlap regions.

3.3. Comparison to other systems

Table 2 compares the spatio-spectral pipeline against other sys-
tems in the compact microphone setup, which is the more com-
mon application for multi-channel meeting processing. We
compared with the embedding-based, overlap-aware diarization
system from [33,35] and the state-of-the-art, hybrid diarization
and enhancement system SSND [15] on LibriCSS.

To have a comparison also for LibriWASN, we imple-
mented the following spatial and spectral systems as references:
a spatial-only pipeline directly clustering the median TDOA
vectors of the detected segments using single-linkage agglom-
erative clustering with outlier rejection, and the single-channel
pyannote 3.1 pipeline without any further modifications.

It can be seen that the proposed spatio-spectral system out-
performs both a purely spectral and spatial approach. This
shows that the proposed system effectively combines both sys-
tems’ advantages. Here, the spectral system shows stable, but
lower performance due to solely using single-channel infor-
mation, while the spatial model shows higher errors due to a
coarser resolution and reflections in the environment.

On LibriWASN, the proposed system even proves slightly
better when omitting the cACGMM, demonstrating good per-
formance even without additional segment refinement before

*github.com/fgnt/spatiospectral_diarization



Table 1: DER and WER Performance of the proposed pipeline (with cACGMM refinement) for a distributed and compact setup.

Setup Database 0S OL OV10 OV20 O0OV30 O0Vv40 \ DER,s DERov cpWER
Distributed LibriWASN2go 3.46 390  3.30 3.92 3.98 4.10 3.79 4.19 3.36
" LibriWASNgoo 2.70 3.71  3.11 3.90 5.17 453 3.92 5.28 3.60
LibriWASN2gp 3.52 3.81 5.34 4.93 5.57 6.89 5.16 7.00 5.13
Compact LibriWASNgoo 3.08 459 4.24 4.99 6.38 6.09 5.00 7.08 5.50
LibriCSS 587 590 590 7.46 8.16 8.79 7.17 9.97 6.53

Frequency / kHz
~

0 200 400 600 800

Time frame index

1,000

Figure 2: Spectrogram of a LibriCSS segment with a single
speech region of the defective loudspeaker (highlighted in red).

Table 2: Comparison of the proposed pipeline to other systems
in a compact microphone setup.

LibriWASNyqo LibriWASNgoo LibriCSS

System

DER WER DER WER DER WER
SC+O0OV[35] - - - - 11.3 12.1
SSND [15] - - - - 47 5.1
pyannote’ 12.8 88 126 11.6 14.1 102
Spatial 11.5 46 123 65 158 9.8
Proposed 4.5 4.1 5.2 5.1 99 89

+cACGMM 5.2 5.1 5.0 55 72 6.5

beamforming. However, for LibriCSS, which is comparable in
difficulty and acoustic properties to LibriWASN2qo, unexpect-
edly high error rates occur without the cACGMM refinement.

After a closer analysis, these errors could be traced back
to a single loudspeaker used during the recordings exhibiting
a low-pass characteristic. This loudspeaker significantly at-
tenuates frequencies above 1.5kHz, as can be seen in Fig. 2.
Therefore, the filtering stage aimed at identifying reflections
through the energy distribution of a speech signal inadvertently
removes this loudspeaker’s signal before embedding extraction.
The cACGMM-based mask refinement mitigates this effect and
fills in gaps in the estimated speech activity, but cannot com-
pensate for completely missed segments. With refinement, the
proposed system approaches the results of the state-of-the-art
SSND system [15] on LibriCSS. While SSND also employs a
spatio-spectral approach, it employs a fully data-driven model
to cascade diarization and separation. Due to the transformer-
based multi-channel EEND network used for diarization, it re-
quires matching training data on the corresponding microphone
array geometry. Compared to it, the proposed model only re-
quires training on VoxCeleb [36] for the embedding extractor
and is agnostic to microphone placement and geometry.

 Applied to the first microphone channel using pyannote 3.1 [5]

Table 3: Performance of the proposed system in the “semi-
static” setup. “pm” denotes the cpWER on the individual meet-
ings, “chg” on the concatenated meetings.

System  LibriWASN2go LibriWASNgoo  LibriCSS
pm chg pm chg pm chg

= Spatial 3.1 247 45 276 - -
A Proposed 3.4 3.3 3.6 4.0 - -
S Spatial 4.6 74.2 6.5 737 9.8 29.8
£ pyannote” 88 102 116 111 102 124
S Proposed 5.1 53 5.5 5.6 6.5 65

3.4. Spatio-spectral diarization for changing positions

So far, all evaluations consider a static scenario with con-
stant speaker positions. To verify the proposed, spatio-spectral
pipeline’s robustness against position changes, a “semi-static”
LibriCSS and LibriWASN scenario is created as follows. Two
meetings are concatenated so that each overlap subset (0S —
OV40) consists of 20 min long meetings, where the speaker po-
sitions change after the first half of the meeting. Here, on av-
erage five out of the eight speakers are replaced by new speak-
ers, while three speakers change location, resulting in meetings
with 12-15 different speakers but only 8 speaker positions. This
allows checking the system’s performance both in case of dif-
ferent sources from the same location and speakers who change
their position during the meeting.

Table 3 shows that the proposed system, similar to the
fully spectral pyannote pipeline, only marginally degrades when
switching from a per-meeting evaluation (pm) to the semi-static
scenario (chg). Compared to this, the spatial-only system, as
expected, cannot handle this scenario, since neither speakers
changing their position nor multiple speakers from the same po-
sition can be accurately detected solely through their TDOAs.

4. Conclusion

In this work, we presented an approach that combines spa-
tial segmentation with a spectral, embedding-based cluster-
ing model for the diarization of meetings without requiring
in-domain training data. The proposed model can be de-
ployed in compact and distributed microphone setups without
large performance differences and with only minimal parame-
ter changes. It was shown to robustly handle regions of overlap-
ping speech and speaker position changes. Because the spatial
subsystem is model-based instead of data-driven, it does not re-
quire in-domain training data and prior knowledge about the
microphone configuration.

In future work, we will focus on completely integrating the
speech enhancement stage into the segment-level beamforming
of the spatio-spectral pipeline and extend the TDOA segmenta-
tion to handle continuous speaker movements.
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