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Abstract—Network service header (NSH) is considered to
be a key enabler for the wide adoption of service function
chaining (SFC), but the availability of NSH-enabled components,
such as network functions, forwarders, or classifiers, is still very
limited. One reason for this is the lack of experimentation and
prototyping platforms for NSH.

This paper aims to rectify this shortcoming by introducing
a novel prototyping platform for NSH. Our platform uses an
emulation-based approach to build a lightweight environment
for containerized network functions and allows to create complex
SFC experiments and prototypes, as we show in our evaluation.
The presented platform is publicly available and aims to be a
rapid prototyping tool for researchers and developers.

I. INTRODUCTION

A key concept to deploy complex network services us-
ing network service virtualization (NFV) is service func-
tion chaining (SFC) as defined by IETF [1]. SFC allows
to combine multiple, possibly virtualized network functions
to larger services. Those functions are then called service
functions (SF) and are traversed by packets according to
the SFC configuration using one or multiple service function
paths (SFP) [2]. To simplify forwarding along an SFP, Quinn
et al. [3], [4] introduced network service header (NSH) as a
possible protocol to encapsulate and mark packets according
to the SFPs they are assigned to. The main benefits of NSH
are the possibility to create topology-independent SFPs and its
ability to pass arbitrary metadata between the involved SFs,
e.g., classification information.

However, in a recent survey, Medhat et al. [5] identify the
lack of NSH support in current switch and SF implementations
as one of the key challenges for SFC, which is limiting
its applicability and leading to unnecessary complexity in
today’s NFV solutions. We argue that one reason for the
lack of practical implementations are missing prototyping
environments in which NSH-enabled network functions can
be easily developed and tested. Even if major virtual in-
frastructure managers (VIM), like OpenStack, are currently
integrating SFC solutions into their platforms, their availability
for prototyping is still very limited. One reason for this is
that they focus on production-grade systems rather than on
systems that offer development support, e.g., debugging. Other
major drawbacks are their high resource requirements and
complicated setup procedures, making simple and fast local
deployments, e.g., on a developer’s laptop, infeasible.

To this end, we introduce a novel, lightweight prototyping
platform for NSH-enabled SFCs as the main contribution of
this paper. Our platform allows researchers as well as function
and service developers to quickly test their NSH-enabled com-
ponents and to validate and verify their functionality before
putting them into production. The presented platform can be
used in three different ways. First, an SF developer can use our
platform to validate and verify that an SF behaves correctly
in an NSH-enabled SFC setup. Second, SFC integrators can
test complex service chains with many SFs in a controlled
environment. Third, management and orchestration (MANO)
solutions can use our platform as an experimentation and test
backend to test their service orchestration functionality, e.g.,
to verify that their chaining logic requests correct forwarding
paths.

To simplify the prototyping process, our platform also
comes with a set of pre-packed SFC components such as
a generic NSH-enabled SF and a traffic generator for NSH
encapsulated traffic.

The remainder of this paper is organized as follows. We
first discuss existing work and the lack of suitable prototyping
tools in Sec. II. In Sec. III, we present and discuss the design
of our open source prototyping platform. We evaluate the
functionality of our prototype in Sec. IV and conclude in
Sec. V.

II. RELATED WORK

Besides the RFCs mentioned in Sec. I, the software-defined
networking (SDN) and NFV communities investigate a variety
of different aspects within SFC, e.g., regarding resilience
against failures [6], [7] or dynamic readjustment to changed
service requests [8]. So far, these research findings have been
mostly evaluated using simulation [6], [8] or heavyweight
testbeds [7], which are not available to every developer
and hard to set up. Future evaluations can benefit from the
lightweight prototyping solution proposed in this paper.

Similar to our approach, Davoli et al. provide an imple-
mentation of an SFC control plane using NSH [9]. However,
our approach focuses more on enabling quick prototyping,
e.g., using lightweight Docker containers instead of complete
virtual machines. Furthermore, our platform reuses existing
Open vSwitches (OvS) for the data plane rather than deploying
separate service function forwarders (SFFs).
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We build our NSH-based prototyping platform on our vim-
emu emulation platform, formerly known as MeDICINE [10].
This platform allows realistic emulation of arbitrary network
topologies with multiple Points-of-Presence (PoPs) as well as
the execution of real network services consisting of container-
based SFs. This emulation platform is highly scalable and can
efficiently emulate hundreds of PoPs [11]. This makes it a per-
fect fit for lightweight NSH prototyping and large-scale NSH
experiments. Other emulation platforms like Mininet [12],
Maxinet [13], or VLSP [14] are not suitable for prototyping of
SFC approaches as they do not emulate NFV infrastructure,
to which hosts can be added or removed at runtime and be
chained dynamically. In contrast to vim-emu, they do not
provide standard VIM interfaces, which allow using MANO
systems for managing chained network services. While VLSP
provides some support for attaching MANO systems, it does
not allow executing real-world SFs.

Pelle et al. [15] provide a framework for troubleshooting
and debugging SDN, but it does not focus on quick proto-
typing of SFC. Similarly, ESCAPE [16] is not suitable for
quick prototyping of SFC approaches as it focuses more on
orchestration between non-emulated PoPs. Finally, simulation
approaches [17]–[19] do not support real SF implementations
and can thus not be considered as prototyping environments.

III. A PROTOTYPING PLATFORM FOR NSH-ENABLED
FUNCTIONS AND SERVICES

To solve the problem of missing prototyping platforms for
NSH-enabled SFs, we first collected the requirements that
such a platform should fulfill to properly support develop-
ers: (i) The platform has to be able to quickly deploy the
prototyped SFs. This includes the execution of SFs written in
different programming languages using arbitrary frameworks
and libraries. (ii) A developer should be able to configure
arbitrary network topologies in which SFs or complex SFCs
can be tested. (iii) The created test networks should allow
to transport and deliver real network traffic and implement
the correct forwarding behavior of NSH-encapsulated packets.
(iv) A prototyping platform should seamlessly integrate with
other tools commonly used in the NFV landscape, e.g., MANO
systems.

Based on these requirements, we developed our novel
prototyping platform that uses an emulation-based approach
to create arbitrary complex network topologies with multiple
PoPs. We based this platform on our NFV emulator vim-emu
initially presented in [10]. This emulator allows to emulate
large multi-PoP NFV scenarios on a single physical or virtual
machine and can be deployed and started within seconds [11].
The emulation part is based on Containernet [20] and the
links between the involved PoPs can be configured with user-
selected delays, bandwidth, and loss rates. SFs can then be
deployed as lightweight Docker containers in each of the
emulated PoPs and execute arbitrary software as long as it can
be packaged inside a Docker container. These features satisfy
our previously defined requirements (i) and (ii). On top of this,
vim-emu provides an API endpoint for each emulated PoP that

vim-emu
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Resource
API

Endpoint
API

Containernet
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Endpoint ...PoP 1

Endpoint
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Endpoint
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Fig. 1: Extended vim-emu architecture with additional SFC
controller and API.

mimics the API of an OpenStack-based VIM and can directly
be consumed by existing MANO solutions like OSM [21].
This feature provides the basis to satisfy requirement (iv).

However, the existing version of vim-emu has no support for
NSH-based SFC and only provides a very simplistic chaining
model using VLAN tags statically assigned to SF ports. Hence,
we address requirement (iii) by extending vim-emu as shown
in Fig. 1 and adding support for NSH [22]. We describe those
extensions in the following sections.

A. Adding NSH Support to a Multi-PoP Emulator

Starting from the bottom, we first look at the networking
layer of vim-emu and identify the required changes to support
NSH. Each emulated network topology consists of multiple
PoPs and each PoP in a vim-emu emulation is represented by a
single virtual SDN switch instance. Thus, every PoP simplifies
its internal network using a big-switch abstraction, turning an
emulated multi-PoP topology into a much simpler network of
virtual switches as shown in Fig. 2. All these switches can be
controlled by a single SDN controller, fitting to the IETF SFC
architecture and NSH design, which expects to be deployed
in a single control domain [3].

The next question is whether the used switches sup-
port NSH encapsulated packets, i.e., match the NSH fields,
and can be used as service function forwarders (SFF) [2]?
Fortunately, OvS already comes with experimental support
for NSH starting with version 2.9. It supports the in-
stallation of NSH-specific rules using either its command-
line client (ovs-ofctl) or OpenFlow using the extensible
match (OXM) feature introduced in OpenFlow 1.2. Since
vim-emu is based on Containernet [20], which is a fork of
Mininet [12], OvS switches can be used within the emulated
networks. After manually updating the used switches, NSH
support is available in vim-emu networks.

Directly using the NSH support of the involved switches
comes with the benefit that our platform can use Ethernet as
transport protocol for the NSH encapsulated packets as indi-
cated in Fig. 2. It does not need to use more complex tunnel
setups like production-ready solutions do, e.g., OpenStack.
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Fig. 2: Emulated network scenario with five interconnected
PoPs and five Docker-based SFs deployed among them.

This is enabled by the previously mentioned simplifications
of the emulated networks, putting all PoPs and their switches
into a single Layer 2 domain. This comes with the benefit that
a developer can easily dump and check the network traffic at
all interfaces involved in an experiment. However, the draw-
back of this simplification is that debugging of tunnel setups
requires some additional manual work. But this is usually out
of scope for function and service developers who consume the
transport functionality offered by target platforms.

Once NSH is supported by the underlying network emu-
lation and requirement (iii) is satisfied, the control layer of
vim-emu can be extended as shown in Fig 1. This extension
is twofold. First, an SFC controller component is added
to the emulator core which translates high-level chaining
requests into low-level rules and installs them into the involved
switches as described in Sec. III-B. Second, we extended vim-
emu by additional SFC APIs that allow a user to create and
configure SFPs between the deployed functions (Sec. III-C).

B. SFC Controller

The SFC controller is added to the emulator core and
receives chaining requests from the SFC API. These requests
contain the identifiers of the ports, i.e., network interfaces of
the SFs, to be chained. The controller then translates those
high-level chaining requests and installs the resulting rules
in the switches of the emulated topology. This process uses
the available knowledge about the topology to calculate the
shortest path (using number of hops or emulated link delays)
between the two SFs that are about to be chained. It generates
the so-called rendered service path (RSP) [2], containing a list
of all SFs and SFFs that should be traversed by the packets
assigned to the path. Our current prototype simplifies the SFC
model at this point by only using the first available path
between two SF ports, instead of supporting multiple paths and
additional load balancing features like defined by the IETF [2].

In our prototype, we opted for a custom implementation for
this SFC controller based on the Ryu SDN controller [23].
We picked this approach over existing SFC implementa-
tions provided by SDN controllers like OpenDaylight [24],
firstly because they are heavyweight and would destroy the
lightweight nature of the presented platform. And secondly,
their SFC implementations focus on production-grade systems
and are tailored to interface with existing cloud deployments,

e.g., they deploy their own OvS instances as SFFs which does
not fit to our needs.

C. SFC Application Programming Interface (API)

As vim-emu already comes with APIs that mimic the
OpenStack northbound interface to start, stop, and config-
ure SFs inside the emulated PoPs, we aligned our chaining
API to OpenStack as well. As a result, we added a new
REST interface to vim-emu that offers OpenStack-like API
endpoints to create, list, update, and delete port_pairs,
port_pair_groups, as well as port_chains. Using
OpenStack’s SFC model [25], a user of our prototyping
platform can configure SFPs by creating port_pairs be-
tween the network interfaces of the deployed SFs, group
them to port_pair_groups, and finally chain them to
a port_chain. With this, we satisfy requirement (iv) and
make our platform compatible to existing MANO solutions
that can consume this OpenStack-like SFC API. To support
inter-PoP chaining, we provide a single chaining API endpoint
for all PoPs of an emulated network, instead of providing one
endpoint per PoP.

D. Simplified Prototyping using Pre-packed SFC Components

Having a prototyping platform for NSH-enabled SFs avail-
able is already helpful. But we noticed that some easy-to-
use, pre-packed NSH-enabled SFs would support developers
to quickly setup NSH experiments and to experiment with
complex SFCs. As a result, we added a pre-packed NSH-
enabled forwarder SF as well as a basic NSH traffic generator
SF to our prototype. The forwarder receives NSH-encapsulated
packets on its network interface, logs it for debugging and
analysis purpose, decrements the service index (SI) field in the
NSH according to the IETF defined behavior [3], and outputs
the packets on its network interface. The traffic generator SF
can be used to generate flows of NSH-encapsulated packets
with a given rate and configurable NSH contents. Both SFs
are available as Docker images and can directly be deployed
on our prototyping platform. We used them for the evaluation
presented in the next section.

IV. EVALUATION

Using our platform prototype, we performed a qualitative
evaluation to verify that our platform works and correctly
forwards NSH-encapsulated traffic. To do so, we created a
complex SFC that consists of one traffic generator (TG) and
five forwarder SFs which are deployed on two PoPs as shown
in Fig. 3. The traffic generator is located at the beginning of
the SFC and mimics an SFC classifier [2] that encapsulates
incoming traffic with NSHs. We then establish a total of
six different SFPs among the available SFs as shown by the
colored lines in Fig. 3: SFP1 (red), SFP2 (green), SFP3 (blue),
SFP4 (red dashed), SFP5 (blue dashed), and SFP6 (green
dashed). These paths are grouped (by color) to pairs and the
dashed paths represent alternatives to the solid paths. They are
used to show how our platform can redirect packets when their
SFP identifier is changed during an experiment. SF3 plays a
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special role in this setup, since this SF can reclassify packets
from SFP2 to SFP6 and thus redirect the traffic from SF4 to
SF5. We exploit this feature in our evaluation to demonstrate
reclassification at runtime and the use of NSH metadata in our
platform.

SF2

SF3

SF4

SF5

SFF1 SFF2

SF1TG

PoP1

PoP2

SFP1

SFP2

SFP3
SFP5

SFP4

SFP6

Fig. 3: Evaluation experiment setup over two PoPs: TG
injecting packets into SFC with five SFs and six different SFPs.

During an experiment, the traffic generator generates a pre-
defined amount of packets with a given rate for each of the
SFPs and sends them to the SFC. Detailed numbers about the
generated traffic are shown in Tbl. I.

TABLE I: Generated traffic per SFP

color path id. rate packets sent
∑

packets sent

red SPF1 8 pkt/s 60 304SPF4 8 pkt/s 240

blue SPF3 24 pkt/s 380 580SPF5 24 pkt/s 200

green SPF2 16 pkt/s 440 451SPF6 16 pkt/s 0

In each SF, received packets are identified by their SFP
identifier and the number of packets seen per SFP is logged.
This allows us to verify that the right number of packets,
belonging to the right SFP, traverses the correct set of SFs.
Fig. 4 shows these counters for each SF and verifies that
the expected amount of packets has been seen (indicated
by horizontal lines). It shows that during the experiment,
no packets were lost nor forwarded to the wrong SFs. It is
important to note that this experiment focuses on verifying the
correct forwarding behavior of the platform. We intentionally
do not measure the maximum forwarding performance of the
SFC because this only depends on the performance of the used
OvS switches in the system and is out of the scope of this
paper. A user of our platform can in general expect that the
forwarding performance of the tested SFCs is similar to the
performance achieved by Containernet [20] or Mininet [12]
experiments not using NSH that are executed on a similar
machine.

Once verified that the total number of packets seen by
each SF is correct, we investigate a more dynamic scenario
in which we change the assigned SFPs of the generated traffic
and activate the reclassification in SF3 at pre-defined points
in time. We identify those changes with the following events:

SF1 SF2 SF3 SF4 SF5
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Fig. 4: Total packets received per SFP in each SF during the
experiment and the expected values (dotted lines).

e1: The traffic generator stops the generation of packets for
SFP1 and starts to generate packets for SFP4 ⇒ SF1 does
not see red packets anymore. SF2 and SF4 still see the
red packets.

e2: SF3 starts to reclassify SFP2 packets to SFP6 packets ⇒
SF4 does not see green packets anymore and SF5 starts
to receive green packets.

e3: Generation of SFP3 packets is stopped and SFP5 traffic
is generated instead ⇒ SF1 does not see blue packets
anymore and SF3 still sees blue packets.

Fig. 5 contains these events and shows the counters for
the packets seen per SFP over the total number of generated
packets for each of the SFs in the experiment. It verifies that
the correct number of packets arrives at the correct SFs. It also
shows how the three events impact the flow of the packets in
the system, e.g., how packets marked with SFP1 and SFP2
disappear in SF1 at event e1 and e3, respectively.

A special case in this experiment is marked by event e2.
At this point in time, SF3 starts to reclassify packets marked
with SFP2 and changes their identifier to SFP6. As a result,
the involved SFFs forward the packets to SF5 instead of SF4.
This also explains why we do not need to generate SFP6
traffic as shown in Tbl. I. To trigger the event in SF3, we
exploit the metadata field of NSH: Once SF2 has seen more
than 200 packets of SFP2, it sets a flag in the NSH metadata
field of the following packet. SF3 then reacts to this flag in
the metadata field and starts the reclassification. This example
shows how an SFC with dynamic reclassification mechanisms
can be prototyped in our platform and how developers can
easily play with the advanced features of NSH, e.g., metadata
transport between SFs. Finally, our evaluation shows that the
developed prototype works correctly and can be used to locally
prototype complex SFCs.

V. CONCLUSION

NSH can be considered as one of the key enablers for the
wide adoption of SFC. Using our novel prototyping platform,
researchers and developers are enabled to quickly prototype
NSH-enabled components or test novel service management
systems against an easy-to-deploy, NSH-enabled platform. The
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Fig. 5: Packets received per SFP over the total number of packets sent to the experiment SFC. One plot per SF and vertical
markers for events e1, e2, and e3.

presented platform is very lightweight and still allows for
experiments with complex SFCs using advanced NSH features,
such as metadata-triggered reclassification, as shown in our
evaluation. We published1 our platform under Apache 2.0
license and plan to continue its development, e.g., by adding
support for load-balanced SFPs.
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