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Abstract—In recent years, a variety of different approaches
have been proposed to tackle the problem of scaling and placing
network services, consisting of interconnected virtual network
functions (VNFs). This paper presents a placement abstraction
layer (PAL) that provides a clear and simple northbound in-
terface for using such algorithms while hiding their internal
functionality and implementation. Through its southbound in-
terface, PAL can connect to different back ends that evaluate
the calculated placements, e.g., using simulations, emulations, or
testbed approaches. As an example for such evaluation back ends,
we introduce a novel placement emulation framework (PEF)
that allows executing calculated placements using real, container-
based VNFs on real-world network topologies. In a case study,
we show how PAL and PEF facilitate reusing and evaluating
placement algorithms as well as validating their underlying
models and performance claims.

I. INTRODUCTION

Management and orchestration (MANO) of network ser-
vices are an integral part of network function virtualiza-
tion (NFV). MANO systems deploy network services, con-
sisting of interconnected virtual network functions (VNFs), by
placing the individual VNFs at different nodes in the network.
To tackle this placement problem, a wealth of optimization
problems and algorithms have been formulated in recent
years [1], [2], [3], [4].

Currently, it is difficult to use these algorithms in practice
since their usage (e.g., inputs and outputs) and capabilities vary
strongly. Some algorithms focus on the mapping of VNFs to
the substrate network and routing of traffic between them [1],
[2], [5], others also consider scaling [4], [6], i.e., dynamically
deciding the number of VNF instances (horizontal scaling) and
their assigned resources (vertical scaling). Selecting among the
available algorithms can be challenging since their realistic
performance cannot be easily tested and validated. While
performance can, in principle, be realistically evaluated using
network emulators, most network emulators [7], [8], [9] do not
support important aspects of NFV such as service function
chaining (SFC). Moreover, it typically requires significant
manual effort to start the calculated placements of different
algorithms in emulation as it requires retrieving the relevant
placement information, starting the network emulation, de-
ploying VNFs, and interconnecting them correctly. Hence,
only few authors of placement algorithms use emulation for
their evaluation [3], [10].

Similarly, it is difficult for researchers to reproduce and
compare results from different placement algorithms since

preparing inputs and analyzing outputs in the custom format
of each algorithm is cumbersome and time-consuming. Fur-
thermore, the various algorithms use different model assump-
tions, e.g., regarding characteristics of network services or the
network infrastructure, leading to different, incommensurable
performance claims that cannot be meaningfully compared.
For example, the end-to-end delay of placed services is often
assumed to be equal to the sum of edge delays along the paths
of connected VNFs [1], [2], [4]. Other placement algorithms
use more sophisticated models, taking more real-world effects
into account, e.g., VNF processing [5], scheduling [11], queu-
ing and virtualization [12], or synchronization [13]. Hence,
even for the same calculated placement, different algorithms
may claim different end-to-end delays. It is non-trivial to
validate these model assumptions and their resulting claims
since existing simulation or emulation platforms do not easily
support realistic evaluation of calculated placements.

To overcome these shortcomings, we present two main
contributions. First, we define a simple, generic placement
abstraction layer (PAL) with a northbound and a southbound
interface (Sec. III). The northbound interface defines a con-
sistent structure of inputs and outputs for interacting with
arbitrary placement algorithms while hiding their internal
complexity. The interface is simple, independent of a place-
ment algorithm’s functionality, and easy to implement. At the
southbound interface, evaluation back ends connect to PAL to
support realistic simulation, emulation, or even real testbed
deployment of calculated placements. PAL coordinates the
exchange of information (e.g., calculated placements) between
the placement algorithms and evaluation back ends, masking
their internal technical details.

Our second main contribution is a novel, open-source place-
ment emulation framework (PEF) that integrates with PAL
as possible evaluation back end (Sec. IV). PEF allows to
test calculated placements with real, container-based VNFs
in emulated networks using real-world network topologies.
The deployed service placements can then be exposed to
synthetic or trace-based traffic that is sent through the service
chain to obtain realistic performance measurements. In a case
study, we use PAL and PEF to evaluate placements of three
different algorithms (Sec. V). By comparing the emulation
measurements with the algorithms’ performance claims, we
perform a “reality check” of the calculated placements and
the model assumptions of the different placement algorithms.
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II. RELATED WORK

In recent years, the problem of VNF placement has been
formalized and tackled by many authors, leading to a variety
of different optimization problems and algorithms [14]. So
far, there is no generic interface that abstracts the internals
of these placement algorithms while clearly and consistently
defining their inputs and outputs. Only the SONATA MANO
system [15] internally defines an interface for the communica-
tion with placement algorithms through its placement plugin.
However, this interface is tailored to the needs of SONATA,
e.g., using their specific service descriptors. As opposed to
this, the northbound interface of our proposed PAL is more
generic and enables simple interaction with any placement
algorithm. Similarly, our interface allows much smaller and
simpler service specifications than the standardized approach
by ETSI [16]. Their service specification is very compre-
hensive, trying to define all possible service details, but the
resulting service descriptors tend to be complex and often
contain details that are irrelevant for VNF placement algo-
rithms (e.g., monitoring information). Our approach focuses
on a minimal specification of the most relevant information
for VNF placement but can be extended flexibly. For example,
this also allows to include information from an existing ETSI
network service descriptor or a reference to it.

Furthermore, PAL allows connecting generic back ends to
evaluate calculated placements. As an example, we provide
PEF, a powerful placement emulation framework that extends
the MeDICINE emulation platform [17], [18]. In contrast to
other generic network emulators [7], [8], [9], MeDICINE
focuses on typical NFV scenarios with multiple points of
presence (PoPs) on which arbitrary VNFs can be deployed. It
supports the execution of real-world VNFs, given as Docker
containers that are interconnected into complex forwarding
graphs, on arbitrary, user-defined multi-PoP topologies.

Due to missing support for placement algorithms, only
few authors have expended the effort to use generic network
emulators to evaluate their placement algorithms. For example,
Ma et al. [3] have built a custom emulation environment for
an extensive evaluation of their placement algorithm, using
Mininet [7] and implementing their own placement module
for an SDN controller. Gebert et al. [10] demonstrate their
placement algorithm focusing on wireless LTE networks and
using a proprietary emulator by Nokia. These placement
emulation prototypes are tailored to the specific use case of
the authors and are not accessible to others. In contrast, our
PEF is openly available under Apache 2.0 license [19] and
can easily be used with any placement algorithm through the
abstraction of PAL.

III. PLACEMENT ABSTRACTION LAYER (PAL)
Fig. 1 provides an overview of the architecture and the

workflow with our proposed PAL. Attached placement algo-
rithms that implement the northbound interface can be trig-
gered in a uniform manner through PAL. PAL sends placement
requests and the algorithms return a placement response with
the calculated placement. Leveraging the consistent structure
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Fig. 2. Structure of a placement request

of placements, different evaluation back ends can easily be
connected to PAL through the southbound interface. As an
example evaluation back end, we present an open-source
placement emulation framework in Sec. IV.

A. Northbound: Interaction with placement algorithms

Based on an analysis of various existing placement algo-
rithms, we define placement requests and responses to contain
only few mandatory fields that represent the quintessence of
the varying information required by different algorithms (e.g.,
involved VNFs and their interconnections). This allows to
keep placement requests and responses simple and ensures a
consistent structure of inputs that are minimally required to
perform VNF placement. Hence, the same placement request
can be used to trigger different algorithms. The mandatory
information can be extended by adding further, optional fields
that are only required by some algorithms (e.g., certain VNF
details). Algorithms can then simply ignore any additional
information that they do not need. Conversely, they should
inform users if they need more details to be included in a
placement request.

1) Placement request: Fig. 2 shows the structure of a
placement request sent through PAL to trigger a placement
algorithm. Each request must specify a network, at least one
service, and at least one source. The gray notes illustrate
optional annotations containing further input details.
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The underlying network G = (V,E) consists of nodes V

and edges E. Nodes represent NFVI PoPs at different ge-
ographical locations, interconnected by edges. Additional,
optional fields may specify the geographic location or compute
capacities of nodes and the data rate or delay of edges.
For implementation, we suggest using the GraphML format,
which is used by the popular libraries TopologyZoo [20] and
SNDlib [21] and can easily be converted into other formats.

Network services consist of VNFs that are interconnected by
virtual links (vLinks). For placement algorithms that support
scaling, a specification of different involved VNF compo-
nents is sufficient. For algorithms without scaling support,
the service specification needs to include a list of already
scaled VNF instances. VNFs can be annotated with VNF type,
resource requirements, etc. vLinks specify which VNFs are
interconnected, thus defining the VNF forwarding graph. Each
vLink is unidirectional with a source and a destination VNF.
To specify bidirectional connections, two vLinks must be used.

Sources, e.g., users or sensors, are located at different nodes
in the network, requesting a service. Thus the list of sources
contains the location and the requested network service per
source. Additionally, they can define traffic characteristics,
e.g., the rate and type of requests leaving each source or
their combined data rate. Placement requests can also contain
further optional inputs. This allows, for example, to specify
fixed target locations where placed service chains need to end.

2) Placement response: After receiving a placement re-
quest, placement algorithms calculate a placement response
and return it to PAL. Fig. 3 shows the structure of such a
placement response, mapping VNF instances to network nodes
and specifying to which network service they belong. Since the
number of VNF instances and their interconnections (vLinks)
may be decided dynamically by placement algorithms that
support scaling, the placement response also needs to specify
the source and destination of these vLinks. This mandatory
information about VNF mapping and vLinks may be extended
by further annotations, e.g., vLinks may specify the calculated
routes between interconnected VNFs.

Placement responses may contain performance claims about
the calculated placement, e.g., specifying the expected de-
lay between connected VNFs and on the end-to-end ser-
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Fig. 3. Structure of a placement response

vice chain. Placement algorithms compute these performance
claims based on their internal model assumptions. These
claims can then be validated using an evaluation back end.

B. Southbound: Interaction with evaluation back ends

PAL allows attaching generic back ends to its southbound
interface that can be used to evaluate calculated placements.
These evaluation back ends are isolated from the placement
algorithms through PAL such that they do not have to interact
with the algorithms directly. Instead, users choose which
placement algorithm and evaluation back end to use and PAL
coordinates the exchange of placement information.

Each evaluation back end connects to PAL through a small
but important adapter component that starts the calculated
placements on the back end. It does so by translating the
consistently defined VNF mapping and interconnections into
corresponding instructions for the back end. For example, the
adapter of our novel PEF starts VNF containers and configures
their network (see Sec. IV). The adapter can also use optional
fields, e.g., the VNF type, but should provide default values if
a field is not available in a placement response. In doing so,
the placement algorithms do not have to deal with technical
details that are required to turn an abstract placement result
into an executable emulation scenario.

Many evaluation back ends are conceivable in addition
to PEF, e.g., simulation platforms, like OMNeT++ [22].
Even globally distributed testbeds, like SoftFIRE [23], or
custom testbeds based on MANO systems, like OSM [24],
could be connected to enable placement experiments on real
NFVI PoPs. Hence, PAL allows to flexibly combine different
placement algorithms with various back ends to evaluate the
calculated placements.

IV. PLACEMENT EMULATION FRAMEWORK (PEF)

PEF is a novel, multi-PoP placement emulation framework
that integrates as possible evaluation back end for PAL. PEF
emulates calculated placements, enabling realistic measure-
ments (Sec. IV-A). To this end, we extended our existing
network emulation platform [17] by providing an adapter
that processes the received placement requests and responses,
automatically start and interconnect the involved VNFs, and
coordinates performance measurements (Sec. IV-B). We pro-
vide an open-source prototype of PEF available under Apache
2.0 license on GitHub [19].

A. Emulation and measurements

After receiving a placement from PAL, the adapter starts
the emulation using the underlying multi-PoP NFVI emulation
platform [17] as shown in Fig. 4. The bottom layer of the
emulation platform is able to emulate arbitrarily complex
multi-PoP topologies, including realistic inter-PoP delays and
bandwidth limits, e.g., taken from TopologyZoo [20]. Each
node in an emulated topology represents an NFVI PoP and
offers interfaces to start and stop container-based (Docker)
VNFs. The use of lightweight container technology allows
the platform to run hundreds of VNFs on a single physical
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machine or VM [25]. Running real Docker containers, it allows
to execute arbitrary, real-world VNF software, e.g., firewalls,
proxies, or intrusion detection systems.

Once the VNFs are started inside the emulated PoPs, they
are connected to complete service function chains using the
APIs of the emulation platform (Fig. 4, middle layer). This
chaining process is based on the custom routing computed
by the used placement algorithm. Our chaining approach uses
VLAN tagging to isolate different VNF forwarding paths and
allows to create chains that reach across any number of PoPs.
To do so, PEF automatically configures the involved SDN
switches along the specified paths. Hence, the underlying
emulation platform is a perfect fit for placement experiments
because it provides full control over the location of VNFs
as well as the traffic steering and chaining – going beyond
existing emulation solutions.

After PEF starts and interconnects the VNFs in the em-
ulation platform, users can execute arbitrary commands on
the running VNFs, even installing new software packages. In
doing so, users can perform any kinds of measurements with
the placed network service, e.g., to confirm its functionality
or to assess its performance. For example, iperf allows to
generate traffic, ping can be used to measure delays between
placed VNFs, and httping measures the end-to-end delay of
a placed service using HTTP requests. These measurements
provide realistic insights as they take side effects into account,
e.g., introduced by the involved protocol stacks and VNF
software components, which are often not considered in the
models of placement algorithms. Users may even imitate
and observe the effect of failures by deliberately removing
individual VNFs or vLinks of a running service deployment.

B. Adapter for placement processing

To start the calculated placements on the emulation plat-
form, PEF comes with an adapter that processes the place-

ments and corresponding network topology as follows.
For realistic network emulation, all network edges of a given

topology need to specify an edge delay. Alternatively, PEF
can use annotated geographical node positions from real-world
network topologies (e.g., from TopologyZoo [20]) to calculate
the distance between interconnected nodes and then derive
the corresponding edge delays. If neither are available, PEF
defaults to edge delays of 0 ms.

According to the specified type of placed VNFs, PEF
selects corresponding Docker containers to execute in the
emulation (e.g., firewalls, forwarders, or web servers). PEF
comes with a pre-configured Socat1 layer-4 forwarding VNF
and an Apache2 web server, which can be used to build service
chains of variable length if no VNF type is specified.

PEF automatically configures the network of the started
VNFs if no configuration details are specified in the calculated
placement. If a placement does not specify routes between
interconnected VNFs, PEF automatically computes and uses
the shortest paths according to edge delays.

Finally, the adapter coordinates automatic performance mea-
surements, by running commands like ping on the different
deployed VNFs, logging the results, and converting them into
convenient YAML format.

V. CASE STUDY

In the following case study, we use three different placement
algorithms with varying inputs to illustrate how PAL simplifies
the evaluation process of different algorithms (Sec. V-A). We
also demonstrate the capabilities of PEF by emulating the
calculated placements using real VNFs running on real-world
network topologies. We measure the delays of the deployed
services in emulation and compare these realistic delays with
the algorithms’ performance claims (Sec. V-B).

A. Simplified evaluation process

Whether developing new placement algorithms or adjusting
an existing one, the simple northbound interface of PAL can
be implemented with little effort since it is independent of the
algorithm’s functionality. We demonstrate this by integrating
three placement algorithms with PAL’s interface: One greedy
placement algorithm that minimizes delays between intercon-
nected VNFs and one dummy algorithm that places VNFs
randomly. Furthermore, we adjust the existing placement
heuristic by Dräxler et al. [4] (called bjointsp) to implement
the interface – again, only having to adjust the processing
of inputs and outputs, not the algorithm’s functionality itself
(affecting less than 10% of the algorithm’s code).

As underlying network, we use three real-world network
topologies taken from TopologyZoo [20]: A small network
with 11 nodes and 14 edges, a medium-sized network with
16 nodes and 37 edges, and the largest network in the
TopologyZoo with 197 nodes and 245 edges. PEF’s adapter
automatically calculates and sets the delays of all edges.
Furthermore, we emulate resource limits at the involved PoPs

1Socat man page: https://linux.die.net/man/1/socat (accessed May 4, 2018)
2Apache HTTP Server: https://httpd.apache.org/ (accessed May 4, 2018)
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Fig. 5. With increasing distance, the difference increases between measured
inter-VNF RTTs in emulation and claimed RTTs based on the model.

by setting node capacities such that each node can only host
at most one VNF at a time.

As network services, we use a linear chains of layer-4
forwarding VNFs and a web server VNF at the end of the chain
(three to five VNFs in total). For each service and network, we
evaluate placements calculated by each algorithm with sources
at different random locations.

To execute the case study, we used a machine with an Intel
Xeon E5-1660 v3 processor and 32 GB RAM. On this ma-
chine, the time to boot and configure our emulation framework
was always on the order of seconds or minutes. Even scenarios
with TopologyZoo’s largest network with 197 nodes could be
started in 2-3 min.

Instead of the numerous manual steps that are typically
required for evaluation (e.g., preparing separate inputs for each
algorithm, collecting and parsing results, manually starting
the emulation, etc.), PAL and PEF automated and greatly
simplified the whole evaluation process.

B. Placement emulation insights

In this case study, we do not focus on the quality of
the calculated placements but investigate the realism of the
algorithms’ underlying models and corresponding perfor-
mance claims. Here, the algorithms model the round-trip
times (RTTs) between interconnected VNFs as the sum of
edge delays. In fact, the RTTs between interconnected VNFs
based on this model are very similar to the measured emulation
RTTs, i.e., their absolute difference is very small (0-2 ms
in the medium network). While this means that the claimed
RTTs based on the model are already quite realistic for
the evaluated service placements, there are still systematic
differences between the modeled RTTs and the measured RTTs
in emulation.

Fig. 5 shows this difference for the RTT between intercon-
nected VNFs in relation to their distance (for placements in
the medium-sized network). For VNFs placed close together,
the RTTs measured in emulation are very similar to the
claimed RTTs based on the model, i.e., the difference is
close to 0 ms. However, for increasing distance between two
VNFs, model and emulation RTTs diverge, leading to an
increasing difference. For placements with faraway VNFs,
mostly calculated by the random placement algorithm, the
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Fig. 7. In all three networks, the model vs. emulation difference for the
end-to-end RTT clearly increases for SFCs with more VNFs.

inter-VNF RTT measured in emulation is 1-2 ms higher than
the modeled RTT. This difference is caused by the additional
PoPs and switches that are traversed in longer paths, which
are not considered by the model but lead to higher RTTs in
emulation.

Considering the overall end-to-end RTT of the deployed
service function chains (SFCs), there are also small but sys-
tematic differences between the measured emulation RTTs and
the modeled RTTs based on the sum of edge delays. Fig. 6
shows the emulation vs. model difference for the end-to-end
RTT in relation to the total interconnection distance of each
deployed SFC. It also indicates the number of involved VNFs
in each SFC (here, 3, 4, or 5 VNFs). As previously observed
for connections between two VNFs, longer SFCs (in km) also
lead to a slightly higher emulation vs. model RTT difference.
However, the main cause for divergence between end-to-end
emulation and model RTT is the number of VNFs in an SFC.
As each VNF introduces some processing delay, which is
not considered in the model used here, the end-to-end RTT
difference increases step-wise with a higher number of VNFs
in an SFC. As illustrated in Fig. 7, this effect can be confirmed
for placements in all three network topologies used in this case
study (here produced by the greedy algorithm).
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VI. CONCLUSION

The presented case study illustrates an example use case
of PAL and PEF, emulating placements produced by different
placement algorithms and comparing the emulation measure-
ments with the algorithms’ performance claims. For the given
service placements, the claimed delays based on the sum of
edge delays were already quite close to the emulation measure-
ments. Nevertheless, the evaluation still revealed systematic
differences between claimed and measured delays. This insight
can be used to improve the model assumptions, e.g., by
including appropriate VNF processing delays or additional
delays for longer paths between VNFs. Especially when deal-
ing with more complex models or services (e.g., considering
various queuing, processing, or virtualization delays), the
emulation with PEF is helpful to either confirm the correctness
of the used models or to uncover shortcomings that lead
to divergence between claimed performance and emulation
measurements.

PEF allows researchers to gain practical hands-on expe-
rience when working with their calculated placements. This
allows to identify possibly unexpected side effects of real
deployments. For example, the TCP 3-way handshake leads
to additional delay when setting up new flows but is typically
neglected in the models of placement algorithms. Similarly,
operators interested in using a placement algorithm for VNF
deployment, can easily test the algorithm and validate its
performance using PEF. While the emulation with PEF already
allows realistic placement evaluation, integrating other evalu-
ation back ends with PAL surely provides further interesting
evaluation insights.
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