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Abstract—Elastic deployments of virtualized network func-
tions (VNFs) can automatically scale the amount of used re-
sources in relation to their workload. This is often done by start-
ing new VNF instances or stopping old ones. A problem of these
scale operations is that most network functions are stateful and
their internal state is not automatically migrated when traffic is
redistributed. As a result, mechanisms are needed to exchange or
migrate internal network function state between VNF instances.
This paper presents a state management framework that creates
logically distributed state memory on top of elastically deployed
VNFs used to share state information between these VNFs. We
introduce a novel programming model that provides both a local
and a global view of the state to each VNF instance. Further, we
compare the performance of our prototype to a centralized and
a distributed in-memory database solution.

I. INTRODUCTION

Network function virtualization (NFV) implements network
functions, previously deployed as dedicated hardware boxes,
in software to execute them in virtual machines on cloud
infrastructure providing the benefit that additional resources
can be added or removed on-demand [1], [2]. This process can
be fully automated and the number of virtual instances of a
particular virtualized network function (VNF) can be changed
in relation to its workload, e.g., amount of processed traffic.

One of the main problems in creating such elastic VNF
deployments is the fact that many network functions are
stateful. Typical examples for this are network address trans-
lation boxes (NAT) that store mappings between ports and
hosts or intrusion detection systems (IDS) that keep track
of pattern matchings to detect attacks. The typical structure
of this network function application state can be divided
into two classes [3]. The first class contains global state
accessed independently of the processed traffic. The second
class contains partitioned state that consists of chunks of state
directly related to one or multiple network flows or sessions
processed by the network function. These state chunks can be
identified with the same information used to identify single
flows or sessions. For IP connections this is done by 5-tuples
consisting of source IP, target IP, source port, target port,
and protocol. In typical network functions most parts of the
application state is represented by the second class which can
easily be distributed across multiple VNF instances [3], [4].

A problem appears when an elastic VNF deployment is
changed and VNF instances are dynamically added to (scale-
out) or removed from (scale-in) the system. In such cases,

the flow or session assignments are changed to rebalance the
traffic in the system which leads lost state information on some
VNF instances.

One obvious solution to handle this in the scale-out case
is assigning only new connections to recently added instances
and keep existing connections on old instances that already
contain the corresponding state. Even though this solutions is
easy to implement, it may lead to imbalanced load situations
because connections are not moved away from overloaded
instances. For the scale-in case, the obvious solution is to
keep instances in the system as long as there are ongoing con-
nections assigned to them. But this comes with the downside
that scale-in operations may be blocked for an unpredictable
amount of time by long living connections. These problems
create the need of a state management system which is able to
automatically share and move application state between VNF
instances.

In this paper, we introduce the E-State framework. This
framework provides a novel approach to share application
state between elastically deployed VNF instances by using
logically distributed state memory that is accessed by each
VNF instance. With this solution, no central control appli-
cation is needed and the system becomes more fault-tolerant
and scalable. We introduce a proof-of-concept implementation
of our system and compare it to three other approaches: A
system without state management, a system with centralized
state memory, and a system which uses a generic distributed
memory solution not optimized for VNF state management.

The rest of this paper is organized as follows. We present
existing solutions in Section II. Section III explains our system
design and Section IV describes our prototype implementation
and its comparison to other solutions. Section V concludes.

II. RELATED WORK

This section presents three state management solutions that
explicitly exploit the structure of network function state before
discussing similarities and differences to our solution.

In the first approach, Olteanu et al. [5] propose a mechanism
that is inspired by virtual machine migrations. It moves
network function state from one VNF instance to another in
three steps. In the first step, the complete state is copied to the
target instance so that this instance is ready to process new
flows. In the second step, all new flows are forwarded from
the source instance to the target instance which processes them
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and allocates new state. The third step freezes the processing of
the remaining old flows on the source instance and moves their
flow-related state to the target instance. At the end, old flows
are redirected to the target instance by changing forwarding
rules on an SDN switch.

The second solution is called Split/Merge [3]. It is imple-
mented as a shared library that acts as a memory allocator for
network functions. It exposes an API that allows allocating
flow-related and globally shared state. A central controller
decides which state should be moved between the instances.
The approach implements a mechanism to merge state by
using custom combiner functions defined by the network
function developer.

The third framework is called OpenNF [6]. It provides
coordinated control of network function state and network
forwarding rules. This framework uses a central management
application to move state and flows from one instance to an-
other. To integrate a VNF into the system, it has to implement
a set of API functions to pull and push state information.
When the central management application decides to move
a flow from one instance to another, it pulls the state from the
source instance and pushes it to the target instance. During this
process, arriving packets are buffered at the controller until the
state is transferred to the target. The buffered packets are then
forwarded to the target instance. By using these mechanisms,
OpenNF is able to perform loss-free and order-preserving flow
moves. Two extensions of this approach [7], [8] add solutions
for direct state transfers between VNFs to protect the controller
from becoming the bottleneck when incoming packets are
buffered. However, the system management remains central-
ized in both extensions.

All these approaches utilize a centralized control component
to decide which parts of state are moved between VNF
instances. Our framework is unique in not relying on such
a centralized state management controller; rather, it utilizes
logically distributed state memory to receive state information
from other instances when they are needed. Olteanu et al. [5]
do provide a simple migration mechanism for VNF state. They
do not provide solutions to share global state between VNF
instances and each state item is always only visible on ex-
actly one instance. Split/Merge [3] provides custom combiner
functions to merge state from different instances which is
also possible with our solution. But Split/Merge’s combiner
functions are only executed when flows are consolidated on
one VNF instance and are not used to provide a global view on
the entire state space when needed. OpenNF [6] uses central
applications to control the state management. This requires
knowledge about the VNFs running in the system to decide
which parts of the state should be moved. In contrast, our
system reacts to flows moving in the underlying network and
does not depend on state management decisions taken outside
of the VNF instances.

Other more generic solutions to share common information
between VNF instances are distributed memory systems, like
a REDIS Cluster [9] or Apache Cassandra [10]. These ap-
proaches provide good scaleability but have no notion about

the structure of the managed state. Our solution, in contrast,
explicitly exploits the state structure and keeps flow related
information on the VNF instance that needs it.

III. A DISTRIBUTED STATE MANAGEMENT FRAMEWORK

We introduce the E-State framework, a flexible and scaleable
state management solution that enables elasticity for stateful
VNFs. E-State is built as a software library used to access
and share state information. In our design, every VNF instance
becomes one node of the distributed state memory and thus
the system automatically scales with the number of VNF
instances.

A. State Management with Global View

A network function can use E-State to store arbitrary chunks
of state data, e.g., a serialized data structure representing a
runtime object. We call these chunks state items. A simple
solution to share state items between VNF instances would
be to allocate them in a distributed data structure and write
all updates directly to this structure. The obvious problem of
this approach is the additional delay that is introduced when
one VNF instance frequently reads or writes items stored on
another instance1.

A better solution is to exploit the fact that most state items
are directly related to processed flows or sessions. All accesses
to these state items are performed by a single VNF instance
and accesses to other VNF instances are only needed when
the traffic assignment changes. As a result, E-State provides
an access pattern offering fast reads and writes to flow-related
state items of the local VNF instance and the possibility to
read state items on other instances when needed.

1) System Design: In the E-State framework each VNF
instance stores all its state items in its own local state memory
which is never written by other VNF instances. This results in
small access delays and ensures that each VNF instance has
a strictly consistent view of its own state items.

Even though this simple design would ensure that the
internal network function state is visible to our system, it does
not yet provide a solution to exchange state items between
VNF instances. To overcome this, the system offers a special
read operation that allows a network function to request state
items from all VNF instances in the elastic deployment. Using
this, a network function is always able to request global state
information about the entire elastic system. An example for
this, is receiving the match counter value from each VNF
instance of an elastic IDS system. The only thing the network
function developer has to take into account when global reads
are used is that they provide an eventual consistency model
instead of the strict consistency model provided by local
operations. However, our framework offers the flexibility to
implement stricter consistency models so that it can be used as
an experiment platform for different state sharing approaches.

1Similar to page trashing in distributed shared memory.
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Fig. 1: State management with local and global view

2) Reduce Operation: A global read operation receives a
list that contains up to n state items where n is the number of
VNF instances in an elastic deployment. Such a list does not
provide a consolidated view on the system and needs some
processing to compute a global view of the requested state
items. To do so, network function developers can specify a
reduce function that maps a list of state items to a single,
consolidated state item representation. A typical example for
this is a reduce function that is passed a list of counter values
and returns their sum or average. This concept is comparable
to custom merge functions presented in [3] but provides more
flexibility since a global read can be applied whenever a
network function needs it.

Figure 1 demonstrates the E-State concept. It shows three
instances of a network function (e.g. three VM instances or
containers) all linking against the E-State library connected
by a management network. Each instance allocates different
state items in its local state memory depending on the flows
they process (State.A - State.E). Some state items appear on
multiple instances since a local version of the contained state
is allocated by each VNF instance. The figure shows how these
replicated state items can be fetched by other instances with
the get global operation and how a consolidate state item that
reflects the global view on the system is computed on-the-fly
by reduce functions.

Such reduce functions can not only be used to combine state
items but also to select a particular item out of the collection
of state items stored on different instances. The most common
use case for this is finding the state item that was updated most
recently. To do so, a reduce function needs a happen-before
relationship between state item updates which can, e.g., be
based on real-time timestamps with the risk to produce wrong
relationships caused by clock drifts. A better solution for this
is using a vector clock mechanism which provides happen-
before relationships between state items on different instances
[11] with the downside of additional communication overhead
for synchronization.

3) Flow Reassignments: The main use case of our state
management system are scenarios in which VNF instances
are added or removed and the flow assignment is changed.
In such cases, redirected flows appear on their target VNF
instance, which needs to fetch the corresponding flow-related
state items from the source instance. This is done with the
global read operation and does not require an explicit fetch

or move functionality used by other approaches [3], [6]. The
SDN controller can optionally support this process by marking
packets of moved flows, e.g., by setting their VLAN tags.
Using this, the target VNF instance can easily distinguishing
new flows from redirected flows and does only need to perform
global reads when a redirected flow is detected.

B. Programming model and API

The E-State API is inspired by a key-value store and
provides three basic functions: set, get, and delete. Further,
it provides a get global function. They are defined as follows:

• set(key, state_item) Creates or updates state
items stored locally in the shared library.

• get(key):state_item Returns the value of a state
item stored in the local library. This gives a local view
to the system.

• del(key) Removes the specified state item from the
local state store.

• get_global(key, red_func):state_item
Returns the result of the specified reduce function that
is applied to all state items stored on all connected VNF
instances matching the given key. This function has no
side effects on any VNF instance and does not change
state items.

The global view is requested with the get_global API
call that is passed a reduce function pointer as second parame-
ter. Such a reduce function has to have the following signature:

• red_func(list<state_item>):state_item

The function is passed a list of state items and returns
a combined representation of them. This allows network
function developers to specify how the mapping from multiple
state items to a consolidated global view should be done. It is
recommended that the given reduce function is commutative
since the order of passed state items is not fixed and may
change between calls.

Our system uses arbitrary strings as keys to identify different
state items. We do not fix the used key structure and leave it to
the network function developers to specify their own schemes
(e.g., 5-tuples to identify flows). These keys are checked for
equality when a specific state item is requested. In addition
to this, the get_global function allows to use wildcard
symbols in its keys based on regular expressions that are
matched against existing keys.

IV. PROTOTYPE IMPLEMENTATION

This section describes the prototype implementation of our
E-State framework and compares it to a system without state
management as well as to a centralized and a distributed state
memory solution [12].

A. System Design

The main component of our system is a shared library,
called libestate, that is implemented in C++ and offers a stan-
dard C interface against which network function applications
can link. The interface offers all functions described earlier,
including a get_global function that expects a pointer to
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Fig. 2: Design of our shared library including a communication
manager that interacts with other libestate instances

a custom reduce function or the name of a predefined reduce
function as one of its arguments.

Figure 2 shows the main modules of our library. The State
Manager is responsible for providing the interface to the
network function and to control all internal procedures. It
interfaces with the Local State Store, which is a key-value store
responsible for holding state items registered by a network
function. To enable our library to receive state items form
other instances and thus to obtain a global view of the entire
state space, we introduce a third module called Communication
Manager. This module uses the distributed messaging system
ZeroMQ [13] as communication backend. It contains a Request
Subscriber module which runs in an independent thread and
replies to state requests from other instances.

E-State uses a publish/subscribe communication pattern
together with ZeroMQ’s push/pull pattern to do global state
requests. To do so, each network function instance is always
subscribed to all other instances of the same elastic deploy-
ment. Each instance is then able to publish get_global
requests and the other instances reply to it.

B. Prototype Evaluation

We tested our libestate prototype in a Mininet [14] envi-
ronment running on a machine with Intel(R) Core(TM) i5-
4690 CPU @ 3.50GHz and 16GB memory. Figure 3 shows
the topology used for our experiments. It consists of a source
host that sends iperf-generated TCP traffic to a target host
over an elastic cluster of VNF instances which forward and
monitor the traffic. These VNF instances are Mininet hosts
with two ethernet interfaces configured as ethernet bridges.
All VNF hosts are also connected to a management network
for communication between libestate instances. The two SDN
switches between source and target are controlled by a custom
SDN application running on top of a POX controller which
proactively installs forwarding rules on the two switches
to control the traffic distribution and flow moves between
available VNF instances.

Each network link in our topology has set a maximum
bandwidth of 1 Gbit/s and no artificial delay. We use Mininet’s
CPU sharing limitation feature for each Mininet host to emu-
late a realistic scenario in which an additional VNF instance
corresponds to additional computation resources. Without this,
a higher number of VNF hosts in the system would not result
in performance improvements because the CPU time available
for each single Mininet host would decrease. We limited the
hosts as follows: Source and target host are limited to 20%
CPU each and every VNF instance is assigned to 2.5% of the
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Fig. 3: Mininet topology used for prototype evaluation

overall CPU time summing up to 40% CPU usage when the
maximum of 16 VNF hosts are active. The remanning 20%
are used for other components, like the SDN controller and
the centralized state memory used in one of our experiments.
We use a custom network function implementation that runs
in each VNF host and performs pattern matchings on sniffed
traffic like an IDS.

Our first experiment demonstrates how an IDS can benefit
from our state management system when it is scaled out and
in at runtime. For the scale-out case, the experiment starts
with a single VNF instance (NF.1) over which all TCP flows
are forwarded. After about 55 seconds, the scale procedure
is initiated and half of the flows are rerouted to a new VNF
instance (NF.2) by installing additional rules on the two SDN
switches. Figure 4 (top) shows the scale-out scenario. The
vertical dashed line marks the point in time at which scaling
starts. The left part of the figure shows the values of the pattern
match counter on both instances. The experiment is executed
two times. At first, with a baseline system without any state
sharing functionality and second with our libestate system. In
the baseline case, the second instance starts its match counters
from zero after flows are moved to it, even though the first
instance has already detected intrusive packets. This might
lead to missed detections and influences the correctness of
the overall IDS system. In the libestate case, the state for
the moved flows is transferred to the second instance and
the operation can continue without information loss. The right
part of the figure shows how the overall performance of the
elastic VNF deployment increases after the system is scaled
out. Figure 4 (bottom) shows the scale-in case in which the
experiment starts with two VNF instances and then moves all
flows to NF.1 after about 55 seconds. It shows how the match
counter of NF.2 stops counting in the baseline version and the
information is lost.

The second experiment evaluates the scaling behavior of
our state management system with an elastic deployment of
2 to 16 replicated VNF instances. It compares our libestate
prototype to three other approaches using the average number
of processed packets per second to show the overall system
performance and the average state item request delay to
show the state sharing performance. First, we compare to the
default IDS implementation not using any state management
mechanisms, called baseline2. Second, to a state management
system (centralmem) that uses a single REDIS instance [15] to

2Global values of baseline experiment are calculated offline by summing
up the local values logged on each VNF instance.
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Fig. 4: Match counter value of two IDS instances (left) and
overall system performance before and after scale operation
(right). Scale-out case (top) and scale-in case (bottom).

maintain the state of all VNF instances. Third, we compare to
a distributed REDIS cluster (clustermem) that runs one REDIS
node on each VNF instance and can be used through the same
API like the centralized version.

The left plot of Figure 5 shows how the performance of
the IDS system increases when additional instances are added
and how the scaleability of a system with centralized memory
is limited. This is, on the one hand, caused by additional
delay introduced by turning each state access into a network
request, and on the other hand, by the maximum number of
requests a centralized solution can serve. It also shows that a
distributed memory solution does not provide benefits because
state items are not stored on the VNF instances which access
them most often. The performance of our library, in contrast,
is near to the baseline performance since most of the state
accesses are done locally and the global state is requested less
often. It is important to note that the baseline implementation
does not share any state information when flows are moved.
Our system, in contrast, maintains all state information and
provides comparable performance, which is a clear advantage.
However, an increasing number of VNF instances results in
an increased delay for each global request performed by
our library (Figure 5, right). This is expected because the
system always requests state items from all instances of an
elastic VNF. It is also interesting that the request delays of
the clustermem version are higher than the delays of the
centralmem version. The reason for this is that state items
have to be fetched from multiple cluster instances to obtain
the global view instead of requesting all items at once from
the centralized memory.

V. CONCLUSION

This paper presented E-State, a novel approach to manage
application state in elastic network function deployments. Our
solution shows that NFV state management can be done
without central control components which are used by existing
approaches [3], [6]. The presented prototype is a first step
towards a generic, distributed state management framework
that does not rely on centralized control mechanisms. Our
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Fig. 5: System performance as number of processed packets
per second (left) and state item request delay (right) for
different numbers of replicated VNF instances

prototype can easily be extended to provide additional con-
sistency models for state requests to study tradeoffs between
consistency requirements and management overhead. The re-
sults of our experiments show that our system outperforms
approaches that use generic centralized or distributed state
memory solutions.
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