
Joint testing and profiling of microservice-based network services using TTCN-3

Manuel Peuster∗, Christian Dröge, Clemens Boos, Holger Karl

Computer Networks Group, Paderborn University, Warburgerstr. 100, 33098 Paderborn, Germany

Abstract

The ongoing softwarization of networks creates a big need for automated testing solutions to ensure service quality.
This becomes even more important if agile environments with short time to market and high demands, in terms of
service performance and availability, are considered. In this paper, we introduce a novel testing solution for virtual-
ized, microservice-based network functions and services, which we base on TTCN-3, a well known testing language
defined by the European standards institute (ETSI). We use TTCN-3 not only for functional testing but also answer the
question whether TTCN-3 can be used for performance profiling tasks as well. Finally, we demonstrate the proposed
concepts and solutions in a case study using our open-source prototype to test and profile a chained network service.

Keywords: network function virtualization, service chains, automated testing, performance profiling, test definition

1. Introduction

Automated testing of microservice-based virtualized
network functions (VNF) as well as more complex
service function chains (SFC) is still a challenge that
needs to be addressed to finally deliver the full agility
promised by network function virtualization (NFV) and
network softwarization [1]. Those tests are not only
limited to functional, integration, or compatibility tests
but must also include a variety of performance tests to
learn about the behavior of VNFs and SFCs under dif-
ferent resource configurations — a methodology called
NFV profiling [2, 3, 4].

Most NFV profiling solutions consider the profiled
VNFs or SFCs as black-boxes that can be configured
from the outside, e.g., by assigning resources like CPU
cores or memory to them. Profiling then happens by
deploying the VNF or SFC with a certain configuration
and stimulating it, e.g., by sending generated traffic to it,
while its resulting performance, e.g., throughput or la-
tency, is measured. This process is then repeated for all
possible configurations resulting in a parameter study
producing a so-called VNF or SFC performance profile
as output [4].

In this paper we approach the automated VNF and
SFC testing and profiling challenge using a testing so-

∗Corresponding author:
Email address: manuel.peuster@uni-paderborn.de

(Holger Karl)

lution well known in the ICT industry: The Testing and
Test Control Notation Version 3 (TTCN-3) [5]. TTCN3
is standardized by ETSI and is a modular testing lan-
guage with special focus on reusable, automated and
distributed testing of communication systems. It is the
de-facto standard for compliance testing in the ICT field
and used by standardization bodies like 3GPP and IETF.
We believe that TTCN-3 is well suited for use in the
NFV landscape, as we show in Section 3 where we
present a solution to integrate TTCN-3 with the ETSI-
defined NFV architecture. This creates an automated
NFV testing solution, which is our first contribution.
Our second contribution relies on the idea that once we
can use TTCN-3 for NFV testing, we should make use
of it for NFV profiling as well. We argue that this is a
natural fit, since test developers — already familiar with
TTCN-3 — are often responsible to define SFC profil-
ing experiments. To this end, we introduce the TTCN-3
service profiling format (TSPF) in Section 4 before eval-
uating the applicability of the presented concepts with a
case study in Section 5.

2. Related Work

Standardization bodies, like ETSI, specify guide-
lines for testing an NFV infrastructure focusing mainly
on performance and compatibility aspects [6]. Some
IETF work, in contrast, focusses on the verification
of SFC forwarding graphs [7], e.g., loop detection.

Preprint submitted to ICT Express December 19, 2018



None of them focusses on practical solutions for VNF
and SFC testing as we do in this paper. Another ap-
proach for NFV testing is using testing platforms, like
5GTANGO’s verification and validation (V&V) plat-
form [8] or ONAP’s VNF test platform (VTP) [9],
which focus more on VNF and SFC certification as-
pects but can be combined with the solution proposed
in this paper. Even if the existing NFV profiling solu-
tions [2, 3] already offer a high degree of automation,
their experiments are still defined using custom-tailored
experiment descriptions rather than a common descrip-
tion approach. None of these solutions support the joint
definition of tests and profiling experiments.

3. Combining TTCN-3 and NFV

The main idea of our work is to exploit the flexibil-
ity and abstract nature of TTCN-3 to build a generic
test framework for NFV deployments and, more specif-
ically, for single VNFs as well as complex SFCs. Those
tests can be simple functional tests, using TTCN-3’s
flexible port and codec mechanisms to generate test
packets to be sent through the SFC and observe the re-
sults, e.g., whether the correct packets are blocked or
whether packet headers have been modified correctly.
These tests can also utilize so-called test agents to gen-
erate test traffic and stimulate the SFC under test (SFC-
UT), e.g., replay traffic traces. During a test, a large set
of system metrics, including infrastructure metrics and
metrics of the SFC-UT, are monitored and used as test
results.

In classical test setups, the test system is deployed
and running before the TTCN-3 test system connects to
it and executes the tests. This approach could directly be
applied to the presented NFV use cases by manually in-
structing a management and orchestration (MANO) sys-
tem to deploy the SFC-UT and then executing the tests
against it. However, such an approach would leave one
of the main features of the NFV concept unexploited —
automated deployments. To this end, we designed the
proposed approach such that the TTCN-3 test system
itself can trigger the deployment and initial configura-
tion of the SFC-UT before executing the tests against
it, allowing end-to-end automation of test procedures.
To do so, we integrate the TTCN-3 test system with
NFV deployments using an abstraction layer consisting
of multiple adaptation components. Figure 1 presents a
schematic overview of the proposed system architecture
and highlights this integration.

On top, the test system user is shown who interacts
with the TTCN-3 test system to define, implement, or
trigger tests. We use a simplified TTCN-3 test system

System Under Test

TTCN-3
SA Layer

SFC Under Test
F1

F2

F3A1 A2

MANO (NFVO & VNFM)

MANO SA Agent SA

TTCN-3 Test System

Test System User

(simplified)

Monitoring SA

NFVI(s)

m
gm

t

m
gm

t

m
gm

t

in out

ETSI 
SOL001 
SOL004 
SOL005 

agent-
specific
control

interface

VNF
monitoring 
e.g. ETSI
SOL003 
REL004 

Infrastr. 
monitoring 

e.g.
Ceilometer 

ETSI 
Ve-Vnfm 
(SOL002) 

test traffic

Figure 1: System architecture applying TTCN-3 to an ETSI-
compatible NFV system using a set of re-usable and standard com-
pliant system adaptors.

box in this figure and hide internal components (see
TTCN-3 literature [5]), because they are not relevant
for the proposed architecture. Below the test system,
the TTCN-3 system adapter layer is shown, containing
three system adaptors (SA). These SAs are one part of
our contribution and are used to connect the TTCN-3
test system with the NFV infrastructure (NFVI), MANO
system, and to interface with the VNFs or SFC under
test. This builds an abstraction layer and allows test
cases, implemented in TTCN-3 and executed by the
test system, to be designed independently of a partic-
ular NFV target paltform.

The first SA is the MANO SA that interfaces with the
northbound interfaces of an MANO system and controls
the lifecycle, i.e., on-boarding, instantiation, configura-
tion, and termination of the VNFs and SFCs under test.
More specifically, it implements multiple ETSI SOL in-
terfaces [10] so that it can be used with different ETSI-
compliant MANO solutions. SAs that implement cus-
tom (or proprietary) MANO interfaces are still possi-
ble. The Agent SA is the second adaptor in the proposed
system and is responsible to control test agents, e.g., A1
and A2, that are deployed together with the SFC-UT.
Those agents are active components used to stimulate
the tested systems, e.g., by generating traffic, like shown
in the figure. Besides triggering those active stimuli,
agents do also report results, e.g., response time mea-
surements, which are sent back to TTCN-3. It is possi-
ble to have multiple Agent SAs in a system to interface
with different kinds of agents. Finally, the third adaptor,
called Monitoring SA, is used for passive monitoring of
the system. It utilizes multiple sources to collect mon-
itoring data. First, monitoring data is collected from

2



the NFVI, e.g., system resource usage or traffic counters
which can, e.g., be used to detect packet loss in an SFC.
Second, monitoring data is forwarded by the MANO
system, e.g., application level metrics of the deployed
VNFs or SFCs. It is worth noting that the collection of
additional monitoring data is entirely optional and can
be considered a helper for the realization of more so-
phisticated test cases. At the bottom of Figure 1, the
actual NFV deployment with one or multiple connected
NFVIs is shown on which the tested VNFs or SFCs are
deployed and executed.

The presented system can either be used directly,
e.g., in a local test environment of a developer or it
can be integrated into an NFV testing platform, like the
5GTANGO V&V [8] or ONAP VTP [9].

4. TTCN-3-based function & service profiling

Having the presented TTCN-3-based testing solution
for NFV in place, our next goal was to use it as au-
tomation solution to perform VNF and SFC profiling
experiments, i.e., defining a set of performance tests
with different configurations and automatically execute
them [2]. To achieve this, we designed and specified the
TSPF, which is the second major contribution of this
paper. Listing 1 shows a shortened example of a TSPF
profiling experiment definition as we use it in our case
study presented in Section 5.

1 module TSPF_wrk_haproxy_nginx_full_profile {
2 // profiling experiment definition
3 template TSP_Experiment my_example := {
4 name := "wrk -haproxy -nginx",
5 repetitions := 10,
6 service_name := "de.upb.haprx -ngx -service"};
7 // parameters to be tested
8 template ParameterConf paramcfg := {{
9 function_id := "haproxy -vnf",

10 vcpus := { 1,2,3,4 },
11 cpu_time := { 0.1, 0.5, 1.0 },
12 memory := { 128, 256 }
13 }}; // ... definition for further VNFs of SFC
14 // agent setup (reusing wrk_client template)
15 template Agents agent_list := {
16 wrk_client("haproxy -vnf:input", "dc1",
17 "wrk http ://${VNF:IP4:haproxy -vnf}")};
18 } // ... control , monitoring conf. (skipped)

Listing 1: Example TSPF profiling definition using TTCN-3

We designed TSPF using the following requirements
and design principles. (i) pure: To make it as reusable
as possible, TSPF is completely based on TTCN-3 and
does not require any language extensions. (ii) complete:
It allows to define and configure all relevant aspects of a
profiling experiment and the test system shown in Fig-
ure 1, including agents, monitors, and the configurations
of the SFC-UT. (iii) modular: Each part of a TSPF ex-
periment can be re-used in other experiments, e.g., agent

descriptions and configurations can be shared by mul-
tiple experiments. (iv) compact: Configuration values
can be specified as lists or iterators (line 10–12) to ease
the definition of complex parameter studies to be ex-
ecuted. (v) deployment agnostic: Placeholder macros
allow to define experiments independently of the actual
deployment of the profiled SFC and its VNFs (line 17).

Each TSPF profiling experiment definition consists of
five sections (realized as reusable TTCN-3 templates).
First, the experiment header (line 3), defining global
properties, like number of repetitions. Second, the pa-
rameters to be tested during the experiment for each in-
volved VNF (line 8). Third, the definition of the used
agents and their properties (line 15). Fourth, the con-
figuration of the involved monitoring systems and fi-
nally, the control section used as entry point for TTCN-3
(both skipped in the example). The example in Listing 1
demonstrates how compact the definition of a complex
profiling experiment can be and that it is possible to cap-
ture all relevant information to automate profiling exper-
iments using TTCN-3.

5. Case Study

We performed a case study to verify that our pro-
posed TTCN-3-based NFV profiling approach works
and to get insights about its performance and scalabil-
ity. To do so, we use an example SFC which consists
of a HAProxy VNF and an Nginx VNF. We use the traf-
fic generator Wrk as a test agent to stimulate the SFC.
All these components are implemented as Docker con-
tainers and we use vim-emu [11] as test backend and
MANO solution. The SFC is profiled using the config-
uration parameters shown in Listing 1, namely 1 to 4
CPU cores, 10%, 50%, and 100% assigned CPU time,
as well as 128 MiB and 256 MiB memory, resulting in
24 tested configurations per VNF and thus 576 tested
configurations for the complete SFC. Each configura-
tion was tested 10 times resulting in 5760 overall profil-
ing rounds in each performed experiment. All scenarios
were executed on host systems with Intel Core i7 960
CPU @ 3.20 GHz and 24 GiB RAM running Ubuntu
16.04.3 LTS with kernel 4.4 and Titan [5] toolset ver-
sion 6.4.0.

Figure 2 reports a subset of the overall profiling re-
sults, showing (a) the number of requests performed per
second as well as (b) the latency 99th percentile of re-
quests sent to the Nginx VNF through the HAProxy
VNF. The results are averaged over 10 s experiment
time and 10 repetitions. They are shown in relation to
the CPU times assigned to the two involved VNFs, each

3



Nginx (CPU time) 0
50

100

HAProx
y (

CPU tim
e)

0

50

100

R
eq

ue
st

s 
(x

10
00

/s
)

0.9

5.3

9.7

(a) Number of Requests

Nginx (CPU time)

0
50

100
HAProx

y (
CPU tim

e)0

50

100

99
th

-%
 L

at
en

cy
 (s

)

0.7

0.8

0.9

(b) Request Latency

Figure 2: SFC performance over assigned CPU time

Conf. count Runtime Max. Mem. MANO SA

10 378.873 s 21208 KiB vim-emu
100 3801.941 s 21040 KiB vim-emu
1000 38773.167 s 20972 KiB vim-emu

Table 1: Runtime and maximum memory usage

with 1 CPU and 128 MiB memory. Results for the re-
maining SFC configurations as well as further request
sizes are available online [12].

It can be seen that the CPU time assigned to the Ng-
inx VNF has the most impact on the overall SFC perfor-
mance. The CPU time assigned to HAProxy has only
an impact if it is small and the CPU time available for
Nginx is high. This performance behavior information
represents a so called SFC performance profile and can
be used to optimize resource dimensioning decisions in
production deployments [2]. The important point of this
study are not the absolute performance values achieved
by the used SFC but the fact that those performance fig-
ures are derived by a fully automated profiling process
without any further human interaction. This shows a
clear use case of the presented profiling approach, al-
lowing to use TTCN-3 not only for functional testing of
VNFs and SFCs, but also for performance tests and to
automatically construct complex performance profiles.

Table 1 quantifies the resource demands (in terms of
runtime and memory consumption) of our prototype.
The table indicates that the runtime shows a linear re-
lationship to the number of tested configurations (pro-
filing rounds). Still, the presented architecture allows to
speed up experiments by using multiple NFVIs in par-
allel. The table shows that memory usage does not de-
pend on the number of tested configurations, which is
important for the overall scalability of the system.

6. Conclusion

The presented testing concepts drastically reduce the
complexity of using TTCN-3 as NFV test solution. We
showed that TTCN-3 can also be used for performance

profiling tasks, although the syntax of the resulting ex-
periment definitions can still be simplified, which we
leave for future work. The presented case study shows
the applicability of the presented concepts and how they
can be used to automate performance profiling tasks.
Our prototype and raw measurements are available on-
line [12].

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No. H2020-ICT-2016-
2 761493 (5GTANGO), and the German Research Foundation (DFG) within the
Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

References

[1] H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bredel, A. Ramos,
J. Martrat, M. S. Siddiqui, S. van Rossem, W. Tavernier, et al.,
DevOps for network function virtualisation: an architectural ap-
proach, Transactions on Emerging Telecommunications Tech-
nologies 27 (9) (2016) 1206–1215.

[2] M. Peuster, H. Karl, Understand Your Chains: Towards Perfor-
mance Profile-based Network Service Management, in: 5th Eu-
ropean Workshop on Software Defined Networks (EWSDN’16),
IEEE, 2016.

[3] R. V. Rosa, C. Bertoldo, C. E. Rothenberg, Take Your VNF to
the Gym: A Testing Framework for Automated NFV Perfor-
mance Benchmarking, IEEE Communications Magazine 55 (9)
(2017) 110–117. doi:10.1109/MCOM.2017.1700127.

[4] R. V. Rosa, C. E. Rothenberg, M. Peuster, H. Karl, Methodology
for VNF Benchmarking Automation, Internet-Draft draft-rosa-
bmwg-vnfbench-02, Internet Engineering Task Force (IETF),
work in Progress (July).

[5] ETSI, 201 873-1 (V3.1.1): Methods for Testing and Specifica-
tion (MTS): The Testing and Test Control Notation version 3
(2005).

[6] ETSI GS NFV-TST 001, Network Functions Virtualization
(NFV); Pre-deployment Testing; Report on Validation of NFV
Environments and Services (2016).

[7] M.-K. Shin, K.-H. Nam, S. Pack, S. Lee, R. Krishnan, Veri-
fication of NFV Services: Problem Statement and Challenges,
Internet-Draft draft-irtf-nfvrg-service-verification-05, Internet
Engineering Task Force (IETF), work in Progress (October).

[8] P. Twamley, M. Müller, P.-B. Bök, G. K. Xilouris, C. Sakkas,
M. A. Kourtis, M. Peuster, S. Schneider, P. Stavrianos, D. Kyri-
azis, 5GTANGO: An Approach for Testing NFV Deployments,
in: 2018 European Conference on Networks and Communica-
tions (EuCNC), IEEE, 2018, pp. 1–218.

[9] Linux Foundation, ONAP: VNF Test Platform, online at:
https://bit.ly/2UPcwEd (2018).

[10] ETSI, Network Functions Virtualisation (NFV) Release 2; Pro-
tocols and Data Models; VNF Package specification, Website,
online at https://www.etsi.org (2018).

[11] M. Peuster, H. Karl, S. van Rossem, MeDICINE: Rapid Pro-
totyping of Production-ready Network Services in Multi-PoP
Environments, in: 2016 IEEE Conference on Network Func-
tion Virtualization and Software Defined Networks (NFV-SDN),
2016, pp. 148–153. doi:10.1109/NFV-SDN.2016.7919490.

[12] C. Droege, TTCN-3 Service Profiling, online at:
https://git.io/fpAWY (2018).

4


